gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 3 5
merge default
3 files changed with 6878 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 2097152 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_ADAPTORS_H
20
#define LEMON_ADAPTORS_H
21

	
22
/// \ingroup graph_adaptors
23
/// \file
24
/// \brief Several graph adaptors
25
///
26
/// This file contains several useful adaptors for digraphs and graphs.
27

	
28
#include <lemon/core.h>
29
#include <lemon/maps.h>
30
#include <lemon/bits/variant.h>
31

	
32
#include <lemon/bits/graph_adaptor_extender.h>
33
#include <lemon/tolerance.h>
34

	
35
#include <algorithm>
36

	
37
namespace lemon {
38

	
39
  template<typename _Digraph>
40
  class DigraphAdaptorBase {
41
  public:
42
    typedef _Digraph Digraph;
43
    typedef DigraphAdaptorBase Adaptor;
44
    typedef Digraph ParentDigraph;
45

	
46
  protected:
47
    Digraph* _digraph;
48
    DigraphAdaptorBase() : _digraph(0) { }
49
    void setDigraph(Digraph& digraph) { _digraph = &digraph; }
50

	
51
  public:
52
    DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { }
53

	
54
    typedef typename Digraph::Node Node;
55
    typedef typename Digraph::Arc Arc;
56

	
57
    void first(Node& i) const { _digraph->first(i); }
58
    void first(Arc& i) const { _digraph->first(i); }
59
    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
60
    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
61

	
62
    void next(Node& i) const { _digraph->next(i); }
63
    void next(Arc& i) const { _digraph->next(i); }
64
    void nextIn(Arc& i) const { _digraph->nextIn(i); }
65
    void nextOut(Arc& i) const { _digraph->nextOut(i); }
66

	
67
    Node source(const Arc& a) const { return _digraph->source(a); }
68
    Node target(const Arc& a) const { return _digraph->target(a); }
69

	
70
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
71
    int nodeNum() const { return _digraph->nodeNum(); }
72

	
73
    typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
74
    int arcNum() const { return _digraph->arcNum(); }
75

	
76
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
77
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
78
      return _digraph->findArc(u, v, prev);
79
    }
80

	
81
    Node addNode() { return _digraph->addNode(); }
82
    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
83

	
84
    void erase(const Node& n) const { _digraph->erase(n); }
85
    void erase(const Arc& a) const { _digraph->erase(a); }
86

	
87
    void clear() const { _digraph->clear(); }
88

	
89
    int id(const Node& n) const { return _digraph->id(n); }
90
    int id(const Arc& a) const { return _digraph->id(a); }
91

	
92
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
93
    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
94

	
95
    int maxNodeId() const { return _digraph->maxNodeId(); }
96
    int maxArcId() const { return _digraph->maxArcId(); }
97

	
98
    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
99
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
100

	
101
    typedef typename ItemSetTraits<Digraph, Arc>::ItemNotifier ArcNotifier;
102
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
103

	
104
    template <typename _Value>
105
    class NodeMap : public Digraph::template NodeMap<_Value> {
106
    public:
107

	
108
      typedef typename Digraph::template NodeMap<_Value> Parent;
109

	
110
      explicit NodeMap(const Adaptor& adaptor)
111
        : Parent(*adaptor._digraph) {}
112

	
113
      NodeMap(const Adaptor& adaptor, const _Value& value)
114
        : Parent(*adaptor._digraph, value) { }
115

	
116
    private:
117
      NodeMap& operator=(const NodeMap& cmap) {
118
        return operator=<NodeMap>(cmap);
119
      }
120

	
121
      template <typename CMap>
122
      NodeMap& operator=(const CMap& cmap) {
123
        Parent::operator=(cmap);
124
        return *this;
125
      }
126

	
127
    };
128

	
129
    template <typename _Value>
130
    class ArcMap : public Digraph::template ArcMap<_Value> {
131
    public:
132

	
133
      typedef typename Digraph::template ArcMap<_Value> Parent;
134

	
135
      explicit ArcMap(const Adaptor& adaptor)
136
        : Parent(*adaptor._digraph) {}
137

	
138
      ArcMap(const Adaptor& adaptor, const _Value& value)
139
        : Parent(*adaptor._digraph, value) {}
140

	
141
    private:
142
      ArcMap& operator=(const ArcMap& cmap) {
143
        return operator=<ArcMap>(cmap);
144
      }
145

	
146
      template <typename CMap>
147
      ArcMap& operator=(const CMap& cmap) {
148
        Parent::operator=(cmap);
149
        return *this;
150
      }
151

	
152
    };
153

	
154
  };
155

	
156
  template<typename _Graph>
157
  class GraphAdaptorBase {
158
  public:
159
    typedef _Graph Graph;
160
    typedef Graph ParentGraph;
161

	
162
  protected:
163
    Graph* _graph;
164

	
165
    GraphAdaptorBase() : _graph(0) {}
166

	
167
    void setGraph(Graph& graph) { _graph = &graph; }
168

	
169
  public:
170
    GraphAdaptorBase(Graph& graph) : _graph(&graph) {}
171

	
172
    typedef typename Graph::Node Node;
173
    typedef typename Graph::Arc Arc;
174
    typedef typename Graph::Edge Edge;
175

	
176
    void first(Node& i) const { _graph->first(i); }
177
    void first(Arc& i) const { _graph->first(i); }
178
    void first(Edge& i) const { _graph->first(i); }
179
    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
180
    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
181
    void firstInc(Edge &i, bool &d, const Node &n) const {
182
      _graph->firstInc(i, d, n);
183
    }
184

	
185
    void next(Node& i) const { _graph->next(i); }
186
    void next(Arc& i) const { _graph->next(i); }
187
    void next(Edge& i) const { _graph->next(i); }
188
    void nextIn(Arc& i) const { _graph->nextIn(i); }
189
    void nextOut(Arc& i) const { _graph->nextOut(i); }
190
    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
191

	
192
    Node u(const Edge& e) const { return _graph->u(e); }
193
    Node v(const Edge& e) const { return _graph->v(e); }
194

	
195
    Node source(const Arc& a) const { return _graph->source(a); }
196
    Node target(const Arc& a) const { return _graph->target(a); }
197

	
198
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
199
    int nodeNum() const { return _graph->nodeNum(); }
200

	
201
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
202
    int arcNum() const { return _graph->arcNum(); }
203
    int edgeNum() const { return _graph->edgeNum(); }
204

	
205
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
206
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) {
207
      return _graph->findArc(u, v, prev);
208
    }
209
    Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) {
210
      return _graph->findEdge(u, v, prev);
211
    }
212

	
213
    Node addNode() { return _graph->addNode(); }
214
    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
215

	
216
    void erase(const Node& i) { _graph->erase(i); }
217
    void erase(const Edge& i) { _graph->erase(i); }
218

	
219
    void clear() { _graph->clear(); }
220

	
221
    bool direction(const Arc& a) const { return _graph->direction(a); }
222
    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
223

	
224
    int id(const Node& v) const { return _graph->id(v); }
225
    int id(const Arc& a) const { return _graph->id(a); }
226
    int id(const Edge& e) const { return _graph->id(e); }
227

	
228
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
229
    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
230
    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
231

	
232
    int maxNodeId() const { return _graph->maxNodeId(); }
233
    int maxArcId() const { return _graph->maxArcId(); }
234
    int maxEdgeId() const { return _graph->maxEdgeId(); }
235

	
236
    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
237
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
238

	
239
    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
240
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
241

	
242
    typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
243
    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
244

	
245
    template <typename _Value>
246
    class NodeMap : public Graph::template NodeMap<_Value> {
247
    public:
248
      typedef typename Graph::template NodeMap<_Value> Parent;
249
      explicit NodeMap(const GraphAdaptorBase<Graph>& adapter)
250
        : Parent(*adapter._graph) {}
251
      NodeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
252
        : Parent(*adapter._graph, value) {}
253

	
254
    private:
255
      NodeMap& operator=(const NodeMap& cmap) {
256
        return operator=<NodeMap>(cmap);
257
      }
258

	
259
      template <typename CMap>
260
      NodeMap& operator=(const CMap& cmap) {
261
        Parent::operator=(cmap);
262
        return *this;
263
      }
264

	
265
    };
266

	
267
    template <typename _Value>
268
    class ArcMap : public Graph::template ArcMap<_Value> {
269
    public:
270
      typedef typename Graph::template ArcMap<_Value> Parent;
271
      explicit ArcMap(const GraphAdaptorBase<Graph>& adapter)
272
        : Parent(*adapter._graph) {}
273
      ArcMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
274
        : Parent(*adapter._graph, value) {}
275

	
276
    private:
277
      ArcMap& operator=(const ArcMap& cmap) {
278
        return operator=<ArcMap>(cmap);
279
      }
280

	
281
      template <typename CMap>
282
      ArcMap& operator=(const CMap& cmap) {
283
        Parent::operator=(cmap);
284
        return *this;
285
      }
286
    };
287

	
288
    template <typename _Value>
289
    class EdgeMap : public Graph::template EdgeMap<_Value> {
290
    public:
291
      typedef typename Graph::template EdgeMap<_Value> Parent;
292
      explicit EdgeMap(const GraphAdaptorBase<Graph>& adapter)
293
        : Parent(*adapter._graph) {}
294
      EdgeMap(const GraphAdaptorBase<Graph>& adapter, const _Value& value)
295
        : Parent(*adapter._graph, value) {}
296

	
297
    private:
298
      EdgeMap& operator=(const EdgeMap& cmap) {
299
        return operator=<EdgeMap>(cmap);
300
      }
301

	
302
      template <typename CMap>
303
      EdgeMap& operator=(const CMap& cmap) {
304
        Parent::operator=(cmap);
305
        return *this;
306
      }
307
    };
308

	
309
  };
310

	
311
  template <typename _Digraph>
312
  class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> {
313
  public:
314
    typedef _Digraph Digraph;
315
    typedef DigraphAdaptorBase<_Digraph> Parent;
316
  protected:
317
    ReverseDigraphBase() : Parent() { }
318
  public:
319
    typedef typename Parent::Node Node;
320
    typedef typename Parent::Arc Arc;
321

	
322
    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
323
    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
324

	
325
    void nextIn(Arc& a) const { Parent::nextOut(a); }
326
    void nextOut(Arc& a) const { Parent::nextIn(a); }
327

	
328
    Node source(const Arc& a) const { return Parent::target(a); }
329
    Node target(const Arc& a) const { return Parent::source(a); }
330

	
331
    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
332

	
333
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
334
    Arc findArc(const Node& u, const Node& v,
335
                const Arc& prev = INVALID) {
336
      return Parent::findArc(v, u, prev);
337
    }
338

	
339
  };
340

	
341
  /// \ingroup graph_adaptors
342
  ///
343
  /// \brief A digraph adaptor which reverses the orientation of the arcs.
344
  ///
345
  /// ReverseDigraph reverses the arcs in the adapted digraph. The
346
  /// SubDigraph is conform to the \ref concepts::Digraph
347
  /// "Digraph concept".
348
  ///
349
  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
350
  /// "Digraph concept". The type can be specified to be const.
351
  template<typename _Digraph>
352
  class ReverseDigraph :
353
    public DigraphAdaptorExtender<ReverseDigraphBase<_Digraph> > {
354
  public:
355
    typedef _Digraph Digraph;
356
    typedef DigraphAdaptorExtender<
357
      ReverseDigraphBase<_Digraph> > Parent;
358
  protected:
359
    ReverseDigraph() { }
360
  public:
361

	
362
    /// \brief Constructor
363
    ///
364
    /// Creates a reverse digraph adaptor for the given digraph
365
    explicit ReverseDigraph(Digraph& digraph) {
366
      Parent::setDigraph(digraph);
367
    }
368
  };
369

	
370
  /// \brief Just gives back a reverse digraph adaptor
371
  ///
372
  /// Just gives back a reverse digraph adaptor
373
  template<typename Digraph>
374
  ReverseDigraph<const Digraph> reverseDigraph(const Digraph& digraph) {
375
    return ReverseDigraph<const Digraph>(digraph);
376
  }
377

	
378
  template <typename _Digraph, typename _NodeFilterMap,
379
            typename _ArcFilterMap, bool _checked = true>
380
  class SubDigraphBase : public DigraphAdaptorBase<_Digraph> {
381
  public:
382
    typedef _Digraph Digraph;
383
    typedef _NodeFilterMap NodeFilterMap;
384
    typedef _ArcFilterMap ArcFilterMap;
385

	
386
    typedef SubDigraphBase Adaptor;
387
    typedef DigraphAdaptorBase<_Digraph> Parent;
388
  protected:
389
    NodeFilterMap* _node_filter;
390
    ArcFilterMap* _arc_filter;
391
    SubDigraphBase()
392
      : Parent(), _node_filter(0), _arc_filter(0) { }
393

	
394
    void setNodeFilterMap(NodeFilterMap& node_filter) {
395
      _node_filter = &node_filter;
396
    }
397
    void setArcFilterMap(ArcFilterMap& arc_filter) {
398
      _arc_filter = &arc_filter;
399
    }
400

	
401
  public:
402

	
403
    typedef typename Parent::Node Node;
404
    typedef typename Parent::Arc Arc;
405

	
406
    void first(Node& i) const {
407
      Parent::first(i);
408
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
409
    }
410

	
411
    void first(Arc& i) const {
412
      Parent::first(i);
413
      while (i != INVALID && (!(*_arc_filter)[i]
414
                              || !(*_node_filter)[Parent::source(i)]
415
                              || !(*_node_filter)[Parent::target(i)]))
416
        Parent::next(i);
417
    }
418

	
419
    void firstIn(Arc& i, const Node& n) const {
420
      Parent::firstIn(i, n);
421
      while (i != INVALID && (!(*_arc_filter)[i]
422
                              || !(*_node_filter)[Parent::source(i)]))
423
        Parent::nextIn(i);
424
    }
425

	
426
    void firstOut(Arc& i, const Node& n) const {
427
      Parent::firstOut(i, n);
428
      while (i != INVALID && (!(*_arc_filter)[i]
429
                              || !(*_node_filter)[Parent::target(i)]))
430
        Parent::nextOut(i);
431
    }
432

	
433
    void next(Node& i) const {
434
      Parent::next(i);
435
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
436
    }
437

	
438
    void next(Arc& i) const {
439
      Parent::next(i);
440
      while (i != INVALID && (!(*_arc_filter)[i]
441
                              || !(*_node_filter)[Parent::source(i)]
442
                              || !(*_node_filter)[Parent::target(i)]))
443
        Parent::next(i);
444
    }
445

	
446
    void nextIn(Arc& i) const {
447
      Parent::nextIn(i);
448
      while (i != INVALID && (!(*_arc_filter)[i]
449
                              || !(*_node_filter)[Parent::source(i)]))
450
        Parent::nextIn(i);
451
    }
452

	
453
    void nextOut(Arc& i) const {
454
      Parent::nextOut(i);
455
      while (i != INVALID && (!(*_arc_filter)[i]
456
                              || !(*_node_filter)[Parent::target(i)]))
457
        Parent::nextOut(i);
458
    }
459

	
460
    void hide(const Node& n) const { _node_filter->set(n, false); }
461
    void hide(const Arc& a) const { _arc_filter->set(a, false); }
462

	
463
    void unHide(const Node& n) const { _node_filter->set(n, true); }
464
    void unHide(const Arc& a) const { _arc_filter->set(a, true); }
465

	
466
    bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
467
    bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; }
468

	
469
    typedef False NodeNumTag;
470
    typedef False EdgeNumTag;
471

	
472
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
473
    Arc findArc(const Node& source, const Node& target,
474
                const Arc& prev = INVALID) {
475
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
476
        return INVALID;
477
      }
478
      Arc arc = Parent::findArc(source, target, prev);
479
      while (arc != INVALID && !(*_arc_filter)[arc]) {
480
        arc = Parent::findArc(source, target, arc);
481
      }
482
      return arc;
483
    }
484

	
485
    template <typename _Value>
486
    class NodeMap : public SubMapExtender<Adaptor,
487
      typename Parent::template NodeMap<_Value> > {
488
    public:
489
      typedef _Value Value;
490
      typedef SubMapExtender<Adaptor, typename Parent::
491
                             template NodeMap<Value> > MapParent;
492

	
493
      NodeMap(const Adaptor& adaptor)
494
        : MapParent(adaptor) {}
495
      NodeMap(const Adaptor& adaptor, const Value& value)
496
        : MapParent(adaptor, value) {}
497

	
498
    private:
499
      NodeMap& operator=(const NodeMap& cmap) {
500
        return operator=<NodeMap>(cmap);
501
      }
502

	
503
      template <typename CMap>
504
      NodeMap& operator=(const CMap& cmap) {
505
        MapParent::operator=(cmap);
506
        return *this;
507
      }
508
    };
509

	
510
    template <typename _Value>
511
    class ArcMap : public SubMapExtender<Adaptor,
512
      typename Parent::template ArcMap<_Value> > {
513
    public:
514
      typedef _Value Value;
515
      typedef SubMapExtender<Adaptor, typename Parent::
516
                             template ArcMap<Value> > MapParent;
517

	
518
      ArcMap(const Adaptor& adaptor)
519
        : MapParent(adaptor) {}
520
      ArcMap(const Adaptor& adaptor, const Value& value)
521
        : MapParent(adaptor, value) {}
522

	
523
    private:
524
      ArcMap& operator=(const ArcMap& cmap) {
525
        return operator=<ArcMap>(cmap);
526
      }
527

	
528
      template <typename CMap>
529
      ArcMap& operator=(const CMap& cmap) {
530
        MapParent::operator=(cmap);
531
        return *this;
532
      }
533
    };
534

	
535
  };
536

	
537
  template <typename _Digraph, typename _NodeFilterMap, typename _ArcFilterMap>
538
  class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false>
539
    : public DigraphAdaptorBase<_Digraph> {
540
  public:
541
    typedef _Digraph Digraph;
542
    typedef _NodeFilterMap NodeFilterMap;
543
    typedef _ArcFilterMap ArcFilterMap;
544

	
545
    typedef SubDigraphBase Adaptor;
546
    typedef DigraphAdaptorBase<Digraph> Parent;
547
  protected:
548
    NodeFilterMap* _node_filter;
549
    ArcFilterMap* _arc_filter;
550
    SubDigraphBase()
551
      : Parent(), _node_filter(0), _arc_filter(0) { }
552

	
553
    void setNodeFilterMap(NodeFilterMap& node_filter) {
554
      _node_filter = &node_filter;
555
    }
556
    void setArcFilterMap(ArcFilterMap& arc_filter) {
557
      _arc_filter = &arc_filter;
558
    }
559

	
560
  public:
561

	
562
    typedef typename Parent::Node Node;
563
    typedef typename Parent::Arc Arc;
564

	
565
    void first(Node& i) const {
566
      Parent::first(i);
567
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
568
    }
569

	
570
    void first(Arc& i) const {
571
      Parent::first(i);
572
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
573
    }
574

	
575
    void firstIn(Arc& i, const Node& n) const {
576
      Parent::firstIn(i, n);
577
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
578
    }
579

	
580
    void firstOut(Arc& i, const Node& n) const {
581
      Parent::firstOut(i, n);
582
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
583
    }
584

	
585
    void next(Node& i) const {
586
      Parent::next(i);
587
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
588
    }
589
    void next(Arc& i) const {
590
      Parent::next(i);
591
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
592
    }
593
    void nextIn(Arc& i) const {
594
      Parent::nextIn(i);
595
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
596
    }
597

	
598
    void nextOut(Arc& i) const {
599
      Parent::nextOut(i);
600
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
601
    }
602

	
603
    void hide(const Node& n) const { _node_filter->set(n, false); }
604
    void hide(const Arc& e) const { _arc_filter->set(e, false); }
605

	
606
    void unHide(const Node& n) const { _node_filter->set(n, true); }
607
    void unHide(const Arc& e) const { _arc_filter->set(e, true); }
608

	
609
    bool hidden(const Node& n) const { return !(*_node_filter)[n]; }
610
    bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; }
611

	
612
    typedef False NodeNumTag;
613
    typedef False EdgeNumTag;
614

	
615
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
616
    Arc findArc(const Node& source, const Node& target,
617
                const Arc& prev = INVALID) {
618
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
619
        return INVALID;
620
      }
621
      Arc arc = Parent::findArc(source, target, prev);
622
      while (arc != INVALID && !(*_arc_filter)[arc]) {
623
        arc = Parent::findArc(source, target, arc);
624
      }
625
      return arc;
626
    }
627

	
628
    template <typename _Value>
629
    class NodeMap : public SubMapExtender<Adaptor,
630
      typename Parent::template NodeMap<_Value> > {
631
    public:
632
      typedef _Value Value;
633
      typedef SubMapExtender<Adaptor, typename Parent::
634
                             template NodeMap<Value> > MapParent;
635

	
636
      NodeMap(const Adaptor& adaptor)
637
        : MapParent(adaptor) {}
638
      NodeMap(const Adaptor& adaptor, const Value& value)
639
        : MapParent(adaptor, value) {}
640

	
641
    private:
642
      NodeMap& operator=(const NodeMap& cmap) {
643
        return operator=<NodeMap>(cmap);
644
      }
645

	
646
      template <typename CMap>
647
      NodeMap& operator=(const CMap& cmap) {
648
        MapParent::operator=(cmap);
649
        return *this;
650
      }
651
    };
652

	
653
    template <typename _Value>
654
    class ArcMap : public SubMapExtender<Adaptor,
655
      typename Parent::template ArcMap<_Value> > {
656
    public:
657
      typedef _Value Value;
658
      typedef SubMapExtender<Adaptor, typename Parent::
659
                             template ArcMap<Value> > MapParent;
660

	
661
      ArcMap(const Adaptor& adaptor)
662
        : MapParent(adaptor) {}
663
      ArcMap(const Adaptor& adaptor, const Value& value)
664
        : MapParent(adaptor, value) {}
665

	
666
    private:
667
      ArcMap& operator=(const ArcMap& cmap) {
668
        return operator=<ArcMap>(cmap);
669
      }
670

	
671
      template <typename CMap>
672
      ArcMap& operator=(const CMap& cmap) {
673
        MapParent::operator=(cmap);
674
        return *this;
675
      }
676
    };
677

	
678
  };
679

	
680
  /// \ingroup graph_adaptors
681
  ///
682
  /// \brief An adaptor for hiding nodes and arcs in a digraph
683
  ///
684
  /// SubDigraph hides nodes and arcs in a digraph. A bool node map
685
  /// and a bool arc map must be specified, which define the filters
686
  /// for nodes and arcs. Just the nodes and arcs with true value are
687
  /// shown in the subdigraph. The SubDigraph is conform to the \ref
688
  /// concepts::Digraph "Digraph concept". If the \c _checked parameter
689
  /// is true, then the arcs incident to filtered nodes are also
690
  /// filtered out.
691
  ///
692
  /// \tparam _Digraph It must be conform to the \ref
693
  /// concepts::Digraph "Digraph concept". The type can be specified
694
  /// to const.
695
  /// \tparam _NodeFilterMap A bool valued node map of the the adapted digraph.
696
  /// \tparam _ArcFilterMap A bool valued arc map of the the adapted digraph.
697
  /// \tparam _checked If the parameter is false then the arc filtering
698
  /// is not checked with respect to node filter. Otherwise, each arc
699
  /// is automatically filtered, which is incident to a filtered node.
700
  ///
701
  /// \see FilterNodes
702
  /// \see FilterArcs
703
  template<typename _Digraph,
704
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
705
           typename _ArcFilterMap = typename _Digraph::template ArcMap<bool>,
706
           bool _checked = true>
707
  class SubDigraph
708
    : public DigraphAdaptorExtender<
709
      SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > {
710
  public:
711
    typedef _Digraph Digraph;
712
    typedef _NodeFilterMap NodeFilterMap;
713
    typedef _ArcFilterMap ArcFilterMap;
714

	
715
    typedef DigraphAdaptorExtender<
716
      SubDigraphBase<Digraph, NodeFilterMap, ArcFilterMap, _checked> >
717
    Parent;
718

	
719
    typedef typename Parent::Node Node;
720
    typedef typename Parent::Arc Arc;
721

	
722
  protected:
723
    SubDigraph() { }
724
  public:
725

	
726
    /// \brief Constructor
727
    ///
728
    /// Creates a subdigraph for the given digraph with
729
    /// given node and arc map filters.
730
    SubDigraph(Digraph& digraph, NodeFilterMap& node_filter,
731
               ArcFilterMap& arc_filter) {
732
      setDigraph(digraph);
733
      setNodeFilterMap(node_filter);
734
      setArcFilterMap(arc_filter);
735
    }
736

	
737
    /// \brief Hides the node of the graph
738
    ///
739
    /// This function hides \c n in the digraph, i.e. the iteration
740
    /// jumps over it. This is done by simply setting the value of \c n
741
    /// to be false in the corresponding node-map.
742
    void hide(const Node& n) const { Parent::hide(n); }
743

	
744
    /// \brief Hides the arc of the graph
745
    ///
746
    /// This function hides \c a in the digraph, i.e. the iteration
747
    /// jumps over it. This is done by simply setting the value of \c a
748
    /// to be false in the corresponding arc-map.
749
    void hide(const Arc& a) const { Parent::hide(a); }
750

	
751
    /// \brief Unhides the node of the graph
752
    ///
753
    /// The value of \c n is set to be true in the node-map which stores
754
    /// hide information. If \c n was hidden previuosly, then it is shown
755
    /// again
756
    void unHide(const Node& n) const { Parent::unHide(n); }
757

	
758
    /// \brief Unhides the arc of the graph
759
    ///
760
    /// The value of \c a is set to be true in the arc-map which stores
761
    /// hide information. If \c a was hidden previuosly, then it is shown
762
    /// again
763
    void unHide(const Arc& a) const { Parent::unHide(a); }
764

	
765
    /// \brief Returns true if \c n is hidden.
766
    ///
767
    /// Returns true if \c n is hidden.
768
    ///
769
    bool hidden(const Node& n) const { return Parent::hidden(n); }
770

	
771
    /// \brief Returns true if \c a is hidden.
772
    ///
773
    /// Returns true if \c a is hidden.
774
    ///
775
    bool hidden(const Arc& a) const { return Parent::hidden(a); }
776

	
777
  };
778

	
779
  /// \brief Just gives back a subdigraph
780
  ///
781
  /// Just gives back a subdigraph
782
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
783
  SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
784
  subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) {
785
    return SubDigraph<const Digraph, NodeFilterMap, ArcFilterMap>
786
      (digraph, nfm, afm);
787
  }
788

	
789
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
790
  SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
791
  subDigraph(const Digraph& digraph,
792
             const NodeFilterMap& nfm, ArcFilterMap& afm) {
793
    return SubDigraph<const Digraph, const NodeFilterMap, ArcFilterMap>
794
      (digraph, nfm, afm);
795
  }
796

	
797
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
798
  SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
799
  subDigraph(const Digraph& digraph,
800
             NodeFilterMap& nfm, const ArcFilterMap& afm) {
801
    return SubDigraph<const Digraph, NodeFilterMap, const ArcFilterMap>
802
      (digraph, nfm, afm);
803
  }
804

	
805
  template<typename Digraph, typename NodeFilterMap, typename ArcFilterMap>
806
  SubDigraph<const Digraph, const NodeFilterMap, const ArcFilterMap>
807
  subDigraph(const Digraph& digraph,
808
             const NodeFilterMap& nfm, const ArcFilterMap& afm) {
809
    return SubDigraph<const Digraph, const NodeFilterMap,
810
      const ArcFilterMap>(digraph, nfm, afm);
811
  }
812

	
813

	
814
  template <typename _Graph, typename NodeFilterMap,
815
            typename EdgeFilterMap, bool _checked = true>
816
  class SubGraphBase : public GraphAdaptorBase<_Graph> {
817
  public:
818
    typedef _Graph Graph;
819
    typedef SubGraphBase Adaptor;
820
    typedef GraphAdaptorBase<_Graph> Parent;
821
  protected:
822

	
823
    NodeFilterMap* _node_filter_map;
824
    EdgeFilterMap* _edge_filter_map;
825

	
826
    SubGraphBase()
827
      : Parent(), _node_filter_map(0), _edge_filter_map(0) { }
828

	
829
    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
830
      _node_filter_map=&node_filter_map;
831
    }
832
    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
833
      _edge_filter_map=&edge_filter_map;
834
    }
835

	
836
  public:
837

	
838
    typedef typename Parent::Node Node;
839
    typedef typename Parent::Arc Arc;
840
    typedef typename Parent::Edge Edge;
841

	
842
    void first(Node& i) const {
843
      Parent::first(i);
844
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
845
    }
846

	
847
    void first(Arc& i) const {
848
      Parent::first(i);
849
      while (i!=INVALID && (!(*_edge_filter_map)[i]
850
                            || !(*_node_filter_map)[Parent::source(i)]
851
                            || !(*_node_filter_map)[Parent::target(i)]))
852
        Parent::next(i);
853
    }
854

	
855
    void first(Edge& i) const {
856
      Parent::first(i);
857
      while (i!=INVALID && (!(*_edge_filter_map)[i]
858
                            || !(*_node_filter_map)[Parent::u(i)]
859
                            || !(*_node_filter_map)[Parent::v(i)]))
860
        Parent::next(i);
861
    }
862

	
863
    void firstIn(Arc& i, const Node& n) const {
864
      Parent::firstIn(i, n);
865
      while (i!=INVALID && (!(*_edge_filter_map)[i]
866
                            || !(*_node_filter_map)[Parent::source(i)]))
867
        Parent::nextIn(i);
868
    }
869

	
870
    void firstOut(Arc& i, const Node& n) const {
871
      Parent::firstOut(i, n);
872
      while (i!=INVALID && (!(*_edge_filter_map)[i]
873
                            || !(*_node_filter_map)[Parent::target(i)]))
874
        Parent::nextOut(i);
875
    }
876

	
877
    void firstInc(Edge& i, bool& d, const Node& n) const {
878
      Parent::firstInc(i, d, n);
879
      while (i!=INVALID && (!(*_edge_filter_map)[i]
880
                            || !(*_node_filter_map)[Parent::u(i)]
881
                            || !(*_node_filter_map)[Parent::v(i)]))
882
        Parent::nextInc(i, d);
883
    }
884

	
885
    void next(Node& i) const {
886
      Parent::next(i);
887
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
888
    }
889

	
890
    void next(Arc& i) const {
891
      Parent::next(i);
892
      while (i!=INVALID && (!(*_edge_filter_map)[i]
893
                            || !(*_node_filter_map)[Parent::source(i)]
894
                            || !(*_node_filter_map)[Parent::target(i)]))
895
        Parent::next(i);
896
    }
897

	
898
    void next(Edge& i) const {
899
      Parent::next(i);
900
      while (i!=INVALID && (!(*_edge_filter_map)[i]
901
                            || !(*_node_filter_map)[Parent::u(i)]
902
                            || !(*_node_filter_map)[Parent::v(i)]))
903
        Parent::next(i);
904
    }
905

	
906
    void nextIn(Arc& i) const {
907
      Parent::nextIn(i);
908
      while (i!=INVALID && (!(*_edge_filter_map)[i]
909
                            || !(*_node_filter_map)[Parent::source(i)]))
910
        Parent::nextIn(i);
911
    }
912

