0
2
0
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/tolerance.h> |
|
31 | 32 |
#include <lemon/path.h> |
32 | 33 |
|
33 | 34 |
#include <limits> |
34 | 35 |
|
35 | 36 |
namespace lemon { |
36 | 37 |
|
37 |
/// \brief Default |
|
38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
|
38 | 39 |
/// |
39 | 40 |
/// This operation traits class defines all computational operations |
40 | 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
41 | 42 |
/// The default implementation is based on the \c numeric_limits class. |
42 | 43 |
/// If the numeric type does not have infinity value, then the maximum |
43 | 44 |
/// value is used as extremal infinity value. |
45 |
/// |
|
46 |
/// \see BellmanFordToleranceOperationTraits |
|
44 | 47 |
template < |
45 | 48 |
typename V, |
46 | 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
47 | 50 |
struct BellmanFordDefaultOperationTraits { |
48 |
/// \ |
|
51 |
/// \brief Value type for the algorithm. |
|
49 | 52 |
typedef V Value; |
50 | 53 |
/// \brief Gives back the zero value of the type. |
51 | 54 |
static Value zero() { |
52 | 55 |
return static_cast<Value>(0); |
53 | 56 |
} |
54 | 57 |
/// \brief Gives back the positive infinity value of the type. |
55 | 58 |
static Value infinity() { |
56 | 59 |
return std::numeric_limits<Value>::infinity(); |
57 | 60 |
} |
58 | 61 |
/// \brief Gives back the sum of the given two elements. |
59 | 62 |
static Value plus(const Value& left, const Value& right) { |
60 | 63 |
return left + right; |
61 | 64 |
} |
62 | 65 |
/// \brief Gives back \c true only if the first value is less than |
63 | 66 |
/// the second. |
64 | 67 |
static bool less(const Value& left, const Value& right) { |
65 | 68 |
return left < right; |
66 | 69 |
} |
67 | 70 |
}; |
68 | 71 |
|
69 | 72 |
template <typename V> |
70 | 73 |
struct BellmanFordDefaultOperationTraits<V, false> { |
71 | 74 |
typedef V Value; |
72 | 75 |
static Value zero() { |
73 | 76 |
return static_cast<Value>(0); |
74 | 77 |
} |
75 | 78 |
static Value infinity() { |
76 | 79 |
return std::numeric_limits<Value>::max(); |
77 | 80 |
} |
78 | 81 |
static Value plus(const Value& left, const Value& right) { |
79 | 82 |
if (left == infinity() || right == infinity()) return infinity(); |
80 | 83 |
return left + right; |
81 | 84 |
} |
82 | 85 |
static bool less(const Value& left, const Value& right) { |
83 | 86 |
return left < right; |
84 | 87 |
} |
85 | 88 |
}; |
86 | 89 |
|
90 |
/// \brief Operation traits for the BellmanFord algorithm class |
|
91 |
/// using tolerance. |
|
92 |
/// |
|
93 |
/// This operation traits class defines all computational operations |
|
94 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
95 |
/// The only difference between this implementation and |
|
96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
|
97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
|
98 |
/// function. |
|
99 |
/// |
|
100 |
/// \tparam V The value type. |
|
101 |
/// \tparam eps The epsilon value for the \ref less() function. |
|
102 |
/// By default, it is the epsilon value used by \ref Tolerance |
|
103 |
/// "Tolerance<V>". |
|
104 |
/// |
|
105 |
/// \see BellmanFordDefaultOperationTraits |
|
106 |
#ifdef DOXYGEN |
|
107 |
template <typename V, V eps> |
|
108 |
#else |
|
109 |
template < |
|
110 |
typename V, |
|
111 |
V eps = Tolerance<V>::def_epsilon> |
|
112 |
#endif |
|
113 |
struct BellmanFordToleranceOperationTraits { |
|
114 |
/// \brief Value type for the algorithm. |
|
115 |
typedef V Value; |
|
116 |
/// \brief Gives back the zero value of the type. |
|
117 |
static Value zero() { |
|
118 |
return static_cast<Value>(0); |
|
119 |
} |
|
120 |
