0
2
0
138
20
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SUURBALLE_H |
| 20 | 20 |
#define LEMON_SUURBALLE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
| 25 | 25 |
/// nodes having minimum total length. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/path.h> |
| 31 | 31 |
#include <lemon/list_graph.h> |
| 32 | 32 |
#include <lemon/dijkstra.h> |
| 33 | 33 |
#include <lemon/maps.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 |
/// \brief Default traits class of Suurballe algorithm. |
|
| 38 |
/// |
|
| 39 |
/// Default traits class of Suurballe algorithm. |
|
| 40 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 41 |
/// \tparam LEN The type of the length map. |
|
| 42 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
|
| 43 |
#ifdef DOXYGEN |
|
| 44 |
template <typename GR, typename LEN> |
|
| 45 |
#else |
|
| 46 |
template < typename GR, |
|
| 47 |
typename LEN = typename GR::template ArcMap<int> > |
|
| 48 |
#endif |
|
| 49 |
struct SuurballeDefaultTraits |
|
| 50 |
{
|
|
| 51 |
/// The type of the digraph. |
|
| 52 |
typedef GR Digraph; |
|
| 53 |
/// The type of the length map. |
|
| 54 |
typedef LEN LengthMap; |
|
| 55 |
/// The type of the lengths. |
|
| 56 |
typedef typename LEN::Value Length; |
|
| 57 |
/// The type of the flow map. |
|
| 58 |
typedef typename GR::template ArcMap<int> FlowMap; |
|
| 59 |
/// The type of the potential map. |
|
| 60 |
typedef typename GR::template NodeMap<Length> PotentialMap; |
|
| 61 |
|
|
| 62 |
/// \brief The path type |
|
| 63 |
/// |
|
| 64 |
/// The type used for storing the found arc-disjoint paths. |
|
| 65 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 66 |
/// and it must have an \c addBack() function. |
|
| 67 |
typedef lemon::Path<Digraph> Path; |
|
| 68 |
|
|
| 69 |
/// The cross reference type used for the heap. |
|
| 70 |
typedef typename GR::template NodeMap<int> HeapCrossRef; |
|
| 71 |
|
|
| 72 |
/// \brief The heap type used for internal Dijkstra computations. |
|
| 73 |
/// |
|
| 74 |
/// The type of the heap used for internal Dijkstra computations. |
|
| 75 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept |
|
| 76 |
/// and its priority type must be \c Length. |
|
| 77 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
| 78 |
}; |
|
| 79 |
|
|
| 37 | 80 |
/// \addtogroup shortest_path |
| 38 | 81 |
/// @{
|
| 39 | 82 |
|
| 40 | 83 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
| 41 | 84 |
/// having minimum total length. |
| 42 | 85 |
/// |
| 43 | 86 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
| 44 | 87 |
/// finding arc-disjoint paths having minimum total length (cost) |
| 45 | 88 |
/// from a given source node to a given target node in a digraph. |
| 46 | 89 |
/// |
| 47 | 90 |
/// Note that this problem is a special case of the \ref min_cost_flow |
| 48 | 91 |
/// "minimum cost flow problem". This implementation is actually an |
| 49 | 92 |
/// efficient specialized version of the \ref CapacityScaling |
| 50 | 93 |
/// "successive shortest path" algorithm directly for this problem. |
| 51 | 94 |
/// Therefore this class provides query functions for flow values and |
| 52 | 95 |
/// node potentials (the dual solution) just like the minimum cost flow |
| 53 | 96 |
/// algorithms. |
| 54 | 97 |
/// |
| 55 | 98 |
/// \tparam GR The digraph type the algorithm runs on. |
| 56 | 99 |
/// \tparam LEN The type of the length map. |
| 57 | 100 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
| 58 | 101 |
/// |
| 59 | 102 |
/// \warning Length values should be \e non-negative. |
| 60 | 103 |
/// |
| 61 | 104 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
| 62 | 105 |
/// along with the \ref SplitNodes adaptor. |
| 63 | 106 |
#ifdef DOXYGEN |
| 64 |
template <typename GR, typename LEN> |
|
| 107 |
template <typename GR, typename LEN, typename TR> |
|
| 65 | 108 |
#else |
| 66 | 109 |
template < typename GR, |
| 67 |
typename LEN = typename GR::template ArcMap<int> |
|
| 110 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 111 |
typename TR = SuurballeDefaultTraits<GR, LEN> > |
|
| 68 | 112 |
#endif |
| 69 | 113 |
class Suurballe |
| 70 | 114 |
{
|
| 71 | 115 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 72 | 116 |
|
| 73 | 117 |
typedef ConstMap<Arc, int> ConstArcMap; |
| 74 | 118 |
typedef typename GR::template NodeMap<Arc> PredMap; |
| 75 | 119 |
|
| 76 | 120 |
public: |
| 77 | 121 |
|
| 78 |
/// The type of the digraph the algorithm runs on. |
|
| 79 |
typedef GR Digraph; |
|
| 122 |
/// The type of the digraph. |
|
| 123 |
typedef typename TR::Digraph Digraph; |
|
| 80 | 124 |
/// The type of the length map. |
| 81 |
typedef |
|
| 125 |
typedef typename TR::LengthMap LengthMap; |
|
| 82 | 126 |
/// The type of the lengths. |
| 83 |
typedef typename LengthMap::Value Length; |
|
| 84 |
#ifdef DOXYGEN |
|
| 127 |
typedef typename TR::Length Length; |
|
| 128 |
|
|
| 85 | 129 |
/// The type of the flow map. |
| 86 |
typedef |
|
| 130 |
