0
2
0
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/tolerance.h> |
|
31 | 32 |
#include <lemon/path.h> |
32 | 33 |
|
33 | 34 |
#include <limits> |
34 | 35 |
|
35 | 36 |
namespace lemon { |
36 | 37 |
|
37 |
/// \brief Default |
|
38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
|
38 | 39 |
/// |
39 | 40 |
/// This operation traits class defines all computational operations |
40 | 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
41 | 42 |
/// The default implementation is based on the \c numeric_limits class. |
42 | 43 |
/// If the numeric type does not have infinity value, then the maximum |
43 | 44 |
/// value is used as extremal infinity value. |
45 |
/// |
|
46 |
/// \see BellmanFordToleranceOperationTraits |
|
44 | 47 |
template < |
45 | 48 |
typename V, |
46 | 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
47 | 50 |
struct BellmanFordDefaultOperationTraits { |
48 |
/// \ |
|
51 |
/// \brief Value type for the algorithm. |
|
49 | 52 |
typedef V Value; |
50 | 53 |
/// \brief Gives back the zero value of the type. |
51 | 54 |
static Value zero() { |
52 | 55 |
return static_cast<Value>(0); |
53 | 56 |
} |
54 | 57 |
/// \brief Gives back the positive infinity value of the type. |
55 | 58 |
static Value infinity() { |
56 | 59 |
return std::numeric_limits<Value>::infinity(); |
57 | 60 |
} |
58 | 61 |
/// \brief Gives back the sum of the given two elements. |
59 | 62 |
static Value plus(const Value& left, const Value& right) { |
60 | 63 |
return left + right; |
61 | 64 |
} |
62 | 65 |
/// \brief Gives back \c true only if the first value is less than |
63 | 66 |
/// the second. |
64 | 67 |
static bool less(const Value& left, const Value& right) { |
65 | 68 |
return left < right; |
66 | 69 |
} |
67 | 70 |
}; |
68 | 71 |
|
69 | 72 |
template <typename V> |
70 | 73 |
struct BellmanFordDefaultOperationTraits<V, false> { |
71 | 74 |
typedef V Value; |
72 | 75 |
static Value zero() { |
73 | 76 |
return static_cast<Value>(0); |
74 | 77 |
} |
75 | 78 |
static Value infinity() { |
76 | 79 |
return std::numeric_limits<Value>::max(); |
77 | 80 |
} |
78 | 81 |
static Value plus(const Value& left, const Value& right) { |
79 | 82 |
if (left == infinity() || right == infinity()) return infinity(); |
80 | 83 |
return left + right; |
81 | 84 |
} |
82 | 85 |
static bool less(const Value& left, const Value& right) { |
83 | 86 |
return left < right; |
84 | 87 |
} |
85 | 88 |
}; |
86 | 89 |
|
90 |
/// \brief Operation traits for the BellmanFord algorithm class |
|
91 |
/// using tolerance. |
|
92 |
/// |
|
93 |
/// This operation traits class defines all computational operations |
|
94 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
95 |
/// The only difference between this implementation and |
|
96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
|
97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
|
98 |
/// function. |
|
99 |
/// |
|
100 |
/// \tparam V The value type. |
|
101 |
/// \tparam eps The epsilon value for the \ref less() function. |
|
102 |
/// By default, it is the epsilon value used by \ref Tolerance |
|
103 |
/// "Tolerance<V>". |
|
104 |
/// |
|
105 |
/// \see BellmanFordDefaultOperationTraits |
|
106 |
#ifdef DOXYGEN |
|
107 |
template <typename V, V eps> |
|
108 |
#else |
|
109 |
template < |
|
110 |
typename V, |
|
111 |
V eps = Tolerance<V>::def_epsilon> |
|
112 |
#endif |
|
113 |
struct BellmanFordToleranceOperationTraits { |
|
114 |
/// \brief Value type for the algorithm. |
|
115 |
typedef V Value; |
|
116 |
/// \brief Gives back the zero value of the type. |
|
117 |
static Value zero() { |
|
118 |
return static_cast<Value>(0); |
|
119 |
} |
|
120 |
/// \brief Gives back the positive infinity value of the type. |
|
121 |
static Value infinity() { |
|
122 |
return std::numeric_limits<Value>::infinity(); |
|
123 |
} |
|
124 |
/// \brief Gives back the sum of the given two elements. |
|
125 |
static Value plus(const Value& left, const Value& right) { |
|
126 |
return left + right; |
|
127 |
} |
|
128 |
/// \brief Gives back \c true only if the first value is less than |
|
129 |
/// the second. |
|
130 |
static bool less(const Value& left, const Value& right) { |
|
131 |
return left + eps < right; |
|
132 |
} |
|
133 |
}; |
|
134 |
|
|
87 | 135 |
/// \brief Default traits class of BellmanFord class. |
88 | 136 |
/// |
89 | 137 |
/// Default traits class of BellmanFord class. |
90 | 138 |
/// \param GR The type of the digraph. |
91 | 139 |
/// \param LEN The type of the length map. |
92 | 140 |
template<typename GR, typename LEN> |
93 | 141 |
struct BellmanFordDefaultTraits { |
94 | 142 |
/// The type of the digraph the algorithm runs on. |
95 | 143 |
typedef GR Digraph; |
96 | 144 |
|
97 | 145 |
/// \brief The type of the map that stores the arc lengths. |
98 | 146 |
/// |
99 | 147 |
/// The type of the map that stores the arc lengths. |
100 | 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
101 | 149 |
typedef LEN LengthMap; |
102 | 150 |
|
103 | 151 |
/// The type of the arc lengths. |
104 | 152 |
typedef typename LEN::Value Value; |
105 | 153 |
|
106 | 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
107 | 155 |
/// |
108 | 156 |
/// It defines the used operations and the infinity value for the |
109 | 157 |
/// given \c Value type. |
110 |
/// \see BellmanFordDefaultOperationTraits |
|
158 |
/// \see BellmanFordDefaultOperationTraits, |
|
159 |
/// BellmanFordToleranceOperationTraits |
|
111 | 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
112 | 161 |
|
113 | 162 |
/// \brief The type of the map that stores the last arcs of the |
114 | 163 |
/// shortest paths. |
115 | 164 |
/// |
116 | 165 |
/// The type of the map that stores the last |
117 | 166 |
/// arcs of the shortest paths. |
118 | 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
119 | 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
120 | 169 |
|
121 | 170 |
/// \brief Instantiates a \c PredMap. |
122 | 171 |
/// |
