0
2
0
138
20
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/list_graph.h> |
32 | 32 |
#include <lemon/dijkstra.h> |
33 | 33 |
#include <lemon/maps.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 |
/// \brief Default traits class of Suurballe algorithm. |
|
38 |
/// |
|
39 |
/// Default traits class of Suurballe algorithm. |
|
40 |
/// \tparam GR The digraph type the algorithm runs on. |
|
41 |
/// \tparam LEN The type of the length map. |
|
42 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
|
43 |
#ifdef DOXYGEN |
|
44 |
template <typename GR, typename LEN> |
|
45 |
#else |
|
46 |
template < typename GR, |
|
47 |
typename LEN = typename GR::template ArcMap<int> > |
|
48 |
#endif |
|
49 |
struct SuurballeDefaultTraits |
|
50 |
{ |
|
51 |
/// The type of the digraph. |
|
52 |
typedef GR Digraph; |
|
53 |
/// The type of the length map. |
|
54 |
typedef LEN LengthMap; |
|
55 |
/// The type of the lengths. |
|
56 |
typedef typename LEN::Value Length; |
|
57 |
/// The type of the flow map. |
|
58 |
typedef typename GR::template ArcMap<int> FlowMap; |
|
59 |
/// The type of the potential map. |
|
60 |
typedef typename GR::template NodeMap<Length> PotentialMap; |
|
61 |
|
|
62 |
/// \brief The path type |
|
63 |
/// |
|
64 |
/// The type used for storing the found arc-disjoint paths. |
|
65 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
66 |
/// and it must have an \c addBack() function. |
|
67 |
typedef lemon::Path<Digraph> Path; |
|
68 |
|
|
69 |
/// The cross reference type used for the heap. |
|
70 |
typedef typename GR::template NodeMap<int> HeapCrossRef; |
|
71 |
|
|
72 |
/// \brief The heap type used for internal Dijkstra computations. |
|
73 |
/// |
|
74 |
/// The type of the heap used for internal Dijkstra computations. |
|
75 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept |
|
76 |
/// and its priority type must be \c Length. |
|
77 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
78 |
}; |
|
79 |
|
|
37 | 80 |
/// \addtogroup shortest_path |
38 | 81 |
/// @{ |
39 | 82 |
|
40 | 83 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
41 | 84 |
/// having minimum total length. |
42 | 85 |
/// |
43 | 86 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
44 | 87 |
/// finding arc-disjoint paths having minimum total length (cost) |
45 | 88 |
/// from a given source node to a given target node in a digraph. |
46 | 89 |
/// |
47 | 90 |
/// Note that this problem is a special case of the \ref min_cost_flow |
48 | 91 |
/// "minimum cost flow problem". This implementation is actually an |
49 | 92 |
/// efficient specialized version of the \ref CapacityScaling |
50 | 93 |
/// "successive shortest path" algorithm directly for this problem. |
51 | 94 |
/// Therefore this class provides query functions for flow values and |
52 | 95 |
/// node potentials (the dual solution) just like the minimum cost flow |
53 | 96 |
/// algorithms. |
54 | 97 |
/// |
55 | 98 |
/// \tparam GR The digraph type the algorithm runs on. |
56 | 99 |
/// \tparam LEN The type of the length map. |
57 | 100 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
58 | 101 |
/// |
59 | 102 |
/// \warning Length values should be \e non-negative. |
60 | 103 |
/// |
61 | 104 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
62 | 105 |
/// along with the \ref SplitNodes adaptor. |
63 | 106 |
#ifdef DOXYGEN |
64 |
template <typename GR, typename LEN> |
|
107 |
template <typename GR, typename LEN, typename TR> |
|
65 | 108 |
#else |
66 | 109 |
template < typename GR, |
67 |
typename LEN = typename GR::template ArcMap<int> |
|
110 |
typename LEN = typename GR::template ArcMap<int>, |
|
111 |
typename TR = SuurballeDefaultTraits<GR, LEN> > |
|
68 | 112 |
#endif |
69 | 113 |
class Suurballe |
70 | 114 |
{ |
71 | 115 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
72 | 116 |
|
73 | 117 |
typedef ConstMap<Arc, int> ConstArcMap; |
74 | 118 |
typedef typename GR::template NodeMap<Arc> PredMap; |
75 | 119 |
|
76 | 120 |
public: |
