gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Fix gcc 3.3 compilation error (#354) gcc 3.3 requires that a class has a default constructor if it has template named parameters. (That constructor can be protected.)
0 6 0
default
6 files changed with 24 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -208,192 +208,196 @@
208 208
      const IntVector &_target;
209 209
      const CostVector &_cost;
210 210
      const ValueVector &_res_cap;
211 211
      const ValueVector &_excess;
212 212
      CostVector &_pi;
213 213
      IntVector &_pred;
214 214
      
215 215
      IntVector _proc_nodes;
216 216
      CostVector _dist;
217 217
      
218 218
    public:
219 219

	
220 220
      ResidualDijkstra(CapacityScaling& cs) :
221 221
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
222 222
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
223 223
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
224 224
        _pred(cs._pred), _dist(cs._node_num)
225 225
      {}
226 226

	
227 227
      int run(int s, Value delta = 1) {
228 228
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
229 229
        Heap heap(heap_cross_ref);
230 230
        heap.push(s, 0);
231 231
        _pred[s] = -1;
232 232
        _proc_nodes.clear();
233 233

	
234 234
        // Process nodes
235 235
        while (!heap.empty() && _excess[heap.top()] > -delta) {
236 236
          int u = heap.top(), v;
237 237
          Cost d = heap.prio() + _pi[u], dn;
238 238
          _dist[u] = heap.prio();
239 239
          _proc_nodes.push_back(u);
240 240
          heap.pop();
241 241

	
242 242
          // Traverse outgoing residual arcs
243 243
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
244 244
          for (int a = _first_out[u]; a != last_out; ++a) {
245 245
            if (_res_cap[a] < delta) continue;
246 246
            v = _target[a];
247 247
            switch (heap.state(v)) {
248 248
              case Heap::PRE_HEAP:
249 249
                heap.push(v, d + _cost[a] - _pi[v]);
250 250
                _pred[v] = a;
251 251
                break;
252 252
              case Heap::IN_HEAP:
253 253
                dn = d + _cost[a] - _pi[v];
254 254
                if (dn < heap[v]) {
255 255
                  heap.decrease(v, dn);
256 256
                  _pred[v] = a;
257 257
                }
258 258
                break;
259 259
              case Heap::POST_HEAP:
260 260
                break;
261 261
            }
262 262
          }
263 263
        }
264 264
        if (heap.empty()) return -1;
265 265

	
266 266
        // Update potentials of processed nodes
267 267
        int t = heap.top();
268 268
        Cost dt = heap.prio();
269 269
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
270 270
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
271 271
        }
272 272

	
273 273
        return t;
274 274
      }
275 275

	
276 276
    }; //class ResidualDijkstra
277 277

	
278 278
  public:
279 279

	
280 280
    /// \name Named Template Parameters
281 281
    /// @{
282 282

	
283 283
    template <typename T>
284 284
    struct SetHeapTraits : public Traits {
285 285
      typedef T Heap;
286 286
    };
287 287

	
288 288
    /// \brief \ref named-templ-param "Named parameter" for setting
289 289
    /// \c Heap type.
290 290
    ///
291 291
    /// \ref named-templ-param "Named parameter" for setting \c Heap
292 292
    /// type, which is used for internal Dijkstra computations.
293 293
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
294 294
    /// its priority type must be \c Cost and its cross reference type
295 295
    /// must be \ref RangeMap "RangeMap<int>".
296 296
    template <typename T>
297 297
    struct SetHeap
298 298
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
299 299
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
300 300
    };
301 301

	
302 302
    /// @}
303 303

	
304
  protected:
305

	
306
    CapacityScaling() {}
307

	
304 308
  public:
305 309

	
306 310
    /// \brief Constructor.
307 311
    ///
308 312
    /// The constructor of the class.
309 313
    ///
310 314
    /// \param graph The digraph the algorithm runs on.
311 315
    CapacityScaling(const GR& graph) :
312 316
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
313 317
      INF(std::numeric_limits<Value>::has_infinity ?
314 318
          std::numeric_limits<Value>::infinity() :
315 319
          std::numeric_limits<Value>::max())
316 320
    {
317 321
      // Check the number types
318 322
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
319 323
        "The flow type of CapacityScaling must be signed");
320 324
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
321 325
        "The cost type of CapacityScaling must be signed");
322 326

	
323 327
      // Reset data structures
324 328
      reset();
325 329
    }
326 330

	
327 331
    /// \name Parameters
328 332
    /// The parameters of the algorithm can be specified using these
329 333
    /// functions.
330 334

	
331 335
    /// @{
332 336

	
333 337
    /// \brief Set the lower bounds on the arcs.
334 338
    ///
335 339
    /// This function sets the lower bounds on the arcs.
336 340
    /// If it is not used before calling \ref run(), the lower bounds
337 341
    /// will be set to zero on all arcs.
338 342
    ///
339 343
    /// \param map An arc map storing the lower bounds.
340 344
    /// Its \c Value type must be convertible to the \c Value type
341 345
    /// of the algorithm.
342 346
    ///
343 347
    /// \return <tt>(*this)</tt>
344 348
    template <typename LowerMap>
345 349
    CapacityScaling& lowerMap(const LowerMap& map) {
346 350
      _have_lower = true;
347 351
      for (ArcIt a(_graph); a != INVALID; ++a) {
348 352
        _lower[_arc_idf[a]] = map[a];
349 353
        _lower[_arc_idb[a]] = map[a];
350 354
      }
351 355
      return *this;
352 356
    }
353 357