	
913
    void nextOut(Arc& i) const {
914
      Parent::nextOut(i);
915
      while (i!=INVALID && (!(*_edge_filter_map)[i]
916
                            || !(*_node_filter_map)[Parent::target(i)]))
917
        Parent::nextOut(i);
918
    }
919

	
920
    void nextInc(Edge& i, bool& d) const {
921
      Parent::nextInc(i, d);
922
      while (i!=INVALID && (!(*_edge_filter_map)[i]
923
                            || !(*_node_filter_map)[Parent::u(i)]
924
                            || !(*_node_filter_map)[Parent::v(i)]))
925
        Parent::nextInc(i, d);
926
    }
927

	
928
    void hide(const Node& n) const { _node_filter_map->set(n, false); }
929
    void hide(const Edge& e) const { _edge_filter_map->set(e, false); }
930

	
931
    void unHide(const Node& n) const { _node_filter_map->set(n, true); }
932
    void unHide(const Edge& e) const { _edge_filter_map->set(e, true); }
933

	
934
    bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; }
935
    bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; }
936

	
937
    typedef False NodeNumTag;
938
    typedef False EdgeNumTag;
939

	
940
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
941
    Arc findArc(const Node& u, const Node& v,
942
                const Arc& prev = INVALID) {
943
      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
944
        return INVALID;
945
      }
946
      Arc arc = Parent::findArc(u, v, prev);
947
      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
948
        arc = Parent::findArc(u, v, arc);
949
      }
950
      return arc;
951
    }
952
    Edge findEdge(const Node& u, const Node& v,
953
                  const Edge& prev = INVALID) {
954
      if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) {
955
        return INVALID;
956
      }
957
      Edge edge = Parent::findEdge(u, v, prev);
958
      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
959
        edge = Parent::findEdge(u, v, edge);
960
      }
961
      return edge;
962
    }
963

	
964
    template <typename _Value>
965
    class NodeMap : public SubMapExtender<Adaptor,
966
      typename Parent::template NodeMap<_Value> > {
967
    public:
968
      typedef _Value Value;
969
      typedef SubMapExtender<Adaptor, typename Parent::
970
                             template NodeMap<Value> > MapParent;
971

	
972
      NodeMap(const Adaptor& adaptor)
973
        : MapParent(adaptor) {}
974
      NodeMap(const Adaptor& adaptor, const Value& value)
975
        : MapParent(adaptor, value) {}
976

	
977
    private:
978
      NodeMap& operator=(const NodeMap& cmap) {
979
        return operator=<NodeMap>(cmap);
980
      }
981

	
982
      template <typename CMap>
983
      NodeMap& operator=(const CMap& cmap) {
984
        MapParent::operator=(cmap);
985
        return *this;
986
      }
987
    };
988

	
989
    template <typename _Value>
990
    class ArcMap : public SubMapExtender<Adaptor,
991
      typename Parent::template ArcMap<_Value> > {
992
    public:
993
      typedef _Value Value;
994
      typedef SubMapExtender<Adaptor, typename Parent::
995
                             template ArcMap<Value> > MapParent;
996

	
997
      ArcMap(const Adaptor& adaptor)
998
        : MapParent(adaptor) {}
999
      ArcMap(const Adaptor& adaptor, const Value& value)
1000
        : MapParent(adaptor, value) {}
1001

	
1002
    private:
1003
      ArcMap& operator=(const ArcMap& cmap) {
1004
        return operator=<ArcMap>(cmap);
1005
      }
1006

	
1007
      template <typename CMap>
1008
      ArcMap& operator=(const CMap& cmap) {
1009
        MapParent::operator=(cmap);
1010
        return *this;
1011
      }
1012
    };
1013

	
1014
    template <typename _Value>
1015
    class EdgeMap : public SubMapExtender<Adaptor,
1016
      typename Parent::template EdgeMap<_Value> > {
1017
    public:
1018
      typedef _Value Value;
1019
      typedef SubMapExtender<Adaptor, typename Parent::
1020
                             template EdgeMap<Value> > MapParent;
1021

	
1022
      EdgeMap(const Adaptor& adaptor)
1023
        : MapParent(adaptor) {}
1024

	
1025
      EdgeMap(const Adaptor& adaptor, const Value& value)
1026
        : MapParent(adaptor, value) {}
1027

	
1028
    private:
1029
      EdgeMap& operator=(const EdgeMap& cmap) {
1030
        return operator=<EdgeMap>(cmap);
1031
      }
1032

	
1033
      template <typename CMap>
1034
      EdgeMap& operator=(const CMap& cmap) {
1035
        MapParent::operator=(cmap);
1036
        return *this;
1037
      }
1038
    };
1039

	
1040
  };
1041

	
1042
  template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
1043
  class SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, false>
1044
    : public GraphAdaptorBase<_Graph> {
1045
  public:
1046
    typedef _Graph Graph;
1047
    typedef SubGraphBase Adaptor;
1048
    typedef GraphAdaptorBase<_Graph> Parent;
1049
  protected:
1050
    NodeFilterMap* _node_filter_map;
1051
    EdgeFilterMap* _edge_filter_map;
1052
    SubGraphBase() : Parent(),
1053
                     _node_filter_map(0), _edge_filter_map(0) { }
1054

	
1055
    void setNodeFilterMap(NodeFilterMap& node_filter_map) {
1056
      _node_filter_map=&node_filter_map;
1057
    }
1058
    void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) {
1059
      _edge_filter_map=&edge_filter_map;
1060
    }
1061

	
1062
  public:
1063

	
1064
    typedef typename Parent::Node Node;
1065
    typedef typename Parent::Arc Arc;
1066
    typedef typename Parent::Edge Edge;
1067

	
1068
    void first(Node& i) const {
1069
      Parent::first(i);
1070
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
1071
    }
1072

	
1073
    void first(Arc& i) const {
1074
      Parent::first(i);
1075
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1076
    }
1077

	
1078
    void first(Edge& i) const {
1079
      Parent::first(i);
1080
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1081
    }
1082

	
1083
    void firstIn(Arc& i, const Node& n) const {
1084
      Parent::firstIn(i, n);
1085
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
1086
    }
1087

	
1088
    void firstOut(Arc& i, const Node& n) const {
1089
      Parent::firstOut(i, n);
1090
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
1091
    }
1092

	
1093
    void firstInc(Edge& i, bool& d, const Node& n) const {
1094
      Parent::firstInc(i, d, n);
1095
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
1096
    }
1097

	
1098
    void next(Node& i) const {
1099
      Parent::next(i);
1100
      while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i);
1101
    }
1102
    void next(Arc& i) const {
1103
      Parent::next(i);
1104
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1105
    }
1106
    void next(Edge& i) const {
1107
      Parent::next(i);
1108
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i);
1109
    }
1110
    void nextIn(Arc& i) const {
1111
      Parent::nextIn(i);
1112
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i);
1113
    }
1114

	
1115
    void nextOut(Arc& i) const {
1116
      Parent::nextOut(i);
1117
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i);
1118
    }
1119
    void nextInc(Edge& i, bool& d) const {
1120
      Parent::nextInc(i, d);
1121
      while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d);
1122
    }
1123

	
1124
    void hide(const Node& n) const { _node_filter_map->set(n, false); }
1125
    void hide(const Edge& e) const { _edge_filter_map->set(e, false); }
1126

	
1127
    void unHide(const Node& n) const { _node_filter_map->set(n, true); }
1128
    void unHide(const Edge& e) const { _edge_filter_map->set(e, true); }
1129

	
1130
    bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; }
1131
    bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; }
1132

	
1133
    typedef False NodeNumTag;
1134
    typedef False EdgeNumTag;
1135

	
1136
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1137
    Arc findArc(const Node& u, const Node& v,
1138
                const Arc& prev = INVALID) {
1139
      Arc arc = Parent::findArc(u, v, prev);
1140
      while (arc != INVALID && !(*_edge_filter_map)[arc]) {
1141
        arc = Parent::findArc(u, v, arc);
1142
      }
1143
      return arc;
1144
    }
1145
    Edge findEdge(const Node& u, const Node& v,
1146
                  const Edge& prev = INVALID) {
1147
      Edge edge = Parent::findEdge(u, v, prev);
1148
      while (edge != INVALID && !(*_edge_filter_map)[edge]) {
1149
        edge = Parent::findEdge(u, v, edge);
1150
      }
1151
      return edge;
1152
    }
1153

	
1154
    template <typename _Value>
1155
    class NodeMap : public SubMapExtender<Adaptor,
1156
      typename Parent::template NodeMap<_Value> > {
1157
    public:
1158
      typedef _Value Value;
1159
      typedef SubMapExtender<Adaptor, typename Parent::
1160
                             template NodeMap<Value> > MapParent;
1161

	
1162
      NodeMap(const Adaptor& adaptor)
1163
        : MapParent(adaptor) {}
1164
      NodeMap(const Adaptor& adaptor, const Value& value)
1165
        : MapParent(adaptor, value) {}
1166

	
1167
    private:
1168
      NodeMap& operator=(const NodeMap& cmap) {
1169
        return operator=<NodeMap>(cmap);
1170
      }
1171

	
1172
      template <typename CMap>
1173
      NodeMap& operator=(const CMap& cmap) {
1174
        MapParent::operator=(cmap);
1175
        return *this;
1176
      }
1177
    };
1178

	
1179
    template <typename _Value>
1180
    class ArcMap : public SubMapExtender<Adaptor,
1181
      typename Parent::template ArcMap<_Value> > {
1182
    public:
1183
      typedef _Value Value;
1184
      typedef SubMapExtender<Adaptor, typename Parent::
1185
                             template ArcMap<Value> > MapParent;
1186

	
1187
      ArcMap(const Adaptor& adaptor)
1188
        : MapParent(adaptor) {}
1189
      ArcMap(const Adaptor& adaptor, const Value& value)
1190
        : MapParent(adaptor, value) {}
1191

	
1192
    private:
1193
      ArcMap& operator=(const ArcMap& cmap) {
1194
        return operator=<ArcMap>(cmap);
1195
      }
1196

	
1197
      template <typename CMap>
1198
      ArcMap& operator=(const CMap& cmap) {
1199
        MapParent::operator=(cmap);
1200
        return *this;
1201
      }
1202
    };
1203

	
1204
    template <typename _Value>
1205
    class EdgeMap : public SubMapExtender<Adaptor,
1206
      typename Parent::template EdgeMap<_Value> > {
1207
    public:
1208
      typedef _Value Value;
1209
      typedef SubMapExtender<Adaptor, typename Parent::
1210
                             template EdgeMap<Value> > MapParent;
1211

	
1212
      EdgeMap(const Adaptor& adaptor)
1213
        : MapParent(adaptor) {}
1214

	
1215
      EdgeMap(const Adaptor& adaptor, const _Value& value)
1216
        : MapParent(adaptor, value) {}
1217

	
1218
    private:
1219
      EdgeMap& operator=(const EdgeMap& cmap) {
1220
        return operator=<EdgeMap>(cmap);
1221
      }
1222

	
1223
      template <typename CMap>
1224
      EdgeMap& operator=(const CMap& cmap) {
1225
        MapParent::operator=(cmap);
1226
        return *this;
1227
      }
1228
    };
1229

	
1230
  };
1231

	
1232
  /// \ingroup graph_adaptors
1233
  ///
1234
  /// \brief A graph adaptor for hiding nodes and edges in an
1235
  /// undirected graph.
1236
  ///
1237
  /// SubGraph hides nodes and edges in a graph. A bool node map and a
1238
  /// bool edge map must be specified, which define the filters for
1239
  /// nodes and edges. Just the nodes and edges with true value are
1240
  /// shown in the subgraph. The SubGraph is conform to the \ref
1241
  /// concepts::Graph "Graph concept". If the \c _checked parameter is
1242
  /// true, then the edges incident to filtered nodes are also
1243
  /// filtered out.
1244
  ///
1245
  /// \tparam _Graph It must be conform to the \ref
1246
  /// concepts::Graph "Graph concept". The type can be specified
1247
  /// to const.
1248
  /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph.
1249
  /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted graph.
1250
  /// \tparam _checked If the parameter is false then the edge filtering
1251
  /// is not checked with respect to node filter. Otherwise, each edge
1252
  /// is automatically filtered, which is incident to a filtered node.
1253
  ///
1254
  /// \see FilterNodes
1255
  /// \see FilterEdges
1256
  template<typename _Graph, typename NodeFilterMap,
1257
           typename EdgeFilterMap, bool _checked = true>
1258
  class SubGraph
1259
    : public GraphAdaptorExtender<
1260
      SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, _checked> > {
1261
  public:
1262
    typedef _Graph Graph;
1263
    typedef GraphAdaptorExtender<
1264
      SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
1265

	
1266
    typedef typename Parent::Node Node;
1267
    typedef typename Parent::Edge Edge;
1268

	
1269
  protected:
1270
    SubGraph() { }
1271
  public:
1272

	
1273
    /// \brief Constructor
1274
    ///
1275
    /// Creates a subgraph for the given graph with given node and
1276
    /// edge map filters.
1277
    SubGraph(Graph& _graph, NodeFilterMap& node_filter_map,
1278
             EdgeFilterMap& edge_filter_map) {
1279
      setGraph(_graph);
1280
      setNodeFilterMap(node_filter_map);
1281
      setEdgeFilterMap(edge_filter_map);
1282
    }
1283

	
1284
    /// \brief Hides the node of the graph
1285
    ///
1286
    /// This function hides \c n in the graph, i.e. the iteration
1287
    /// jumps over it. This is done by simply setting the value of \c n
1288
    /// to be false in the corresponding node-map.
1289
    void hide(const Node& n) const { Parent::hide(n); }
1290

	
1291
    /// \brief Hides the edge of the graph
1292
    ///
1293
    /// This function hides \c e in the graph, i.e. the iteration
1294
    /// jumps over it. This is done by simply setting the value of \c e
1295
    /// to be false in the corresponding edge-map.
1296
    void hide(const Edge& e) const { Parent::hide(e); }
1297

	
1298
    /// \brief Unhides the node of the graph
1299
    ///
1300
    /// The value of \c n is set to be true in the node-map which stores
1301
    /// hide information. If \c n was hidden previuosly, then it is shown
1302
    /// again
1303
    void unHide(const Node& n) const { Parent::unHide(n); }
1304

	
1305
    /// \brief Unhides the edge of the graph
1306
    ///
1307
    /// The value of \c e is set to be true in the edge-map which stores
1308
    /// hide information. If \c e was hidden previuosly, then it is shown
1309
    /// again
1310
    void unHide(const Edge& e) const { Parent::unHide(e); }
1311

	
1312
    /// \brief Returns true if \c n is hidden.
1313
    ///
1314
    /// Returns true if \c n is hidden.
1315
    ///
1316
    bool hidden(const Node& n) const { return Parent::hidden(n); }
1317

	
1318
    /// \brief Returns true if \c e is hidden.
1319
    ///
1320
    /// Returns true if \c e is hidden.
1321
    ///
1322
    bool hidden(const Edge& e) const { return Parent::hidden(e); }
1323
  };
1324

	
1325
  /// \brief Just gives back a subgraph
1326
  ///
1327
  /// Just gives back a subgraph
1328
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1329
  SubGraph<const Graph, NodeFilterMap, ArcFilterMap>
1330
  subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) {
1331
    return SubGraph<const Graph, NodeFilterMap, ArcFilterMap>(graph, nfm, efm);
1332
  }
1333

	
1334
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1335
  SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
1336
  subGraph(const Graph& graph,
1337
           const NodeFilterMap& nfm, ArcFilterMap& efm) {
1338
    return SubGraph<const Graph, const NodeFilterMap, ArcFilterMap>
1339
      (graph, nfm, efm);
1340
  }
1341

	
1342
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1343
  SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
1344
  subGraph(const Graph& graph,
1345
           NodeFilterMap& nfm, const ArcFilterMap& efm) {
1346
    return SubGraph<const Graph, NodeFilterMap, const ArcFilterMap>
1347
      (graph, nfm, efm);
1348
  }
1349

	
1350
  template<typename Graph, typename NodeFilterMap, typename ArcFilterMap>
1351
  SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
1352
  subGraph(const Graph& graph,
1353
           const NodeFilterMap& nfm, const ArcFilterMap& efm) {
1354
    return SubGraph<const Graph, const NodeFilterMap, const ArcFilterMap>
1355
      (graph, nfm, efm);
1356
  }
1357

	
1358
  /// \ingroup graph_adaptors
1359
  ///
1360
  /// \brief An adaptor for hiding nodes from a digraph or a graph.
1361
  ///
1362
  /// FilterNodes adaptor hides nodes in a graph or a digraph. A bool
1363
  /// node map must be specified, which defines the filters for
1364
  /// nodes. Just the unfiltered nodes and the arcs or edges incident
1365
  /// to unfiltered nodes are shown in the subdigraph or subgraph. The
1366
  /// FilterNodes is conform to the \ref concepts::Digraph
1367
  /// "Digraph concept" or \ref concepts::Graph "Graph concept" depending
1368
  /// on the \c _Digraph template parameter. If the \c _checked
1369
  /// parameter is true, then the arc or edges incident to filtered nodes
1370
  /// are also filtered out.
1371
  ///
1372
  /// \tparam _Digraph It must be conform to the \ref
1373
  /// concepts::Digraph "Digraph concept" or \ref concepts::Graph
1374
  /// "Graph concept". The type can be specified to be const.
1375
  /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph.
1376
  /// \tparam _checked If the parameter is false then the arc or edge
1377
  /// filtering is not checked with respect to node filter. In this
1378
  /// case just isolated nodes can be filtered out from the
1379
  /// graph.
1380
#ifdef DOXYGEN
1381
  template<typename _Digraph,
1382
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
1383
           bool _checked = true>
1384
#else
1385
  template<typename _Digraph,
1386
           typename _NodeFilterMap = typename _Digraph::template NodeMap<bool>,
1387
           bool _checked = true,
1388
           typename Enable = void>
1389
#endif
1390
  class FilterNodes
1391
    : public SubDigraph<_Digraph, _NodeFilterMap,
1392
                        ConstMap<typename _Digraph::Arc, bool>, _checked> {
1393
  public:
1394

	
1395
    typedef _Digraph Digraph;
1396
    typedef _NodeFilterMap NodeFilterMap;
1397

	
1398
    typedef SubDigraph<Digraph, NodeFilterMap,
1399
                       ConstMap<typename Digraph::Arc, bool>, _checked>
1400
    Parent;
1401

	
1402
    typedef typename Parent::Node Node;
1403

	
1404
  protected:
1405
    ConstMap<typename Digraph::Arc, bool> const_true_map;
1406

	
1407
    FilterNodes() : const_true_map(true) {
1408
      Parent::setArcFilterMap(const_true_map);
1409
    }
1410

	
1411
  public:
1412

	
1413
    /// \brief Constructor
1414
    ///
1415
    /// Creates an adaptor for the given digraph or graph with
1416
    /// given node filter map.
1417
    FilterNodes(Digraph& _digraph, NodeFilterMap& node_filter) :
1418
      Parent(), const_true_map(true) {
1419
      Parent::setDigraph(_digraph);
1420
      Parent::setNodeFilterMap(node_filter);
1421
      Parent::setArcFilterMap(const_true_map);
1422
    }
1423

	
1424
    /// \brief Hides the node of the graph
1425
    ///
1426
    /// This function hides \c n in the digraph or graph, i.e. the iteration
1427
    /// jumps over it. This is done by simply setting the value of \c n
1428
    /// to be false in the corresponding node map.
1429
    void hide(const Node& n) const { Parent::hide(n); }
1430

	
1431
    /// \brief Unhides the node of the graph
1432
    ///
1433
    /// The value of \c n is set to be true in the node-map which stores
1434
    /// hide information. If \c n was hidden previuosly, then it is shown
1435
    /// again
1436
    void unHide(const Node& n) const { Parent::unHide(n); }
1437

	
1438
    /// \brief Returns true if \c n is hidden.
1439
    ///
1440
    /// Returns true if \c n is hidden.
1441
    ///
1442
    bool hidden(const Node& n) const { return Parent::hidden(n); }
1443

	
1444
  };
1445

	
1446
  template<typename _Graph, typename _NodeFilterMap, bool _checked>
1447
  class FilterNodes<_Graph, _NodeFilterMap, _checked,
1448
                    typename enable_if<UndirectedTagIndicator<_Graph> >::type>
1449
    : public SubGraph<_Graph, _NodeFilterMap,
1450
                      ConstMap<typename _Graph::Edge, bool>, _checked> {
1451
  public:
1452
    typedef _Graph Graph;
1453
    typedef _NodeFilterMap NodeFilterMap;
1454
    typedef SubGraph<Graph, NodeFilterMap,
1455
                     ConstMap<typename Graph::Edge, bool> > Parent;
1456

	
1457
    typedef typename Parent::Node Node;
1458
  protected:
1459
    ConstMap<typename Graph::Edge, bool> const_true_map;
1460

	
1461
    FilterNodes() : const_true_map(true) {
1462
      Parent::setEdgeFilterMap(const_true_map);
1463
    }
1464

	
1465
  public:
1466

	
1467
    FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) :
1468
      Parent(), const_true_map(true) {
1469
      Parent::setGraph(_graph);
1470
      Parent::setNodeFilterMap(node_filter_map);
1471
      Parent::setEdgeFilterMap(const_true_map);
1472
    }
1473

	
1474
    void hide(const Node& n) const { Parent::hide(n); }
1475
    void unHide(const Node& n) const { Parent::unHide(n); }
1476
    bool hidden(const Node& n) const { return Parent::hidden(n); }
1477

	
1478
  };
1479

	
1480

	
1481
  /// \brief Just gives back a FilterNodes adaptor
1482
  ///
1483
  /// Just gives back a FilterNodes adaptor
1484
  template<typename Digraph, typename NodeFilterMap>
1485
  FilterNodes<const Digraph, NodeFilterMap>
1486
  filterNodes(const Digraph& digraph, NodeFilterMap& nfm) {
1487
    return FilterNodes<const Digraph, NodeFilterMap>(digraph, nfm);
1488
  }
1489

	
1490
  template<typename Digraph, typename NodeFilterMap>
1491
  FilterNodes<const Digraph, const NodeFilterMap>
1492
  filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) {
1493
    return FilterNodes<const Digraph, const NodeFilterMap>(digraph, nfm);
1494
  }
1495

	
1496
  /// \ingroup graph_adaptors
1497
  ///
1498
  /// \brief An adaptor for hiding arcs from a digraph.
1499
  ///
1500
  /// FilterArcs adaptor hides arcs in a digraph. A bool arc map must
1501
  /// be specified, which defines the filters for arcs. Just the
1502
  /// unfiltered arcs are shown in the subdigraph. The FilterArcs is
1503
  /// conform to the \ref concepts::Digraph "Digraph concept".
1504
  ///
1505
  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
1506
  /// "Digraph concept". The type can be specified to be const.
1507
  /// \tparam _ArcFilterMap A bool valued arc map of the the adapted
1508
  /// graph.
1509
  template<typename _Digraph, typename _ArcFilterMap>
1510
  class FilterArcs :
1511
    public SubDigraph<_Digraph, ConstMap<typename _Digraph::Node, bool>,
1512
                      _ArcFilterMap, false> {
1513
  public:
1514
    typedef _Digraph Digraph;
1515
    typedef _ArcFilterMap ArcFilterMap;
1516

	
1517
    typedef SubDigraph<Digraph, ConstMap<typename Digraph::Node, bool>,
1518
                       ArcFilterMap, false> Parent;
1519

	
1520
    typedef typename Parent::Arc Arc;
1521

	
1522
  protected:
1523
    ConstMap<typename Digraph::Node, bool> const_true_map;
1524

	
1525
    FilterArcs() : const_true_map(true) {
1526
      Parent::setNodeFilterMap(const_true_map);
1527
    }
1528

	
1529
  public:
1530

	
1531
    /// \brief Constructor
1532
    ///
1533
    /// Creates a FilterArcs adaptor for the given graph with
1534
    /// given arc map filter.
1535
    FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter)
1536
      : Parent(), const_true_map(true) {
1537
      Parent::setDigraph(digraph);
1538
      Parent::setNodeFilterMap(const_true_map);
1539
      Parent::setArcFilterMap(arc_filter);
1540
    }
1541

	
1542
    /// \brief Hides the arc of the graph
1543
    ///
1544
    /// This function hides \c a in the graph, i.e. the iteration
1545
    /// jumps over it. This is done by simply setting the value of \c a
1546
    /// to be false in the corresponding arc map.
1547
    void hide(const Arc& a) const { Parent::hide(a); }
1548

	
1549
    /// \brief Unhides the arc of the graph
1550
    ///
1551
    /// The value of \c a is set to be true in the arc-map which stores
1552
    /// hide information. If \c a was hidden previuosly, then it is shown
1553
    /// again
1554
    void unHide(const Arc& a) const { Parent::unHide(a); }
1555

	
1556
    /// \brief Returns true if \c a is hidden.
1557
    ///
1558
    /// Returns true if \c a is hidden.
1559
    ///
1560
    bool hidden(const Arc& a) const { return Parent::hidden(a); }
1561

	
1562
  };
1563

	
1564
  /// \brief Just gives back an FilterArcs adaptor
1565
  ///
1566
  /// Just gives back an FilterArcs adaptor
1567
  template<typename Digraph, typename ArcFilterMap>
1568
  FilterArcs<const Digraph, ArcFilterMap>
1569
  filterArcs(const Digraph& digraph, ArcFilterMap& afm) {
1570
    return FilterArcs<const Digraph, ArcFilterMap>(digraph, afm);
1571
  }
1572

	
1573
  template<typename Digraph, typename ArcFilterMap>
1574
  FilterArcs<const Digraph, const ArcFilterMap>
1575
  filterArcs(const Digraph& digraph, const ArcFilterMap& afm) {
1576
    return FilterArcs<const Digraph, const ArcFilterMap>(digraph, afm);
1577
  }
1578

	
1579
  /// \ingroup graph_adaptors
1580
  ///
1581
  /// \brief An adaptor for hiding edges from a graph.
1582
  ///
1583
  /// FilterEdges adaptor hides edges in a digraph. A bool edge map must
1584
  /// be specified, which defines the filters for edges. Just the
1585
  /// unfiltered edges are shown in the subdigraph. The FilterEdges is
1586
  /// conform to the \ref concepts::Graph "Graph concept".
1587
  ///
1588
  /// \tparam _Graph It must be conform to the \ref concepts::Graph
1589
  /// "Graph concept". The type can be specified to be const.
1590
  /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted
1591
  /// graph.
1592
  template<typename _Graph, typename _EdgeFilterMap>
1593
  class FilterEdges :
1594
    public SubGraph<_Graph, ConstMap<typename _Graph::Node,bool>,
1595
                    _EdgeFilterMap, false> {
1596
  public:
1597
    typedef _Graph Graph;
1598
    typedef _EdgeFilterMap EdgeFilterMap;
1599
    typedef SubGraph<Graph, ConstMap<typename Graph::Node,bool>,
1600
                     EdgeFilterMap, false> Parent;
1601
    typedef typename Parent::Edge Edge;
1602
  protected:
1603
    ConstMap<typename Graph::Node, bool> const_true_map;
1604

	
1605
    FilterEdges() : const_true_map(true) {
1606
      Parent::setNodeFilterMap(const_true_map);
1607
    }
1608

	
1609
  public:
1610

	
1611
    /// \brief Constructor
1612
    ///
1613
    /// Creates a FilterEdges adaptor for the given graph with
1614
    /// given edge map filters.
1615
    FilterEdges(Graph& _graph, EdgeFilterMap& edge_filter_map) :
1616
      Parent(), const_true_map(true) {
1617
      Parent::setGraph(_graph);
1618
      Parent::setNodeFilterMap(const_true_map);
1619
      Parent::setEdgeFilterMap(edge_filter_map);
1620
    }
1621

	
1622
    /// \brief Hides the edge of the graph
1623
    ///
1624
    /// This function hides \c e in the graph, i.e. the iteration
1625
    /// jumps over it. This is done by simply setting the value of \c e
1626
    /// to be false in the corresponding edge-map.
1627
    void hide(const Edge& e) const { Parent::hide(e); }
1628

	
1629
    /// \brief Unhides the edge of the graph
1630
    ///
1631
    /// The value of \c e is set to be true in the edge-map which stores
1632
    /// hide information. If \c e was hidden previuosly, then it is shown
1633
    /// again
1634
    void unHide(const Edge& e) const { Parent::unHide(e); }
1635

	
1636
    /// \brief Returns true if \c e is hidden.
1637
    ///
1638
    /// Returns true if \c e is hidden.
1639
    ///
1640
    bool hidden(const Edge& e) const { return Parent::hidden(e); }
1641

	
1642
  };
1643

	
1644
  /// \brief Just gives back a FilterEdges adaptor
1645
  ///
1646
  /// Just gives back a FilterEdges adaptor
1647
  template<typename Graph, typename EdgeFilterMap>
1648
  FilterEdges<const Graph, EdgeFilterMap>
1649
  filterEdges(const Graph& graph, EdgeFilterMap& efm) {
1650
    return FilterEdges<const Graph, EdgeFilterMap>(graph, efm);
1651
  }
1652

	
1653
  template<typename Graph, typename EdgeFilterMap>
1654
  FilterEdges<const Graph, const EdgeFilterMap>
1655
  filterEdges(const Graph& graph, const EdgeFilterMap& efm) {
1656
    return FilterEdges<const Graph, const EdgeFilterMap>(graph, efm);
1657
  }
1658

	
1659
  template <typename _Digraph>
1660
  class UndirectorBase {
1661
  public:
1662
    typedef _Digraph Digraph;
1663
    typedef UndirectorBase Adaptor;
1664

	
1665
    typedef True UndirectedTag;
1666

	
1667
    typedef typename Digraph::Arc Edge;
1668
    typedef typename Digraph::Node Node;
1669

	
1670
    class Arc : public Edge {
1671
      friend class UndirectorBase;
1672
    protected:
1673
      bool _forward;
1674

	
1675
      Arc(const Edge& edge, bool forward) :
1676
        Edge(edge), _forward(forward) {}
1677

	
1678
    public:
1679
      Arc() {}
1680

	
1681
      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1682

	
1683
      bool operator==(const Arc &other) const {
1684
        return _forward == other._forward &&
1685
          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1686
      }
1687
      bool operator!=(const Arc &other) const {
1688
        return _forward != other._forward ||
1689
          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1690
      }
1691
      bool operator<(const Arc &other) const {
1692
        return _forward < other._forward ||
1693
          (_forward == other._forward &&
1694
           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1695
      }
1696
    };
1697

	
1698

	
1699

	
1700
    void first(Node& n) const {
1701
      _digraph->first(n);
1702
    }
1703

	
1704
    void next(Node& n) const {
1705
      _digraph->next(n);
1706
    }
1707

	
1708
    void first(Arc& a) const {
1709
      _digraph->first(a);
1710
      a._forward = true;
1711
    }
1712

	
1713
    void next(Arc& a) const {
1714
      if (a._forward) {
1715
        a._forward = false;
1716
      } else {
1717
        _digraph->next(a);
1718
        a._forward = true;
1719
      }
1720
    }
1721

	
1722
    void first(Edge& e) const {
1723
      _digraph->first(e);
1724
    }
1725

	
1726
    void next(Edge& e) const {
1727
      _digraph->next(e);
1728
    }
1729