77 | 121 |
|
78 |
/// The type of the digraph the algorithm runs on. |
|
79 |
typedef GR Digraph; |
|
122 |
/// The type of the digraph. |
|
123 |
typedef typename TR::Digraph Digraph; |
|
80 | 124 |
/// The type of the length map. |
81 |
typedef |
|
125 |
typedef typename TR::LengthMap LengthMap; |
|
82 | 126 |
/// The type of the lengths. |
83 |
typedef typename LengthMap::Value Length; |
|
84 |
#ifdef DOXYGEN |
|
127 |
typedef typename TR::Length Length; |
|
128 |
|
|
85 | 129 |
/// The type of the flow map. |
86 |
typedef |
|
130 |
typedef typename TR::FlowMap FlowMap; |
|
87 | 131 |
/// The type of the potential map. |
88 |
typedef GR::NodeMap<Length> PotentialMap; |
|
89 |
#else |
|
90 |
/// The type of the flow map. |
|
91 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
|
92 |
/// The type of the potential map. |
|
93 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
|
94 |
|
|
132 |
typedef typename TR::PotentialMap PotentialMap; |
|
133 |
/// The type of the path structures. |
|
134 |
typedef typename TR::Path Path; |
|
135 |
/// The cross reference type used for the heap. |
|
136 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
|
137 |
/// The heap type used for internal Dijkstra computations. |
|
138 |
typedef typename TR::Heap Heap; |
|
95 | 139 |
|
96 |
/// The type of the path structures. |
|
97 |
typedef SimplePath<GR> Path; |
|
140 |
/// The \ref SuurballeDefaultTraits "traits class" of the algorithm. |
|
141 |
typedef TR Traits; |
|
98 | 142 |
|
99 | 143 |
private: |
100 | 144 |
|
101 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
102 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
103 |
|
|
104 | 145 |
// ResidualDijkstra is a special implementation of the |
105 | 146 |
// Dijkstra algorithm for finding shortest paths in the |
106 | 147 |
// residual network with respect to the reduced arc lengths |
107 | 148 |
// and modifying the node potentials according to the |
108 | 149 |
// distance of the nodes. |
109 | 150 |
class ResidualDijkstra |
110 | 151 |
{ |
111 | 152 |
private: |
112 | 153 |
|
113 | 154 |
const Digraph &_graph; |
114 | 155 |
const LengthMap &_length; |
115 | 156 |
const FlowMap &_flow; |
116 | 157 |
PotentialMap &_pi; |
117 | 158 |
PredMap &_pred; |
118 | 159 |
Node _s; |
119 | 160 |
Node _t; |
120 | 161 |
|
121 | 162 |
PotentialMap _dist; |
122 | 163 |
std::vector<Node> _proc_nodes; |
123 | 164 |
|
124 | 165 |
public: |
125 | 166 |
|
126 | 167 |
// Constructor |
127 | 168 |
ResidualDijkstra(Suurballe &srb) : |
128 | 169 |
_graph(srb._graph), _length(srb._length), |
129 | 170 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
130 | 171 |
_s(srb._s), _t(srb._t), _dist(_graph) {} |
131 | 172 |
|
132 | 173 |
// Run the algorithm and return true if a path is found |
133 | 174 |
// from the source node to the target node. |
134 | 175 |
bool run(int cnt) { |
135 | 176 |
return cnt == 0 ? startFirst() : start(); |
136 | 177 |
} |
137 | 178 |
|
138 | 179 |
private: |
139 | 180 |
|
140 | 181 |
// Execute the algorithm for the first time (the flow and potential |
141 | 182 |
// functions have to be identically zero). |
142 | 183 |
bool startFirst() { |
143 | 184 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
144 | 185 |
Heap heap(heap_cross_ref); |
145 | 186 |
heap.push(_s, 0); |
146 | 187 |
_pred[_s] = INVALID; |
147 | 188 |
_proc_nodes.clear(); |
148 | 189 |
|
149 | 190 |
// Process nodes |
150 | 191 |
while (!heap.empty() && heap.top() != _t) { |
151 | 192 |
Node u = heap.top(), v; |
152 | 193 |
Length d = heap.prio(), dn; |
153 | 194 |
_dist[u] = heap.prio(); |
154 | 195 |
_proc_nodes.push_back(u); |
155 | 196 |
heap.pop(); |
156 | 197 |
|
157 | 198 |
// Traverse outgoing arcs |
158 | 199 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
159 | 200 |
v = _graph.target(e); |
160 | 201 |
switch(heap.state(v)) { |
161 | 202 |
case Heap::PRE_HEAP: |
162 | 203 |
heap.push(v, d + _length[e]); |
163 | 204 |
_pred[v] = e; |
164 | 205 |
break; |
165 | 206 |
case Heap::IN_HEAP: |