typedef typename TR::FlowMap FlowMap; |
|
| 87 | 131 |
/// The type of the potential map. |
| 88 |
typedef GR::NodeMap<Length> PotentialMap; |
|
| 89 |
#else |
|
| 90 |
/// The type of the flow map. |
|
| 91 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
|
| 92 |
/// The type of the potential map. |
|
| 93 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
|
| 94 |
|
|
| 132 |
typedef typename TR::PotentialMap PotentialMap; |
|
| 133 |
/// The type of the path structures. |
|
| 134 |
typedef typename TR::Path Path; |
|
| 135 |
/// The cross reference type used for the heap. |
|
| 136 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
|
| 137 |
/// The heap type used for internal Dijkstra computations. |
|
| 138 |
typedef typename TR::Heap Heap; |
|
| 95 | 139 |
|
| 96 |
/// The type of the path structures. |
|
| 97 |
typedef SimplePath<GR> Path; |
|
| 140 |
/// The \ref SuurballeDefaultTraits "traits class" of the algorithm. |
|
| 141 |
typedef TR Traits; |
|
| 98 | 142 |
|
| 99 | 143 |
private: |
| 100 | 144 |
|
| 101 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
| 102 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
| 103 |
|
|
| 104 | 145 |
// ResidualDijkstra is a special implementation of the |
| 105 | 146 |
// Dijkstra algorithm for finding shortest paths in the |
| 106 | 147 |
// residual network with respect to the reduced arc lengths |
| 107 | 148 |
// and modifying the node potentials according to the |
| 108 | 149 |
// distance of the nodes. |
| 109 | 150 |
class ResidualDijkstra |
| 110 | 151 |
{
|
| 111 | 152 |
private: |
| 112 | 153 |
|
| 113 | 154 |
const Digraph &_graph; |
| 114 | 155 |
const LengthMap &_length; |
| 115 | 156 |
const FlowMap &_flow; |
| 116 | 157 |
PotentialMap &_pi; |
| 117 | 158 |
PredMap &_pred; |
| 118 | 159 |
Node _s; |
| 119 | 160 |
Node _t; |
| 120 | 161 |
|
| 121 | 162 |
PotentialMap _dist; |
| 122 | 163 |
std::vector<Node> _proc_nodes; |
| 123 | 164 |
|
| 124 | 165 |
public: |
| 125 | 166 |
|
| 126 | 167 |
// Constructor |
| 127 | 168 |
ResidualDijkstra(Suurballe &srb) : |
| 128 | 169 |
_graph(srb._graph), _length(srb._length), |
| 129 | 170 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
| 130 | 171 |
_s(srb._s), _t(srb._t), _dist(_graph) {}
|
| 131 | 172 |
|
| 132 | 173 |
// Run the algorithm and return true if a path is found |
| 133 | 174 |
// from the source node to the target node. |
| 134 | 175 |
bool run(int cnt) {
|
| 135 | 176 |
return cnt == 0 ? startFirst() : start(); |
| 136 | 177 |
} |
| 137 | 178 |
|
| 138 | 179 |
private: |
| 139 | 180 |
|
| 140 | 181 |
// Execute the algorithm for the first time (the flow and potential |
| 141 | 182 |
// functions have to be identically zero). |
| 142 | 183 |
bool startFirst() {
|
| 143 | 184 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 144 | 185 |
Heap heap(heap_cross_ref); |
| 145 | 186 |
heap.push(_s, 0); |
| 146 | 187 |
_pred[_s] = INVALID; |
| 147 | 188 |
_proc_nodes.clear(); |
| 148 | 189 |
|
| 149 | 190 |
// Process nodes |
| 150 | 191 |
while (!heap.empty() && heap.top() != _t) {
|
| 151 | 192 |
Node u = heap.top(), v; |
| 152 | 193 |
Length d = heap.prio(), dn; |
| 153 | 194 |
_dist[u] = heap.prio(); |
| 154 | 195 |
_proc_nodes.push_back(u); |
| 155 | 196 |
heap.pop(); |
| 156 | 197 |
|
| 157 | 198 |
// Traverse outgoing arcs |
| 158 | 199 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
| 159 | 200 |
v = _graph.target(e); |
| 160 | 201 |
switch(heap.state(v)) {
|
| 161 | 202 |
case Heap::PRE_HEAP: |
| 162 | 203 |
heap.push(v, d + _length[e]); |
| 163 | 204 |
_pred[v] = e; |
| 164 | 205 |
break; |
| 165 | 206 |
case Heap::IN_HEAP: |
| 166 | 207 |
dn = d + _length[e]; |
| 167 | 208 |
if (dn < heap[v]) {
|
| 168 | 209 |
heap.decrease(v, dn); |
| 169 | 210 |
_pred[v] = e; |
| 170 | 211 |
} |
| 171 | 212 |
break; |
| 172 | 213 |
case Heap::POST_HEAP: |
| 173 | 214 |
break; |
| 174 | 215 |
} |
| 175 | 216 |
} |
| 176 | 217 |
} |
| 177 | 218 |
if (heap.empty()) return false; |
| 178 | 219 |
|
| 179 | 220 |
// Update potentials of processed nodes |
| 180 | 221 |
Length t_dist = heap.prio(); |
| 181 | 222 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 182 | 223 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist; |
| 183 | 224 |
return true; |
| 184 | 225 |
} |
| 185 | 226 |
|
| 186 | 227 |
// Execute the algorithm. |
| 187 | 228 |
bool start() {
|
| 188 | 229 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 189 | 230 |
Heap heap(heap_cross_ref); |
| 190 | 231 |
heap.push(_s, 0); |
| 191 | 232 |
_pred[_s] = INVALID; |
| 192 | 233 |
_proc_nodes.clear(); |
| 193 | 234 |
|
| 194 | 235 |
// Process nodes |
| 195 | 236 |
while (!heap.empty() && heap.top() != _t) {
|
| 196 | 237 |
Node u = heap.top(), v; |
| 197 | 238 |
Length d = heap.prio() + _pi[u], dn; |
| 198 | 239 |
_dist[u] = heap.prio(); |
| 199 | 240 |
_proc_nodes.push_back(u); |
| 200 | 241 |
heap.pop(); |
| 201 | 242 |
|
| 202 | 243 |
// Traverse outgoing arcs |