123 | 172 |
/// This function instantiates a \ref PredMap. |
124 | 173 |
/// \param g is the digraph to which we would like to define the |
125 | 174 |
/// \ref PredMap. |
126 | 175 |
static PredMap *createPredMap(const GR& g) { |
127 | 176 |
return new PredMap(g); |
128 | 177 |
} |
129 | 178 |
|
130 | 179 |
/// \brief The type of the map that stores the distances of the nodes. |
131 | 180 |
/// |
132 | 181 |
/// The type of the map that stores the distances of the nodes. |
133 | 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
134 | 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
135 | 184 |
|
136 | 185 |
/// \brief Instantiates a \c DistMap. |
137 | 186 |
/// |
138 | 187 |
/// This function instantiates a \ref DistMap. |
139 | 188 |
/// \param g is the digraph to which we would like to define the |
140 | 189 |
/// \ref DistMap. |
141 | 190 |
static DistMap *createDistMap(const GR& g) { |
142 | 191 |
return new DistMap(g); |
143 | 192 |
} |
144 | 193 |
|
145 | 194 |
}; |
146 | 195 |
|
147 | 196 |
/// \brief %BellmanFord algorithm class. |
148 | 197 |
/// |
149 | 198 |
/// \ingroup shortest_path |
150 | 199 |
/// This class provides an efficient implementation of the Bellman-Ford |
151 | 200 |
/// algorithm. The maximum time complexity of the algorithm is |
152 | 201 |
/// <tt>O(ne)</tt>. |
153 | 202 |
/// |
154 | 203 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
155 | 204 |
/// problem when the arcs can have negative lengths, but the digraph |
156 | 205 |
/// should not contain directed cycles with negative total length. |
157 | 206 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
158 | 207 |
/// algorithm instead, since it is more efficient. |
159 | 208 |
/// |
160 | 209 |
/// The arc lengths are passed to the algorithm using a |
161 | 210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
162 | 211 |
/// kind of length. The type of the length values is determined by the |
163 | 212 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
164 | 213 |
/// |
165 | 214 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
166 | 215 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
167 | 216 |
/// it can be used easier. |
168 | 217 |
/// |
169 | 218 |
/// \tparam GR The type of the digraph the algorithm runs on. |
170 | 219 |
/// The default type is \ref ListDigraph. |
171 | 220 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
172 | 221 |
/// the lengths of the arcs. The default map type is |
173 | 222 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
174 | 223 |
/// \tparam TR The traits class that defines various types used by the |
175 | 224 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
176 | 225 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
177 | 226 |
/// In most cases, this parameter should not be set directly, |
178 | 227 |
/// consider to use the named template parameters instead. |
179 | 228 |
#ifdef DOXYGEN |
180 | 229 |
template <typename GR, typename LEN, typename TR> |
181 | 230 |
#else |
182 | 231 |
template <typename GR=ListDigraph, |
183 | 232 |
typename LEN=typename GR::template ArcMap<int>, |
184 | 233 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
185 | 234 |
#endif |
186 | 235 |
class BellmanFord { |
187 | 236 |
public: |
188 | 237 |
|
189 | 238 |
///The type of the underlying digraph. |
190 | 239 |
typedef typename TR::Digraph Digraph; |
191 | 240 |
|
192 | 241 |
/// \brief The type of the arc lengths. |
193 | 242 |
typedef typename TR::LengthMap::Value Value; |
194 | 243 |
/// \brief The type of the map that stores the arc lengths. |
195 | 244 |
typedef typename TR::LengthMap LengthMap; |
196 | 245 |
/// \brief The type of the map that stores the last |
197 | 246 |
/// arcs of the shortest paths. |
198 | 247 |
typedef typename TR::PredMap PredMap; |
199 | 248 |
/// \brief The type of the map that stores the distances of the nodes. |
200 | 249 |
typedef typename TR::DistMap DistMap; |
201 | 250 |
/// The type of the paths. |
202 | 251 |
typedef PredMapPath<Digraph, PredMap> Path; |
203 | 252 |
///\brief The \ref BellmanFordDefaultOperationTraits |
204 | 253 |
/// "operation traits class" of the algorithm. |
205 | 254 |
typedef typename TR::OperationTraits OperationTraits; |
206 | 255 |
|
207 | 256 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
208 | 257 |
typedef TR Traits; |
209 | 258 |
|
210 | 259 |
private: |
211 | 260 |
|
212 | 261 |
typedef typename Digraph::Node Node; |
213 | 262 |
typedef typename Digraph::NodeIt NodeIt; |
214 | 263 |
typedef typename Digraph::Arc Arc; |
215 | 264 |
typedef typename Digraph::OutArcIt OutArcIt; |
216 | 265 |
|
217 | 266 |
// Pointer to the underlying digraph. |
218 | 267 |
const Digraph *_gr; |
219 | 268 |
// Pointer to the length map |
220 | 269 |
const LengthMap *_length; |
221 | 270 |
// Pointer to the map of predecessors arcs. |
222 | 271 |
PredMap *_pred; |
223 | 272 |
// Indicates if _pred is locally allocated (true) or not. |
224 | 273 |
bool _local_pred; |
225 | 274 |
// Pointer to the map of distances. |
226 | 275 |
DistMap *_dist; |
227 | 276 |
// Indicates if _dist is locally allocated (true) or not. |
228 | 277 |
bool _local_dist; |
229 | 278 |
|
230 | 279 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
231 | 280 |
MaskMap *_mask; |
232 | 281 |
|
233 | 282 |
std::vector<Node> _process; |
234 | 283 |
|
235 | 284 |
// Creates the maps if necessary. |
236 | 285 |
void create_maps() { |
237 | 286 |
if(!_pred) { |
238 | 287 |
_local_pred = true; |
239 | 288 |
_pred = Traits::createPredMap(*_gr); |
240 | 289 |
} |
241 | 290 |
if(!_dist) { |
242 | 291 |
_local_dist = true; |
243 | 292 |
_dist = Traits::createDistMap(*_gr); |
244 | 293 |
} |
245 | 294 |
if(!_mask) { |
246 | 295 |
_mask = new MaskMap(*_gr); |
247 | 296 |
} |
248 | 297 |
} |
249 | 298 |
|
250 | 299 |
public : |
251 | 300 |
|
252 | 301 |
typedef BellmanFord Create; |
253 | 302 |
|
254 | 303 |
/// \name Named Template Parameters |
255 | 304 |
|