166 | 207 |
dn = d + _length[e]; |
167 | 208 |
if (dn < heap[v]) { |
168 | 209 |
heap.decrease(v, dn); |
169 | 210 |
_pred[v] = e; |
170 | 211 |
} |
171 | 212 |
break; |
172 | 213 |
case Heap::POST_HEAP: |
173 | 214 |
break; |
174 | 215 |
} |
175 | 216 |
} |
176 | 217 |
} |
177 | 218 |
if (heap.empty()) return false; |
178 | 219 |
|
179 | 220 |
// Update potentials of processed nodes |
180 | 221 |
Length t_dist = heap.prio(); |
181 | 222 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
182 | 223 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist; |
183 | 224 |
return true; |
184 | 225 |
} |
185 | 226 |
|
186 | 227 |
// Execute the algorithm. |
187 | 228 |
bool start() { |
188 | 229 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
189 | 230 |
Heap heap(heap_cross_ref); |
190 | 231 |
heap.push(_s, 0); |
191 | 232 |
_pred[_s] = INVALID; |
192 | 233 |
_proc_nodes.clear(); |
193 | 234 |
|
194 | 235 |
// Process nodes |
195 | 236 |
while (!heap.empty() && heap.top() != _t) { |
196 | 237 |
Node u = heap.top(), v; |
197 | 238 |
Length d = heap.prio() + _pi[u], dn; |
198 | 239 |
_dist[u] = heap.prio(); |
199 | 240 |
_proc_nodes.push_back(u); |
200 | 241 |
heap.pop(); |
201 | 242 |
|
202 | 243 |
// Traverse outgoing arcs |
203 | 244 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
204 | 245 |
if (_flow[e] == 0) { |
205 | 246 |
v = _graph.target(e); |
206 | 247 |
switch(heap.state(v)) { |
207 | 248 |
case Heap::PRE_HEAP: |
208 | 249 |
heap.push(v, d + _length[e] - _pi[v]); |
209 | 250 |
_pred[v] = e; |
210 | 251 |
break; |
211 | 252 |
case Heap::IN_HEAP: |
212 | 253 |
dn = d + _length[e] - _pi[v]; |
213 | 254 |
if (dn < heap[v]) { |
214 | 255 |
heap.decrease(v, dn); |
215 | 256 |
_pred[v] = e; |
216 | 257 |
} |
217 | 258 |
break; |
218 | 259 |
case Heap::POST_HEAP: |
219 | 260 |
break; |
220 | 261 |
} |
221 | 262 |
} |
222 | 263 |
} |
223 | 264 |
|
224 | 265 |
// Traverse incoming arcs |
225 | 266 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
226 | 267 |
if (_flow[e] == 1) { |
227 | 268 |
v = _graph.source(e); |
228 | 269 |
switch(heap.state(v)) { |
229 | 270 |
case Heap::PRE_HEAP: |
230 | 271 |
heap.push(v, d - _length[e] - _pi[v]); |
231 | 272 |
_pred[v] = e; |
232 | 273 |
break; |
233 | 274 |
case Heap::IN_HEAP: |
234 | 275 |
dn = d - _length[e] - _pi[v]; |
235 | 276 |
if (dn < heap[v]) { |
236 | 277 |
heap.decrease(v, dn); |
237 | 278 |
_pred[v] = e; |
238 | 279 |
} |
239 | 280 |
break; |
240 | 281 |
case Heap::POST_HEAP: |
241 | 282 |
break; |
242 | 283 |
} |
243 | 284 |
} |
244 | 285 |
} |
245 | 286 |
} |
246 | 287 |
if (heap.empty()) return false; |
247 | 288 |
|
248 | 289 |
// Update potentials of processed nodes |
249 | 290 |
Length t_dist = heap.prio(); |
250 | 291 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
251 | 292 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
252 | 293 |
return true; |
253 | 294 |
} |
254 | 295 |
|
255 | 296 |
}; //class ResidualDijkstra |
256 | 297 |
|
298 |
public: |
|
299 |
|
|
300 |
/// \name Named Template Parameters |
|
301 |
/// @{ |
|
302 |
|
|
303 |
template <typename T> |
|
304 |
struct SetFlowMapTraits : public Traits { |
|
305 |
typedef T FlowMap; |
|
306 |
}; |
|
307 |
|
|
308 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
309 |
/// \c FlowMap type. |
|
310 |
/// |
|
311 |
/// \ref named-templ-param "Named parameter" for setting |
|
312 |
/// \c FlowMap type. |
|
313 |
template <typename T> |
|
314 |
struct SetFlowMap |
|
315 |
: public Suurballe<GR, LEN, SetFlowMapTraits<T> > { |
|
316 |
typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create; |
|
317 |
}; |
|
318 |
|
|
319 |
template <typename T> |
|
320 |
struct SetPotentialMapTraits : public Traits { |
|
321 |
typedef T PotentialMap; |
|
322 |
}; |
|
323 |
|
|
324 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
325 |
/// \c PotentialMap type. |
|
326 |
/// |
|
327 |
/// \ref named-templ-param "Named parameter" for setting |
|
328 |
/// \c PotentialMap type. |
|
329 |
