0
3
0
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
20 | 20 |
#define LEMON_HARTMANN_ORLIN_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of HartmannOrlin algorithm. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam LEN The type of the length map. |
41 | 41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename LEN> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename LEN, |
46 | 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct HartmannOrlinDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the length map |
53 | 53 |
typedef LEN LengthMap; |
54 | 54 |
/// The type of the arc lengths |
55 | 55 |
typedef typename LengthMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The large value type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large value type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Value type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Value must be convertible to \c LargeValue. |
63 | 63 |
typedef double LargeValue; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addFront() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer value types |
77 | 77 |
template <typename GR, typename LEN> |
78 | 78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef LEN LengthMap; |
82 | 82 |
typedef typename LengthMap::Value Value; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeValue; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeValue; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
97 | 97 |
/// a minimum mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
100 | 100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
101 | 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
102 | 102 |
/// It is an improved version of \ref Karp "Karp"'s original algorithm, |
103 | 103 |
/// it applies an efficient early termination scheme. |
104 | 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
105 | 105 |
/// |
106 | 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
107 | 107 |
/// \tparam LEN The type of the length map. The default |
108 | 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
109 | 109 |
/// \tparam TR The traits class that defines various types used by the |
110 | 110 |
/// algorithm. By default, it is \ref HartmannOrlinDefaultTraits |
111 | 111 |
/// "HartmannOrlinDefaultTraits<GR, LEN>". |
112 | 112 |
/// In most cases, this parameter should not be set directly, |
113 | 113 |
/// consider to use the named template parameters instead. |
114 | 114 |
#ifdef DOXYGEN |
115 | 115 |
template <typename GR, typename LEN, typename TR> |
116 | 116 |
#else |
117 | 117 |
template < typename GR, |
118 | 118 |
typename LEN = typename GR::template ArcMap<int>, |
119 | 119 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
120 | 120 |
#endif |
121 | 121 |
class HartmannOrlin |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
|
125 | 125 |
/// The type of the digraph |
126 | 126 |
typedef typename TR::Digraph Digraph; |
127 | 127 |
/// The type of the length map |
128 | 128 |
typedef typename TR::LengthMap LengthMap; |
129 | 129 |
/// The type of the arc lengths |
130 | 130 |
typedef typename TR::Value Value; |
131 | 131 |
|
132 | 132 |
/// \brief The large value type |
133 | 133 |
/// |
134 | 134 |
/// The large value type used for internal computations. |
135 | 135 |
/// By default, it is \c long \c long if the \c Value type is integer, |
136 | 136 |
/// otherwise it is \c double. |
137 | 137 |
typedef typename TR::LargeValue LargeValue; |
138 | 138 |
|
139 | 139 |
/// The tolerance type |
140 | 140 |
typedef typename TR::Tolerance Tolerance; |
141 | 141 |
|
142 | 142 |
/// \brief The path type of the found cycles |
143 | 143 |
/// |
144 | 144 |
/// The path type of the found cycles. |
145 | 145 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
146 | 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
147 | 147 |
typedef typename TR::Path Path; |
148 | 148 |
|
149 | 149 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
155 | 155 |
|
156 | 156 |
// Data sturcture for path data |
157 | 157 |
struct PathData |
158 | 158 |
{ |
159 | 159 |
LargeValue dist; |
160 | 160 |
Arc pred; |
161 | 161 |
PathData(LargeValue d, Arc p = INVALID) : |
162 | 162 |
dist(d), pred(p) {} |
163 | 163 |
}; |
164 | 164 |
|
165 | 165 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
166 | 166 |
PathDataNodeMap; |
167 | 167 |
|
168 | 168 |
private: |
169 | 169 |
|
170 | 170 |
// The digraph the algorithm runs on |
171 | 171 |
const Digraph &_gr; |
172 | 172 |
// The length of the arcs |
173 | 173 |
const LengthMap &_length; |
174 | 174 |
|
175 | 175 |
// Data for storing the strongly connected components |
176 | 176 |
int _comp_num; |
177 | 177 |
typename Digraph::template NodeMap<int> _comp; |
178 | 178 |
std::vector<std::vector<Node> > _comp_nodes; |
179 | 179 |
std::vector<Node>* _nodes; |
180 | 180 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
181 | 181 |
|
182 | 182 |
// Data for the found cycles |
183 | 183 |
bool _curr_found, _best_found; |
184 | 184 |
LargeValue _curr_length, _best_length; |
185 | 185 |
int _curr_size, _best_size; |
186 | 186 |
Node _curr_node, _best_node; |
187 | 187 |
int _curr_level, _best_level; |
188 | 188 |
|
189 | 189 |
Path *_cycle_path; |
190 | 190 |
bool _local_path; |
191 | 191 |
|
192 | 192 |
// Node map for storing path data |
193 | 193 |
PathDataNodeMap _data; |
194 | 194 |
// The processed nodes in the last round |
195 | 195 |
std::vector<Node> _process; |
196 | 196 |
|
197 | 197 |
Tolerance _tolerance; |
198 | 198 |
|
199 | 199 |
// Infinite constant |
200 | 200 |
const LargeValue INF; |
201 | 201 |
|
202 | 202 |
public: |
203 | 203 |
|
204 | 204 |
/// \name Named Template Parameters |
205 | 205 |
/// @{ |
206 | 206 |
|
207 | 207 |
template <typename T> |
208 | 208 |
struct SetLargeValueTraits : public Traits { |
209 | 209 |
typedef T LargeValue; |
210 | 210 |
typedef lemon::Tolerance<T> Tolerance; |
211 | 211 |
}; |
212 | 212 |
|
213 | 213 |
/// \brief \ref named-templ-param "Named parameter" for setting |
214 | 214 |
/// \c LargeValue type. |
215 | 215 |
/// |
216 | 216 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
217 | 217 |
/// type. It is used for internal computations in the algorithm. |
218 | 218 |
template <typename T> |
219 | 219 |
struct SetLargeValue |
220 | 220 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > { |
221 | 221 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
222 | 222 |
}; |
223 | 223 |
|
224 | 224 |
template <typename T> |
225 | 225 |
struct SetPathTraits : public Traits { |
226 | 226 |
typedef T Path; |
227 | 227 |
}; |
228 | 228 |
|
229 | 229 |
/// \brief \ref named-templ-param "Named parameter" for setting |
230 | 230 |
/// \c %Path type. |
231 | 231 |
/// |
232 | 232 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
233 | 233 |
/// type of the found cycles. |
234 | 234 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
235 | 235 |
/// and it must have an \c addFront() function. |
236 | 236 |
template <typename T> |
237 | 237 |
struct SetPath |
238 | 238 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > { |
239 | 239 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
/// @} |
243 | 243 |
|
244 | 244 |
public: |
245 | 245 |
|
246 | 246 |
/// \brief Constructor. |
247 | 247 |
/// |
248 | 248 |
/// The constructor of the class. |
249 | 249 |
/// |
250 | 250 |
/// \param digraph The digraph the algorithm runs on. |
251 | 251 |
/// \param length The lengths (costs) of the arcs. |
252 | 252 |
HartmannOrlin( const Digraph &digraph, |
253 | 253 |
const LengthMap &length ) : |
254 | 254 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
255 | 255 |
_best_found(false), _best_length(0), _best_size(1), |
256 | 256 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
257 | 257 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
258 | 258 |
std::numeric_limits<LargeValue>::infinity() : |
259 | 259 |
std::numeric_limits<LargeValue>::max()) |
260 | 260 |
{} |
261 | 261 |
|
262 | 262 |
/// Destructor. |
263 | 263 |
~HartmannOrlin() { |
264 | 264 |
if (_local_path) delete _cycle_path; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
/// \brief Set the path structure for storing the found cycle. |
268 | 268 |
/// |
269 | 269 |
/// This function sets an external path structure for storing the |