| 203 | 244 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
| 204 | 245 |
if (_flow[e] == 0) {
|
| 205 | 246 |
v = _graph.target(e); |
| 206 | 247 |
switch(heap.state(v)) {
|
| 207 | 248 |
case Heap::PRE_HEAP: |
| 208 | 249 |
heap.push(v, d + _length[e] - _pi[v]); |
| 209 | 250 |
_pred[v] = e; |
| 210 | 251 |
break; |
| 211 | 252 |
case Heap::IN_HEAP: |
| 212 | 253 |
dn = d + _length[e] - _pi[v]; |
| 213 | 254 |
if (dn < heap[v]) {
|
| 214 | 255 |
heap.decrease(v, dn); |
| 215 | 256 |
_pred[v] = e; |
| 216 | 257 |
} |
| 217 | 258 |
break; |
| 218 | 259 |
case Heap::POST_HEAP: |
| 219 | 260 |
break; |
| 220 | 261 |
} |
| 221 | 262 |
} |
| 222 | 263 |
} |
| 223 | 264 |
|
| 224 | 265 |
// Traverse incoming arcs |
| 225 | 266 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
| 226 | 267 |
if (_flow[e] == 1) {
|
| 227 | 268 |
v = _graph.source(e); |
| 228 | 269 |
switch(heap.state(v)) {
|
| 229 | 270 |
case Heap::PRE_HEAP: |
| 230 | 271 |
heap.push(v, d - _length[e] - _pi[v]); |
| 231 | 272 |
_pred[v] = e; |
| 232 | 273 |
break; |
| 233 | 274 |
case Heap::IN_HEAP: |
| 234 | 275 |
dn = d - _length[e] - _pi[v]; |
| 235 | 276 |
if (dn < heap[v]) {
|
| 236 | 277 |
heap.decrease(v, dn); |
| 237 | 278 |
_pred[v] = e; |
| 238 | 279 |
} |
| 239 | 280 |
break; |
| 240 | 281 |
case Heap::POST_HEAP: |
| 241 | 282 |
break; |
| 242 | 283 |
} |
| 243 | 284 |
} |
| 244 | 285 |
} |
| 245 | 286 |
} |
| 246 | 287 |
if (heap.empty()) return false; |
| 247 | 288 |
|
| 248 | 289 |
// Update potentials of processed nodes |
| 249 | 290 |
Length t_dist = heap.prio(); |
| 250 | 291 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 251 | 292 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
| 252 | 293 |
return true; |
| 253 | 294 |
} |
| 254 | 295 |
|
| 255 | 296 |
}; //class ResidualDijkstra |
| 256 | 297 |
|
| 298 |
public: |
|
| 299 |
|
|
| 300 |
/// \name Named Template Parameters |
|
| 301 |
/// @{
|
|
| 302 |
|
|
| 303 |
template <typename T> |
|
| 304 |
struct SetFlowMapTraits : public Traits {
|
|
| 305 |
typedef T FlowMap; |
|
| 306 |
}; |
|
| 307 |
|
|
| 308 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 309 |
/// \c FlowMap type. |
|
| 310 |
/// |
|
| 311 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 312 |
/// \c FlowMap type. |
|
| 313 |
template <typename T> |
|
| 314 |
struct SetFlowMap |
|
| 315 |
: public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
|
|
| 316 |
typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create; |
|
| 317 |
}; |
|
| 318 |
|
|
| 319 |
template <typename T> |
|
| 320 |
struct SetPotentialMapTraits : public Traits {
|
|
| 321 |
typedef T PotentialMap; |
|
| 322 |
}; |
|
| 323 |
|
|
| 324 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 325 |
/// \c PotentialMap type. |
|
| 326 |
/// |
|
| 327 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 328 |
/// \c PotentialMap type. |
|
| 329 |
template <typename T> |
|
| 330 |
struct SetPotentialMap |
|
| 331 |
: public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
|
|
| 332 |
typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create; |
|
| 333 |
}; |
|
| 334 |
|
|
| 335 |
template <typename T> |
|
| 336 |
struct SetPathTraits : public Traits {
|
|
| 337 |
typedef T Path; |
|
| 338 |
}; |
|
| 339 |
|
|
| 340 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 341 |
/// \c %Path type. |
|
| 342 |
/// |
|
| 343 |
/// \ref named-templ-param "Named parameter" for setting \c %Path type. |
|
| 344 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 345 |
/// and it must have an \c addBack() function. |
|
| 346 |
template <typename T> |
|
| 347 |
struct SetPath |
|
| 348 |
: public Suurballe<GR, LEN, SetPathTraits<T> > {
|
|
| 349 |
typedef Suurballe<GR, LEN, SetPathTraits<T> > Create; |
|
| 350 |
}; |
|
| 351 |
|
|
| 352 |
template <typename H, typename CR> |
|
| 353 |
struct SetHeapTraits : public Traits {
|
|
| 354 |
typedef H Heap; |
|
| 355 |
typedef CR HeapCrossRef; |
|
| 356 |
}; |
|
| 357 |
|
|
| 358 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 359 |
/// \c Heap and \c HeapCrossRef types. |
|
| 360 |
/// |
|
| 361 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
|
| 362 |
/// and \c HeapCrossRef types with automatic allocation. |
|
| 363 |
/// They will be used for internal Dijkstra computations. |
|
| 364 |
/// The heap type must conform to the \ref lemon::concepts::Heap "Heap" |
|
| 365 |
/// concept and its priority type must be \c Length. |
|
| 366 |
template <typename H, |
|
| 367 |
typename CR = typename Digraph::template NodeMap<int> > |
|
| 368 |
struct SetHeap |
|
| 369 |
: public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
|
|
| 370 |
typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create; |
|
| 371 |
}; |
|
| 372 |
|
|
| 373 |
/// @} |
|
| 374 |
|
|
| 257 | 375 |
private: |
| 258 | 376 |
|
| 259 | 377 |
// The digraph the algorithm runs on |
| 260 | 378 |
const Digraph &_graph; |
| 261 | 379 |
// The length map |
| 262 | 380 |
const LengthMap &_length; |