256 | 305 |
///@{ |
257 | 306 |
|
258 | 307 |
template <class T> |
259 | 308 |
struct SetPredMapTraits : public Traits { |
260 | 309 |
typedef T PredMap; |
261 | 310 |
static PredMap *createPredMap(const Digraph&) { |
262 | 311 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
263 | 312 |
return 0; // ignore warnings |
264 | 313 |
} |
265 | 314 |
}; |
266 | 315 |
|
267 | 316 |
/// \brief \ref named-templ-param "Named parameter" for setting |
268 | 317 |
/// \c PredMap type. |
269 | 318 |
/// |
270 | 319 |
/// \ref named-templ-param "Named parameter" for setting |
271 | 320 |
/// \c PredMap type. |
272 | 321 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
273 | 322 |
template <class T> |
274 | 323 |
struct SetPredMap |
275 | 324 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
276 | 325 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
277 | 326 |
}; |
278 | 327 |
|
279 | 328 |
template <class T> |
280 | 329 |
struct SetDistMapTraits : public Traits { |
281 | 330 |
typedef T DistMap; |
282 | 331 |
static DistMap *createDistMap(const Digraph&) { |
283 | 332 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
284 | 333 |
return 0; // ignore warnings |
285 | 334 |
} |
286 | 335 |
}; |
287 | 336 |
|
288 | 337 |
/// \brief \ref named-templ-param "Named parameter" for setting |
289 | 338 |
/// \c DistMap type. |
290 | 339 |
/// |
291 | 340 |
/// \ref named-templ-param "Named parameter" for setting |
292 | 341 |
/// \c DistMap type. |
293 | 342 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
294 | 343 |
template <class T> |
295 | 344 |
struct SetDistMap |
296 | 345 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
297 | 346 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
298 | 347 |
}; |
299 | 348 |
|
300 | 349 |
template <class T> |
301 | 350 |
struct SetOperationTraitsTraits : public Traits { |
302 | 351 |
typedef T OperationTraits; |
303 | 352 |
}; |
304 | 353 |
|
305 | 354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
306 | 355 |
/// \c OperationTraits type. |
307 | 356 |
/// |
308 | 357 |
/// \ref named-templ-param "Named parameter" for setting |
309 | 358 |
/// \c OperationTraits type. |
310 | 359 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
311 | 360 |
template <class T> |
312 | 361 |
struct SetOperationTraits |
313 | 362 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
314 | 363 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
315 | 364 |
Create; |
316 | 365 |
}; |
317 | 366 |
|
318 | 367 |
///@} |
319 | 368 |
|
320 | 369 |
protected: |
321 | 370 |
|
322 | 371 |
BellmanFord() {} |
323 | 372 |
|
324 | 373 |
public: |
325 | 374 |
|
326 | 375 |
/// \brief Constructor. |
327 | 376 |
/// |
328 | 377 |
/// Constructor. |
329 | 378 |
/// \param g The digraph the algorithm runs on. |
330 | 379 |
/// \param length The length map used by the algorithm. |
331 | 380 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
332 | 381 |
_gr(&g), _length(&length), |
333 | 382 |
_pred(0), _local_pred(false), |
334 | 383 |
_dist(0), _local_dist(false), _mask(0) {} |
335 | 384 |
|
336 | 385 |
///Destructor. |
337 | 386 |
~BellmanFord() { |
338 | 387 |
if(_local_pred) delete _pred; |
339 | 388 |
if(_local_dist) delete _dist; |
340 | 389 |
if(_mask) delete _mask; |
341 | 390 |
} |
342 | 391 |
|
343 | 392 |
/// \brief Sets the length map. |
344 | 393 |
/// |
345 | 394 |
/// Sets the length map. |
346 | 395 |
/// \return <tt>(*this)</tt> |
347 | 396 |
BellmanFord &lengthMap(const LengthMap &map) { |
348 | 397 |
_length = ↦ |
349 | 398 |
return *this; |
350 | 399 |
} |
351 | 400 |
|
352 | 401 |
/// \brief Sets the map that stores the predecessor arcs. |
353 | 402 |
/// |
354 | 403 |
/// Sets the map that stores the predecessor arcs. |
355 | 404 |
/// If you don't use this function before calling \ref run() |
356 | 405 |
/// or \ref init(), an instance will be allocated automatically. |
357 | 406 |
/// The destructor deallocates this automatically allocated map, |
358 | 407 |
/// of course. |
359 | 408 |
/// \return <tt>(*this)</tt> |
360 | 409 |
BellmanFord &predMap(PredMap &map) { |
361 | 410 |
if(_local_pred) { |
362 | 411 |
delete _pred; |
363 | 412 |
_local_pred=false; |
364 | 413 |
} |
365 | 414 |
_pred = ↦ |
366 | 415 |
return *this; |
... | ... |
@@ -584,513 +633,514 @@ |
584 | 633 |
} |
585 | 634 |
} |
586 | 635 |
|
587 | 636 |
/// \brief Runs the algorithm from the given root node. |
588 | 637 |
/// |
589 | 638 |
/// This method runs the Bellman-Ford algorithm from the given root |
590 | 639 |
/// node \c s in order to compute the shortest path to each node. |
591 | 640 |
/// |
592 | 641 |
/// The algorithm computes |
593 | 642 |
/// - the shortest path tree (forest), |
594 | 643 |
/// - the distance of each node from the root(s). |
595 | 644 |
/// |
596 | 645 |
/// \note bf.run(s) is just a shortcut of the following code. |
597 | 646 |
/// \code |
598 | 647 |
/// bf.init(); |
599 | 648 |
/// bf.addSource(s); |
600 | 649 |
/// bf.start(); |
601 | 650 |
/// \endcode |
602 | 651 |
void run(Node s) { |
603 | 652 |
init(); |
604 | 653 |
addSource(s); |
605 | 654 |
start(); |
606 | 655 |
} |
607 | 656 |
|
608 | 657 |
/// \brief Runs the algorithm from the given root node with arc |
609 | 658 |
/// number limit. |
610 | 659 |
/// |
611 | 660 |
/// This method runs the Bellman-Ford algorithm from the given root |
612 | 661 |
/// node \c s in order to compute the shortest path distance for each |
613 | 662 |
/// node using only the paths consisting of at most \c num arcs. |
614 | 663 |
/// |
615 | 664 |
/// The algorithm computes |
616 | 665 |
/// - the limited distance of each node from the root(s), |
617 | 666 |
/// - the predecessor arc for each node. |
618 | 667 |
/// |
619 | 668 |
/// \warning The paths with limited arc number cannot be retrieved |
620 | 669 |
/// easily with \ref path() or \ref predArc() functions. If you also |
621 | 670 |
/// need the shortest paths and not only the distances, you should |