270 | 270 |
/// found cycle. |
271 | 271 |
/// |
272 | 272 |
/// If you don't call this function before calling \ref run() or |
273 | 273 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
274 | 274 |
/// structure. The destuctor deallocates this automatically |
275 | 275 |
/// allocated object, of course. |
276 | 276 |
/// |
277 | 277 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
278 | 278 |
/// "addFront()" function of the given path structure. |
279 | 279 |
/// |
280 | 280 |
/// \return <tt>(*this)</tt> |
281 | 281 |
HartmannOrlin& cycle(Path &path) { |
282 | 282 |
if (_local_path) { |
283 | 283 |
delete _cycle_path; |
284 | 284 |
_local_path = false; |
285 | 285 |
} |
286 | 286 |
_cycle_path = &path; |
287 | 287 |
return *this; |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
/// \brief Set the tolerance used by the algorithm. |
291 | 291 |
/// |
292 | 292 |
/// This function sets the tolerance object used by the algorithm. |
293 | 293 |
/// |
294 | 294 |
/// \return <tt>(*this)</tt> |
295 | 295 |
HartmannOrlin& tolerance(const Tolerance& tolerance) { |
296 | 296 |
_tolerance = tolerance; |
297 | 297 |
return *this; |
298 | 298 |
} |
299 | 299 |
|
300 | 300 |
/// \brief Return a const reference to the tolerance. |
301 | 301 |
/// |
302 | 302 |
/// This function returns a const reference to the tolerance object |
303 | 303 |
/// used by the algorithm. |
304 | 304 |
const Tolerance& tolerance() const { |
305 | 305 |
return _tolerance; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
/// \name Execution control |
309 | 309 |
/// The simplest way to execute the algorithm is to call the \ref run() |
310 | 310 |
/// function.\n |
311 | 311 |
/// If you only need the minimum mean length, you may call |
312 | 312 |
/// \ref findMinMean(). |
313 | 313 |
|
314 | 314 |
/// @{ |
315 | 315 |
|
316 | 316 |
/// \brief Run the algorithm. |
317 | 317 |
/// |
318 | 318 |
/// This function runs the algorithm. |
319 | 319 |
/// It can be called more than once (e.g. if the underlying digraph |
320 | 320 |
/// and/or the arc lengths have been modified). |
321 | 321 |
/// |
322 | 322 |
/// \return \c true if a directed cycle exists in the digraph. |
323 | 323 |
/// |
324 | 324 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
325 | 325 |
/// \code |
326 | 326 |
/// return mmc.findMinMean() && mmc.findCycle(); |
327 | 327 |
/// \endcode |
328 | 328 |
bool run() { |
329 | 329 |
return findMinMean() && findCycle(); |
330 | 330 |
} |
331 | 331 |
|
332 | 332 |
/// \brief Find the minimum cycle mean. |
333 | 333 |
/// |
334 | 334 |
/// This function finds the minimum mean length of the directed |
335 | 335 |
/// cycles in the digraph. |
336 | 336 |
/// |
337 | 337 |
/// \return \c true if a directed cycle exists in the digraph. |
338 | 338 |
bool findMinMean() { |
339 | 339 |
// Initialization and find strongly connected components |
340 | 340 |
init(); |
341 | 341 |
findComponents(); |
342 | 342 |
|
343 | 343 |
// Find the minimum cycle mean in the components |
344 | 344 |
for (int comp = 0; comp < _comp_num; ++comp) { |
345 | 345 |
if (!initComponent(comp)) continue; |
346 | 346 |
processRounds(); |
347 | 347 |
|
348 | 348 |
// Update the best cycle (global minimum mean cycle) |
349 | 349 |
if ( _curr_found && (!_best_found || |
350 | 350 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
351 | 351 |
_best_found = true; |
352 | 352 |
_best_length = _curr_length; |
353 | 353 |
_best_size = _curr_size; |
354 | 354 |
_best_node = _curr_node; |
355 | 355 |
_best_level = _curr_level; |
356 | 356 |
} |
357 | 357 |
} |
358 | 358 |
return _best_found; |
359 | 359 |
} |
360 | 360 |
|
361 | 361 |
/// \brief Find a minimum mean directed cycle. |
362 | 362 |
/// |
363 | 363 |
/// This function finds a directed cycle of minimum mean length |
364 | 364 |
/// in the digraph using the data computed by findMinMean(). |
365 | 365 |
/// |
366 | 366 |
/// \return \c true if a directed cycle exists in the digraph. |
367 | 367 |
/// |
368 | 368 |
/// \pre \ref findMinMean() must be called before using this function. |
369 | 369 |
bool findCycle() { |
370 | 370 |
if (!_best_found) return false; |
371 | 371 |
IntNodeMap reached(_gr, -1); |
372 | 372 |
int r = _best_level + 1; |
373 | 373 |
Node u = _best_node; |
374 | 374 |
while (reached[u] < 0) { |
375 | 375 |
reached[u] = --r; |
376 | 376 |
u = _gr.source(_data[u][r].pred); |
377 | 377 |
} |
378 | 378 |
r = reached[u]; |
379 | 379 |
Arc e = _data[u][r].pred; |
380 | 380 |
_cycle_path->addFront(e); |
381 | 381 |
_best_length = _length[e]; |
382 | 382 |
_best_size = 1; |
383 | 383 |
Node v; |
384 | 384 |
while ((v = _gr.source(e)) != u) { |
385 | 385 |
e = _data[v][--r].pred; |
386 | 386 |
_cycle_path->addFront(e); |
387 | 387 |
_best_length += _length[e]; |
388 | 388 |
++_best_size; |
389 | 389 |
} |
390 | 390 |
return true; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
/// @} |
394 | 394 |
|
395 | 395 |
/// \name Query Functions |
396 | 396 |
/// The results of the algorithm can be obtained using these |
397 | 397 |
/// functions.\n |
398 | 398 |
/// The algorithm should be executed before using them. |
399 | 399 |
|
400 | 400 |
/// @{ |
401 | 401 |
|
402 | 402 |
/// \brief Return the total length of the found cycle. |
403 | 403 |
/// |
404 | 404 |
/// This function returns the total length of the found cycle. |
405 | 405 |
/// |
406 | 406 |
/// \pre \ref run() or \ref findMinMean() must be called before |
407 | 407 |
/// using this function. |
408 |
LargeValue cycleLength() const { |
|
409 |
return _best_length; |
|
408 |
Value cycleLength() const { |
|
409 |
return static_cast<Value>(_best_length); |
|
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
/// \brief Return the number of arcs on the found cycle. |
413 | 413 |
/// |
414 | 414 |
/// This function returns the number of arcs on the found cycle. |
415 | 415 |
/// |
416 | 416 |
/// \pre \ref run() or \ref findMinMean() must be called before |
417 | 417 |
/// using this function. |
418 | 418 |
int cycleArcNum() const { |
419 | 419 |
return _best_size; |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
/// \brief Return the mean length of the found cycle. |
423 | 423 |
/// |
424 | 424 |
/// This function returns the mean length of the found cycle. |
425 | 425 |
/// |
426 | 426 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
427 | 427 |
/// following code. |
428 | 428 |
/// \code |
429 | 429 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
430 | 430 |
/// \endcode |
431 | 431 |
/// |
432 | 432 |
/// \pre \ref run() or \ref findMinMean() must be called before |
433 | 433 |
/// using this function. |
434 | 434 |
double cycleMean() const { |
435 | 435 |
return static_cast<double>(_best_length) / _best_size; |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
/// \brief Return the found cycle. |
439 | 439 |
/// |
440 | 440 |
/// This function returns a const reference to the path structure |
441 | 441 |
/// storing the found cycle. |
442 | 442 |
/// |
443 | 443 |
/// \pre \ref run() or \ref findCycle() must be called before using |
444 | 444 |
/// this function. |
445 | 445 |
const Path& cycle() const { |
446 | 446 |
return *_cycle_path; |
447 | 447 |
} |
448 | 448 |
|
449 | 449 |
///@} |
450 | 450 |
|
451 | 451 |
private: |
452 | 452 |
|
453 | 453 |
// Initialization |
454 | 454 |
void init() { |
455 | 455 |
if (!_cycle_path) { |
456 | 456 |
_local_path = true; |
457 | 457 |
_cycle_path = new Path; |
458 | 458 |
} |
459 | 459 |
_cycle_path->clear(); |
460 | 460 |
_best_found = false; |
461 | 461 |
_best_length = 0; |
462 | 462 |
_best_size = 1; |
463 | 463 |
_cycle_path->clear(); |
464 | 464 |
for (NodeIt u(_gr); u != INVALID; ++u) |
465 | 465 |
_data[u].clear(); |
466 | 466 |
} |
467 | 467 |
|
468 | 468 |
// Find strongly connected components and initialize _comp_nodes |
469 | 469 |
// and _out_arcs |
470 | 470 |
void findComponents() { |
471 | 471 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
472 | 472 |
_comp_nodes.resize(_comp_num); |
473 | 473 |
if (_comp_num == 1) { |
474 | 474 |
_comp_nodes[0].clear(); |
475 | 475 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
476 | 476 |
_comp_nodes[0].push_back(n); |
477 | 477 |
_out_arcs[n].clear(); |
478 | 478 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
