gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Fix gcc 3.3 compilation error (#354) gcc 3.3 requires that a class has a default constructor if it has template named parameters. (That constructor can be protected.)
0 6 0
default
6 files changed with 24 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CAPACITY_SCALING_H
20 20
#define LEMON_CAPACITY_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/bin_heap.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  /// \brief Default traits class of CapacityScaling algorithm.
35 35
  ///
36 36
  /// Default traits class of CapacityScaling algorithm.
37 37
  /// \tparam GR Digraph type.
38 38
  /// \tparam V The number type used for flow amounts, capacity bounds
39 39
  /// and supply values. By default it is \c int.
40 40
  /// \tparam C The number type used for costs and potentials.
41 41
  /// By default it is the same as \c V.
42 42
  template <typename GR, typename V = int, typename C = V>
43 43
  struct CapacityScalingDefaultTraits
44 44
  {
45 45
    /// The type of the digraph
46 46
    typedef GR Digraph;
47 47
    /// The type of the flow amounts, capacity bounds and supply values
48 48
    typedef V Value;
49 49
    /// The type of the arc costs
50 50
    typedef C Cost;
51 51

	
52 52
    /// \brief The type of the heap used for internal Dijkstra computations.
53 53
    ///
54 54
    /// The type of the heap used for internal Dijkstra computations.
55 55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 56
    /// its priority type must be \c Cost and its cross reference type
57 57
    /// must be \ref RangeMap "RangeMap<int>".
58 58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
59 59
  };
60 60

	
61 61
  /// \addtogroup min_cost_flow_algs
62 62
  /// @{
63 63

	
64 64
  /// \brief Implementation of the Capacity Scaling algorithm for
65 65
  /// finding a \ref min_cost_flow "minimum cost flow".
66 66
  ///
67 67
  /// \ref CapacityScaling implements the capacity scaling version
68 68
  /// of the successive shortest path algorithm for finding a
69 69
  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 70
  /// \ref edmondskarp72theoretical. It is an efficient dual
71 71
  /// solution method.
72 72
  ///
73 73
  /// Most of the parameters of the problem (except for the digraph)
74 74
  /// can be given using separate functions, and the algorithm can be
75 75
  /// executed using the \ref run() function. If some parameters are not
76 76
  /// specified, then default values will be used.
77 77
  ///
78 78
  /// \tparam GR The digraph type the algorithm runs on.
79 79
  /// \tparam V The number type used for flow amounts, capacity bounds
80 80
  /// and supply values in the algorithm. By default, it is \c int.
81 81
  /// \tparam C The number type used for costs and potentials in the
82 82
  /// algorithm. By default, it is the same as \c V.
83 83
  /// \tparam TR The traits class that defines various types used by the
84 84
  /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 85
  /// "CapacityScalingDefaultTraits<GR, V, C>".
86 86
  /// In most cases, this parameter should not be set directly,
87 87
  /// consider to use the named template parameters instead.
88 88
  ///
89 89
  /// \warning Both number types must be signed and all input data must
90 90
  /// be integer.
91 91
  /// \warning This algorithm does not support negative costs for such
92 92
  /// arcs that have infinite upper bound.
93 93
#ifdef DOXYGEN
94 94
  template <typename GR, typename V, typename C, typename TR>
95 95
#else
96 96
  template < typename GR, typename V = int, typename C = V,
97 97
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
98 98
#endif
99 99
  class CapacityScaling
100 100
  {
101 101
  public:
102 102

	
103 103
    /// The type of the digraph
104 104
    typedef typename TR::Digraph Digraph;
105 105
    /// The type of the flow amounts, capacity bounds and supply values
106 106
    typedef typename TR::Value Value;
107 107
    /// The type of the arc costs
108 108
    typedef typename TR::Cost Cost;
109 109

	
110 110
    /// The type of the heap used for internal Dijkstra computations
111 111
    typedef typename TR::Heap Heap;
112 112

	
113 113
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
114 114
    typedef TR Traits;
115 115

	
116 116
  public:
117 117

	
118 118
    /// \brief Problem type constants for the \c run() function.
119 119
    ///
120 120
    /// Enum type containing the problem type constants that can be
121 121
    /// returned by the \ref run() function of the algorithm.
122 122
    enum ProblemType {
123 123
      /// The problem has no feasible solution (flow).
124 124
      INFEASIBLE,
125 125
      /// The problem has optimal solution (i.e. it is feasible and
126 126
      /// bounded), and the algorithm has found optimal flow and node
127 127
      /// potentials (primal and dual solutions).
128 128
      OPTIMAL,
129 129
      /// The digraph contains an arc of negative cost and infinite
130 130
      /// upper bound. It means that the objective function is unbounded
131 131
      /// on that arc, however, note that it could actually be bounded
132 132
      /// over the feasible flows, but this algroithm cannot handle
133 133
      /// these cases.
134 134
      UNBOUNDED
135 135
    };
136 136
  
137 137
  private:
138 138

	
139 139
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
140 140

	
141 141
    typedef std::vector<int> IntVector;
142 142
    typedef std::vector<Value> ValueVector;
143 143
    typedef std::vector<Cost> CostVector;
144 144
    typedef std::vector<char> BoolVector;
145 145
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
146 146

	
147 147
  private:
148 148

	
149 149
    // Data related to the underlying digraph
150 150
    const GR &_graph;
151 151
    int _node_num;
152 152
    int _arc_num;
153 153
    int _res_arc_num;
154 154
    int _root;
155 155

	
156 156
    // Parameters of the problem
157 157
    bool _have_lower;
158 158
    Value _sum_supply;
159 159

	
160 160
    // Data structures for storing the digraph
161 161
    IntNodeMap _node_id;
162 162
    IntArcMap _arc_idf;
163 163
    IntArcMap _arc_idb;
164 164
    IntVector _first_out;
165 165
    BoolVector _forward;
166 166
    IntVector _source;
167 167
    IntVector _target;
168 168
    IntVector _reverse;
169 169

	
170 170
    // Node and arc data
171 171
    ValueVector _lower;
172 172
    ValueVector _upper;
173 173
    CostVector _cost;
174 174
    ValueVector _supply;
175 175

	
176 176
    ValueVector _res_cap;
177 177
    CostVector _pi;
178 178
    ValueVector _excess;
179 179
    IntVector _excess_nodes;
180 180
    IntVector _deficit_nodes;
181 181

	
182 182
    Value _delta;
183 183
    int _factor;
184 184
    IntVector _pred;
185 185

	
186 186
  public:
187 187
  
188 188
    /// \brief Constant for infinite upper bounds (capacities).
189 189
    ///
190 190
    /// Constant for infinite upper bounds (capacities).
191 191
    /// It is \c std::numeric_limits<Value>::infinity() if available,
192 192
    /// \c std::numeric_limits<Value>::max() otherwise.
193 193
    const Value INF;
194 194

	
195 195
  private:
196 196

	
197 197
    // Special implementation of the Dijkstra algorithm for finding
198 198
    // shortest paths in the residual network of the digraph with
199 199
    // respect to the reduced arc costs and modifying the node
200 200
    // potentials according to the found distance labels.
201 201
    class ResidualDijkstra
202 202
    {
203 203
    private:
204 204

	
205 205
      int _node_num;
206 206
      bool _geq;
207 207
      const IntVector &_first_out;
208 208
      const IntVector &_target;
209 209
      const CostVector &_cost;
210 210
      const ValueVector &_res_cap;
211 211
      const ValueVector &_excess;
212 212
      CostVector &_pi;
213 213
      IntVector &_pred;
214 214
      
215 215
      IntVector _proc_nodes;
216 216
      CostVector _dist;
217 217
      
218 218
    public:
219 219

	
220 220
      ResidualDijkstra(CapacityScaling& cs) :
221 221
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
222 222
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
223 223
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
224 224
        _pred(cs._pred), _dist(cs._node_num)
225 225
      {}
226 226

	
227 227
      int run(int s, Value delta = 1) {
228 228
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
229 229
        Heap heap(heap_cross_ref);
230 230
        heap.push(s, 0);
231 231
        _pred[s] = -1;
232 232
        _proc_nodes.clear();
233 233

	
234 234
        // Process nodes
235 235
        while (!heap.empty() && _excess[heap.top()] > -delta) {
236 236
          int u = heap.top(), v;
237 237
          Cost d = heap.prio() + _pi[u], dn;
238 238
          _dist[u] = heap.prio();
239 239
          _proc_nodes.push_back(u);
240 240
          heap.pop();
241 241

	
242 242
          // Traverse outgoing residual arcs
243 243
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
244 244
          for (int a = _first_out[u]; a != last_out; ++a) {
245 245
            if (_res_cap[a] < delta) continue;
246 246
            v = _target[a];
247 247
            switch (heap.state(v)) {
248 248
              case Heap::PRE_HEAP:
249 249
                heap.push(v, d + _cost[a] - _pi[v]);
250 250
                _pred[v] = a;
251 251
                break;
252 252
              case Heap::IN_HEAP:
253 253
                dn = d + _cost[a] - _pi[v];
254 254
                if (dn < heap[v]) {
255 255
                  heap.decrease(v, dn);
256 256
                  _pred[v] = a;
257 257
                }
258 258
                break;
259 259
              case Heap::POST_HEAP:
260 260
                break;
261 261
            }
262 262
          }
263 263
        }
264 264
        if (heap.empty()) return -1;
265 265

	
266 266
        // Update potentials of processed nodes
267 267
        int t = heap.top();
268 268
        Cost dt = heap.prio();
269 269
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
270 270
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
271 271
        }
272 272

	
273 273
        return t;
274 274
      }
275 275

	
276 276
    }; //class ResidualDijkstra
277 277

	
278 278
  public:
279 279

	
280 280
    /// \name Named Template Parameters
281 281
    /// @{
282 282

	
283 283
    template <typename T>
284 284
    struct SetHeapTraits : public Traits {
285 285
      typedef T Heap;
286 286
    };
287 287

	
288 288
    /// \brief \ref named-templ-param "Named parameter" for setting
289 289
    /// \c Heap type.
290 290
    ///
291 291
    /// \ref named-templ-param "Named parameter" for setting \c Heap
292 292
    /// type, which is used for internal Dijkstra computations.
293 293
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
294 294
    /// its priority type must be \c Cost and its cross reference type
295 295
    /// must be \ref RangeMap "RangeMap<int>".
296 296
    template <typename T>
297 297
    struct SetHeap
298 298
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
299 299
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
300 300
    };
301 301

	
302 302
    /// @}
303 303

	
304
  protected:
305

	
306
    CapacityScaling() {}
307

	
304 308
  public:
305 309

	
306 310
    /// \brief Constructor.
307 311
    ///
308 312
    /// The constructor of the class.
309 313
    ///
310 314
    /// \param graph The digraph the algorithm runs on.
311 315
    CapacityScaling(const GR& graph) :
312 316
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
313 317
      INF(std::numeric_limits<Value>::has_infinity ?
314 318
          std::numeric_limits<Value>::infinity() :
315 319
          std::numeric_limits<Value>::max())
316 320
    {
317 321
      // Check the number types
318 322
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
319 323
        "The flow type of CapacityScaling must be signed");
320 324
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
321 325
        "The cost type of CapacityScaling must be signed");
322 326

	
323 327
      // Reset data structures
324 328
      reset();
325 329
    }
326 330

	
327 331
    /// \name Parameters
328 332
    /// The parameters of the algorithm can be specified using these
329 333
    /// functions.
330 334

	
331 335
    /// @{
332 336

	
333 337
    /// \brief Set the lower bounds on the arcs.
334 338
    ///
335 339
    /// This function sets the lower bounds on the arcs.
336 340
    /// If it is not used before calling \ref run(), the lower bounds
337 341
    /// will be set to zero on all arcs.
338 342
    ///
339 343
    /// \param map An arc map storing the lower bounds.
340 344
    /// Its \c Value type must be convertible to the \c Value type
341 345
    /// of the algorithm.
342 346
    ///
343 347
    /// \return <tt>(*this)</tt>
344 348
    template <typename LowerMap>
345 349
    CapacityScaling& lowerMap(const LowerMap& map) {
346 350
      _have_lower = true;
347 351
      for (ArcIt a(_graph); a != INVALID; ++a) {
348 352
        _lower[_arc_idf[a]] = map[a];
349 353
        _lower[_arc_idb[a]] = map[a];
350 354
      }
351 355
      return *this;
352 356
    }
353 357

	
354 358
    /// \brief Set the upper bounds (capacities) on the arcs.
355 359
    ///
356 360
    /// This function sets the upper bounds (capacities) on the arcs.
357 361
    /// If it is not used before calling \ref run(), the upper bounds
358 362
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
359 363
    /// unbounded from above).
360 364
    ///
361 365
    /// \param map An arc map storing the upper bounds.
362 366
    /// Its \c Value type must be convertible to the \c Value type
363 367
    /// of the algorithm.
364 368
    ///
365 369
    /// \return <tt>(*this)</tt>
366 370
    template<typename UpperMap>
367 371
    CapacityScaling& upperMap(const UpperMap& map) {
368 372
      for (ArcIt a(_graph); a != INVALID; ++a) {
369 373
        _upper[_arc_idf[a]] = map[a];
370 374
      }
371 375
      return *this;
372 376
    }
373 377

	
374 378
    /// \brief Set the costs of the arcs.
375 379
    ///
376 380
    /// This function sets the costs of the arcs.
377 381
    /// If it is not used before calling \ref run(), the costs
378 382
    /// will be set to \c 1 on all arcs.
379 383
    ///
380 384
    /// \param map An arc map storing the costs.
381 385
    /// Its \c Value type must be convertible to the \c Cost type
382 386
    /// of the algorithm.
383 387
    ///
384 388
    /// \return <tt>(*this)</tt>
385 389
    template<typename CostMap>
386 390
    CapacityScaling& costMap(const CostMap& map) {
387 391
      for (ArcIt a(_graph); a != INVALID; ++a) {
388 392
        _cost[_arc_idf[a]] =  map[a];
389 393
        _cost[_arc_idb[a]] = -map[a];
390 394
      }
391 395
      return *this;
392 396
    }
393 397

	
394 398
    /// \brief Set the supply values of the nodes.
395 399
    ///
396 400
    /// This function sets the supply values of the nodes.
397 401
    /// If neither this function nor \ref stSupply() is used before
398 402
    /// calling \ref run(), the supply of each node will be set to zero.
399 403
    ///
400 404
    /// \param map A node map storing the supply values.
401 405
    /// Its \c Value type must be convertible to the \c Value type
402 406
    /// of the algorithm.
403 407
    ///
404 408
    /// \return <tt>(*this)</tt>
405 409
    template<typename SupplyMap>
406 410
    CapacityScaling& supplyMap(const SupplyMap& map) {
407 411
      for (NodeIt n(_graph); n != INVALID; ++n) {
408 412
        _supply[_node_id[n]] = map[n];
409 413
      }
410 414
      return *this;
411 415
    }
412 416

	
413 417
    /// \brief Set single source and target nodes and a supply value.
414 418
    ///
415 419
    /// This function sets a single source node and a single target node
416 420
    /// and the required flow value.
417 421
    /// If neither this function nor \ref supplyMap() is used before
418 422
    /// calling \ref run(), the supply of each node will be set to zero.
419 423
    ///
420 424
    /// Using this function has the same effect as using \ref supplyMap()
421 425
    /// with such a map in which \c k is assigned to \c s, \c -k is
422 426
    /// assigned to \c t and all other nodes have zero supply value.
423 427
    ///
424 428
    /// \param s The source node.
425 429
    /// \param t The target node.
426 430
    /// \param k The required amount of flow from node \c s to node \c t
427 431
    /// (i.e. the supply of \c s and the demand of \c t).
428 432
    ///
429 433
    /// \return <tt>(*this)</tt>
430 434
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
431 435
      for (int i = 0; i != _node_num; ++i) {
432 436
        _supply[i] = 0;
433 437
      }
434 438
      _supply[_node_id[s]] =  k;
435 439
      _supply[_node_id[t]] = -k;
436 440
      return *this;
437 441
    }
438 442
    
439 443
    /// @}
440 444

	
441 445
    /// \name Execution control
442 446
    /// The algorithm can be executed using \ref run().
443 447