622 | 671 |
/// store the \ref predMap() "predecessor map" after each iteration |
623 | 672 |
/// and build the path manually. |
624 | 673 |
/// |
625 | 674 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
626 | 675 |
/// \code |
627 | 676 |
/// bf.init(); |
628 | 677 |
/// bf.addSource(s); |
629 | 678 |
/// bf.limitedStart(num); |
630 | 679 |
/// \endcode |
631 | 680 |
void run(Node s, int num) { |
632 | 681 |
init(); |
633 | 682 |
addSource(s); |
634 | 683 |
limitedStart(num); |
635 | 684 |
} |
636 | 685 |
|
637 | 686 |
///@} |
638 | 687 |
|
639 | 688 |
/// \brief LEMON iterator for getting the active nodes. |
640 | 689 |
/// |
641 | 690 |
/// This class provides a common style LEMON iterator that traverses |
642 | 691 |
/// the active nodes of the Bellman-Ford algorithm after the last |
643 | 692 |
/// phase. These nodes should be checked in the next phase to |
644 | 693 |
/// find augmenting arcs outgoing from them. |
645 | 694 |
class ActiveIt { |
646 | 695 |
public: |
647 | 696 |
|
648 | 697 |
/// \brief Constructor. |
649 | 698 |
/// |
650 | 699 |
/// Constructor for getting the active nodes of the given BellmanFord |
651 | 700 |
/// instance. |
652 | 701 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
653 | 702 |
{ |
654 | 703 |
_index = _algorithm->_process.size() - 1; |
655 | 704 |
} |
656 | 705 |
|
657 | 706 |
/// \brief Invalid constructor. |
658 | 707 |
/// |
659 | 708 |
/// Invalid constructor. |
660 | 709 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
661 | 710 |
|
662 | 711 |
/// \brief Conversion to \c Node. |
663 | 712 |
/// |
664 | 713 |
/// Conversion to \c Node. |
665 | 714 |
operator Node() const { |
666 | 715 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
667 | 716 |
} |
668 | 717 |
|
669 | 718 |
/// \brief Increment operator. |
670 | 719 |
/// |
671 | 720 |
/// Increment operator. |
672 | 721 |
ActiveIt& operator++() { |
673 | 722 |
--_index; |
674 | 723 |
return *this; |
675 | 724 |
} |
676 | 725 |
|
677 | 726 |
bool operator==(const ActiveIt& it) const { |
678 | 727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
679 | 728 |
} |
680 | 729 |
bool operator!=(const ActiveIt& it) const { |
681 | 730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
682 | 731 |
} |
683 | 732 |
bool operator<(const ActiveIt& it) const { |
684 | 733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
685 | 734 |
} |
686 | 735 |
|
687 | 736 |
private: |
688 | 737 |
const BellmanFord* _algorithm; |
689 | 738 |
int _index; |
690 | 739 |
}; |
691 | 740 |
|
692 | 741 |
/// \name Query Functions |
693 | 742 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
694 | 743 |
/// functions.\n |
695 | 744 |
/// Either \ref run() or \ref init() should be called before using them. |
696 | 745 |
|
697 | 746 |
///@{ |
698 | 747 |
|
699 | 748 |
/// \brief The shortest path to the given node. |
700 | 749 |
/// |
701 | 750 |
/// Gives back the shortest path to the given node from the root(s). |
702 | 751 |
/// |
703 | 752 |
/// \warning \c t should be reached from the root(s). |
704 | 753 |
/// |
705 | 754 |
/// \pre Either \ref run() or \ref init() must be called before |
706 | 755 |
/// using this function. |
707 | 756 |
Path path(Node t) const |
708 | 757 |
{ |
709 | 758 |
return Path(*_gr, *_pred, t); |
710 | 759 |
} |
711 | 760 |
|
712 | 761 |
/// \brief The distance of the given node from the root(s). |
713 | 762 |
/// |
714 | 763 |
/// Returns the distance of the given node from the root(s). |
715 | 764 |
/// |
716 | 765 |
/// \warning If node \c v is not reached from the root(s), then |
717 | 766 |
/// the return value of this function is undefined. |
718 | 767 |
/// |
719 | 768 |
/// \pre Either \ref run() or \ref init() must be called before |
720 | 769 |
/// using this function. |
721 | 770 |
Value dist(Node v) const { return (*_dist)[v]; } |
722 | 771 |
|
723 | 772 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
724 | 773 |
/// the given node. |
725 | 774 |
/// |
726 | 775 |
/// This function returns the 'previous arc' of the shortest path |
727 | 776 |
/// tree for node \c v, i.e. it returns the last arc of a |
728 | 777 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
729 | 778 |
/// is not reached from the root(s) or if \c v is a root. |
730 | 779 |
/// |
731 | 780 |
/// The shortest path tree used here is equal to the shortest path |
732 | 781 |
/// tree used in \ref predNode() and \ref predMap(). |
733 | 782 |
/// |
734 | 783 |
/// \pre Either \ref run() or \ref init() must be called before |
735 | 784 |
/// using this function. |
736 | 785 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
737 | 786 |
|
738 | 787 |
/// \brief Returns the 'previous node' of the shortest path tree for |
739 | 788 |
/// the given node. |
740 | 789 |
/// |
741 | 790 |
/// This function returns the 'previous node' of the shortest path |
742 | 791 |
/// tree for node \c v, i.e. it returns the last but one node of |
743 | 792 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
744 | 793 |
/// is not reached from the root(s) or if \c v is a root. |
745 | 794 |
/// |
746 | 795 |
/// The shortest path tree used here is equal to the shortest path |
747 | 796 |
/// tree used in \ref predArc() and \ref predMap(). |
748 | 797 |
/// |
749 | 798 |
/// \pre Either \ref run() or \ref init() must be called before |
750 | 799 |
/// using this function. |
751 | 800 |
Node predNode(Node v) const { |
752 | 801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
753 | 802 |
} |
754 | 803 |
|
755 | 804 |
/// \brief Returns a const reference to the node map that stores the |
756 | 805 |
/// distances of the nodes. |
757 | 806 |
/// |
758 | 807 |
/// Returns a const reference to the node map that stores the distances |
759 | 808 |
/// of the nodes calculated by the algorithm. |
760 | 809 |
/// |
761 | 810 |
/// \pre Either \ref run() or \ref init() must be called before |
762 | 811 |
/// using this function. |
763 | 812 |