479 | 479 |
_out_arcs[n].push_back(a); |
480 | 480 |
} |
481 | 481 |
} |
482 | 482 |
} else { |
483 | 483 |
for (int i = 0; i < _comp_num; ++i) |
484 | 484 |
_comp_nodes[i].clear(); |
485 | 485 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
486 | 486 |
int k = _comp[n]; |
487 | 487 |
_comp_nodes[k].push_back(n); |
488 | 488 |
_out_arcs[n].clear(); |
489 | 489 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
490 | 490 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
491 | 491 |
} |
492 | 492 |
} |
493 | 493 |
} |
494 | 494 |
} |
495 | 495 |
|
496 | 496 |
// Initialize path data for the current component |
497 | 497 |
bool initComponent(int comp) { |
498 | 498 |
_nodes = &(_comp_nodes[comp]); |
499 | 499 |
int n = _nodes->size(); |
500 | 500 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
501 | 501 |
return false; |
502 | 502 |
} |
503 | 503 |
for (int i = 0; i < n; ++i) { |
504 | 504 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
505 | 505 |
} |
506 | 506 |
return true; |
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
// Process all rounds of computing path data for the current component. |
510 | 510 |
// _data[v][k] is the length of a shortest directed walk from the root |
511 | 511 |
// node to node v containing exactly k arcs. |
512 | 512 |
void processRounds() { |
513 | 513 |
Node start = (*_nodes)[0]; |
514 | 514 |
_data[start][0] = PathData(0); |
515 | 515 |
_process.clear(); |
516 | 516 |
_process.push_back(start); |
517 | 517 |
|
518 | 518 |
int k, n = _nodes->size(); |
519 | 519 |
int next_check = 4; |
520 | 520 |
bool terminate = false; |
521 | 521 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { |
522 | 522 |
processNextBuildRound(k); |
523 | 523 |
if (k == next_check || k == n) { |
524 | 524 |
terminate = checkTermination(k); |
525 | 525 |
next_check = next_check * 3 / 2; |
526 | 526 |
} |
527 | 527 |
} |
528 | 528 |
for ( ; k <= n && !terminate; ++k) { |
529 | 529 |
processNextFullRound(k); |
530 | 530 |
if (k == next_check || k == n) { |
531 | 531 |
terminate = checkTermination(k); |
532 | 532 |
next_check = next_check * 3 / 2; |
533 | 533 |
} |
534 | 534 |
} |
535 | 535 |
} |
536 | 536 |
|
537 | 537 |
// Process one round and rebuild _process |
538 | 538 |
void processNextBuildRound(int k) { |
539 | 539 |
std::vector<Node> next; |
540 | 540 |
Node u, v; |
541 | 541 |
Arc e; |
542 | 542 |
LargeValue d; |
543 | 543 |
for (int i = 0; i < int(_process.size()); ++i) { |
544 | 544 |
u = _process[i]; |
545 | 545 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
546 | 546 |
e = _out_arcs[u][j]; |
547 | 547 |
v = _gr.target(e); |
548 | 548 |
d = _data[u][k-1].dist + _length[e]; |
549 | 549 |
if (_tolerance.less(d, _data[v][k].dist)) { |
550 | 550 |
if (_data[v][k].dist == INF) next.push_back(v); |
551 | 551 |
_data[v][k] = PathData(d, e); |
552 | 552 |
} |
553 | 553 |
} |
554 | 554 |
} |
555 | 555 |
_process.swap(next); |
556 | 556 |
} |
557 | 557 |
|
558 | 558 |
// Process one round using _nodes instead of _process |
559 | 559 |
void processNextFullRound(int k) { |
560 | 560 |
Node u, v; |
561 | 561 |
Arc e; |
562 | 562 |
LargeValue d; |
563 | 563 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
564 | 564 |
u = (*_nodes)[i]; |
565 | 565 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
566 | 566 |
e = _out_arcs[u][j]; |
567 | 567 |
v = _gr.target(e); |
568 | 568 |
d = _data[u][k-1].dist + _length[e]; |
569 | 569 |
if (_tolerance.less(d, _data[v][k].dist)) { |
570 | 570 |
_data[v][k] = PathData(d, e); |
571 | 571 |
} |
572 | 572 |
} |
573 | 573 |
} |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
// Check early termination |
577 | 577 |
bool checkTermination(int k) { |
578 | 578 |
typedef std::pair<int, int> Pair; |
579 | 579 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
580 | 580 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
581 | 581 |
int n = _nodes->size(); |
582 | 582 |
LargeValue length; |
583 | 583 |
int size; |
584 | 584 |
Node u; |
585 | 585 |
|
586 | 586 |
// Search for cycles that are already found |
587 | 587 |
_curr_found = false; |
588 | 588 |
for (int i = 0; i < n; ++i) { |
589 | 589 |
u = (*_nodes)[i]; |
590 | 590 |
if (_data[u][k].dist == INF) continue; |
591 | 591 |
for (int j = k; j >= 0; --j) { |
592 | 592 |
if (level[u].first == i && level[u].second > 0) { |
593 | 593 |
// A cycle is found |
594 | 594 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
595 | 595 |
size = level[u].second - j; |
596 | 596 |
if (!_curr_found || length * _curr_size < _curr_length * size) { |
597 | 597 |
_curr_length = length; |
598 | 598 |
_curr_size = size; |
599 | 599 |
_curr_node = u; |
600 | 600 |
_curr_level = level[u].second; |
601 | 601 |
_curr_found = true; |
602 | 602 |
} |
603 | 603 |
} |
604 | 604 |
level[u] = Pair(i, j); |
605 | 605 |
if (j != 0) { |
606 | 606 |
u = _gr.source(_data[u][j].pred); |
607 | 607 |
} |
608 | 608 |
} |
609 | 609 |
} |
610 | 610 |
|
611 | 611 |
// If at least one cycle is found, check the optimality condition |
612 | 612 |
LargeValue d; |
613 | 613 |
if (_curr_found && k < n) { |
614 | 614 |
// Find node potentials |
615 | 615 |
for (int i = 0; i < n; ++i) { |
616 | 616 |
u = (*_nodes)[i]; |
617 | 617 |
pi[u] = INF; |
618 | 618 |
for (int j = 0; j <= k; ++j) { |
619 | 619 |
if (_data[u][j].dist < INF) { |
620 | 620 |
d = _data[u][j].dist * _curr_size - j * _curr_length; |
621 | 621 |
if (_tolerance.less(d, pi[u])) pi[u] = d; |
622 | 622 |
} |
623 | 623 |
} |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
// Check the optimality condition for all arcs |
627 | 627 |
bool done = true; |
628 | 628 |
for (ArcIt a(_gr); a != INVALID; ++a) { |
629 | 629 |
if (_tolerance.less(_length[a] * _curr_size - _curr_length, |
630 | 630 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) { |
631 | 631 |
done = false; |
632 | 632 |
break; |
633 | 633 |
} |
634 | 634 |
} |
635 | 635 |
return done; |
636 | 636 |
} |
637 | 637 |
return (k == n); |
638 | 638 |
} |
639 | 639 |
|
640 | 640 |
}; //class HartmannOrlin |
641 | 641 |
|
642 | 642 |
///@} |
643 | 643 |
|
644 | 644 |
} //namespace lemon |
645 | 645 |
|
646 | 646 |
#endif //LEMON_HARTMANN_ORLIN_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HOWARD_H |
20 | 20 |
#define LEMON_HOWARD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Howard's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of Howard class. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of Howard class. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam LEN The type of the length map. |
41 | 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename LEN> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename LEN, |
46 | 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct HowardDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the length map |
53 | 53 |
typedef LEN LengthMap; |
54 | 54 |
/// The type of the arc lengths |
55 | 55 |
typedef typename LengthMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The large value type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large value type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Value type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Value must be convertible to \c LargeValue. |
63 | 63 |
typedef double LargeValue; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addBack() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer value types |
77 | 77 |
template <typename GR, typename LEN> |
78 | 78 |
struct HowardDefaultTraits<GR, LEN, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef LEN LengthMap; |
82 | 82 |
typedef typename LengthMap::Value Value; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeValue; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeValue; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of Howard's algorithm for finding a minimum |
97 | 97 |
/// mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements Howard's policy iteration algorithm for finding |
100 | 100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
101 | 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
102 | 102 |
/// This class provides the most efficient algorithm for the |
103 | 103 |
/// minimum mean cycle problem, though the best known theoretical |
104 | 104 |