template <typename T> |
|
330 |
struct SetPotentialMap |
|
331 |
: public Suurballe<GR, LEN, SetPotentialMapTraits<T> > { |
|
332 |
typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create; |
|
333 |
}; |
|
334 |
|
|
335 |
template <typename T> |
|
336 |
struct SetPathTraits : public Traits { |
|
337 |
typedef T Path; |
|
338 |
}; |
|
339 |
|
|
340 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
341 |
/// \c %Path type. |
|
342 |
/// |
|
343 |
/// \ref named-templ-param "Named parameter" for setting \c %Path type. |
|
344 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
345 |
/// and it must have an \c addBack() function. |
|
346 |
template <typename T> |
|
347 |
struct SetPath |
|
348 |
: public Suurballe<GR, LEN, SetPathTraits<T> > { |
|
349 |
typedef Suurballe<GR, LEN, SetPathTraits<T> > Create; |
|
350 |
}; |
|
351 |
|
|
352 |
template <typename H, typename CR> |
|
353 |
struct SetHeapTraits : public Traits { |
|
354 |
typedef H Heap; |
|
355 |
typedef CR HeapCrossRef; |
|
356 |
}; |
|
357 |
|
|
358 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
359 |
/// \c Heap and \c HeapCrossRef types. |
|
360 |
/// |
|
361 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
|
362 |
/// and \c HeapCrossRef types with automatic allocation. |
|
363 |
/// They will be used for internal Dijkstra computations. |
|
364 |
/// The heap type must conform to the \ref lemon::concepts::Heap "Heap" |
|
365 |
/// concept and its priority type must be \c Length. |
|
366 |
template <typename H, |
|
367 |
typename CR = typename Digraph::template NodeMap<int> > |
|
368 |
struct SetHeap |
|
369 |
: public Suurballe<GR, LEN, SetHeapTraits<H, CR> > { |
|
370 |
typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create; |
|
371 |
}; |
|
372 |
|
|
373 |
/// @} |
|
374 |
|
|
257 | 375 |
private: |
258 | 376 |
|
259 | 377 |
// The digraph the algorithm runs on |
260 | 378 |
const Digraph &_graph; |
261 | 379 |
// The length map |
262 | 380 |
const LengthMap &_length; |
263 | 381 |
|
264 | 382 |
// Arc map of the current flow |
265 | 383 |
FlowMap *_flow; |
266 | 384 |
bool _local_flow; |
267 | 385 |
// Node map of the current potentials |
268 | 386 |
PotentialMap *_potential; |
269 | 387 |
bool _local_potential; |
270 | 388 |
|
271 | 389 |
// The source node |
272 | 390 |
Node _s; |
273 | 391 |
// The target node |
274 | 392 |
Node _t; |
275 | 393 |
|
276 | 394 |
// Container to store the found paths |
277 | 395 |
std::vector<Path> _paths; |
278 | 396 |
int _path_num; |
279 | 397 |
|
280 | 398 |
// The pred arc map |
281 | 399 |
PredMap _pred; |
282 | 400 |
|
283 | 401 |
// Data for full init |
284 | 402 |
PotentialMap *_init_dist; |
285 | 403 |
PredMap *_init_pred; |
286 | 404 |
bool _full_init; |
287 | 405 |
|
288 | 406 |
public: |
289 | 407 |
|
290 | 408 |
/// \brief Constructor. |
291 | 409 |
/// |
292 | 410 |
/// Constructor. |
293 | 411 |
/// |
294 | 412 |
/// \param graph The digraph the algorithm runs on. |
295 | 413 |
/// \param length The length (cost) values of the arcs. |
296 | 414 |
Suurballe( const Digraph &graph, |
297 | 415 |
const LengthMap &length ) : |
298 | 416 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
299 | 417 |
_potential(0), _local_potential(false), _pred(graph), |
300 | 418 |
_init_dist(0), _init_pred(0) |
301 | 419 |
{} |
302 | 420 |
|
303 | 421 |
/// Destructor. |
304 | 422 |
~Suurballe() { |
305 | 423 |
if (_local_flow) delete _flow; |
306 | 424 |
if (_local_potential) delete _potential; |
307 | 425 |
delete _init_dist; |
308 | 426 |
delete _init_pred; |
309 | 427 |
} |
310 | 428 |
|
311 | 429 |
/// \brief Set the flow map. |
312 | 430 |
/// |
313 | 431 |
/// This function sets the flow map. |
314 | 432 |
/// If it is not used before calling \ref run() or \ref init(), |
315 | 433 |
/// an instance will be allocated automatically. The destructor |
316 | 434 |
/// deallocates this automatically allocated map, of course. |
317 | 435 |
/// |
318 | 436 |
/// The found flow contains only 0 and 1 values, since it is the |