| 263 | 381 |
|
| 264 | 382 |
// Arc map of the current flow |
| 265 | 383 |
FlowMap *_flow; |
| 266 | 384 |
bool _local_flow; |
| 267 | 385 |
// Node map of the current potentials |
| 268 | 386 |
PotentialMap *_potential; |
| 269 | 387 |
bool _local_potential; |
| 270 | 388 |
|
| 271 | 389 |
// The source node |
| 272 | 390 |
Node _s; |
| 273 | 391 |
// The target node |
| 274 | 392 |
Node _t; |
| 275 | 393 |
|
| 276 | 394 |
// Container to store the found paths |
| 277 | 395 |
std::vector<Path> _paths; |
| 278 | 396 |
int _path_num; |
| 279 | 397 |
|
| 280 | 398 |
// The pred arc map |
| 281 | 399 |
PredMap _pred; |
| 282 | 400 |
|
| 283 | 401 |
// Data for full init |
| 284 | 402 |
PotentialMap *_init_dist; |
| 285 | 403 |
PredMap *_init_pred; |
| 286 | 404 |
bool _full_init; |
| 287 | 405 |
|
| 288 | 406 |
public: |
| 289 | 407 |
|
| 290 | 408 |
/// \brief Constructor. |
| 291 | 409 |
/// |
| 292 | 410 |
/// Constructor. |
| 293 | 411 |
/// |
| 294 | 412 |
/// \param graph The digraph the algorithm runs on. |
| 295 | 413 |
/// \param length The length (cost) values of the arcs. |
| 296 | 414 |
Suurballe( const Digraph &graph, |
| 297 | 415 |
const LengthMap &length ) : |
| 298 | 416 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
| 299 | 417 |
_potential(0), _local_potential(false), _pred(graph), |
| 300 | 418 |
_init_dist(0), _init_pred(0) |
| 301 | 419 |
{}
|
| 302 | 420 |
|
| 303 | 421 |
/// Destructor. |
| 304 | 422 |
~Suurballe() {
|
| 305 | 423 |
if (_local_flow) delete _flow; |
| 306 | 424 |
if (_local_potential) delete _potential; |
| 307 | 425 |
delete _init_dist; |
| 308 | 426 |
delete _init_pred; |
| 309 | 427 |
} |
| 310 | 428 |
|
| 311 | 429 |
/// \brief Set the flow map. |
| 312 | 430 |
/// |
| 313 | 431 |
/// This function sets the flow map. |
| 314 | 432 |
/// If it is not used before calling \ref run() or \ref init(), |
| 315 | 433 |
/// an instance will be allocated automatically. The destructor |
| 316 | 434 |
/// deallocates this automatically allocated map, of course. |
| 317 | 435 |
/// |
| 318 | 436 |
/// The found flow contains only 0 and 1 values, since it is the |
| 319 | 437 |
/// union of the found arc-disjoint paths. |
| 320 | 438 |
/// |
| 321 | 439 |
/// \return <tt>(*this)</tt> |
| 322 | 440 |
Suurballe& flowMap(FlowMap &map) {
|
| 323 | 441 |
if (_local_flow) {
|
| 324 | 442 |
delete _flow; |
| 325 | 443 |
_local_flow = false; |
| 326 | 444 |
} |
| 327 | 445 |
_flow = ↦ |
| 328 | 446 |
return *this; |
| 329 | 447 |
} |
| 330 | 448 |
|
| 331 | 449 |
/// \brief Set the potential map. |
| 332 | 450 |
/// |
| 333 | 451 |
/// This function sets the potential map. |
| 334 | 452 |
/// If it is not used before calling \ref run() or \ref init(), |
| 335 | 453 |
/// an instance will be allocated automatically. The destructor |
| 336 | 454 |
/// deallocates this automatically allocated map, of course. |
| 337 | 455 |
/// |
| 338 | 456 |
/// The node potentials provide the dual solution of the underlying |
| 339 | 457 |
/// \ref min_cost_flow "minimum cost flow problem". |
| 340 | 458 |
/// |
| 341 | 459 |
/// \return <tt>(*this)</tt> |
| 342 | 460 |
Suurballe& potentialMap(PotentialMap &map) {
|
| 343 | 461 |
if (_local_potential) {
|
| 344 | 462 |
delete _potential; |
| 345 | 463 |
_local_potential = false; |
| 346 | 464 |
} |
| 347 | 465 |
_potential = ↦ |
| 348 | 466 |
return *this; |
| 349 | 467 |
} |
| 350 | 468 |
|
| 351 | 469 |
/// \name Execution Control |
| 352 | 470 |
/// The simplest way to execute the algorithm is to call the run() |
| 353 | 471 |
/// function.\n |
| 354 | 472 |
/// If you need to execute the algorithm many times using the same |
| 355 | 473 |
/// source node, then you may call fullInit() once and start() |
| 356 | 474 |
/// for each target node.\n |
| 357 | 475 |
/// If you only need the flow that is the union of the found |
| 358 | 476 |
/// arc-disjoint paths, then you may call findFlow() instead of |
| 359 | 477 |
/// start(). |
| 360 | 478 |
|
| 361 | 479 |
/// @{
|
| 362 | 480 |
|
| 363 | 481 |
/// \brief Run the algorithm. |
| 364 | 482 |
/// |
| 365 | 483 |
/// This function runs the algorithm. |
| 366 | 484 |
/// |
| 367 | 485 |
/// \param s The source node. |
| 368 | 486 |
/// \param t The target node. |
| 369 | 487 |
/// \param k The number of paths to be found. |
| 370 | 488 |
/// |
| 371 | 489 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
| 372 | 490 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
| 373 | 491 |
/// arc-disjoint paths found. |
| 374 | 492 |
/// |
| 375 | 493 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
| 376 | 494 |
/// just a shortcut of the following code. |
| 377 | 495 |
/// \code |
| 378 | 496 |
/// s.init(s); |
| 379 | 497 |
/// s.start(t, k); |
| 380 | 498 |
/// \endcode |
| 381 | 499 |
int run(const Node& s, const Node& t, int k = 2) {
|
| 382 | 500 |
init(s); |
| 383 | 501 |
start(t, k); |
| 384 | 502 |
return _path_num; |
| 385 | 503 |
} |
| 386 | 504 |
|
| 387 | 505 |