	
1730
    void firstOut(Arc& a, const Node& n) const {
1731
      _digraph->firstIn(a, n);
1732
      if( static_cast<const Edge&>(a) != INVALID ) {
1733
        a._forward = false;
1734
      } else {
1735
        _digraph->firstOut(a, n);
1736
        a._forward = true;
1737
      }
1738
    }
1739
    void nextOut(Arc &a) const {
1740
      if (!a._forward) {
1741
        Node n = _digraph->target(a);
1742
        _digraph->nextIn(a);
1743
        if (static_cast<const Edge&>(a) == INVALID ) {
1744
          _digraph->firstOut(a, n);
1745
          a._forward = true;
1746
        }
1747
      }
1748
      else {
1749
        _digraph->nextOut(a);
1750
      }
1751
    }
1752

	
1753
    void firstIn(Arc &a, const Node &n) const {
1754
      _digraph->firstOut(a, n);
1755
      if (static_cast<const Edge&>(a) != INVALID ) {
1756
        a._forward = false;
1757
      } else {
1758
        _digraph->firstIn(a, n);
1759
        a._forward = true;
1760
      }
1761
    }
1762
    void nextIn(Arc &a) const {
1763
      if (!a._forward) {
1764
        Node n = _digraph->source(a);
1765
        _digraph->nextOut(a);
1766
        if( static_cast<const Edge&>(a) == INVALID ) {
1767
          _digraph->firstIn(a, n);
1768
          a._forward = true;
1769
        }
1770
      }
1771
      else {
1772
        _digraph->nextIn(a);
1773
      }
1774
    }
1775

	
1776
    void firstInc(Edge &e, bool &d, const Node &n) const {
1777
      d = true;
1778
      _digraph->firstOut(e, n);
1779
      if (e != INVALID) return;
1780
      d = false;
1781
      _digraph->firstIn(e, n);
1782
    }
1783

	
1784
    void nextInc(Edge &e, bool &d) const {
1785
      if (d) {
1786
        Node s = _digraph->source(e);
1787
        _digraph->nextOut(e);
1788
        if (e != INVALID) return;
1789
        d = false;
1790
        _digraph->firstIn(e, s);
1791
      } else {
1792
        _digraph->nextIn(e);
1793
      }
1794
    }
1795

	
1796
    Node u(const Edge& e) const {
1797
      return _digraph->source(e);
1798
    }
1799

	
1800
    Node v(const Edge& e) const {
1801
      return _digraph->target(e);
1802
    }
1803

	
1804
    Node source(const Arc &a) const {
1805
      return a._forward ? _digraph->source(a) : _digraph->target(a);
1806
    }
1807

	
1808
    Node target(const Arc &a) const {
1809
      return a._forward ? _digraph->target(a) : _digraph->source(a);
1810
    }
1811

	
1812
    static Arc direct(const Edge &e, bool d) {
1813
      return Arc(e, d);
1814
    }
1815
    Arc direct(const Edge &e, const Node& n) const {
1816
      return Arc(e, _digraph->source(e) == n);
1817
    }
1818

	
1819
    static bool direction(const Arc &a) { return a._forward; }
1820

	
1821
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1822
    Arc arcFromId(int ix) const {
1823
      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1824
    }
1825
    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1826

	
1827
    int id(const Node &n) const { return _digraph->id(n); }
1828
    int id(const Arc &a) const {
1829
      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1830
    }
1831
    int id(const Edge &e) const { return _digraph->id(e); }
1832

	
1833
    int maxNodeId() const { return _digraph->maxNodeId(); }
1834
    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
1835
    int maxEdgeId() const { return _digraph->maxArcId(); }
1836

	
1837
    Node addNode() { return _digraph->addNode(); }
1838
    Edge addEdge(const Node& u, const Node& v) {
1839
      return _digraph->addArc(u, v);
1840
    }
1841

	
1842
    void erase(const Node& i) { _digraph->erase(i); }
1843
    void erase(const Edge& i) { _digraph->erase(i); }
1844

	
1845
    void clear() { _digraph->clear(); }
1846

	
1847
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
1848
    int nodeNum() const { return 2 * _digraph->arcNum(); }
1849
    typedef EdgeNumTagIndicator<Digraph> EdgeNumTag;
1850
    int arcNum() const { return 2 * _digraph->arcNum(); }
1851
    int edgeNum() const { return _digraph->arcNum(); }
1852

	
1853
    typedef FindEdgeTagIndicator<Digraph> FindEdgeTag;
1854
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
1855
      if (p == INVALID) {
1856
        Edge arc = _digraph->findArc(s, t);
1857
        if (arc != INVALID) return direct(arc, true);
1858
        arc = _digraph->findArc(t, s);
1859
        if (arc != INVALID) return direct(arc, false);
1860
      } else if (direction(p)) {
1861
        Edge arc = _digraph->findArc(s, t, p);
1862
        if (arc != INVALID) return direct(arc, true);
1863
        arc = _digraph->findArc(t, s);
1864
        if (arc != INVALID) return direct(arc, false);
1865
      } else {
1866
        Edge arc = _digraph->findArc(t, s, p);
1867
        if (arc != INVALID) return direct(arc, false);
1868
      }
1869
      return INVALID;
1870
    }
1871

	
1872
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
1873
      if (s != t) {
1874
        if (p == INVALID) {
1875
          Edge arc = _digraph->findArc(s, t);
1876
          if (arc != INVALID) return arc;
1877
          arc = _digraph->findArc(t, s);
1878
          if (arc != INVALID) return arc;
1879
        } else if (_digraph->s(p) == s) {
1880
          Edge arc = _digraph->findArc(s, t, p);
1881
          if (arc != INVALID) return arc;
1882
          arc = _digraph->findArc(t, s);
1883
          if (arc != INVALID) return arc;
1884
        } else {
1885
          Edge arc = _digraph->findArc(t, s, p);
1886
          if (arc != INVALID) return arc;
1887
        }
1888
      } else {
1889
        return _digraph->findArc(s, t, p);
1890
      }
1891
      return INVALID;
1892
    }
1893

	
1894
  private:
1895

	
1896
    template <typename _Value>
1897
    class ArcMapBase {
1898
    private:
1899

	
1900
      typedef typename Digraph::template ArcMap<_Value> MapImpl;
1901

	
1902
    public:
1903

	
1904
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
1905

	
1906
      typedef _Value Value;
1907
      typedef Arc Key;
1908

	
1909
      ArcMapBase(const Adaptor& adaptor) :
1910
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
1911

	
1912
      ArcMapBase(const Adaptor& adaptor, const Value& v)
1913
        : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {}
1914

	
1915
      void set(const Arc& a, const Value& v) {
1916
        if (direction(a)) {
1917
          _forward.set(a, v);
1918
        } else {
1919
          _backward.set(a, v);
1920
        }
1921
      }
1922

	
1923
      typename MapTraits<MapImpl>::ConstReturnValue
1924
      operator[](const Arc& a) const {
1925
        if (direction(a)) {
1926
          return _forward[a];
1927
        } else {
1928
          return _backward[a];
1929
        }
1930
      }
1931

	
1932
      typename MapTraits<MapImpl>::ReturnValue
1933
      operator[](const Arc& a) {
1934
        if (direction(a)) {
1935
          return _forward[a];
1936
        } else {
1937
          return _backward[a];
1938
        }
1939
      }
1940

	
1941
    protected:
1942

	
1943
      MapImpl _forward, _backward;
1944

	
1945
    };
1946

	
1947
  public:
1948

	
1949
    template <typename _Value>
1950
    class NodeMap : public Digraph::template NodeMap<_Value> {
1951
    public:
1952

	
1953
      typedef _Value Value;
1954
      typedef typename Digraph::template NodeMap<Value> Parent;
1955

	
1956
      explicit NodeMap(const Adaptor& adaptor)
1957
        : Parent(*adaptor._digraph) {}
1958

	
1959
      NodeMap(const Adaptor& adaptor, const _Value& value)
1960
        : Parent(*adaptor._digraph, value) { }
1961

	
1962
    private:
1963
      NodeMap& operator=(const NodeMap& cmap) {
1964
        return operator=<NodeMap>(cmap);
1965
      }
1966

	
1967
      template <typename CMap>
1968
      NodeMap& operator=(const CMap& cmap) {
1969
        Parent::operator=(cmap);
1970
        return *this;
1971
      }
1972

	
1973
    };
1974

	
1975
    template <typename _Value>
1976
    class ArcMap
1977
      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
1978
    {
1979
    public:
1980
      typedef _Value Value;
1981
      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
1982

	
1983
      ArcMap(const Adaptor& adaptor)
1984
        : Parent(adaptor) {}
1985

	
1986
      ArcMap(const Adaptor& adaptor, const Value& value)
1987
        : Parent(adaptor, value) {}
1988

	
1989
    private:
1990
      ArcMap& operator=(const ArcMap& cmap) {
1991
        return operator=<ArcMap>(cmap);
1992
      }
1993

	
1994
      template <typename CMap>
1995
      ArcMap& operator=(const CMap& cmap) {
1996
        Parent::operator=(cmap);
1997
        return *this;
1998
      }
1999
    };
2000

	
2001
    template <typename _Value>
2002
    class EdgeMap : public Digraph::template ArcMap<_Value> {
2003
    public:
2004

	
2005
      typedef _Value Value;
2006
      typedef typename Digraph::template ArcMap<Value> Parent;
2007

	
2008
      explicit EdgeMap(const Adaptor& adaptor)
2009
        : Parent(*adaptor._digraph) {}
2010

	
2011
      EdgeMap(const Adaptor& adaptor, const Value& value)
2012
        : Parent(*adaptor._digraph, value) {}
2013

	
2014
    private:
2015
      EdgeMap& operator=(const EdgeMap& cmap) {
2016
        return operator=<EdgeMap>(cmap);
2017
      }
2018

	
2019
      template <typename CMap>
2020
      EdgeMap& operator=(const CMap& cmap) {
2021
        Parent::operator=(cmap);
2022
        return *this;
2023
      }
2024

	
2025
    };
2026

	
2027
    typedef typename ItemSetTraits<Digraph, Node>::ItemNotifier NodeNotifier;
2028
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2029

	
2030
  protected:
2031

	
2032
    UndirectorBase() : _digraph(0) {}
2033

	
2034
    Digraph* _digraph;
2035

	
2036
    void setDigraph(Digraph& digraph) {
2037
      _digraph = &digraph;
2038
    }
2039

	
2040
  };
2041

	
2042
  /// \ingroup graph_adaptors
2043
  ///
2044
  /// \brief Undirect the graph
2045
  ///
2046
  /// This adaptor makes an undirected graph from a directed
2047
  /// graph. All arcs of the underlying digraph will be showed in the
2048
  /// adaptor as an edge. The Orienter adaptor is conform to the \ref
2049
  /// concepts::Graph "Graph concept".
2050
  ///
2051
  /// \tparam _Digraph It must be conform to the \ref
2052
  /// concepts::Digraph "Digraph concept". The type can be specified
2053
  /// to const.
2054
  template<typename _Digraph>
2055
  class Undirector
2056
    : public GraphAdaptorExtender<UndirectorBase<_Digraph> > {
2057
  public:
2058
    typedef _Digraph Digraph;
2059
    typedef GraphAdaptorExtender<UndirectorBase<Digraph> > Parent;
2060
  protected:
2061
    Undirector() { }
2062
  public:
2063

	
2064
    /// \brief Constructor
2065
    ///
2066
    /// Creates a undirected graph from the given digraph
2067
    Undirector(_Digraph& digraph) {
2068
      setDigraph(digraph);
2069
    }
2070

	
2071
    /// \brief ArcMap combined from two original ArcMap
2072
    ///
2073
    /// This class adapts two original digraph ArcMap to
2074
    /// get an arc map on the undirected graph.
2075
    template <typename _ForwardMap, typename _BackwardMap>
2076
    class CombinedArcMap {
2077
    public:
2078

	
2079
      typedef _ForwardMap ForwardMap;
2080
      typedef _BackwardMap BackwardMap;
2081

	
2082
      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
2083

	
2084
      typedef typename ForwardMap::Value Value;
2085
      typedef typename Parent::Arc Key;
2086

	
2087
      /// \brief Constructor
2088
      ///
2089
      /// Constructor
2090
      CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
2091
        : _forward(&forward), _backward(&backward) {}
2092

	
2093

	
2094
      /// \brief Sets the value associated with a key.
2095
      ///
2096
      /// Sets the value associated with a key.
2097
      void set(const Key& e, const Value& a) {
2098
        if (Parent::direction(e)) {
2099
          _forward->set(e, a);
2100
        } else {
2101
          _backward->set(e, a);
2102
        }
2103
      }
2104

	
2105
      /// \brief Returns the value associated with a key.
2106
      ///
2107
      /// Returns the value associated with a key.
2108
      typename MapTraits<ForwardMap>::ConstReturnValue
2109
      operator[](const Key& e) const {
2110
        if (Parent::direction(e)) {
2111
          return (*_forward)[e];
2112
        } else {
2113
          return (*_backward)[e];
2114
        }
2115
      }
2116

	
2117
      /// \brief Returns the value associated with a key.
2118
      ///
2119
      /// Returns the value associated with a key.
2120
      typename MapTraits<ForwardMap>::ReturnValue
2121
      operator[](const Key& e) {
2122
        if (Parent::direction(e)) {
2123
          return (*_forward)[e];
2124
        } else {
2125
          return (*_backward)[e];
2126
        }
2127
      }
2128

	
2129
    protected:
2130

	
2131
      ForwardMap* _forward;
2132
      BackwardMap* _backward;
2133

	
2134
    };
2135

	
2136
    /// \brief Just gives back a combined arc map
2137
    ///
2138
    /// Just gives back a combined arc map
2139
    template <typename ForwardMap, typename BackwardMap>
2140
    static CombinedArcMap<ForwardMap, BackwardMap>
2141
    combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
2142
      return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
2143
    }
2144

	
2145
    template <typename ForwardMap, typename BackwardMap>
2146
    static CombinedArcMap<const ForwardMap, BackwardMap>
2147
    combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
2148
      return CombinedArcMap<const ForwardMap,
2149
        BackwardMap>(forward, backward);
2150
    }
2151

	
2152
    template <typename ForwardMap, typename BackwardMap>
2153
    static CombinedArcMap<ForwardMap, const BackwardMap>
2154
    combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
2155
      return CombinedArcMap<ForwardMap,
2156
        const BackwardMap>(forward, backward);
2157
    }
2158

	
2159
    template <typename ForwardMap, typename BackwardMap>
2160
    static CombinedArcMap<const ForwardMap, const BackwardMap>
2161
    combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
2162
      return CombinedArcMap<const ForwardMap,
2163
        const BackwardMap>(forward, backward);
2164
    }
2165

	
2166
  };
2167

	
2168
  /// \brief Just gives back an undirected view of the given digraph
2169
  ///
2170
  /// Just gives back an undirected view of the given digraph
2171
  template<typename Digraph>
2172
  Undirector<const Digraph>
2173
  undirector(const Digraph& digraph) {
2174
    return Undirector<const Digraph>(digraph);
2175
  }
2176

	
2177
  template <typename _Graph, typename _DirectionMap>
2178
  class OrienterBase {
2179
  public:
2180

	
2181
    typedef _Graph Graph;
2182
    typedef _DirectionMap DirectionMap;
2183

	
2184
    typedef typename Graph::Node Node;
2185
    typedef typename Graph::Edge Arc;
2186

	
2187
    void reverseArc(const Arc& arc) {
2188
      _direction->set(arc, !(*_direction)[arc]);
2189
    }
2190

	
2191
    void first(Node& i) const { _graph->first(i); }
2192
    void first(Arc& i) const { _graph->first(i); }
2193
    void firstIn(Arc& i, const Node& n) const {
2194
      bool d;
2195
      _graph->firstInc(i, d, n);
2196
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2197
    }
2198
    void firstOut(Arc& i, const Node& n ) const {
2199
      bool d;
2200
      _graph->firstInc(i, d, n);
2201
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2202
    }
2203

	
2204
    void next(Node& i) const { _graph->next(i); }
2205
    void next(Arc& i) const { _graph->next(i); }
2206
    void nextIn(Arc& i) const {
2207
      bool d = !(*_direction)[i];
2208
      _graph->nextInc(i, d);
2209
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2210
    }
2211
    void nextOut(Arc& i) const {
2212
      bool d = (*_direction)[i];
2213
      _graph->nextInc(i, d);
2214
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2215
    }
2216

	
2217
    Node source(const Arc& e) const {
2218
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2219
    }
2220
    Node target(const Arc& e) const {
2221
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2222
    }
2223

	
2224
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2225
    int nodeNum() const { return _graph->nodeNum(); }
2226

	
2227
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
2228
    int arcNum() const { return _graph->edgeNum(); }
2229

	
2230
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
2231
    Arc findArc(const Node& u, const Node& v,
2232
                const Arc& prev = INVALID) {
2233
      Arc arc = prev;
2234
      bool d = arc == INVALID ? true : (*_direction)[arc];
2235
      if (d) {
2236
        arc = _graph->findEdge(u, v, arc);
2237
        while (arc != INVALID && !(*_direction)[arc]) {
2238
          _graph->findEdge(u, v, arc);
2239
        }
2240
        if (arc != INVALID) return arc;
2241
      }
2242
      _graph->findEdge(v, u, arc);
2243
      while (arc != INVALID && (*_direction)[arc]) {
2244
        _graph->findEdge(u, v, arc);
2245
      }
2246
      return arc;
2247
    }
2248

	
2249
    Node addNode() {
2250
      return Node(_graph->addNode());
2251
    }
2252

	
2253
    Arc addArc(const Node& u, const Node& v) {
2254
      Arc arc = _graph->addArc(u, v);
2255
      _direction->set(arc, _graph->source(arc) == u);
2256
      return arc;
2257
    }
2258

	
2259
    void erase(const Node& i) { _graph->erase(i); }
2260
    void erase(const Arc& i) { _graph->erase(i); }
2261

	
2262
    void clear() { _graph->clear(); }
2263

	
2264
    int id(const Node& v) const { return _graph->id(v); }
2265
    int id(const Arc& e) const { return _graph->id(e); }
2266

	
2267
    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2268
    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2269

	
2270
    int maxNodeId() const { return _graph->maxNodeId(); }
2271
    int maxArcId() const { return _graph->maxEdgeId(); }
2272

	
2273
    typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
2274
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2275

	
2276
    typedef typename ItemSetTraits<Graph, Arc>::ItemNotifier ArcNotifier;
2277
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2278

	
2279
    template <typename _Value>
2280
    class NodeMap : public _Graph::template NodeMap<_Value> {
2281
    public:
2282

	
2283
      typedef typename _Graph::template NodeMap<_Value> Parent;
2284

	
2285
      explicit NodeMap(const OrienterBase& adapter)
2286
        : Parent(*adapter._graph) {}
2287

	
2288
      NodeMap(const OrienterBase& adapter, const _Value& value)
2289
        : Parent(*adapter._graph, value) {}
2290

	
2291
    private:
2292
      NodeMap& operator=(const NodeMap& cmap) {
2293
        return operator=<NodeMap>(cmap);
2294
      }
2295

	
2296
      template <typename CMap>
2297
      NodeMap& operator=(const CMap& cmap) {
2298
        Parent::operator=(cmap);
2299
        return *this;
2300
      }
2301

	
2302
    };
2303

	
2304
    template <typename _Value>
2305
    class ArcMap : public _Graph::template EdgeMap<_Value> {
2306
    public:
2307

	
2308
      typedef typename Graph::template EdgeMap<_Value> Parent;
2309

	
2310
      explicit ArcMap(const OrienterBase& adapter)
2311
        : Parent(*adapter._graph) { }
2312

	
2313
      ArcMap(const OrienterBase& adapter, const _Value& value)
2314
        : Parent(*adapter._graph, value) { }
2315

	
2316
    private:
2317
      ArcMap& operator=(const ArcMap& cmap) {
2318
        return operator=<ArcMap>(cmap);
2319
      }
2320

	
2321
      template <typename CMap>
2322
      ArcMap& operator=(const CMap& cmap) {
2323
        Parent::operator=(cmap);
2324
        return *this;
2325
      }
2326
    };
2327

	
2328

	
2329

	
2330
  protected:
2331
    Graph* _graph;
2332
    DirectionMap* _direction;
2333

	
2334
    void setDirectionMap(DirectionMap& direction) {
2335
      _direction = &direction;
2336
    }
2337

	
2338
    void setGraph(Graph& graph) {
2339
      _graph = &graph;
2340
    }
2341

	
2342
  };
2343

	
2344
  /// \ingroup graph_adaptors
2345
  ///
2346
  /// \brief Orients the edges of the graph to get a digraph
2347
  ///
2348
  /// This adaptor orients each edge in the undirected graph. The
2349
  /// direction of the arcs stored in an edge node map.  The arcs can
2350
  /// be easily reverted by the \c reverseArc() member function in the
2351
  /// adaptor. The Orienter adaptor is conform to the \ref
2352
  /// concepts::Digraph "Digraph concept".
2353
  ///
2354
  /// \tparam _Graph It must be conform to the \ref concepts::Graph
2355
  /// "Graph concept". The type can be specified to be const.
2356
  /// \tparam _DirectionMap A bool valued edge map of the the adapted
2357
  /// graph.
2358
  ///
2359
  /// \sa orienter
2360
  template<typename _Graph,
2361
           typename DirectionMap = typename _Graph::template EdgeMap<bool> >
2362
  class Orienter :
2363
    public DigraphAdaptorExtender<OrienterBase<_Graph, DirectionMap> > {
2364
  public:
2365
    typedef _Graph Graph;
2366
    typedef DigraphAdaptorExtender<
2367
      OrienterBase<_Graph, DirectionMap> > Parent;
2368
    typedef typename Parent::Arc Arc;
2369
  protected:
2370
    Orienter() { }
2371
  public:
2372

	
2373
    /// \brief Constructor of the adaptor
2374
    ///
2375
    /// Constructor of the adaptor
2376
    Orienter(Graph& graph, DirectionMap& direction) {
2377
      setGraph(graph);
2378
      setDirectionMap(direction);
2379
    }
2380

	
2381
    /// \brief Reverse arc
2382
    ///
2383
    /// It reverse the given arc. It simply negate the direction in the map.
2384
    void reverseArc(const Arc& a) {
2385
      Parent::reverseArc(a);
2386
    }
2387
  };
2388

	
2389
  /// \brief Just gives back a Orienter
2390
  ///
2391
  /// Just gives back a Orienter
2392
  template<typename Graph, typename DirectionMap>
2393
  Orienter<const Graph, DirectionMap>
2394
  orienter(const Graph& graph, DirectionMap& dm) {
2395
    return Orienter<const Graph, DirectionMap>(graph, dm);
2396
  }
2397

	
2398
  template<typename Graph, typename DirectionMap>
2399
  Orienter<const Graph, const DirectionMap>
2400
  orienter(const Graph& graph, const DirectionMap& dm) {
2401
    return Orienter<const Graph, const DirectionMap>(graph, dm);
2402
  }
2403

	
2404
  namespace _adaptor_bits {
2405

	
2406
    template<typename _Digraph,
2407
             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
2408
             typename _FlowMap = _CapacityMap,
2409
             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
2410
    class ResForwardFilter {
2411
    public:
2412

	
2413
      typedef _Digraph Digraph;
2414
      typedef _CapacityMap CapacityMap;
2415
      typedef _FlowMap FlowMap;
2416
      typedef _Tolerance Tolerance;
2417

	
2418
      typedef typename Digraph::Arc Key;
2419
      typedef bool Value;
2420

	
2421
    private:
2422

	
2423
      const CapacityMap* _capacity;
2424
      const FlowMap* _flow;
2425
      Tolerance _tolerance;
2426
    public:
2427

	
2428
      ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow,
2429
                       const Tolerance& tolerance = Tolerance())
2430
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2431

	
2432
      bool operator[](const typename Digraph::Arc& a) const {
2433
        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2434
      }
2435
    };
2436

	
2437
    template<typename _Digraph,
2438
             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
2439
             typename _FlowMap = _CapacityMap,
2440
             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
2441
    class ResBackwardFilter {
2442
    public:
2443

	
2444
      typedef _Digraph Digraph;
2445
      typedef _CapacityMap CapacityMap;
2446
      typedef _FlowMap FlowMap;
2447
      typedef _Tolerance Tolerance;
2448

	
2449
      typedef typename Digraph::Arc Key;
2450
      typedef bool Value;
2451

	
2452
    private:
2453

	
2454
      const CapacityMap* _capacity;
2455
      const FlowMap* _flow;
2456
      Tolerance _tolerance;
2457

	
2458
    public:
2459

	
2460
      ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow,
2461
                        const Tolerance& tolerance = Tolerance())
2462
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2463

	
2464
      bool operator[](const typename Digraph::Arc& a) const {
2465
        return _tolerance.positive((*_flow)[a]);
2466
      }
2467
    };
2468

	
2469
  }
2470

	
2471
  /// \ingroup graph_adaptors
2472
  ///
2473
  /// \brief An adaptor for composing the residual graph for directed
2474
  /// flow and circulation problems.
2475
  ///
2476
  /// An adaptor for composing the residual graph for directed flow and
2477
  /// circulation problems.  Let \f$ G=(V, A) \f$ be a directed graph
2478
  /// and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$,
2479
  /// be functions on the arc-set.
2480
  ///
2481
  /// Then Residual implements the digraph structure with
2482
  /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward} \f$,
2483
  /// where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and
2484
  /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so
2485
  /// called residual graph.  When we take the union
2486
  /// \f$ A_{forward}\cup A_{backward} \f$, multiplicities are counted,
2487
  /// i.e.  if an arc is in both \f$ A_{forward} \f$ and
2488
  /// \f$ A_{backward} \f$, then in the adaptor it appears in both
2489
  /// orientation.
2490
  ///
2491
  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
2492
  /// "Digraph concept". The type is implicitly const.
2493
  /// \tparam _CapacityMap An arc map of some numeric type, it defines
2494
  /// the capacities in the flow problem. The map is implicitly const.
2495
  /// \tparam _FlowMap An arc map of some numeric type, it defines
2496
  /// the capacities in the flow problem.
2497
  /// \tparam _Tolerance Handler for inexact computation.
2498
  template<typename _Digraph,
2499
           typename _CapacityMap = typename _Digraph::template ArcMap<int>,
2500
           typename _FlowMap = _CapacityMap,
2501
           typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
2502
  class Residual :
2503
    public FilterArcs<
2504
    Undirector<const _Digraph>,
2505
    typename Undirector<const _Digraph>::template CombinedArcMap<
2506
      _adaptor_bits::ResForwardFilter<const _Digraph, _CapacityMap,
2507
                                      _FlowMap, _Tolerance>,
2508
      _adaptor_bits::ResBackwardFilter<const _Digraph, _CapacityMap,
2509
                                       _FlowMap, _Tolerance> > >
2510
  {
2511
  public:
2512

	
2513
    typedef _Digraph Digraph;
2514
    typedef _CapacityMap CapacityMap;
2515
    typedef _FlowMap FlowMap;
2516
    typedef _Tolerance Tolerance;
2517

	
2518
    typedef typename CapacityMap::Value Value;
2519
    typedef Residual Adaptor;
2520

	
2521
  protected:
2522

	
2523
    typedef Undirector<const Digraph> Undirected;
2524

	
2525
    typedef _adaptor_bits::ResForwardFilter<const Digraph, CapacityMap,
2526
                                            FlowMap, Tolerance> ForwardFilter;
2527

	
2528
    typedef _adaptor_bits::ResBackwardFilter<const Digraph, CapacityMap,
2529
                                             FlowMap, Tolerance> BackwardFilter;
2530

	
2531
    typedef typename Undirected::
2532
    template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2533

	
2534
    typedef FilterArcs<Undirected, ArcFilter> Parent;
2535

	
2536
    const CapacityMap* _capacity;
2537
    FlowMap* _flow;
2538

	
2539
    Undirected _graph;
2540
    ForwardFilter _forward_filter;
2541
    BackwardFilter _backward_filter;
2542
    ArcFilter _arc_filter;
2543

	
2544
  public:
2545

	
2546
    /// \brief Constructor of the residual digraph.
2547
    ///
2548
    /// Constructor of the residual graph. The parameters are the digraph,
2549
    /// the flow map, the capacity map and a tolerance object.
2550
    Residual(const Digraph& digraph, const CapacityMap& capacity,
2551
             FlowMap& flow, const Tolerance& tolerance = Tolerance())
2552
      : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph),
2553
        _forward_filter(capacity, flow, tolerance),
2554
        _backward_filter(capacity, flow, tolerance),
2555
        _arc_filter(_forward_filter, _backward_filter)
2556
    {
2557
      Parent::setDigraph(_graph);
2558
      Parent::setArcFilterMap(_arc_filter);
2559
    }
2560

	
2561
    typedef typename Parent::Arc Arc;
2562

	
2563
    /// \brief Gives back the residual capacity of the arc.
2564
    ///
2565
    /// Gives back the residual capacity of the arc.
2566
    Value residualCapacity(const Arc& a) const {
2567
      if (Undirected::direction(a)) {
2568
        return (*_capacity)[a] - (*_flow)[a];
2569
      } else {
2570
        return (*_flow)[a];
2571
      }
2572
    }
2573

	
2574
    /// \brief Augment on the given arc in the residual graph.
2575
    ///
2576
    /// Augment on the given arc in the residual graph. It increase
2577
    /// or decrease the flow on the original arc depend on the direction
2578
    /// of the residual arc.
2579
    void augment(const Arc& a, const Value& v) const {
2580
      if (Undirected::direction(a)) {
2581
        _flow->set(a, (*_flow)[a] + v);
2582
      } else {
2583
        _flow->set(a, (*_flow)[a] - v);
2584
      }
2585
    }
2586

	
2587
    /// \brief Returns the direction of the arc.
2588
    ///
2589
    /// Returns true when the arc is same oriented as the original arc.
2590
    static bool forward(const Arc& a) {
2591
      return Undirected::direction(a);
2592
    }
2593

	
2594
    /// \brief Returns the direction of the arc.
2595
    ///
2596
    /// Returns true when the arc is opposite oriented as the original arc.
2597
    static bool backward(const Arc& a) {
2598
      return !Undirected::direction(a);
2599
    }
2600

	
2601
    /// \brief Gives back the forward oriented residual arc.
2602
    ///
2603
    /// Gives back the forward oriented residual arc.
2604
    static Arc forward(const typename Digraph::Arc& a) {
2605
      return Undirected::direct(a, true);
2606
    }
2607

	
2608
    /// \brief Gives back the backward oriented residual arc.
2609
    ///
2610
    /// Gives back the backward oriented residual arc.
2611
    static Arc backward(const typename Digraph::Arc& a) {
2612
      return Undirected::direct(a, false);
2613
    }
2614

	
2615
    /// \brief Residual capacity map.
2616
    ///
2617
    /// In generic residual graph the residual capacity can be obtained
2618
    /// as a map.
2619
    class ResidualCapacity {
2620
    protected:
2621
      const Adaptor* _adaptor;
2622
    public:
2623
      /// The Key type
2624
      typedef Arc Key;
2625
      /// The Value type
2626
      typedef typename _CapacityMap::Value Value;
2627

	
2628
      /// Constructor
2629
      ResidualCapacity(const Adaptor& adaptor) : _adaptor(&adaptor) {}
2630