	
444 448
    /// @{
445 449

	
446 450
    /// \brief Run the algorithm.
447 451
    ///
448 452
    /// This function runs the algorithm.
449 453
    /// The paramters can be specified using functions \ref lowerMap(),
450 454
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
451 455
    /// For example,
452 456
    /// \code
453 457
    ///   CapacityScaling<ListDigraph> cs(graph);
454 458
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
455 459
    ///     .supplyMap(sup).run();
456 460
    /// \endcode
457 461
    ///
458 462
    /// This function can be called more than once. All the given parameters
459 463
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
460 464
    /// is used, thus only the modified parameters have to be set again.
461 465
    /// If the underlying digraph was also modified after the construction
462 466
    /// of the class (or the last \ref reset() call), then the \ref reset()
463 467
    /// function must be called.
464 468
    ///
465 469
    /// \param factor The capacity scaling factor. It must be larger than
466 470
    /// one to use scaling. If it is less or equal to one, then scaling
467 471
    /// will be disabled.
468 472
    ///
469 473
    /// \return \c INFEASIBLE if no feasible flow exists,
470 474
    /// \n \c OPTIMAL if the problem has optimal solution
471 475
    /// (i.e. it is feasible and bounded), and the algorithm has found
472 476
    /// optimal flow and node potentials (primal and dual solutions),
473 477
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
474 478
    /// and infinite upper bound. It means that the objective function
475 479
    /// is unbounded on that arc, however, note that it could actually be
476 480
    /// bounded over the feasible flows, but this algroithm cannot handle
477 481
    /// these cases.
478 482
    ///
479 483
    /// \see ProblemType
480 484
    /// \see resetParams(), reset()
481 485
    ProblemType run(int factor = 4) {
482 486
      _factor = factor;
483 487
      ProblemType pt = init();
484 488
      if (pt != OPTIMAL) return pt;
485 489
      return start();
486 490
    }
487 491

	
488 492
    /// \brief Reset all the parameters that have been given before.
489 493
    ///
490 494
    /// This function resets all the paramaters that have been given
491 495
    /// before using functions \ref lowerMap(), \ref upperMap(),
492 496
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
493 497
    ///
494 498
    /// It is useful for multiple \ref run() calls. Basically, all the given
495 499
    /// parameters are kept for the next \ref run() call, unless
496 500
    /// \ref resetParams() or \ref reset() is used.
497 501
    /// If the underlying digraph was also modified after the construction
498 502
    /// of the class or the last \ref reset() call, then the \ref reset()
499 503
    /// function must be used, otherwise \ref resetParams() is sufficient.
500 504
    ///
501 505
    /// For example,
502 506
    /// \code
503 507
    ///   CapacityScaling<ListDigraph> cs(graph);
504 508
    ///
505 509
    ///   // First run
506 510
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
507 511
    ///     .supplyMap(sup).run();
508 512
    ///
509 513
    ///   // Run again with modified cost map (resetParams() is not called,
510 514
    ///   // so only the cost map have to be set again)
511 515
    ///   cost[e] += 100;
512 516
    ///   cs.costMap(cost).run();
513 517
    ///
514 518
    ///   // Run again from scratch using resetParams()
515 519
    ///   // (the lower bounds will be set to zero on all arcs)
516 520
    ///   cs.resetParams();
517 521
    ///   cs.upperMap(capacity).costMap(cost)
518 522
    ///     .supplyMap(sup).run();
519 523
    /// \endcode
520 524
    ///
521 525
    /// \return <tt>(*this)</tt>
522 526
    ///
523 527
    /// \see reset(), run()
524 528
    CapacityScaling& resetParams() {
525 529
      for (int i = 0; i != _node_num; ++i) {
526 530
        _supply[i] = 0;
527 531
      }
528 532
      for (int j = 0; j != _res_arc_num; ++j) {
529 533
        _lower[j] = 0;
530 534
        _upper[j] = INF;
531 535
        _cost[j] = _forward[j] ? 1 : -1;
532 536
      }
533 537
      _have_lower = false;
534 538
      return *this;
535 539
    }
536 540

	
537 541
    /// \brief Reset the internal data structures and all the parameters
538 542
    /// that have been given before.
539 543
    ///
540 544
    /// This function resets the internal data structures and all the
541 545
    /// paramaters that have been given before using functions \ref lowerMap(),
542 546
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
543 547
    ///
544 548
    /// It is useful for multiple \ref run() calls. Basically, all the given
545 549
    /// parameters are kept for the next \ref run() call, unless
546 550
    /// \ref resetParams() or \ref reset() is used.
547 551
    /// If the underlying digraph was also modified after the construction
548 552
    /// of the class or the last \ref reset() call, then the \ref reset()
549 553
    /// function must be used, otherwise \ref resetParams() is sufficient.
550 554
    ///
551 555
    /// See \ref resetParams() for examples.
552 556
    ///
553 557
    /// \return <tt>(*this)</tt>
554 558
    ///
555 559
    /// \see resetParams(), run()
556 560
    CapacityScaling& reset() {
557 561
      // Resize vectors
558 562
      _node_num = countNodes(_graph);
559 563
      _arc_num = countArcs(_graph);
560 564
      _res_arc_num = 2 * (_arc_num + _node_num);
561 565
      _root = _node_num;
562 566
      ++_node_num;
563 567

	
564 568
      _first_out.resize(_node_num + 1);
565 569
      _forward.resize(_res_arc_num);
566 570
      _source.resize(_res_arc_num);
567 571
      _target.resize(_res_arc_num);
568 572
      _reverse.resize(_res_arc_num);
569 573

	
570 574
      _lower.resize(_res_arc_num);
571 575
      _upper.resize(_res_arc_num);
572 576
      _cost.resize(_res_arc_num);
573 577
      _supply.resize(_node_num);
574 578
      
575 579
      _res_cap.resize(_res_arc_num);
576 580
      _pi.resize(_node_num);
577 581
      _excess.resize(_node_num);
578 582
      _pred.resize(_node_num);
579 583

	
580 584
      // Copy the graph
581 585
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
582 586
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
583 587
        _node_id[n] = i;
584 588
      }
585 589
      i = 0;
586 590
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
587 591
        _first_out[i] = j;
588 592
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
589 593
          _arc_idf[a] = j;
590 594
          _forward[j] = true;
591 595
          _source[j] = i;
592 596
          _target[j] = _node_id[_graph.runningNode(a)];
593 597
        }
594 598
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
595 599
          _arc_idb[a] = j;
596 600
          _forward[j] = false;
597 601
          _source[j] = i;
598 602
          _target[j] = _node_id[_graph.runningNode(a)];
599 603
        }
600 604
        _forward[j] = false;
601 605
        _source[j] = i;
602 606
        _target[j] = _root;
603 607
        _reverse[j] = k;
604 608
        _forward[k] = true;
605 609
        _source[k] = _root;
606 610
        _target[k] = i;
607 611
        _reverse[k] = j;
608 612
        ++j; ++k;
609 613
      }
610 614
      _first_out[i] = j;
611 615
      _first_out[_node_num] = k;
612 616
      for (ArcIt a(_graph); a != INVALID; ++a) {
613 617
        int fi = _arc_idf[a];
614 618
        int bi = _arc_idb[a];
615 619
        _reverse[fi] = bi;
616 620
        _reverse[bi] = fi;
617 621
      }
618 622
      
619 623
      // Reset parameters
620 624
      resetParams();
621 625
      return *this;
622 626
    }
623 627

	
624 628
    /// @}
625 629

	
626 630
    /// \name Query Functions
627 631
    /// The results of the algorithm can be obtained using these
628 632
    /// functions.\n
629 633
    /// The \ref run() function must be called before using them.
630 634

	
631 635
    /// @{
632 636

	
633 637
    /// \brief Return the total cost of the found flow.
634 638
    ///
635 639
    /// This function returns the total cost of the found flow.
636 640
    /// Its complexity is O(e).
637 641
    ///
638 642
    /// \note The return type of the function can be specified as a
639 643
    /// template parameter. For example,
640 644
    /// \code
641 645
    ///   cs.totalCost<double>();
642 646
    /// \endcode
643 647
    /// It is useful if the total cost cannot be stored in the \c Cost
644 648
    /// type of the algorithm, which is the default return type of the
645 649
    /// function.
646 650
    ///
647 651
    /// \pre \ref run() must be called before using this function.
648 652
    template <typename Number>
649 653
    Number totalCost() const {
650 654
      Number c = 0;
651 655
      for (ArcIt a(_graph); a != INVALID; ++a) {
652 656
        int i = _arc_idb[a];
653 657
        c += static_cast<Number>(_res_cap[i]) *
654 658
             (-static_cast<Number>(_cost[i]));
655 659
      }
656 660
      return c;
657 661
    }
658 662

	
659 663
#ifndef DOXYGEN
660 664
    Cost totalCost() const {
661 665
      return totalCost<Cost>();
662 666
    }
663 667
#endif
664 668

	
665 669
    /// \brief Return the flow on the given arc.
666 670
    ///
667 671
    /// This function returns the flow on the given arc.
668 672
    ///
669 673
    /// \pre \ref run() must be called before using this function.
670 674
    Value flow(const Arc& a) const {
671 675
      return _res_cap[_arc_idb[a]];
672 676
    }
673 677

	
674 678
    /// \brief Return the flow map (the primal solution).
675 679
    ///
676 680
    /// This function copies the flow value on each arc into the given
677 681
    /// map. The \c Value type of the algorithm must be convertible to
678 682
    /// the \c Value type of the map.
679 683
    ///
680 684
    /// \pre \ref run() must be called before using this function.
681 685
    template <typename FlowMap>
682 686
    void flowMap(FlowMap &map) const {
683 687
      for (ArcIt a(_graph); a != INVALID; ++a) {
684 688
        map.set(a, _res_cap[_arc_idb[a]]);
685 689
      }
686 690
    }
687 691

	
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COST_SCALING_H
20 20
#define LEMON_COST_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <deque>
28 28
#include <limits>
29 29

	
30 30
#include <lemon/core.h>
31 31
#include <lemon/maps.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/circulation.h>
35 35
#include <lemon/bellman_ford.h>
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Default traits class of CostScaling algorithm.
40 40
  ///
41 41
  /// Default traits class of CostScaling algorithm.
42 42
  /// \tparam GR Digraph type.
43 43
  /// \tparam V The number type used for flow amounts, capacity bounds
44 44
  /// and supply values. By default it is \c int.
45 45
  /// \tparam C The number type used for costs and potentials.
46 46
  /// By default it is the same as \c V.
47 47
#ifdef DOXYGEN
48 48
  template <typename GR, typename V = int, typename C = V>
49 49
#else
50 50
  template < typename GR, typename V = int, typename C = V,
51 51
             bool integer = std::numeric_limits<C>::is_integer >
52 52
#endif
53 53
  struct CostScalingDefaultTraits
54 54
  {
55 55
    /// The type of the digraph
56 56
    typedef GR Digraph;
57 57
    /// The type of the flow amounts, capacity bounds and supply values
58 58
    typedef V Value;
59 59
    /// The type of the arc costs
60 60
    typedef C Cost;
61 61

	
62 62
    /// \brief The large cost type used for internal computations
63 63
    ///
64 64
    /// The large cost type used for internal computations.
65 65
    /// It is \c long \c long if the \c Cost type is integer,
66 66
    /// otherwise it is \c double.
67 67
    /// \c Cost must be convertible to \c LargeCost.
68 68
    typedef double LargeCost;
69 69
  };
70 70

	
71 71
  // Default traits class for integer cost types
72 72
  template <typename GR, typename V, typename C>
73 73
  struct CostScalingDefaultTraits<GR, V, C, true>
74 74
  {
75 75
    typedef GR Digraph;
76 76
    typedef V Value;
77 77
    typedef C Cost;
78 78
#ifdef LEMON_HAVE_LONG_LONG
79 79
    typedef long long LargeCost;
80 80
#else
81 81
    typedef long LargeCost;
82 82
#endif
83 83
  };
84 84

	
85 85

	
86 86
  /// \addtogroup min_cost_flow_algs
87 87
  /// @{
88 88

	
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 95
  /// \ref goldberg97efficient, \ref bunnagel98efficient. 
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100 100
  /// Most of the parameters of the problem (except for the digraph)
101 101
  /// can be given using separate functions, and the algorithm can be
102 102
  /// executed using the \ref run() function. If some parameters are not
103 103
  /// specified, then default values will be used.
104 104
  ///
105 105
  /// \tparam GR The digraph type the algorithm runs on.
106 106
  /// \tparam V The number type used for flow amounts, capacity bounds
107 107
  /// and supply values in the algorithm. By default, it is \c int.
108 108
  /// \tparam C The number type used for costs and potentials in the
109 109
  /// algorithm. By default, it is the same as \c V.
110 110
  /// \tparam TR The traits class that defines various types used by the
111 111
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
112 112
  /// "CostScalingDefaultTraits<GR, V, C>".
113 113
  /// In most cases, this parameter should not be set directly,
114 114
  /// consider to use the named template parameters instead.
115 115
  ///
116 116
  /// \warning Both number types must be signed and all input data must
117 117
  /// be integer.
118 118
  /// \warning This algorithm does not support negative costs for such
119 119
  /// arcs that have infinite upper bound.
120 120
  ///
121 121
  /// \note %CostScaling provides three different internal methods,
122 122
  /// from which the most efficient one is used by default.
123 123
  /// For more information, see \ref Method.
124 124
#ifdef DOXYGEN
125 125
  template <typename GR, typename V, typename C, typename TR>
126 126
#else
127 127
  template < typename GR, typename V = int, typename C = V,
128 128
             typename TR = CostScalingDefaultTraits<GR, V, C> >
129 129
#endif
130 130
  class CostScaling
131 131
  {
132 132
  public:
133 133

	
134 134
    /// The type of the digraph
135 135
    typedef typename TR::Digraph Digraph;
136 136
    /// The type of the flow amounts, capacity bounds and supply values
137 137
    typedef typename TR::Value Value;
138 138
    /// The type of the arc costs
139 139
    typedef typename TR::Cost Cost;
140 140

	
141 141
    /// \brief The large cost type
142 142
    ///
143 143
    /// The large cost type used for internal computations.
144 144
    /// By default, it is \c long \c long if the \c Cost type is integer,
145 145
    /// otherwise it is \c double.
146 146
    typedef typename TR::LargeCost LargeCost;
147 147

	
148 148
    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
149 149
    typedef TR Traits;
150 150

	
151 151
  public:
152 152

	
153 153
    /// \brief Problem type constants for the \c run() function.
154 154
    ///
155 155
    /// Enum type containing the problem type constants that can be
156 156
    /// returned by the \ref run() function of the algorithm.
157 157
    enum ProblemType {
158 158
      /// The problem has no feasible solution (flow).
159 159
      INFEASIBLE,
160 160
      /// The problem has optimal solution (i.e. it is feasible and
161 161
      /// bounded), and the algorithm has found optimal flow and node
162 162
      /// potentials (primal and dual solutions).
163 163
      OPTIMAL,
164 164
      /// The digraph contains an arc of negative cost and infinite
165 165
      /// upper bound. It means that the objective function is unbounded
166 166
      /// on that arc, however, note that it could actually be bounded
167 167
      /// over the feasible flows, but this algroithm cannot handle
168 168
      /// these cases.
169 169
      UNBOUNDED
170 170
    };
171 171

	
172 172
    /// \brief Constants for selecting the internal method.
173 173
    ///
174 174
    /// Enum type containing constants for selecting the internal method
175 175
    /// for the \ref run() function.
176 176
    ///
177 177
    /// \ref CostScaling provides three internal methods that differ mainly
178 178
    /// in their base operations, which are used in conjunction with the
179 179
    /// relabel operation.
180 180
    /// By default, the so called \ref PARTIAL_AUGMENT
181 181
    /// "Partial Augment-Relabel" method is used, which proved to be
182 182
    /// the most efficient and the most robust on various test inputs.
183 183
    /// However, the other methods can be selected using the \ref run()
184 184
    /// function with the proper parameter.
185 185
    enum Method {
186 186
      /// Local push operations are used, i.e. flow is moved only on one
187 187
      /// admissible arc at once.
188 188
      PUSH,
189 189
      /// Augment operations are used, i.e. flow is moved on admissible
190 190
      /// paths from a node with excess to a node with deficit.
191 191
      AUGMENT,
192 192
      /// Partial augment operations are used, i.e. flow is moved on 
193 193
      /// admissible paths started from a node with excess, but the
194 194
      /// lengths of these paths are limited. This method can be viewed
195 195
      /// as a combined version of the previous two operations.
196 196
      PARTIAL_AUGMENT
197 197
    };
198 198

	
199 199
  private:
200 200

	
201 201
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
202 202

	
203 203
    typedef std::vector<int> IntVector;
204 204
    typedef std::vector<Value> ValueVector;
205 205
    typedef std::vector<Cost> CostVector;
206 206
    typedef std::vector<LargeCost> LargeCostVector;
207 207
    typedef std::vector<char> BoolVector;
208 208
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
209 209

	
210 210
  private:
211 211
  
212 212
    template <typename KT, typename VT>
213 213
    class StaticVectorMap {
214 214
    public:
215 215
      typedef KT Key;
216 216
      typedef VT Value;
217 217
      
218 218
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
219 219
      
220 220
      const Value& operator[](const Key& key) const {
221 221
        return _v[StaticDigraph::id(key)];
222 222
      }
223 223

	
224 224
      Value& operator[](const Key& key) {
225 225
        return _v[StaticDigraph::id(key)];
226 226
      }
227 227
      
228 228
      void set(const Key& key, const Value& val) {
229 229
        _v[StaticDigraph::id(key)] = val;
230 230
      }
231 231

	
232 232
    private:
233 233
      std::vector<Value>& _v;
234 234
    };
235 235

	
236 236
    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
237 237
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
238 238