const DistMap &distMap() const { return *_dist;} |
764 | 813 |
|
765 | 814 |
/// \brief Returns a const reference to the node map that stores the |
766 | 815 |
/// predecessor arcs. |
767 | 816 |
/// |
768 | 817 |
/// Returns a const reference to the node map that stores the predecessor |
769 | 818 |
/// arcs, which form the shortest path tree (forest). |
770 | 819 |
/// |
771 | 820 |
/// \pre Either \ref run() or \ref init() must be called before |
772 | 821 |
/// using this function. |
773 | 822 |
const PredMap &predMap() const { return *_pred; } |
774 | 823 |
|
775 | 824 |
/// \brief Checks if a node is reached from the root(s). |
776 | 825 |
/// |
777 | 826 |
/// Returns \c true if \c v is reached from the root(s). |
778 | 827 |
/// |
779 | 828 |
/// \pre Either \ref run() or \ref init() must be called before |
780 | 829 |
/// using this function. |
781 | 830 |
bool reached(Node v) const { |
782 | 831 |
return (*_dist)[v] != OperationTraits::infinity(); |
783 | 832 |
} |
784 | 833 |
|
785 | 834 |
/// \brief Gives back a negative cycle. |
786 | 835 |
/// |
787 | 836 |
/// This function gives back a directed cycle with negative total |
788 | 837 |
/// length if the algorithm has already found one. |
789 | 838 |
/// Otherwise it gives back an empty path. |
790 | 839 |
lemon::Path<Digraph> negativeCycle() const { |
791 | 840 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
792 | 841 |
lemon::Path<Digraph> cycle; |
793 | 842 |
for (int i = 0; i < int(_process.size()); ++i) { |
794 | 843 |
if (state[_process[i]] != -1) continue; |
795 | 844 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
796 | 845 |
v = _gr->source((*_pred)[v])) { |
797 | 846 |
if (state[v] == i) { |
798 | 847 |
cycle.addFront((*_pred)[v]); |
799 | 848 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
800 | 849 |
u = _gr->source((*_pred)[u])) { |
801 | 850 |
cycle.addFront((*_pred)[u]); |
802 | 851 |
} |
803 | 852 |
return cycle; |
804 | 853 |
} |
805 | 854 |
else if (state[v] >= 0) { |
806 | 855 |
break; |
807 | 856 |
} |
808 | 857 |
state[v] = i; |
809 | 858 |
} |
810 | 859 |
} |
811 | 860 |
return cycle; |
812 | 861 |
} |
813 | 862 |
|
814 | 863 |
///@} |
815 | 864 |
}; |
816 | 865 |
|
817 | 866 |
/// \brief Default traits class of bellmanFord() function. |
818 | 867 |
/// |
819 | 868 |
/// Default traits class of bellmanFord() function. |
820 | 869 |
/// \tparam GR The type of the digraph. |
821 | 870 |
/// \tparam LEN The type of the length map. |
822 | 871 |
template <typename GR, typename LEN> |
823 | 872 |
struct BellmanFordWizardDefaultTraits { |
824 | 873 |
/// The type of the digraph the algorithm runs on. |
825 | 874 |
typedef GR Digraph; |
826 | 875 |
|
827 | 876 |
/// \brief The type of the map that stores the arc lengths. |
828 | 877 |
/// |
829 | 878 |
/// The type of the map that stores the arc lengths. |
830 | 879 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
831 | 880 |
typedef LEN LengthMap; |
832 | 881 |
|
833 | 882 |
/// The type of the arc lengths. |
834 | 883 |
typedef typename LEN::Value Value; |
835 | 884 |
|
836 | 885 |
/// \brief Operation traits for Bellman-Ford algorithm. |
837 | 886 |
/// |
838 | 887 |
/// It defines the used operations and the infinity value for the |
839 | 888 |
/// given \c Value type. |
840 |
/// \see BellmanFordDefaultOperationTraits |
|
889 |
/// \see BellmanFordDefaultOperationTraits, |
|
890 |
/// BellmanFordToleranceOperationTraits |
|
841 | 891 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
842 | 892 |
|
843 | 893 |
/// \brief The type of the map that stores the last |
844 | 894 |
/// arcs of the shortest paths. |
845 | 895 |
/// |
846 | 896 |
/// The type of the map that stores the last arcs of the shortest paths. |
847 | 897 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
848 | 898 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
849 | 899 |
|
850 | 900 |
/// \brief Instantiates a \c PredMap. |
851 | 901 |
/// |
852 | 902 |
/// This function instantiates a \ref PredMap. |
853 | 903 |
/// \param g is the digraph to which we would like to define the |
854 | 904 |
/// \ref PredMap. |
855 | 905 |
static PredMap *createPredMap(const GR &g) { |
856 | 906 |
return new PredMap(g); |
857 | 907 |
} |
858 | 908 |
|
859 | 909 |
/// \brief The type of the map that stores the distances of the nodes. |
860 | 910 |
/// |
861 | 911 |
/// The type of the map that stores the distances of the nodes. |
862 | 912 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
863 | 913 |
typedef typename GR::template NodeMap<Value> DistMap; |
864 | 914 |
|
865 | 915 |
/// \brief Instantiates a \c DistMap. |
866 | 916 |
/// |
867 | 917 |
/// This function instantiates a \ref DistMap. |
868 | 918 |
/// \param g is the digraph to which we would like to define the |
869 | 919 |
/// \ref DistMap. |
870 | 920 |
static DistMap *createDistMap(const GR &g) { |
871 | 921 |
return new DistMap(g); |
872 | 922 |
} |
873 | 923 |
|
874 | 924 |
///The type of the shortest paths. |
875 | 925 |
|
876 | 926 |
///The type of the shortest paths. |
877 | 927 |
///It must meet the \ref concepts::Path "Path" concept. |
878 | 928 |
typedef lemon::Path<Digraph> Path; |
879 | 929 |
}; |
880 | 930 |
|
881 | 931 |
/// \brief Default traits class used by BellmanFordWizard. |
882 | 932 |
/// |
883 | 933 |
/// Default traits class used by BellmanFordWizard. |
884 | 934 |
/// \tparam GR The type of the digraph. |
885 | 935 |
/// \tparam LEN The type of the length map. |
886 | 936 |
template <typename GR, typename LEN> |
887 | 937 |
class BellmanFordWizardBase |
888 | 938 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
889 | 939 |
|
890 | 940 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
891 | 941 |
protected: |
892 | 942 |
// Type of the nodes in the digraph. |
893 | 943 |
typedef typename Base::Digraph::Node Node; |
894 | 944 |
|
895 | 945 |
// Pointer to the underlying digraph. |
896 | 946 |
void *_graph; |
897 | 947 |
// Pointer to the length map |