/// \brief Gives back the positive infinity value of the type. |
|
121 |
static Value infinity() { |
|
122 |
return std::numeric_limits<Value>::infinity(); |
|
123 |
} |
|
124 |
/// \brief Gives back the sum of the given two elements. |
|
125 |
static Value plus(const Value& left, const Value& right) { |
|
126 |
return left + right; |
|
127 |
} |
|
128 |
/// \brief Gives back \c true only if the first value is less than |
|
129 |
/// the second. |
|
130 |
static bool less(const Value& left, const Value& right) { |
|
131 |
return left + eps < right; |
|
132 |
} |
|
133 |
}; |
|
134 |
|
|
87 | 135 |
/// \brief Default traits class of BellmanFord class. |
88 | 136 |
/// |
89 | 137 |
/// Default traits class of BellmanFord class. |
90 | 138 |
/// \param GR The type of the digraph. |
91 | 139 |
/// \param LEN The type of the length map. |
92 | 140 |
template<typename GR, typename LEN> |
93 | 141 |
struct BellmanFordDefaultTraits { |
94 | 142 |
/// The type of the digraph the algorithm runs on. |
95 | 143 |
typedef GR Digraph; |
96 | 144 |
|
97 | 145 |
/// \brief The type of the map that stores the arc lengths. |
98 | 146 |
/// |
99 | 147 |
/// The type of the map that stores the arc lengths. |
100 | 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
101 | 149 |
typedef LEN LengthMap; |
102 | 150 |
|
103 | 151 |
/// The type of the arc lengths. |
104 | 152 |
typedef typename LEN::Value Value; |
105 | 153 |
|
106 | 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
107 | 155 |
/// |
108 | 156 |
/// It defines the used operations and the infinity value for the |
109 | 157 |
/// given \c Value type. |
110 |
/// \see BellmanFordDefaultOperationTraits |
|
158 |
/// \see BellmanFordDefaultOperationTraits, |
|
159 |
/// BellmanFordToleranceOperationTraits |
|
111 | 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
112 | 161 |
|
113 | 162 |
/// \brief The type of the map that stores the last arcs of the |
114 | 163 |
/// shortest paths. |
115 | 164 |
/// |
116 | 165 |
/// The type of the map that stores the last |
117 | 166 |
/// arcs of the shortest paths. |
118 | 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
119 | 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
120 | 169 |
|
121 | 170 |
/// \brief Instantiates a \c PredMap. |
122 | 171 |
/// |
123 | 172 |
/// This function instantiates a \ref PredMap. |
124 | 173 |
/// \param g is the digraph to which we would like to define the |
125 | 174 |
/// \ref PredMap. |
126 | 175 |
static PredMap *createPredMap(const GR& g) { |
127 | 176 |
return new PredMap(g); |
128 | 177 |
} |
129 | 178 |
|
130 | 179 |
/// \brief The type of the map that stores the distances of the nodes. |
131 | 180 |
/// |
132 | 181 |
/// The type of the map that stores the distances of the nodes. |
133 | 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
134 | 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
135 | 184 |
|
136 | 185 |
/// \brief Instantiates a \c DistMap. |
137 | 186 |
/// |
138 | 187 |
/// This function instantiates a \ref DistMap. |
139 | 188 |
/// \param g is the digraph to which we would like to define the |
140 | 189 |
/// \ref DistMap. |
141 | 190 |
static DistMap *createDistMap(const GR& g) { |
142 | 191 |
return new DistMap(g); |
143 | 192 |
} |
144 | 193 |
|
145 | 194 |
}; |
146 | 195 |
|
147 | 196 |
/// \brief %BellmanFord algorithm class. |
148 | 197 |
/// |
149 | 198 |
/// \ingroup shortest_path |
150 | 199 |
/// This class provides an efficient implementation of the Bellman-Ford |
151 | 200 |
/// algorithm. The maximum time complexity of the algorithm is |
152 | 201 |
/// <tt>O(ne)</tt>. |
153 | 202 |
/// |
154 | 203 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
155 | 204 |