	
354 358
    /// \brief Set the upper bounds (capacities) on the arcs.
355 359
    ///
356 360
    /// This function sets the upper bounds (capacities) on the arcs.
357 361
    /// If it is not used before calling \ref run(), the upper bounds
358 362
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
359 363
    /// unbounded from above).
360 364
    ///
361 365
    /// \param map An arc map storing the upper bounds.
362 366
    /// Its \c Value type must be convertible to the \c Value type
363 367
    /// of the algorithm.
364 368
    ///
365 369
    /// \return <tt>(*this)</tt>
366 370
    template<typename UpperMap>
367 371
    CapacityScaling& upperMap(const UpperMap& map) {
368 372
      for (ArcIt a(_graph); a != INVALID; ++a) {
369 373
        _upper[_arc_idf[a]] = map[a];
370 374
      }
371 375
      return *this;
372 376
    }
373 377

	
374 378
    /// \brief Set the costs of the arcs.
375 379
    ///
376 380
    /// This function sets the costs of the arcs.
377 381
    /// If it is not used before calling \ref run(), the costs
378 382
    /// will be set to \c 1 on all arcs.
379 383
    ///
380 384
    /// \param map An arc map storing the costs.
381 385
    /// Its \c Value type must be convertible to the \c Cost type
382 386
    /// of the algorithm.
383 387
    ///
384 388
    /// \return <tt>(*this)</tt>
385 389
    template<typename CostMap>
386 390
    CapacityScaling& costMap(const CostMap& map) {
387 391
      for (ArcIt a(_graph); a != INVALID; ++a) {
388 392
        _cost[_arc_idf[a]] =  map[a];
389 393
        _cost[_arc_idb[a]] = -map[a];
390 394
      }
391 395
      return *this;
392 396
    }
393 397

	
394 398
    /// \brief Set the supply values of the nodes.
395 399
    ///
396 400
    /// This function sets the supply values of the nodes.
397 401
    /// If neither this function nor \ref stSupply() is used before
398 402
    /// calling \ref run(), the supply of each node will be set to zero.
399 403
    ///
Ignore white space 192 line context
... ...
@@ -232,192 +232,196 @@
232 232
    private:
233 233
      std::vector<Value>& _v;
234 234
    };
235 235

	
236 236
    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
237 237
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
238 238

	
239 239
  private:
240 240

	
241 241
    // Data related to the underlying digraph
242 242
    const GR &_graph;
243 243
    int _node_num;
244 244
    int _arc_num;
245 245
    int _res_node_num;
246 246
    int _res_arc_num;
247 247
    int _root;
248 248

	
249 249
    // Parameters of the problem
250 250
    bool _have_lower;
251 251
    Value _sum_supply;
252 252
    int _sup_node_num;
253 253

	
254 254
    // Data structures for storing the digraph
255 255
    IntNodeMap _node_id;
256 256
    IntArcMap _arc_idf;
257 257
    IntArcMap _arc_idb;
258 258
    IntVector _first_out;
259 259
    BoolVector _forward;
260 260
    IntVector _source;
261 261
    IntVector _target;
262 262
    IntVector _reverse;
263 263

	
264 264
    // Node and arc data
265 265
    ValueVector _lower;
266 266
    ValueVector _upper;
267 267
    CostVector _scost;
268 268
    ValueVector _supply;
269 269

	
270 270
    ValueVector _res_cap;
271 271
    LargeCostVector _cost;
272 272
    LargeCostVector _pi;
273 273
    ValueVector _excess;
274 274
    IntVector _next_out;
275 275
    std::deque<int> _active_nodes;
276 276

	
277 277
    // Data for scaling
278 278
    LargeCost _epsilon;
279 279
    int _alpha;
280 280

	
281 281
    IntVector _buckets;
282 282
    IntVector _bucket_next;
283 283
    IntVector _bucket_prev;
284 284
    IntVector _rank;
285 285
    int _max_rank;
286 286
  
287 287
    // Data for a StaticDigraph structure
288 288
    typedef std::pair<int, int> IntPair;
289 289
    StaticDigraph _sgr;
290 290
    std::vector<IntPair> _arc_vec;
291 291
    std::vector<LargeCost> _cost_vec;
292 292
    LargeCostArcMap _cost_map;
293 293
    LargeCostNodeMap _pi_map;
294 294
  
295 295
  public:
296 296
  
297 297
    /// \brief Constant for infinite upper bounds (capacities).
298 298
    ///
299 299
    /// Constant for infinite upper bounds (capacities).
300 300
    /// It is \c std::numeric_limits<Value>::infinity() if available,
301 301
    /// \c std::numeric_limits<Value>::max() otherwise.
302 302
    const Value INF;
303 303

	
304 304
  public:
305 305

	
306 306
    /// \name Named Template Parameters
307 307
    /// @{
308 308

	
309 309
    template <typename T>
310 310
    struct SetLargeCostTraits : public Traits {
311 311
      typedef T LargeCost;
312 312
    };
313 313

	
314 314
    /// \brief \ref named-templ-param "Named parameter" for setting
315 315
    /// \c LargeCost type.
316 316
    ///
317 317
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
318 318
    /// type, which is used for internal computations in the algorithm.
319 319
    /// \c Cost must be convertible to \c LargeCost.
320 320
    template <typename T>
321 321
    struct SetLargeCost
322 322
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
323 323
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
324 324
    };
325 325