/// bound on its running time is exponential. |
105 | 105 |
/// |
106 | 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
107 | 107 |
/// \tparam LEN The type of the length map. The default |
108 | 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
109 | 109 |
/// \tparam TR The traits class that defines various types used by the |
110 | 110 |
/// algorithm. By default, it is \ref HowardDefaultTraits |
111 | 111 |
/// "HowardDefaultTraits<GR, LEN>". |
112 | 112 |
/// In most cases, this parameter should not be set directly, |
113 | 113 |
/// consider to use the named template parameters instead. |
114 | 114 |
#ifdef DOXYGEN |
115 | 115 |
template <typename GR, typename LEN, typename TR> |
116 | 116 |
#else |
117 | 117 |
template < typename GR, |
118 | 118 |
typename LEN = typename GR::template ArcMap<int>, |
119 | 119 |
typename TR = HowardDefaultTraits<GR, LEN> > |
120 | 120 |
#endif |
121 | 121 |
class Howard |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
|
125 | 125 |
/// The type of the digraph |
126 | 126 |
typedef typename TR::Digraph Digraph; |
127 | 127 |
/// The type of the length map |
128 | 128 |
typedef typename TR::LengthMap LengthMap; |
129 | 129 |
/// The type of the arc lengths |
130 | 130 |
typedef typename TR::Value Value; |
131 | 131 |
|
132 | 132 |
/// \brief The large value type |
133 | 133 |
/// |
134 | 134 |
/// The large value type used for internal computations. |
135 | 135 |
/// By default, it is \c long \c long if the \c Value type is integer, |
136 | 136 |
/// otherwise it is \c double. |
137 | 137 |
typedef typename TR::LargeValue LargeValue; |
138 | 138 |
|
139 | 139 |
/// The tolerance type |
140 | 140 |
typedef typename TR::Tolerance Tolerance; |
141 | 141 |
|
142 | 142 |
/// \brief The path type of the found cycles |
143 | 143 |
/// |
144 | 144 |
/// The path type of the found cycles. |
145 | 145 |
/// Using the \ref HowardDefaultTraits "default traits class", |
146 | 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
147 | 147 |
typedef typename TR::Path Path; |
148 | 148 |
|
149 | 149 |
/// The \ref HowardDefaultTraits "traits class" of the algorithm |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
155 | 155 |
|
156 | 156 |
// The digraph the algorithm runs on |
157 | 157 |
const Digraph &_gr; |
158 | 158 |
// The length of the arcs |
159 | 159 |
const LengthMap &_length; |
160 | 160 |
|
161 | 161 |
// Data for the found cycles |
162 | 162 |
bool _curr_found, _best_found; |
163 | 163 |
LargeValue _curr_length, _best_length; |
164 | 164 |
int _curr_size, _best_size; |
165 | 165 |
Node _curr_node, _best_node; |
166 | 166 |
|
167 | 167 |
Path *_cycle_path; |
168 | 168 |
bool _local_path; |
169 | 169 |
|
170 | 170 |
// Internal data used by the algorithm |
171 | 171 |
typename Digraph::template NodeMap<Arc> _policy; |
172 | 172 |
typename Digraph::template NodeMap<bool> _reached; |
173 | 173 |
typename Digraph::template NodeMap<int> _level; |
174 | 174 |
typename Digraph::template NodeMap<LargeValue> _dist; |
175 | 175 |
|
176 | 176 |
// Data for storing the strongly connected components |
177 | 177 |
int _comp_num; |
178 | 178 |
typename Digraph::template NodeMap<int> _comp; |
179 | 179 |
std::vector<std::vector<Node> > _comp_nodes; |
180 | 180 |
std::vector<Node>* _nodes; |
181 | 181 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
182 | 182 |
|
183 | 183 |
// Queue used for BFS search |
184 | 184 |
std::vector<Node> _queue; |
185 | 185 |
int _qfront, _qback; |
186 | 186 |
|
187 | 187 |
Tolerance _tolerance; |
188 | 188 |
|
189 | 189 |
// Infinite constant |
190 | 190 |
const LargeValue INF; |
191 | 191 |
|
192 | 192 |
public: |
193 | 193 |
|
194 | 194 |
/// \name Named Template Parameters |
195 | 195 |
/// @{ |
196 | 196 |
|
197 | 197 |
template <typename T> |
198 | 198 |
struct SetLargeValueTraits : public Traits { |
199 | 199 |
typedef T LargeValue; |
200 | 200 |
typedef lemon::Tolerance<T> Tolerance; |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
/// \brief \ref named-templ-param "Named parameter" for setting |
204 | 204 |
/// \c LargeValue type. |
205 | 205 |
/// |
206 | 206 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
207 | 207 |
/// type. It is used for internal computations in the algorithm. |
208 | 208 |
template <typename T> |
209 | 209 |
struct SetLargeValue |
210 | 210 |
: public Howard<GR, LEN, SetLargeValueTraits<T> > { |
211 | 211 |
typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create; |
212 | 212 |
}; |
213 | 213 |
|
214 | 214 |
template <typename T> |
215 | 215 |
struct SetPathTraits : public Traits { |
216 | 216 |
typedef T Path; |
217 | 217 |
}; |
218 | 218 |
|
219 | 219 |
/// \brief \ref named-templ-param "Named parameter" for setting |
220 | 220 |
/// \c %Path type. |
221 | 221 |
/// |
222 | 222 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
223 | 223 |
/// type of the found cycles. |
224 | 224 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
225 | 225 |
/// and it must have an \c addBack() function. |
226 | 226 |
template <typename T> |
227 | 227 |
struct SetPath |
228 | 228 |
: public Howard<GR, LEN, SetPathTraits<T> > { |
229 | 229 |
typedef Howard<GR, LEN, SetPathTraits<T> > Create; |
230 | 230 |
}; |
231 | 231 |
|
232 | 232 |
/// @} |
233 | 233 |
|
234 | 234 |
public: |
235 | 235 |
|
236 | 236 |
/// \brief Constructor. |
237 | 237 |
/// |
238 | 238 |
/// The constructor of the class. |
239 | 239 |
/// |
240 | 240 |
/// \param digraph The digraph the algorithm runs on. |
241 | 241 |
/// \param length The lengths (costs) of the arcs. |
242 | 242 |
Howard( const Digraph &digraph, |
243 | 243 |
const LengthMap &length ) : |
244 | 244 |
_gr(digraph), _length(length), _best_found(false), |
245 | 245 |
_best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
246 | 246 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
247 | 247 |
_comp(digraph), _in_arcs(digraph), |
248 | 248 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
249 | 249 |
std::numeric_limits<LargeValue>::infinity() : |
250 | 250 |
std::numeric_limits<LargeValue>::max()) |
251 | 251 |
{} |
252 | 252 |
|
253 | 253 |
/// Destructor. |
254 | 254 |
~Howard() { |
255 | 255 |
if (_local_path) delete _cycle_path; |
256 | 256 |
} |
257 | 257 |
|
258 | 258 |
/// \brief Set the path structure for storing the found cycle. |
259 | 259 |
/// |
260 | 260 |
/// This function sets an external path structure for storing the |
261 | 261 |
/// found cycle. |
262 | 262 |
/// |
263 | 263 |
/// If you don't call this function before calling \ref run() or |
264 | 264 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
265 | 265 |
/// structure. The destuctor deallocates this automatically |
266 | 266 |
/// allocated object, of course. |
267 | 267 |
/// |
268 | 268 |
/// \note The algorithm calls only the \ref lemon::Path::addBack() |
269 | 269 |
/// "addBack()" function of the given path structure. |
270 | 270 |
/// |
271 | 271 |
/// \return <tt>(*this)</tt> |
272 | 272 |
Howard& cycle(Path &path) { |
273 | 273 |
if (_local_path) { |
274 | 274 |
delete _cycle_path; |
275 | 275 |
_local_path = false; |
276 | 276 |
} |
277 | 277 |
_cycle_path = &path; |
278 | 278 |
return *this; |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
/// \brief Set the tolerance used by the algorithm. |
282 | 282 |
/// |
283 | 283 |
/// This function sets the tolerance object used by the algorithm. |
284 | 284 |
/// |
285 | 285 |
/// \return <tt>(*this)</tt> |
286 | 286 |
Howard& tolerance(const Tolerance& tolerance) { |
287 | 287 |
_tolerance = tolerance; |
288 | 288 |
return *this; |
289 | 289 |
} |
290 | 290 |
|
291 | 291 |
/// \brief Return a const reference to the tolerance. |
292 | 292 |
/// |
293 | 293 |
/// This function returns a const reference to the tolerance object |
294 | 294 |
/// used by the algorithm. |
295 | 295 |
const Tolerance& tolerance() const { |
296 | 296 |
return _tolerance; |
297 | 297 |
} |
298 | 298 |
|
299 | 299 |
/// \name Execution control |
300 | 300 |
/// The simplest way to execute the algorithm is to call the \ref run() |
301 | 301 |
/// function.\n |
302 | 302 |
/// If you only need the minimum mean length, you may call |
303 | 303 |
/// \ref findMinMean(). |
304 | 304 |
|
305 | 305 |
/// @{ |
306 | 306 |
|
307 | 307 |
/// \brief Run the algorithm. |
308 | 308 |
/// |