319 | 437 |
/// union of the found arc-disjoint paths. |
320 | 438 |
/// |
321 | 439 |
/// \return <tt>(*this)</tt> |
322 | 440 |
Suurballe& flowMap(FlowMap &map) { |
323 | 441 |
if (_local_flow) { |
324 | 442 |
delete _flow; |
325 | 443 |
_local_flow = false; |
326 | 444 |
} |
327 | 445 |
_flow = ↦ |
328 | 446 |
return *this; |
329 | 447 |
} |
330 | 448 |
|
331 | 449 |
/// \brief Set the potential map. |
332 | 450 |
/// |
333 | 451 |
/// This function sets the potential map. |
334 | 452 |
/// If it is not used before calling \ref run() or \ref init(), |
335 | 453 |
/// an instance will be allocated automatically. The destructor |
336 | 454 |
/// deallocates this automatically allocated map, of course. |
337 | 455 |
/// |
338 | 456 |
/// The node potentials provide the dual solution of the underlying |
339 | 457 |
/// \ref min_cost_flow "minimum cost flow problem". |
340 | 458 |
/// |
341 | 459 |
/// \return <tt>(*this)</tt> |
342 | 460 |
Suurballe& potentialMap(PotentialMap &map) { |
343 | 461 |
if (_local_potential) { |
344 | 462 |
delete _potential; |
345 | 463 |
_local_potential = false; |
346 | 464 |
} |
347 | 465 |
_potential = ↦ |
348 | 466 |
return *this; |
349 | 467 |
} |
350 | 468 |
|
351 | 469 |
/// \name Execution Control |
352 | 470 |
/// The simplest way to execute the algorithm is to call the run() |
353 | 471 |
/// function.\n |
354 | 472 |
/// If you need to execute the algorithm many times using the same |
355 | 473 |
/// source node, then you may call fullInit() once and start() |
356 | 474 |
/// for each target node.\n |
357 | 475 |
/// If you only need the flow that is the union of the found |
358 | 476 |
/// arc-disjoint paths, then you may call findFlow() instead of |
359 | 477 |
/// start(). |
360 | 478 |
|
361 | 479 |
/// @{ |
362 | 480 |
|
363 | 481 |
/// \brief Run the algorithm. |
364 | 482 |
/// |
365 | 483 |
/// This function runs the algorithm. |
366 | 484 |
/// |
367 | 485 |
/// \param s The source node. |
368 | 486 |
/// \param t The target node. |
369 | 487 |
/// \param k The number of paths to be found. |
370 | 488 |
/// |
371 | 489 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
372 | 490 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
373 | 491 |
/// arc-disjoint paths found. |
374 | 492 |
/// |
375 | 493 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
376 | 494 |
/// just a shortcut of the following code. |
377 | 495 |
/// \code |
378 | 496 |
/// s.init(s); |
379 | 497 |
/// s.start(t, k); |
380 | 498 |
/// \endcode |
381 | 499 |
int run(const Node& s, const Node& t, int k = 2) { |
382 | 500 |
init(s); |
383 | 501 |
start(t, k); |
384 | 502 |
return _path_num; |
385 | 503 |
} |
386 | 504 |
|
387 | 505 |
/// \brief Initialize the algorithm. |
388 | 506 |
/// |
389 | 507 |
/// This function initializes the algorithm with the given source node. |
390 | 508 |
/// |
391 | 509 |
/// \param s The source node. |
392 | 510 |
void init(const Node& s) { |
393 | 511 |
_s = s; |
394 | 512 |
|
395 | 513 |
// Initialize maps |
396 | 514 |
if (!_flow) { |
397 | 515 |
_flow = new FlowMap(_graph); |
398 | 516 |
_local_flow = true; |
399 | 517 |
} |
400 | 518 |
if (!_potential) { |
401 | 519 |
_potential = new PotentialMap(_graph); |
402 | 520 |
_local_potential = true; |
403 | 521 |
} |
404 | 522 |
_full_init = false; |
405 | 523 |
} |
406 | 524 |
|
407 | 525 |
/// \brief Initialize the algorithm and perform Dijkstra. |
408 | 526 |
/// |
409 | 527 |
/// This function initializes the algorithm and performs a full |
410 | 528 |
/// Dijkstra search from the given source node. It makes consecutive |
411 | 529 |
/// executions of \ref start() "start(t, k)" faster, since they |
412 | 530 |
/// have to perform %Dijkstra only k-1 times. |
413 | 531 |
/// |
414 | 532 |
/// This initialization is usually worth using instead of \ref init() |
415 | 533 |
/// if the algorithm is executed many times using the same source node. |
416 | 534 |
/// |
417 | 535 |
/// \param s The source node. |