/// \brief Initialize the algorithm. |
| 388 | 506 |
/// |
| 389 | 507 |
/// This function initializes the algorithm with the given source node. |
| 390 | 508 |
/// |
| 391 | 509 |
/// \param s The source node. |
| 392 | 510 |
void init(const Node& s) {
|
| 393 | 511 |
_s = s; |
| 394 | 512 |
|
| 395 | 513 |
// Initialize maps |
| 396 | 514 |
if (!_flow) {
|
| 397 | 515 |
_flow = new FlowMap(_graph); |
| 398 | 516 |
_local_flow = true; |
| 399 | 517 |
} |
| 400 | 518 |
if (!_potential) {
|
| 401 | 519 |
_potential = new PotentialMap(_graph); |
| 402 | 520 |
_local_potential = true; |
| 403 | 521 |
} |
| 404 | 522 |
_full_init = false; |
| 405 | 523 |
} |
| 406 | 524 |
|
| 407 | 525 |
/// \brief Initialize the algorithm and perform Dijkstra. |
| 408 | 526 |
/// |
| 409 | 527 |
/// This function initializes the algorithm and performs a full |
| 410 | 528 |
/// Dijkstra search from the given source node. It makes consecutive |
| 411 | 529 |
/// executions of \ref start() "start(t, k)" faster, since they |
| 412 | 530 |
/// have to perform %Dijkstra only k-1 times. |
| 413 | 531 |
/// |
| 414 | 532 |
/// This initialization is usually worth using instead of \ref init() |
| 415 | 533 |
/// if the algorithm is executed many times using the same source node. |
| 416 | 534 |
/// |
| 417 | 535 |
/// \param s The source node. |
| 418 | 536 |
void fullInit(const Node& s) {
|
| 419 | 537 |
// Initialize maps |
| 420 | 538 |
init(s); |
| 421 | 539 |
if (!_init_dist) {
|
| 422 | 540 |
_init_dist = new PotentialMap(_graph); |
| 423 | 541 |
} |
| 424 | 542 |
if (!_init_pred) {
|
| 425 | 543 |
_init_pred = new PredMap(_graph); |
| 426 | 544 |
} |
| 427 | 545 |
|
| 428 | 546 |
// Run a full Dijkstra |
| 429 | 547 |
typename Dijkstra<Digraph, LengthMap> |
| 430 | 548 |
::template SetStandardHeap<Heap> |
| 431 | 549 |
::template SetDistMap<PotentialMap> |
| 432 | 550 |
::template SetPredMap<PredMap> |
| 433 | 551 |
::Create dijk(_graph, _length); |
| 434 | 552 |
dijk.distMap(*_init_dist).predMap(*_init_pred); |
| 435 | 553 |
dijk.run(s); |
| 436 | 554 |
|
| 437 | 555 |
_full_init = true; |
| 438 | 556 |
} |
| 439 | 557 |
|
| 440 | 558 |
/// \brief Execute the algorithm. |
| 441 | 559 |
/// |
| 442 | 560 |
/// This function executes the algorithm. |
| 443 | 561 |
/// |
| 444 | 562 |
/// \param t The target node. |
| 445 | 563 |
/// \param k The number of paths to be found. |
| 446 | 564 |
/// |
| 447 | 565 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
| 448 | 566 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
| 449 | 567 |
/// arc-disjoint paths found. |
| 450 | 568 |
/// |
| 451 | 569 |
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is |
| 452 | 570 |
/// just a shortcut of the following code. |
| 453 | 571 |
/// \code |
| 454 | 572 |
/// s.findFlow(t, k); |
| 455 | 573 |
/// s.findPaths(); |
| 456 | 574 |
/// \endcode |
| 457 | 575 |
int start(const Node& t, int k = 2) {
|
| 458 | 576 |
findFlow(t, k); |
| 459 | 577 |
findPaths(); |
| 460 | 578 |
return _path_num; |
| 461 | 579 |
} |
| 462 | 580 |
|
| 463 | 581 |
/// \brief Execute the algorithm to find an optimal flow. |
| 464 | 582 |
/// |
| 465 | 583 |
/// This function executes the successive shortest path algorithm to |
| 466 | 584 |
/// find a minimum cost flow, which is the union of \c k (or less) |
| 467 | 585 |
/// arc-disjoint paths. |
| 468 | 586 |
/// |
| 469 | 587 |
/// \param t The target node. |
| 470 | 588 |
/// \param k The number of paths to be found. |
| 471 | 589 |
/// |
| 472 | 590 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
| 473 | 591 |
/// the source node to the given node \c t in the digraph. |
| 474 | 592 |
/// Otherwise it returns the number of arc-disjoint paths found. |
| 475 | 593 |
/// |
| 476 | 594 |
/// \pre \ref init() must be called before using this function. |
| 477 | 595 |
int findFlow(const Node& t, int k = 2) {
|
| 478 | 596 |
_t = t; |
| 479 | 597 |
ResidualDijkstra dijkstra(*this); |
| 480 | 598 |
|
| 481 | 599 |
// Initialization |
| 482 | 600 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 483 | 601 |
(*_flow)[e] = 0; |
| 484 | 602 |
} |
| 485 | 603 |
if (_full_init) {
|
| 486 | 604 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 487 | 605 |
(*_potential)[n] = (*_init_dist)[n]; |
| 488 | 606 |
} |
| 489 | 607 |
Node u = _t; |
| 490 | 608 |
Arc e; |
| 491 | 609 |
while ((e = (*_init_pred)[u]) != INVALID) {
|
| 492 | 610 |
(*_flow)[e] = 1; |
| 493 | 611 |
u = _graph.source(e); |
| 494 | 612 |
} |
| 495 | 613 |
_path_num = 1; |
| 496 | 614 |
} else {
|
| 497 | 615 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 498 | 616 |
(*_potential)[n] = 0; |
| 499 | 617 |
} |
| 500 | 618 |
_path_num = 0; |
| 501 | 619 |
} |
| 502 | 620 |
|
| 503 | 621 |
// Find shortest paths |
| 504 | 622 |
while (_path_num < k) {
|
| 505 | 623 |
// Run Dijkstra |
| 506 | 624 |
if (!dijkstra.run(_path_num)) break; |
| 507 | 625 |
++_path_num; |
| 508 | 626 |
|
| 509 | 627 |
// Set the flow along the found shortest path |