309 | 309 |
/// This function runs the algorithm. |
310 | 310 |
/// It can be called more than once (e.g. if the underlying digraph |
311 | 311 |
/// and/or the arc lengths have been modified). |
312 | 312 |
/// |
313 | 313 |
/// \return \c true if a directed cycle exists in the digraph. |
314 | 314 |
/// |
315 | 315 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
316 | 316 |
/// \code |
317 | 317 |
/// return mmc.findMinMean() && mmc.findCycle(); |
318 | 318 |
/// \endcode |
319 | 319 |
bool run() { |
320 | 320 |
return findMinMean() && findCycle(); |
321 | 321 |
} |
322 | 322 |
|
323 | 323 |
/// \brief Find the minimum cycle mean. |
324 | 324 |
/// |
325 | 325 |
/// This function finds the minimum mean length of the directed |
326 | 326 |
/// cycles in the digraph. |
327 | 327 |
/// |
328 | 328 |
/// \return \c true if a directed cycle exists in the digraph. |
329 | 329 |
bool findMinMean() { |
330 | 330 |
// Initialize and find strongly connected components |
331 | 331 |
init(); |
332 | 332 |
findComponents(); |
333 | 333 |
|
334 | 334 |
// Find the minimum cycle mean in the components |
335 | 335 |
for (int comp = 0; comp < _comp_num; ++comp) { |
336 | 336 |
// Find the minimum mean cycle in the current component |
337 | 337 |
if (!buildPolicyGraph(comp)) continue; |
338 | 338 |
while (true) { |
339 | 339 |
findPolicyCycle(); |
340 | 340 |
if (!computeNodeDistances()) break; |
341 | 341 |
} |
342 | 342 |
// Update the best cycle (global minimum mean cycle) |
343 | 343 |
if ( _curr_found && (!_best_found || |
344 | 344 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
345 | 345 |
_best_found = true; |
346 | 346 |
_best_length = _curr_length; |
347 | 347 |
_best_size = _curr_size; |
348 | 348 |
_best_node = _curr_node; |
349 | 349 |
} |
350 | 350 |
} |
351 | 351 |
return _best_found; |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
/// \brief Find a minimum mean directed cycle. |
355 | 355 |
/// |
356 | 356 |
/// This function finds a directed cycle of minimum mean length |
357 | 357 |
/// in the digraph using the data computed by findMinMean(). |
358 | 358 |
/// |
359 | 359 |
/// \return \c true if a directed cycle exists in the digraph. |
360 | 360 |
/// |
361 | 361 |
/// \pre \ref findMinMean() must be called before using this function. |
362 | 362 |
bool findCycle() { |
363 | 363 |
if (!_best_found) return false; |
364 | 364 |
_cycle_path->addBack(_policy[_best_node]); |
365 | 365 |
for ( Node v = _best_node; |
366 | 366 |
(v = _gr.target(_policy[v])) != _best_node; ) { |
367 | 367 |
_cycle_path->addBack(_policy[v]); |
368 | 368 |
} |
369 | 369 |
return true; |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
/// @} |
373 | 373 |
|
374 | 374 |
/// \name Query Functions |
375 | 375 |
/// The results of the algorithm can be obtained using these |
376 | 376 |
/// functions.\n |
377 | 377 |
/// The algorithm should be executed before using them. |
378 | 378 |
|
379 | 379 |
/// @{ |
380 | 380 |
|
381 | 381 |
/// \brief Return the total length of the found cycle. |
382 | 382 |
/// |
383 | 383 |
/// This function returns the total length of the found cycle. |
384 | 384 |
/// |
385 | 385 |
/// \pre \ref run() or \ref findMinMean() must be called before |
386 | 386 |
/// using this function. |
387 |
LargeValue cycleLength() const { |
|
388 |
return _best_length; |
|
387 |
Value cycleLength() const { |
|
388 |
return static_cast<Value>(_best_length); |
|
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
/// \brief Return the number of arcs on the found cycle. |
392 | 392 |
/// |
393 | 393 |
/// This function returns the number of arcs on the found cycle. |
394 | 394 |
/// |
395 | 395 |
/// \pre \ref run() or \ref findMinMean() must be called before |
396 | 396 |
/// using this function. |
397 | 397 |
int cycleArcNum() const { |
398 | 398 |
return _best_size; |
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
/// \brief Return the mean length of the found cycle. |
402 | 402 |
/// |
403 | 403 |
/// This function returns the mean length of the found cycle. |
404 | 404 |
/// |
405 | 405 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
406 | 406 |
/// following code. |
407 | 407 |
/// \code |
408 | 408 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
409 | 409 |
/// \endcode |
410 | 410 |
/// |
411 | 411 |
/// \pre \ref run() or \ref findMinMean() must be called before |
412 | 412 |
/// using this function. |
413 | 413 |
double cycleMean() const { |
414 | 414 |
return static_cast<double>(_best_length) / _best_size; |
415 | 415 |
} |
416 | 416 |
|
417 | 417 |
/// \brief Return the found cycle. |
418 | 418 |
/// |
419 | 419 |
/// This function returns a const reference to the path structure |
420 | 420 |
/// storing the found cycle. |
421 | 421 |
/// |
422 | 422 |
/// \pre \ref run() or \ref findCycle() must be called before using |
423 | 423 |
/// this function. |
424 | 424 |
const Path& cycle() const { |
425 | 425 |
return *_cycle_path; |
426 | 426 |
} |
427 | 427 |
|
428 | 428 |
///@} |
429 | 429 |
|
430 | 430 |
private: |
431 | 431 |
|
432 | 432 |
// Initialize |
433 | 433 |
void init() { |
434 | 434 |
if (!_cycle_path) { |
435 | 435 |
_local_path = true; |
436 | 436 |
_cycle_path = new Path; |
437 | 437 |
} |
438 | 438 |
_queue.resize(countNodes(_gr)); |
439 | 439 |
_best_found = false; |
440 | 440 |
_best_length = 0; |
441 | 441 |
_best_size = 1; |
442 | 442 |
_cycle_path->clear(); |
443 | 443 |
} |
444 | 444 |
|
445 | 445 |
// Find strongly connected components and initialize _comp_nodes |
446 | 446 |
// and _in_arcs |
447 | 447 |
void findComponents() { |
448 | 448 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
449 | 449 |
_comp_nodes.resize(_comp_num); |
450 | 450 |
if (_comp_num == 1) { |
451 | 451 |
_comp_nodes[0].clear(); |
452 | 452 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
453 | 453 |
_comp_nodes[0].push_back(n); |
454 | 454 |
_in_arcs[n].clear(); |
455 | 455 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
456 | 456 |
_in_arcs[n].push_back(a); |
457 | 457 |
} |
458 | 458 |
} |
459 | 459 |
} else { |
460 | 460 |
for (int i = 0; i < _comp_num; ++i) |
461 | 461 |
_comp_nodes[i].clear(); |
462 | 462 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
463 | 463 |
int k = _comp[n]; |
464 | 464 |
_comp_nodes[k].push_back(n); |
465 | 465 |
_in_arcs[n].clear(); |
466 | 466 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
467 | 467 |
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); |
468 | 468 |
} |
469 | 469 |
} |
470 | 470 |
} |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
// Build the policy graph in the given strongly connected component |
474 | 474 |
// (the out-degree of every node is 1) |
475 | 475 |
bool buildPolicyGraph(int comp) { |
476 | 476 |
_nodes = &(_comp_nodes[comp]); |
477 | 477 |
if (_nodes->size() < 1 || |
478 | 478 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { |
479 | 479 |
return false; |
480 | 480 |
} |
481 | 481 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
482 | 482 |
_dist[(*_nodes)[i]] = INF; |
483 | 483 |
} |
484 | 484 |
Node u, v; |
485 | 485 |
Arc e; |
486 | 486 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
487 | 487 |
v = (*_nodes)[i]; |
488 | 488 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
489 | 489 |
e = _in_arcs[v][j]; |
490 | 490 |
u = _gr.source(e); |
491 | 491 |
if (_length[e] < _dist[u]) { |
492 | 492 |
_dist[u] = _length[e]; |
493 | 493 |
_policy[u] = e; |
494 | 494 |
} |
495 | 495 |
} |
496 | 496 |
} |
497 | 497 |
return true; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
// Find the minimum mean cycle in the policy graph |
501 | 501 |
void findPolicyCycle() { |
502 | 502 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
503 | 503 |
_level[(*_nodes)[i]] = -1; |
504 | 504 |
} |
505 | 505 |
LargeValue clength; |
506 | 506 |
int csize; |
507 | 507 |
Node u, v; |
508 | 508 |
_curr_found = false; |
509 | 509 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
510 | 510 |
u = (*_nodes)[i]; |
511 | 511 |
if (_level[u] >= 0) continue; |
512 | 512 |
for (; _level[u] < 0; u = _gr.target(_policy[u])) { |
513 | 513 |
_level[u] = i; |
514 | 514 |
} |
515 | 515 |
if (_level[u] == i) { |
516 | 516 |
// A cycle is found |
517 | 517 |
clength = _length[_policy[u]]; |
518 | 518 |
csize = 1; |