418 | 536 |
void fullInit(const Node& s) { |
419 | 537 |
// Initialize maps |
420 | 538 |
init(s); |
421 | 539 |
if (!_init_dist) { |
422 | 540 |
_init_dist = new PotentialMap(_graph); |
423 | 541 |
} |
424 | 542 |
if (!_init_pred) { |
425 | 543 |
_init_pred = new PredMap(_graph); |
426 | 544 |
} |
427 | 545 |
|
428 | 546 |
// Run a full Dijkstra |
429 | 547 |
typename Dijkstra<Digraph, LengthMap> |
430 | 548 |
::template SetStandardHeap<Heap> |
431 | 549 |
::template SetDistMap<PotentialMap> |
432 | 550 |
::template SetPredMap<PredMap> |
433 | 551 |
::Create dijk(_graph, _length); |
434 | 552 |
dijk.distMap(*_init_dist).predMap(*_init_pred); |
435 | 553 |
dijk.run(s); |
436 | 554 |
|
437 | 555 |
_full_init = true; |
438 | 556 |
} |
439 | 557 |
|
440 | 558 |
/// \brief Execute the algorithm. |
441 | 559 |
/// |
442 | 560 |
/// This function executes the algorithm. |
443 | 561 |
/// |
444 | 562 |
/// \param t The target node. |
445 | 563 |
/// \param k The number of paths to be found. |
446 | 564 |
/// |
447 | 565 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
448 | 566 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
449 | 567 |
/// arc-disjoint paths found. |
450 | 568 |
/// |
451 | 569 |
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is |
452 | 570 |
/// just a shortcut of the following code. |
453 | 571 |
/// \code |
454 | 572 |
/// s.findFlow(t, k); |
455 | 573 |
/// s.findPaths(); |
456 | 574 |
/// \endcode |
457 | 575 |
int start(const Node& t, int k = 2) { |
458 | 576 |
findFlow(t, k); |
459 | 577 |
findPaths(); |
460 | 578 |
return _path_num; |
461 | 579 |
} |
462 | 580 |
|
463 | 581 |
/// \brief Execute the algorithm to find an optimal flow. |
464 | 582 |
/// |
465 | 583 |
/// This function executes the successive shortest path algorithm to |
466 | 584 |
/// find a minimum cost flow, which is the union of \c k (or less) |
467 | 585 |
/// arc-disjoint paths. |
468 | 586 |
/// |
469 | 587 |
/// \param t The target node. |
470 | 588 |
/// \param k The number of paths to be found. |
471 | 589 |
/// |
472 | 590 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
473 | 591 |
/// the source node to the given node \c t in the digraph. |
474 | 592 |
/// Otherwise it returns the number of arc-disjoint paths found. |
475 | 593 |
/// |
476 | 594 |
/// \pre \ref init() must be called before using this function. |
477 | 595 |
int findFlow(const Node& t, int k = 2) { |
478 | 596 |
_t = t; |
479 | 597 |
ResidualDijkstra dijkstra(*this); |
480 | 598 |
|
481 | 599 |
// Initialization |
482 | 600 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
483 | 601 |
(*_flow)[e] = 0; |
484 | 602 |
} |
485 | 603 |
if (_full_init) { |
486 | 604 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
487 | 605 |
(*_potential)[n] = (*_init_dist)[n]; |
488 | 606 |
} |
489 | 607 |
Node u = _t; |
490 | 608 |
Arc e; |
491 | 609 |
while ((e = (*_init_pred)[u]) != INVALID) { |
492 | 610 |
(*_flow)[e] = 1; |
493 | 611 |
u = _graph.source(e); |
494 | 612 |
} |
495 | 613 |
_path_num = 1; |
496 | 614 |
} else { |
497 | 615 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
498 | 616 |
(*_potential)[n] = 0; |
499 | 617 |
} |
500 | 618 |
_path_num = 0; |
501 | 619 |
} |
502 | 620 |
|
503 | 621 |
// Find shortest paths |
504 | 622 |
while (_path_num < k) { |
505 | 623 |
// Run Dijkstra |
506 | 624 |
if (!dijkstra.run(_path_num)) break; |
507 | 625 |
++_path_num; |
508 | 626 |
|
509 | 627 |
// Set the flow along the found shortest path |
510 | 628 |
Node u = _t; |
511 | 629 |
Arc e; |
512 | 630 |
while ((e = _pred[u]) != INVALID) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/path.h> |
24 | 24 |
#include <lemon/suurballe.h> |
25 | 25 |
#include <lemon/concepts/digraph.h> |
26 |
#include <lemon/concepts/heap.h> |
|
26 | 27 |
|
27 | 28 |
#include "test_tools.h" |
28 | 29 |
|
29 | 30 |
using namespace lemon; |
30 | 31 |
|
31 | 32 |
char test_lgf[] = |
32 | 33 |
"@nodes\n" |
33 | 34 |
"label\n" |
34 | 35 |
"1\n" |
35 | 36 |
"2\n" |