/// problem when the arcs can have negative lengths, but the digraph |
156 | 205 |
/// should not contain directed cycles with negative total length. |
157 | 206 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
158 | 207 |
/// algorithm instead, since it is more efficient. |
159 | 208 |
/// |
160 | 209 |
/// The arc lengths are passed to the algorithm using a |
161 | 210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
162 | 211 |
/// kind of length. The type of the length values is determined by the |
163 | 212 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
164 | 213 |
/// |
165 | 214 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
166 | 215 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
167 | 216 |
/// it can be used easier. |
168 | 217 |
/// |
169 | 218 |
/// \tparam GR The type of the digraph the algorithm runs on. |
170 | 219 |
/// The default type is \ref ListDigraph. |
171 | 220 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
172 | 221 |
/// the lengths of the arcs. The default map type is |
173 | 222 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
174 | 223 |
/// \tparam TR The traits class that defines various types used by the |
... | ... |
@@ -776,129 +825,130 @@ |
776 | 825 |
/// |
777 | 826 |
/// Returns \c true if \c v is reached from the root(s). |
778 | 827 |
/// |
779 | 828 |
/// \pre Either \ref run() or \ref init() must be called before |
780 | 829 |
/// using this function. |
781 | 830 |
bool reached(Node v) const { |
782 | 831 |
return (*_dist)[v] != OperationTraits::infinity(); |
783 | 832 |
} |
784 | 833 |
|
785 | 834 |
/// \brief Gives back a negative cycle. |
786 | 835 |
/// |
787 | 836 |
/// This function gives back a directed cycle with negative total |
788 | 837 |
/// length if the algorithm has already found one. |
789 | 838 |
/// Otherwise it gives back an empty path. |
790 | 839 |
lemon::Path<Digraph> negativeCycle() const { |
791 | 840 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
792 | 841 |
lemon::Path<Digraph> cycle; |
793 | 842 |
for (int i = 0; i < int(_process.size()); ++i) { |
794 | 843 |
if (state[_process[i]] != -1) continue; |
795 | 844 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
796 | 845 |
v = _gr->source((*_pred)[v])) { |
797 | 846 |
if (state[v] == i) { |
798 | 847 |
cycle.addFront((*_pred)[v]); |
799 | 848 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
800 | 849 |
u = _gr->source((*_pred)[u])) { |
801 | 850 |
cycle.addFront((*_pred)[u]); |
802 | 851 |
} |
803 | 852 |
return cycle; |
804 | 853 |
} |
805 | 854 |
else if (state[v] >= 0) { |
806 | 855 |
break; |
807 | 856 |
} |
808 | 857 |
state[v] = i; |
809 | 858 |
} |
810 | 859 |
} |
811 | 860 |
return cycle; |
812 | 861 |
} |
813 | 862 |
|
814 | 863 |
///@} |
815 | 864 |
}; |
816 | 865 |
|
817 | 866 |
/// \brief Default traits class of bellmanFord() function. |
818 | 867 |
/// |
819 | 868 |
/// Default traits class of bellmanFord() function. |
820 | 869 |
/// \tparam GR The type of the digraph. |
821 | 870 |
/// \tparam LEN The type of the length map. |
822 | 871 |
template <typename GR, typename LEN> |
823 | 872 |
struct BellmanFordWizardDefaultTraits { |
824 | 873 |
/// The type of the digraph the algorithm runs on. |
825 | 874 |
typedef GR Digraph; |
826 | 875 |
|
827 | 876 |
/// \brief The type of the map that stores the arc lengths. |
828 | 877 |
/// |
829 | 878 |
/// The type of the map that stores the arc lengths. |
830 | 879 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
831 | 880 |
typedef LEN LengthMap; |
832 | 881 |
|
833 | 882 |
/// The type of the arc lengths. |
834 | 883 |
typedef typename LEN::Value Value; |
835 | 884 |
|
836 | 885 |