519 | 519 |
for (v = u; (v = _gr.target(_policy[v])) != u; ) { |
520 | 520 |
clength += _length[_policy[v]]; |
521 | 521 |
++csize; |
522 | 522 |
} |
523 | 523 |
if ( !_curr_found || |
524 | 524 |
(clength * _curr_size < _curr_length * csize) ) { |
525 | 525 |
_curr_found = true; |
526 | 526 |
_curr_length = clength; |
527 | 527 |
_curr_size = csize; |
528 | 528 |
_curr_node = u; |
529 | 529 |
} |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
|
534 | 534 |
// Contract the policy graph and compute node distances |
535 | 535 |
bool computeNodeDistances() { |
536 | 536 |
// Find the component of the main cycle and compute node distances |
537 | 537 |
// using reverse BFS |
538 | 538 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
539 | 539 |
_reached[(*_nodes)[i]] = false; |
540 | 540 |
} |
541 | 541 |
_qfront = _qback = 0; |
542 | 542 |
_queue[0] = _curr_node; |
543 | 543 |
_reached[_curr_node] = true; |
544 | 544 |
_dist[_curr_node] = 0; |
545 | 545 |
Node u, v; |
546 | 546 |
Arc e; |
547 | 547 |
while (_qfront <= _qback) { |
548 | 548 |
v = _queue[_qfront++]; |
549 | 549 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
550 | 550 |
e = _in_arcs[v][j]; |
551 | 551 |
u = _gr.source(e); |
552 | 552 |
if (_policy[u] == e && !_reached[u]) { |
553 | 553 |
_reached[u] = true; |
554 | 554 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
555 | 555 |
_queue[++_qback] = u; |
556 | 556 |
} |
557 | 557 |
} |
558 | 558 |
} |
559 | 559 |
|
560 | 560 |
// Connect all other nodes to this component and compute node |
561 | 561 |
// distances using reverse BFS |
562 | 562 |
_qfront = 0; |
563 | 563 |
while (_qback < int(_nodes->size())-1) { |
564 | 564 |
v = _queue[_qfront++]; |
565 | 565 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
566 | 566 |
e = _in_arcs[v][j]; |
567 | 567 |
u = _gr.source(e); |
568 | 568 |
if (!_reached[u]) { |
569 | 569 |
_reached[u] = true; |
570 | 570 |
_policy[u] = e; |
571 | 571 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
572 | 572 |
_queue[++_qback] = u; |
573 | 573 |
} |
574 | 574 |
} |
575 | 575 |
} |
576 | 576 |
|
577 | 577 |
// Improve node distances |
578 | 578 |
bool improved = false; |
579 | 579 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
580 | 580 |
v = (*_nodes)[i]; |
581 | 581 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) { |
582 | 582 |
e = _in_arcs[v][j]; |
583 | 583 |
u = _gr.source(e); |
584 | 584 |
LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; |
585 | 585 |
if (_tolerance.less(delta, _dist[u])) { |
586 | 586 |
_dist[u] = delta; |
587 | 587 |
_policy[u] = e; |
588 | 588 |
improved = true; |
589 | 589 |
} |
590 | 590 |
} |
591 | 591 |
} |
592 | 592 |
return improved; |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
}; //class Howard |
596 | 596 |
|
597 | 597 |
///@} |
598 | 598 |
|
599 | 599 |
} //namespace lemon |
600 | 600 |
|
601 | 601 |
#endif //LEMON_HOWARD_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KARP_H |
20 | 20 |
#define LEMON_KARP_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_mean_cycle |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Karp's algorithm for finding a minimum mean cycle. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/connectivity.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \brief Default traits class of Karp algorithm. |
37 | 37 |
/// |
38 | 38 |
/// Default traits class of Karp algorithm. |
39 | 39 |
/// \tparam GR The type of the digraph. |
40 | 40 |
/// \tparam LEN The type of the length map. |
41 | 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
42 | 42 |
#ifdef DOXYGEN |
43 | 43 |
template <typename GR, typename LEN> |
44 | 44 |
#else |
45 | 45 |
template <typename GR, typename LEN, |
46 | 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
47 | 47 |
#endif |
48 | 48 |
struct KarpDefaultTraits |
49 | 49 |
{ |
50 | 50 |
/// The type of the digraph |
51 | 51 |
typedef GR Digraph; |
52 | 52 |
/// The type of the length map |
53 | 53 |
typedef LEN LengthMap; |
54 | 54 |
/// The type of the arc lengths |
55 | 55 |
typedef typename LengthMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The large value type used for internal computations |
58 | 58 |
/// |
59 | 59 |
/// The large value type used for internal computations. |
60 | 60 |
/// It is \c long \c long if the \c Value type is integer, |
61 | 61 |
/// otherwise it is \c double. |
62 | 62 |
/// \c Value must be convertible to \c LargeValue. |
63 | 63 |
typedef double LargeValue; |
64 | 64 |
|
65 | 65 |
/// The tolerance type used for internal computations |
66 | 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
67 | 67 |
|
68 | 68 |
/// \brief The path type of the found cycles |
69 | 69 |
/// |
70 | 70 |
/// The path type of the found cycles. |
71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
72 | 72 |
/// and it must have an \c addFront() function. |
73 | 73 |
typedef lemon::Path<Digraph> Path; |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
// Default traits class for integer value types |
77 | 77 |
template <typename GR, typename LEN> |
78 | 78 |
struct KarpDefaultTraits<GR, LEN, true> |
79 | 79 |
{ |
80 | 80 |
typedef GR Digraph; |
81 | 81 |
typedef LEN LengthMap; |
82 | 82 |
typedef typename LengthMap::Value Value; |
83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
84 | 84 |
typedef long long LargeValue; |
85 | 85 |
#else |
86 | 86 |
typedef long LargeValue; |
87 | 87 |
#endif |
88 | 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
89 | 89 |
typedef lemon::Path<Digraph> Path; |
90 | 90 |
}; |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
/// \addtogroup min_mean_cycle |
94 | 94 |
/// @{ |
95 | 95 |
|
96 | 96 |
/// \brief Implementation of Karp's algorithm for finding a minimum |
97 | 97 |
/// mean cycle. |
98 | 98 |
/// |
99 | 99 |
/// This class implements Karp's algorithm for finding a directed |
100 | 100 |
/// cycle of minimum mean length (cost) in a digraph |
101 | 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
102 | 102 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
103 | 103 |
/// |
104 | 104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
105 | 105 |
/// \tparam LEN The type of the length map. The default |
106 | 106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
107 | 107 |
/// \tparam TR The traits class that defines various types used by the |
108 | 108 |
/// algorithm. By default, it is \ref KarpDefaultTraits |
109 | 109 |
/// "KarpDefaultTraits<GR, LEN>". |
110 | 110 |
/// In most cases, this parameter should not be set directly, |
111 | 111 |
/// consider to use the named template parameters instead. |
112 | 112 |
#ifdef DOXYGEN |
113 | 113 |
template <typename GR, typename LEN, typename TR> |
114 | 114 |
#else |
115 | 115 |
template < typename GR, |
116 | 116 |
typename LEN = typename GR::template ArcMap<int>, |
117 | 117 |
typename TR = KarpDefaultTraits<GR, LEN> > |
118 | 118 |
#endif |
119 | 119 |
class Karp |
120 | 120 |
{ |
121 | 121 |
public: |
122 | 122 |
|
123 | 123 |
/// The type of the digraph |
124 | 124 |
typedef typename TR::Digraph Digraph; |
125 | 125 |
/// The type of the length map |
126 | 126 |
typedef typename TR::LengthMap LengthMap; |
127 | 127 |
/// The type of the arc lengths |
128 | 128 |
typedef typename TR::Value Value; |
129 | 129 |
|
130 | 130 |
/// \brief The large value type |
131 | 131 |
/// |
132 | 132 |
/// The large value type used for internal computations. |
133 | 133 |
/// By default, it is \c long \c long if the \c Value type is integer, |
134 | 134 |
/// otherwise it is \c double. |
135 | 135 |
typedef typename TR::LargeValue LargeValue; |
136 | 136 |
|
137 | 137 |
/// The tolerance type |
138 | 138 |
typedef typename TR::Tolerance Tolerance; |
139 | 139 |
|
140 | 140 |
/// \brief The path type of the found cycles |
141 | 141 |
/// |
142 | 142 |
/// The path type of the found cycles. |
143 | 143 |
/// Using the \ref KarpDefaultTraits "default traits class", |
144 | 144 |
/// it is \ref lemon::Path "Path<Digraph>". |
145 | 145 |
typedef typename TR::Path Path; |
146 | 146 |
|
147 | 147 |
/// The \ref KarpDefaultTraits "traits class" of the algorithm |
148 | 148 |
typedef TR Traits; |
149 | 149 |
|
150 | 150 |
private: |
151 | 151 |
|
152 | 152 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
153 | 153 |