	
2631
      /// \e
2632
      Value operator[](const Arc& a) const {
2633
        return _adaptor->residualCapacity(a);
2634
      }
2635

	
2636
    };
2637

	
2638
  };
2639

	
2640
  template <typename _Digraph>
2641
  class SplitNodesBase {
2642
  public:
2643

	
2644
    typedef _Digraph Digraph;
2645
    typedef DigraphAdaptorBase<const _Digraph> Parent;
2646
    typedef SplitNodesBase Adaptor;
2647

	
2648
    typedef typename Digraph::Node DigraphNode;
2649
    typedef typename Digraph::Arc DigraphArc;
2650

	
2651
    class Node;
2652
    class Arc;
2653

	
2654
  private:
2655

	
2656
    template <typename T> class NodeMapBase;
2657
    template <typename T> class ArcMapBase;
2658

	
2659
  public:
2660

	
2661
    class Node : public DigraphNode {
2662
      friend class SplitNodesBase;
2663
      template <typename T> friend class NodeMapBase;
2664
    private:
2665

	
2666
      bool _in;
2667
      Node(DigraphNode node, bool in)
2668
        : DigraphNode(node), _in(in) {}
2669

	
2670
    public:
2671

	
2672
      Node() {}
2673
      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2674

	
2675
      bool operator==(const Node& node) const {
2676
        return DigraphNode::operator==(node) && _in == node._in;
2677
      }
2678

	
2679
      bool operator!=(const Node& node) const {
2680
        return !(*this == node);
2681
      }
2682

	
2683
      bool operator<(const Node& node) const {
2684
        return DigraphNode::operator<(node) ||
2685
          (DigraphNode::operator==(node) && _in < node._in);
2686
      }
2687
    };
2688

	
2689
    class Arc {
2690
      friend class SplitNodesBase;
2691
      template <typename T> friend class ArcMapBase;
2692
    private:
2693
      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2694

	
2695
      explicit Arc(const DigraphArc& arc) : _item(arc) {}
2696
      explicit Arc(const DigraphNode& node) : _item(node) {}
2697

	
2698
      ArcImpl _item;
2699

	
2700
    public:
2701
      Arc() {}
2702
      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2703

	
2704
      bool operator==(const Arc& arc) const {
2705
        if (_item.firstState()) {
2706
          if (arc._item.firstState()) {
2707
            return _item.first() == arc._item.first();
2708
          }
2709
        } else {
2710
          if (arc._item.secondState()) {
2711
            return _item.second() == arc._item.second();
2712
          }
2713
        }
2714
        return false;
2715
      }
2716

	
2717
      bool operator!=(const Arc& arc) const {
2718
        return !(*this == arc);
2719
      }
2720

	
2721
      bool operator<(const Arc& arc) const {
2722
        if (_item.firstState()) {
2723
          if (arc._item.firstState()) {
2724
            return _item.first() < arc._item.first();
2725
          }
2726
          return false;
2727
        } else {
2728
          if (arc._item.secondState()) {
2729
            return _item.second() < arc._item.second();
2730
          }
2731
          return true;
2732
        }
2733
      }
2734

	
2735
      operator DigraphArc() const { return _item.first(); }
2736
      operator DigraphNode() const { return _item.second(); }
2737

	
2738
    };
2739

	
2740
    void first(Node& n) const {
2741
      _digraph->first(n);
2742
      n._in = true;
2743
    }
2744

	
2745
    void next(Node& n) const {
2746
      if (n._in) {
2747
        n._in = false;
2748
      } else {
2749
        n._in = true;
2750
        _digraph->next(n);
2751
      }
2752
    }
2753

	
2754
    void first(Arc& e) const {
2755
      e._item.setSecond();
2756
      _digraph->first(e._item.second());
2757
      if (e._item.second() == INVALID) {
2758
        e._item.setFirst();
2759
        _digraph->first(e._item.first());
2760
      }
2761
    }
2762

	
2763
    void next(Arc& e) const {
2764
      if (e._item.secondState()) {
2765
        _digraph->next(e._item.second());
2766
        if (e._item.second() == INVALID) {
2767
          e._item.setFirst();
2768
          _digraph->first(e._item.first());
2769
        }
2770
      } else {
2771
        _digraph->next(e._item.first());
2772
      }
2773
    }
2774

	
2775
    void firstOut(Arc& e, const Node& n) const {
2776
      if (n._in) {
2777
        e._item.setSecond(n);
2778
      } else {
2779
        e._item.setFirst();
2780
        _digraph->firstOut(e._item.first(), n);
2781
      }
2782
    }
2783

	
2784
    void nextOut(Arc& e) const {
2785
      if (!e._item.firstState()) {
2786
        e._item.setFirst(INVALID);
2787
      } else {
2788
        _digraph->nextOut(e._item.first());
2789
      }
2790
    }
2791

	
2792
    void firstIn(Arc& e, const Node& n) const {
2793
      if (!n._in) {
2794
        e._item.setSecond(n);
2795
      } else {
2796
        e._item.setFirst();
2797
        _digraph->firstIn(e._item.first(), n);
2798
      }
2799
    }
2800

	
2801
    void nextIn(Arc& e) const {
2802
      if (!e._item.firstState()) {
2803
        e._item.setFirst(INVALID);
2804
      } else {
2805
        _digraph->nextIn(e._item.first());
2806
      }
2807
    }
2808

	
2809
    Node source(const Arc& e) const {
2810
      if (e._item.firstState()) {
2811
        return Node(_digraph->source(e._item.first()), false);
2812
      } else {
2813
        return Node(e._item.second(), true);
2814
      }
2815
    }
2816

	
2817
    Node target(const Arc& e) const {
2818
      if (e._item.firstState()) {
2819
        return Node(_digraph->target(e._item.first()), true);
2820
      } else {
2821
        return Node(e._item.second(), false);
2822
      }
2823
    }
2824

	
2825
    int id(const Node& n) const {
2826
      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
2827
    }
2828
    Node nodeFromId(int ix) const {
2829
      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
2830
    }
2831
    int maxNodeId() const {
2832
      return 2 * _digraph->maxNodeId() + 1;
2833
    }
2834

	
2835
    int id(const Arc& e) const {
2836
      if (e._item.firstState()) {
2837
        return _digraph->id(e._item.first()) << 1;
2838
      } else {
2839
        return (_digraph->id(e._item.second()) << 1) | 1;
2840
      }
2841
    }
2842
    Arc arcFromId(int ix) const {
2843
      if ((ix & 1) == 0) {
2844
        return Arc(_digraph->arcFromId(ix >> 1));
2845
      } else {
2846
        return Arc(_digraph->nodeFromId(ix >> 1));
2847
      }
2848
    }
2849
    int maxArcId() const {
2850
      return std::max(_digraph->maxNodeId() << 1,
2851
                      (_digraph->maxArcId() << 1) | 1);
2852
    }
2853

	
2854
    static bool inNode(const Node& n) {
2855
      return n._in;
2856
    }
2857

	
2858
    static bool outNode(const Node& n) {
2859
      return !n._in;
2860
    }
2861

	
2862
    static bool origArc(const Arc& e) {
2863
      return e._item.firstState();
2864
    }
2865

	
2866
    static bool bindArc(const Arc& e) {
2867
      return e._item.secondState();
2868
    }
2869

	
2870
    static Node inNode(const DigraphNode& n) {
2871
      return Node(n, true);
2872
    }
2873

	
2874
    static Node outNode(const DigraphNode& n) {
2875
      return Node(n, false);
2876
    }
2877

	
2878
    static Arc arc(const DigraphNode& n) {
2879
      return Arc(n);
2880
    }
2881

	
2882
    static Arc arc(const DigraphArc& e) {
2883
      return Arc(e);
2884
    }
2885

	
2886
    typedef True NodeNumTag;
2887

	
2888
    int nodeNum() const {
2889
      return  2 * countNodes(*_digraph);
2890
    }
2891

	
2892
    typedef True EdgeNumTag;
2893
    int arcNum() const {
2894
      return countArcs(*_digraph) + countNodes(*_digraph);
2895
    }
2896

	
2897
    typedef True FindEdgeTag;
2898
    Arc findArc(const Node& u, const Node& v,
2899
                const Arc& prev = INVALID) const {
2900
      if (inNode(u)) {
2901
        if (outNode(v)) {
2902
          if (static_cast<const DigraphNode&>(u) ==
2903
              static_cast<const DigraphNode&>(v) && prev == INVALID) {
2904
            return Arc(u);
2905
          }
2906
        }
2907
      } else {
2908
        if (inNode(v)) {
2909
          return Arc(::lemon::findArc(*_digraph, u, v, prev));
2910
        }
2911
      }
2912
      return INVALID;
2913
    }
2914

	
2915
  private:
2916

	
2917
    template <typename _Value>
2918
    class NodeMapBase
2919
      : public MapTraits<typename Parent::template NodeMap<_Value> > {
2920
      typedef typename Parent::template NodeMap<_Value> NodeImpl;
2921
    public:
2922
      typedef Node Key;
2923
      typedef _Value Value;
2924

	
2925
      NodeMapBase(const Adaptor& adaptor)
2926
        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
2927
      NodeMapBase(const Adaptor& adaptor, const Value& value)
2928
        : _in_map(*adaptor._digraph, value),
2929
          _out_map(*adaptor._digraph, value) {}
2930

	
2931
      void set(const Node& key, const Value& val) {
2932
        if (Adaptor::inNode(key)) { _in_map.set(key, val); }
2933
        else {_out_map.set(key, val); }
2934
      }
2935

	
2936
      typename MapTraits<NodeImpl>::ReturnValue
2937
      operator[](const Node& key) {
2938
        if (Adaptor::inNode(key)) { return _in_map[key]; }
2939
        else { return _out_map[key]; }
2940
      }
2941

	
2942
      typename MapTraits<NodeImpl>::ConstReturnValue
2943
      operator[](const Node& key) const {
2944
        if (Adaptor::inNode(key)) { return _in_map[key]; }
2945
        else { return _out_map[key]; }
2946
      }
2947

	
2948
    private:
2949
      NodeImpl _in_map, _out_map;
2950
    };
2951

	
2952
    template <typename _Value>
2953
    class ArcMapBase
2954
      : public MapTraits<typename Parent::template ArcMap<_Value> > {
2955
      typedef typename Parent::template ArcMap<_Value> ArcImpl;
2956
      typedef typename Parent::template NodeMap<_Value> NodeImpl;
2957
    public:
2958
      typedef Arc Key;
2959
      typedef _Value Value;
2960

	
2961
      ArcMapBase(const Adaptor& adaptor)
2962
        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
2963
      ArcMapBase(const Adaptor& adaptor, const Value& value)
2964
        : _arc_map(*adaptor._digraph, value),
2965
          _node_map(*adaptor._digraph, value) {}
2966

	
2967
      void set(const Arc& key, const Value& val) {
2968
        if (Adaptor::origArc(key)) {
2969
          _arc_map.set(key._item.first(), val);
2970
        } else {
2971
          _node_map.set(key._item.second(), val);
2972
        }
2973
      }
2974

	
2975
      typename MapTraits<ArcImpl>::ReturnValue
2976
      operator[](const Arc& key) {
2977
        if (Adaptor::origArc(key)) {
2978
          return _arc_map[key._item.first()];
2979
        } else {
2980
          return _node_map[key._item.second()];
2981
        }
2982
      }
2983

	
2984
      typename MapTraits<ArcImpl>::ConstReturnValue
2985
      operator[](const Arc& key) const {
2986
        if (Adaptor::origArc(key)) {
2987
          return _arc_map[key._item.first()];
2988
        } else {
2989
          return _node_map[key._item.second()];
2990
        }
2991
      }
2992

	
2993
    private:
2994
      ArcImpl _arc_map;
2995
      NodeImpl _node_map;
2996
    };
2997

	
2998
  public:
2999

	
3000
    template <typename _Value>
3001
    class NodeMap
3002
      : public SubMapExtender<Adaptor, NodeMapBase<_Value> >
3003
    {
3004
    public:
3005
      typedef _Value Value;
3006
      typedef SubMapExtender<Adaptor, NodeMapBase<Value> > Parent;
3007

	
3008
      NodeMap(const Adaptor& adaptor)
3009
        : Parent(adaptor) {}
3010

	
3011
      NodeMap(const Adaptor& adaptor, const Value& value)
3012
        : Parent(adaptor, value) {}
3013

	
3014
    private:
3015
      NodeMap& operator=(const NodeMap& cmap) {
3016
        return operator=<NodeMap>(cmap);
3017
      }
3018

	
3019
      template <typename CMap>
3020
      NodeMap& operator=(const CMap& cmap) {
3021
        Parent::operator=(cmap);
3022
        return *this;
3023
      }
3024
    };
3025

	
3026
    template <typename _Value>
3027
    class ArcMap
3028
      : public SubMapExtender<Adaptor, ArcMapBase<_Value> >
3029
    {
3030
    public:
3031
      typedef _Value Value;
3032
      typedef SubMapExtender<Adaptor, ArcMapBase<Value> > Parent;
3033

	
3034
      ArcMap(const Adaptor& adaptor)
3035
        : Parent(adaptor) {}
3036

	
3037
      ArcMap(const Adaptor& adaptor, const Value& value)
3038
        : Parent(adaptor, value) {}
3039

	
3040
    private:
3041
      ArcMap& operator=(const ArcMap& cmap) {
3042
        return operator=<ArcMap>(cmap);
3043
      }
3044

	
3045
      template <typename CMap>
3046
      ArcMap& operator=(const CMap& cmap) {
3047
        Parent::operator=(cmap);
3048
        return *this;
3049
      }
3050
    };
3051

	
3052
  protected:
3053

	
3054
    SplitNodesBase() : _digraph(0) {}
3055

	
3056
    Digraph* _digraph;
3057

	
3058
    void setDigraph(Digraph& digraph) {
3059
      _digraph = &digraph;
3060
    }
3061

	
3062
  };
3063

	
3064
  /// \ingroup graph_adaptors
3065
  ///
3066
  /// \brief Split the nodes of a directed graph
3067
  ///
3068
  /// The SplitNodes adaptor splits each node into an in-node and an
3069
  /// out-node. Formaly, the adaptor replaces each \f$ u \f$ node in
3070
  /// the digraph with two nodes(namely node \f$ u_{in} \f$ and node
3071
  /// \f$ u_{out} \f$). If there is a \f$ (v, u) \f$ arc in the
3072
  /// original digraph the new target of the arc will be \f$ u_{in} \f$
3073
  /// and similarly the source of the original \f$ (u, v) \f$ arc
3074
  /// will be \f$ u_{out} \f$.  The adaptor will add for each node in
3075
  /// the original digraph an additional arc which connects
3076
  /// \f$ (u_{in}, u_{out}) \f$.
3077
  ///
3078
  /// The aim of this class is to run algorithm with node costs if the
3079
  /// algorithm can use directly just arc costs. In this case we should use
3080
  /// a \c SplitNodes and set the node cost of the graph to the
3081
  /// bind arc in the adapted graph.
3082
  ///
3083
  /// \tparam _Digraph It must be conform to the \ref concepts::Digraph
3084
  /// "Digraph concept". The type can be specified to be const.
3085
  template <typename _Digraph>
3086
  class SplitNodes
3087
    : public DigraphAdaptorExtender<SplitNodesBase<_Digraph> > {
3088
  public:
3089
    typedef _Digraph Digraph;
3090
    typedef DigraphAdaptorExtender<SplitNodesBase<Digraph> > Parent;
3091

	
3092
    typedef typename Digraph::Node DigraphNode;
3093
    typedef typename Digraph::Arc DigraphArc;
3094

	
3095
    typedef typename Parent::Node Node;
3096
    typedef typename Parent::Arc Arc;
3097

	
3098
    /// \brief Constructor of the adaptor.
3099
    ///
3100
    /// Constructor of the adaptor.
3101
    SplitNodes(Digraph& g) {
3102
      Parent::setDigraph(g);
3103
    }
3104

	
3105
    /// \brief Returns true when the node is in-node.
3106
    ///
3107
    /// Returns true when the node is in-node.
3108
    static bool inNode(const Node& n) {
3109
      return Parent::inNode(n);
3110
    }
3111

	
3112
    /// \brief Returns true when the node is out-node.
3113
    ///
3114
    /// Returns true when the node is out-node.
3115
    static bool outNode(const Node& n) {
3116
      return Parent::outNode(n);
3117
    }
3118

	
3119
    /// \brief Returns true when the arc is arc in the original digraph.
3120
    ///
3121
    /// Returns true when the arc is arc in the original digraph.
3122
    static bool origArc(const Arc& a) {
3123
      return Parent::origArc(a);
3124
    }
3125

	
3126
    /// \brief Returns true when the arc binds an in-node and an out-node.
3127
    ///
3128
    /// Returns true when the arc binds an in-node and an out-node.
3129
    static bool bindArc(const Arc& a) {
3130
      return Parent::bindArc(a);
3131
    }
3132

	
3133
    /// \brief Gives back the in-node created from the \c node.
3134
    ///
3135
    /// Gives back the in-node created from the \c node.
3136
    static Node inNode(const DigraphNode& n) {
3137
      return Parent::inNode(n);
3138
    }
3139

	
3140
    /// \brief Gives back the out-node created from the \c node.
3141
    ///
3142
    /// Gives back the out-node created from the \c node.
3143
    static Node outNode(const DigraphNode& n) {
3144
      return Parent::outNode(n);
3145
    }
3146

	
3147
    /// \brief Gives back the arc binds the two part of the node.
3148
    ///
3149
    /// Gives back the arc binds the two part of the node.
3150
    static Arc arc(const DigraphNode& n) {
3151
      return Parent::arc(n);
3152
    }
3153

	
3154
    /// \brief Gives back the arc of the original arc.
3155
    ///
3156
    /// Gives back the arc of the original arc.
3157
    static Arc arc(const DigraphArc& a) {
3158
      return Parent::arc(a);
3159
    }
3160

	
3161
    /// \brief NodeMap combined from two original NodeMap
3162
    ///
3163
    /// This class adapt two of the original digraph NodeMap to
3164
    /// get a node map on the adapted digraph.
3165
    template <typename InNodeMap, typename OutNodeMap>
3166
    class CombinedNodeMap {
3167
    public:
3168

	
3169
      typedef Node Key;
3170
      typedef typename InNodeMap::Value Value;
3171

	
3172
      /// \brief Constructor
3173
      ///
3174
      /// Constructor.
3175
      CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map)
3176
        : _in_map(in_map), _out_map(out_map) {}
3177

	
3178
      /// \brief The subscript operator.
3179
      ///
3180
      /// The subscript operator.
3181
      Value& operator[](const Key& key) {
3182
        if (Parent::inNode(key)) {
3183
          return _in_map[key];
3184
        } else {
3185
          return _out_map[key];
3186
        }
3187
      }
3188

	
3189
      /// \brief The const subscript operator.
3190
      ///
3191
      /// The const subscript operator.
3192
      Value operator[](const Key& key) const {
3193
        if (Parent::inNode(key)) {
3194
          return _in_map[key];
3195
        } else {
3196
          return _out_map[key];
3197
        }
3198
      }
3199

	
3200
      /// \brief The setter function of the map.
3201
      ///
3202
      /// The setter function of the map.
3203
      void set(const Key& key, const Value& value) {
3204
        if (Parent::inNode(key)) {
3205
          _in_map.set(key, value);
3206
        } else {
3207
          _out_map.set(key, value);
3208
        }
3209
      }
3210

	
3211
    private:
3212

	
3213
      InNodeMap& _in_map;
3214
      OutNodeMap& _out_map;
3215

	
3216
    };
3217

	
3218

	
3219
    /// \brief Just gives back a combined node map
3220
    ///
3221
    /// Just gives back a combined node map
3222
    template <typename InNodeMap, typename OutNodeMap>
3223
    static CombinedNodeMap<InNodeMap, OutNodeMap>
3224
    combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
3225
      return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
3226
    }
3227

	
3228
    template <typename InNodeMap, typename OutNodeMap>
3229
    static CombinedNodeMap<const InNodeMap, OutNodeMap>
3230
    combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
3231
      return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
3232
    }
3233

	
3234
    template <typename InNodeMap, typename OutNodeMap>
3235
    static CombinedNodeMap<InNodeMap, const OutNodeMap>
3236
    combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
3237
      return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
3238
    }
3239

	
3240
    template <typename InNodeMap, typename OutNodeMap>
3241
    static CombinedNodeMap<const InNodeMap, const OutNodeMap>
3242
    combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
3243
      return CombinedNodeMap<const InNodeMap,
3244
        const OutNodeMap>(in_map, out_map);
3245
    }
3246

	
3247
    /// \brief ArcMap combined from an original ArcMap and a NodeMap
3248
    ///
3249
    /// This class adapt an original ArcMap and a NodeMap to get an
3250
    /// arc map on the adapted digraph
3251
    template <typename DigraphArcMap, typename DigraphNodeMap>
3252
    class CombinedArcMap {
3253
    public:
3254

	
3255
      typedef Arc Key;
3256
      typedef typename DigraphArcMap::Value Value;
3257

	
3258
      /// \brief Constructor
3259
      ///
3260
      /// Constructor.
3261
      CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map)
3262
        : _arc_map(arc_map), _node_map(node_map) {}
3263

	
3264
      /// \brief The subscript operator.
3265
      ///
3266
      /// The subscript operator.
3267
      void set(const Arc& arc, const Value& val) {
3268
        if (Parent::origArc(arc)) {
3269
          _arc_map.set(arc, val);
3270
        } else {
3271
          _node_map.set(arc, val);
3272
        }
3273
      }
3274

	
3275
      /// \brief The const subscript operator.
3276
      ///
3277
      /// The const subscript operator.
3278
      Value operator[](const Key& arc) const {
3279
        if (Parent::origArc(arc)) {
3280
          return _arc_map[arc];
3281
        } else {
3282
          return _node_map[arc];
3283
        }
3284
      }
3285

	
3286
      /// \brief The const subscript operator.
3287
      ///
3288
      /// The const subscript operator.
3289
      Value& operator[](const Key& arc) {
3290
        if (Parent::origArc(arc)) {
3291
          return _arc_map[arc];
3292
        } else {
3293
          return _node_map[arc];
3294
        }
3295
      }
3296

	
3297
    private:
3298
      DigraphArcMap& _arc_map;
3299
      DigraphNodeMap& _node_map;
3300
    };
3301

	
3302
    /// \brief Just gives back a combined arc map
3303
    ///
3304
    /// Just gives back a combined arc map
3305
    template <typename DigraphArcMap, typename DigraphNodeMap>
3306
    static CombinedArcMap<DigraphArcMap, DigraphNodeMap>
3307
    combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
3308
      return CombinedArcMap<DigraphArcMap, DigraphNodeMap>(arc_map, node_map);
3309
    }
3310

	
3311
    template <typename DigraphArcMap, typename DigraphNodeMap>
3312
    static CombinedArcMap<const DigraphArcMap, DigraphNodeMap>
3313
    combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) {
3314
      return CombinedArcMap<const DigraphArcMap,
3315
        DigraphNodeMap>(arc_map, node_map);
3316
    }
3317

	
3318
    template <typename DigraphArcMap, typename DigraphNodeMap>
3319
    static CombinedArcMap<DigraphArcMap, const DigraphNodeMap>
3320
    combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) {
3321
      return CombinedArcMap<DigraphArcMap,
3322
        const DigraphNodeMap>(arc_map, node_map);
3323
    }
3324

	
3325
    template <typename DigraphArcMap, typename DigraphNodeMap>
3326
    static CombinedArcMap<const DigraphArcMap, const DigraphNodeMap>
3327
    combinedArcMap(const DigraphArcMap& arc_map,
3328
                   const DigraphNodeMap& node_map) {
3329
      return CombinedArcMap<const DigraphArcMap,
3330
        const DigraphNodeMap>(arc_map, node_map);
3331
    }
3332

	
3333
  };
3334

	
3335
  /// \brief Just gives back a node splitter
3336
  ///
3337
  /// Just gives back a node splitter
3338
  template<typename Digraph>
3339
  SplitNodes<Digraph>
3340
  splitNodes(const Digraph& digraph) {
3341
    return SplitNodes<Digraph>(digraph);
3342
  }
3343

	
3344

	
3345
} //namespace lemon
3346

	
3347
#endif //LEMON_ADAPTORS_H
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
20
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
21

	
22
#include <lemon/core.h>
23
#include <lemon/error.h>
24

	
25
#include <lemon/bits/default_map.h>
26

	
27
namespace lemon {
28

	
29
  template <typename _Digraph>
30
  class DigraphAdaptorExtender : public _Digraph {
31
  public:
32

	
33
    typedef _Digraph Parent;
34
    typedef _Digraph Digraph;
35
    typedef DigraphAdaptorExtender Adaptor;
36

	
37
    // Base extensions
38

	
39
    typedef typename Parent::Node Node;
40
    typedef typename Parent::Arc Arc;
41

	
42
    int maxId(Node) const {
43
      return Parent::maxNodeId();
44
    }
45

	
46
    int maxId(Arc) const {
47
      return Parent::maxArcId();
48
    }
49

	
50
    Node fromId(int id, Node) const {
51
      return Parent::nodeFromId(id);
52
    }
53

	
54
    Arc fromId(int id, Arc) const {
55
      return Parent::arcFromId(id);
56
    }
57

	
58
    Node oppositeNode(const Node &n, const Arc &e) const {
59
      if (n == Parent::source(e))
60
        return Parent::target(e);
61
      else if(n==Parent::target(e))
62
        return Parent::source(e);
63
      else
64
        return INVALID;
65
    }
66

	
67
    class NodeIt : public Node {
68
      const Adaptor* _adaptor;
69
    public:
70

	
71
      NodeIt() {}
72

	
73
      NodeIt(Invalid i) : Node(i) { }
74

	
75
      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
76
        _adaptor->first(static_cast<Node&>(*this));
77
      }
78

	
79
      NodeIt(const Adaptor& adaptor, const Node& node)
80
        : Node(node), _adaptor(&adaptor) {}
81

	
82
      NodeIt& operator++() {
83
        _adaptor->next(*this);
84
        return *this;
85
      }
86

	
87
    };
88

	
89

	
90
    class ArcIt : public Arc {
91
      const Adaptor* _adaptor;
92
    public:
93

	
94
      ArcIt() { }
95

	
96
      ArcIt(Invalid i) : Arc(i) { }
97

	
98
      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
99
        _adaptor->first(static_cast<Arc&>(*this));
100
      }
101

	
102
      ArcIt(const Adaptor& adaptor, const Arc& e) :
103
        Arc(e), _adaptor(&adaptor) { }
104

	
105
      ArcIt& operator++() {
106
        _adaptor->next(*this);
107
        return *this;
108
      }
109

	
110
    };
111

	
112

	
113
    class OutArcIt : public Arc {
114
      const Adaptor* _adaptor;
115
    public:
116

	
117
      OutArcIt() { }
118

	
119
      OutArcIt(Invalid i) : Arc(i) { }
120

	
121
      OutArcIt(const Adaptor& adaptor, const Node& node)
122
        : _adaptor(&adaptor) {
123
        _adaptor->firstOut(*this, node);
124
      }
125

	
126
      OutArcIt(const Adaptor& adaptor, const Arc& arc)
127
        : Arc(arc), _adaptor(&adaptor) {}
128

	
129
      OutArcIt& operator++() {
130
        _adaptor->nextOut(*this);
131
        return *this;
132
      }
133

	
134
    };
135

	
136

	
137
    class InArcIt : public Arc {
138
      const Adaptor* _adaptor;
139
    public:
140

	
141
      InArcIt() { }
142

	
143
      InArcIt(Invalid i) : Arc(i) { }
144

	
145
      InArcIt(const Adaptor& adaptor, const Node& node)
146
        : _adaptor(&adaptor) {
147
        _adaptor->firstIn(*this, node);
148
      }
149

	
150
      InArcIt(const Adaptor& adaptor, const Arc& arc) :
151
        Arc(arc), _adaptor(&adaptor) {}
152

	
153
      InArcIt& operator++() {
154
        _adaptor->nextIn(*this);
155
        return *this;
156
      }
157

	
158
    };
159

	
160
    Node baseNode(const OutArcIt &e) const {
161
      return Parent::source(e);
162
    }
163
    Node runningNode(const OutArcIt &e) const {
164
      return Parent::target(e);
165
    }
166

	
167
    Node baseNode(const InArcIt &e) const {
168
      return Parent::target(e);
169
    }
170
    Node runningNode(const InArcIt &e) const {
171
      return Parent::source(e);
172
    }
173

	
174
  };
175

	
176

	
177
  /// \ingroup digraphbits
178
  ///
179
  /// \brief Extender for the GraphAdaptors
180
  template <typename _Graph>
181
  class GraphAdaptorExtender : public _Graph {
182
  public:
183

	
184
    typedef _Graph Parent;
185
    typedef _Graph Graph;
186
    typedef GraphAdaptorExtender Adaptor;
187

	
188
    typedef typename Parent::Node Node;
189
    typedef typename Parent::Arc Arc;
190
    typedef typename Parent::Edge Edge;
191

	
192
    // Graph extension
193

	
194
    int maxId(Node) const {
195
      return Parent::maxNodeId();
196
    }
197

	
198
    int maxId(Arc) const {
199
      return Parent::maxArcId();
200
    }
201

	
202
    int maxId(Edge) const {
203
      return Parent::maxEdgeId();
204
    }
205

	
206
    Node fromId(int id, Node) const {
207
      return Parent::nodeFromId(id);
208
    }
209

	
210
    Arc fromId(int id, Arc) const {
211
      return Parent::arcFromId(id);
212
    }
213

	
214
    Edge fromId(int id, Edge) const {
215
      return Parent::edgeFromId(id);
216
    }
217

	
218
    Node oppositeNode(const Node &n, const Edge &e) const {
219
      if( n == Parent::u(e))
220
        return Parent::v(e);
221
      else if( n == Parent::v(e))
222
        return Parent::u(e);
223
      else
224
        return INVALID;
225
    }
226

	
227
    Arc oppositeArc(const Arc &a) const {
228
      return Parent::direct(a, !Parent::direction(a));
229
    }
230

	
231
    using Parent::direct;
232
    Arc direct(const Edge &e, const Node &s) const {
233
      return Parent::direct(e, Parent::u(e) == s);
234
    }
235

	
236

	
237
    class NodeIt : public Node {
238
      const Adaptor* _adaptor;
239
    public:
240

	
241
      NodeIt() {}
242

	
243
      NodeIt(Invalid i) : Node(i) { }
244

	
245
      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
246
        _adaptor->first(static_cast<Node&>(*this));
247
      }
248

	
249
      NodeIt(const Adaptor& adaptor, const Node& node)
250
        : Node(node), _adaptor(&adaptor) {}
251

	
252
      NodeIt& operator++() {
253
        _adaptor->next(*this);
254
        return *this;
255
      }
256

	
257
    };
258

	
259

	
260
    class ArcIt : public Arc {
261
      const Adaptor* _adaptor;
262
    public:
263

	
264
      ArcIt() { }
265

	
266
      ArcIt(Invalid i) : Arc(i) { }
267

	
268
      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
269
        _adaptor->first(static_cast<Arc&>(*this));
270
      }
271