/// \brief Operation traits for Bellman-Ford algorithm. |
837 | 886 |
/// |
838 | 887 |
/// It defines the used operations and the infinity value for the |
839 | 888 |
/// given \c Value type. |
840 |
/// \see BellmanFordDefaultOperationTraits |
|
889 |
/// \see BellmanFordDefaultOperationTraits, |
|
890 |
/// BellmanFordToleranceOperationTraits |
|
841 | 891 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
842 | 892 |
|
843 | 893 |
/// \brief The type of the map that stores the last |
844 | 894 |
/// arcs of the shortest paths. |
845 | 895 |
/// |
846 | 896 |
/// The type of the map that stores the last arcs of the shortest paths. |
847 | 897 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
848 | 898 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
849 | 899 |
|
850 | 900 |
/// \brief Instantiates a \c PredMap. |
851 | 901 |
/// |
852 | 902 |
/// This function instantiates a \ref PredMap. |
853 | 903 |
/// \param g is the digraph to which we would like to define the |
854 | 904 |
/// \ref PredMap. |
855 | 905 |
static PredMap *createPredMap(const GR &g) { |
856 | 906 |
return new PredMap(g); |
857 | 907 |
} |
858 | 908 |
|
859 | 909 |
/// \brief The type of the map that stores the distances of the nodes. |
860 | 910 |
/// |
861 | 911 |
/// The type of the map that stores the distances of the nodes. |
862 | 912 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
863 | 913 |
typedef typename GR::template NodeMap<Value> DistMap; |
864 | 914 |
|
865 | 915 |
/// \brief Instantiates a \c DistMap. |
866 | 916 |
/// |
867 | 917 |
/// This function instantiates a \ref DistMap. |
868 | 918 |
/// \param g is the digraph to which we would like to define the |
869 | 919 |
/// \ref DistMap. |
870 | 920 |
static DistMap *createDistMap(const GR &g) { |
871 | 921 |
return new DistMap(g); |
872 | 922 |
} |
873 | 923 |
|
874 | 924 |
///The type of the shortest paths. |
875 | 925 |
|
876 | 926 |
///The type of the shortest paths. |
877 | 927 |
///It must meet the \ref concepts::Path "Path" concept. |
878 | 928 |
typedef lemon::Path<Digraph> Path; |
879 | 929 |
}; |
880 | 930 |
|
881 | 931 |
/// \brief Default traits class used by BellmanFordWizard. |
882 | 932 |
/// |
883 | 933 |
/// Default traits class used by BellmanFordWizard. |
884 | 934 |
/// \tparam GR The type of the digraph. |
885 | 935 |
/// \tparam LEN The type of the length map. |
886 | 936 |
template <typename GR, typename LEN> |
887 | 937 |
class BellmanFordWizardBase |
888 | 938 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
889 | 939 |
|
890 | 940 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
891 | 941 |
protected: |
892 | 942 |
// Type of the nodes in the digraph. |
893 | 943 |
typedef typename Base::Digraph::Node Node; |
894 | 944 |
|
895 | 945 |
// Pointer to the underlying digraph. |
896 | 946 |
void *_graph; |
897 | 947 |
// Pointer to the length map |
898 | 948 |
void *_length; |
899 | 949 |
// Pointer to the map of predecessors arcs. |
900 | 950 |
void *_pred; |
901 | 951 |
// Pointer to the map of distances. |
902 | 952 |
void *_dist; |
903 | 953 |
//Pointer to the shortest path to the target node. |
904 | 954 |
void *_path; |
... | ... |
@@ -43,128 +43,129 @@ |
43 | 43 |
"1 2 -5\n" |
44 | 44 |
"1 3 -2\n" |
45 | 45 |
"0 2 -1\n" |
46 | 46 |
"1 2 -4\n" |
47 | 47 |
"0 3 2\n" |
48 | 48 |
"4 2 -5\n" |
49 | 49 |
"2 3 1\n" |
50 | 50 |
"@attributes\n" |
51 | 51 |
"source 0\n" |
52 | 52 |
"target 3\n"; |
53 | 53 |
|
54 | 54 |
|
55 | 55 |
void checkBellmanFordCompile() |
56 | 56 |
{ |
57 | 57 |
typedef int Value; |
58 | 58 |
typedef concepts::Digraph Digraph; |
59 | 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
60 | 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