|
154 | 154 |
// Data sturcture for path data |
155 | 155 |
struct PathData |
156 | 156 |
{ |
157 | 157 |
LargeValue dist; |
158 | 158 |
Arc pred; |
159 | 159 |
PathData(LargeValue d, Arc p = INVALID) : |
160 | 160 |
dist(d), pred(p) {} |
161 | 161 |
}; |
162 | 162 |
|
163 | 163 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
164 | 164 |
PathDataNodeMap; |
165 | 165 |
|
166 | 166 |
private: |
167 | 167 |
|
168 | 168 |
// The digraph the algorithm runs on |
169 | 169 |
const Digraph &_gr; |
170 | 170 |
// The length of the arcs |
171 | 171 |
const LengthMap &_length; |
172 | 172 |
|
173 | 173 |
// Data for storing the strongly connected components |
174 | 174 |
int _comp_num; |
175 | 175 |
typename Digraph::template NodeMap<int> _comp; |
176 | 176 |
std::vector<std::vector<Node> > _comp_nodes; |
177 | 177 |
std::vector<Node>* _nodes; |
178 | 178 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
179 | 179 |
|
180 | 180 |
// Data for the found cycle |
181 | 181 |
LargeValue _cycle_length; |
182 | 182 |
int _cycle_size; |
183 | 183 |
Node _cycle_node; |
184 | 184 |
|
185 | 185 |
Path *_cycle_path; |
186 | 186 |
bool _local_path; |
187 | 187 |
|
188 | 188 |
// Node map for storing path data |
189 | 189 |
PathDataNodeMap _data; |
190 | 190 |
// The processed nodes in the last round |
191 | 191 |
std::vector<Node> _process; |
192 | 192 |
|
193 | 193 |
Tolerance _tolerance; |
194 | 194 |
|
195 | 195 |
// Infinite constant |
196 | 196 |
const LargeValue INF; |
197 | 197 |
|
198 | 198 |
public: |
199 | 199 |
|
200 | 200 |
/// \name Named Template Parameters |
201 | 201 |
/// @{ |
202 | 202 |
|
203 | 203 |
template <typename T> |
204 | 204 |
struct SetLargeValueTraits : public Traits { |
205 | 205 |
typedef T LargeValue; |
206 | 206 |
typedef lemon::Tolerance<T> Tolerance; |
207 | 207 |
}; |
208 | 208 |
|
209 | 209 |
/// \brief \ref named-templ-param "Named parameter" for setting |
210 | 210 |
/// \c LargeValue type. |
211 | 211 |
/// |
212 | 212 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
213 | 213 |
/// type. It is used for internal computations in the algorithm. |
214 | 214 |
template <typename T> |
215 | 215 |
struct SetLargeValue |
216 | 216 |
: public Karp<GR, LEN, SetLargeValueTraits<T> > { |
217 | 217 |
typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create; |
218 | 218 |
}; |
219 | 219 |
|
220 | 220 |
template <typename T> |
221 | 221 |
struct SetPathTraits : public Traits { |
222 | 222 |
typedef T Path; |
223 | 223 |
}; |
224 | 224 |
|
225 | 225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
226 | 226 |
/// \c %Path type. |
227 | 227 |
/// |
228 | 228 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
229 | 229 |
/// type of the found cycles. |
230 | 230 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
231 | 231 |
/// and it must have an \c addFront() function. |
232 | 232 |
template <typename T> |
233 | 233 |
struct SetPath |
234 | 234 |
: public Karp<GR, LEN, SetPathTraits<T> > { |
235 | 235 |
typedef Karp<GR, LEN, SetPathTraits<T> > Create; |
236 | 236 |
}; |
237 | 237 |
|
238 | 238 |
/// @} |
239 | 239 |
|
240 | 240 |
public: |
241 | 241 |
|
242 | 242 |
/// \brief Constructor. |
243 | 243 |
/// |
244 | 244 |
/// The constructor of the class. |
245 | 245 |
/// |
246 | 246 |
/// \param digraph The digraph the algorithm runs on. |
247 | 247 |
/// \param length The lengths (costs) of the arcs. |
248 | 248 |
Karp( const Digraph &digraph, |
249 | 249 |
const LengthMap &length ) : |
250 | 250 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
251 | 251 |
_cycle_length(0), _cycle_size(1), _cycle_node(INVALID), |
252 | 252 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
253 | 253 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
254 | 254 |
std::numeric_limits<LargeValue>::infinity() : |
255 | 255 |
std::numeric_limits<LargeValue>::max()) |
256 | 256 |
{} |
257 | 257 |
|
258 | 258 |
/// Destructor. |
259 | 259 |
~Karp() { |
260 | 260 |
if (_local_path) delete _cycle_path; |
261 | 261 |
} |
262 | 262 |
|
263 | 263 |
/// \brief Set the path structure for storing the found cycle. |
264 | 264 |
/// |
265 | 265 |
/// This function sets an external path structure for storing the |
266 | 266 |
/// found cycle. |
267 | 267 |
/// |
268 | 268 |
/// If you don't call this function before calling \ref run() or |
269 | 269 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
270 | 270 |
/// structure. The destuctor deallocates this automatically |
271 | 271 |
/// allocated object, of course. |
272 | 272 |
/// |
273 | 273 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
274 | 274 |
/// "addFront()" function of the given path structure. |
275 | 275 |
/// |
276 | 276 |
/// \return <tt>(*this)</tt> |
277 | 277 |
Karp& cycle(Path &path) { |
278 | 278 |
if (_local_path) { |
279 | 279 |
delete _cycle_path; |
280 | 280 |
_local_path = false; |
281 | 281 |
} |
282 | 282 |
_cycle_path = &path; |
283 | 283 |
return *this; |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
/// \brief Set the tolerance used by the algorithm. |
287 | 287 |
/// |
288 | 288 |
/// This function sets the tolerance object used by the algorithm. |
289 | 289 |
/// |
290 | 290 |
/// \return <tt>(*this)</tt> |
291 | 291 |
Karp& tolerance(const Tolerance& tolerance) { |
292 | 292 |
_tolerance = tolerance; |
293 | 293 |
return *this; |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
/// \brief Return a const reference to the tolerance. |
297 | 297 |
/// |
298 | 298 |
/// This function returns a const reference to the tolerance object |
299 | 299 |
/// used by the algorithm. |
300 | 300 |
const Tolerance& tolerance() const { |
301 | 301 |
return _tolerance; |
302 | 302 |
} |
303 | 303 |
|
304 | 304 |
/// \name Execution control |
305 | 305 |
/// The simplest way to execute the algorithm is to call the \ref run() |
306 | 306 |
/// function.\n |
307 | 307 |
/// If you only need the minimum mean length, you may call |
308 | 308 |
/// \ref findMinMean(). |
309 | 309 |
|
310 | 310 |
/// @{ |
311 | 311 |
|
312 | 312 |
/// \brief Run the algorithm. |
313 | 313 |
/// |
314 | 314 |
/// This function runs the algorithm. |
315 | 315 |
/// It can be called more than once (e.g. if the underlying digraph |
316 | 316 |
/// and/or the arc lengths have been modified). |
317 | 317 |
/// |
318 | 318 |
/// \return \c true if a directed cycle exists in the digraph. |
319 | 319 |
/// |
320 | 320 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
321 | 321 |
/// \code |
322 | 322 |
/// return mmc.findMinMean() && mmc.findCycle(); |
323 | 323 |
/// \endcode |
324 | 324 |
bool run() { |
325 | 325 |
return findMinMean() && findCycle(); |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
/// \brief Find the minimum cycle mean. |
329 | 329 |
/// |
330 | 330 |
/// This function finds the minimum mean length of the directed |
331 | 331 |
/// cycles in the digraph. |
332 | 332 |
/// |
333 | 333 |
/// \return \c true if a directed cycle exists in the digraph. |
334 | 334 |
bool findMinMean() { |
335 | 335 |
// Initialization and find strongly connected components |
336 | 336 |
init(); |
337 | 337 |
findComponents(); |
338 | 338 |
|
339 | 339 |
// Find the minimum cycle mean in the components |
340 | 340 |
for (int comp = 0; comp < _comp_num; ++comp) { |
341 | 341 |
if (!initComponent(comp)) continue; |
342 | 342 |
processRounds(); |
343 | 343 |
updateMinMean(); |
344 | 344 |
} |
345 | 345 |
return (_cycle_node != INVALID); |
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
/// \brief Find a minimum mean directed cycle. |
349 | 349 |
/// |
350 | 350 |
/// This function finds a directed cycle of minimum mean length |
351 | 351 |
/// in the digraph using the data computed by findMinMean(). |
352 | 352 |
/// |
353 | 353 |
/// \return \c true if a directed cycle exists in the digraph. |
354 | 354 |
/// |
355 | 355 |
/// \pre \ref findMinMean() must be called before using this function. |
356 | 356 |
bool findCycle() { |
357 | 357 |
if (_cycle_node == INVALID) return false; |
358 | 358 |
IntNodeMap reached(_gr, -1); |
359 | 359 |
int r = _data[_cycle_node].size(); |
360 | 360 |
Node u = _cycle_node; |
361 | 361 |
while (reached[u] < 0) { |
362 | 362 |
reached[u] = --r; |
363 | 363 |
u = _gr.source(_data[u][r].pred); |
364 | 364 |
} |
365 | 365 |
r = reached[u]; |