	
272
      ArcIt(const Adaptor& adaptor, const Arc& e) :
273
        Arc(e), _adaptor(&adaptor) { }
274

	
275
      ArcIt& operator++() {
276
        _adaptor->next(*this);
277
        return *this;
278
      }
279

	
280
    };
281

	
282

	
283
    class OutArcIt : public Arc {
284
      const Adaptor* _adaptor;
285
    public:
286

	
287
      OutArcIt() { }
288

	
289
      OutArcIt(Invalid i) : Arc(i) { }
290

	
291
      OutArcIt(const Adaptor& adaptor, const Node& node)
292
        : _adaptor(&adaptor) {
293
        _adaptor->firstOut(*this, node);
294
      }
295

	
296
      OutArcIt(const Adaptor& adaptor, const Arc& arc)
297
        : Arc(arc), _adaptor(&adaptor) {}
298

	
299
      OutArcIt& operator++() {
300
        _adaptor->nextOut(*this);
301
        return *this;
302
      }
303

	
304
    };
305

	
306

	
307
    class InArcIt : public Arc {
308
      const Adaptor* _adaptor;
309
    public:
310

	
311
      InArcIt() { }
312

	
313
      InArcIt(Invalid i) : Arc(i) { }
314

	
315
      InArcIt(const Adaptor& adaptor, const Node& node)
316
        : _adaptor(&adaptor) {
317
        _adaptor->firstIn(*this, node);
318
      }
319

	
320
      InArcIt(const Adaptor& adaptor, const Arc& arc) :
321
        Arc(arc), _adaptor(&adaptor) {}
322

	
323
      InArcIt& operator++() {
324
        _adaptor->nextIn(*this);
325
        return *this;
326
      }
327

	
328
    };
329

	
330
    class EdgeIt : public Parent::Edge {
331
      const Adaptor* _adaptor;
332
    public:
333

	
334
      EdgeIt() { }
335

	
336
      EdgeIt(Invalid i) : Edge(i) { }
337

	
338
      explicit EdgeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
339
        _adaptor->first(static_cast<Edge&>(*this));
340
      }
341

	
342
      EdgeIt(const Adaptor& adaptor, const Edge& e) :
343
        Edge(e), _adaptor(&adaptor) { }
344

	
345
      EdgeIt& operator++() {
346
        _adaptor->next(*this);
347
        return *this;
348
      }
349

	
350
    };
351

	
352
    class IncEdgeIt : public Edge {
353
      friend class GraphAdaptorExtender;
354
      const Adaptor* _adaptor;
355
      bool direction;
356
    public:
357

	
358
      IncEdgeIt() { }
359

	
360
      IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
361

	
362
      IncEdgeIt(const Adaptor& adaptor, const Node &n) : _adaptor(&adaptor) {
363
        _adaptor->firstInc(static_cast<Edge&>(*this), direction, n);
364
      }
365

	
366
      IncEdgeIt(const Adaptor& adaptor, const Edge &e, const Node &n)
367
        : _adaptor(&adaptor), Edge(e) {
368
        direction = (_adaptor->u(e) == n);
369
      }
370

	
371
      IncEdgeIt& operator++() {
372
        _adaptor->nextInc(*this, direction);
373
        return *this;
374
      }
375
    };
376

	
377
    Node baseNode(const OutArcIt &a) const {
378
      return Parent::source(a);
379
    }
380
    Node runningNode(const OutArcIt &a) const {
381
      return Parent::target(a);
382
    }
383

	
384
    Node baseNode(const InArcIt &a) const {
385
      return Parent::target(a);
386
    }
387
    Node runningNode(const InArcIt &a) const {
388
      return Parent::source(a);
389
    }
390

	
391
    Node baseNode(const IncEdgeIt &e) const {
392
      return e.direction ? Parent::u(e) : Parent::v(e);
393
    }
394
    Node runningNode(const IncEdgeIt &e) const {
395
      return e.direction ? Parent::v(e) : Parent::u(e);
396
    }
397

	
398
  };
399

	
400
}
401

	
402

	
403
#endif
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BITS_VARIANT_H
20
#define LEMON_BITS_VARIANT_H
21

	
22
#include <lemon/assert.h>
23

	
24
/// \file
25
/// \brief Variant types
26

	
27
namespace lemon {
28

	
29
  namespace _variant_bits {
30

	
31
    template <int left, int right>
32
    struct CTMax {
33
      static const int value = left < right ? right : left;
34
    };
35

	
36
  }
37

	
38

	
39
  /// \brief Simple Variant type for two types
40
  ///
41
  /// Simple Variant type for two types. The Variant type is a type
42
  /// safe union. The C++ has strong limitations for using unions, by
43
  /// example we can not store type with non default constructor or
44
  /// destructor in an union. This class always knowns the current
45
  /// state of the variant and it cares for the proper construction
46
  /// and destruction.
47
  template <typename _First, typename _Second>
48
  class BiVariant {
49
  public:
50

	
51
    /// \brief The \c First type.
52
    typedef _First First;
53
    /// \brief The \c Second type.
54
    typedef _Second Second;
55

	
56
    /// \brief Constructor
57
    ///
58
    /// This constructor initalizes to the default value of the \c First
59
    /// type.
60
    BiVariant() {
61
      flag = true;
62
      new(reinterpret_cast<First*>(data)) First();
63
    }
64

	
65
    /// \brief Constructor
66
    ///
67
    /// This constructor initalizes to the given value of the \c First
68
    /// type.
69
    BiVariant(const First& f) {
70
      flag = true;
71
      new(reinterpret_cast<First*>(data)) First(f);
72
    }
73

	
74
    /// \brief Constructor
75
    ///
76
    /// This constructor initalizes to the given value of the \c
77
    /// Second type.
78
    BiVariant(const Second& s) {
79
      flag = false;
80
      new(reinterpret_cast<Second*>(data)) Second(s);
81
    }
82

	
83
    /// \brief Copy constructor
84
    ///
85
    /// Copy constructor
86
    BiVariant(const BiVariant& bivariant) {
87
      flag = bivariant.flag;
88
      if (flag) {
89
        new(reinterpret_cast<First*>(data)) First(bivariant.first());
90
      } else {
91
        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
92
      }
93
    }
94

	
95
    /// \brief Destrcutor
96
    ///
97
    /// Destructor
98
    ~BiVariant() {
99
      destroy();
100
    }
101

	
102
    /// \brief Set to the default value of the \c First type.
103
    ///
104
    /// This function sets the variant to the default value of the \c
105
    /// First type.
106
    BiVariant& setFirst() {
107
      destroy();
108
      flag = true;
109
      new(reinterpret_cast<First*>(data)) First();
110
      return *this;
111
    }
112

	
113
    /// \brief Set to the given value of the \c First type.
114
    ///
115
    /// This function sets the variant to the given value of the \c
116
    /// First type.
117
    BiVariant& setFirst(const First& f) {
118
      destroy();
119
      flag = true;
120
      new(reinterpret_cast<First*>(data)) First(f);
121
      return *this;
122
    }
123

	
124
    /// \brief Set to the default value of the \c Second type.
125
    ///
126
    /// This function sets the variant to the default value of the \c
127
    /// Second type.
128
    BiVariant& setSecond() {
129
      destroy();
130
      flag = false;
131
      new(reinterpret_cast<Second*>(data)) Second();
132
      return *this;
133
    }
134

	
135
    /// \brief Set to the given value of the \c Second type.
136
    ///
137
    /// This function sets the variant to the given value of the \c
138
    /// Second type.
139
    BiVariant& setSecond(const Second& s) {
140
      destroy();
141
      flag = false;
142
      new(reinterpret_cast<Second*>(data)) Second(s);
143
      return *this;
144
    }
145

	
146
    /// \brief Operator form of the \c setFirst()
147
    BiVariant& operator=(const First& f) {
148
      return setFirst(f);
149
    }
150

	
151
    /// \brief Operator form of the \c setSecond()
152
    BiVariant& operator=(const Second& s) {
153
      return setSecond(s);
154
    }
155

	
156
    /// \brief Assign operator
157
    BiVariant& operator=(const BiVariant& bivariant) {
158
      if (this == &bivariant) return *this;
159
      destroy();
160
      flag = bivariant.flag;
161
      if (flag) {
162
        new(reinterpret_cast<First*>(data)) First(bivariant.first());
163
      } else {
164
        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
165
      }
166
      return *this;
167
    }
168

	
169
    /// \brief Reference to the value
170
    ///
171
    /// Reference to the value of the \c First type.
172
    /// \pre The BiVariant should store value of \c First type.
173
    First& first() {
174
      LEMON_DEBUG(flag, "Variant wrong state");
175
      return *reinterpret_cast<First*>(data); 
176
    }
177

	
178
    /// \brief Const reference to the value
179
    ///
180
    /// Const reference to the value of the \c First type.
181
    /// \pre The BiVariant should store value of \c First type.
182
    const First& first() const { 
183
      LEMON_DEBUG(flag, "Variant wrong state");
184
      return *reinterpret_cast<const First*>(data); 
185
    }
186

	
187
    /// \brief Operator form of the \c first()
188
    operator First&() { return first(); }
189
    /// \brief Operator form of the const \c first()
190
    operator const First&() const { return first(); }
191

	
192
    /// \brief Reference to the value
193
    ///
194
    /// Reference to the value of the \c Second type.
195
    /// \pre The BiVariant should store value of \c Second type.
196
    Second& second() { 
197
      LEMON_DEBUG(!flag, "Variant wrong state");
198
      return *reinterpret_cast<Second*>(data); 
199
    }
200

	
201
    /// \brief Const reference to the value
202
    ///
203
    /// Const reference to the value of the \c Second type.
204
    /// \pre The BiVariant should store value of \c Second type.
205
    const Second& second() const { 
206
      LEMON_DEBUG(!flag, "Variant wrong state");
207
      return *reinterpret_cast<const Second*>(data); 
208
    }
209

	
210
    /// \brief Operator form of the \c second()
211
    operator Second&() { return second(); }
212
    /// \brief Operator form of the const \c second()
213
    operator const Second&() const { return second(); }
214

	
215
    /// \brief %True when the variant is in the first state
216
    ///
217
    /// %True when the variant stores value of the \c First type.
218
    bool firstState() const { return flag; }
219

	
220
    /// \brief %True when the variant is in the second state
221
    ///
222
    /// %True when the variant stores value of the \c Second type.
223
    bool secondState() const { return !flag; }
224

	
225
  private:
226

	
227
    void destroy() {
228
      if (flag) {
229
        reinterpret_cast<First*>(data)->~First();
230
      } else {
231
        reinterpret_cast<Second*>(data)->~Second();
232
      }
233
    }
234

	
235
    char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
236
    bool flag;
237
  };
238

	
239
  namespace _variant_bits {
240

	
241
    template <int _idx, typename _TypeMap>
242
    struct Memory {
243

	
244
      typedef typename _TypeMap::template Map<_idx>::Type Current;
245

	
246
      static void destroy(int index, char* place) {
247
        if (index == _idx) {
248
          reinterpret_cast<Current*>(place)->~Current();
249
        } else {
250
          Memory<_idx - 1, _TypeMap>::destroy(index, place);
251
        }
252
      }
253

	
254
      static void copy(int index, char* to, const char* from) {
255
        if (index == _idx) {
256
          new (reinterpret_cast<Current*>(to))
257
            Current(reinterpret_cast<const Current*>(from));
258
        } else {
259
          Memory<_idx - 1, _TypeMap>::copy(index, to, from);
260
        }
261
      }
262

	
263
    };
264

	
265
    template <typename _TypeMap>
266
    struct Memory<-1, _TypeMap> {
267

	
268
      static void destroy(int, char*) {
269
        LEMON_DEBUG(false, "Variant wrong index.");
270
      }
271

	
272
      static void copy(int, char*, const char*) {
273
        LEMON_DEBUG(false, "Variant wrong index.");
274
      }
275
    };
276

	
277
    template <int _idx, typename _TypeMap>
278
    struct Size {
279
      static const int value =
280
      CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
281
            Size<_idx - 1, _TypeMap>::value>::value;
282
    };
283

	
284
    template <typename _TypeMap>
285
    struct Size<0, _TypeMap> {
286
      static const int value =
287
      sizeof(typename _TypeMap::template Map<0>::Type);
288
    };
289

	
290
  }
291

	
292
  /// \brief Variant type
293
  ///
294
  /// Simple Variant type. The Variant type is a type safe union. The
295
  /// C++ has strong limitations for using unions, for example we
296
  /// cannot store type with non default constructor or destructor in
297
  /// a union. This class always knowns the current state of the
298
  /// variant and it cares for the proper construction and
299
  /// destruction.
300
  ///
301
  /// \param _num The number of the types which can be stored in the
302
  /// variant type.
303
  /// \param _TypeMap This class describes the types of the Variant. The
304
  /// _TypeMap::Map<index>::Type should be a valid type for each index
305
  /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
306
  /// class to define such type mappings up to 10 types.
307
  ///
308
  /// And the usage of the class:
309
  ///\code
310
  /// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
311
  /// MyVariant var;
312
  /// var.set<0>(12);
313
  /// std::cout << var.get<0>() << std::endl;
314
  /// var.set<1>("alpha");
315
  /// std::cout << var.get<1>() << std::endl;
316
  /// var.set<2>(0.75);
317
  /// std::cout << var.get<2>() << std::endl;
318
  ///\endcode
319
  ///
320
  /// The result of course:
321
  ///\code
322
  /// 12
323
  /// alpha
324
  /// 0.75
325
  ///\endcode
326
  template <int _num, typename _TypeMap>
327
  class Variant {
328
  public:
329

	
330
    static const int num = _num;
331

	
332
    typedef _TypeMap TypeMap;
333

	
334
    /// \brief Constructor
335
    ///
336
    /// This constructor initalizes to the default value of the \c type
337
    /// with 0 index.
338
    Variant() {
339
      flag = 0;
340
      new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
341
        typename TypeMap::template Map<0>::Type();
342
    }
343

	
344

	
345
    /// \brief Copy constructor
346
    ///
347
    /// Copy constructor
348
    Variant(const Variant& variant) {
349
      flag = variant.flag;
350
      _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
351
    }
352

	
353
    /// \brief Assign operator
354
    ///
355
    /// Assign operator
356
    Variant& operator=(const Variant& variant) {
357
      if (this == &variant) return *this;
358
      _variant_bits::Memory<num - 1, TypeMap>::
359
        destroy(flag, data);
360
      flag = variant.flag;
361
      _variant_bits::Memory<num - 1, TypeMap>::
362
        copy(flag, data, variant.data);
363
      return *this;
364
    }
365

	
366
    /// \brief Destrcutor
367
    ///
368
    /// Destructor
369
    ~Variant() {
370
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
371
    }
372

	
373
    /// \brief Set to the default value of the type with \c _idx index.
374
    ///
375
    /// This function sets the variant to the default value of the
376
    /// type with \c _idx index.
377
    template <int _idx>
378
    Variant& set() {
379
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
380
      flag = _idx;
381
      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
382
        typename TypeMap::template Map<_idx>::Type();
383
      return *this;
384
    }
385

	
386
    /// \brief Set to the given value of the type with \c _idx index.
387
    ///
388
    /// This function sets the variant to the given value of the type
389
    /// with \c _idx index.
390
    template <int _idx>
391
    Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
392
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
393
      flag = _idx;
394
      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
395
        typename TypeMap::template Map<_idx>::Type(init);
396
      return *this;
397
    }
398

	
399
    /// \brief Gets the current value of the type with \c _idx index.
400
    ///
401
    /// Gets the current value of the type with \c _idx index.
402
    template <int _idx>
403
    const typename TypeMap::template Map<_idx>::Type& get() const {
404
      LEMON_DEBUG(_idx == flag, "Variant wrong index");
405
      return *reinterpret_cast<const typename TypeMap::
406
        template Map<_idx>::Type*>(data);
407
    }
408

	
409
    /// \brief Gets the current value of the type with \c _idx index.
410
    ///
411
    /// Gets the current value of the type with \c _idx index.
412
    template <int _idx>
413
    typename _TypeMap::template Map<_idx>::Type& get() {
414
      LEMON_DEBUG(_idx == flag, "Variant wrong index");
415
      return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
416
        (data);
417
    }
418

	
419
    /// \brief Returns the current state of the variant.
420
    ///
421
    /// Returns the current state of the variant.
422
    int state() const {
423
      return flag;
424
    }
425

	
426
  private:
427

	
428
    char data[_variant_bits::Size<num - 1, TypeMap>::value];
429
    int flag;
430
  };
431

	
432
  namespace _variant_bits {
433

	
434
    template <int _index, typename _List>
435
    struct Get {
436
      typedef typename Get<_index - 1, typename _List::Next>::Type Type;
437
    };
438

	
439
    template <typename _List>
440
    struct Get<0, _List> {
441
      typedef typename _List::Type Type;
442
    };
443

	
444
    struct List {};
445

	
446
    template <typename _Type, typename _List>
447
    struct Insert {
448
      typedef _List Next;
449
      typedef _Type Type;
450
    };
451

	
452
    template <int _idx, typename _T0, typename _T1, typename _T2,
453
              typename _T3, typename _T5, typename _T4, typename _T6,
454
              typename _T7, typename _T8, typename _T9>
455
    struct Mapper {
456
      typedef List L10;
457
      typedef Insert<_T9, L10> L9;
458
      typedef Insert<_T8, L9> L8;
459
      typedef Insert<_T7, L8> L7;
460
      typedef Insert<_T6, L7> L6;
461
      typedef Insert<_T5, L6> L5;
462
      typedef Insert<_T4, L5> L4;
463
      typedef Insert<_T3, L4> L3;
464
      typedef Insert<_T2, L3> L2;
465
      typedef Insert<_T1, L2> L1;
466
      typedef Insert<_T0, L1> L0;
467
      typedef typename Get<_idx, L0>::Type Type;
468
    };
469

	
470
  }
471

	
472
  /// \brief Helper class for Variant
473
  ///
474
  /// Helper class to define type mappings for Variant. This class
475
  /// converts the template parameters to be mappable by integer.
476
  /// \see Variant
477
  template <
478
    typename _T0,
479
    typename _T1 = void, typename _T2 = void, typename _T3 = void,
480
    typename _T5 = void, typename _T4 = void, typename _T6 = void,
481
    typename _T7 = void, typename _T8 = void, typename _T9 = void>
482
  struct VariantTypeMap {
483
    template <int _idx>
484
    struct Map {
485
      typedef typename _variant_bits::
486
      Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
487
      Type;
488
    };
489
  };
490

	
491
}
492

	
493

	
494
#endif
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_TOPOLOGY_H
20
#define LEMON_TOPOLOGY_H
21

	
22
#include <lemon/dfs.h>
23
#include <lemon/bfs.h>
24
#include <lemon/core.h>
25
#include <lemon/maps.h>
26
#include <lemon/adaptors.h>
27

	
28
#include <lemon/concepts/digraph.h>
29
#include <lemon/concepts/graph.h>
30
#include <lemon/concept_check.h>
31

	
32
#include <stack>
33
#include <functional>
34

	
35
/// \ingroup connectivity
36
/// \file
37
/// \brief Connectivity algorithms
38
///
39
/// Connectivity algorithms
40

	
41
namespace lemon {
42

	
43
  /// \ingroup connectivity
44
  ///
45
  /// \brief Check whether the given undirected graph is connected.
46
  ///
47
  /// Check whether the given undirected graph is connected.
48
  /// \param graph The undirected graph.
49
  /// \return %True when there is path between any two nodes in the graph.
50
  /// \note By definition, the empty graph is connected.
51
  template <typename Graph>
52
  bool connected(const Graph& graph) {
53
    checkConcept<concepts::Graph, Graph>();
54
    typedef typename Graph::NodeIt NodeIt;
55
    if (NodeIt(graph) == INVALID) return true;
56
    Dfs<Graph> dfs(graph);
57
    dfs.run(NodeIt(graph));
58
    for (NodeIt it(graph); it != INVALID; ++it) {
59
      if (!dfs.reached(it)) {
60
        return false;
61
      }
62
    }
63
    return true;
64
  }
65

	
66
  /// \ingroup connectivity
67
  ///
68
  /// \brief Count the number of connected components of an undirected graph
69
  ///
70
  /// Count the number of connected components of an undirected graph
71
  ///
72
  /// \param graph The graph. It must be undirected.
73
  /// \return The number of components
74
  /// \note By definition, the empty graph consists
75
  /// of zero connected components.
76
  template <typename Graph>
77
  int countConnectedComponents(const Graph &graph) {
78
    checkConcept<concepts::Graph, Graph>();
79
    typedef typename Graph::Node Node;
80
    typedef typename Graph::Arc Arc;
81

	
82
    typedef NullMap<Node, Arc> PredMap;
83
    typedef NullMap<Node, int> DistMap;
84

	
85
    int compNum = 0;
86
    typename Bfs<Graph>::
87
      template SetPredMap<PredMap>::
88
      template SetDistMap<DistMap>::
89
      Create bfs(graph);
90

	
91
    PredMap predMap;
92
    bfs.predMap(predMap);
93

	
94
    DistMap distMap;
95
    bfs.distMap(distMap);
96

	
97
    bfs.init();
98
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
99
      if (!bfs.reached(n)) {
100
        bfs.addSource(n);
101
        bfs.start();
102
        ++compNum;
103
      }
104
    }
105
    return compNum;
106
  }
107

	
108
  /// \ingroup connectivity
109
  ///
110
  /// \brief Find the connected components of an undirected graph
111
  ///
112
  /// Find the connected components of an undirected graph.
113
  ///
114
  /// \param graph The graph. It must be undirected.
115
  /// \retval compMap A writable node map. The values will be set from 0 to
116
  /// the number of the connected components minus one. Each values of the map
117
  /// will be set exactly once, the values of a certain component will be
118
  /// set continuously.
119
  /// \return The number of components
120
  ///
121
  template <class Graph, class NodeMap>
122
  int connectedComponents(const Graph &graph, NodeMap &compMap) {
123
    checkConcept<concepts::Graph, Graph>();
124
    typedef typename Graph::Node Node;
125
    typedef typename Graph::Arc Arc;
126
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
127

	
128
    typedef NullMap<Node, Arc> PredMap;
129
    typedef NullMap<Node, int> DistMap;
130

	
131
    int compNum = 0;
132
    typename Bfs<Graph>::
133
      template SetPredMap<PredMap>::
134
      template SetDistMap<DistMap>::
135
      Create bfs(graph);
136

	
137
    PredMap predMap;
138
    bfs.predMap(predMap);
139

	
140
    DistMap distMap;
141
    bfs.distMap(distMap);
142

	
143
    bfs.init();
144
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
145
      if(!bfs.reached(n)) {
146
        bfs.addSource(n);
147
        while (!bfs.emptyQueue()) {
148
          compMap.set(bfs.nextNode(), compNum);
149
          bfs.processNextNode();
150
        }
151
        ++compNum;
152
      }
153
    }
154
    return compNum;
155
  }
156

	
157
  namespace _topology_bits {
158

	
159
    template <typename Digraph, typename Iterator >
160
    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
161
    public:
162
      typedef typename Digraph::Node Node;
163
      LeaveOrderVisitor(Iterator it) : _it(it) {}
164

	
165
      void leave(const Node& node) {
166
        *(_it++) = node;
167
      }
168

	
169
    private:
170
      Iterator _it;
171
    };
172

	
173
    template <typename Digraph, typename Map>
174
    struct FillMapVisitor : public DfsVisitor<Digraph> {
175
    public:
176
      typedef typename Digraph::Node Node;
177
      typedef typename Map::Value Value;
178

	
179
      FillMapVisitor(Map& map, Value& value)
180
        : _map(map), _value(value) {}
181

	
182
      void reach(const Node& node) {
183
        _map.set(node, _value);
184
      }
185
    private:
186
      Map& _map;
187
      Value& _value;
188
    };
189

	
190
    template <typename Digraph, typename ArcMap>
191
    struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
192
    public:
193
      typedef typename Digraph::Node Node;
194
      typedef typename Digraph::Arc Arc;
195

	
196
      StronglyConnectedCutEdgesVisitor(const Digraph& digraph,
197
                                       ArcMap& cutMap,
198
                                       int& cutNum)
199
        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
200
          _compMap(digraph), _num(0) {
201
      }
202

	
203
      void stop(const Node&) {
204
        ++_num;
205
      }
206

	
207
      void reach(const Node& node) {
208
        _compMap.set(node, _num);
209
      }
210

	
211
      void examine(const Arc& arc) {
212
         if (_compMap[_digraph.source(arc)] !=
213
             _compMap[_digraph.target(arc)]) {
214
           _cutMap.set(arc, true);
215
           ++_cutNum;
216
         }
217
      }
218
    private:
219
      const Digraph& _digraph;
220
      ArcMap& _cutMap;
221
      int& _cutNum;
222

	
223
      typename Digraph::template NodeMap<int> _compMap;
224
      int _num;
225
    };
226

	
227
  }
228

	
229

	
230
  /// \ingroup connectivity
231
  ///
232
  /// \brief Check whether the given directed graph is strongly connected.
233
  ///
234
  /// Check whether the given directed graph is strongly connected. The
235
  /// graph is strongly connected when any two nodes of the graph are
236
  /// connected with directed paths in both direction.
237
  /// \return %False when the graph is not strongly connected.
238
  /// \see connected
239
  ///
240
  /// \note By definition, the empty graph is strongly connected.
241
  template <typename Digraph>
242
  bool stronglyConnected(const Digraph& digraph) {
243
    checkConcept<concepts::Digraph, Digraph>();
244

	
245
    typedef typename Digraph::Node Node;
246
    typedef typename Digraph::NodeIt NodeIt;
247

	
248
    typename Digraph::Node source = NodeIt(digraph);
249
    if (source == INVALID) return true;
250

	
251
    using namespace _topology_bits;
252

	
253
    typedef DfsVisitor<Digraph> Visitor;
254
    Visitor visitor;
255

	
256
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
257
    dfs.init();
258
    dfs.addSource(source);
259
    dfs.start();
260

	
261
    for (NodeIt it(digraph); it != INVALID; ++it) {
262
      if (!dfs.reached(it)) {
263
        return false;
264
      }
265
    }
266

	
267
    typedef ReverseDigraph<const Digraph> RDigraph;
268
    RDigraph rdigraph(digraph);
269

	
270
    typedef DfsVisitor<Digraph> RVisitor;
271
    RVisitor rvisitor;
272

	
273
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
274
    rdfs.init();
275
    rdfs.addSource(source);
276
    rdfs.start();
277

	
278
    for (NodeIt it(rdigraph); it != INVALID; ++it) {
279
      if (!rdfs.reached(it)) {
280
        return false;
281
      }
282
    }
283

	
284
    return true;
285
  }
286

	
287
  /// \ingroup connectivity
288
  ///
289
  /// \brief Count the strongly connected components of a directed graph
290
  ///
291
  /// Count the strongly connected components of a directed graph.
292
  /// The strongly connected components are the classes of an
293
  /// equivalence relation on the nodes of the graph. Two nodes are in
294
  /// the same class if they are connected with directed paths in both
295
  /// direction.
296
  ///
297
  /// \param graph The graph.
298
  /// \return The number of components
299
  /// \note By definition, the empty graph has zero
300
  /// strongly connected components.
301
  template <typename Digraph>
302
  int countStronglyConnectedComponents(const Digraph& digraph) {
303
    checkConcept<concepts::Digraph, Digraph>();
304

	
305
    using namespace _topology_bits;
306

	
307
    typedef typename Digraph::Node Node;
308
    typedef typename Digraph::Arc Arc;
309
    typedef typename Digraph::NodeIt NodeIt;
310
    typedef typename Digraph::ArcIt ArcIt;
311

	
312
    typedef std::vector<Node> Container;
313
    typedef typename Container::iterator Iterator;
314

	
315
    Container nodes(countNodes(digraph));
316
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
317
    Visitor visitor(nodes.begin());
318

	
319
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
320
    dfs.init();
321
    for (NodeIt it(digraph); it != INVALID; ++it) {
322
      if (!dfs.reached(it)) {
323
        dfs.addSource(it);
324
        dfs.start();
325
      }
326
    }
327

	
328
    typedef typename Container::reverse_iterator RIterator;
329
    typedef ReverseDigraph<const Digraph> RDigraph;
330

	
331
    RDigraph rdigraph(digraph);
332

	
333
    typedef DfsVisitor<Digraph> RVisitor;
334
    RVisitor rvisitor;
335

	
336
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
337

	
338
    int compNum = 0;
339

	
340
    rdfs.init();
341
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
342
      if (!rdfs.reached(*it)) {
343
        rdfs.addSource(*it);
344
        rdfs.start();
345
        ++compNum;
346
      }
347
    }
348
    return compNum;
349
  }
350

	
351
  /// \ingroup connectivity
352
  ///
353
  /// \brief Find the strongly connected components of a directed graph
354
  ///
355
  /// Find the strongly connected components of a directed graph.  The
356
  /// strongly connected components are the classes of an equivalence
357
  /// relation on the nodes of the graph. Two nodes are in
358
  /// relationship when there are directed paths between them in both
359
  /// direction. In addition, the numbering of components will satisfy
360
  /// that there is no arc going from a higher numbered component to
361
  /// a lower.
362
  ///
363
  /// \param digraph The digraph.
364
  /// \retval compMap A writable node map. The values will be set from 0 to
365
  /// the number of the strongly connected components minus one. Each value
366
  /// of the map will be set exactly once, the values of a certain component
367
  /// will be set continuously.
368
  /// \return The number of components
369
  ///
370
  template <typename Digraph, typename NodeMap>
371
  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
372
    checkConcept<concepts::Digraph, Digraph>();
373
    typedef typename Digraph::Node Node;
374
    typedef typename Digraph::NodeIt NodeIt;
375
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
376

	
377
    using namespace _topology_bits;
378

	
379
    typedef std::vector<Node> Container;
380
    typedef typename Container::iterator Iterator;
381

	
382
    Container nodes(countNodes(digraph));
383
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
384
    Visitor visitor(nodes.begin());
385

	
386
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
387
    dfs.init();
388
    for (NodeIt it(digraph); it != INVALID; ++it) {
389
      if (!dfs.reached(it)) {
390
        dfs.addSource(it);
391
        dfs.start();
392
      }
393
    }
394

	
395
    typedef typename Container::reverse_iterator RIterator;
396
    typedef ReverseDigraph<const Digraph> RDigraph;
397

	
398
    RDigraph rdigraph(digraph);
399

	
400
    int compNum = 0;
401

	
402
    typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
403
    RVisitor rvisitor(compMap, compNum);
404

	
405
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
406

	
407
    rdfs.init();
408
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
409
      if (!rdfs.reached(*it)) {
410
        rdfs.addSource(*it);
411
        rdfs.start();
412
        ++compNum;
413
      }
414
    }
415
    return compNum;
416
  }
417

	
418
  /// \ingroup connectivity
419
  ///
420
  /// \brief Find the cut arcs of the strongly connected components.
421
  ///
422
  /// Find the cut arcs of the strongly connected components.
423
  /// The strongly connected components are the classes of an equivalence
424
  /// relation on the nodes of the graph. Two nodes are in relationship
425
  /// when there are directed paths between them in both direction.
426
  /// The strongly connected components are separated by the cut arcs.
427
  ///
428
  /// \param graph The graph.
429
  /// \retval cutMap A writable node map. The values will be set true when the
430
  /// arc is a cut arc.
431
  ///
432
  /// \return The number of cut arcs
433
  template <typename Digraph, typename ArcMap>
434
  int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
435
    checkConcept<concepts::Digraph, Digraph>();
436
    typedef typename Digraph::Node Node;
437
    typedef typename Digraph::Arc Arc;
438
    typedef typename Digraph::NodeIt NodeIt;
439
    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
440