| 510 | 628 |
Node u = _t; |
| 511 | 629 |
Arc e; |
| 512 | 630 |
while ((e = _pred[u]) != INVALID) {
|
| 513 | 631 |
if (u == _graph.target(e)) {
|
| 514 | 632 |
(*_flow)[e] = 1; |
| 515 | 633 |
u = _graph.source(e); |
| 516 | 634 |
} else {
|
| 517 | 635 |
(*_flow)[e] = 0; |
| 518 | 636 |
u = _graph.target(e); |
| 519 | 637 |
} |
| 520 | 638 |
} |
| 521 | 639 |
} |
| 522 | 640 |
return _path_num; |
| 523 | 641 |
} |
| 524 | 642 |
|
| 525 | 643 |
/// \brief Compute the paths from the flow. |
| 526 | 644 |
/// |
| 527 | 645 |
/// This function computes arc-disjoint paths from the found minimum |
| 528 | 646 |
/// cost flow, which is the union of them. |
| 529 | 647 |
/// |
| 530 | 648 |
/// \pre \ref init() and \ref findFlow() must be called before using |
| 531 | 649 |
/// this function. |
| 532 | 650 |
void findPaths() {
|
| 533 | 651 |
FlowMap res_flow(_graph); |
| 534 | 652 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
| 535 | 653 |
|
| 536 | 654 |
_paths.clear(); |
| 537 | 655 |
_paths.resize(_path_num); |
| 538 | 656 |
for (int i = 0; i < _path_num; ++i) {
|
| 539 | 657 |
Node n = _s; |
| 540 | 658 |
while (n != _t) {
|
| 541 | 659 |
OutArcIt e(_graph, n); |
| 542 | 660 |
for ( ; res_flow[e] == 0; ++e) ; |
| 543 | 661 |
n = _graph.target(e); |
| 544 | 662 |
_paths[i].addBack(e); |
| 545 | 663 |
res_flow[e] = 0; |
| 546 | 664 |
} |
| 547 | 665 |
} |
| 548 | 666 |
} |
| 549 | 667 |
|
| 550 | 668 |
/// @} |
| 551 | 669 |
|
| 552 | 670 |
/// \name Query Functions |
| 553 | 671 |
/// The results of the algorithm can be obtained using these |
| 554 | 672 |
/// functions. |
| 555 | 673 |
/// \n The algorithm should be executed before using them. |
| 556 | 674 |
|
| 557 | 675 |
/// @{
|
| 558 | 676 |
|
| 559 | 677 |
/// \brief Return the total length of the found paths. |
| 560 | 678 |
/// |
| 561 | 679 |
/// This function returns the total length of the found paths, i.e. |
| 562 | 680 |
/// the total cost of the found flow. |
| 563 | 681 |
/// The complexity of the function is O(e). |
| 564 | 682 |
/// |
| 565 | 683 |
/// \pre \ref run() or \ref findFlow() must be called before using |
| 566 | 684 |
/// this function. |
| 567 | 685 |
Length totalLength() const {
|
| 568 | 686 |
Length c = 0; |
| 569 | 687 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 570 | 688 |
c += (*_flow)[e] * _length[e]; |
| 571 | 689 |
return c; |
| 572 | 690 |
} |
| 573 | 691 |
|
| 574 | 692 |
/// \brief Return the flow value on the given arc. |
| 575 | 693 |
/// |
| 576 | 694 |
/// This function returns the flow value on the given arc. |
| 577 | 695 |
/// It is \c 1 if the arc is involved in one of the found arc-disjoint |
| 578 | 696 |
/// paths, otherwise it is \c 0. |
| 579 | 697 |
/// |
| 580 | 698 |
/// \pre \ref run() or \ref findFlow() must be called before using |
| 581 | 699 |
/// this function. |
| 582 | 700 |
int flow(const Arc& arc) const {
|
| 583 | 701 |
return (*_flow)[arc]; |
| 584 | 702 |
} |
| 585 | 703 |
|
| 586 | 704 |
/// \brief Return a const reference to an arc map storing the |
| 587 | 705 |
/// found flow. |
| 588 | 706 |
/// |
| 589 | 707 |
/// This function returns a const reference to an arc map storing |
| 590 | 708 |
/// the flow that is the union of the found arc-disjoint paths. |
| 591 | 709 |
/// |
| 592 | 710 |
/// \pre \ref run() or \ref findFlow() must be called before using |
| 593 | 711 |
/// this function. |
| 594 | 712 |
const FlowMap& flowMap() const {
|
| 595 | 713 |
return *_flow; |
| 596 | 714 |
} |
| 597 | 715 |
|
| 598 | 716 |
/// \brief Return the potential of the given node. |
| 599 | 717 |
/// |
| 600 | 718 |
/// This function returns the potential of the given node. |
| 601 | 719 |
/// The node potentials provide the dual solution of the |
| 602 | 720 |
/// underlying \ref min_cost_flow "minimum cost flow problem". |
| 603 | 721 |
/// |
| 604 | 722 |
/// \pre \ref run() or \ref findFlow() must be called before using |
| 605 | 723 |
/// this function. |
| 606 | 724 |
Length potential(const Node& node) const {
|
| 607 | 725 |
return (*_potential)[node]; |
| 608 | 726 |
} |
| 609 | 727 |
|
| 610 | 728 |
/// \brief Return a const reference to a node map storing the |
| 611 | 729 |
/// found potentials (the dual solution). |
| 612 | 730 |
/// |
| 613 | 731 |
/// This function returns a const reference to a node map storing |
| 614 | 732 |
/// the found potentials that provide the dual solution of the |
| 615 | 733 |
/// underlying \ref min_cost_flow "minimum cost flow problem". |
| 616 | 734 |
/// |
| 617 | 735 |
/// \pre \ref run() or \ref findFlow() must be called before using |
| 618 | 736 |
/// this function. |
| 619 | 737 |
const PotentialMap& potentialMap() const {
|
| 620 | 738 |
return *_potential; |
| 621 | 739 |
} |
| 622 | 740 |
|
| 623 | 741 |
/// \brief Return the number of the found paths. |
| 624 | 742 |
/// |
| 625 | 743 |
/// This function returns the number of the found paths. |
| 626 | 744 |
/// |
| 627 | 745 |