898 | 948 |
void *_length; |
899 | 949 |
// Pointer to the map of predecessors arcs. |
900 | 950 |
void *_pred; |
901 | 951 |
// Pointer to the map of distances. |
902 | 952 |
void *_dist; |
903 | 953 |
//Pointer to the shortest path to the target node. |
904 | 954 |
void *_path; |
905 | 955 |
//Pointer to the distance of the target node. |
906 | 956 |
void *_di; |
907 | 957 |
|
908 | 958 |
public: |
909 | 959 |
/// Constructor. |
910 | 960 |
|
911 | 961 |
/// This constructor does not require parameters, it initiates |
912 | 962 |
/// all of the attributes to default values \c 0. |
913 | 963 |
BellmanFordWizardBase() : |
914 | 964 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
915 | 965 |
|
916 | 966 |
/// Constructor. |
917 | 967 |
|
918 | 968 |
/// This constructor requires two parameters, |
919 | 969 |
/// others are initiated to \c 0. |
920 | 970 |
/// \param gr The digraph the algorithm runs on. |
921 | 971 |
/// \param len The length map. |
922 | 972 |
BellmanFordWizardBase(const GR& gr, |
923 | 973 |
const LEN& len) : |
924 | 974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
925 | 975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
926 | 976 |
_pred(0), _dist(0), _path(0), _di(0) {} |
927 | 977 |
|
928 | 978 |
}; |
929 | 979 |
|
930 | 980 |
/// \brief Auxiliary class for the function-type interface of the |
931 | 981 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
932 | 982 |
/// |
933 | 983 |
/// This auxiliary class is created to implement the |
934 | 984 |
/// \ref bellmanFord() "function-type interface" of the |
935 | 985 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
936 | 986 |
/// It does not have own \ref run() method, it uses the |
937 | 987 |
/// functions and features of the plain \ref BellmanFord. |
938 | 988 |
/// |
939 | 989 |
/// This class should only be used through the \ref bellmanFord() |
940 | 990 |
/// function, which makes it easier to use the algorithm. |
941 | 991 |
/// |
942 | 992 |
/// \tparam TR The traits class that defines various types used by the |
943 | 993 |
/// algorithm. |
944 | 994 |
template<class TR> |
945 | 995 |
class BellmanFordWizard : public TR { |
946 | 996 |
typedef TR Base; |
947 | 997 |
|
948 | 998 |
typedef typename TR::Digraph Digraph; |
949 | 999 |
|
950 | 1000 |
typedef typename Digraph::Node Node; |
951 | 1001 |
typedef typename Digraph::NodeIt NodeIt; |
952 | 1002 |
typedef typename Digraph::Arc Arc; |
953 | 1003 |
typedef typename Digraph::OutArcIt ArcIt; |
954 | 1004 |
|
955 | 1005 |
typedef typename TR::LengthMap LengthMap; |
956 | 1006 |
typedef typename LengthMap::Value Value; |
957 | 1007 |
typedef typename TR::PredMap PredMap; |
958 | 1008 |
typedef typename TR::DistMap DistMap; |
959 | 1009 |
typedef typename TR::Path Path; |
960 | 1010 |
|
961 | 1011 |
public: |
962 | 1012 |
/// Constructor. |
963 | 1013 |
BellmanFordWizard() : TR() {} |
964 | 1014 |
|
965 | 1015 |
/// \brief Constructor that requires parameters. |
966 | 1016 |
/// |
967 | 1017 |
/// Constructor that requires parameters. |
968 | 1018 |
/// These parameters will be the default values for the traits class. |
969 | 1019 |
/// \param gr The digraph the algorithm runs on. |
970 | 1020 |
/// \param len The length map. |
971 | 1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
972 | 1022 |
: TR(gr, len) {} |
973 | 1023 |
|
974 | 1024 |
/// \brief Copy constructor |
975 | 1025 |
BellmanFordWizard(const TR &b) : TR(b) {} |
976 | 1026 |
|
977 | 1027 |
~BellmanFordWizard() {} |
978 | 1028 |
|
979 | 1029 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
980 | 1030 |
/// |
981 | 1031 |
/// This method runs the Bellman-Ford algorithm from the given source |
982 | 1032 |
/// node in order to compute the shortest path to each node. |
983 | 1033 |
void run(Node s) { |
984 | 1034 |
BellmanFord<Digraph,LengthMap,TR> |
985 | 1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
986 | 1036 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
987 | 1037 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
988 | 1038 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
989 | 1039 |
bf.run(s); |
990 | 1040 |
} |
991 | 1041 |
|
992 | 1042 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
993 | 1043 |
/// between \c s and \c t. |
994 | 1044 |
/// |
995 | 1045 |
/// This method runs the Bellman-Ford algorithm from node \c s |
996 | 1046 |
/// in order to compute the shortest path to node \c t. |
997 | 1047 |
/// Actually, it computes the shortest path to each node, but using |
998 | 1048 |
/// this function you can retrieve the distance and the shortest path |
999 | 1049 |
/// for a single target node easier. |
1000 | 1050 |
/// |
1001 | 1051 |
/// \return \c true if \c t is reachable form \c s. |
1002 | 1052 |
bool run(Node s, Node t) { |
1003 | 1053 |
BellmanFord<Digraph,LengthMap,TR> |
1004 | 1054 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
1005 | 1055 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1006 | 1056 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1007 | 1057 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1008 | 1058 |
bf.run(s); |
1009 | 1059 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
1010 | 1060 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
1011 | 1061 |
return bf.reached(t); |
1012 | 1062 |
} |
1013 | 1063 |
|
1014 | 1064 |
template<class T> |
1015 | 1065 |
struct SetPredMapBase : public Base { |
1016 | 1066 |
typedef T PredMap; |
1017 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1018 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1019 | 1069 |
}; |
1020 | 1070 |
|
1021 | 1071 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1022 | 1072 |
/// the predecessor map. |
1023 | 1073 |
/// |
1024 | 1074 |
/// \ref named-templ-param "Named parameter" for setting |
1025 | 1075 |
/// the map that stores the predecessor arcs of the nodes. |
1026 | 1076 |
template<class T> |
1027 | 1077 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