	
326 326
    /// @}
327 327

	
328
  protected:
329

	
330
    CostScaling() {}
331

	
328 332
  public:
329 333

	
330 334
    /// \brief Constructor.
331 335
    ///
332 336
    /// The constructor of the class.
333 337
    ///
334 338
    /// \param graph The digraph the algorithm runs on.
335 339
    CostScaling(const GR& graph) :
336 340
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
337 341
      _cost_map(_cost_vec), _pi_map(_pi),
338 342
      INF(std::numeric_limits<Value>::has_infinity ?
339 343
          std::numeric_limits<Value>::infinity() :
340 344
          std::numeric_limits<Value>::max())
341 345
    {
342 346
      // Check the number types
343 347
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
344 348
        "The flow type of CostScaling must be signed");
345 349
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
346 350
        "The cost type of CostScaling must be signed");
347 351
      
348 352
      // Reset data structures
349 353
      reset();
350 354
    }
351 355

	
352 356
    /// \name Parameters
353 357
    /// The parameters of the algorithm can be specified using these
354 358
    /// functions.
355 359

	
356 360
    /// @{
357 361

	
358 362
    /// \brief Set the lower bounds on the arcs.
359 363
    ///
360 364
    /// This function sets the lower bounds on the arcs.
361 365
    /// If it is not used before calling \ref run(), the lower bounds
362 366
    /// will be set to zero on all arcs.
363 367
    ///
364 368
    /// \param map An arc map storing the lower bounds.
365 369
    /// Its \c Value type must be convertible to the \c Value type
366 370
    /// of the algorithm.
367 371
    ///
368 372
    /// \return <tt>(*this)</tt>
369 373
    template <typename LowerMap>
370 374
    CostScaling& lowerMap(const LowerMap& map) {
371 375
      _have_lower = true;
372 376
      for (ArcIt a(_graph); a != INVALID; ++a) {
373 377
        _lower[_arc_idf[a]] = map[a];
374 378
        _lower[_arc_idb[a]] = map[a];
375 379
      }
376 380
      return *this;
377 381
    }
378 382

	
379 383
    /// \brief Set the upper bounds (capacities) on the arcs.
380 384
    ///
381 385
    /// This function sets the upper bounds (capacities) on the arcs.
382 386
    /// If it is not used before calling \ref run(), the upper bounds
383 387
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
384 388
    /// unbounded from above).
385 389
    ///
386 390
    /// \param map An arc map storing the upper bounds.
387 391
    /// Its \c Value type must be convertible to the \c Value type
388 392
    /// of the algorithm.
389 393
    ///
390 394
    /// \return <tt>(*this)</tt>
391 395
    template<typename UpperMap>
392 396
    CostScaling& upperMap(const UpperMap& map) {
393 397
      for (ArcIt a(_graph); a != INVALID; ++a) {
394 398
        _upper[_arc_idf[a]] = map[a];
395 399
      }
396 400
      return *this;
397 401
    }
398 402

	
399 403
    /// \brief Set the costs of the arcs.
400 404
    ///
401 405
    /// This function sets the costs of the arcs.
402 406
    /// If it is not used before calling \ref run(), the costs
403 407
    /// will be set to \c 1 on all arcs.
404 408
    ///
405 409
    /// \param map An arc map storing the costs.
406 410
    /// Its \c Value type must be convertible to the \c Cost type
407 411
    /// of the algorithm.
408 412
    ///
409 413
    /// \return <tt>(*this)</tt>
410 414
    template<typename CostMap>
411 415
    CostScaling& costMap(const CostMap& map) {
412 416
      for (ArcIt a(_graph); a != INVALID; ++a) {
413 417
        _scost[_arc_idf[a]] =  map[a];
414 418
        _scost[_arc_idb[a]] = -map[a];
415 419
      }
416 420
      return *this;
417 421
    }
418 422

	
419 423
    /// \brief Set the supply values of the nodes.
420 424
    ///
421 425
    /// This function sets the supply values of the nodes.
422 426
    /// If neither this function nor \ref stSupply() is used before
423 427
    /// calling \ref run(), the supply of each node will be set to zero.
Ignore white space 6 line context
... ...
@@ -148,192 +148,196 @@
148 148

	
149 149
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 155

	
156 156
    // Data sturcture for path data
157 157
    struct PathData
158 158
    {
159 159
      LargeValue dist;
160 160
      Arc pred;
161 161
      PathData(LargeValue d, Arc p = INVALID) :
162 162
        dist(d), pred(p) {}
163 163
    };
164 164

	
165 165
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
166 166
      PathDataNodeMap;
167 167

	
168 168
  private:
169 169

	
170 170
    // The digraph the algorithm runs on
171 171
    const Digraph &_gr;
172 172
    // The length of the arcs
173 173
    const LengthMap &_length;
174 174

	
175 175
    // Data for storing the strongly connected components
176 176
    int _comp_num;
177 177
    typename Digraph::template NodeMap<int> _comp;
178 178
    std::vector<std::vector<Node> > _comp_nodes;
179 179
    std::vector<Node>* _nodes;
180 180
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
181 181