/// \pre \ref run() or \ref findFlow() must be called before using |
| 628 | 746 |
/// this function. |
| 629 | 747 |
int pathNum() const {
|
| 630 | 748 |
return _path_num; |
| 631 | 749 |
} |
| 632 | 750 |
|
| 633 | 751 |
/// \brief Return a const reference to the specified path. |
| 634 | 752 |
/// |
| 635 | 753 |
/// This function returns a const reference to the specified path. |
| 636 | 754 |
/// |
| 637 | 755 |
/// \param i The function returns the <tt>i</tt>-th path. |
| 638 | 756 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
| 639 | 757 |
/// |
| 640 | 758 |
/// \pre \ref run() or \ref findPaths() must be called before using |
| 641 | 759 |
/// this function. |
| 642 | 760 |
const Path& path(int i) const {
|
| 643 | 761 |
return _paths[i]; |
| 644 | 762 |
} |
| 645 | 763 |
|
| 646 | 764 |
/// @} |
| 647 | 765 |
|
| 648 | 766 |
}; //class Suurballe |
| 649 | 767 |
|
| 650 | 768 |
///@} |
| 651 | 769 |
|
| 652 | 770 |
} //namespace lemon |
| 653 | 771 |
|
| 654 | 772 |
#endif //LEMON_SUURBALLE_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
|
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/path.h> |
| 24 | 24 |
#include <lemon/suurballe.h> |
| 25 | 25 |
#include <lemon/concepts/digraph.h> |
| 26 |
#include <lemon/concepts/heap.h> |
|
| 26 | 27 |
|
| 27 | 28 |
#include "test_tools.h" |
| 28 | 29 |
|
| 29 | 30 |
using namespace lemon; |
| 30 | 31 |
|
| 31 | 32 |
char test_lgf[] = |
| 32 | 33 |
"@nodes\n" |
| 33 | 34 |
"label\n" |
| 34 | 35 |
"1\n" |
| 35 | 36 |
"2\n" |
| 36 | 37 |
"3\n" |
| 37 | 38 |
"4\n" |
| 38 | 39 |
"5\n" |
| 39 | 40 |
"6\n" |
| 40 | 41 |
"7\n" |
| 41 | 42 |
"8\n" |
| 42 | 43 |
"9\n" |
| 43 | 44 |
"10\n" |
| 44 | 45 |
"11\n" |
| 45 | 46 |
"12\n" |
| 46 | 47 |
"@arcs\n" |
| 47 | 48 |
" length\n" |
| 48 | 49 |
" 1 2 70\n" |
| 49 | 50 |
" 1 3 150\n" |
| 50 | 51 |
" 1 4 80\n" |
| 51 | 52 |
" 2 8 80\n" |
| 52 | 53 |
" 3 5 140\n" |
| 53 | 54 |
" 4 6 60\n" |
| 54 | 55 |
" 4 7 80\n" |
| 55 | 56 |
" 4 8 110\n" |
| 56 | 57 |
" 5 7 60\n" |
| 57 | 58 |
" 5 11 120\n" |
| 58 | 59 |
" 6 3 0\n" |
| 59 | 60 |
" 6 9 140\n" |
| 60 | 61 |
" 6 10 90\n" |
| 61 | 62 |
" 7 1 30\n" |
| 62 | 63 |
" 8 12 60\n" |
| 63 | 64 |
" 9 12 50\n" |
| 64 | 65 |
"10 12 70\n" |
| 65 | 66 |
"10 2 100\n" |
| 66 | 67 |
"10 7 60\n" |
| 67 | 68 |
"11 10 20\n" |
| 68 | 69 |
"12 11 30\n" |
| 69 | 70 |
"@attributes\n" |
| 70 | 71 |
"source 1\n" |
| 71 | 72 |
"target 12\n" |
| 72 | 73 |
"@end\n"; |
| 73 | 74 |
|
| 74 | 75 |
// Check the interface of Suurballe |
| 75 | 76 |
void checkSuurballeCompile() |
| 76 | 77 |
{
|
| 77 | 78 |
typedef int VType; |
| 78 | 79 |
typedef concepts::Digraph Digraph; |
| 79 | 80 |
|
| 80 | 81 |
typedef Digraph::Node Node; |
| 81 | 82 |
typedef Digraph::Arc Arc; |
| 82 | 83 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
| 83 | 84 |
|
| 84 |
typedef Suurballe<Digraph, LengthMap> |
|
| 85 |
typedef Suurballe<Digraph, LengthMap> ST; |
|
| 86 |
typedef Suurballe<Digraph, LengthMap> |
|
| 87 |
::SetFlowMap<ST::FlowMap> |
|
| 88 |
::SetPotentialMap<ST::PotentialMap> |
|
| 89 |
::SetPath<SimplePath<Digraph> > |
|
| 90 |
::SetHeap<concepts::Heap<VType, Digraph::NodeMap<int> > > |
|
| 91 |
::Create SuurballeType; |
|
| 85 | 92 |
|
| 86 | 93 |
Digraph g; |
| 87 | 94 |
Node n; |
| 88 | 95 |
Arc e; |
| 89 | 96 |
LengthMap len; |
| 90 | 97 |
SuurballeType::FlowMap flow(g); |
| 91 | 98 |
SuurballeType::PotentialMap pi(g); |
| 92 | 99 |
|
| 93 | 100 |
SuurballeType suurb_test(g, len); |
| 94 | 101 |
const SuurballeType& const_suurb_test = suurb_test; |
| 95 | 102 |
|
| 96 | 103 |
suurb_test |
| 97 | 104 |
.flowMap(flow) |
| 98 | 105 |
.potentialMap(pi); |
| 99 | 106 |
|
| 100 | 107 |
int k; |
| 101 | 108 |
k = suurb_test.run(n, n); |
| 102 | 109 |
k = suurb_test.run(n, n, k); |
| 103 | 110 |
suurb_test.init(n); |
| 104 | 111 |
suurb_test.fullInit(n); |
| 105 | 112 |
suurb_test.start(n); |
| 106 | 113 |
suurb_test.start(n, k); |
| 107 | 114 |
k = suurb_test.findFlow(n); |
| 108 | 115 |
k = suurb_test.findFlow(n, k); |
| 109 | 116 |
suurb_test.findPaths(); |
| 110 | 117 |
|
| 111 | 118 |
int f; |
| 112 | 119 |
VType c; |
| 113 | 120 |
c = const_suurb_test.totalLength(); |
| 114 | 121 |
f = const_suurb_test.flow(e); |
| 115 | 122 |
const SuurballeType::FlowMap& fm = |
| 116 | 123 |
const_suurb_test.flowMap(); |
| 117 | 124 |
c = const_suurb_test.potential(n); |
| 118 | 125 |
const SuurballeType::PotentialMap& pm = |
| 119 | 126 |
const_suurb_test.potentialMap(); |
| 120 | 127 |
k = const_suurb_test.pathNum(); |
| 121 | 128 |
Path<Digraph> p = const_suurb_test.path(k); |
| 122 | 129 |
|
| 123 | 130 |
ignore_unused_variable_warning(fm); |
| 124 | 131 |
ignore_unused_variable_warning(pm); |
| 125 | 132 |
} |
| 126 | 133 |
|
| 127 | 134 |
// Check the feasibility of the flow |
| 128 | 135 |
template <typename Digraph, typename FlowMap> |
| 129 | 136 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
| 130 | 137 |
typename Digraph::Node s, typename Digraph::Node t, |
| 131 | 138 |
int value ) |