36 | 37 |
"3\n" |
37 | 38 |
"4\n" |
38 | 39 |
"5\n" |
39 | 40 |
"6\n" |
40 | 41 |
"7\n" |
41 | 42 |
"8\n" |
42 | 43 |
"9\n" |
43 | 44 |
"10\n" |
44 | 45 |
"11\n" |
45 | 46 |
"12\n" |
46 | 47 |
"@arcs\n" |
47 | 48 |
" length\n" |
48 | 49 |
" 1 2 70\n" |
49 | 50 |
" 1 3 150\n" |
50 | 51 |
" 1 4 80\n" |
51 | 52 |
" 2 8 80\n" |
52 | 53 |
" 3 5 140\n" |
53 | 54 |
" 4 6 60\n" |
54 | 55 |
" 4 7 80\n" |
55 | 56 |
" 4 8 110\n" |
56 | 57 |
" 5 7 60\n" |
57 | 58 |
" 5 11 120\n" |
58 | 59 |
" 6 3 0\n" |
59 | 60 |
" 6 9 140\n" |
60 | 61 |
" 6 10 90\n" |
61 | 62 |
" 7 1 30\n" |
62 | 63 |
" 8 12 60\n" |
63 | 64 |
" 9 12 50\n" |
64 | 65 |
"10 12 70\n" |
65 | 66 |
"10 2 100\n" |
66 | 67 |
"10 7 60\n" |
67 | 68 |
"11 10 20\n" |
68 | 69 |
"12 11 30\n" |
69 | 70 |
"@attributes\n" |
70 | 71 |
"source 1\n" |
71 | 72 |
"target 12\n" |
72 | 73 |
"@end\n"; |
73 | 74 |
|
74 | 75 |
// Check the interface of Suurballe |
75 | 76 |
void checkSuurballeCompile() |
76 | 77 |
{ |
77 | 78 |
typedef int VType; |
78 | 79 |
typedef concepts::Digraph Digraph; |
79 | 80 |
|
80 | 81 |
typedef Digraph::Node Node; |
81 | 82 |
typedef Digraph::Arc Arc; |
82 | 83 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
83 | 84 |
|
84 |
typedef Suurballe<Digraph, LengthMap> |
|
85 |
typedef Suurballe<Digraph, LengthMap> ST; |
|
86 |
typedef Suurballe<Digraph, LengthMap> |
|
87 |
::SetFlowMap<ST::FlowMap> |
|
88 |
::SetPotentialMap<ST::PotentialMap> |
|
89 |
::SetPath<SimplePath<Digraph> > |
|
90 |
::SetHeap<concepts::Heap<VType, Digraph::NodeMap<int> > > |
|
91 |
::Create SuurballeType; |
|
85 | 92 |
|
86 | 93 |
Digraph g; |
87 | 94 |
Node n; |
88 | 95 |
Arc e; |
89 | 96 |
LengthMap len; |
90 | 97 |
SuurballeType::FlowMap flow(g); |
91 | 98 |
SuurballeType::PotentialMap pi(g); |
92 | 99 |
|
93 | 100 |
SuurballeType suurb_test(g, len); |
94 | 101 |
const SuurballeType& const_suurb_test = suurb_test; |
95 | 102 |
|
96 | 103 |
suurb_test |
97 | 104 |
.flowMap(flow) |
98 | 105 |
.potentialMap(pi); |
99 | 106 |
|
100 | 107 |
int k; |
101 | 108 |
k = suurb_test.run(n, n); |
102 | 109 |
k = suurb_test.run(n, n, k); |
103 | 110 |
suurb_test.init(n); |
104 | 111 |
suurb_test.fullInit(n); |
105 | 112 |
suurb_test.start(n); |
106 | 113 |
suurb_test.start(n, k); |
107 | 114 |
k = suurb_test.findFlow(n); |
108 | 115 |
k = suurb_test.findFlow(n, k); |
109 | 116 |
suurb_test.findPaths(); |
110 | 117 |
|
111 | 118 |
int f; |
112 | 119 |
VType c; |
113 | 120 |
c = const_suurb_test.totalLength(); |
114 | 121 |
f = const_suurb_test.flow(e); |
115 | 122 |
const SuurballeType::FlowMap& fm = |
116 | 123 |
const_suurb_test.flowMap(); |
117 | 124 |
c = const_suurb_test.potential(n); |
118 | 125 |
const SuurballeType::PotentialMap& pm = |
119 | 126 |
const_suurb_test.potentialMap(); |
120 | 127 |
k = const_suurb_test.pathNum(); |
121 | 128 |
Path<Digraph> p = const_suurb_test.path(k); |
122 | 129 |
|
123 | 130 |
ignore_unused_variable_warning(fm); |
124 | 131 |
ignore_unused_variable_warning(pm); |
125 | 132 |
} |
126 | 133 |
|
127 | 134 |
// Check the feasibility of the flow |
128 | 135 |
template <typename Digraph, typename FlowMap> |
129 | 136 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
130 | 137 |
typename Digraph::Node s, typename Digraph::Node t, |
131 | 138 |
int value ) |
132 | 139 |
{ |
133 | 140 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
134 | 141 |
for (ArcIt e(gr); e != INVALID; ++e) |
135 | 142 |
if (!(flow[e] == 0 || flow[e] == 1)) return false; |
136 | 143 |
|
137 | 144 |
for (NodeIt n(gr); n != INVALID; ++n) { |
138 | 145 |
int sum = 0; |
139 | 146 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
140 | 147 |
sum += flow[e]; |
141 | 148 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
142 | 149 |
sum -= flow[e]; |
143 | 150 |
if (n == s && sum != value) return false; |
144 | 151 |
if (n == t && sum != -value) return false; |
145 | 152 |
if (n != s && n != t && sum != 0) return false; |
146 | 153 |
} |
147 | 154 |
|
148 | 155 |
return true; |
149 | 156 |
} |