	
182 182
    // Data for the found cycles
183 183
    bool _curr_found, _best_found;
184 184
    LargeValue _curr_length, _best_length;
185 185
    int _curr_size, _best_size;
186 186
    Node _curr_node, _best_node;
187 187
    int _curr_level, _best_level;
188 188

	
189 189
    Path *_cycle_path;
190 190
    bool _local_path;
191 191

	
192 192
    // Node map for storing path data
193 193
    PathDataNodeMap _data;
194 194
    // The processed nodes in the last round
195 195
    std::vector<Node> _process;
196 196

	
197 197
    Tolerance _tolerance;
198 198

	
199 199
    // Infinite constant
200 200
    const LargeValue INF;
201 201

	
202 202
  public:
203 203

	
204 204
    /// \name Named Template Parameters
205 205
    /// @{
206 206

	
207 207
    template <typename T>
208 208
    struct SetLargeValueTraits : public Traits {
209 209
      typedef T LargeValue;
210 210
      typedef lemon::Tolerance<T> Tolerance;
211 211
    };
212 212

	
213 213
    /// \brief \ref named-templ-param "Named parameter" for setting
214 214
    /// \c LargeValue type.
215 215
    ///
216 216
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
217 217
    /// type. It is used for internal computations in the algorithm.
218 218
    template <typename T>
219 219
    struct SetLargeValue
220 220
      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
221 221
      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
222 222
    };
223 223

	
224 224
    template <typename T>
225 225
    struct SetPathTraits : public Traits {
226 226
      typedef T Path;
227 227
    };
228 228

	
229 229
    /// \brief \ref named-templ-param "Named parameter" for setting
230 230
    /// \c %Path type.
231 231
    ///
232 232
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
233 233
    /// type of the found cycles.
234 234
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
235 235
    /// and it must have an \c addFront() function.
236 236
    template <typename T>
237 237
    struct SetPath
238 238
      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
239 239
      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
240 240
    };
241 241

	
242 242
    /// @}
243 243

	
244
  protected:
245

	
246
    HartmannOrlin() {}
247

	
244 248
  public:
245 249

	
246 250
    /// \brief Constructor.
247 251
    ///
248 252
    /// The constructor of the class.
249 253
    ///
250 254
    /// \param digraph The digraph the algorithm runs on.
251 255
    /// \param length The lengths (costs) of the arcs.
252 256
    HartmannOrlin( const Digraph &digraph,
253 257
                   const LengthMap &length ) :
254 258
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
255 259
      _best_found(false), _best_length(0), _best_size(1),
256 260
      _cycle_path(NULL), _local_path(false), _data(digraph),
257 261
      INF(std::numeric_limits<LargeValue>::has_infinity ?
258 262
          std::numeric_limits<LargeValue>::infinity() :
259 263
          std::numeric_limits<LargeValue>::max())
260 264
    {}
261 265

	
262 266
    /// Destructor.
263 267
    ~HartmannOrlin() {
264 268
      if (_local_path) delete _cycle_path;
265 269
    }
266 270

	
267 271
    /// \brief Set the path structure for storing the found cycle.
268 272
    ///
269 273
    /// This function sets an external path structure for storing the
270 274
    /// found cycle.
271 275
    ///
272 276
    /// If you don't call this function before calling \ref run() or
273 277
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
274 278
    /// structure. The destuctor deallocates this automatically
275 279
    /// allocated object, of course.
276 280
    ///
277 281
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
278 282
    /// "addFront()" function of the given path structure.
279 283
    ///
280 284
    /// \return <tt>(*this)</tt>
281 285
    HartmannOrlin& cycle(Path &path) {
282 286
      if (_local_path) {
283 287
        delete _cycle_path;
284 288
        _local_path = false;
285 289
      }
286 290
      _cycle_path = &path;
287 291
      return *this;
288 292
    }
289 293

	
290 294
    /// \brief Set the tolerance used by the algorithm.
291 295
    ///
292 296
    /// This function sets the tolerance object used by the algorithm.
293 297
    ///
294 298
    /// \return <tt>(*this)</tt>
295 299
    HartmannOrlin& tolerance(const Tolerance& tolerance) {
296 300
      _tolerance = tolerance;
297 301
      return *this;
298 302
    }
299 303

	
300 304
    /// \brief Return a const reference to the tolerance.
301 305
    ///
302 306
    /// This function returns a const reference to the tolerance object
303 307
    /// used by the algorithm.
304 308
    const Tolerance& tolerance() const {
305 309
      return _tolerance;
306 310
    }
307 311

	
308 312
    /// \name Execution control
309 313
    /// The simplest way to execute the algorithm is to call the \ref run()
310 314
    /// function.\n
311 315
    /// If you only need the minimum mean length, you may call
312 316
    /// \ref findMinMean().
313 317

	
314 318
    /// @{
315 319

	
316 320
    /// \brief Run the algorithm.
317 321
    ///
318 322
    /// This function runs the algorithm.
319 323
    /// It can be called more than once (e.g. if the underlying digraph
320 324
    /// and/or the arc lengths have been modified).
321 325
    ///
322 326
    /// \return \c true if a directed cycle exists in the digraph.
323 327
    ///
324 328
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
325 329
    /// \code
326 330
    ///   return mmc.findMinMean() && mmc.findCycle();
327 331
    /// \endcode
328 332
    bool run() {
329 333
      return findMinMean() && findCycle();
330 334
    }
331 335