	
239 239
  private:
240 240

	
241 241
    // Data related to the underlying digraph
242 242
    const GR &_graph;
243 243
    int _node_num;
244 244
    int _arc_num;
245 245
    int _res_node_num;
246 246
    int _res_arc_num;
247 247
    int _root;
248 248

	
249 249
    // Parameters of the problem
250 250
    bool _have_lower;
251 251
    Value _sum_supply;
252 252
    int _sup_node_num;
253 253

	
254 254
    // Data structures for storing the digraph
255 255
    IntNodeMap _node_id;
256 256
    IntArcMap _arc_idf;
257 257
    IntArcMap _arc_idb;
258 258
    IntVector _first_out;
259 259
    BoolVector _forward;
260 260
    IntVector _source;
261 261
    IntVector _target;
262 262
    IntVector _reverse;
263 263

	
264 264
    // Node and arc data
265 265
    ValueVector _lower;
266 266
    ValueVector _upper;
267 267
    CostVector _scost;
268 268
    ValueVector _supply;
269 269

	
270 270
    ValueVector _res_cap;
271 271
    LargeCostVector _cost;
272 272
    LargeCostVector _pi;
273 273
    ValueVector _excess;
274 274
    IntVector _next_out;
275 275
    std::deque<int> _active_nodes;
276 276

	
277 277
    // Data for scaling
278 278
    LargeCost _epsilon;
279 279
    int _alpha;
280 280

	
281 281
    IntVector _buckets;
282 282
    IntVector _bucket_next;
283 283
    IntVector _bucket_prev;
284 284
    IntVector _rank;
285 285
    int _max_rank;
286 286
  
287 287
    // Data for a StaticDigraph structure
288 288
    typedef std::pair<int, int> IntPair;
289 289
    StaticDigraph _sgr;
290 290
    std::vector<IntPair> _arc_vec;
291 291
    std::vector<LargeCost> _cost_vec;
292 292
    LargeCostArcMap _cost_map;
293 293
    LargeCostNodeMap _pi_map;
294 294
  
295 295
  public:
296 296
  
297 297
    /// \brief Constant for infinite upper bounds (capacities).
298 298
    ///
299 299
    /// Constant for infinite upper bounds (capacities).
300 300
    /// It is \c std::numeric_limits<Value>::infinity() if available,
301 301
    /// \c std::numeric_limits<Value>::max() otherwise.
302 302
    const Value INF;
303 303

	
304 304
  public:
305 305

	
306 306
    /// \name Named Template Parameters
307 307
    /// @{
308 308

	
309 309
    template <typename T>
310 310
    struct SetLargeCostTraits : public Traits {
311 311
      typedef T LargeCost;
312 312
    };
313 313

	
314 314
    /// \brief \ref named-templ-param "Named parameter" for setting
315 315
    /// \c LargeCost type.
316 316
    ///
317 317
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
318 318
    /// type, which is used for internal computations in the algorithm.
319 319
    /// \c Cost must be convertible to \c LargeCost.
320 320
    template <typename T>
321 321
    struct SetLargeCost
322 322
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
323 323
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
324 324
    };
325 325

	
326 326
    /// @}
327 327

	
328
  protected:
329

	
330
    CostScaling() {}
331

	
328 332
  public:
329 333

	
330 334
    /// \brief Constructor.
331 335
    ///
332 336
    /// The constructor of the class.
333 337
    ///
334 338
    /// \param graph The digraph the algorithm runs on.
335 339
    CostScaling(const GR& graph) :
336 340
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
337 341
      _cost_map(_cost_vec), _pi_map(_pi),
338 342
      INF(std::numeric_limits<Value>::has_infinity ?
339 343
          std::numeric_limits<Value>::infinity() :
340 344
          std::numeric_limits<Value>::max())
341 345
    {
342 346
      // Check the number types
343 347
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
344 348
        "The flow type of CostScaling must be signed");
345 349
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
346 350
        "The cost type of CostScaling must be signed");
347 351
      
348 352
      // Reset data structures
349 353
      reset();
350 354
    }
351 355

	
352 356
    /// \name Parameters
353 357
    /// The parameters of the algorithm can be specified using these
354 358
    /// functions.
355 359

	
356 360
    /// @{
357 361

	
358 362
    /// \brief Set the lower bounds on the arcs.
359 363
    ///
360 364
    /// This function sets the lower bounds on the arcs.
361 365
    /// If it is not used before calling \ref run(), the lower bounds
362 366
    /// will be set to zero on all arcs.
363 367
    ///
364 368
    /// \param map An arc map storing the lower bounds.
365 369
    /// Its \c Value type must be convertible to the \c Value type
366 370
    /// of the algorithm.
367 371
    ///
368 372
    /// \return <tt>(*this)</tt>
369 373
    template <typename LowerMap>
370 374
    CostScaling& lowerMap(const LowerMap& map) {
371 375
      _have_lower = true;
372 376
      for (ArcIt a(_graph); a != INVALID; ++a) {
373 377
        _lower[_arc_idf[a]] = map[a];
374 378
        _lower[_arc_idb[a]] = map[a];
375 379
      }
376 380
      return *this;
377 381
    }
378 382

	
379 383
    /// \brief Set the upper bounds (capacities) on the arcs.
380 384
    ///
381 385
    /// This function sets the upper bounds (capacities) on the arcs.
382 386
    /// If it is not used before calling \ref run(), the upper bounds
383 387
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
384 388
    /// unbounded from above).
385 389
    ///
386 390
    /// \param map An arc map storing the upper bounds.
387 391
    /// Its \c Value type must be convertible to the \c Value type
388 392
    /// of the algorithm.
389 393
    ///
390 394
    /// \return <tt>(*this)</tt>
391 395
    template<typename UpperMap>
392 396
    CostScaling& upperMap(const UpperMap& map) {
393 397
      for (ArcIt a(_graph); a != INVALID; ++a) {
394 398
        _upper[_arc_idf[a]] = map[a];
395 399
      }
396 400
      return *this;
397 401
    }
398 402

	
399 403
    /// \brief Set the costs of the arcs.
400 404
    ///
401 405
    /// This function sets the costs of the arcs.
402 406
    /// If it is not used before calling \ref run(), the costs
403 407
    /// will be set to \c 1 on all arcs.
404 408
    ///
405 409
    /// \param map An arc map storing the costs.
406 410
    /// Its \c Value type must be convertible to the \c Cost type
407 411
    /// of the algorithm.
408 412
    ///
409 413
    /// \return <tt>(*this)</tt>
410 414
    template<typename CostMap>
411 415
    CostScaling& costMap(const CostMap& map) {
412 416
      for (ArcIt a(_graph); a != INVALID; ++a) {
413 417
        _scost[_arc_idf[a]] =  map[a];
414 418
        _scost[_arc_idb[a]] = -map[a];
415 419
      }
416 420
      return *this;
417 421
    }
418 422

	
419 423
    /// \brief Set the supply values of the nodes.
420 424
    ///
421 425
    /// This function sets the supply values of the nodes.
422 426
    /// If neither this function nor \ref stSupply() is used before
423 427
    /// calling \ref run(), the supply of each node will be set to zero.
424 428
    ///
425 429
    /// \param map A node map storing the supply values.
426 430
    /// Its \c Value type must be convertible to the \c Value type
427 431
    /// of the algorithm.
428 432
    ///
429 433
    /// \return <tt>(*this)</tt>
430 434
    template<typename SupplyMap>
431 435
    CostScaling& supplyMap(const SupplyMap& map) {
432 436
      for (NodeIt n(_graph); n != INVALID; ++n) {
433 437
        _supply[_node_id[n]] = map[n];
434 438
      }
435 439
      return *this;
436 440
    }
437 441

	
438 442
    /// \brief Set single source and target nodes and a supply value.
439 443
    ///
440 444
    /// This function sets a single source node and a single target node
441 445
    /// and the required flow value.
442 446
    /// If neither this function nor \ref supplyMap() is used before
443 447
    /// calling \ref run(), the supply of each node will be set to zero.
444 448
    ///
445 449
    /// Using this function has the same effect as using \ref supplyMap()
446 450
    /// with such a map in which \c k is assigned to \c s, \c -k is
447 451
    /// assigned to \c t and all other nodes have zero supply value.
448 452
    ///
449 453
    /// \param s The source node.
450 454
    /// \param t The target node.
451 455
    /// \param k The required amount of flow from node \c s to node \c t
452 456
    /// (i.e. the supply of \c s and the demand of \c t).
453 457
    ///
454 458
    /// \return <tt>(*this)</tt>
455 459
    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
456 460
      for (int i = 0; i != _res_node_num; ++i) {
457 461
        _supply[i] = 0;
458 462
      }
459 463
      _supply[_node_id[s]] =  k;
460 464
      _supply[_node_id[t]] = -k;
461 465
      return *this;
462 466
    }
463 467
    
464 468
    /// @}
465 469

	
466 470
    /// \name Execution control
467 471
    /// The algorithm can be executed using \ref run().
468 472

	
469 473
    /// @{
470 474

	
471 475
    /// \brief Run the algorithm.
472 476
    ///
473 477
    /// This function runs the algorithm.
474 478
    /// The paramters can be specified using functions \ref lowerMap(),
475 479
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
476 480
    /// For example,
477 481
    /// \code
478 482
    ///   CostScaling<ListDigraph> cs(graph);
479 483
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
480 484
    ///     .supplyMap(sup).run();
481 485
    /// \endcode
482 486
    ///
483 487
    /// This function can be called more than once. All the given parameters
484 488
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
485 489
    /// is used, thus only the modified parameters have to be set again.
486 490
    /// If the underlying digraph was also modified after the construction
487 491
    /// of the class (or the last \ref reset() call), then the \ref reset()
488 492
    /// function must be called.
489 493
    ///
490 494
    /// \param method The internal method that will be used in the
491 495
    /// algorithm. For more information, see \ref Method.
492 496
    /// \param factor The cost scaling factor. It must be larger than one.
493 497
    ///
494 498
    /// \return \c INFEASIBLE if no feasible flow exists,
495 499
    /// \n \c OPTIMAL if the problem has optimal solution
496 500
    /// (i.e. it is feasible and bounded), and the algorithm has found
497 501
    /// optimal flow and node potentials (primal and dual solutions),
498 502
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
499 503
    /// and infinite upper bound. It means that the objective function
500 504
    /// is unbounded on that arc, however, note that it could actually be
501 505
    /// bounded over the feasible flows, but this algroithm cannot handle
502 506
    /// these cases.
503 507
    ///
504 508
    /// \see ProblemType, Method
505 509
    /// \see resetParams(), reset()
506 510
    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
507 511
      _alpha = factor;
508 512
      ProblemType pt = init();
509 513
      if (pt != OPTIMAL) return pt;
510 514
      start(method);
511 515
      return OPTIMAL;
512 516
    }
513 517

	
514 518
    /// \brief Reset all the parameters that have been given before.
515 519
    ///
516 520
    /// This function resets all the paramaters that have been given
517 521
    /// before using functions \ref lowerMap(), \ref upperMap(),
518 522
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
519 523
    ///
520 524
    /// It is useful for multiple \ref run() calls. Basically, all the given
521 525
    /// parameters are kept for the next \ref run() call, unless
522 526
    /// \ref resetParams() or \ref reset() is used.
523 527
    /// If the underlying digraph was also modified after the construction
524 528
    /// of the class or the last \ref reset() call, then the \ref reset()
525 529
    /// function must be used, otherwise \ref resetParams() is sufficient.
526 530
    ///
527 531
    /// For example,
528 532
    /// \code
529 533
    ///   CostScaling<ListDigraph> cs(graph);
530 534
    ///
531 535
    ///   // First run
532 536
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
533 537
    ///     .supplyMap(sup).run();
534 538
    ///
535 539
    ///   // Run again with modified cost map (resetParams() is not called,
536 540
    ///   // so only the cost map have to be set again)
537 541
    ///   cost[e] += 100;
538 542
    ///   cs.costMap(cost).run();
539 543
    ///
540 544
    ///   // Run again from scratch using resetParams()
541 545
    ///   // (the lower bounds will be set to zero on all arcs)
542 546
    ///   cs.resetParams();
543 547
    ///   cs.upperMap(capacity).costMap(cost)
544 548
    ///     .supplyMap(sup).run();
545 549
    /// \endcode
546 550
    ///
547 551
    /// \return <tt>(*this)</tt>
548 552
    ///
549 553
    /// \see reset(), run()
550 554
    CostScaling& resetParams() {
551 555
      for (int i = 0; i != _res_node_num; ++i) {
552 556
        _supply[i] = 0;
553 557
      }
554 558
      int limit = _first_out[_root];
555 559
      for (int j = 0; j != limit; ++j) {
556 560
        _lower[j] = 0;
557 561
        _upper[j] = INF;
558 562
        _scost[j] = _forward[j] ? 1 : -1;
559 563
      }
560 564
      for (int j = limit; j != _res_arc_num; ++j) {
561 565
        _lower[j] = 0;
562 566
        _upper[j] = INF;
563 567
        _scost[j] = 0;
564 568
        _scost[_reverse[j]] = 0;
565 569
      }      
566 570
      _have_lower = false;
567 571
      return *this;
568 572
    }
569 573

	
570 574
    /// \brief Reset all the parameters that have been given before.
571 575
    ///
572 576
    /// This function resets all the paramaters that have been given
573 577
    /// before using functions \ref lowerMap(), \ref upperMap(),
574 578
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
575 579
    ///
576 580
    /// It is useful for multiple run() calls. If this function is not
577 581
    /// used, all the parameters given before are kept for the next
578 582
    /// \ref run() call.
579 583
    /// However, the underlying digraph must not be modified after this
580 584
    /// class have been constructed, since it copies and extends the graph.
581 585
    /// \return <tt>(*this)</tt>
582 586
    CostScaling& reset() {
583 587
      // Resize vectors
584 588
      _node_num = countNodes(_graph);
585 589
      _arc_num = countArcs(_graph);
586 590
      _res_node_num = _node_num + 1;
587 591
      _res_arc_num = 2 * (_arc_num + _node_num);
588 592
      _root = _node_num;
589 593

	
590 594
      _first_out.resize(_res_node_num + 1);
591 595
      _forward.resize(_res_arc_num);
592 596
      _source.resize(_res_arc_num);
593 597
      _target.resize(_res_arc_num);
594 598
      _reverse.resize(_res_arc_num);
595 599

	
596 600
      _lower.resize(_res_arc_num);
597 601
      _upper.resize(_res_arc_num);
598 602
      _scost.resize(_res_arc_num);
599 603
      _supply.resize(_res_node_num);
600 604
      
601 605
      _res_cap.resize(_res_arc_num);
602 606
      _cost.resize(_res_arc_num);
603 607
      _pi.resize(_res_node_num);
604 608
      _excess.resize(_res_node_num);
605 609
      _next_out.resize(_res_node_num);
606 610

	
607 611
      _arc_vec.reserve(_res_arc_num);
608 612
      _cost_vec.reserve(_res_arc_num);
609 613

	
610 614
      // Copy the graph
611 615
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
612 616
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
613 617
        _node_id[n] = i;
614 618
      }
615 619
      i = 0;
616 620
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
617 621
        _first_out[i] = j;
618 622
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
619 623
          _arc_idf[a] = j;
620 624
          _forward[j] = true;
621 625
          _source[j] = i;
622 626
          _target[j] = _node_id[_graph.runningNode(a)];
623 627
        }
624 628
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
625 629
          _arc_idb[a] = j;
626 630
          _forward[j] = false;
627 631
          _source[j] = i;
628 632
          _target[j] = _node_id[_graph.runningNode(a)];
629 633
        }
630 634
        _forward[j] = false;
631 635
        _source[j] = i;
632 636
        _target[j] = _root;
633 637
        _reverse[j] = k;
634 638
        _forward[k] = true;
635 639
        _source[k] = _root;
636 640
        _target[k] = i;
637 641
        _reverse[k] = j;
638 642
        ++j; ++k;
639 643
      }
640 644
      _first_out[i] = j;
641 645
      _first_out[_res_node_num] = k;
642 646
      for (ArcIt a(_graph); a != INVALID; ++a) {
643 647
        int fi = _arc_idf[a];
644 648
        int bi = _arc_idb[a];
645 649
        _reverse[fi] = bi;
646 650
        _reverse[bi] = fi;
647 651
      }
648 652
      
649 653
      // Reset parameters
650 654
      resetParams();
651 655
      return *this;
652 656
    }
653 657

	
654 658
    /// @}
655 659

	
656 660
    /// \name Query Functions
657 661
    /// The results of the algorithm can be obtained using these
658 662
    /// functions.\n
659 663
    /// The \ref run() function must be called before using them.
660 664