150 | 157 |
|
151 | 158 |
// Check the optimalitiy of the flow |
152 | 159 |
template < typename Digraph, typename CostMap, |
153 | 160 |
typename FlowMap, typename PotentialMap > |
154 | 161 |
bool checkOptimality( const Digraph& gr, const CostMap& cost, |
155 | 162 |
const FlowMap& flow, const PotentialMap& pi ) |
156 | 163 |
{ |
157 | 164 |
// Check the "Complementary Slackness" optimality condition |
158 | 165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
159 | 166 |
bool opt = true; |
160 | 167 |
for (ArcIt e(gr); e != INVALID; ++e) { |
161 | 168 |
typename CostMap::Value red_cost = |
162 | 169 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
163 | 170 |
opt = (flow[e] == 0 && red_cost >= 0) || |
164 | 171 |
(flow[e] == 1 && red_cost <= 0); |
165 | 172 |
if (!opt) break; |
166 | 173 |
} |
167 | 174 |
return opt; |
168 | 175 |
} |
169 | 176 |
|
170 | 177 |
// Check a path |
171 | 178 |
template <typename Digraph, typename Path> |
172 | 179 |
bool checkPath( const Digraph& gr, const Path& path, |
173 | 180 |
typename Digraph::Node s, typename Digraph::Node t) |
174 | 181 |
{ |
175 | 182 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
176 | 183 |
Node n = s; |
177 | 184 |
for (int i = 0; i < path.length(); ++i) { |
178 | 185 |
if (gr.source(path.nth(i)) != n) return false; |
179 | 186 |
n = gr.target(path.nth(i)); |
180 | 187 |
} |
181 | 188 |
return n == t; |
182 | 189 |
} |
183 | 190 |
|
184 | 191 |
|
185 | 192 |
int main() |
186 | 193 |
{ |
187 | 194 |
DIGRAPH_TYPEDEFS(ListDigraph); |
188 | 195 |
|
189 | 196 |
// Read the test digraph |
190 | 197 |
ListDigraph digraph; |
191 | 198 |
ListDigraph::ArcMap<int> length(digraph); |
192 | 199 |
Node s, t; |
193 | 200 |
|
194 | 201 |
std::istringstream input(test_lgf); |
195 | 202 |
DigraphReader<ListDigraph>(digraph, input). |
196 | 203 |
arcMap("length", length). |
197 | 204 |
node("source", s). |
198 | 205 |
node("target", t). |
199 | 206 |
run(); |
200 | 207 |
|
201 | 208 |
// Find 2 paths |
202 | 209 |
{ |
203 | 210 |
Suurballe<ListDigraph> suurballe(digraph, length); |
204 | 211 |
check(suurballe.run(s, t) == 2, "Wrong number of paths"); |
205 | 212 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), |
206 | 213 |
"The flow is not feasible"); |
207 | 214 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
208 | 215 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
209 | 216 |
suurballe.potentialMap()), |
210 | 217 |
"Wrong potentials"); |
211 | 218 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
212 | 219 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
213 | 220 |
} |
214 | 221 |
|
215 | 222 |
// Find 3 paths |
216 | 223 |
{ |
217 | 224 |
Suurballe<ListDigraph> suurballe(digraph, length); |
218 | 225 |
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); |
219 | 226 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
220 | 227 |
"The flow is not feasible"); |
221 | 228 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
222 | 229 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
223 | 230 |
suurballe.potentialMap()), |
224 | 231 |
"Wrong potentials"); |
225 | 232 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
226 | 233 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
227 | 234 |
} |
228 | 235 |
|
229 | 236 |
// Find 5 paths (only 3 can be found) |
230 | 237 |
{ |
231 | 238 |
Suurballe<ListDigraph> suurballe(digraph, length); |
232 | 239 |
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); |
233 | 240 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
234 | 241 |
"The flow is not feasible"); |
235 | 242 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
236 | 243 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
237 | 244 |
suurballe.potentialMap()), |
238 | 245 |
"Wrong potentials"); |
239 | 246 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
240 | 247 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
241 | 248 |
} |
242 | 249 |
|
243 | 250 |
return 0; |
244 | 251 |
} |
0 comments (0 inline)