1028 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1079 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
1030 | 1080 |
} |
1031 | 1081 |
|
1032 | 1082 |
template<class T> |
1033 | 1083 |
struct SetDistMapBase : public Base { |
1034 | 1084 |
typedef T DistMap; |
1035 | 1085 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1086 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1087 |
}; |
1038 | 1088 |
|
1039 | 1089 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1040 | 1090 |
/// the distance map. |
1041 | 1091 |
/// |
1042 | 1092 |
/// \ref named-templ-param "Named parameter" for setting |
1043 | 1093 |
/// the map that stores the distances of the nodes calculated |
1044 | 1094 |
/// by the algorithm. |
1045 | 1095 |
template<class T> |
1046 | 1096 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
1047 | 1097 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1048 | 1098 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
1049 | 1099 |
} |
1050 | 1100 |
|
1051 | 1101 |
template<class T> |
1052 | 1102 |
struct SetPathBase : public Base { |
1053 | 1103 |
typedef T Path; |
1054 | 1104 |
SetPathBase(const TR &b) : TR(b) {} |
1055 | 1105 |
}; |
1056 | 1106 |
|
1057 | 1107 |
/// \brief \ref named-func-param "Named parameter" for getting |
1058 | 1108 |
/// the shortest path to the target node. |
1059 | 1109 |
/// |
1060 | 1110 |
/// \ref named-func-param "Named parameter" for getting |
1061 | 1111 |
/// the shortest path to the target node. |
1062 | 1112 |
template<class T> |
1063 | 1113 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
1064 | 1114 |
{ |
1065 | 1115 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1066 | 1116 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
1067 | 1117 |
} |
1068 | 1118 |
|
1069 | 1119 |
/// \brief \ref named-func-param "Named parameter" for getting |
1070 | 1120 |
/// the distance of the target node. |
1071 | 1121 |
/// |
1072 | 1122 |
/// \ref named-func-param "Named parameter" for getting |
1073 | 1123 |
/// the distance of the target node. |
1074 | 1124 |
BellmanFordWizard dist(const Value &d) |
1075 | 1125 |
{ |
1076 | 1126 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1077 | 1127 |
return *this; |
1078 | 1128 |
} |
1079 | 1129 |
|
1080 | 1130 |
}; |
1081 | 1131 |
|
1082 | 1132 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
1083 | 1133 |
/// algorithm. |
1084 | 1134 |
/// |
1085 | 1135 |
/// \ingroup shortest_path |
1086 | 1136 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
1087 | 1137 |
/// algorithm. |
1088 | 1138 |
/// |
1089 | 1139 |
/// This function also has several \ref named-templ-func-param |
1090 | 1140 |
/// "named parameters", they are declared as the members of class |
1091 | 1141 |
/// \ref BellmanFordWizard. |
1092 | 1142 |
/// The following examples show how to use these parameters. |
1093 | 1143 |
/// \code |
1094 | 1144 |
/// // Compute shortest path from node s to each node |
1095 | 1145 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
1096 | 1146 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/bellman_ford.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
|
26 | 26 |
#include "graph_test.h" |
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
38 | 38 |
"4\n" |
39 | 39 |
"@arcs\n" |
40 | 40 |
" length\n" |
41 | 41 |
"0 1 3\n" |
42 | 42 |
"1 2 -3\n" |
43 | 43 |
"1 2 -5\n" |
44 | 44 |
"1 3 -2\n" |
45 | 45 |
"0 2 -1\n" |
46 | 46 |
"1 2 -4\n" |
47 | 47 |
"0 3 2\n" |
48 | 48 |
"4 2 -5\n" |
49 | 49 |
"2 3 1\n" |
50 | 50 |
"@attributes\n" |
51 | 51 |
"source 0\n" |
52 | 52 |
"target 3\n"; |
53 | 53 |
|
54 | 54 |
|
55 | 55 |
void checkBellmanFordCompile() |
56 | 56 |
{ |
57 | 57 |
typedef int Value; |
58 | 58 |
typedef concepts::Digraph Digraph; |
59 | 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
60 | 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
61 | 61 |
typedef Digraph::Node Node; |
62 | 62 |
typedef Digraph::Arc Arc; |
63 | 63 |
|
64 | 64 |
Digraph gr; |
65 | 65 |
Node s, t, n; |
66 | 66 |
Arc e; |
67 | 67 |
Value l; |
68 | 68 |
int k=3; |
69 | 69 |
bool b; |
70 | 70 |
BF::DistMap d(gr); |
71 | 71 |
BF::PredMap p(gr); |
72 | 72 |
LengthMap length; |
73 | 73 |
concepts::Path<Digraph> pp; |
74 | 74 |
|
75 | 75 |
{ |
76 | 76 |
BF bf_test(gr,length); |
77 | 77 |
const BF& const_bf_test = bf_test; |
78 | 78 |
|
79 | 79 |
bf_test.run(s); |
80 | 80 |
bf_test.run(s,k); |
81 | 81 |
|
82 | 82 |
bf_test.init(); |
83 | 83 |
bf_test.addSource(s); |
84 | 84 |
bf_test.addSource(s, 1); |
85 | 85 |
b = bf_test.processNextRound(); |
86 | 86 |
b = bf_test.processNextWeakRound(); |
87 | 87 |
|
88 | 88 |
bf_test.start(); |
89 | 89 |
bf_test.checkedStart(); |
90 | 90 |
bf_test.limitedStart(k); |
91 | 91 |
|
92 | 92 |
l = const_bf_test.dist(t); |
93 | 93 |
e = const_bf_test.predArc(t); |
94 | 94 |
s = const_bf_test.predNode(t); |
95 | 95 |
b = const_bf_test.reached(t); |
96 | 96 |
d = const_bf_test.distMap(); |
97 | 97 |
p = const_bf_test.predMap(); |
98 | 98 |
pp = const_bf_test.path(t); |
99 | 99 |
pp = const_bf_test.negativeCycle(); |
100 | 100 |
|
101 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
106 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
|
107 | 108 |
::Create bf_test(gr,length); |
108 | 109 |
|
109 | 110 |
LengthMap length_map; |
110 | 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
111 | 112 |
concepts::ReadWriteMap<Node,Value> dist_map; |
112 | 113 |
|
113 | 114 |
bf_test |
114 | 115 |
.lengthMap(length_map) |
115 | 116 |
.predMap(pred_map) |
116 | 117 |
.distMap(dist_map); |
117 | 118 |
|
118 | 119 |
bf_test.run(s); |
119 | 120 |
bf_test.run(s,k); |
120 | 121 |
|
121 | 122 |
bf_test.init(); |
122 | 123 |
bf_test.addSource(s); |
123 | 124 |
bf_test.addSource(s, 1); |
124 | 125 |
b = bf_test.processNextRound(); |
125 | 126 |
b = bf_test.processNextWeakRound(); |
126 | 127 |
|
127 | 128 |
bf_test.start(); |
128 | 129 |
bf_test.checkedStart(); |
129 | 130 |