	
661 665
    /// @{
662 666

	
663 667
    /// \brief Return the total cost of the found flow.
664 668
    ///
665 669
    /// This function returns the total cost of the found flow.
666 670
    /// Its complexity is O(e).
667 671
    ///
668 672
    /// \note The return type of the function can be specified as a
669 673
    /// template parameter. For example,
670 674
    /// \code
671 675
    ///   cs.totalCost<double>();
672 676
    /// \endcode
673 677
    /// It is useful if the total cost cannot be stored in the \c Cost
674 678
    /// type of the algorithm, which is the default return type of the
675 679
    /// function.
676 680
    ///
677 681
    /// \pre \ref run() must be called before using this function.
678 682
    template <typename Number>
679 683
    Number totalCost() const {
680 684
      Number c = 0;
681 685
      for (ArcIt a(_graph); a != INVALID; ++a) {
682 686
        int i = _arc_idb[a];
683 687
        c += static_cast<Number>(_res_cap[i]) *
684 688
             (-static_cast<Number>(_scost[i]));
685 689
      }
686 690
      return c;
687 691
    }
688 692

	
689 693
#ifndef DOXYGEN
690 694
    Cost totalCost() const {
691 695
      return totalCost<Cost>();
692 696
    }
693 697
#endif
694 698

	
695 699
    /// \brief Return the flow on the given arc.
696 700
    ///
697 701
    /// This function returns the flow on the given arc.
698 702
    ///
699 703
    /// \pre \ref run() must be called before using this function.
700 704
    Value flow(const Arc& a) const {
701 705
      return _res_cap[_arc_idb[a]];
702 706
    }
703 707

	
704 708
    /// \brief Return the flow map (the primal solution).
705 709
    ///
706 710
    /// This function copies the flow value on each arc into the given
707 711
    /// map. The \c Value type of the algorithm must be convertible to
708 712
    /// the \c Value type of the map.
709 713
    ///
710 714
    /// \pre \ref run() must be called before using this function.
711 715
    template <typename FlowMap>
Ignore white space 768 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_HARTMANN_ORLIN_H
20 20
#define LEMON_HARTMANN_ORLIN_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of HartmannOrlin algorithm.
37 37
  ///
38 38
  /// Default traits class of HartmannOrlin algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HartmannOrlinDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addFront() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 97
  /// a minimum mean cycle.
98 98
  ///
99 99
  /// This class implements the Hartmann-Orlin algorithm for finding
100 100
  /// a directed cycle of minimum mean length (cost) in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
103 103
  /// it applies an efficient early termination scheme.
104 104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
105 105
  ///
106 106
  /// \tparam GR The type of the digraph the algorithm runs on.
107 107
  /// \tparam LEN The type of the length map. The default
108 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 109
  /// \tparam TR The traits class that defines various types used by the
110 110
  /// algorithm. By default, it is \ref HartmannOrlinDefaultTraits
111 111
  /// "HartmannOrlinDefaultTraits<GR, LEN>".
112 112
  /// In most cases, this parameter should not be set directly,
113 113
  /// consider to use the named template parameters instead.
114 114
#ifdef DOXYGEN
115 115
  template <typename GR, typename LEN, typename TR>
116 116
#else
117 117
  template < typename GR,
118 118
             typename LEN = typename GR::template ArcMap<int>,
119 119
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
120 120
#endif
121 121
  class HartmannOrlin
122 122
  {
123 123
  public:
124 124

	
125 125
    /// The type of the digraph
126 126
    typedef typename TR::Digraph Digraph;
127 127
    /// The type of the length map
128 128
    typedef typename TR::LengthMap LengthMap;
129 129
    /// The type of the arc lengths
130 130
    typedef typename TR::Value Value;
131 131

	
132 132
    /// \brief The large value type
133 133
    ///
134 134
    /// The large value type used for internal computations.
135 135
    /// By default, it is \c long \c long if the \c Value type is integer,
136 136
    /// otherwise it is \c double.
137 137
    typedef typename TR::LargeValue LargeValue;
138 138

	
139 139
    /// The tolerance type
140 140
    typedef typename TR::Tolerance Tolerance;
141 141

	
142 142
    /// \brief The path type of the found cycles
143 143
    ///
144 144
    /// The path type of the found cycles.
145 145
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
146 146
    /// it is \ref lemon::Path "Path<Digraph>".
147 147
    typedef typename TR::Path Path;
148 148

	
149 149
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 155

	
156 156
    // Data sturcture for path data
157 157
    struct PathData
158 158
    {
159 159
      LargeValue dist;
160 160
      Arc pred;
161 161
      PathData(LargeValue d, Arc p = INVALID) :
162 162
        dist(d), pred(p) {}
163 163
    };
164 164

	
165 165
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
166 166
      PathDataNodeMap;
167 167

	
168 168
  private:
169 169

	
170 170
    // The digraph the algorithm runs on
171 171
    const Digraph &_gr;
172 172
    // The length of the arcs
173 173
    const LengthMap &_length;
174 174

	
175 175
    // Data for storing the strongly connected components
176 176
    int _comp_num;
177 177
    typename Digraph::template NodeMap<int> _comp;
178 178
    std::vector<std::vector<Node> > _comp_nodes;
179 179
    std::vector<Node>* _nodes;
180 180
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
181 181

	
182 182
    // Data for the found cycles
183 183
    bool _curr_found, _best_found;
184 184
    LargeValue _curr_length, _best_length;
185 185
    int _curr_size, _best_size;
186 186
    Node _curr_node, _best_node;
187 187
    int _curr_level, _best_level;
188 188

	
189 189
    Path *_cycle_path;
190 190
    bool _local_path;
191 191

	
192 192
    // Node map for storing path data
193 193
    PathDataNodeMap _data;
194 194
    // The processed nodes in the last round
195 195
    std::vector<Node> _process;
196 196

	
197 197
    Tolerance _tolerance;
198 198

	
199 199
    // Infinite constant
200 200
    const LargeValue INF;
201 201

	
202 202
  public:
203 203

	
204 204
    /// \name Named Template Parameters
205 205
    /// @{
206 206

	
207 207
    template <typename T>
208 208
    struct SetLargeValueTraits : public Traits {
209 209
      typedef T LargeValue;
210 210
      typedef lemon::Tolerance<T> Tolerance;
211 211
    };
212 212

	
213 213
    /// \brief \ref named-templ-param "Named parameter" for setting
214 214
    /// \c LargeValue type.
215 215
    ///
216 216
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
217 217
    /// type. It is used for internal computations in the algorithm.
218 218
    template <typename T>
219 219
    struct SetLargeValue
220 220
      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
221 221
      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
222 222
    };
223 223

	
224 224
    template <typename T>
225 225
    struct SetPathTraits : public Traits {
226 226
      typedef T Path;
227 227
    };
228 228

	
229 229
    /// \brief \ref named-templ-param "Named parameter" for setting
230 230
    /// \c %Path type.
231 231
    ///
232 232
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
233 233
    /// type of the found cycles.
234 234
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
235 235
    /// and it must have an \c addFront() function.
236 236
    template <typename T>
237 237
    struct SetPath
238 238
      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
239 239
      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
240 240
    };
241 241

	
242 242
    /// @}
243 243

	
244
  protected:
245

	
246
    HartmannOrlin() {}
247

	
244 248
  public:
245 249

	
246 250
    /// \brief Constructor.
247 251
    ///
248 252
    /// The constructor of the class.
249 253
    ///
250 254
    /// \param digraph The digraph the algorithm runs on.
251 255
    /// \param length The lengths (costs) of the arcs.
252 256
    HartmannOrlin( const Digraph &digraph,
253 257
                   const LengthMap &length ) :
254 258
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
255 259
      _best_found(false), _best_length(0), _best_size(1),
256 260
      _cycle_path(NULL), _local_path(false), _data(digraph),
257 261
      INF(std::numeric_limits<LargeValue>::has_infinity ?
258 262
          std::numeric_limits<LargeValue>::infinity() :
259 263
          std::numeric_limits<LargeValue>::max())
260 264
    {}
261 265

	
262 266
    /// Destructor.
263 267
    ~HartmannOrlin() {
264 268
      if (_local_path) delete _cycle_path;
265 269
    }
266 270

	
267 271
    /// \brief Set the path structure for storing the found cycle.
268 272
    ///
269 273
    /// This function sets an external path structure for storing the
270 274
    /// found cycle.
271 275
    ///
272 276
    /// If you don't call this function before calling \ref run() or
273 277
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
274 278
    /// structure. The destuctor deallocates this automatically
275 279
    /// allocated object, of course.
276 280
    ///
277 281
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
278 282
    /// "addFront()" function of the given path structure.
279 283
    ///
280 284
    /// \return <tt>(*this)</tt>
281 285
    HartmannOrlin& cycle(Path &path) {
282 286
      if (_local_path) {
283 287
        delete _cycle_path;
284 288
        _local_path = false;
285 289
      }
286 290
      _cycle_path = &path;
287 291
      return *this;
288 292
    }
289 293

	
290 294
    /// \brief Set the tolerance used by the algorithm.
291 295
    ///
292 296
    /// This function sets the tolerance object used by the algorithm.
293 297
    ///
294 298
    /// \return <tt>(*this)</tt>
295 299
    HartmannOrlin& tolerance(const Tolerance& tolerance) {
296 300
      _tolerance = tolerance;
297 301
      return *this;
298 302
    }
299 303

	
300 304
    /// \brief Return a const reference to the tolerance.
301 305
    ///
302 306
    /// This function returns a const reference to the tolerance object
303 307
    /// used by the algorithm.
304 308
    const Tolerance& tolerance() const {
305 309
      return _tolerance;
306 310
    }
307 311

	
308 312
    /// \name Execution control
309 313
    /// The simplest way to execute the algorithm is to call the \ref run()
310 314
    /// function.\n
311 315
    /// If you only need the minimum mean length, you may call
312 316
    /// \ref findMinMean().
313 317

	
314 318
    /// @{
315 319

	
316 320
    /// \brief Run the algorithm.
317 321
    ///
318 322
    /// This function runs the algorithm.
319 323
    /// It can be called more than once (e.g. if the underlying digraph
320 324
    /// and/or the arc lengths have been modified).
321 325
    ///
322 326
    /// \return \c true if a directed cycle exists in the digraph.
323 327
    ///
324 328
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
325 329
    /// \code
326 330
    ///   return mmc.findMinMean() && mmc.findCycle();
327 331
    /// \endcode
328 332
    bool run() {
329 333
      return findMinMean() && findCycle();
330 334
    }
331 335

	
332 336
    /// \brief Find the minimum cycle mean.
333 337
    ///
334 338
    /// This function finds the minimum mean length of the directed
335 339
    /// cycles in the digraph.
336 340
    ///
337 341
    /// \return \c true if a directed cycle exists in the digraph.
338 342
    bool findMinMean() {
339 343
      // Initialization and find strongly connected components
340 344
      init();
341 345
      findComponents();
342 346
      
343 347
      // Find the minimum cycle mean in the components
344 348
      for (int comp = 0; comp < _comp_num; ++comp) {
345 349
        if (!initComponent(comp)) continue;
346 350
        processRounds();
347 351
        
348 352
        // Update the best cycle (global minimum mean cycle)
349 353
        if ( _curr_found && (!_best_found || 
350 354
             _curr_length * _best_size < _best_length * _curr_size) ) {
351 355
          _best_found = true;
352 356
          _best_length = _curr_length;
353 357
          _best_size = _curr_size;
354 358
          _best_node = _curr_node;
355 359
          _best_level = _curr_level;
356 360
        }
357 361
      }
358 362
      return _best_found;
359 363
    }
360 364

	
361 365
    /// \brief Find a minimum mean directed cycle.
362 366
    ///
363 367
    /// This function finds a directed cycle of minimum mean length
364 368
    /// in the digraph using the data computed by findMinMean().
365 369
    ///
366 370
    /// \return \c true if a directed cycle exists in the digraph.
367 371
    ///
368 372
    /// \pre \ref findMinMean() must be called before using this function.
369 373
    bool findCycle() {
370 374
      if (!_best_found) return false;
371 375
      IntNodeMap reached(_gr, -1);
372 376
      int r = _best_level + 1;
373 377
      Node u = _best_node;
374 378
      while (reached[u] < 0) {
375 379
        reached[u] = --r;
376 380
        u = _gr.source(_data[u][r].pred);
377 381
      }
378 382
      r = reached[u];
379 383
      Arc e = _data[u][r].pred;
380 384
      _cycle_path->addFront(e);
381 385
      _best_length = _length[e];
382 386
      _best_size = 1;
383 387
      Node v;
384 388
      while ((v = _gr.source(e)) != u) {
385 389
        e = _data[v][--r].pred;
386 390
        _cycle_path->addFront(e);
387 391
        _best_length += _length[e];
388 392
        ++_best_size;
389 393
      }
390 394
      return true;
391 395
    }
392 396

	
393 397
    /// @}
394 398

	
395 399
    /// \name Query Functions
396 400
    /// The results of the algorithm can be obtained using these
397 401
    /// functions.\n
398 402
    /// The algorithm should be executed before using them.
399 403

	
400 404
    /// @{
401 405

	
402 406
    /// \brief Return the total length of the found cycle.
403 407
    ///
404 408
    /// This function returns the total length of the found cycle.
405 409
    ///
406 410
    /// \pre \ref run() or \ref findMinMean() must be called before
407 411
    /// using this function.
408 412
    Value cycleLength() const {
409 413
      return static_cast<Value>(_best_length);
410 414
    }
411 415

	
412 416
    /// \brief Return the number of arcs on the found cycle.
413 417
    ///
414 418
    /// This function returns the number of arcs on the found cycle.
415 419
    ///
416 420
    /// \pre \ref run() or \ref findMinMean() must be called before
417 421
    /// using this function.
418 422
    int cycleArcNum() const {
419 423
      return _best_size;
420 424
    }
421 425

	
422 426
    /// \brief Return the mean length of the found cycle.
423 427
    ///
424 428
    /// This function returns the mean length of the found cycle.
425 429
    ///
426 430
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
427 431
    /// following code.
428 432
    /// \code
429 433
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
430 434
    /// \endcode
431 435
    ///
432 436
    /// \pre \ref run() or \ref findMinMean() must be called before
433 437
    /// using this function.
434 438
    double cycleMean() const {
435 439
      return static_cast<double>(_best_length) / _best_size;
436 440
    }
437 441

	
438 442
    /// \brief Return the found cycle.
439 443
    ///
440 444
    /// This function returns a const reference to the path structure
441 445
    /// storing the found cycle.
442 446
    ///
443 447
    /// \pre \ref run() or \ref findCycle() must be called before using
444 448
    /// this function.
445 449
    const Path& cycle() const {
446 450
      return *_cycle_path;
447 451
    }
448 452

	
449 453
    ///@}
450 454

	
451 455
  private:
452 456

	
453 457
    // Initialization
454 458
    void init() {
455 459
      if (!_cycle_path) {
456 460
        _local_path = true;
457 461
        _cycle_path = new Path;
458 462
      }
459 463
      _cycle_path->clear();
460 464
      _best_found = false;
461 465
      _best_length = 0;
462 466
      _best_size = 1;
463 467
      _cycle_path->clear();
464 468
      for (NodeIt u(_gr); u != INVALID; ++u)
465 469
        _data[u].clear();
466 470
    }
467 471

	
468 472
    // Find strongly connected components and initialize _comp_nodes
469 473
    // and _out_arcs
470 474
    void findComponents() {
471 475
      _comp_num = stronglyConnectedComponents(_gr, _comp);
472 476
      _comp_nodes.resize(_comp_num);
473 477
      if (_comp_num == 1) {
474 478
        _comp_nodes[0].clear();
475 479
        for (NodeIt n(_gr); n != INVALID; ++n) {
476 480
          _comp_nodes[0].push_back(n);
477 481
          _out_arcs[n].clear();
478 482
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
479 483
            _out_arcs[n].push_back(a);
480 484
          }
481 485
        }
482 486
      } else {
483 487
        for (int i = 0; i < _comp_num; ++i)
484 488
          _comp_nodes[i].clear();
485 489
        for (NodeIt n(_gr); n != INVALID; ++n) {
486 490
          int k = _comp[n];
487 491
          _comp_nodes[k].push_back(n);
488 492
          _out_arcs[n].clear();
489 493
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
490 494
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
491 495
          }
492 496
        }
493 497
      }
494 498
    }
495 499

	
496 500
    // Initialize path data for the current component
497 501
    bool initComponent(int comp) {
498 502
      _nodes = &(_comp_nodes[comp]);
499 503
      int n = _nodes->size();
500 504
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
501 505
        return false;
502 506
      }      
503 507
      for (int i = 0; i < n; ++i) {
504 508
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
505 509
      }
506 510
      return true;
507 511
    }
508 512

	
509 513
    // Process all rounds of computing path data for the current component.
510 514
    // _data[v][k] is the length of a shortest directed walk from the root
511 515
    // node to node v containing exactly k arcs.
512 516
    void processRounds() {
513 517
      Node start = (*_nodes)[0];
514 518
      _data[start][0] = PathData(0);
515 519
      _process.clear();
516 520
      _process.push_back(start);
517 521

	
518 522
      int k, n = _nodes->size();
519 523
      int next_check = 4;
520 524
      bool terminate = false;
521 525
      for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
522 526
        processNextBuildRound(k);
523 527
        if (k == next_check || k == n) {
524 528
          terminate = checkTermination(k);
525 529
          next_check = next_check * 3 / 2;
526 530
        }
527 531
      }
528 532
      for ( ; k <= n && !terminate; ++k) {
529 533
        processNextFullRound(k);
530 534
        if (k == next_check || k == n) {
531 535
          terminate = checkTermination(k);
532 536
          next_check = next_check * 3 / 2;
533 537
        }
534 538
      }
535 539
    }
536 540