	
332 336
    /// \brief Find the minimum cycle mean.
333 337
    ///
334 338
    /// This function finds the minimum mean length of the directed
335 339
    /// cycles in the digraph.
336 340
    ///
337 341
    /// \return \c true if a directed cycle exists in the digraph.
338 342
    bool findMinMean() {
339 343
      // Initialization and find strongly connected components
Ignore white space 6 line context
... ...
@@ -138,192 +138,196 @@
138 138

	
139 139
    /// The tolerance type
140 140
    typedef typename TR::Tolerance Tolerance;
141 141

	
142 142
    /// \brief The path type of the found cycles
143 143
    ///
144 144
    /// The path type of the found cycles.
145 145
    /// Using the \ref HowardDefaultTraits "default traits class",
146 146
    /// it is \ref lemon::Path "Path<Digraph>".
147 147
    typedef typename TR::Path Path;
148 148

	
149 149
    /// The \ref HowardDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 155
  
156 156
    // The digraph the algorithm runs on
157 157
    const Digraph &_gr;
158 158
    // The length of the arcs
159 159
    const LengthMap &_length;
160 160

	
161 161
    // Data for the found cycles
162 162
    bool _curr_found, _best_found;
163 163
    LargeValue _curr_length, _best_length;
164 164
    int _curr_size, _best_size;
165 165
    Node _curr_node, _best_node;
166 166

	
167 167
    Path *_cycle_path;
168 168
    bool _local_path;
169 169

	
170 170
    // Internal data used by the algorithm
171 171
    typename Digraph::template NodeMap<Arc> _policy;
172 172
    typename Digraph::template NodeMap<bool> _reached;
173 173
    typename Digraph::template NodeMap<int> _level;
174 174
    typename Digraph::template NodeMap<LargeValue> _dist;
175 175

	
176 176
    // Data for storing the strongly connected components
177 177
    int _comp_num;
178 178
    typename Digraph::template NodeMap<int> _comp;
179 179
    std::vector<std::vector<Node> > _comp_nodes;
180 180
    std::vector<Node>* _nodes;
181 181
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
182 182
    
183 183
    // Queue used for BFS search
184 184
    std::vector<Node> _queue;
185 185
    int _qfront, _qback;
186 186

	
187 187
    Tolerance _tolerance;
188 188
  
189 189
    // Infinite constant
190 190
    const LargeValue INF;
191 191

	
192 192
  public:
193 193
  
194 194
    /// \name Named Template Parameters
195 195
    /// @{
196 196

	
197 197
    template <typename T>
198 198
    struct SetLargeValueTraits : public Traits {
199 199
      typedef T LargeValue;
200 200
      typedef lemon::Tolerance<T> Tolerance;
201 201
    };
202 202

	
203 203
    /// \brief \ref named-templ-param "Named parameter" for setting
204 204
    /// \c LargeValue type.
205 205
    ///
206 206
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
207 207
    /// type. It is used for internal computations in the algorithm.
208 208
    template <typename T>
209 209
    struct SetLargeValue
210 210
      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
211 211
      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
212 212
    };
213 213

	
214 214
    template <typename T>
215 215
    struct SetPathTraits : public Traits {
216 216
      typedef T Path;
217 217
    };
218 218

	
219 219
    /// \brief \ref named-templ-param "Named parameter" for setting
220 220
    /// \c %Path type.
221 221
    ///
222 222
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
223 223
    /// type of the found cycles.
224 224
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
225 225
    /// and it must have an \c addBack() function.
226 226
    template <typename T>
227 227
    struct SetPath
228 228
      : public Howard<GR, LEN, SetPathTraits<T> > {
229 229
      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
230 230
    };
231 231
    
232 232
    /// @}
233 233

	
234
  protected:
235

	
236
    Howard() {}
237

	
234 238
  public:
235 239

	
236 240
    /// \brief Constructor.
237 241
    ///
238 242
    /// The constructor of the class.
239 243
    ///
240 244
    /// \param digraph The digraph the algorithm runs on.
241 245
    /// \param length The lengths (costs) of the arcs.
242 246
    Howard( const Digraph &digraph,
243 247
            const LengthMap &length ) :
244 248
      _gr(digraph), _length(length), _best_found(false),
245 249
      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
246 250
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
247 251
      _comp(digraph), _in_arcs(digraph),
248 252
      INF(std::numeric_limits<LargeValue>::has_infinity ?
249 253
          std::numeric_limits<LargeValue>::infinity() :
250 254
          std::numeric_limits<LargeValue>::max())
251 255
    {}
252 256

	
253 257
    /// Destructor.
254 258
    ~Howard() {
255 259
      if (_local_path) delete _cycle_path;
256 260
    }
257 261

	
258 262
    /// \brief Set the path structure for storing the found cycle.
259 263
    ///
260 264
    /// This function sets an external path structure for storing the
261 265
    /// found cycle.
262 266
    ///
263 267
    /// If you don't call this function before calling \ref run() or
264 268
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
265 269
    /// structure. The destuctor deallocates this automatically
266 270
    /// allocated object, of course.
267 271
    ///
268 272
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
269 273
    /// "addBack()" function of the given path structure.
270 274
    ///
271 275
    /// \return <tt>(*this)</tt>
272 276
    Howard& cycle(Path &path) {
273 277
      if (_local_path) {
274 278
        delete _cycle_path;
275 279
        _local_path = false;
276 280
      }
277 281
      _cycle_path = &path;
278 282
      return *this;
279 283
    }
280 284