| 132 | 139 |
{
|
| 133 | 140 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 134 | 141 |
for (ArcIt e(gr); e != INVALID; ++e) |
| 135 | 142 |
if (!(flow[e] == 0 || flow[e] == 1)) return false; |
| 136 | 143 |
|
| 137 | 144 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 138 | 145 |
int sum = 0; |
| 139 | 146 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 140 | 147 |
sum += flow[e]; |
| 141 | 148 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 142 | 149 |
sum -= flow[e]; |
| 143 | 150 |
if (n == s && sum != value) return false; |
| 144 | 151 |
if (n == t && sum != -value) return false; |
| 145 | 152 |
if (n != s && n != t && sum != 0) return false; |
| 146 | 153 |
} |
| 147 | 154 |
|
| 148 | 155 |
return true; |
| 149 | 156 |
} |
| 150 | 157 |
|
| 151 | 158 |
// Check the optimalitiy of the flow |
| 152 | 159 |
template < typename Digraph, typename CostMap, |
| 153 | 160 |
typename FlowMap, typename PotentialMap > |
| 154 | 161 |
bool checkOptimality( const Digraph& gr, const CostMap& cost, |
| 155 | 162 |
const FlowMap& flow, const PotentialMap& pi ) |
| 156 | 163 |
{
|
| 157 | 164 |
// Check the "Complementary Slackness" optimality condition |
| 158 | 165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 159 | 166 |
bool opt = true; |
| 160 | 167 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 161 | 168 |
typename CostMap::Value red_cost = |
| 162 | 169 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 163 | 170 |
opt = (flow[e] == 0 && red_cost >= 0) || |
| 164 | 171 |
(flow[e] == 1 && red_cost <= 0); |
| 165 | 172 |
if (!opt) break; |
| 166 | 173 |
} |
| 167 | 174 |
return opt; |
| 168 | 175 |
} |
| 169 | 176 |
|
| 170 | 177 |
// Check a path |
| 171 | 178 |
template <typename Digraph, typename Path> |
| 172 | 179 |
bool checkPath( const Digraph& gr, const Path& path, |
| 173 | 180 |
typename Digraph::Node s, typename Digraph::Node t) |
| 174 | 181 |
{
|
| 175 | 182 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 176 | 183 |
Node n = s; |
| 177 | 184 |
for (int i = 0; i < path.length(); ++i) {
|
| 178 | 185 |
if (gr.source(path.nth(i)) != n) return false; |
| 179 | 186 |
n = gr.target(path.nth(i)); |
| 180 | 187 |
} |
| 181 | 188 |
return n == t; |
| 182 | 189 |
} |
| 183 | 190 |
|
| 184 | 191 |
|
| 185 | 192 |
int main() |
| 186 | 193 |
{
|
| 187 | 194 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 188 | 195 |
|
| 189 | 196 |
// Read the test digraph |
| 190 | 197 |
ListDigraph digraph; |
| 191 | 198 |
ListDigraph::ArcMap<int> length(digraph); |
| 192 | 199 |
Node s, t; |
| 193 | 200 |
|
| 194 | 201 |
std::istringstream input(test_lgf); |
| 195 | 202 |
DigraphReader<ListDigraph>(digraph, input). |
| 196 | 203 |
arcMap("length", length).
|
| 197 | 204 |
node("source", s).
|
| 198 | 205 |
node("target", t).
|
| 199 | 206 |
run(); |
| 200 | 207 |
|
| 201 | 208 |
// Find 2 paths |
| 202 | 209 |
{
|
| 203 | 210 |
Suurballe<ListDigraph> suurballe(digraph, length); |
| 204 | 211 |
check(suurballe.run(s, t) == 2, "Wrong number of paths"); |
| 205 | 212 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), |
| 206 | 213 |
"The flow is not feasible"); |
| 207 | 214 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
| 208 | 215 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
| 209 | 216 |
suurballe.potentialMap()), |
| 210 | 217 |
"Wrong potentials"); |
| 211 | 218 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
| 212 | 219 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
| 213 | 220 |
} |
| 214 | 221 |
|
| 215 | 222 |
// Find 3 paths |
| 216 | 223 |
{
|
| 217 | 224 |
Suurballe<ListDigraph> suurballe(digraph, length); |
| 218 | 225 |
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); |
| 219 | 226 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
| 220 | 227 |
"The flow is not feasible"); |
| 221 | 228 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
| 222 | 229 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
| 223 | 230 |
suurballe.potentialMap()), |
| 224 | 231 |
"Wrong potentials"); |
| 225 | 232 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
| 226 | 233 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
| 227 | 234 |
} |
| 228 | 235 |
|
| 229 | 236 |
// Find 5 paths (only 3 can be found) |
| 230 | 237 |
{
|
| 231 | 238 |
Suurballe<ListDigraph> suurballe(digraph, length); |
| 232 | 239 |
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); |
| 233 | 240 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
| 234 | 241 |
"The flow is not feasible"); |
| 235 | 242 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
| 236 | 243 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
| 237 | 244 |
suurballe.potentialMap()), |
| 238 | 245 |
"Wrong potentials"); |
| 239 | 246 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
| 240 | 247 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
| 241 | 248 |
} |
| 242 | 249 |
|
| 243 | 250 |
return 0; |
| 244 | 251 |
} |
0 comments (0 inline)