	
537 541
    // Process one round and rebuild _process
538 542
    void processNextBuildRound(int k) {
539 543
      std::vector<Node> next;
540 544
      Node u, v;
541 545
      Arc e;
542 546
      LargeValue d;
543 547
      for (int i = 0; i < int(_process.size()); ++i) {
544 548
        u = _process[i];
545 549
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
546 550
          e = _out_arcs[u][j];
547 551
          v = _gr.target(e);
548 552
          d = _data[u][k-1].dist + _length[e];
549 553
          if (_tolerance.less(d, _data[v][k].dist)) {
550 554
            if (_data[v][k].dist == INF) next.push_back(v);
551 555
            _data[v][k] = PathData(d, e);
552 556
          }
553 557
        }
554 558
      }
555 559
      _process.swap(next);
556 560
    }
557 561

	
558 562
    // Process one round using _nodes instead of _process
559 563
    void processNextFullRound(int k) {
560 564
      Node u, v;
561 565
      Arc e;
562 566
      LargeValue d;
563 567
      for (int i = 0; i < int(_nodes->size()); ++i) {
564 568
        u = (*_nodes)[i];
565 569
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
566 570
          e = _out_arcs[u][j];
567 571
          v = _gr.target(e);
568 572
          d = _data[u][k-1].dist + _length[e];
569 573
          if (_tolerance.less(d, _data[v][k].dist)) {
570 574
            _data[v][k] = PathData(d, e);
571 575
          }
572 576
        }
573 577
      }
574 578
    }
575 579
    
576 580
    // Check early termination
577 581
    bool checkTermination(int k) {
578 582
      typedef std::pair<int, int> Pair;
579 583
      typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
580 584
      typename GR::template NodeMap<LargeValue> pi(_gr);
581 585
      int n = _nodes->size();
582 586
      LargeValue length;
583 587
      int size;
584 588
      Node u;
585 589
      
586 590
      // Search for cycles that are already found
587 591
      _curr_found = false;
588 592
      for (int i = 0; i < n; ++i) {
589 593
        u = (*_nodes)[i];
590 594
        if (_data[u][k].dist == INF) continue;
591 595
        for (int j = k; j >= 0; --j) {
592 596
          if (level[u].first == i && level[u].second > 0) {
593 597
            // A cycle is found
594 598
            length = _data[u][level[u].second].dist - _data[u][j].dist;
595 599
            size = level[u].second - j;
596 600
            if (!_curr_found || length * _curr_size < _curr_length * size) {
597 601
              _curr_length = length;
598 602
              _curr_size = size;
599 603
              _curr_node = u;
600 604
              _curr_level = level[u].second;
601 605
              _curr_found = true;
602 606
            }
603 607
          }
604 608
          level[u] = Pair(i, j);
605 609
          if (j != 0) {
606 610
	    u = _gr.source(_data[u][j].pred);
607 611
	  }
608 612
        }
609 613
      }
610 614

	
611 615
      // If at least one cycle is found, check the optimality condition
612 616
      LargeValue d;
613 617
      if (_curr_found && k < n) {
614 618
        // Find node potentials
615 619
        for (int i = 0; i < n; ++i) {
616 620
          u = (*_nodes)[i];
617 621
          pi[u] = INF;
618 622
          for (int j = 0; j <= k; ++j) {
619 623
            if (_data[u][j].dist < INF) {
620 624
              d = _data[u][j].dist * _curr_size - j * _curr_length;
621 625
              if (_tolerance.less(d, pi[u])) pi[u] = d;
622 626
            }
623 627
          }
624 628
        }
625 629

	
626 630
        // Check the optimality condition for all arcs
627 631
        bool done = true;
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_HOWARD_H
20 20
#define LEMON_HOWARD_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Howard's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of Howard class.
37 37
  ///
38 38
  /// Default traits class of Howard class.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HowardDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HowardDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Howard's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Howard's policy iteration algorithm for finding
100 100
  /// a directed cycle of minimum mean length (cost) in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// This class provides the most efficient algorithm for the
103 103
  /// minimum mean cycle problem, though the best known theoretical
104 104
  /// bound on its running time is exponential.
105 105
  ///
106 106
  /// \tparam GR The type of the digraph the algorithm runs on.
107 107
  /// \tparam LEN The type of the length map. The default
108 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 109
  /// \tparam TR The traits class that defines various types used by the
110 110
  /// algorithm. By default, it is \ref HowardDefaultTraits
111 111
  /// "HowardDefaultTraits<GR, LEN>".
112 112
  /// In most cases, this parameter should not be set directly,
113 113
  /// consider to use the named template parameters instead.
114 114
#ifdef DOXYGEN
115 115
  template <typename GR, typename LEN, typename TR>
116 116
#else
117 117
  template < typename GR,
118 118
             typename LEN = typename GR::template ArcMap<int>,
119 119
             typename TR = HowardDefaultTraits<GR, LEN> >
120 120
#endif
121 121
  class Howard
122 122
  {
123 123
  public:
124 124
  
125 125
    /// The type of the digraph
126 126
    typedef typename TR::Digraph Digraph;
127 127
    /// The type of the length map
128 128
    typedef typename TR::LengthMap LengthMap;
129 129
    /// The type of the arc lengths
130 130
    typedef typename TR::Value Value;
131 131

	
132 132
    /// \brief The large value type
133 133
    ///
134 134
    /// The large value type used for internal computations.
135 135
    /// By default, it is \c long \c long if the \c Value type is integer,
136 136
    /// otherwise it is \c double.
137 137
    typedef typename TR::LargeValue LargeValue;
138 138

	
139 139
    /// The tolerance type
140 140
    typedef typename TR::Tolerance Tolerance;
141 141

	
142 142
    /// \brief The path type of the found cycles
143 143
    ///
144 144
    /// The path type of the found cycles.
145 145
    /// Using the \ref HowardDefaultTraits "default traits class",
146 146
    /// it is \ref lemon::Path "Path<Digraph>".
147 147
    typedef typename TR::Path Path;
148 148

	
149 149
    /// The \ref HowardDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 155
  
156 156
    // The digraph the algorithm runs on
157 157
    const Digraph &_gr;
158 158
    // The length of the arcs
159 159
    const LengthMap &_length;
160 160

	
161 161
    // Data for the found cycles
162 162
    bool _curr_found, _best_found;
163 163
    LargeValue _curr_length, _best_length;
164 164
    int _curr_size, _best_size;
165 165
    Node _curr_node, _best_node;
166 166

	
167 167
    Path *_cycle_path;
168 168
    bool _local_path;
169 169

	
170 170
    // Internal data used by the algorithm
171 171
    typename Digraph::template NodeMap<Arc> _policy;
172 172
    typename Digraph::template NodeMap<bool> _reached;
173 173
    typename Digraph::template NodeMap<int> _level;
174 174
    typename Digraph::template NodeMap<LargeValue> _dist;
175 175

	
176 176
    // Data for storing the strongly connected components
177 177
    int _comp_num;
178 178
    typename Digraph::template NodeMap<int> _comp;
179 179
    std::vector<std::vector<Node> > _comp_nodes;
180 180
    std::vector<Node>* _nodes;
181 181
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
182 182
    
183 183
    // Queue used for BFS search
184 184
    std::vector<Node> _queue;
185 185
    int _qfront, _qback;
186 186

	
187 187
    Tolerance _tolerance;
188 188
  
189 189
    // Infinite constant
190 190
    const LargeValue INF;
191 191

	
192 192
  public:
193 193
  
194 194
    /// \name Named Template Parameters
195 195
    /// @{
196 196

	
197 197
    template <typename T>
198 198
    struct SetLargeValueTraits : public Traits {
199 199
      typedef T LargeValue;
200 200
      typedef lemon::Tolerance<T> Tolerance;
201 201
    };
202 202

	
203 203
    /// \brief \ref named-templ-param "Named parameter" for setting
204 204
    /// \c LargeValue type.
205 205
    ///
206 206
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
207 207
    /// type. It is used for internal computations in the algorithm.
208 208
    template <typename T>
209 209
    struct SetLargeValue
210 210
      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
211 211
      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
212 212
    };
213 213

	
214 214
    template <typename T>
215 215
    struct SetPathTraits : public Traits {
216 216
      typedef T Path;
217 217
    };
218 218

	
219 219
    /// \brief \ref named-templ-param "Named parameter" for setting
220 220
    /// \c %Path type.
221 221
    ///
222 222
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
223 223
    /// type of the found cycles.
224 224
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
225 225
    /// and it must have an \c addBack() function.
226 226
    template <typename T>
227 227
    struct SetPath
228 228
      : public Howard<GR, LEN, SetPathTraits<T> > {
229 229
      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
230 230
    };
231 231
    
232 232
    /// @}
233 233

	
234
  protected:
235

	
236
    Howard() {}
237

	
234 238
  public:
235 239

	
236 240
    /// \brief Constructor.
237 241
    ///
238 242
    /// The constructor of the class.
239 243
    ///
240 244
    /// \param digraph The digraph the algorithm runs on.
241 245
    /// \param length The lengths (costs) of the arcs.
242 246
    Howard( const Digraph &digraph,
243 247
            const LengthMap &length ) :
244 248
      _gr(digraph), _length(length), _best_found(false),
245 249
      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
246 250
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
247 251
      _comp(digraph), _in_arcs(digraph),
248 252
      INF(std::numeric_limits<LargeValue>::has_infinity ?
249 253
          std::numeric_limits<LargeValue>::infinity() :
250 254
          std::numeric_limits<LargeValue>::max())
251 255
    {}
252 256

	
253 257
    /// Destructor.
254 258
    ~Howard() {
255 259
      if (_local_path) delete _cycle_path;
256 260
    }
257 261

	
258 262
    /// \brief Set the path structure for storing the found cycle.
259 263
    ///
260 264
    /// This function sets an external path structure for storing the
261 265
    /// found cycle.
262 266
    ///
263 267
    /// If you don't call this function before calling \ref run() or
264 268
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
265 269
    /// structure. The destuctor deallocates this automatically
266 270
    /// allocated object, of course.
267 271
    ///
268 272
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
269 273
    /// "addBack()" function of the given path structure.
270 274
    ///
271 275
    /// \return <tt>(*this)</tt>
272 276
    Howard& cycle(Path &path) {
273 277
      if (_local_path) {
274 278
        delete _cycle_path;
275 279
        _local_path = false;
276 280
      }
277 281
      _cycle_path = &path;
278 282
      return *this;
279 283
    }
280 284

	
281 285
    /// \brief Set the tolerance used by the algorithm.
282 286
    ///
283 287
    /// This function sets the tolerance object used by the algorithm.
284 288
    ///
285 289
    /// \return <tt>(*this)</tt>
286 290
    Howard& tolerance(const Tolerance& tolerance) {
287 291
      _tolerance = tolerance;
288 292
      return *this;
289 293
    }
290 294

	
291 295
    /// \brief Return a const reference to the tolerance.
292 296
    ///
293 297
    /// This function returns a const reference to the tolerance object
294 298
    /// used by the algorithm.
295 299
    const Tolerance& tolerance() const {
296 300
      return _tolerance;
297 301
    }
298 302

	
299 303
    /// \name Execution control
300 304
    /// The simplest way to execute the algorithm is to call the \ref run()
301 305
    /// function.\n
302 306
    /// If you only need the minimum mean length, you may call
303 307
    /// \ref findMinMean().
304 308

	
305 309
    /// @{
306 310

	
307 311
    /// \brief Run the algorithm.
308 312
    ///
309 313
    /// This function runs the algorithm.
310 314
    /// It can be called more than once (e.g. if the underlying digraph
311 315
    /// and/or the arc lengths have been modified).
312 316
    ///
313 317
    /// \return \c true if a directed cycle exists in the digraph.
314 318
    ///
315 319
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
316 320
    /// \code
317 321
    ///   return mmc.findMinMean() && mmc.findCycle();
318 322
    /// \endcode
319 323
    bool run() {
320 324
      return findMinMean() && findCycle();
321 325
    }
322 326

	
323 327
    /// \brief Find the minimum cycle mean.
324 328
    ///
325 329
    /// This function finds the minimum mean length of the directed
326 330
    /// cycles in the digraph.
327 331
    ///
328 332
    /// \return \c true if a directed cycle exists in the digraph.
329 333
    bool findMinMean() {
330 334
      // Initialize and find strongly connected components
331 335
      init();
332 336
      findComponents();
333 337
      
334 338
      // Find the minimum cycle mean in the components
335 339
      for (int comp = 0; comp < _comp_num; ++comp) {
336 340
        // Find the minimum mean cycle in the current component
337 341
        if (!buildPolicyGraph(comp)) continue;
338 342
        while (true) {
339 343
          findPolicyCycle();
340 344
          if (!computeNodeDistances()) break;
341 345
        }
342 346
        // Update the best cycle (global minimum mean cycle)
343 347
        if ( _curr_found && (!_best_found ||
344 348
             _curr_length * _best_size < _best_length * _curr_size) ) {
345 349
          _best_found = true;
346 350
          _best_length = _curr_length;
347 351
          _best_size = _curr_size;
348 352
          _best_node = _curr_node;
349 353
        }
350 354
      }
351 355
      return _best_found;
352 356
    }
353 357

	
354 358
    /// \brief Find a minimum mean directed cycle.
355 359
    ///
356 360
    /// This function finds a directed cycle of minimum mean length
357 361
    /// in the digraph using the data computed by findMinMean().
358 362
    ///
359 363
    /// \return \c true if a directed cycle exists in the digraph.
360 364
    ///
361 365
    /// \pre \ref findMinMean() must be called before using this function.
362 366
    bool findCycle() {
363 367
      if (!_best_found) return false;
364 368
      _cycle_path->addBack(_policy[_best_node]);
365 369
      for ( Node v = _best_node;
366 370
            (v = _gr.target(_policy[v])) != _best_node; ) {
367 371
        _cycle_path->addBack(_policy[v]);
368 372
      }
369 373
      return true;
370 374
    }
371 375

	
372 376
    /// @}
373 377

	
374 378
    /// \name Query Functions
375 379
    /// The results of the algorithm can be obtained using these
376 380
    /// functions.\n
377 381
    /// The algorithm should be executed before using them.
378 382

	
379 383
    /// @{
380 384

	
381 385
    /// \brief Return the total length of the found cycle.
382 386
    ///
383 387
    /// This function returns the total length of the found cycle.
384 388
    ///
385 389
    /// \pre \ref run() or \ref findMinMean() must be called before
386 390
    /// using this function.
387 391
    Value cycleLength() const {
388 392
      return static_cast<Value>(_best_length);
389 393
    }
390 394

	
391 395
    /// \brief Return the number of arcs on the found cycle.
392 396
    ///
393 397
    /// This function returns the number of arcs on the found cycle.
394 398
    ///
395 399
    /// \pre \ref run() or \ref findMinMean() must be called before
396 400
    /// using this function.
397 401
    int cycleArcNum() const {
398 402
      return _best_size;
399 403
    }
400 404

	
401 405
    /// \brief Return the mean length of the found cycle.
402 406
    ///
403 407
    /// This function returns the mean length of the found cycle.
404 408
    ///
405 409
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
406 410
    /// following code.
407 411
    /// \code
408 412
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
409 413
    /// \endcode
410 414
    ///
411 415
    /// \pre \ref run() or \ref findMinMean() must be called before
412 416
    /// using this function.
413 417
    double cycleMean() const {
414 418
      return static_cast<double>(_best_length) / _best_size;
415 419
    }
416 420

	
417 421
    /// \brief Return the found cycle.
418 422
    ///
419 423
    /// This function returns a const reference to the path structure
420 424
    /// storing the found cycle.
421 425
    ///
422 426
    /// \pre \ref run() or \ref findCycle() must be called before using
423 427
    /// this function.
424 428
    const Path& cycle() const {
425 429
      return *_cycle_path;
426 430
    }
427 431

	
428 432
    ///@}
429 433

	
430 434
  private:
431 435

	
432 436
    // Initialize
433 437
    void init() {
434 438
      if (!_cycle_path) {
435 439
        _local_path = true;
436 440
        _cycle_path = new Path;
437 441
      }
438 442
      _queue.resize(countNodes(_gr));
439 443
      _best_found = false;
440 444
      _best_length = 0;
441 445
      _best_size = 1;
442 446
      _cycle_path->clear();
443 447
    }
444 448
    