	
281 285
    /// \brief Set the tolerance used by the algorithm.
282 286
    ///
283 287
    /// This function sets the tolerance object used by the algorithm.
284 288
    ///
285 289
    /// \return <tt>(*this)</tt>
286 290
    Howard& tolerance(const Tolerance& tolerance) {
287 291
      _tolerance = tolerance;
288 292
      return *this;
289 293
    }
290 294

	
291 295
    /// \brief Return a const reference to the tolerance.
292 296
    ///
293 297
    /// This function returns a const reference to the tolerance object
294 298
    /// used by the algorithm.
295 299
    const Tolerance& tolerance() const {
296 300
      return _tolerance;
297 301
    }
298 302

	
299 303
    /// \name Execution control
300 304
    /// The simplest way to execute the algorithm is to call the \ref run()
301 305
    /// function.\n
302 306
    /// If you only need the minimum mean length, you may call
303 307
    /// \ref findMinMean().
304 308

	
305 309
    /// @{
306 310

	
307 311
    /// \brief Run the algorithm.
308 312
    ///
309 313
    /// This function runs the algorithm.
310 314
    /// It can be called more than once (e.g. if the underlying digraph
311 315
    /// and/or the arc lengths have been modified).
312 316
    ///
313 317
    /// \return \c true if a directed cycle exists in the digraph.
314 318
    ///
315 319
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
316 320
    /// \code
317 321
    ///   return mmc.findMinMean() && mmc.findCycle();
318 322
    /// \endcode
319 323
    bool run() {
320 324
      return findMinMean() && findCycle();
321 325
    }
322 326

	
323 327
    /// \brief Find the minimum cycle mean.
324 328
    ///
325 329
    /// This function finds the minimum mean length of the directed
326 330
    /// cycles in the digraph.
327 331
    ///
328 332
    /// \return \c true if a directed cycle exists in the digraph.
329 333
    bool findMinMean() {
Ignore white space 6 line context
... ...
@@ -144,192 +144,196 @@
144 144
    /// it is \ref lemon::Path "Path<Digraph>".
145 145
    typedef typename TR::Path Path;
146 146

	
147 147
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
148 148
    typedef TR Traits;
149 149

	
150 150
  private:
151 151

	
152 152
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
153 153

	
154 154
    // Data sturcture for path data
155 155
    struct PathData
156 156
    {
157 157
      LargeValue dist;
158 158
      Arc pred;
159 159
      PathData(LargeValue d, Arc p = INVALID) :
160 160
        dist(d), pred(p) {}
161 161
    };
162 162

	
163 163
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
164 164
      PathDataNodeMap;
165 165

	
166 166
  private:
167 167

	
168 168
    // The digraph the algorithm runs on
169 169
    const Digraph &_gr;
170 170
    // The length of the arcs
171 171
    const LengthMap &_length;
172 172

	
173 173
    // Data for storing the strongly connected components
174 174
    int _comp_num;
175 175
    typename Digraph::template NodeMap<int> _comp;
176 176
    std::vector<std::vector<Node> > _comp_nodes;
177 177
    std::vector<Node>* _nodes;
178 178
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
179 179

	
180 180
    // Data for the found cycle
181 181
    LargeValue _cycle_length;
182 182
    int _cycle_size;
183 183
    Node _cycle_node;
184 184

	
185 185
    Path *_cycle_path;
186 186
    bool _local_path;
187 187

	
188 188
    // Node map for storing path data
189 189
    PathDataNodeMap _data;
190 190
    // The processed nodes in the last round
191 191
    std::vector<Node> _process;
192 192

	
193 193
    Tolerance _tolerance;
194 194
    
195 195
    // Infinite constant
196 196
    const LargeValue INF;
197 197

	
198 198
  public:
199 199

	
200 200
    /// \name Named Template Parameters
201 201
    /// @{
202 202

	
203 203
    template <typename T>
204 204
    struct SetLargeValueTraits : public Traits {
205 205
      typedef T LargeValue;
206 206
      typedef lemon::Tolerance<T> Tolerance;
207 207
    };
208 208

	
209 209
    /// \brief \ref named-templ-param "Named parameter" for setting
210 210
    /// \c LargeValue type.
211 211
    ///
212 212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
213 213
    /// type. It is used for internal computations in the algorithm.
214 214
    template <typename T>
215 215
    struct SetLargeValue
216 216
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
217 217
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
218 218
    };
219 219

	
220 220
    template <typename T>
221 221
    struct SetPathTraits : public Traits {
222 222
      typedef T Path;
223 223
    };
224 224

	
225 225
    /// \brief \ref named-templ-param "Named parameter" for setting
226 226
    /// \c %Path type.
227 227
    ///
228 228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
229 229
    /// type of the found cycles.
230 230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
231 231
    /// and it must have an \c addFront() function.
232 232
    template <typename T>
233 233
    struct SetPath
234 234
      : public Karp<GR, LEN, SetPathTraits<T> > {
235 235
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
236 236
    };
237 237