	
441
    using namespace _topology_bits;
442

	
443
    typedef std::vector<Node> Container;
444
    typedef typename Container::iterator Iterator;
445

	
446
    Container nodes(countNodes(graph));
447
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
448
    Visitor visitor(nodes.begin());
449

	
450
    DfsVisit<Digraph, Visitor> dfs(graph, visitor);
451
    dfs.init();
452
    for (NodeIt it(graph); it != INVALID; ++it) {
453
      if (!dfs.reached(it)) {
454
        dfs.addSource(it);
455
        dfs.start();
456
      }
457
    }
458

	
459
    typedef typename Container::reverse_iterator RIterator;
460
    typedef ReverseDigraph<const Digraph> RDigraph;
461

	
462
    RDigraph rgraph(graph);
463

	
464
    int cutNum = 0;
465

	
466
    typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor;
467
    RVisitor rvisitor(rgraph, cutMap, cutNum);
468

	
469
    DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
470

	
471
    rdfs.init();
472
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
473
      if (!rdfs.reached(*it)) {
474
        rdfs.addSource(*it);
475
        rdfs.start();
476
      }
477
    }
478
    return cutNum;
479
  }
480

	
481
  namespace _topology_bits {
482

	
483
    template <typename Digraph>
484
    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
485
    public:
486
      typedef typename Digraph::Node Node;
487
      typedef typename Digraph::Arc Arc;
488
      typedef typename Digraph::Edge Edge;
489

	
490
      CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
491
        : _graph(graph), _compNum(compNum),
492
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
493

	
494
      void start(const Node& node) {
495
        _predMap.set(node, INVALID);
496
      }
497

	
498
      void reach(const Node& node) {
499
        _numMap.set(node, _num);
500
        _retMap.set(node, _num);
501
        ++_num;
502
      }
503

	
504
      void discover(const Arc& edge) {
505
        _predMap.set(_graph.target(edge), _graph.source(edge));
506
      }
507

	
508
      void examine(const Arc& edge) {
509
        if (_graph.source(edge) == _graph.target(edge) &&
510
            _graph.direction(edge)) {
511
          ++_compNum;
512
          return;
513
        }
514
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
515
          return;
516
        }
517
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
518
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
519
        }
520
      }
521

	
522
      void backtrack(const Arc& edge) {
523
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
524
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
525
        }
526
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
527
          ++_compNum;
528
        }
529
      }
530

	
531
    private:
532
      const Digraph& _graph;
533
      int& _compNum;
534

	
535
      typename Digraph::template NodeMap<int> _numMap;
536
      typename Digraph::template NodeMap<int> _retMap;
537
      typename Digraph::template NodeMap<Node> _predMap;
538
      int _num;
539
    };
540

	
541
    template <typename Digraph, typename ArcMap>
542
    class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
543
    public:
544
      typedef typename Digraph::Node Node;
545
      typedef typename Digraph::Arc Arc;
546
      typedef typename Digraph::Edge Edge;
547

	
548
      BiNodeConnectedComponentsVisitor(const Digraph& graph,
549
                                       ArcMap& compMap, int &compNum)
550
        : _graph(graph), _compMap(compMap), _compNum(compNum),
551
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
552

	
553
      void start(const Node& node) {
554
        _predMap.set(node, INVALID);
555
      }
556

	
557
      void reach(const Node& node) {
558
        _numMap.set(node, _num);
559
        _retMap.set(node, _num);
560
        ++_num;
561
      }
562

	
563
      void discover(const Arc& edge) {
564
        Node target = _graph.target(edge);
565
        _predMap.set(target, edge);
566
        _edgeStack.push(edge);
567
      }
568

	
569
      void examine(const Arc& edge) {
570
        Node source = _graph.source(edge);
571
        Node target = _graph.target(edge);
572
        if (source == target && _graph.direction(edge)) {
573
          _compMap.set(edge, _compNum);
574
          ++_compNum;
575
          return;
576
        }
577
        if (_numMap[target] < _numMap[source]) {
578
          if (_predMap[source] != _graph.oppositeArc(edge)) {
579
            _edgeStack.push(edge);
580
          }
581
        }
582
        if (_predMap[source] != INVALID &&
583
            target == _graph.source(_predMap[source])) {
584
          return;
585
        }
586
        if (_retMap[source] > _numMap[target]) {
587
          _retMap.set(source, _numMap[target]);
588
        }
589
      }
590

	
591
      void backtrack(const Arc& edge) {
592
        Node source = _graph.source(edge);
593
        Node target = _graph.target(edge);
594
        if (_retMap[source] > _retMap[target]) {
595
          _retMap.set(source, _retMap[target]);
596
        }
597
        if (_numMap[source] <= _retMap[target]) {
598
          while (_edgeStack.top() != edge) {
599
            _compMap.set(_edgeStack.top(), _compNum);
600
            _edgeStack.pop();
601
          }
602
          _compMap.set(edge, _compNum);
603
          _edgeStack.pop();
604
          ++_compNum;
605
        }
606
      }
607

	
608
    private:
609
      const Digraph& _graph;
610
      ArcMap& _compMap;
611
      int& _compNum;
612

	
613
      typename Digraph::template NodeMap<int> _numMap;
614
      typename Digraph::template NodeMap<int> _retMap;
615
      typename Digraph::template NodeMap<Arc> _predMap;
616
      std::stack<Edge> _edgeStack;
617
      int _num;
618
    };
619

	
620

	
621
    template <typename Digraph, typename NodeMap>
622
    class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
623
    public:
624
      typedef typename Digraph::Node Node;
625
      typedef typename Digraph::Arc Arc;
626
      typedef typename Digraph::Edge Edge;
627

	
628
      BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
629
                                     int& cutNum)
630
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
631
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
632

	
633
      void start(const Node& node) {
634
        _predMap.set(node, INVALID);
635
        rootCut = false;
636
      }
637

	
638
      void reach(const Node& node) {
639
        _numMap.set(node, _num);
640
        _retMap.set(node, _num);
641
        ++_num;
642
      }
643

	
644
      void discover(const Arc& edge) {
645
        _predMap.set(_graph.target(edge), _graph.source(edge));
646
      }
647

	
648
      void examine(const Arc& edge) {
649
        if (_graph.source(edge) == _graph.target(edge) &&
650
            _graph.direction(edge)) {
651
          if (!_cutMap[_graph.source(edge)]) {
652
            _cutMap.set(_graph.source(edge), true);
653
            ++_cutNum;
654
          }
655
          return;
656
        }
657
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
658
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
659
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
660
        }
661
      }
662

	
663
      void backtrack(const Arc& edge) {
664
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
665
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
666
        }
667
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
668
          if (_predMap[_graph.source(edge)] != INVALID) {
669
            if (!_cutMap[_graph.source(edge)]) {
670
              _cutMap.set(_graph.source(edge), true);
671
              ++_cutNum;
672
            }
673
          } else if (rootCut) {
674
            if (!_cutMap[_graph.source(edge)]) {
675
              _cutMap.set(_graph.source(edge), true);
676
              ++_cutNum;
677
            }
678
          } else {
679
            rootCut = true;
680
          }
681
        }
682
      }
683

	
684
    private:
685
      const Digraph& _graph;
686
      NodeMap& _cutMap;
687
      int& _cutNum;
688

	
689
      typename Digraph::template NodeMap<int> _numMap;
690
      typename Digraph::template NodeMap<int> _retMap;
691
      typename Digraph::template NodeMap<Node> _predMap;
692
      std::stack<Edge> _edgeStack;
693
      int _num;
694
      bool rootCut;
695
    };
696

	
697
  }
698

	
699
  template <typename Graph>
700
  int countBiNodeConnectedComponents(const Graph& graph);
701

	
702
  /// \ingroup connectivity
703
  ///
704
  /// \brief Checks the graph is bi-node-connected.
705
  ///
706
  /// This function checks that the undirected graph is bi-node-connected
707
  /// graph. The graph is bi-node-connected if any two undirected edge is
708
  /// on same circle.
709
  ///
710
  /// \param graph The graph.
711
  /// \return %True when the graph bi-node-connected.
712
  template <typename Graph>
713
  bool biNodeConnected(const Graph& graph) {
714
    return countBiNodeConnectedComponents(graph) <= 1;
715
  }
716

	
717
  /// \ingroup connectivity
718
  ///
719
  /// \brief Count the biconnected components.
720
  ///
721
  /// This function finds the bi-node-connected components in an undirected
722
  /// graph. The biconnected components are the classes of an equivalence
723
  /// relation on the undirected edges. Two undirected edge is in relationship
724
  /// when they are on same circle.
725
  ///
726
  /// \param graph The graph.
727
  /// \return The number of components.
728
  template <typename Graph>
729
  int countBiNodeConnectedComponents(const Graph& graph) {
730
    checkConcept<concepts::Graph, Graph>();
731
    typedef typename Graph::NodeIt NodeIt;
732

	
733
    using namespace _topology_bits;
734

	
735
    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
736

	
737
    int compNum = 0;
738
    Visitor visitor(graph, compNum);
739

	
740
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
741
    dfs.init();
742

	
743
    for (NodeIt it(graph); it != INVALID; ++it) {
744
      if (!dfs.reached(it)) {
745
        dfs.addSource(it);
746
        dfs.start();
747
      }
748
    }
749
    return compNum;
750
  }
751

	
752
  /// \ingroup connectivity
753
  ///
754
  /// \brief Find the bi-node-connected components.
755
  ///
756
  /// This function finds the bi-node-connected components in an undirected
757
  /// graph. The bi-node-connected components are the classes of an equivalence
758
  /// relation on the undirected edges. Two undirected edge are in relationship
759
  /// when they are on same circle.
760
  ///
761
  /// \param graph The graph.
762
  /// \retval compMap A writable uedge map. The values will be set from 0
763
  /// to the number of the biconnected components minus one. Each values
764
  /// of the map will be set exactly once, the values of a certain component
765
  /// will be set continuously.
766
  /// \return The number of components.
767
  ///
768
  template <typename Graph, typename EdgeMap>
769
  int biNodeConnectedComponents(const Graph& graph,
770
                                EdgeMap& compMap) {
771
    checkConcept<concepts::Graph, Graph>();
772
    typedef typename Graph::NodeIt NodeIt;
773
    typedef typename Graph::Edge Edge;
774
    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
775

	
776
    using namespace _topology_bits;
777

	
778
    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
779

	
780
    int compNum = 0;
781
    Visitor visitor(graph, compMap, compNum);
782

	
783
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
784
    dfs.init();
785

	
786
    for (NodeIt it(graph); it != INVALID; ++it) {
787
      if (!dfs.reached(it)) {
788
        dfs.addSource(it);
789
        dfs.start();
790
      }
791
    }
792
    return compNum;
793
  }
794

	
795
  /// \ingroup connectivity
796
  ///
797
  /// \brief Find the bi-node-connected cut nodes.
798
  ///
799
  /// This function finds the bi-node-connected cut nodes in an undirected
800
  /// graph. The bi-node-connected components are the classes of an equivalence
801
  /// relation on the undirected edges. Two undirected edges are in
802
  /// relationship when they are on same circle. The biconnected components
803
  /// are separted by nodes which are the cut nodes of the components.
804
  ///
805
  /// \param graph The graph.
806
  /// \retval cutMap A writable edge map. The values will be set true when
807
  /// the node separate two or more components.
808
  /// \return The number of the cut nodes.
809
  template <typename Graph, typename NodeMap>
810
  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
811
    checkConcept<concepts::Graph, Graph>();
812
    typedef typename Graph::Node Node;
813
    typedef typename Graph::NodeIt NodeIt;
814
    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
815

	
816
    using namespace _topology_bits;
817

	
818
    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
819

	
820
    int cutNum = 0;
821
    Visitor visitor(graph, cutMap, cutNum);
822

	
823
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
824
    dfs.init();
825

	
826
    for (NodeIt it(graph); it != INVALID; ++it) {
827
      if (!dfs.reached(it)) {
828
        dfs.addSource(it);
829
        dfs.start();
830
      }
831
    }
832
    return cutNum;
833
  }
834

	
835
  namespace _topology_bits {
836

	
837
    template <typename Digraph>
838
    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
839
    public:
840
      typedef typename Digraph::Node Node;
841
      typedef typename Digraph::Arc Arc;
842
      typedef typename Digraph::Edge Edge;
843

	
844
      CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
845
        : _graph(graph), _compNum(compNum),
846
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
847

	
848
      void start(const Node& node) {
849
        _predMap.set(node, INVALID);
850
      }
851

	
852
      void reach(const Node& node) {
853
        _numMap.set(node, _num);
854
        _retMap.set(node, _num);
855
        ++_num;
856
      }
857

	
858
      void leave(const Node& node) {
859
        if (_numMap[node] <= _retMap[node]) {
860
          ++_compNum;
861
        }
862
      }
863

	
864
      void discover(const Arc& edge) {
865
        _predMap.set(_graph.target(edge), edge);
866
      }
867

	
868
      void examine(const Arc& edge) {
869
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
870
          return;
871
        }
872
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
873
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
874
        }
875
      }
876

	
877
      void backtrack(const Arc& edge) {
878
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
879
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
880
        }
881
      }
882

	
883
    private:
884
      const Digraph& _graph;
885
      int& _compNum;
886

	
887
      typename Digraph::template NodeMap<int> _numMap;
888
      typename Digraph::template NodeMap<int> _retMap;
889
      typename Digraph::template NodeMap<Arc> _predMap;
890
      int _num;
891
    };
892

	
893
    template <typename Digraph, typename NodeMap>
894
    class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
895
    public:
896
      typedef typename Digraph::Node Node;
897
      typedef typename Digraph::Arc Arc;
898
      typedef typename Digraph::Edge Edge;
899

	
900
      BiEdgeConnectedComponentsVisitor(const Digraph& graph,
901
                                       NodeMap& compMap, int &compNum)
902
        : _graph(graph), _compMap(compMap), _compNum(compNum),
903
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
904

	
905
      void start(const Node& node) {
906
        _predMap.set(node, INVALID);
907
      }
908

	
909
      void reach(const Node& node) {
910
        _numMap.set(node, _num);
911
        _retMap.set(node, _num);
912
        _nodeStack.push(node);
913
        ++_num;
914
      }
915

	
916
      void leave(const Node& node) {
917
        if (_numMap[node] <= _retMap[node]) {
918
          while (_nodeStack.top() != node) {
919
            _compMap.set(_nodeStack.top(), _compNum);
920
            _nodeStack.pop();
921
          }
922
          _compMap.set(node, _compNum);
923
          _nodeStack.pop();
924
          ++_compNum;
925
        }
926
      }
927

	
928
      void discover(const Arc& edge) {
929
        _predMap.set(_graph.target(edge), edge);
930
      }
931

	
932
      void examine(const Arc& edge) {
933
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
934
          return;
935
        }
936
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
937
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
938
        }
939
      }
940

	
941
      void backtrack(const Arc& edge) {
942
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
943
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
944
        }
945
      }
946

	
947
    private:
948
      const Digraph& _graph;
949
      NodeMap& _compMap;
950
      int& _compNum;
951

	
952
      typename Digraph::template NodeMap<int> _numMap;
953
      typename Digraph::template NodeMap<int> _retMap;
954
      typename Digraph::template NodeMap<Arc> _predMap;
955
      std::stack<Node> _nodeStack;
956
      int _num;
957
    };
958

	
959

	
960
    template <typename Digraph, typename ArcMap>
961
    class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
962
    public:
963
      typedef typename Digraph::Node Node;
964
      typedef typename Digraph::Arc Arc;
965
      typedef typename Digraph::Edge Edge;
966

	
967
      BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
968
                                     ArcMap& cutMap, int &cutNum)
969
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
970
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
971

	
972
      void start(const Node& node) {
973
        _predMap[node] = INVALID;
974
      }
975

	
976
      void reach(const Node& node) {
977
        _numMap.set(node, _num);
978
        _retMap.set(node, _num);
979
        ++_num;
980
      }
981

	
982
      void leave(const Node& node) {
983
        if (_numMap[node] <= _retMap[node]) {
984
          if (_predMap[node] != INVALID) {
985
            _cutMap.set(_predMap[node], true);
986
            ++_cutNum;
987
          }
988
        }
989
      }
990

	
991
      void discover(const Arc& edge) {
992
        _predMap.set(_graph.target(edge), edge);
993
      }
994

	
995
      void examine(const Arc& edge) {
996
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
997
          return;
998
        }
999
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
1000
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
1001
        }
1002
      }
1003

	
1004
      void backtrack(const Arc& edge) {
1005
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
1006
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
1007
        }
1008
      }
1009

	
1010
    private:
1011
      const Digraph& _graph;
1012
      ArcMap& _cutMap;
1013
      int& _cutNum;
1014

	
1015
      typename Digraph::template NodeMap<int> _numMap;
1016
      typename Digraph::template NodeMap<int> _retMap;
1017
      typename Digraph::template NodeMap<Arc> _predMap;
1018
      int _num;
1019
    };
1020
  }
1021

	
1022
  template <typename Graph>
1023
  int countBiEdgeConnectedComponents(const Graph& graph);
1024

	
1025
  /// \ingroup connectivity
1026
  ///
1027
  /// \brief Checks that the graph is bi-edge-connected.
1028
  ///
1029
  /// This function checks that the graph is bi-edge-connected. The undirected
1030
  /// graph is bi-edge-connected when any two nodes are connected with two
1031
  /// edge-disjoint paths.
1032
  ///
1033
  /// \param graph The undirected graph.
1034
  /// \return The number of components.
1035
  template <typename Graph>
1036
  bool biEdgeConnected(const Graph& graph) {
1037
    return countBiEdgeConnectedComponents(graph) <= 1;
1038
  }
1039

	
1040
  /// \ingroup connectivity
1041
  ///
1042
  /// \brief Count the bi-edge-connected components.
1043
  ///
1044
  /// This function count the bi-edge-connected components in an undirected
1045
  /// graph. The bi-edge-connected components are the classes of an equivalence
1046
  /// relation on the nodes. Two nodes are in relationship when they are
1047
  /// connected with at least two edge-disjoint paths.
1048
  ///
1049
  /// \param graph The undirected graph.
1050
  /// \return The number of components.
1051
  template <typename Graph>
1052
  int countBiEdgeConnectedComponents(const Graph& graph) {
1053
    checkConcept<concepts::Graph, Graph>();
1054
    typedef typename Graph::NodeIt NodeIt;
1055

	
1056
    using namespace _topology_bits;
1057

	
1058
    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
1059

	
1060
    int compNum = 0;
1061
    Visitor visitor(graph, compNum);
1062

	
1063
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1064
    dfs.init();
1065

	
1066
    for (NodeIt it(graph); it != INVALID; ++it) {
1067
      if (!dfs.reached(it)) {
1068
        dfs.addSource(it);
1069
        dfs.start();
1070
      }
1071
    }
1072
    return compNum;
1073
  }
1074

	
1075
  /// \ingroup connectivity
1076
  ///
1077
  /// \brief Find the bi-edge-connected components.
1078
  ///
1079
  /// This function finds the bi-edge-connected components in an undirected
1080
  /// graph. The bi-edge-connected components are the classes of an equivalence
1081
  /// relation on the nodes. Two nodes are in relationship when they are
1082
  /// connected at least two edge-disjoint paths.
1083
  ///
1084
  /// \param graph The graph.
1085
  /// \retval compMap A writable node map. The values will be set from 0 to
1086
  /// the number of the biconnected components minus one. Each values
1087
  /// of the map will be set exactly once, the values of a certain component
1088
  /// will be set continuously.
1089
  /// \return The number of components.
1090
  ///
1091
  template <typename Graph, typename NodeMap>
1092
  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
1093
    checkConcept<concepts::Graph, Graph>();
1094
    typedef typename Graph::NodeIt NodeIt;
1095
    typedef typename Graph::Node Node;
1096
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
1097

	
1098
    using namespace _topology_bits;
1099

	
1100
    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
1101

	
1102
    int compNum = 0;
1103
    Visitor visitor(graph, compMap, compNum);
1104

	
1105
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1106
    dfs.init();
1107

	
1108
    for (NodeIt it(graph); it != INVALID; ++it) {
1109
      if (!dfs.reached(it)) {
1110
        dfs.addSource(it);
1111
        dfs.start();
1112
      }
1113
    }
1114
    return compNum;
1115
  }
1116

	
1117
  /// \ingroup connectivity
1118
  ///
1119
  /// \brief Find the bi-edge-connected cut edges.
1120
  ///
1121
  /// This function finds the bi-edge-connected components in an undirected
1122
  /// graph. The bi-edge-connected components are the classes of an equivalence
1123
  /// relation on the nodes. Two nodes are in relationship when they are
1124
  /// connected with at least two edge-disjoint paths. The bi-edge-connected
1125
  /// components are separted by edges which are the cut edges of the
1126
  /// components.
1127
  ///
1128
  /// \param graph The graph.
1129
  /// \retval cutMap A writable node map. The values will be set true when the
1130
  /// edge is a cut edge.
1131
  /// \return The number of cut edges.
1132
  template <typename Graph, typename EdgeMap>
1133
  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
1134
    checkConcept<concepts::Graph, Graph>();
1135
    typedef typename Graph::NodeIt NodeIt;
1136
    typedef typename Graph::Edge Edge;
1137
    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
1138

	
1139
    using namespace _topology_bits;
1140

	
1141
    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
1142

	
1143
    int cutNum = 0;
1144
    Visitor visitor(graph, cutMap, cutNum);
1145

	
1146
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1147
    dfs.init();
1148

	
1149
    for (NodeIt it(graph); it != INVALID; ++it) {
1150
      if (!dfs.reached(it)) {
1151
        dfs.addSource(it);
1152
        dfs.start();
1153
      }
1154
    }
1155
    return cutNum;
1156
  }
1157

	
1158

	
1159
  namespace _topology_bits {
1160

	
1161
    template <typename Digraph, typename IntNodeMap>
1162
    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
1163
    public:
1164
      typedef typename Digraph::Node Node;
1165
      typedef typename Digraph::Arc edge;
1166

	
1167
      TopologicalSortVisitor(IntNodeMap& order, int num)
1168
        : _order(order), _num(num) {}
1169

	
1170
      void leave(const Node& node) {
1171
        _order.set(node, --_num);
1172
      }
1173

	
1174
    private:
1175
      IntNodeMap& _order;
1176
      int _num;
1177
    };
1178

	
1179
  }
1180

	
1181
  /// \ingroup connectivity
1182
  ///
1183
  /// \brief Sort the nodes of a DAG into topolgical order.
1184
  ///
1185
  /// Sort the nodes of a DAG into topolgical order.
1186
  ///
1187
  /// \param graph The graph. It must be directed and acyclic.
1188
  /// \retval order A writable node map. The values will be set from 0 to
1189
  /// the number of the nodes in the graph minus one. Each values of the map
1190
  /// will be set exactly once, the values  will be set descending order.
1191
  ///
1192
  /// \see checkedTopologicalSort
1193
  /// \see dag
1194
  template <typename Digraph, typename NodeMap>
1195
  void topologicalSort(const Digraph& graph, NodeMap& order) {
1196
    using namespace _topology_bits;
1197

	
1198
    checkConcept<concepts::Digraph, Digraph>();
1199
    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
1200

	
1201
    typedef typename Digraph::Node Node;
1202
    typedef typename Digraph::NodeIt NodeIt;
1203
    typedef typename Digraph::Arc Arc;
1204

	
1205
    TopologicalSortVisitor<Digraph, NodeMap>
1206
      visitor(order, countNodes(graph));
1207

	
1208
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1209
      dfs(graph, visitor);
1210

	
1211
    dfs.init();
1212
    for (NodeIt it(graph); it != INVALID; ++it) {
1213
      if (!dfs.reached(it)) {
1214
        dfs.addSource(it);
1215
        dfs.start();
1216
      }
1217
    }
1218
  }
1219

	
1220
  /// \ingroup connectivity
1221
  ///
1222
  /// \brief Sort the nodes of a DAG into topolgical order.
1223
  ///
1224
  /// Sort the nodes of a DAG into topolgical order. It also checks
1225
  /// that the given graph is DAG.
1226
  ///
1227
  /// \param graph The graph. It must be directed and acyclic.
1228
  /// \retval order A readable - writable node map. The values will be set
1229
  /// from 0 to the number of the nodes in the graph minus one. Each values
1230
  /// of the map will be set exactly once, the values will be set descending
1231
  /// order.
1232
  /// \return %False when the graph is not DAG.
1233
  ///
1234
  /// \see topologicalSort
1235
  /// \see dag
1236
  template <typename Digraph, typename NodeMap>
1237
  bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) {
1238
    using namespace _topology_bits;
1239

	
1240
    checkConcept<concepts::Digraph, Digraph>();
1241
    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
1242
      NodeMap>();
1243

	
1244
    typedef typename Digraph::Node Node;
1245
    typedef typename Digraph::NodeIt NodeIt;
1246
    typedef typename Digraph::Arc Arc;
1247

	
1248
    order = constMap<Node, int, -1>();
1249

	
1250
    TopologicalSortVisitor<Digraph, NodeMap>
1251
      visitor(order, countNodes(graph));
1252

	
1253
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1254
      dfs(graph, visitor);
1255

	
1256
    dfs.init();
1257
    for (NodeIt it(graph); it != INVALID; ++it) {
1258
      if (!dfs.reached(it)) {
1259
        dfs.addSource(it);
1260
        while (!dfs.emptyQueue()) {
1261
           Arc edge = dfs.nextArc();
1262
           Node target = graph.target(edge);
1263
           if (dfs.reached(target) && order[target] == -1) {
1264
             return false;
1265
           }
1266
           dfs.processNextArc();
1267
         }
1268
      }
1269
    }
1270
    return true;
1271
  }
1272

	
1273
  /// \ingroup connectivity
1274
  ///
1275
  /// \brief Check that the given directed graph is a DAG.
1276
  ///
1277
  /// Check that the given directed graph is a DAG. The DAG is
1278
  /// an Directed Acyclic Digraph.
1279
  /// \return %False when the graph is not DAG.
1280
  /// \see acyclic
1281
  template <typename Digraph>
1282
  bool dag(const Digraph& graph) {
1283

	
1284
    checkConcept<concepts::Digraph, Digraph>();
1285

	
1286
    typedef typename Digraph::Node Node;
1287
    typedef typename Digraph::NodeIt NodeIt;
1288
    typedef typename Digraph::Arc Arc;
1289

	
1290
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1291

	
1292
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1293
      Create dfs(graph);
1294

	
1295
    ProcessedMap processed(graph);
1296
    dfs.processedMap(processed);
1297

	
1298
    dfs.init();
1299
    for (NodeIt it(graph); it != INVALID; ++it) {
1300
      if (!dfs.reached(it)) {
1301
        dfs.addSource(it);
1302
        while (!dfs.emptyQueue()) {
1303
          Arc edge = dfs.nextArc();
1304
          Node target = graph.target(edge);
1305
          if (dfs.reached(target) && !processed[target]) {
1306
            return false;
1307
          }
1308
          dfs.processNextArc();
1309
        }
1310
      }
1311
    }
1312
    return true;
1313
  }
1314

	
1315
  /// \ingroup connectivity
1316
  ///
1317
  /// \brief Check that the given undirected graph is acyclic.
1318
  ///
1319
  /// Check that the given undirected graph acyclic.
1320
  /// \param graph The undirected graph.
1321
  /// \return %True when there is no circle in the graph.
1322
  /// \see dag
1323
  template <typename Graph>
1324
  bool acyclic(const Graph& graph) {
1325
    checkConcept<concepts::Graph, Graph>();
1326
    typedef typename Graph::Node Node;
1327
    typedef typename Graph::NodeIt NodeIt;
1328
    typedef typename Graph::Arc Arc;
1329
    Dfs<Graph> dfs(graph);
1330
    dfs.init();
1331
    for (NodeIt it(graph); it != INVALID; ++it) {
1332
      if (!dfs.reached(it)) {
1333
        dfs.addSource(it);
1334
        while (!dfs.emptyQueue()) {
1335
          Arc edge = dfs.nextArc();
1336
          Node source = graph.source(edge);
1337
          Node target = graph.target(edge);
1338
          if (dfs.reached(target) &&
1339
              dfs.predArc(source) != graph.oppositeArc(edge)) {
1340
            return false;
1341
          }
1342
          dfs.processNextArc();
1343
        }
1344
      }
1345
    }
1346
    return true;
1347
  }
1348

	
1349
  /// \ingroup connectivity
1350
  ///
1351
  /// \brief Check that the given undirected graph is tree.
1352
  ///
1353
  /// Check that the given undirected graph is tree.
1354
  /// \param graph The undirected graph.
1355
  /// \return %True when the graph is acyclic and connected.
1356
  template <typename Graph>
1357
  bool tree(const Graph& graph) {
1358
    checkConcept<concepts::Graph, Graph>();
1359
    typedef typename Graph::Node Node;
1360
    typedef typename Graph::NodeIt NodeIt;
1361
    typedef typename Graph::Arc Arc;
1362
    Dfs<Graph> dfs(graph);
1363
    dfs.init();
1364
    dfs.addSource(NodeIt(graph));
1365
    while (!dfs.emptyQueue()) {
1366
      Arc edge = dfs.nextArc();
1367
      Node source = graph.source(edge);
1368
      Node target = graph.target(edge);
1369
      if (dfs.reached(target) &&
1370
          dfs.predArc(source) != graph.oppositeArc(edge)) {
1371
        return false;
1372
      }
1373
      dfs.processNextArc();
1374
    }
1375
    for (NodeIt it(graph); it != INVALID; ++it) {
1376
      if (!dfs.reached(it)) {
1377
        return false;
1378
      }
1379
    }
1380
    return true;
1381
  }
1382

	
1383
  namespace _topology_bits {
1384

	
1385
    template <typename Digraph>
1386
    class BipartiteVisitor : public BfsVisitor<Digraph> {
1387
    public:
1388
      typedef typename Digraph::Arc Arc;
1389
      typedef typename Digraph::Node Node;
1390

	
1391
      BipartiteVisitor(const Digraph& graph, bool& bipartite)
1392
        : _graph(graph), _part(graph), _bipartite(bipartite) {}
1393

	
1394
      void start(const Node& node) {
1395
        _part[node] = true;
1396
      }
1397
      void discover(const Arc& edge) {
1398
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
1399
      }
1400
      void examine(const Arc& edge) {
1401
        _bipartite = _bipartite &&
1402
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
1403
      }
1404

	
1405
    private:
1406

	
1407
      const Digraph& _graph;
1408
      typename Digraph::template NodeMap<bool> _part;
1409
      bool& _bipartite;
1410
    };
1411

	
1412
    template <typename Digraph, typename PartMap>
1413
    class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
1414
    public:
1415
      typedef typename Digraph::Arc Arc;
1416
      typedef typename Digraph::Node Node;
1417

	
1418
      BipartitePartitionsVisitor(const Digraph& graph,
1419
                                 PartMap& part, bool& bipartite)
1420
        : _graph(graph), _part(part), _bipartite(bipartite) {}
1421