445 449
    // Find strongly connected components and initialize _comp_nodes
446 450
    // and _in_arcs
447 451
    void findComponents() {
448 452
      _comp_num = stronglyConnectedComponents(_gr, _comp);
449 453
      _comp_nodes.resize(_comp_num);
450 454
      if (_comp_num == 1) {
451 455
        _comp_nodes[0].clear();
452 456
        for (NodeIt n(_gr); n != INVALID; ++n) {
453 457
          _comp_nodes[0].push_back(n);
454 458
          _in_arcs[n].clear();
455 459
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
456 460
            _in_arcs[n].push_back(a);
457 461
          }
458 462
        }
459 463
      } else {
460 464
        for (int i = 0; i < _comp_num; ++i)
461 465
          _comp_nodes[i].clear();
462 466
        for (NodeIt n(_gr); n != INVALID; ++n) {
463 467
          int k = _comp[n];
464 468
          _comp_nodes[k].push_back(n);
465 469
          _in_arcs[n].clear();
466 470
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
467 471
            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
468 472
          }
469 473
        }
470 474
      }
471 475
    }
472 476

	
473 477
    // Build the policy graph in the given strongly connected component
474 478
    // (the out-degree of every node is 1)
475 479
    bool buildPolicyGraph(int comp) {
476 480
      _nodes = &(_comp_nodes[comp]);
477 481
      if (_nodes->size() < 1 ||
478 482
          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
479 483
        return false;
480 484
      }
481 485
      for (int i = 0; i < int(_nodes->size()); ++i) {
482 486
        _dist[(*_nodes)[i]] = INF;
483 487
      }
484 488
      Node u, v;
485 489
      Arc e;
486 490
      for (int i = 0; i < int(_nodes->size()); ++i) {
487 491
        v = (*_nodes)[i];
488 492
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
489 493
          e = _in_arcs[v][j];
490 494
          u = _gr.source(e);
491 495
          if (_length[e] < _dist[u]) {
492 496
            _dist[u] = _length[e];
493 497
            _policy[u] = e;
494 498
          }
495 499
        }
496 500
      }
497 501
      return true;
498 502
    }
499 503

	
500 504
    // Find the minimum mean cycle in the policy graph
501 505
    void findPolicyCycle() {
502 506
      for (int i = 0; i < int(_nodes->size()); ++i) {
503 507
        _level[(*_nodes)[i]] = -1;
504 508
      }
505 509
      LargeValue clength;
506 510
      int csize;
507 511
      Node u, v;
508 512
      _curr_found = false;
509 513
      for (int i = 0; i < int(_nodes->size()); ++i) {
510 514
        u = (*_nodes)[i];
511 515
        if (_level[u] >= 0) continue;
512 516
        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
513 517
          _level[u] = i;
514 518
        }
515 519
        if (_level[u] == i) {
516 520
          // A cycle is found
517 521
          clength = _length[_policy[u]];
518 522
          csize = 1;
519 523
          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
520 524
            clength += _length[_policy[v]];
521 525
            ++csize;
522 526
          }
523 527
          if ( !_curr_found ||
524 528
               (clength * _curr_size < _curr_length * csize) ) {
525 529
            _curr_found = true;
526 530
            _curr_length = clength;
527 531
            _curr_size = csize;
528 532
            _curr_node = u;
529 533
          }
530 534
        }
531 535
      }
532 536
    }
533 537

	
534 538
    // Contract the policy graph and compute node distances
535 539
    bool computeNodeDistances() {
536 540
      // Find the component of the main cycle and compute node distances
537 541
      // using reverse BFS
538 542
      for (int i = 0; i < int(_nodes->size()); ++i) {
539 543
        _reached[(*_nodes)[i]] = false;
540 544
      }
541 545
      _qfront = _qback = 0;
542 546
      _queue[0] = _curr_node;
543 547
      _reached[_curr_node] = true;
544 548
      _dist[_curr_node] = 0;
545 549
      Node u, v;
546 550
      Arc e;
547 551
      while (_qfront <= _qback) {
548 552
        v = _queue[_qfront++];
549 553
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
550 554
          e = _in_arcs[v][j];
551 555
          u = _gr.source(e);
552 556
          if (_policy[u] == e && !_reached[u]) {
553 557
            _reached[u] = true;
554 558
            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
555 559
            _queue[++_qback] = u;
556 560
          }
557 561
        }
558 562
      }
559 563

	
560 564
      // Connect all other nodes to this component and compute node
561 565
      // distances using reverse BFS
562 566
      _qfront = 0;
563 567
      while (_qback < int(_nodes->size())-1) {
564 568
        v = _queue[_qfront++];
565 569
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
566 570
          e = _in_arcs[v][j];
567 571
          u = _gr.source(e);
568 572
          if (!_reached[u]) {
569 573
            _reached[u] = true;
570 574
            _policy[u] = e;
571 575
            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
572 576
            _queue[++_qback] = u;
573 577
          }
574 578
        }
575 579
      }
576 580

	
577 581
      // Improve node distances
578 582
      bool improved = false;
579 583
      for (int i = 0; i < int(_nodes->size()); ++i) {
580 584
        v = (*_nodes)[i];
581 585
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
582 586
          e = _in_arcs[v][j];
583 587
          u = _gr.source(e);
584 588
          LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
585 589
          if (_tolerance.less(delta, _dist[u])) {
586 590
            _dist[u] = delta;
587 591
            _policy[u] = e;
588 592
            improved = true;
589 593
          }
590 594
        }
591 595
      }
592 596
      return improved;
593 597
    }
594 598

	
595 599
  }; //class Howard
596 600

	
597 601
  ///@}
598 602

	
599 603
} //namespace lemon
600 604

	
601 605
#endif //LEMON_HOWARD_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_KARP_H
20 20
#define LEMON_KARP_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Karp's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of Karp algorithm.
37 37
  ///
38 38
  /// Default traits class of Karp algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct KarpDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addFront() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct KarpDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Karp's algorithm for finding a directed
100 100
  /// cycle of minimum mean length (cost) in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
103 103
  ///
104 104
  /// \tparam GR The type of the digraph the algorithm runs on.
105 105
  /// \tparam LEN The type of the length map. The default
106 106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
107 107
  /// \tparam TR The traits class that defines various types used by the
108 108
  /// algorithm. By default, it is \ref KarpDefaultTraits
109 109
  /// "KarpDefaultTraits<GR, LEN>".
110 110
  /// In most cases, this parameter should not be set directly,
111 111
  /// consider to use the named template parameters instead.
112 112
#ifdef DOXYGEN
113 113
  template <typename GR, typename LEN, typename TR>
114 114
#else
115 115
  template < typename GR,
116 116
             typename LEN = typename GR::template ArcMap<int>,
117 117
             typename TR = KarpDefaultTraits<GR, LEN> >
118 118
#endif
119 119
  class Karp
120 120
  {
121 121
  public:
122 122

	
123 123
    /// The type of the digraph
124 124
    typedef typename TR::Digraph Digraph;
125 125
    /// The type of the length map
126 126
    typedef typename TR::LengthMap LengthMap;
127 127
    /// The type of the arc lengths
128 128
    typedef typename TR::Value Value;
129 129

	
130 130
    /// \brief The large value type
131 131
    ///
132 132
    /// The large value type used for internal computations.
133 133
    /// By default, it is \c long \c long if the \c Value type is integer,
134 134
    /// otherwise it is \c double.
135 135
    typedef typename TR::LargeValue LargeValue;
136 136

	
137 137
    /// The tolerance type
138 138
    typedef typename TR::Tolerance Tolerance;
139 139

	
140 140
    /// \brief The path type of the found cycles
141 141
    ///
142 142
    /// The path type of the found cycles.
143 143
    /// Using the \ref KarpDefaultTraits "default traits class",
144 144
    /// it is \ref lemon::Path "Path<Digraph>".
145 145
    typedef typename TR::Path Path;
146 146

	
147 147
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
148 148
    typedef TR Traits;
149 149

	
150 150
  private:
151 151

	
152 152
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
153 153

	
154 154
    // Data sturcture for path data
155 155
    struct PathData
156 156
    {
157 157
      LargeValue dist;
158 158
      Arc pred;
159 159
      PathData(LargeValue d, Arc p = INVALID) :
160 160
        dist(d), pred(p) {}
161 161
    };
162 162

	
163 163
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
164 164
      PathDataNodeMap;
165 165

	
166 166
  private:
167 167

	
168 168
    // The digraph the algorithm runs on
169 169
    const Digraph &_gr;
170 170
    // The length of the arcs
171 171
    const LengthMap &_length;
172 172

	
173 173
    // Data for storing the strongly connected components
174 174
    int _comp_num;
175 175
    typename Digraph::template NodeMap<int> _comp;
176 176
    std::vector<std::vector<Node> > _comp_nodes;
177 177
    std::vector<Node>* _nodes;
178 178
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
179 179

	
180 180
    // Data for the found cycle
181 181
    LargeValue _cycle_length;
182 182
    int _cycle_size;
183 183
    Node _cycle_node;
184 184

	
185 185
    Path *_cycle_path;
186 186
    bool _local_path;
187 187

	
188 188
    // Node map for storing path data
189 189
    PathDataNodeMap _data;
190 190
    // The processed nodes in the last round
191 191
    std::vector<Node> _process;
192 192

	
193 193
    Tolerance _tolerance;
194 194
    
195 195
    // Infinite constant
196 196
    const LargeValue INF;
197 197

	
198 198
  public:
199 199

	
200 200
    /// \name Named Template Parameters
201 201
    /// @{
202 202

	
203 203
    template <typename T>
204 204
    struct SetLargeValueTraits : public Traits {
205 205
      typedef T LargeValue;
206 206
      typedef lemon::Tolerance<T> Tolerance;
207 207
    };
208 208

	
209 209
    /// \brief \ref named-templ-param "Named parameter" for setting
210 210
    /// \c LargeValue type.
211 211
    ///
212 212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
213 213
    /// type. It is used for internal computations in the algorithm.
214 214
    template <typename T>
215 215
    struct SetLargeValue
216 216
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
217 217
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
218 218
    };
219 219

	
220 220
    template <typename T>
221 221
    struct SetPathTraits : public Traits {
222 222
      typedef T Path;
223 223
    };
224 224

	
225 225
    /// \brief \ref named-templ-param "Named parameter" for setting
226 226
    /// \c %Path type.
227 227
    ///
228 228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
229 229
    /// type of the found cycles.
230 230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
231 231
    /// and it must have an \c addFront() function.
232 232
    template <typename T>
233 233
    struct SetPath
234 234
      : public Karp<GR, LEN, SetPathTraits<T> > {
235 235
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
236 236
    };
237 237

	
238 238
    /// @}
239 239

	
240
  protected:
241

	
242
    Karp() {}
243

	
240 244
  public:
241 245

	
242 246
    /// \brief Constructor.
243 247
    ///
244 248
    /// The constructor of the class.
245 249
    ///
246 250
    /// \param digraph The digraph the algorithm runs on.
247 251
    /// \param length The lengths (costs) of the arcs.
248 252
    Karp( const Digraph &digraph,
249 253
          const LengthMap &length ) :
250 254
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
251 255
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
252 256
      _cycle_path(NULL), _local_path(false), _data(digraph),
253 257
      INF(std::numeric_limits<LargeValue>::has_infinity ?
254 258
          std::numeric_limits<LargeValue>::infinity() :
255 259
          std::numeric_limits<LargeValue>::max())
256 260
    {}
257 261

	
258 262
    /// Destructor.
259 263
    ~Karp() {
260 264
      if (_local_path) delete _cycle_path;
261 265
    }
262 266

	
263 267
    /// \brief Set the path structure for storing the found cycle.
264 268
    ///
265 269
    /// This function sets an external path structure for storing the
266 270
    /// found cycle.
267 271
    ///
268 272
    /// If you don't call this function before calling \ref run() or
269 273
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
270 274
    /// structure. The destuctor deallocates this automatically
271 275
    /// allocated object, of course.
272 276
    ///
273 277
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
274 278
    /// "addFront()" function of the given path structure.
275 279
    ///
276 280
    /// \return <tt>(*this)</tt>
277 281
    Karp& cycle(Path &path) {
278 282
      if (_local_path) {
279 283
        delete _cycle_path;
280 284
        _local_path = false;
281 285
      }
282 286
      _cycle_path = &path;
283 287
      return *this;
284 288
    }
285 289

	
286 290
    /// \brief Set the tolerance used by the algorithm.
287 291
    ///
288 292
    /// This function sets the tolerance object used by the algorithm.
289 293
    ///
290 294
    /// \return <tt>(*this)</tt>
291 295
    Karp& tolerance(const Tolerance& tolerance) {
292 296
      _tolerance = tolerance;
293 297
      return *this;
294 298
    }
295 299

	
296 300
    /// \brief Return a const reference to the tolerance.
297 301
    ///
298 302
    /// This function returns a const reference to the tolerance object
299 303
    /// used by the algorithm.
300 304
    const Tolerance& tolerance() const {
301 305
      return _tolerance;
302 306
    }
303 307

	
304 308
    /// \name Execution control
305 309
    /// The simplest way to execute the algorithm is to call the \ref run()
306 310
    /// function.\n
307 311
    /// If you only need the minimum mean length, you may call
308 312
    /// \ref findMinMean().
309 313

	
310 314
    /// @{
311 315

	
312 316
    /// \brief Run the algorithm.
313 317
    ///
314 318
    /// This function runs the algorithm.
315 319
    /// It can be called more than once (e.g. if the underlying digraph
316 320
    /// and/or the arc lengths have been modified).
317 321
    ///
318 322
    /// \return \c true if a directed cycle exists in the digraph.
319 323
    ///
320 324
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
321 325
    /// \code
322 326
    ///   return mmc.findMinMean() && mmc.findCycle();
323 327
    /// \endcode
324 328
    bool run() {
325 329
      return findMinMean() && findCycle();
326 330
    }
327 331

	
328 332
    /// \brief Find the minimum cycle mean.
329 333
    ///
330 334
    /// This function finds the minimum mean length of the directed
331 335
    /// cycles in the digraph.
332 336
    ///
333 337
    /// \return \c true if a directed cycle exists in the digraph.
334 338
    bool findMinMean() {
335 339
      // Initialization and find strongly connected components
336 340
      init();
337 341
      findComponents();
338 342
      
339 343
      // Find the minimum cycle mean in the components
340 344
      for (int comp = 0; comp < _comp_num; ++comp) {
341 345
        if (!initComponent(comp)) continue;
342 346
        processRounds();
343 347
        updateMinMean();
344 348
      }
345 349
      return (_cycle_node != INVALID);
346 350
    }
347 351

	
348 352
    /// \brief Find a minimum mean directed cycle.
349 353
    ///
350 354
    /// This function finds a directed cycle of minimum mean length
351 355
    /// in the digraph using the data computed by findMinMean().
352 356
    ///
353 357
    /// \return \c true if a directed cycle exists in the digraph.
354 358
    ///
355 359
    /// \pre \ref findMinMean() must be called before using this function.
356 360
    bool findCycle() {
357 361
      if (_cycle_node == INVALID) return false;
358 362
      IntNodeMap reached(_gr, -1);
359 363
      int r = _data[_cycle_node].size();
360 364
      Node u = _cycle_node;
361 365
      while (reached[u] < 0) {
362 366
        reached[u] = --r;
363 367
        u = _gr.source(_data[u][r].pred);
364 368
      }
365 369
      r = reached[u];
366 370
      Arc e = _data[u][r].pred;
367 371
      _cycle_path->addFront(e);
368 372
      _cycle_length = _length[e];
369 373
      _cycle_size = 1;
370 374
      Node v;
371 375
      while ((v = _gr.source(e)) != u) {
372 376
        e = _data[v][--r].pred;
373 377
        _cycle_path->addFront(e);
374 378
        _cycle_length += _length[e];
375 379
        ++_cycle_size;
376 380
      }
377 381
      return true;
378 382
    }
379 383

	
380 384
    /// @}
381 385

	
382 386
    /// \name Query Functions
383 387
    /// The results of the algorithm can be obtained using these
384 388
    /// functions.\n
385 389
    /// The algorithm should be executed before using them.
386 390

	
387 391
    /// @{
388 392

	
389 393
    /// \brief Return the total length of the found cycle.
390 394
    ///
391 395
    /// This function returns the total length of the found cycle.
392 396
    ///
393 397
    /// \pre \ref run() or \ref findMinMean() must be called before
394 398
    /// using this function.
395 399
    Value cycleLength() const {
396 400
      return static_cast<Value>(_cycle_length);
397 401
    }
398 402

	
399 403
    /// \brief Return the number of arcs on the found cycle.
400 404
    ///
401 405
    /// This function returns the number of arcs on the found cycle.
402 406
    ///
403 407
    /// \pre \ref run() or \ref findMinMean() must be called before
404 408
    /// using this function.
405 409
    int cycleArcNum() const {
406 410
      return _cycle_size;
407 411
    }
408 412

	
409 413
    /// \brief Return the mean length of the found cycle.
410 414
    ///
411 415
    /// This function returns the mean length of the found cycle.
412 416
    ///
413 417
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
414 418
    /// following code.
415 419
    /// \code
416 420
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
417 421
    /// \endcode
418 422
    ///
419 423
    /// \pre \ref run() or \ref findMinMean() must be called before
420 424
    /// using this function.
421 425
    double cycleMean() const {
422 426
      return static_cast<double>(_cycle_length) / _cycle_size;
423 427
    }
424 428