61 | 61 |
typedef Digraph::Node Node; |
62 | 62 |
typedef Digraph::Arc Arc; |
63 | 63 |
|
64 | 64 |
Digraph gr; |
65 | 65 |
Node s, t, n; |
66 | 66 |
Arc e; |
67 | 67 |
Value l; |
68 | 68 |
int k=3; |
69 | 69 |
bool b; |
70 | 70 |
BF::DistMap d(gr); |
71 | 71 |
BF::PredMap p(gr); |
72 | 72 |
LengthMap length; |
73 | 73 |
concepts::Path<Digraph> pp; |
74 | 74 |
|
75 | 75 |
{ |
76 | 76 |
BF bf_test(gr,length); |
77 | 77 |
const BF& const_bf_test = bf_test; |
78 | 78 |
|
79 | 79 |
bf_test.run(s); |
80 | 80 |
bf_test.run(s,k); |
81 | 81 |
|
82 | 82 |
bf_test.init(); |
83 | 83 |
bf_test.addSource(s); |
84 | 84 |
bf_test.addSource(s, 1); |
85 | 85 |
b = bf_test.processNextRound(); |
86 | 86 |
b = bf_test.processNextWeakRound(); |
87 | 87 |
|
88 | 88 |
bf_test.start(); |
89 | 89 |
bf_test.checkedStart(); |
90 | 90 |
bf_test.limitedStart(k); |
91 | 91 |
|
92 | 92 |
l = const_bf_test.dist(t); |
93 | 93 |
e = const_bf_test.predArc(t); |
94 | 94 |
s = const_bf_test.predNode(t); |
95 | 95 |
b = const_bf_test.reached(t); |
96 | 96 |
d = const_bf_test.distMap(); |
97 | 97 |
p = const_bf_test.predMap(); |
98 | 98 |
pp = const_bf_test.path(t); |
99 | 99 |
pp = const_bf_test.negativeCycle(); |
100 | 100 |
|
101 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
106 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
|
107 | 108 |
::Create bf_test(gr,length); |
108 | 109 |
|
109 | 110 |
LengthMap length_map; |
110 | 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
111 | 112 |
concepts::ReadWriteMap<Node,Value> dist_map; |
112 | 113 |
|
113 | 114 |
bf_test |
114 | 115 |
.lengthMap(length_map) |
115 | 116 |
.predMap(pred_map) |
116 | 117 |
.distMap(dist_map); |
117 | 118 |
|
118 | 119 |
bf_test.run(s); |
119 | 120 |
bf_test.run(s,k); |
120 | 121 |
|
121 | 122 |
bf_test.init(); |
122 | 123 |
bf_test.addSource(s); |
123 | 124 |
bf_test.addSource(s, 1); |
124 | 125 |
b = bf_test.processNextRound(); |
125 | 126 |
b = bf_test.processNextWeakRound(); |
126 | 127 |
|
127 | 128 |
bf_test.start(); |
128 | 129 |
bf_test.checkedStart(); |
129 | 130 |
bf_test.limitedStart(k); |
130 | 131 |
|
131 | 132 |
l = bf_test.dist(t); |
132 | 133 |
e = bf_test.predArc(t); |
133 | 134 |
s = bf_test.predNode(t); |
134 | 135 |
b = bf_test.reached(t); |
135 | 136 |
pp = bf_test.path(t); |
136 | 137 |
pp = bf_test.negativeCycle(); |
137 | 138 |
} |
138 | 139 |
} |
139 | 140 |
|
140 | 141 |
void checkBellmanFordFunctionCompile() |
141 | 142 |
{ |
142 | 143 |
typedef int Value; |
143 | 144 |
typedef concepts::Digraph Digraph; |
144 | 145 |
typedef Digraph::Arc Arc; |
145 | 146 |
typedef Digraph::Node Node; |
146 | 147 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
147 | 148 |
|
148 | 149 |
Digraph g; |
149 | 150 |
bool b; |
150 | 151 |
bellmanFord(g,LengthMap()).run(Node()); |
151 | 152 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
152 | 153 |
bellmanFord(g,LengthMap()) |
153 | 154 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
154 | 155 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
155 | 156 |
.run(Node()); |
156 | 157 |
b=bellmanFord(g,LengthMap()) |
157 | 158 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
158 | 159 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
159 | 160 |
.path(concepts::Path<Digraph>()) |
160 | 161 |
.dist(Value()) |
161 | 162 |
.run(Node(),Node()); |
162 | 163 |
} |
163 | 164 |
|
164 | 165 |
|
165 | 166 |
template <typename Digraph, typename Value> |
166 | 167 |
void checkBellmanFord() { |
167 | 168 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
168 | 169 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
169 | 170 |
|
170 | 171 |
Digraph gr; |
0 comments (0 inline)