	
1422
      void start(const Node& node) {
1423
        _part.set(node, true);
1424
      }
1425
      void discover(const Arc& edge) {
1426
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
1427
      }
1428
      void examine(const Arc& edge) {
1429
        _bipartite = _bipartite &&
1430
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
1431
      }
1432

	
1433
    private:
1434

	
1435
      const Digraph& _graph;
1436
      PartMap& _part;
1437
      bool& _bipartite;
1438
    };
1439
  }
1440

	
1441
  /// \ingroup connectivity
1442
  ///
1443
  /// \brief Check if the given undirected graph is bipartite or not
1444
  ///
1445
  /// The function checks if the given undirected \c graph graph is bipartite
1446
  /// or not. The \ref Bfs algorithm is used to calculate the result.
1447
  /// \param graph The undirected graph.
1448
  /// \return %True if \c graph is bipartite, %false otherwise.
1449
  /// \sa bipartitePartitions
1450
  template<typename Graph>
1451
  inline bool bipartite(const Graph &graph){
1452
    using namespace _topology_bits;
1453

	
1454
    checkConcept<concepts::Graph, Graph>();
1455

	
1456
    typedef typename Graph::NodeIt NodeIt;
1457
    typedef typename Graph::ArcIt ArcIt;
1458

	
1459
    bool bipartite = true;
1460

	
1461
    BipartiteVisitor<Graph>
1462
      visitor(graph, bipartite);
1463
    BfsVisit<Graph, BipartiteVisitor<Graph> >
1464
      bfs(graph, visitor);
1465
    bfs.init();
1466
    for(NodeIt it(graph); it != INVALID; ++it) {
1467
      if(!bfs.reached(it)){
1468
        bfs.addSource(it);
1469
        while (!bfs.emptyQueue()) {
1470
          bfs.processNextNode();
1471
          if (!bipartite) return false;
1472
        }
1473
      }
1474
    }
1475
    return true;
1476
  }
1477

	
1478
  /// \ingroup connectivity
1479
  ///
1480
  /// \brief Check if the given undirected graph is bipartite or not
1481
  ///
1482
  /// The function checks if the given undirected graph is bipartite
1483
  /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result.
1484
  /// During the execution, the \c partMap will be set as the two
1485
  /// partitions of the graph.
1486
  /// \param graph The undirected graph.
1487
  /// \retval partMap A writable bool map of nodes. It will be set as the
1488
  /// two partitions of the graph.
1489
  /// \return %True if \c graph is bipartite, %false otherwise.
1490
  template<typename Graph, typename NodeMap>
1491
  inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1492
    using namespace _topology_bits;
1493

	
1494
    checkConcept<concepts::Graph, Graph>();
1495

	
1496
    typedef typename Graph::Node Node;
1497
    typedef typename Graph::NodeIt NodeIt;
1498
    typedef typename Graph::ArcIt ArcIt;
1499

	
1500
    bool bipartite = true;
1501

	
1502
    BipartitePartitionsVisitor<Graph, NodeMap>
1503
      visitor(graph, partMap, bipartite);
1504
    BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
1505
      bfs(graph, visitor);
1506
    bfs.init();
1507
    for(NodeIt it(graph); it != INVALID; ++it) {
1508
      if(!bfs.reached(it)){
1509
        bfs.addSource(it);
1510
        while (!bfs.emptyQueue()) {
1511
          bfs.processNextNode();
1512
          if (!bipartite) return false;
1513
        }
1514
      }
1515
    }
1516
    return true;
1517
  }
1518

	
1519
  /// \brief Returns true when there are not loop edges in the graph.
1520
  ///
1521
  /// Returns true when there are not loop edges in the graph.
1522
  template <typename Digraph>
1523
  bool loopFree(const Digraph& graph) {
1524
    for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) {
1525
      if (graph.source(it) == graph.target(it)) return false;
1526
    }
1527
    return true;
1528
  }
1529

	
1530
  /// \brief Returns true when there are not parallel edges in the graph.
1531
  ///
1532
  /// Returns true when there are not parallel edges in the graph.
1533
  template <typename Digraph>
1534
  bool parallelFree(const Digraph& graph) {
1535
    typename Digraph::template NodeMap<bool> reached(graph, false);
1536
    for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
1537
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1538
        if (reached[graph.target(e)]) return false;
1539
        reached.set(graph.target(e), true);
1540
      }
1541
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1542
        reached.set(graph.target(e), false);
1543
      }
1544
    }
1545
    return true;
1546
  }
1547

	
1548
  /// \brief Returns true when there are not loop edges and parallel
1549
  /// edges in the graph.
1550
  ///
1551
  /// Returns true when there are not loop edges and parallel edges in
1552
  /// the graph.
1553
  template <typename Digraph>
1554
  bool simpleDigraph(const Digraph& graph) {
1555
    typename Digraph::template NodeMap<bool> reached(graph, false);
1556
    for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
1557
      reached.set(n, true);
1558
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1559
        if (reached[graph.target(e)]) return false;
1560
        reached.set(graph.target(e), true);
1561
      }
1562
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1563
        reached.set(graph.target(e), false);
1564
      }
1565
      reached.set(n, false);
1566
    }
1567
    return true;
1568
  }
1569

	
1570
} //namespace lemon
1571

	
1572
#endif //LEMON_TOPOLOGY_H
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include<iostream>
20
#include<lemon/concept_check.h>
21

	
22
#include<lemon/list_graph.h>
23
#include<lemon/smart_graph.h>
24

	
25
#include<lemon/concepts/digraph.h>
26
#include<lemon/concepts/graph.h>
27

	
28
#include<lemon/adaptors.h>
29

	
30
#include <limits>
31
#include <lemon/bfs.h>
32
#include <lemon/path.h>
33

	
34
#include"test/test_tools.h"
35
#include"test/graph_test.h"
36

	
37
using namespace lemon;
38

	
39
void checkReverseDigraph() {
40
  checkConcept<concepts::Digraph, ReverseDigraph<concepts::Digraph> >();
41

	
42
  typedef ListDigraph Digraph;
43
  typedef ReverseDigraph<Digraph> Adaptor;
44

	
45
  Digraph digraph;
46
  Adaptor adaptor(digraph);
47

	
48
  Digraph::Node n1 = digraph.addNode();
49
  Digraph::Node n2 = digraph.addNode();
50
  Digraph::Node n3 = digraph.addNode();
51

	
52
  Digraph::Arc a1 = digraph.addArc(n1, n2);
53
  Digraph::Arc a2 = digraph.addArc(n1, n3);
54
  Digraph::Arc a3 = digraph.addArc(n2, n3);
55

	
56
  checkGraphNodeList(adaptor, 3);
57
  checkGraphArcList(adaptor, 3);
58
  checkGraphConArcList(adaptor, 3);
59

	
60
  checkGraphOutArcList(adaptor, n1, 0);
61
  checkGraphOutArcList(adaptor, n2, 1);
62
  checkGraphOutArcList(adaptor, n3, 2);
63

	
64
  checkGraphInArcList(adaptor, n1, 2);
65
  checkGraphInArcList(adaptor, n2, 1);
66
  checkGraphInArcList(adaptor, n3, 0);
67

	
68
  checkNodeIds(adaptor);
69
  checkArcIds(adaptor);
70

	
71
  checkGraphNodeMap(adaptor);
72
  checkGraphArcMap(adaptor);
73

	
74
  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
75
    check(adaptor.source(a) == digraph.target(a), "Wrong reverse");
76
    check(adaptor.target(a) == digraph.source(a), "Wrong reverse");
77
  }
78
}
79

	
80
void checkSubDigraph() {
81
  checkConcept<concepts::Digraph,
82
    SubDigraph<concepts::Digraph,
83
    concepts::Digraph::NodeMap<bool>,
84
    concepts::Digraph::ArcMap<bool> > >();
85

	
86
  typedef ListDigraph Digraph;
87
  typedef Digraph::NodeMap<bool> NodeFilter;
88
  typedef Digraph::ArcMap<bool> ArcFilter;
89
  typedef SubDigraph<Digraph, NodeFilter, ArcFilter> Adaptor;
90

	
91
  Digraph digraph;
92
  NodeFilter node_filter(digraph);
93
  ArcFilter arc_filter(digraph);
94
  Adaptor adaptor(digraph, node_filter, arc_filter);
95

	
96
  Digraph::Node n1 = digraph.addNode();
97
  Digraph::Node n2 = digraph.addNode();
98
  Digraph::Node n3 = digraph.addNode();
99

	
100
  Digraph::Arc a1 = digraph.addArc(n1, n2);
101
  Digraph::Arc a2 = digraph.addArc(n1, n3);
102
  Digraph::Arc a3 = digraph.addArc(n2, n3);
103

	
104
  node_filter[n1] = node_filter[n2] = node_filter[n3] = true;
105
  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = true;
106
  
107
  checkGraphNodeList(adaptor, 3);
108
  checkGraphArcList(adaptor, 3);
109
  checkGraphConArcList(adaptor, 3);
110

	
111
  checkGraphOutArcList(adaptor, n1, 2);
112
  checkGraphOutArcList(adaptor, n2, 1);
113
  checkGraphOutArcList(adaptor, n3, 0);
114

	
115
  checkGraphInArcList(adaptor, n1, 0);
116
  checkGraphInArcList(adaptor, n2, 1);
117
  checkGraphInArcList(adaptor, n3, 2);
118

	
119
  checkNodeIds(adaptor);
120
  checkArcIds(adaptor);
121

	
122
  checkGraphNodeMap(adaptor);
123
  checkGraphArcMap(adaptor);
124

	
125
  arc_filter[a2] = false;
126

	
127
  checkGraphNodeList(adaptor, 3);
128
  checkGraphArcList(adaptor, 2);
129
  checkGraphConArcList(adaptor, 2);
130

	
131
  checkGraphOutArcList(adaptor, n1, 1);
132
  checkGraphOutArcList(adaptor, n2, 1);
133
  checkGraphOutArcList(adaptor, n3, 0);
134

	
135
  checkGraphInArcList(adaptor, n1, 0);
136
  checkGraphInArcList(adaptor, n2, 1);
137
  checkGraphInArcList(adaptor, n3, 1);
138

	
139
  checkNodeIds(adaptor);
140
  checkArcIds(adaptor);
141

	
142
  checkGraphNodeMap(adaptor);
143
  checkGraphArcMap(adaptor);
144

	
145
  node_filter[n1] = false;
146

	
147
  checkGraphNodeList(adaptor, 2);
148
  checkGraphArcList(adaptor, 1);
149
  checkGraphConArcList(adaptor, 1);
150

	
151
  checkGraphOutArcList(adaptor, n2, 1);
152
  checkGraphOutArcList(adaptor, n3, 0);
153

	
154
  checkGraphInArcList(adaptor, n2, 0);
155
  checkGraphInArcList(adaptor, n3, 1);
156

	
157
  checkNodeIds(adaptor);
158
  checkArcIds(adaptor);
159

	
160
  checkGraphNodeMap(adaptor);
161
  checkGraphArcMap(adaptor);
162

	
163
  node_filter[n1] = node_filter[n2] = node_filter[n3] = false;
164
  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = false;
165

	
166
  checkGraphNodeList(adaptor, 0);
167
  checkGraphArcList(adaptor, 0);
168
  checkGraphConArcList(adaptor, 0);
169

	
170
  checkNodeIds(adaptor);
171
  checkArcIds(adaptor);
172

	
173
  checkGraphNodeMap(adaptor);
174
  checkGraphArcMap(adaptor);
175
}
176

	
177
void checkFilterNodes1() {
178
  checkConcept<concepts::Digraph,
179
    FilterNodes<concepts::Digraph,
180
      concepts::Digraph::NodeMap<bool> > >();
181

	
182
  typedef ListDigraph Digraph;
183
  typedef Digraph::NodeMap<bool> NodeFilter;
184
  typedef FilterNodes<Digraph, NodeFilter> Adaptor;
185

	
186
  Digraph digraph;
187
  NodeFilter node_filter(digraph);
188
  Adaptor adaptor(digraph, node_filter);
189

	
190
  Digraph::Node n1 = digraph.addNode();
191
  Digraph::Node n2 = digraph.addNode();
192
  Digraph::Node n3 = digraph.addNode();
193

	
194
  Digraph::Arc a1 = digraph.addArc(n1, n2);
195
  Digraph::Arc a2 = digraph.addArc(n1, n3);
196
  Digraph::Arc a3 = digraph.addArc(n2, n3);
197

	
198
  node_filter[n1] = node_filter[n2] = node_filter[n3] = true;
199
  
200
  checkGraphNodeList(adaptor, 3);
201
  checkGraphArcList(adaptor, 3);
202
  checkGraphConArcList(adaptor, 3);
203

	
204
  checkGraphOutArcList(adaptor, n1, 2);
205
  checkGraphOutArcList(adaptor, n2, 1);
206
  checkGraphOutArcList(adaptor, n3, 0);
207

	
208
  checkGraphInArcList(adaptor, n1, 0);
209
  checkGraphInArcList(adaptor, n2, 1);
210
  checkGraphInArcList(adaptor, n3, 2);
211

	
212
  checkNodeIds(adaptor);
213
  checkArcIds(adaptor);
214

	
215
  checkGraphNodeMap(adaptor);
216
  checkGraphArcMap(adaptor);
217

	
218
  node_filter[n1] = false;
219

	
220
  checkGraphNodeList(adaptor, 2);
221
  checkGraphArcList(adaptor, 1);
222
  checkGraphConArcList(adaptor, 1);
223

	
224
  checkGraphOutArcList(adaptor, n2, 1);
225
  checkGraphOutArcList(adaptor, n3, 0);
226

	
227
  checkGraphInArcList(adaptor, n2, 0);
228
  checkGraphInArcList(adaptor, n3, 1);
229

	
230
  checkNodeIds(adaptor);
231
  checkArcIds(adaptor);
232

	
233
  checkGraphNodeMap(adaptor);
234
  checkGraphArcMap(adaptor);
235

	
236
  node_filter[n1] = node_filter[n2] = node_filter[n3] = false;
237

	
238
  checkGraphNodeList(adaptor, 0);
239
  checkGraphArcList(adaptor, 0);
240
  checkGraphConArcList(adaptor, 0);
241

	
242
  checkNodeIds(adaptor);
243
  checkArcIds(adaptor);
244

	
245
  checkGraphNodeMap(adaptor);
246
  checkGraphArcMap(adaptor);
247
}
248

	
249
void checkFilterArcs() {
250
  checkConcept<concepts::Digraph,
251
    FilterArcs<concepts::Digraph,
252
    concepts::Digraph::ArcMap<bool> > >();
253

	
254
  typedef ListDigraph Digraph;
255
  typedef Digraph::ArcMap<bool> ArcFilter;
256
  typedef FilterArcs<Digraph, ArcFilter> Adaptor;
257

	
258
  Digraph digraph;
259
  ArcFilter arc_filter(digraph);
260
  Adaptor adaptor(digraph, arc_filter);
261

	
262
  Digraph::Node n1 = digraph.addNode();
263
  Digraph::Node n2 = digraph.addNode();
264
  Digraph::Node n3 = digraph.addNode();
265

	
266
  Digraph::Arc a1 = digraph.addArc(n1, n2);
267
  Digraph::Arc a2 = digraph.addArc(n1, n3);
268
  Digraph::Arc a3 = digraph.addArc(n2, n3);
269

	
270
  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = true;
271
  
272
  checkGraphNodeList(adaptor, 3);
273
  checkGraphArcList(adaptor, 3);
274
  checkGraphConArcList(adaptor, 3);
275

	
276
  checkGraphOutArcList(adaptor, n1, 2);
277
  checkGraphOutArcList(adaptor, n2, 1);
278
  checkGraphOutArcList(adaptor, n3, 0);
279

	
280
  checkGraphInArcList(adaptor, n1, 0);
281
  checkGraphInArcList(adaptor, n2, 1);
282
  checkGraphInArcList(adaptor, n3, 2);
283

	
284
  checkNodeIds(adaptor);
285
  checkArcIds(adaptor);
286

	
287
  checkGraphNodeMap(adaptor);
288
  checkGraphArcMap(adaptor);
289

	
290
  arc_filter[a2] = false;
291

	
292
  checkGraphNodeList(adaptor, 3);
293
  checkGraphArcList(adaptor, 2);
294
  checkGraphConArcList(adaptor, 2);
295

	
296
  checkGraphOutArcList(adaptor, n1, 1);
297
  checkGraphOutArcList(adaptor, n2, 1);
298
  checkGraphOutArcList(adaptor, n3, 0);
299

	
300
  checkGraphInArcList(adaptor, n1, 0);
301
  checkGraphInArcList(adaptor, n2, 1);
302
  checkGraphInArcList(adaptor, n3, 1);
303

	
304
  checkNodeIds(adaptor);
305
  checkArcIds(adaptor);
306

	
307
  checkGraphNodeMap(adaptor);
308
  checkGraphArcMap(adaptor);
309

	
310
  arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = false;
311

	
312
  checkGraphNodeList(adaptor, 3);
313
  checkGraphArcList(adaptor, 0);
314
  checkGraphConArcList(adaptor, 0);
315

	
316
  checkNodeIds(adaptor);
317
  checkArcIds(adaptor);
318

	
319
  checkGraphNodeMap(adaptor);
320
  checkGraphArcMap(adaptor);
321
}
322

	
323
void checkUndirector() {
324
  checkConcept<concepts::Graph, Undirector<concepts::Digraph> >();
325

	
326
  typedef ListDigraph Digraph;
327
  typedef Undirector<Digraph> Adaptor;
328

	
329
  Digraph digraph;
330
  Adaptor adaptor(digraph);
331

	
332
  Digraph::Node n1 = digraph.addNode();
333
  Digraph::Node n2 = digraph.addNode();
334
  Digraph::Node n3 = digraph.addNode();
335

	
336
  Digraph::Arc a1 = digraph.addArc(n1, n2);
337
  Digraph::Arc a2 = digraph.addArc(n1, n3);
338
  Digraph::Arc a3 = digraph.addArc(n2, n3);
339

	
340
  checkGraphNodeList(adaptor, 3);
341
  checkGraphArcList(adaptor, 6);
342
  checkGraphEdgeList(adaptor, 3);
343
  checkGraphConArcList(adaptor, 6);
344
  checkGraphConEdgeList(adaptor, 3);
345

	
346
  checkGraphOutArcList(adaptor, n1, 2);
347
  checkGraphOutArcList(adaptor, n2, 2);
348
  checkGraphOutArcList(adaptor, n3, 2);
349

	
350
  checkGraphInArcList(adaptor, n1, 2);
351
  checkGraphInArcList(adaptor, n2, 2);
352
  checkGraphInArcList(adaptor, n3, 2);
353

	
354
  checkGraphIncEdgeList(adaptor, n1, 2);
355
  checkGraphIncEdgeList(adaptor, n2, 2);
356
  checkGraphIncEdgeList(adaptor, n3, 2);
357

	
358
  checkNodeIds(adaptor);
359
  checkArcIds(adaptor);
360
  checkEdgeIds(adaptor);
361

	
362
  checkGraphNodeMap(adaptor);
363
  checkGraphArcMap(adaptor);
364
  checkGraphEdgeMap(adaptor);
365

	
366
  for (Adaptor::EdgeIt e(adaptor); e != INVALID; ++e) {
367
    check(adaptor.u(e) == digraph.source(e), "Wrong undir");
368
    check(adaptor.v(e) == digraph.target(e), "Wrong undir");
369
  }
370

	
371
}
372

	
373
void checkResidual() {
374
  checkConcept<concepts::Digraph,
375
    Residual<concepts::Digraph,
376
    concepts::Digraph::ArcMap<int>,
377
    concepts::Digraph::ArcMap<int> > >();
378

	
379
  typedef ListDigraph Digraph;
380
  typedef Digraph::ArcMap<int> IntArcMap;
381
  typedef Residual<Digraph, IntArcMap> Adaptor;
382

	
383
  Digraph digraph;
384
  IntArcMap capacity(digraph), flow(digraph);
385
  Adaptor adaptor(digraph, capacity, flow);
386

	
387
  Digraph::Node n1 = digraph.addNode();
388
  Digraph::Node n2 = digraph.addNode();
389
  Digraph::Node n3 = digraph.addNode();
390
  Digraph::Node n4 = digraph.addNode();
391

	
392
  Digraph::Arc a1 = digraph.addArc(n1, n2);
393
  Digraph::Arc a2 = digraph.addArc(n1, n3);
394
  Digraph::Arc a3 = digraph.addArc(n1, n4);
395
  Digraph::Arc a4 = digraph.addArc(n2, n3);
396
  Digraph::Arc a5 = digraph.addArc(n2, n4);
397
  Digraph::Arc a6 = digraph.addArc(n3, n4);
398

	
399
  capacity[a1] = 8;
400
  capacity[a2] = 6;
401
  capacity[a3] = 4;
402
  capacity[a4] = 4;
403
  capacity[a5] = 6;
404
  capacity[a6] = 10;
405

	
406
  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
407
    flow[a] = 0;
408
  }
409

	
410
  checkGraphNodeList(adaptor, 4);
411
  checkGraphArcList(adaptor, 6);
412
  checkGraphConArcList(adaptor, 6);
413

	
414
  checkGraphOutArcList(adaptor, n1, 3);
415
  checkGraphOutArcList(adaptor, n2, 2);
416
  checkGraphOutArcList(adaptor, n3, 1);
417
  checkGraphOutArcList(adaptor, n4, 0);
418

	
419
  checkGraphInArcList(adaptor, n1, 0);
420
  checkGraphInArcList(adaptor, n2, 1);
421
  checkGraphInArcList(adaptor, n3, 2);
422
  checkGraphInArcList(adaptor, n4, 3);
423

	
424
  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
425
    flow[a] = capacity[a] / 2;
426
  }
427

	
428
  checkGraphNodeList(adaptor, 4);
429
  checkGraphArcList(adaptor, 12);
430
  checkGraphConArcList(adaptor, 12);
431

	
432
  checkGraphOutArcList(adaptor, n1, 3);
433
  checkGraphOutArcList(adaptor, n2, 3);
434
  checkGraphOutArcList(adaptor, n3, 3);
435
  checkGraphOutArcList(adaptor, n4, 3);
436

	
437
  checkGraphInArcList(adaptor, n1, 3);
438
  checkGraphInArcList(adaptor, n2, 3);
439
  checkGraphInArcList(adaptor, n3, 3);
440
  checkGraphInArcList(adaptor, n4, 3);
441

	
442
  checkNodeIds(adaptor);
443
  checkArcIds(adaptor);
444

	
445
  checkGraphNodeMap(adaptor);
446
  checkGraphArcMap(adaptor);
447

	
448
  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
449
    flow[a] = capacity[a];
450
  }
451

	
452
  checkGraphNodeList(adaptor, 4);
453
  checkGraphArcList(adaptor, 6);
454
  checkGraphConArcList(adaptor, 6);
455

	
456
  checkGraphOutArcList(adaptor, n1, 0);
457
  checkGraphOutArcList(adaptor, n2, 1);
458
  checkGraphOutArcList(adaptor, n3, 2);
459
  checkGraphOutArcList(adaptor, n4, 3);
460

	
461
  checkGraphInArcList(adaptor, n1, 3);
462
  checkGraphInArcList(adaptor, n2, 2);
463
  checkGraphInArcList(adaptor, n3, 1);
464
  checkGraphInArcList(adaptor, n4, 0);
465

	
466
  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
467
    flow[a] = 0;
468
  }
469

	
470
  int flow_value = 0;
471
  while (true) {
472

	
473
    Bfs<Adaptor> bfs(adaptor);
474
    bfs.run(n1, n4);
475

	
476
    if (!bfs.reached(n4)) break;
477

	
478
    Path<Adaptor> p = bfs.path(n4);
479

	
480
    int min = std::numeric_limits<int>::max();
481
    for (Path<Adaptor>::ArcIt a(p); a != INVALID; ++a) {
482
      if (adaptor.residualCapacity(a) < min)
483
        min = adaptor.residualCapacity(a);
484
    }
485

	
486
    for (Path<Adaptor>::ArcIt a(p); a != INVALID; ++a) {
487
      adaptor.augment(a, min);
488
    }
489
    flow_value += min;
490
  }
491

	
492
  check(flow_value == 18, "Wrong flow with res graph adaptor");
493

	
494
}
495

	
496
void checkSplitNodes() {
497
  checkConcept<concepts::Digraph, SplitNodes<concepts::Digraph> >();
498

	
499
  typedef ListDigraph Digraph;
500
  typedef SplitNodes<Digraph> Adaptor;
501

	
502
  Digraph digraph;
503
  Adaptor adaptor(digraph);
504

	
505
  Digraph::Node n1 = digraph.addNode();
506
  Digraph::Node n2 = digraph.addNode();
507
  Digraph::Node n3 = digraph.addNode();
508

	
509
  Digraph::Arc a1 = digraph.addArc(n1, n2);
510
  Digraph::Arc a2 = digraph.addArc(n1, n3);
511
  Digraph::Arc a3 = digraph.addArc(n2, n3);
512

	
513
  checkGraphNodeList(adaptor, 6);
514
  checkGraphArcList(adaptor, 6);
515
  checkGraphConArcList(adaptor, 6);
516

	
517
  checkGraphOutArcList(adaptor, adaptor.inNode(n1), 1);
518
  checkGraphOutArcList(adaptor, adaptor.outNode(n1), 2);
519
  checkGraphOutArcList(adaptor, adaptor.inNode(n2), 1);
520
  checkGraphOutArcList(adaptor, adaptor.outNode(n2), 1);
521
  checkGraphOutArcList(adaptor, adaptor.inNode(n3), 1);
522
  checkGraphOutArcList(adaptor, adaptor.outNode(n3), 0);
523

	
524
  checkGraphInArcList(adaptor, adaptor.inNode(n1), 0);
525
  checkGraphInArcList(adaptor, adaptor.outNode(n1), 1);
526
  checkGraphInArcList(adaptor, adaptor.inNode(n2), 1);
527
  checkGraphInArcList(adaptor, adaptor.outNode(n2), 1);
528
  checkGraphInArcList(adaptor, adaptor.inNode(n3), 2);
529
  checkGraphInArcList(adaptor, adaptor.outNode(n3), 1);
530

	
531
  checkNodeIds(adaptor);
532
  checkArcIds(adaptor);
533

	
534
  checkGraphNodeMap(adaptor);
535
  checkGraphArcMap(adaptor);
536

	
537
  for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) {
538
    if (adaptor.origArc(a)) {
539
      Digraph::Arc oa = a;
540
      check(adaptor.source(a) == adaptor.outNode(digraph.source(oa)),
541
            "Wrong split");
542
      check(adaptor.target(a) == adaptor.inNode(digraph.target(oa)),
543
            "Wrong split");
544
    } else {
545
      Digraph::Node on = a;
546
      check(adaptor.source(a) == adaptor.inNode(on), "Wrong split");
547
      check(adaptor.target(a) == adaptor.outNode(on), "Wrong split");
548
    }
549
  }
550
}
551

	
552
void checkSubGraph() {
553
  checkConcept<concepts::Graph,
554
    SubGraph<concepts::Graph,
555
    concepts::Graph::NodeMap<bool>,
556
    concepts::Graph::EdgeMap<bool> > >();
557

	
558
  typedef ListGraph Graph;
559
  typedef Graph::NodeMap<bool> NodeFilter;
560
  typedef Graph::EdgeMap<bool> EdgeFilter;
561
  typedef SubGraph<Graph, NodeFilter, EdgeFilter> Adaptor;
562

	
563
  Graph graph;
564
  NodeFilter node_filter(graph);
565
  EdgeFilter edge_filter(graph);
566
  Adaptor adaptor(graph, node_filter, edge_filter);
567

	
568
  Graph::Node n1 = graph.addNode();
569
  Graph::Node n2 = graph.addNode();
570
  Graph::Node n3 = graph.addNode();
571
  Graph::Node n4 = graph.addNode();
572

	
573
  Graph::Edge e1 = graph.addEdge(n1, n2);
574
  Graph::Edge e2 = graph.addEdge(n1, n3);
575
  Graph::Edge e3 = graph.addEdge(n2, n3);
576
  Graph::Edge e4 = graph.addEdge(n3, n4);
577

	
578
  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = true;
579
  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = true;
580
  
581
  checkGraphNodeList(adaptor, 4);
582
  checkGraphArcList(adaptor, 8);
583
  checkGraphEdgeList(adaptor, 4);
584
  checkGraphConArcList(adaptor, 8);
585
  checkGraphConEdgeList(adaptor, 4);
586

	
587
  checkGraphOutArcList(adaptor, n1, 2);
588
  checkGraphOutArcList(adaptor, n2, 2);
589
  checkGraphOutArcList(adaptor, n3, 3);
590
  checkGraphOutArcList(adaptor, n4, 1);
591

	
592
  checkGraphInArcList(adaptor, n1, 2);
593
  checkGraphInArcList(adaptor, n2, 2);
594
  checkGraphInArcList(adaptor, n3, 3);
595
  checkGraphInArcList(adaptor, n4, 1);
596

	
597
  checkGraphIncEdgeList(adaptor, n1, 2);
598
  checkGraphIncEdgeList(adaptor, n2, 2);
599
  checkGraphIncEdgeList(adaptor, n3, 3);
600
  checkGraphIncEdgeList(adaptor, n4, 1);
601

	
602
  checkNodeIds(adaptor);
603
  checkArcIds(adaptor);
604
  checkEdgeIds(adaptor);
605

	
606
  checkGraphNodeMap(adaptor);
607
  checkGraphArcMap(adaptor);
608
  checkGraphEdgeMap(adaptor);
609

	
610
  edge_filter[e2] = false;
611

	
612
  checkGraphNodeList(adaptor, 4);
613
  checkGraphArcList(adaptor, 6);
614
  checkGraphEdgeList(adaptor, 3);
615
  checkGraphConArcList(adaptor, 6);
616
  checkGraphConEdgeList(adaptor, 3);
617

	
618
  checkGraphOutArcList(adaptor, n1, 1);
619
  checkGraphOutArcList(adaptor, n2, 2);
620
  checkGraphOutArcList(adaptor, n3, 2);
621
  checkGraphOutArcList(adaptor, n4, 1);
622

	
623
  checkGraphInArcList(adaptor, n1, 1);
624
  checkGraphInArcList(adaptor, n2, 2);
625
  checkGraphInArcList(adaptor, n3, 2);
626
  checkGraphInArcList(adaptor, n4, 1);
627

	
628
  checkGraphIncEdgeList(adaptor, n1, 1);
629
  checkGraphIncEdgeList(adaptor, n2, 2);
630
  checkGraphIncEdgeList(adaptor, n3, 2);
631
  checkGraphIncEdgeList(adaptor, n4, 1);
632

	
633
  checkNodeIds(adaptor);
634
  checkArcIds(adaptor);
635
  checkEdgeIds(adaptor);
636

	
637
  checkGraphNodeMap(adaptor);
638
  checkGraphArcMap(adaptor);
639
  checkGraphEdgeMap(adaptor);
640

	
641
  node_filter[n1] = false;
642

	
643
  checkGraphNodeList(adaptor, 3);
644
  checkGraphArcList(adaptor, 4);
645
  checkGraphEdgeList(adaptor, 2);
646
  checkGraphConArcList(adaptor, 4);
647
  checkGraphConEdgeList(adaptor, 2);
648