366 | 366 |
Arc e = _data[u][r].pred; |
367 | 367 |
_cycle_path->addFront(e); |
368 | 368 |
_cycle_length = _length[e]; |
369 | 369 |
_cycle_size = 1; |
370 | 370 |
Node v; |
371 | 371 |
while ((v = _gr.source(e)) != u) { |
372 | 372 |
e = _data[v][--r].pred; |
373 | 373 |
_cycle_path->addFront(e); |
374 | 374 |
_cycle_length += _length[e]; |
375 | 375 |
++_cycle_size; |
376 | 376 |
} |
377 | 377 |
return true; |
378 | 378 |
} |
379 | 379 |
|
380 | 380 |
/// @} |
381 | 381 |
|
382 | 382 |
/// \name Query Functions |
383 | 383 |
/// The results of the algorithm can be obtained using these |
384 | 384 |
/// functions.\n |
385 | 385 |
/// The algorithm should be executed before using them. |
386 | 386 |
|
387 | 387 |
/// @{ |
388 | 388 |
|
389 | 389 |
/// \brief Return the total length of the found cycle. |
390 | 390 |
/// |
391 | 391 |
/// This function returns the total length of the found cycle. |
392 | 392 |
/// |
393 | 393 |
/// \pre \ref run() or \ref findMinMean() must be called before |
394 | 394 |
/// using this function. |
395 |
LargeValue cycleLength() const { |
|
396 |
return _cycle_length; |
|
395 |
Value cycleLength() const { |
|
396 |
return static_cast<Value>(_cycle_length); |
|
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Return the number of arcs on the found cycle. |
400 | 400 |
/// |
401 | 401 |
/// This function returns the number of arcs on the found cycle. |
402 | 402 |
/// |
403 | 403 |
/// \pre \ref run() or \ref findMinMean() must be called before |
404 | 404 |
/// using this function. |
405 | 405 |
int cycleArcNum() const { |
406 | 406 |
return _cycle_size; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
/// \brief Return the mean length of the found cycle. |
410 | 410 |
/// |
411 | 411 |
/// This function returns the mean length of the found cycle. |
412 | 412 |
/// |
413 | 413 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
414 | 414 |
/// following code. |
415 | 415 |
/// \code |
416 | 416 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
417 | 417 |
/// \endcode |
418 | 418 |
/// |
419 | 419 |
/// \pre \ref run() or \ref findMinMean() must be called before |
420 | 420 |
/// using this function. |
421 | 421 |
double cycleMean() const { |
422 | 422 |
return static_cast<double>(_cycle_length) / _cycle_size; |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
/// \brief Return the found cycle. |
426 | 426 |
/// |
427 | 427 |
/// This function returns a const reference to the path structure |
428 | 428 |
/// storing the found cycle. |
429 | 429 |
/// |
430 | 430 |
/// \pre \ref run() or \ref findCycle() must be called before using |
431 | 431 |
/// this function. |
432 | 432 |
const Path& cycle() const { |
433 | 433 |
return *_cycle_path; |
434 | 434 |
} |
435 | 435 |
|
436 | 436 |
///@} |
437 | 437 |
|
438 | 438 |
private: |
439 | 439 |
|
440 | 440 |
// Initialization |
441 | 441 |
void init() { |
442 | 442 |
if (!_cycle_path) { |
443 | 443 |
_local_path = true; |
444 | 444 |
_cycle_path = new Path; |
445 | 445 |
} |
446 | 446 |
_cycle_path->clear(); |
447 | 447 |
_cycle_length = 0; |
448 | 448 |
_cycle_size = 1; |
449 | 449 |
_cycle_node = INVALID; |
450 | 450 |
for (NodeIt u(_gr); u != INVALID; ++u) |
451 | 451 |
_data[u].clear(); |
452 | 452 |
} |
453 | 453 |
|
454 | 454 |
// Find strongly connected components and initialize _comp_nodes |
455 | 455 |
// and _out_arcs |
456 | 456 |
void findComponents() { |
457 | 457 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
458 | 458 |
_comp_nodes.resize(_comp_num); |
459 | 459 |
if (_comp_num == 1) { |
460 | 460 |
_comp_nodes[0].clear(); |
461 | 461 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
462 | 462 |
_comp_nodes[0].push_back(n); |
463 | 463 |
_out_arcs[n].clear(); |
464 | 464 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
465 | 465 |
_out_arcs[n].push_back(a); |
466 | 466 |
} |
467 | 467 |
} |
468 | 468 |
} else { |
469 | 469 |
for (int i = 0; i < _comp_num; ++i) |
470 | 470 |
_comp_nodes[i].clear(); |
471 | 471 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
472 | 472 |
int k = _comp[n]; |
473 | 473 |
_comp_nodes[k].push_back(n); |
474 | 474 |
_out_arcs[n].clear(); |
475 | 475 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
476 | 476 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
477 | 477 |
} |
478 | 478 |
} |
479 | 479 |
} |
480 | 480 |
} |
481 | 481 |
|
482 | 482 |
// Initialize path data for the current component |
483 | 483 |
bool initComponent(int comp) { |
484 | 484 |
_nodes = &(_comp_nodes[comp]); |
485 | 485 |
int n = _nodes->size(); |
486 | 486 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
487 | 487 |
return false; |
488 | 488 |
} |
489 | 489 |
for (int i = 0; i < n; ++i) { |
490 | 490 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
491 | 491 |
} |
492 | 492 |
return true; |
493 | 493 |
} |
494 | 494 |
|
495 | 495 |
// Process all rounds of computing path data for the current component. |
496 | 496 |
// _data[v][k] is the length of a shortest directed walk from the root |
497 | 497 |
// node to node v containing exactly k arcs. |
498 | 498 |
void processRounds() { |
499 | 499 |
Node start = (*_nodes)[0]; |
500 | 500 |
_data[start][0] = PathData(0); |
501 | 501 |
_process.clear(); |
502 | 502 |
_process.push_back(start); |
503 | 503 |
|
504 | 504 |
int k, n = _nodes->size(); |
505 | 505 |
for (k = 1; k <= n && int(_process.size()) < n; ++k) { |
506 | 506 |
processNextBuildRound(k); |
507 | 507 |
} |
508 | 508 |
for ( ; k <= n; ++k) { |
509 | 509 |
processNextFullRound(k); |
510 | 510 |
} |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
// Process one round and rebuild _process |
514 | 514 |
void processNextBuildRound(int k) { |
515 | 515 |
std::vector<Node> next; |
516 | 516 |
Node u, v; |
517 | 517 |
Arc e; |
518 | 518 |
LargeValue d; |
519 | 519 |
for (int i = 0; i < int(_process.size()); ++i) { |
520 | 520 |
u = _process[i]; |
521 | 521 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
522 | 522 |
e = _out_arcs[u][j]; |
523 | 523 |
v = _gr.target(e); |
524 | 524 |
d = _data[u][k-1].dist + _length[e]; |
525 | 525 |
if (_tolerance.less(d, _data[v][k].dist)) { |
526 | 526 |
if (_data[v][k].dist == INF) next.push_back(v); |
527 | 527 |
_data[v][k] = PathData(d, e); |
528 | 528 |
} |
529 | 529 |
} |
530 | 530 |
} |
531 | 531 |
_process.swap(next); |
532 | 532 |
} |
533 | 533 |
|
534 | 534 |
// Process one round using _nodes instead of _process |
535 | 535 |
void processNextFullRound(int k) { |
536 | 536 |
Node u, v; |
537 | 537 |
Arc e; |
538 | 538 |
LargeValue d; |
539 | 539 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
540 | 540 |
u = (*_nodes)[i]; |
541 | 541 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
542 | 542 |
e = _out_arcs[u][j]; |
543 | 543 |
v = _gr.target(e); |
544 | 544 |
d = _data[u][k-1].dist + _length[e]; |
545 | 545 |
if (_tolerance.less(d, _data[v][k].dist)) { |
546 | 546 |
_data[v][k] = PathData(d, e); |
547 | 547 |
} |
548 | 548 |
} |
549 | 549 |
} |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
// Update the minimum cycle mean |
553 | 553 |
void updateMinMean() { |
554 | 554 |
int n = _nodes->size(); |
555 | 555 |
for (int i = 0; i < n; ++i) { |
556 | 556 |
Node u = (*_nodes)[i]; |
557 | 557 |
if (_data[u][n].dist == INF) continue; |
558 | 558 |
LargeValue length, max_length = 0; |
559 | 559 |
int size, max_size = 1; |
560 | 560 |
bool found_curr = false; |
561 | 561 |
for (int k = 0; k < n; ++k) { |
562 | 562 |
if (_data[u][k].dist == INF) continue; |
563 | 563 |
length = _data[u][n].dist - _data[u][k].dist; |
564 | 564 |
size = n - k; |
565 | 565 |
if (!found_curr || length * max_size > max_length * size) { |
566 | 566 |
found_curr = true; |
567 | 567 |
max_length = length; |
568 | 568 |
max_size = size; |
569 | 569 |
} |
570 | 570 |
} |
571 | 571 |
if ( found_curr && (_cycle_node == INVALID || |
572 | 572 |
max_length * _cycle_size < _cycle_length * max_size) ) { |
573 | 573 |
_cycle_length = max_length; |
574 | 574 |
_cycle_size = max_size; |
575 | 575 |
_cycle_node = u; |
576 | 576 |
} |
577 | 577 |
} |
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
}; //class Karp |
581 | 581 |
|
582 | 582 |
///@} |
583 | 583 |
|
584 | 584 |
} //namespace lemon |
585 | 585 |
|
586 | 586 |
#endif //LEMON_KARP_H |
0 comments (0 inline)