	
238 238
    /// @}
239 239

	
240
  protected:
241

	
242
    Karp() {}
243

	
240 244
  public:
241 245

	
242 246
    /// \brief Constructor.
243 247
    ///
244 248
    /// The constructor of the class.
245 249
    ///
246 250
    /// \param digraph The digraph the algorithm runs on.
247 251
    /// \param length The lengths (costs) of the arcs.
248 252
    Karp( const Digraph &digraph,
249 253
          const LengthMap &length ) :
250 254
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
251 255
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
252 256
      _cycle_path(NULL), _local_path(false), _data(digraph),
253 257
      INF(std::numeric_limits<LargeValue>::has_infinity ?
254 258
          std::numeric_limits<LargeValue>::infinity() :
255 259
          std::numeric_limits<LargeValue>::max())
256 260
    {}
257 261

	
258 262
    /// Destructor.
259 263
    ~Karp() {
260 264
      if (_local_path) delete _cycle_path;
261 265
    }
262 266

	
263 267
    /// \brief Set the path structure for storing the found cycle.
264 268
    ///
265 269
    /// This function sets an external path structure for storing the
266 270
    /// found cycle.
267 271
    ///
268 272
    /// If you don't call this function before calling \ref run() or
269 273
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
270 274
    /// structure. The destuctor deallocates this automatically
271 275
    /// allocated object, of course.
272 276
    ///
273 277
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
274 278
    /// "addFront()" function of the given path structure.
275 279
    ///
276 280
    /// \return <tt>(*this)</tt>
277 281
    Karp& cycle(Path &path) {
278 282
      if (_local_path) {
279 283
        delete _cycle_path;
280 284
        _local_path = false;
281 285
      }
282 286
      _cycle_path = &path;
283 287
      return *this;
284 288
    }
285 289

	
286 290
    /// \brief Set the tolerance used by the algorithm.
287 291
    ///
288 292
    /// This function sets the tolerance object used by the algorithm.
289 293
    ///
290 294
    /// \return <tt>(*this)</tt>
291 295
    Karp& tolerance(const Tolerance& tolerance) {
292 296
      _tolerance = tolerance;
293 297
      return *this;
294 298
    }
295 299

	
296 300
    /// \brief Return a const reference to the tolerance.
297 301
    ///
298 302
    /// This function returns a const reference to the tolerance object
299 303
    /// used by the algorithm.
300 304
    const Tolerance& tolerance() const {
301 305
      return _tolerance;
302 306
    }
303 307

	
304 308
    /// \name Execution control
305 309
    /// The simplest way to execute the algorithm is to call the \ref run()
306 310
    /// function.\n
307 311
    /// If you only need the minimum mean length, you may call
308 312
    /// \ref findMinMean().
309 313

	
310 314
    /// @{
311 315

	
312 316
    /// \brief Run the algorithm.
313 317
    ///
314 318
    /// This function runs the algorithm.
315 319
    /// It can be called more than once (e.g. if the underlying digraph
316 320
    /// and/or the arc lengths have been modified).
317 321
    ///
318 322
    /// \return \c true if a directed cycle exists in the digraph.
319 323
    ///
320 324
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
321 325
    /// \code
322 326
    ///   return mmc.findMinMean() && mmc.findCycle();
323 327
    /// \endcode
324 328
    bool run() {
325 329
      return findMinMean() && findCycle();
326 330
    }
327 331

	
328 332
    /// \brief Find the minimum cycle mean.
329 333
    ///
330 334
    /// This function finds the minimum mean length of the directed
331 335
    /// cycles in the digraph.
332 336
    ///
333 337
    /// \return \c true if a directed cycle exists in the digraph.
334 338
    bool findMinMean() {
335 339
      // Initialization and find strongly connected components
Ignore white space 6 line context
... ...
@@ -310,192 +310,196 @@
310 310
    ///
311 311
    /// \ref named-templ-param "Named parameter" for setting
312 312
    /// \c FlowMap type.
313 313
    template <typename T>
314 314
    struct SetFlowMap
315 315
      : public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
316 316
      typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
317 317
    };
318 318

	
319 319
    template <typename T>
320 320
    struct SetPotentialMapTraits : public Traits {
321 321
      typedef T PotentialMap;
322 322
    };
323 323

	
324 324
    /// \brief \ref named-templ-param "Named parameter" for setting
325 325
    /// \c PotentialMap type.
326 326
    ///
327 327
    /// \ref named-templ-param "Named parameter" for setting
328 328
    /// \c PotentialMap type.
329 329
    template <typename T>
330 330
    struct SetPotentialMap
331 331
      : public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
332 332
      typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
333 333
    };
334 334

	
335 335
    template <typename T>
336 336
    struct SetPathTraits : public Traits {
337 337
      typedef T Path;
338 338
    };
339 339

	
340 340
    /// \brief \ref named-templ-param "Named parameter" for setting
341 341
    /// \c %Path type.
342 342
    ///
343 343
    /// \ref named-templ-param "Named parameter" for setting \c %Path type.
344 344
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
345 345
    /// and it must have an \c addBack() function.
346 346
    template <typename T>
347 347
    struct SetPath
348 348
      : public Suurballe<GR, LEN, SetPathTraits<T> > {
349 349
      typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
350 350
    };
351 351
    
352 352
    template <typename H, typename CR>
353 353
    struct SetHeapTraits : public Traits {
354 354
      typedef H Heap;
355 355
      typedef CR HeapCrossRef;
356 356
    };
357 357