	
425 429
    /// \brief Return the found cycle.
426 430
    ///
427 431
    /// This function returns a const reference to the path structure
428 432
    /// storing the found cycle.
429 433
    ///
430 434
    /// \pre \ref run() or \ref findCycle() must be called before using
431 435
    /// this function.
432 436
    const Path& cycle() const {
433 437
      return *_cycle_path;
434 438
    }
435 439

	
436 440
    ///@}
437 441

	
438 442
  private:
439 443

	
440 444
    // Initialization
441 445
    void init() {
442 446
      if (!_cycle_path) {
443 447
        _local_path = true;
444 448
        _cycle_path = new Path;
445 449
      }
446 450
      _cycle_path->clear();
447 451
      _cycle_length = 0;
448 452
      _cycle_size = 1;
449 453
      _cycle_node = INVALID;
450 454
      for (NodeIt u(_gr); u != INVALID; ++u)
451 455
        _data[u].clear();
452 456
    }
453 457

	
454 458
    // Find strongly connected components and initialize _comp_nodes
455 459
    // and _out_arcs
456 460
    void findComponents() {
457 461
      _comp_num = stronglyConnectedComponents(_gr, _comp);
458 462
      _comp_nodes.resize(_comp_num);
459 463
      if (_comp_num == 1) {
460 464
        _comp_nodes[0].clear();
461 465
        for (NodeIt n(_gr); n != INVALID; ++n) {
462 466
          _comp_nodes[0].push_back(n);
463 467
          _out_arcs[n].clear();
464 468
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
465 469
            _out_arcs[n].push_back(a);
466 470
          }
467 471
        }
468 472
      } else {
469 473
        for (int i = 0; i < _comp_num; ++i)
470 474
          _comp_nodes[i].clear();
471 475
        for (NodeIt n(_gr); n != INVALID; ++n) {
472 476
          int k = _comp[n];
473 477
          _comp_nodes[k].push_back(n);
474 478
          _out_arcs[n].clear();
475 479
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
476 480
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
477 481
          }
478 482
        }
479 483
      }
480 484
    }
481 485

	
482 486
    // Initialize path data for the current component
483 487
    bool initComponent(int comp) {
484 488
      _nodes = &(_comp_nodes[comp]);
485 489
      int n = _nodes->size();
486 490
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
487 491
        return false;
488 492
      }      
489 493
      for (int i = 0; i < n; ++i) {
490 494
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
491 495
      }
492 496
      return true;
493 497
    }
494 498

	
495 499
    // Process all rounds of computing path data for the current component.
496 500
    // _data[v][k] is the length of a shortest directed walk from the root
497 501
    // node to node v containing exactly k arcs.
498 502
    void processRounds() {
499 503
      Node start = (*_nodes)[0];
500 504
      _data[start][0] = PathData(0);
501 505
      _process.clear();
502 506
      _process.push_back(start);
503 507

	
504 508
      int k, n = _nodes->size();
505 509
      for (k = 1; k <= n && int(_process.size()) < n; ++k) {
506 510
        processNextBuildRound(k);
507 511
      }
508 512
      for ( ; k <= n; ++k) {
509 513
        processNextFullRound(k);
510 514
      }
511 515
    }
512 516

	
513 517
    // Process one round and rebuild _process
514 518
    void processNextBuildRound(int k) {
515 519
      std::vector<Node> next;
516 520
      Node u, v;
517 521
      Arc e;
518 522
      LargeValue d;
519 523
      for (int i = 0; i < int(_process.size()); ++i) {
520 524
        u = _process[i];
521 525
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
522 526
          e = _out_arcs[u][j];
523 527
          v = _gr.target(e);
524 528
          d = _data[u][k-1].dist + _length[e];
525 529
          if (_tolerance.less(d, _data[v][k].dist)) {
526 530
            if (_data[v][k].dist == INF) next.push_back(v);
527 531
            _data[v][k] = PathData(d, e);
528 532
          }
529 533
        }
530 534
      }
531 535
      _process.swap(next);
532 536
    }
533 537

	
534 538
    // Process one round using _nodes instead of _process
535 539
    void processNextFullRound(int k) {
536 540
      Node u, v;
537 541
      Arc e;
538 542
      LargeValue d;
539 543
      for (int i = 0; i < int(_nodes->size()); ++i) {
540 544
        u = (*_nodes)[i];
541 545
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
542 546
          e = _out_arcs[u][j];
543 547
          v = _gr.target(e);
544 548
          d = _data[u][k-1].dist + _length[e];
545 549
          if (_tolerance.less(d, _data[v][k].dist)) {
546 550
            _data[v][k] = PathData(d, e);
547 551
          }
548 552
        }
549 553
      }
550 554
    }
551 555

	
552 556
    // Update the minimum cycle mean
553 557
    void updateMinMean() {
554 558
      int n = _nodes->size();
555 559
      for (int i = 0; i < n; ++i) {
556 560
        Node u = (*_nodes)[i];
557 561
        if (_data[u][n].dist == INF) continue;
558 562
        LargeValue length, max_length = 0;
559 563
        int size, max_size = 1;
560 564
        bool found_curr = false;
561 565
        for (int k = 0; k < n; ++k) {
562 566
          if (_data[u][k].dist == INF) continue;
563 567
          length = _data[u][n].dist - _data[u][k].dist;
564 568
          size = n - k;
565 569
          if (!found_curr || length * max_size > max_length * size) {
566 570
            found_curr = true;
567 571
            max_length = length;
568 572
            max_size = size;
569 573
          }
570 574
        }
571 575
        if ( found_curr && (_cycle_node == INVALID ||
572 576
             max_length * _cycle_size < _cycle_length * max_size) ) {
573 577
          _cycle_length = max_length;
574 578
          _cycle_size = max_size;
575 579
          _cycle_node = u;
576 580
        }
577 581
      }
578 582
    }
579 583

	
580 584
  }; //class Karp
581 585

	
582 586
  ///@}
583 587

	
584 588
} //namespace lemon
585 589

	
586 590
#endif //LEMON_KARP_H
Ignore white space 6 line context
... ...
@@ -22,751 +22,755 @@
22 22
///\ingroup shortest_path
23 23
///\file
24 24
///\brief An algorithm for finding arc-disjoint paths between two
25 25
/// nodes having minimum total length.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/bin_heap.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/list_graph.h>
32 32
#include <lemon/dijkstra.h>
33 33
#include <lemon/maps.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Default traits class of Suurballe algorithm.
38 38
  ///
39 39
  /// Default traits class of Suurballe algorithm.
40 40
  /// \tparam GR The digraph type the algorithm runs on.
41 41
  /// \tparam LEN The type of the length map.
42 42
  /// The default value is <tt>GR::ArcMap<int></tt>.
43 43
#ifdef DOXYGEN
44 44
  template <typename GR, typename LEN>
45 45
#else
46 46
  template < typename GR,
47 47
             typename LEN = typename GR::template ArcMap<int> >
48 48
#endif
49 49
  struct SuurballeDefaultTraits
50 50
  {
51 51
    /// The type of the digraph.
52 52
    typedef GR Digraph;
53 53
    /// The type of the length map.
54 54
    typedef LEN LengthMap;
55 55
    /// The type of the lengths.
56 56
    typedef typename LEN::Value Length;
57 57
    /// The type of the flow map.
58 58
    typedef typename GR::template ArcMap<int> FlowMap;
59 59
    /// The type of the potential map.
60 60
    typedef typename GR::template NodeMap<Length> PotentialMap;
61 61

	
62 62
    /// \brief The path type
63 63
    ///
64 64
    /// The type used for storing the found arc-disjoint paths.
65 65
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
66 66
    /// and it must have an \c addBack() function.
67 67
    typedef lemon::Path<Digraph> Path;
68 68
    
69 69
    /// The cross reference type used for the heap.
70 70
    typedef typename GR::template NodeMap<int> HeapCrossRef;
71 71

	
72 72
    /// \brief The heap type used for internal Dijkstra computations.
73 73
    ///
74 74
    /// The type of the heap used for internal Dijkstra computations.
75 75
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept
76 76
    /// and its priority type must be \c Length.
77 77
    typedef BinHeap<Length, HeapCrossRef> Heap;
78 78
  };
79 79

	
80 80
  /// \addtogroup shortest_path
81 81
  /// @{
82 82

	
83 83
  /// \brief Algorithm for finding arc-disjoint paths between two nodes
84 84
  /// having minimum total length.
85 85
  ///
86 86
  /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
87 87
  /// finding arc-disjoint paths having minimum total length (cost)
88 88
  /// from a given source node to a given target node in a digraph.
89 89
  ///
90 90
  /// Note that this problem is a special case of the \ref min_cost_flow
91 91
  /// "minimum cost flow problem". This implementation is actually an
92 92
  /// efficient specialized version of the \ref CapacityScaling
93 93
  /// "successive shortest path" algorithm directly for this problem.
94 94
  /// Therefore this class provides query functions for flow values and
95 95
  /// node potentials (the dual solution) just like the minimum cost flow
96 96
  /// algorithms.
97 97
  ///
98 98
  /// \tparam GR The digraph type the algorithm runs on.
99 99
  /// \tparam LEN The type of the length map.
100 100
  /// The default value is <tt>GR::ArcMap<int></tt>.
101 101
  ///
102 102
  /// \warning Length values should be \e non-negative.
103 103
  ///
104 104
  /// \note For finding \e node-disjoint paths, this algorithm can be used
105 105
  /// along with the \ref SplitNodes adaptor.
106 106
#ifdef DOXYGEN
107 107
  template <typename GR, typename LEN, typename TR>
108 108
#else
109 109
  template < typename GR,
110 110
             typename LEN = typename GR::template ArcMap<int>,
111 111
             typename TR = SuurballeDefaultTraits<GR, LEN> >
112 112
#endif
113 113
  class Suurballe
114 114
  {
115 115
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
116 116

	
117 117
    typedef ConstMap<Arc, int> ConstArcMap;
118 118
    typedef typename GR::template NodeMap<Arc> PredMap;
119 119

	
120 120
  public:
121 121

	
122 122
    /// The type of the digraph.
123 123
    typedef typename TR::Digraph Digraph;
124 124
    /// The type of the length map.
125 125
    typedef typename TR::LengthMap LengthMap;
126 126
    /// The type of the lengths.
127 127
    typedef typename TR::Length Length;
128 128

	
129 129
    /// The type of the flow map.
130 130
    typedef typename TR::FlowMap FlowMap;
131 131
    /// The type of the potential map.
132 132
    typedef typename TR::PotentialMap PotentialMap;
133 133
    /// The type of the path structures.
134 134
    typedef typename TR::Path Path;
135 135
    /// The cross reference type used for the heap.
136 136
    typedef typename TR::HeapCrossRef HeapCrossRef;
137 137
    /// The heap type used for internal Dijkstra computations.
138 138
    typedef typename TR::Heap Heap;
139 139

	
140 140
    /// The \ref SuurballeDefaultTraits "traits class" of the algorithm.
141 141
    typedef TR Traits;
142 142

	
143 143
  private:
144 144

	
145 145
    // ResidualDijkstra is a special implementation of the
146 146
    // Dijkstra algorithm for finding shortest paths in the
147 147
    // residual network with respect to the reduced arc lengths
148 148
    // and modifying the node potentials according to the
149 149
    // distance of the nodes.
150 150
    class ResidualDijkstra
151 151
    {
152 152
    private:
153 153

	
154 154
      const Digraph &_graph;
155 155
      const LengthMap &_length;
156 156
      const FlowMap &_flow;
157 157
      PotentialMap &_pi;
158 158
      PredMap &_pred;
159 159
      Node _s;
160 160
      Node _t;
161 161
      
162 162
      PotentialMap _dist;
163 163
      std::vector<Node> _proc_nodes;
164 164

	
165 165
    public:
166 166

	
167 167
      // Constructor
168 168
      ResidualDijkstra(Suurballe &srb) :
169 169
        _graph(srb._graph), _length(srb._length),
170 170
        _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), 
171 171
        _s(srb._s), _t(srb._t), _dist(_graph) {}
172 172
        
173 173
      // Run the algorithm and return true if a path is found
174 174
      // from the source node to the target node.
175 175
      bool run(int cnt) {
176 176
        return cnt == 0 ? startFirst() : start();
177 177
      }
178 178

	
179 179
    private:
180 180
    
181 181
      // Execute the algorithm for the first time (the flow and potential
182 182
      // functions have to be identically zero).
183 183
      bool startFirst() {
184 184
        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
185 185
        Heap heap(heap_cross_ref);
186 186
        heap.push(_s, 0);
187 187
        _pred[_s] = INVALID;
188 188
        _proc_nodes.clear();
189 189

	
190 190
        // Process nodes
191 191
        while (!heap.empty() && heap.top() != _t) {
192 192
          Node u = heap.top(), v;
193 193
          Length d = heap.prio(), dn;
194 194
          _dist[u] = heap.prio();
195 195
          _proc_nodes.push_back(u);
196 196
          heap.pop();
197 197

	
198 198
          // Traverse outgoing arcs
199 199
          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
200 200
            v = _graph.target(e);
201 201
            switch(heap.state(v)) {
202 202
              case Heap::PRE_HEAP:
203 203
                heap.push(v, d + _length[e]);
204 204
                _pred[v] = e;
205 205
                break;
206 206
              case Heap::IN_HEAP:
207 207
                dn = d + _length[e];
208 208
                if (dn < heap[v]) {
209 209
                  heap.decrease(v, dn);
210 210
                  _pred[v] = e;
211 211
                }
212 212
                break;
213 213
              case Heap::POST_HEAP:
214 214
                break;
215 215
            }
216 216
          }
217 217
        }
218 218
        if (heap.empty()) return false;
219 219

	
220 220
        // Update potentials of processed nodes
221 221
        Length t_dist = heap.prio();
222 222
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
223 223
          _pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
224 224
        return true;
225 225
      }
226 226

	
227 227
      // Execute the algorithm.
228 228
      bool start() {
229 229
        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
230 230
        Heap heap(heap_cross_ref);
231 231
        heap.push(_s, 0);
232 232
        _pred[_s] = INVALID;
233 233
        _proc_nodes.clear();
234 234

	
235 235
        // Process nodes
236 236
        while (!heap.empty() && heap.top() != _t) {
237 237
          Node u = heap.top(), v;
238 238
          Length d = heap.prio() + _pi[u], dn;
239 239
          _dist[u] = heap.prio();
240 240
          _proc_nodes.push_back(u);
241 241
          heap.pop();
242 242

	
243 243
          // Traverse outgoing arcs
244 244
          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
245 245
            if (_flow[e] == 0) {
246 246
              v = _graph.target(e);
247 247
              switch(heap.state(v)) {
248 248
                case Heap::PRE_HEAP:
249 249
                  heap.push(v, d + _length[e] - _pi[v]);
250 250
                  _pred[v] = e;
251 251
                  break;
252 252
                case Heap::IN_HEAP:
253 253
                  dn = d + _length[e] - _pi[v];
254 254
                  if (dn < heap[v]) {
255 255
                    heap.decrease(v, dn);
256 256
                    _pred[v] = e;
257 257
                  }
258 258
                  break;
259 259
                case Heap::POST_HEAP:
260 260
                  break;
261 261
              }
262 262
            }
263 263
          }
264 264

	
265 265
          // Traverse incoming arcs
266 266
          for (InArcIt e(_graph, u); e != INVALID; ++e) {
267 267
            if (_flow[e] == 1) {
268 268
              v = _graph.source(e);
269 269
              switch(heap.state(v)) {
270 270
                case Heap::PRE_HEAP:
271 271
                  heap.push(v, d - _length[e] - _pi[v]);
272 272
                  _pred[v] = e;
273 273
                  break;
274 274
                case Heap::IN_HEAP:
275 275
                  dn = d - _length[e] - _pi[v];
276 276
                  if (dn < heap[v]) {
277 277
                    heap.decrease(v, dn);
278 278
                    _pred[v] = e;
279 279
                  }
280 280
                  break;
281 281
                case Heap::POST_HEAP:
282 282
                  break;
283 283
              }
284 284
            }
285 285
          }
286 286
        }
287 287
        if (heap.empty()) return false;
288 288

	
289 289
        // Update potentials of processed nodes
290 290
        Length t_dist = heap.prio();
291 291
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
292 292
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
293 293
        return true;
294 294
      }
295 295

	
296 296
    }; //class ResidualDijkstra
297 297

	
298 298
  public:
299 299

	
300 300
    /// \name Named Template Parameters
301 301
    /// @{
302 302

	
303 303
    template <typename T>
304 304
    struct SetFlowMapTraits : public Traits {
305 305
      typedef T FlowMap;
306 306
    };
307 307

	
308 308
    /// \brief \ref named-templ-param "Named parameter" for setting
309 309
    /// \c FlowMap type.
310 310
    ///
311 311
    /// \ref named-templ-param "Named parameter" for setting
312 312
    /// \c FlowMap type.
313 313
    template <typename T>
314 314
    struct SetFlowMap
315 315
      : public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
316 316
      typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
317 317
    };
318 318