bf_test.limitedStart(k); |
130 | 131 |
|
131 | 132 |
l = bf_test.dist(t); |
132 | 133 |
e = bf_test.predArc(t); |
133 | 134 |
s = bf_test.predNode(t); |
134 | 135 |
b = bf_test.reached(t); |
135 | 136 |
pp = bf_test.path(t); |
136 | 137 |
pp = bf_test.negativeCycle(); |
137 | 138 |
} |
138 | 139 |
} |
139 | 140 |
|
140 | 141 |
void checkBellmanFordFunctionCompile() |
141 | 142 |
{ |
142 | 143 |
typedef int Value; |
143 | 144 |
typedef concepts::Digraph Digraph; |
144 | 145 |
typedef Digraph::Arc Arc; |
145 | 146 |
typedef Digraph::Node Node; |
146 | 147 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
147 | 148 |
|
148 | 149 |
Digraph g; |
149 | 150 |
bool b; |
150 | 151 |
bellmanFord(g,LengthMap()).run(Node()); |
151 | 152 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
152 | 153 |
bellmanFord(g,LengthMap()) |
153 | 154 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
154 | 155 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
155 | 156 |
.run(Node()); |
156 | 157 |
b=bellmanFord(g,LengthMap()) |
157 | 158 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
158 | 159 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
159 | 160 |
.path(concepts::Path<Digraph>()) |
160 | 161 |
.dist(Value()) |
161 | 162 |
.run(Node(),Node()); |
162 | 163 |
} |
163 | 164 |
|
164 | 165 |
|
165 | 166 |
template <typename Digraph, typename Value> |
166 | 167 |
void checkBellmanFord() { |
167 | 168 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
168 | 169 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
169 | 170 |
|
170 | 171 |
Digraph gr; |
171 | 172 |
Node s, t; |
172 | 173 |
LengthMap length(gr); |
173 | 174 |
|
174 | 175 |
std::istringstream input(test_lgf); |
175 | 176 |
digraphReader(gr, input). |
176 | 177 |
arcMap("length", length). |
177 | 178 |
node("source", s). |
178 | 179 |
node("target", t). |
179 | 180 |
run(); |
180 | 181 |
|
181 | 182 |
BellmanFord<Digraph, LengthMap> |
182 | 183 |
bf(gr, length); |
183 | 184 |
bf.run(s); |
184 | 185 |
Path<Digraph> p = bf.path(t); |
185 | 186 |
|
186 | 187 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
187 | 188 |
check(p.length() == 3, "path() found a wrong path."); |
188 | 189 |
check(checkPath(gr, p), "path() found a wrong path."); |
189 | 190 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
190 | 191 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
191 | 192 |
|
192 | 193 |
ListPath<Digraph> path; |
193 | 194 |
Value dist; |
194 | 195 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
195 | 196 |
|
196 | 197 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
197 | 198 |
check(path.length() == 3, "path() found a wrong path."); |
198 | 199 |
check(checkPath(gr, path), "path() found a wrong path."); |
199 | 200 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
200 | 201 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
201 | 202 |
|
202 | 203 |
for(ArcIt e(gr); e!=INVALID; ++e) { |
203 | 204 |
Node u=gr.source(e); |
204 | 205 |
Node v=gr.target(e); |
205 | 206 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
206 | 207 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
207 | 208 |
bf.dist(v) - bf.dist(u) - length[e]); |
208 | 209 |
} |
209 | 210 |
|
210 | 211 |
for(NodeIt v(gr); v!=INVALID; ++v) { |
211 | 212 |
if (bf.reached(v)) { |
212 | 213 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
213 | 214 |
if (bf.predArc(v)!=INVALID ) { |
214 | 215 |
Arc e=bf.predArc(v); |
215 | 216 |
Node u=gr.source(e); |
216 | 217 |
check(u==bf.predNode(v),"Wrong tree."); |
217 | 218 |
check(bf.dist(v) - bf.dist(u) == length[e], |
218 | 219 |
"Wrong distance! Difference: " << |
219 | 220 |
bf.dist(v) - bf.dist(u) - length[e]); |
220 | 221 |
} |
221 | 222 |
} |
222 | 223 |
} |
223 | 224 |
} |
224 | 225 |
|
225 | 226 |
void checkBellmanFordNegativeCycle() { |
226 | 227 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
227 | 228 |
|
228 | 229 |
SmartDigraph gr; |
229 | 230 |
IntArcMap length(gr); |
230 | 231 |
|
231 | 232 |
Node n1 = gr.addNode(); |
232 | 233 |
Node n2 = gr.addNode(); |
233 | 234 |
Node n3 = gr.addNode(); |
234 | 235 |
Node n4 = gr.addNode(); |
235 | 236 |
|
236 | 237 |
Arc a1 = gr.addArc(n1, n2); |
237 | 238 |
Arc a2 = gr.addArc(n2, n2); |
238 | 239 |
|
239 | 240 |
length[a1] = 2; |
240 | 241 |
length[a2] = -1; |
241 | 242 |
|
242 | 243 |
{ |
243 | 244 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
244 | 245 |
bf.run(n1); |
245 | 246 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
246 | 247 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
247 | 248 |
"Wrong negative cycle."); |
248 | 249 |
} |
249 | 250 |
|
250 | 251 |
length[a2] = 0; |
251 | 252 |
|
252 | 253 |
{ |
253 | 254 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
254 | 255 |
bf.run(n1); |
255 | 256 |
check(bf.negativeCycle().empty(), |
256 | 257 |
"Negative cycle should not be found."); |
257 | 258 |
} |
258 | 259 |
|
259 | 260 |
length[gr.addArc(n1, n3)] = 5; |
260 | 261 |
length[gr.addArc(n4, n3)] = 1; |
261 | 262 |
length[gr.addArc(n2, n4)] = 2; |
262 | 263 |
length[gr.addArc(n3, n2)] = -4; |
263 | 264 |
|
264 | 265 |
{ |
265 | 266 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
266 | 267 |
bf.init(); |
267 | 268 |
bf.addSource(n1); |
268 | 269 |
for (int i = 0; i < 4; ++i) { |
269 | 270 |
check(bf.negativeCycle().empty(), |
270 | 271 |
"Negative cycle should not be found."); |
271 | 272 |
bf.processNextRound(); |
272 | 273 |
} |
273 | 274 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
274 | 275 |
check(p.length() == 3, "Wrong negative cycle."); |
275 | 276 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
276 | 277 |
"Wrong negative cycle."); |
277 | 278 |
} |
278 | 279 |
} |
279 | 280 |
|
280 | 281 |
int main() { |
281 | 282 |
checkBellmanFord<ListDigraph, int>(); |
282 | 283 |
checkBellmanFord<SmartDigraph, double>(); |
283 | 284 |
checkBellmanFordNegativeCycle(); |
284 | 285 |
return 0; |
285 | 286 |
} |
0 comments (0 inline)