	
358 358
    /// \brief \ref named-templ-param "Named parameter" for setting
359 359
    /// \c Heap and \c HeapCrossRef types.
360 360
    ///
361 361
    /// \ref named-templ-param "Named parameter" for setting \c Heap
362 362
    /// and \c HeapCrossRef types with automatic allocation. 
363 363
    /// They will be used for internal Dijkstra computations.
364 364
    /// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
365 365
    /// concept and its priority type must be \c Length.
366 366
    template <typename H,
367 367
              typename CR = typename Digraph::template NodeMap<int> >
368 368
    struct SetHeap
369 369
      : public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
370 370
      typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
371 371
    };
372 372

	
373 373
    /// @}
374 374

	
375 375
  private:
376 376

	
377 377
    // The digraph the algorithm runs on
378 378
    const Digraph &_graph;
379 379
    // The length map
380 380
    const LengthMap &_length;
381 381

	
382 382
    // Arc map of the current flow
383 383
    FlowMap *_flow;
384 384
    bool _local_flow;
385 385
    // Node map of the current potentials
386 386
    PotentialMap *_potential;
387 387
    bool _local_potential;
388 388

	
389 389
    // The source node
390 390
    Node _s;
391 391
    // The target node
392 392
    Node _t;
393 393

	
394 394
    // Container to store the found paths
395 395
    std::vector<Path> _paths;
396 396
    int _path_num;
397 397

	
398 398
    // The pred arc map
399 399
    PredMap _pred;
400 400
    
401 401
    // Data for full init
402 402
    PotentialMap *_init_dist;
403 403
    PredMap *_init_pred;
404 404
    bool _full_init;
405 405

	
406
  protected:
407

	
408
    Suurballe() {}
409

	
406 410
  public:
407 411

	
408 412
    /// \brief Constructor.
409 413
    ///
410 414
    /// Constructor.
411 415
    ///
412 416
    /// \param graph The digraph the algorithm runs on.
413 417
    /// \param length The length (cost) values of the arcs.
414 418
    Suurballe( const Digraph &graph,
415 419
               const LengthMap &length ) :
416 420
      _graph(graph), _length(length), _flow(0), _local_flow(false),
417 421
      _potential(0), _local_potential(false), _pred(graph),
418 422
      _init_dist(0), _init_pred(0)
419 423
    {}
420 424

	
421 425
    /// Destructor.
422 426
    ~Suurballe() {
423 427
      if (_local_flow) delete _flow;
424 428
      if (_local_potential) delete _potential;
425 429
      delete _init_dist;
426 430
      delete _init_pred;
427 431
    }
428 432

	
429 433
    /// \brief Set the flow map.
430 434
    ///
431 435
    /// This function sets the flow map.
432 436
    /// If it is not used before calling \ref run() or \ref init(),
433 437
    /// an instance will be allocated automatically. The destructor
434 438
    /// deallocates this automatically allocated map, of course.
435 439
    ///
436 440
    /// The found flow contains only 0 and 1 values, since it is the
437 441
    /// union of the found arc-disjoint paths.
438 442
    ///
439 443
    /// \return <tt>(*this)</tt>
440 444
    Suurballe& flowMap(FlowMap &map) {
441 445
      if (_local_flow) {
442 446
        delete _flow;
443 447
        _local_flow = false;
444 448
      }
445 449
      _flow = &map;
446 450
      return *this;
447 451
    }
448 452

	
449 453
    /// \brief Set the potential map.
450 454
    ///
451 455
    /// This function sets the potential map.
452 456
    /// If it is not used before calling \ref run() or \ref init(),
453 457
    /// an instance will be allocated automatically. The destructor
454 458
    /// deallocates this automatically allocated map, of course.
455 459
    ///
456 460
    /// The node potentials provide the dual solution of the underlying
457 461
    /// \ref min_cost_flow "minimum cost flow problem".
458 462
    ///
459 463
    /// \return <tt>(*this)</tt>
460 464
    Suurballe& potentialMap(PotentialMap &map) {
461 465
      if (_local_potential) {
462 466
        delete _potential;
463 467
        _local_potential = false;
464 468
      }
465 469
      _potential = &map;
466 470
      return *this;
467 471
    }
468 472

	
469 473
    /// \name Execution Control
470 474
    /// The simplest way to execute the algorithm is to call the run()
471 475
    /// function.\n
472 476
    /// If you need to execute the algorithm many times using the same
473 477
    /// source node, then you may call fullInit() once and start()
474 478
    /// for each target node.\n
475 479
    /// If you only need the flow that is the union of the found
476 480
    /// arc-disjoint paths, then you may call findFlow() instead of
477 481
    /// start().
478 482

	
479 483
    /// @{
480 484

	
481 485
    /// \brief Run the algorithm.
482 486
    ///
483 487
    /// This function runs the algorithm.
484 488
    ///
485 489
    /// \param s The source node.
486 490
    /// \param t The target node.
487 491
    /// \param k The number of paths to be found.
488 492
    ///
489 493
    /// \return \c k if there are at least \c k arc-disjoint paths from
490 494
    /// \c s to \c t in the digraph. Otherwise it returns the number of
491 495
    /// arc-disjoint paths found.
492 496
    ///
493 497
    /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
494 498
    /// just a shortcut of the following code.
495 499
    /// \code
496 500
    ///   s.init(s);
497 501
    ///   s.start(t, k);
498 502
    /// \endcode
499 503
    int run(const Node& s, const Node& t, int k = 2) {
500 504
      init(s);
501 505
      start(t, k);
0 comments (0 inline)