	
319 319
    template <typename T>
320 320
    struct SetPotentialMapTraits : public Traits {
321 321
      typedef T PotentialMap;
322 322
    };
323 323

	
324 324
    /// \brief \ref named-templ-param "Named parameter" for setting
325 325
    /// \c PotentialMap type.
326 326
    ///
327 327
    /// \ref named-templ-param "Named parameter" for setting
328 328
    /// \c PotentialMap type.
329 329
    template <typename T>
330 330
    struct SetPotentialMap
331 331
      : public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
332 332
      typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
333 333
    };
334 334

	
335 335
    template <typename T>
336 336
    struct SetPathTraits : public Traits {
337 337
      typedef T Path;
338 338
    };
339 339

	
340 340
    /// \brief \ref named-templ-param "Named parameter" for setting
341 341
    /// \c %Path type.
342 342
    ///
343 343
    /// \ref named-templ-param "Named parameter" for setting \c %Path type.
344 344
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
345 345
    /// and it must have an \c addBack() function.
346 346
    template <typename T>
347 347
    struct SetPath
348 348
      : public Suurballe<GR, LEN, SetPathTraits<T> > {
349 349
      typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
350 350
    };
351 351
    
352 352
    template <typename H, typename CR>
353 353
    struct SetHeapTraits : public Traits {
354 354
      typedef H Heap;
355 355
      typedef CR HeapCrossRef;
356 356
    };
357 357

	
358 358
    /// \brief \ref named-templ-param "Named parameter" for setting
359 359
    /// \c Heap and \c HeapCrossRef types.
360 360
    ///
361 361
    /// \ref named-templ-param "Named parameter" for setting \c Heap
362 362
    /// and \c HeapCrossRef types with automatic allocation. 
363 363
    /// They will be used for internal Dijkstra computations.
364 364
    /// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
365 365
    /// concept and its priority type must be \c Length.
366 366
    template <typename H,
367 367
              typename CR = typename Digraph::template NodeMap<int> >
368 368
    struct SetHeap
369 369
      : public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
370 370
      typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
371 371
    };
372 372

	
373 373
    /// @}
374 374

	
375 375
  private:
376 376

	
377 377
    // The digraph the algorithm runs on
378 378
    const Digraph &_graph;
379 379
    // The length map
380 380
    const LengthMap &_length;
381 381

	
382 382
    // Arc map of the current flow
383 383
    FlowMap *_flow;
384 384
    bool _local_flow;
385 385
    // Node map of the current potentials
386 386
    PotentialMap *_potential;
387 387
    bool _local_potential;
388 388

	
389 389
    // The source node
390 390
    Node _s;
391 391
    // The target node
392 392
    Node _t;
393 393

	
394 394
    // Container to store the found paths
395 395
    std::vector<Path> _paths;
396 396
    int _path_num;
397 397

	
398 398
    // The pred arc map
399 399
    PredMap _pred;
400 400
    
401 401
    // Data for full init
402 402
    PotentialMap *_init_dist;
403 403
    PredMap *_init_pred;
404 404
    bool _full_init;
405 405

	
406
  protected:
407

	
408
    Suurballe() {}
409

	
406 410
  public:
407 411

	
408 412
    /// \brief Constructor.
409 413
    ///
410 414
    /// Constructor.
411 415
    ///
412 416
    /// \param graph The digraph the algorithm runs on.
413 417
    /// \param length The length (cost) values of the arcs.
414 418
    Suurballe( const Digraph &graph,
415 419
               const LengthMap &length ) :
416 420
      _graph(graph), _length(length), _flow(0), _local_flow(false),
417 421
      _potential(0), _local_potential(false), _pred(graph),
418 422
      _init_dist(0), _init_pred(0)
419 423
    {}
420 424

	
421 425
    /// Destructor.
422 426
    ~Suurballe() {
423 427
      if (_local_flow) delete _flow;
424 428
      if (_local_potential) delete _potential;
425 429
      delete _init_dist;
426 430
      delete _init_pred;
427 431
    }
428 432

	
429 433
    /// \brief Set the flow map.
430 434
    ///
431 435
    /// This function sets the flow map.
432 436
    /// If it is not used before calling \ref run() or \ref init(),
433 437
    /// an instance will be allocated automatically. The destructor
434 438
    /// deallocates this automatically allocated map, of course.
435 439
    ///
436 440
    /// The found flow contains only 0 and 1 values, since it is the
437 441
    /// union of the found arc-disjoint paths.
438 442
    ///
439 443
    /// \return <tt>(*this)</tt>
440 444
    Suurballe& flowMap(FlowMap &map) {
441 445
      if (_local_flow) {
442 446
        delete _flow;
443 447
        _local_flow = false;
444 448
      }
445 449
      _flow = &map;
446 450
      return *this;
447 451
    }
448 452

	
449 453
    /// \brief Set the potential map.
450 454
    ///
451 455
    /// This function sets the potential map.
452 456
    /// If it is not used before calling \ref run() or \ref init(),
453 457
    /// an instance will be allocated automatically. The destructor
454 458
    /// deallocates this automatically allocated map, of course.
455 459
    ///
456 460
    /// The node potentials provide the dual solution of the underlying
457 461
    /// \ref min_cost_flow "minimum cost flow problem".
458 462
    ///
459 463
    /// \return <tt>(*this)</tt>
460 464
    Suurballe& potentialMap(PotentialMap &map) {
461 465
      if (_local_potential) {
462 466
        delete _potential;
463 467
        _local_potential = false;
464 468
      }
465 469
      _potential = &map;
466 470
      return *this;
467 471
    }
468 472

	
469 473
    /// \name Execution Control
470 474
    /// The simplest way to execute the algorithm is to call the run()
471 475
    /// function.\n
472 476
    /// If you need to execute the algorithm many times using the same
473 477
    /// source node, then you may call fullInit() once and start()
474 478
    /// for each target node.\n
475 479
    /// If you only need the flow that is the union of the found
476 480
    /// arc-disjoint paths, then you may call findFlow() instead of
477 481
    /// start().
478 482

	
479 483
    /// @{
480 484

	
481 485
    /// \brief Run the algorithm.
482 486
    ///
483 487
    /// This function runs the algorithm.
484 488
    ///
485 489
    /// \param s The source node.
486 490
    /// \param t The target node.
487 491
    /// \param k The number of paths to be found.
488 492
    ///
489 493
    /// \return \c k if there are at least \c k arc-disjoint paths from
490 494
    /// \c s to \c t in the digraph. Otherwise it returns the number of
491 495
    /// arc-disjoint paths found.
492 496
    ///
493 497
    /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
494 498
    /// just a shortcut of the following code.
495 499
    /// \code
496 500
    ///   s.init(s);
497 501
    ///   s.start(t, k);
498 502
    /// \endcode
499 503
    int run(const Node& s, const Node& t, int k = 2) {
500 504
      init(s);
501 505
      start(t, k);
502 506
      return _path_num;
503 507
    }
504 508

	
505 509
    /// \brief Initialize the algorithm.
506 510
    ///
507 511
    /// This function initializes the algorithm with the given source node.
508 512
    ///
509 513
    /// \param s The source node.
510 514
    void init(const Node& s) {
511 515
      _s = s;
512 516

	
513 517
      // Initialize maps
514 518
      if (!_flow) {
515 519
        _flow = new FlowMap(_graph);
516 520
        _local_flow = true;
517 521
      }
518 522
      if (!_potential) {
519 523
        _potential = new PotentialMap(_graph);
520 524
        _local_potential = true;
521 525
      }
522 526
      _full_init = false;
523 527
    }
524 528

	
525 529
    /// \brief Initialize the algorithm and perform Dijkstra.
526 530
    ///
527 531
    /// This function initializes the algorithm and performs a full
528 532
    /// Dijkstra search from the given source node. It makes consecutive
529 533
    /// executions of \ref start() "start(t, k)" faster, since they
530 534
    /// have to perform %Dijkstra only k-1 times.
531 535
    ///
532 536
    /// This initialization is usually worth using instead of \ref init()
533 537
    /// if the algorithm is executed many times using the same source node.
534 538
    ///
535 539
    /// \param s The source node.
536 540
    void fullInit(const Node& s) {
537 541
      // Initialize maps
538 542
      init(s);
539 543
      if (!_init_dist) {
540 544
        _init_dist = new PotentialMap(_graph);
541 545
      }
542 546
      if (!_init_pred) {
543 547
        _init_pred = new PredMap(_graph);
544 548
      }
545 549

	
546 550
      // Run a full Dijkstra
547 551
      typename Dijkstra<Digraph, LengthMap>
548 552
        ::template SetStandardHeap<Heap>
549 553
        ::template SetDistMap<PotentialMap>
550 554
        ::template SetPredMap<PredMap>
551 555
        ::Create dijk(_graph, _length);
552 556
      dijk.distMap(*_init_dist).predMap(*_init_pred);
553 557
      dijk.run(s);
554 558
      
555 559
      _full_init = true;
556 560
    }
557 561

	
558 562
    /// \brief Execute the algorithm.
559 563
    ///
560 564
    /// This function executes the algorithm.
561 565
    ///
562 566
    /// \param t The target node.
563 567
    /// \param k The number of paths to be found.
564 568
    ///
565 569
    /// \return \c k if there are at least \c k arc-disjoint paths from
566 570
    /// \c s to \c t in the digraph. Otherwise it returns the number of
567 571
    /// arc-disjoint paths found.
568 572
    ///
569 573
    /// \note Apart from the return value, <tt>s.start(t, k)</tt> is
570 574
    /// just a shortcut of the following code.
571 575
    /// \code
572 576
    ///   s.findFlow(t, k);
573 577
    ///   s.findPaths();
574 578
    /// \endcode
575 579
    int start(const Node& t, int k = 2) {
576 580
      findFlow(t, k);
577 581
      findPaths();
578 582
      return _path_num;
579 583
    }
580 584

	
581 585
    /// \brief Execute the algorithm to find an optimal flow.
582 586
    ///
583 587
    /// This function executes the successive shortest path algorithm to
584 588
    /// find a minimum cost flow, which is the union of \c k (or less)
585 589
    /// arc-disjoint paths.
586 590
    ///
587 591
    /// \param t The target node.
588 592
    /// \param k The number of paths to be found.
589 593
    ///
590 594
    /// \return \c k if there are at least \c k arc-disjoint paths from
591 595
    /// the source node to the given node \c t in the digraph.
592 596
    /// Otherwise it returns the number of arc-disjoint paths found.
593 597
    ///
594 598
    /// \pre \ref init() must be called before using this function.
595 599
    int findFlow(const Node& t, int k = 2) {
596 600
      _t = t;
597 601
      ResidualDijkstra dijkstra(*this);
598 602
      
599 603
      // Initialization
600 604
      for (ArcIt e(_graph); e != INVALID; ++e) {
601 605
        (*_flow)[e] = 0;
602 606
      }
603 607
      if (_full_init) {
604 608
        for (NodeIt n(_graph); n != INVALID; ++n) {
605 609
          (*_potential)[n] = (*_init_dist)[n];
606 610
        }
607 611
        Node u = _t;
608 612
        Arc e;
609 613
        while ((e = (*_init_pred)[u]) != INVALID) {
610 614
          (*_flow)[e] = 1;
611 615
          u = _graph.source(e);
612 616
        }        
613 617
        _path_num = 1;
614 618
      } else {
615 619
        for (NodeIt n(_graph); n != INVALID; ++n) {
616 620
          (*_potential)[n] = 0;
617 621
        }
618 622
        _path_num = 0;
619 623
      }
620 624

	
621 625
      // Find shortest paths
622 626
      while (_path_num < k) {
623 627
        // Run Dijkstra
624 628
        if (!dijkstra.run(_path_num)) break;
625 629
        ++_path_num;
626 630

	
627 631
        // Set the flow along the found shortest path
628 632
        Node u = _t;
629 633
        Arc e;
630 634
        while ((e = _pred[u]) != INVALID) {
631 635
          if (u == _graph.target(e)) {
632 636
            (*_flow)[e] = 1;
633 637
            u = _graph.source(e);
634 638
          } else {
635 639
            (*_flow)[e] = 0;
636 640
            u = _graph.target(e);
637 641
          }
638 642
        }
639 643
      }
640 644
      return _path_num;
641 645
    }
642 646

	
643 647
    /// \brief Compute the paths from the flow.
644 648
    ///
645 649
    /// This function computes arc-disjoint paths from the found minimum
646 650
    /// cost flow, which is the union of them.
647 651
    ///
648 652
    /// \pre \ref init() and \ref findFlow() must be called before using
649 653
    /// this function.
650 654
    void findPaths() {
651 655
      FlowMap res_flow(_graph);
652 656
      for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
653 657

	
654 658
      _paths.clear();
655 659
      _paths.resize(_path_num);
656 660
      for (int i = 0; i < _path_num; ++i) {
657 661
        Node n = _s;
658 662
        while (n != _t) {
659 663
          OutArcIt e(_graph, n);
660 664
          for ( ; res_flow[e] == 0; ++e) ;
661 665
          n = _graph.target(e);
662 666
          _paths[i].addBack(e);
663 667
          res_flow[e] = 0;
664 668
        }
665 669
      }
666 670
    }
667 671

	
668 672
    /// @}
669 673

	
670 674
    /// \name Query Functions
671 675
    /// The results of the algorithm can be obtained using these
672 676
    /// functions.
673 677
    /// \n The algorithm should be executed before using them.
674 678

	
675 679
    /// @{
676 680

	
677 681
    /// \brief Return the total length of the found paths.
678 682
    ///
679 683
    /// This function returns the total length of the found paths, i.e.
680 684
    /// the total cost of the found flow.
681 685
    /// The complexity of the function is O(e).
682 686
    ///
683 687
    /// \pre \ref run() or \ref findFlow() must be called before using
684 688
    /// this function.
685 689
    Length totalLength() const {
686 690
      Length c = 0;
687 691
      for (ArcIt e(_graph); e != INVALID; ++e)
688 692
        c += (*_flow)[e] * _length[e];
689 693
      return c;
690 694
    }
691 695

	
692 696
    /// \brief Return the flow value on the given arc.
693 697
    ///
694 698
    /// This function returns the flow value on the given arc.
695 699
    /// It is \c 1 if the arc is involved in one of the found arc-disjoint
696 700
    /// paths, otherwise it is \c 0.
697 701
    ///
698 702
    /// \pre \ref run() or \ref findFlow() must be called before using
699 703
    /// this function.
700 704
    int flow(const Arc& arc) const {
701 705
      return (*_flow)[arc];
702 706
    }
703 707

	
704 708
    /// \brief Return a const reference to an arc map storing the
705 709
    /// found flow.
706 710
    ///
707 711
    /// This function returns a const reference to an arc map storing
708 712
    /// the flow that is the union of the found arc-disjoint paths.
709 713
    ///
710 714
    /// \pre \ref run() or \ref findFlow() must be called before using
711 715
    /// this function.
712 716
    const FlowMap& flowMap() const {
713 717
      return *_flow;
714 718
    }
715 719

	
716 720
    /// \brief Return the potential of the given node.
717 721
    ///
718 722
    /// This function returns the potential of the given node.
719 723
    /// The node potentials provide the dual solution of the
720 724
    /// underlying \ref min_cost_flow "minimum cost flow problem".
721 725
    ///
722 726
    /// \pre \ref run() or \ref findFlow() must be called before using
723 727
    /// this function.
724 728
    Length potential(const Node& node) const {
725 729
      return (*_potential)[node];
726 730
    }
727 731

	
728 732
    /// \brief Return a const reference to a node map storing the
729 733
    /// found potentials (the dual solution).
730 734
    ///
731 735
    /// This function returns a const reference to a node map storing
732 736
    /// the found potentials that provide the dual solution of the
733 737
    /// underlying \ref min_cost_flow "minimum cost flow problem".
734 738
    ///
735 739
    /// \pre \ref run() or \ref findFlow() must be called before using
736 740
    /// this function.
737 741
    const PotentialMap& potentialMap() const {
738 742
      return *_potential;
739 743
    }
740 744

	
741 745
    /// \brief Return the number of the found paths.
742 746
    ///
743 747
    /// This function returns the number of the found paths.
744 748
    ///
745 749
    /// \pre \ref run() or \ref findFlow() must be called before using
746 750
    /// this function.
747 751
    int pathNum() const {
748 752
      return _path_num;
749 753
    }
750 754

	
751 755
    /// \brief Return a const reference to the specified path.
752 756
    ///
753 757
    /// This function returns a const reference to the specified path.
754 758
    ///
755 759
    /// \param i The function returns the <tt>i</tt>-th path.
756 760
    /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
757 761
    ///
758 762
    /// \pre \ref run() or \ref findPaths() must be called before using
759 763
    /// this function.
760 764
    const Path& path(int i) const {
761 765
      return _paths[i];
762 766
    }
763 767

	
764 768
    /// @}
765 769

	
766 770
  }; //class Suurballe
767 771

	
768 772
  ///@}
769 773

	
770 774
} //namespace lemon
771 775

	
772 776
#endif //LEMON_SUURBALLE_H
0 comments (0 inline)