	
649
  checkGraphOutArcList(adaptor, n2, 1);
650
  checkGraphOutArcList(adaptor, n3, 2);
651
  checkGraphOutArcList(adaptor, n4, 1);
652

	
653
  checkGraphInArcList(adaptor, n2, 1);
654
  checkGraphInArcList(adaptor, n3, 2);
655
  checkGraphInArcList(adaptor, n4, 1);
656

	
657
  checkGraphIncEdgeList(adaptor, n2, 1);
658
  checkGraphIncEdgeList(adaptor, n3, 2);
659
  checkGraphIncEdgeList(adaptor, n4, 1);
660

	
661
  checkNodeIds(adaptor);
662
  checkArcIds(adaptor);
663
  checkEdgeIds(adaptor);
664

	
665
  checkGraphNodeMap(adaptor);
666
  checkGraphArcMap(adaptor);
667
  checkGraphEdgeMap(adaptor);
668

	
669
  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = false;
670
  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = false;
671

	
672
  checkGraphNodeList(adaptor, 0);
673
  checkGraphArcList(adaptor, 0);
674
  checkGraphEdgeList(adaptor, 0);
675
  checkGraphConArcList(adaptor, 0);
676
  checkGraphConEdgeList(adaptor, 0);
677

	
678
  checkNodeIds(adaptor);
679
  checkArcIds(adaptor);
680
  checkEdgeIds(adaptor);
681

	
682
  checkGraphNodeMap(adaptor);
683
  checkGraphArcMap(adaptor);
684
  checkGraphEdgeMap(adaptor);
685
}
686

	
687
void checkFilterNodes2() {
688
  checkConcept<concepts::Graph,
689
    FilterNodes<concepts::Graph,
690
      concepts::Graph::NodeMap<bool> > >();
691

	
692
  typedef ListGraph Graph;
693
  typedef Graph::NodeMap<bool> NodeFilter;
694
  typedef FilterNodes<Graph, NodeFilter> Adaptor;
695

	
696
  Graph graph;
697
  NodeFilter node_filter(graph);
698
  Adaptor adaptor(graph, node_filter);
699

	
700
  Graph::Node n1 = graph.addNode();
701
  Graph::Node n2 = graph.addNode();
702
  Graph::Node n3 = graph.addNode();
703
  Graph::Node n4 = graph.addNode();
704

	
705
  Graph::Edge e1 = graph.addEdge(n1, n2);
706
  Graph::Edge e2 = graph.addEdge(n1, n3);
707
  Graph::Edge e3 = graph.addEdge(n2, n3);
708
  Graph::Edge e4 = graph.addEdge(n3, n4);
709

	
710
  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = true;
711
  
712
  checkGraphNodeList(adaptor, 4);
713
  checkGraphArcList(adaptor, 8);
714
  checkGraphEdgeList(adaptor, 4);
715
  checkGraphConArcList(adaptor, 8);
716
  checkGraphConEdgeList(adaptor, 4);
717

	
718
  checkGraphOutArcList(adaptor, n1, 2);
719
  checkGraphOutArcList(adaptor, n2, 2);
720
  checkGraphOutArcList(adaptor, n3, 3);
721
  checkGraphOutArcList(adaptor, n4, 1);
722

	
723
  checkGraphInArcList(adaptor, n1, 2);
724
  checkGraphInArcList(adaptor, n2, 2);
725
  checkGraphInArcList(adaptor, n3, 3);
726
  checkGraphInArcList(adaptor, n4, 1);
727

	
728
  checkGraphIncEdgeList(adaptor, n1, 2);
729
  checkGraphIncEdgeList(adaptor, n2, 2);
730
  checkGraphIncEdgeList(adaptor, n3, 3);
731
  checkGraphIncEdgeList(adaptor, n4, 1);
732

	
733
  checkNodeIds(adaptor);
734
  checkArcIds(adaptor);
735
  checkEdgeIds(adaptor);
736

	
737
  checkGraphNodeMap(adaptor);
738
  checkGraphArcMap(adaptor);
739
  checkGraphEdgeMap(adaptor);
740

	
741
  node_filter[n1] = false;
742

	
743
  checkGraphNodeList(adaptor, 3);
744
  checkGraphArcList(adaptor, 4);
745
  checkGraphEdgeList(adaptor, 2);
746
  checkGraphConArcList(adaptor, 4);
747
  checkGraphConEdgeList(adaptor, 2);
748

	
749
  checkGraphOutArcList(adaptor, n2, 1);
750
  checkGraphOutArcList(adaptor, n3, 2);
751
  checkGraphOutArcList(adaptor, n4, 1);
752

	
753
  checkGraphInArcList(adaptor, n2, 1);
754
  checkGraphInArcList(adaptor, n3, 2);
755
  checkGraphInArcList(adaptor, n4, 1);
756

	
757
  checkGraphIncEdgeList(adaptor, n2, 1);
758
  checkGraphIncEdgeList(adaptor, n3, 2);
759
  checkGraphIncEdgeList(adaptor, n4, 1);
760

	
761
  checkNodeIds(adaptor);
762
  checkArcIds(adaptor);
763
  checkEdgeIds(adaptor);
764

	
765
  checkGraphNodeMap(adaptor);
766
  checkGraphArcMap(adaptor);
767
  checkGraphEdgeMap(adaptor);
768

	
769
  node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = false;
770

	
771
  checkGraphNodeList(adaptor, 0);
772
  checkGraphArcList(adaptor, 0);
773
  checkGraphEdgeList(adaptor, 0);
774
  checkGraphConArcList(adaptor, 0);
775
  checkGraphConEdgeList(adaptor, 0);
776

	
777
  checkNodeIds(adaptor);
778
  checkArcIds(adaptor);
779
  checkEdgeIds(adaptor);
780

	
781
  checkGraphNodeMap(adaptor);
782
  checkGraphArcMap(adaptor);
783
  checkGraphEdgeMap(adaptor);
784
}
785

	
786
void checkFilterEdges() {
787
  checkConcept<concepts::Graph,
788
    FilterEdges<concepts::Graph,
789
    concepts::Graph::EdgeMap<bool> > >();
790

	
791
  typedef ListGraph Graph;
792
  typedef Graph::EdgeMap<bool> EdgeFilter;
793
  typedef FilterEdges<Graph, EdgeFilter> Adaptor;
794

	
795
  Graph graph;
796
  EdgeFilter edge_filter(graph);
797
  Adaptor adaptor(graph, edge_filter);
798

	
799
  Graph::Node n1 = graph.addNode();
800
  Graph::Node n2 = graph.addNode();
801
  Graph::Node n3 = graph.addNode();
802
  Graph::Node n4 = graph.addNode();
803

	
804
  Graph::Edge e1 = graph.addEdge(n1, n2);
805
  Graph::Edge e2 = graph.addEdge(n1, n3);
806
  Graph::Edge e3 = graph.addEdge(n2, n3);
807
  Graph::Edge e4 = graph.addEdge(n3, n4);
808

	
809
  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = true;
810
  
811
  checkGraphNodeList(adaptor, 4);
812
  checkGraphArcList(adaptor, 8);
813
  checkGraphEdgeList(adaptor, 4);
814
  checkGraphConArcList(adaptor, 8);
815
  checkGraphConEdgeList(adaptor, 4);
816

	
817
  checkGraphOutArcList(adaptor, n1, 2);
818
  checkGraphOutArcList(adaptor, n2, 2);
819
  checkGraphOutArcList(adaptor, n3, 3);
820
  checkGraphOutArcList(adaptor, n4, 1);
821

	
822
  checkGraphInArcList(adaptor, n1, 2);
823
  checkGraphInArcList(adaptor, n2, 2);
824
  checkGraphInArcList(adaptor, n3, 3);
825
  checkGraphInArcList(adaptor, n4, 1);
826

	
827
  checkGraphIncEdgeList(adaptor, n1, 2);
828
  checkGraphIncEdgeList(adaptor, n2, 2);
829
  checkGraphIncEdgeList(adaptor, n3, 3);
830
  checkGraphIncEdgeList(adaptor, n4, 1);
831

	
832
  checkNodeIds(adaptor);
833
  checkArcIds(adaptor);
834
  checkEdgeIds(adaptor);
835

	
836
  checkGraphNodeMap(adaptor);
837
  checkGraphArcMap(adaptor);
838
  checkGraphEdgeMap(adaptor);
839

	
840
  edge_filter[e2] = false;
841

	
842
  checkGraphNodeList(adaptor, 4);
843
  checkGraphArcList(adaptor, 6);
844
  checkGraphEdgeList(adaptor, 3);
845
  checkGraphConArcList(adaptor, 6);
846
  checkGraphConEdgeList(adaptor, 3);
847

	
848
  checkGraphOutArcList(adaptor, n1, 1);
849
  checkGraphOutArcList(adaptor, n2, 2);
850
  checkGraphOutArcList(adaptor, n3, 2);
851
  checkGraphOutArcList(adaptor, n4, 1);
852

	
853
  checkGraphInArcList(adaptor, n1, 1);
854
  checkGraphInArcList(adaptor, n2, 2);
855
  checkGraphInArcList(adaptor, n3, 2);
856
  checkGraphInArcList(adaptor, n4, 1);
857

	
858
  checkGraphIncEdgeList(adaptor, n1, 1);
859
  checkGraphIncEdgeList(adaptor, n2, 2);
860
  checkGraphIncEdgeList(adaptor, n3, 2);
861
  checkGraphIncEdgeList(adaptor, n4, 1);
862

	
863
  checkNodeIds(adaptor);
864
  checkArcIds(adaptor);
865
  checkEdgeIds(adaptor);
866

	
867
  checkGraphNodeMap(adaptor);
868
  checkGraphArcMap(adaptor);
869
  checkGraphEdgeMap(adaptor);
870

	
871
  edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = false;
872

	
873
  checkGraphNodeList(adaptor, 4);
874
  checkGraphArcList(adaptor, 0);
875
  checkGraphEdgeList(adaptor, 0);
876
  checkGraphConArcList(adaptor, 0);
877
  checkGraphConEdgeList(adaptor, 0);
878

	
879
  checkNodeIds(adaptor);
880
  checkArcIds(adaptor);
881
  checkEdgeIds(adaptor);
882

	
883
  checkGraphNodeMap(adaptor);
884
  checkGraphArcMap(adaptor);
885
  checkGraphEdgeMap(adaptor);
886
}
887

	
888
void checkOrienter() {
889
  checkConcept<concepts::Digraph,
890
    Orienter<concepts::Graph, concepts::Graph::EdgeMap<bool> > >();
891

	
892
  typedef ListGraph Graph;
893
  typedef ListGraph::EdgeMap<bool> DirMap;
894
  typedef Orienter<Graph> Adaptor;
895

	
896
  Graph graph;
897
  DirMap dir(graph, true);
898
  Adaptor adaptor(graph, dir);
899

	
900
  Graph::Node n1 = graph.addNode();
901
  Graph::Node n2 = graph.addNode();
902
  Graph::Node n3 = graph.addNode();
903

	
904
  Graph::Edge e1 = graph.addEdge(n1, n2);
905
  Graph::Edge e2 = graph.addEdge(n1, n3);
906
  Graph::Edge e3 = graph.addEdge(n2, n3);
907

	
908
  checkGraphNodeList(adaptor, 3);
909
  checkGraphArcList(adaptor, 3);
910
  checkGraphConArcList(adaptor, 3);
911

	
912
  {
913
    dir[e1] = true;
914
    Adaptor::Node u = adaptor.source(e1);
915
    Adaptor::Node v = adaptor.target(e1);
916

	
917
    dir[e1] = false;
918
    check (u == adaptor.target(e1), "Wrong dir");
919
    check (v == adaptor.source(e1), "Wrong dir");
920

	
921
    check ((u == n1 && v == n2) || (u == n2 && v == n1), "Wrong dir");
922
    dir[e1] = n1 == u;
923
  }
924

	
925
  {
926
    dir[e2] = true;
927
    Adaptor::Node u = adaptor.source(e2);
928
    Adaptor::Node v = adaptor.target(e2);
929

	
930
    dir[e2] = false;
931
    check (u == adaptor.target(e2), "Wrong dir");
932
    check (v == adaptor.source(e2), "Wrong dir");
933

	
934
    check ((u == n1 && v == n3) || (u == n3 && v == n1), "Wrong dir");
935
    dir[e2] = n3 == u;
936
  }
937

	
938
  {
939
    dir[e3] = true;
940
    Adaptor::Node u = adaptor.source(e3);
941
    Adaptor::Node v = adaptor.target(e3);
942

	
943
    dir[e3] = false;
944
    check (u == adaptor.target(e3), "Wrong dir");
945
    check (v == adaptor.source(e3), "Wrong dir");
946

	
947
    check ((u == n2 && v == n3) || (u == n3 && v == n2), "Wrong dir");
948
    dir[e3] = n2 == u;
949
  }
950

	
951
  checkGraphOutArcList(adaptor, n1, 1);
952
  checkGraphOutArcList(adaptor, n2, 1);
953
  checkGraphOutArcList(adaptor, n3, 1);
954

	
955
  checkGraphInArcList(adaptor, n1, 1);
956
  checkGraphInArcList(adaptor, n2, 1);
957
  checkGraphInArcList(adaptor, n3, 1);
958

	
959
  checkNodeIds(adaptor);
960
  checkArcIds(adaptor);
961

	
962
  checkGraphNodeMap(adaptor);
963
  checkGraphArcMap(adaptor);
964

	
965
}
966

	
967

	
968
int main(int, const char **) {
969

	
970
  checkReverseDigraph();
971
  checkSubDigraph();
972
  checkFilterNodes1();
973
  checkFilterArcs();
974
  checkUndirector();
975
  checkResidual();
976
  checkSplitNodes();
977

	
978
  checkSubGraph();
979
  checkFilterNodes2();
980
  checkFilterEdges();
981
  checkOrienter();
982

	
983
  return 0;
984
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
@defgroup datas Data Structures
23 23
This group describes the several data structures implemented in LEMON.
24 24
*/
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65
@defgroup graph_adaptors Adaptor Classes for graphs
66
@ingroup graphs
67
\brief This group contains several adaptor classes for digraphs and graphs
68

	
69
The main parts of LEMON are the different graph structures, generic
70
graph algorithms, graph concepts which couple these, and graph
71
adaptors. While the previous notions are more or less clear, the
72
latter one needs further explanation. Graph adaptors are graph classes
73
which serve for considering graph structures in different ways.
74

	
75
A short example makes this much clearer.  Suppose that we have an
76
instance \c g of a directed graph type say ListDigraph and an algorithm
77
\code
78
template <typename Digraph>
79
int algorithm(const Digraph&);
80
\endcode
81
is needed to run on the reverse oriented graph.  It may be expensive
82
(in time or in memory usage) to copy \c g with the reversed
83
arcs.  In this case, an adaptor class is used, which (according
84
to LEMON digraph concepts) works as a digraph.  The adaptor uses the
85
original digraph structure and digraph operations when methods of the
86
reversed oriented graph are called.  This means that the adaptor have
87
minor memory usage, and do not perform sophisticated algorithmic
88
actions.  The purpose of it is to give a tool for the cases when a
89
graph have to be used in a specific alteration.  If this alteration is
90
obtained by a usual construction like filtering the arc-set or
91
considering a new orientation, then an adaptor is worthwhile to use.
92
To come back to the reverse oriented graph, in this situation
93
\code
94
template<typename Digraph> class ReverseDigraph;
95
\endcode
96
template class can be used. The code looks as follows
97
\code
98
ListDigraph g;
99
ReverseDigraph<ListGraph> rg(g);
100
int result = algorithm(rg);
101
\endcode
102
After running the algorithm, the original graph \c g is untouched.
103
This techniques gives rise to an elegant code, and based on stable
104
graph adaptors, complex algorithms can be implemented easily.
105

	
106
In flow, circulation and bipartite matching problems, the residual
107
graph is of particular importance. Combining an adaptor implementing
108
this, shortest path algorithms and minimum mean cycle algorithms,
109
a range of weighted and cardinality optimization algorithms can be
110
obtained. For other examples, the interested user is referred to the
111
detailed documentation of particular adaptors.
112

	
113
The behavior of graph adaptors can be very different. Some of them keep
114
capabilities of the original graph while in other cases this would be
115
meaningless. This means that the concepts that they are models of depend
116
on the graph adaptor, and the wrapped graph(s).
117
If an arc of \c rg is deleted, this is carried out by deleting the
118
corresponding arc of \c g, thus the adaptor modifies the original graph.
119

	
120
But for a residual graph, this operation has no sense.
121
Let us stand one more example here to simplify your work.
122
RevGraphAdaptor has constructor
123
\code
124
ReverseDigraph(Digraph& digraph);
125
\endcode
126
This means that in a situation, when a <tt>const ListDigraph&</tt>
127
reference to a graph is given, then it have to be instantiated with
128
<tt>Digraph=const ListDigraph</tt>.
129
\code
130
int algorithm1(const ListDigraph& g) {
131
  RevGraphAdaptor<const ListDigraph> rg(g);
132
  return algorithm2(rg);
133
}
134
\endcode
135
*/
136

	
137
/**
65 138
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
66 139
@ingroup graphs
67 140
\brief Graph types between real graphs and graph adaptors.
68 141

	
69 142
This group describes some graph types between real graphs and graph adaptors.
70 143
These classes wrap graphs to give new functionality as the adaptors do it.
71 144
On the other hand they are not light-weight structures as the adaptors.
72 145
*/
73 146

	
74 147
/**
75 148
@defgroup maps Maps
76 149
@ingroup datas
77 150
\brief Map structures implemented in LEMON.
78 151

	
79 152
This group describes the map structures implemented in LEMON.
80 153

	
81 154
LEMON provides several special purpose maps and map adaptors that e.g. combine
82 155
new maps from existing ones.
83 156

	
84 157
<b>See also:</b> \ref map_concepts "Map Concepts".
85 158
*/
86 159

	
87 160
/**
88 161
@defgroup graph_maps Graph Maps
89 162
@ingroup maps
90 163
\brief Special graph-related maps.
91 164

	
92 165
This group describes maps that are specifically designed to assign
93 166
values to the nodes and arcs/edges of graphs.
94 167

	
95 168
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
96 169
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
97 170
*/
98 171

	
99 172
/**
100 173
\defgroup map_adaptors Map Adaptors
101 174
\ingroup maps
102 175
\brief Tools to create new maps from existing ones
103 176

	
104 177
This group describes map adaptors that are used to create "implicit"
105 178
maps from other maps.
106 179

	
107 180
Most of them are \ref concepts::ReadMap "read-only maps".
108 181
They can make arithmetic and logical operations between one or two maps
109 182
(negation, shifting, addition, multiplication, logical 'and', 'or',
110 183
'not' etc.) or e.g. convert a map to another one of different Value type.
111 184

	
112 185
The typical usage of this classes is passing implicit maps to
113 186
algorithms.  If a function type algorithm is called then the function
114 187
type map adaptors can be used comfortable. For example let's see the
115 188
usage of map adaptors with the \c graphToEps() function.
116 189
\code
117 190
  Color nodeColor(int deg) {
118 191
    if (deg >= 2) {
119 192
      return Color(0.5, 0.0, 0.5);
120 193
    } else if (deg == 1) {
121 194
      return Color(1.0, 0.5, 1.0);
122 195
    } else {
123 196
      return Color(0.0, 0.0, 0.0);
124 197
    }
125 198
  }
126 199

	
127 200
  Digraph::NodeMap<int> degree_map(graph);
128 201

	
129 202
  graphToEps(graph, "graph.eps")
130 203
    .coords(coords).scaleToA4().undirected()
131 204
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
132 205
    .run();
133 206
\endcode
134 207
The \c functorToMap() function makes an \c int to \c Color map from the
135 208
\c nodeColor() function. The \c composeMap() compose the \c degree_map
136 209
and the previously created map. The composed map is a proper function to
137 210
get the color of each node.
138 211

	
139 212
The usage with class type algorithms is little bit harder. In this
140 213
case the function type map adaptors can not be used, because the
141 214
function map adaptors give back temporary objects.
142 215
\code
143 216
  Digraph graph;
144 217

	
145 218
  typedef Digraph::ArcMap<double> DoubleArcMap;
146 219
  DoubleArcMap length(graph);
147 220
  DoubleArcMap speed(graph);
148 221

	
149 222
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
150 223
  TimeMap time(length, speed);
151 224

	
152 225
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
153 226
  dijkstra.run(source, target);
154 227
\endcode
155 228
We have a length map and a maximum speed map on the arcs of a digraph.
156 229
The minimum time to pass the arc can be calculated as the division of
157 230
the two maps which can be done implicitly with the \c DivMap template
158 231
class. We use the implicit minimum time map as the length map of the
159 232
\c Dijkstra algorithm.
160 233
*/
161 234

	
162 235
/**
163 236
@defgroup matrices Matrices
164 237
@ingroup datas
165 238
\brief Two dimensional data storages implemented in LEMON.
166 239

	
167 240
This group describes two dimensional data storages implemented in LEMON.
168 241
*/
169 242

	
170 243
/**
171 244
@defgroup paths Path Structures
172 245
@ingroup datas
173 246
\brief %Path structures implemented in LEMON.
174 247

	
175 248
This group describes the path structures implemented in LEMON.
176 249

	
177 250
LEMON provides flexible data structures to work with paths.
178 251
All of them have similar interfaces and they can be copied easily with
179 252
assignment operators and copy constructors. This makes it easy and
180 253
efficient to have e.g. the Dijkstra algorithm to store its result in
181 254
any kind of path structure.
182 255

	
183 256
\sa lemon::concepts::Path
184 257
*/
185 258

	
186 259
/**
187 260
@defgroup auxdat Auxiliary Data Structures
188 261
@ingroup datas
189 262
\brief Auxiliary data structures implemented in LEMON.
190 263

	
191 264
This group describes some data structures implemented in LEMON in
192 265
order to make it easier to implement combinatorial algorithms.
193 266
*/
194 267

	
195 268
/**
196 269
@defgroup algs Algorithms
197 270
\brief This group describes the several algorithms
198 271
implemented in LEMON.
199 272

	
200 273
This group describes the several algorithms
201 274
implemented in LEMON.
202 275
*/
203 276

	
204 277
/**
205 278
@defgroup search Graph Search
206 279
@ingroup algs
207 280
\brief Common graph search algorithms.
208 281

	
209 282
This group describes the common graph search algorithms, namely
210 283
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
211 284
*/
212 285

	
213 286
/**
214 287
@defgroup shortest_path Shortest Path Algorithms
215 288
@ingroup algs
216 289
\brief Algorithms for finding shortest paths.
217 290

	
218 291
This group describes the algorithms for finding shortest paths in digraphs.
219 292

	
220 293
 - \ref Dijkstra algorithm for finding shortest paths from a source node
221 294
   when all arc lengths are non-negative.
222 295
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
223 296
   from a source node when arc lenghts can be either positive or negative,
224 297
   but the digraph should not contain directed cycles with negative total
225 298
   length.
226 299
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
227 300
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
228 301
   lenghts can be either positive or negative, but the digraph should
229 302
   not contain directed cycles with negative total length.
230 303
 - \ref Suurballe A successive shortest path algorithm for finding
231 304
   arc-disjoint paths between two nodes having minimum total length.
232 305
*/
233 306

	
234 307
/**
235 308
@defgroup max_flow Maximum Flow Algorithms
236 309
@ingroup algs
237 310
\brief Algorithms for finding maximum flows.
238 311

	
239 312
This group describes the algorithms for finding maximum flows and
240 313
feasible circulations.
241 314

	
242 315
The \e maximum \e flow \e problem is to find a flow of maximum value between
243 316
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
244 317
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
245 318
\f$s, t \in V\f$ source and target nodes.
246 319
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
247 320
following optimization problem.
248 321

	
249 322
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
250 323
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
251 324
    \qquad \forall v\in V\setminus\{s,t\} \f]
252 325
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
253 326

	
254 327
LEMON contains several algorithms for solving maximum flow problems:
255 328
- \ref EdmondsKarp Edmonds-Karp algorithm.
256 329
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
257 330
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
258 331
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
259 332

	
260 333
In most cases the \ref Preflow "Preflow" algorithm provides the
261 334
fastest method for computing a maximum flow. All implementations
262 335
provides functions to also query the minimum cut, which is the dual
263 336
problem of the maximum flow.
264 337
*/
265 338

	
266 339
/**
267 340
@defgroup min_cost_flow Minimum Cost Flow Algorithms
268 341
@ingroup algs
269 342

	
270 343
\brief Algorithms for finding minimum cost flows and circulations.
271 344

	
272 345
This group describes the algorithms for finding minimum cost flows and
273 346
circulations.
274 347

	
275 348
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
276 349
minimum total cost from a set of supply nodes to a set of demand nodes
277 350
in a network with capacity constraints and arc costs.
278 351
Formally, let \f$G=(V,A)\f$ be a digraph,
279 352
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
280 353
upper bounds for the flow values on the arcs,
281 354
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
282 355
on the arcs, and
283 356
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
284 357
of the nodes.
285 358
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
286 359
the following optimization problem.
287 360

	
288 361
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
289 362
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
290 363
    supply(v) \qquad \forall v\in V \f]
291 364
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
292 365

	
293 366
LEMON contains several algorithms for solving minimum cost flow problems:
294 367
 - \ref CycleCanceling Cycle-canceling algorithms.
295 368
 - \ref CapacityScaling Successive shortest path algorithm with optional
296 369
   capacity scaling.
297 370
 - \ref CostScaling Push-relabel and augment-relabel algorithms based on
298 371
   cost scaling.
299 372
 - \ref NetworkSimplex Primal network simplex algorithm with various
300 373
   pivot strategies.
301 374
*/
302 375

	
303 376
/**
304 377
@defgroup min_cut Minimum Cut Algorithms
305 378
@ingroup algs
306 379

	
307 380
\brief Algorithms for finding minimum cut in graphs.
308 381

	
309 382
This group describes the algorithms for finding minimum cut in graphs.
310 383

	
311 384
The \e minimum \e cut \e problem is to find a non-empty and non-complete
312 385
\f$X\f$ subset of the nodes with minimum overall capacity on
313 386
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
314 387
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
315 388
cut is the \f$X\f$ solution of the next optimization problem:
316 389

	
317 390
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
318 391
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
319 392

	
320 393
LEMON contains several algorithms related to minimum cut problems:
321 394

	
322 395
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
323 396
  in directed graphs.
324 397
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
325 398
  calculating minimum cut in undirected graphs.
326 399
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
327 400
  all-pairs minimum cut in undirected graphs.
328 401

	
329 402
If you want to find minimum cut just between two distinict nodes,
330 403
see the \ref max_flow "maximum flow problem".
331 404
*/
332 405

	
333 406
/**
334 407
@defgroup graph_prop Connectivity and Other Graph Properties
335 408
@ingroup algs
336 409
\brief Algorithms for discovering the graph properties
337 410

	
338 411
This group describes the algorithms for discovering the graph properties
339 412
like connectivity, bipartiteness, euler property, simplicity etc.
340 413

	
341 414
\image html edge_biconnected_components.png
342 415
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
343 416
*/
344 417

	
345 418
/**
346 419
@defgroup planar Planarity Embedding and Drawing
347 420
@ingroup algs
348 421
\brief Algorithms for planarity checking, embedding and drawing
349 422

	
350 423
This group describes the algorithms for planarity checking,
351 424
embedding and drawing.
352 425

	
353 426
\image html planar.png
354 427
\image latex planar.eps "Plane graph" width=\textwidth
355 428
*/
356 429

	
357 430
/**
358 431
@defgroup matching Matching Algorithms
359 432
@ingroup algs
360 433
\brief Algorithms for finding matchings in graphs and bipartite graphs.
361 434

	
362 435
This group contains algorithm objects and functions to calculate
363 436
matchings in graphs and bipartite graphs. The general matching problem is
364 437
finding a subset of the arcs which does not shares common endpoints.
365 438

	
366 439
There are several different algorithms for calculate matchings in
367 440
graphs.  The matching problems in bipartite graphs are generally
368 441
easier than in general graphs. The goal of the matching optimization
369 442
can be finding maximum cardinality, maximum weight or minimum cost
370 443
matching. The search can be constrained to find perfect or
371 444
maximum cardinality matching.
372 445

	
373 446
The matching algorithms implemented in LEMON:
374 447
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
375 448
  for calculating maximum cardinality matching in bipartite graphs.
376 449
- \ref PrBipartiteMatching Push-relabel algorithm
377 450
  for calculating maximum cardinality matching in bipartite graphs.
378 451
- \ref MaxWeightedBipartiteMatching
379 452
  Successive shortest path algorithm for calculating maximum weighted
380 453
  matching and maximum weighted bipartite matching in bipartite graphs.
381 454
- \ref MinCostMaxBipartiteMatching
382 455
  Successive shortest path algorithm for calculating minimum cost maximum
383 456
  matching in bipartite graphs.
384 457
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
385 458
  maximum cardinality matching in general graphs.
386 459
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
387 460
  maximum weighted matching in general graphs.
388 461
- \ref MaxWeightedPerfectMatching
389 462
  Edmond's blossom shrinking algorithm for calculating maximum weighted
390 463
  perfect matching in general graphs.
391 464

	
392 465
\image html bipartite_matching.png
393 466
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
394 467
*/
395 468

	
396 469
/**
397 470
@defgroup spantree Minimum Spanning Tree Algorithms
398 471
@ingroup algs
399 472
\brief Algorithms for finding a minimum cost spanning tree in a graph.
400 473

	
401 474
This group describes the algorithms for finding a minimum cost spanning
402 475
tree in a graph.
403 476
*/
404 477

	
405 478
/**
406 479
@defgroup auxalg Auxiliary Algorithms
407 480
@ingroup algs
408 481
\brief Auxiliary algorithms implemented in LEMON.
409 482

	
410 483
This group describes some algorithms implemented in LEMON
411 484
in order to make it easier to implement complex algorithms.
412 485
*/
413 486

	
414 487
/**
415 488
@defgroup approx Approximation Algorithms
416 489
@ingroup algs
417 490
\brief Approximation algorithms.
418 491

	
419 492
This group describes the approximation and heuristic algorithms
420 493
implemented in LEMON.
421 494
*/
422 495

	
423 496
/**
424 497
@defgroup gen_opt_group General Optimization Tools
425 498
\brief This group describes some general optimization frameworks
426 499
implemented in LEMON.
427 500

	
428 501
This group describes some general optimization frameworks
429 502
implemented in LEMON.
430 503
*/
431 504

	
432 505
/**
433 506
@defgroup lp_group Lp and Mip Solvers
434 507
@ingroup gen_opt_group
435 508
\brief Lp and Mip solver interfaces for LEMON.
436 509

	
437 510
This group describes Lp and Mip solver interfaces for LEMON. The
438 511
various LP solvers could be used in the same manner with this
439 512
interface.
440 513
*/
441 514

	
442 515
/**
443 516
@defgroup lp_utils Tools for Lp and Mip Solvers
444 517
@ingroup lp_group
445 518
\brief Helper tools to the Lp and Mip solvers.
446 519

	
447 520
This group adds some helper tools to general optimization framework
448 521
implemented in LEMON.
449 522
*/
450 523

	
451 524
/**
452 525
@defgroup metah Metaheuristics
453 526
@ingroup gen_opt_group
454 527
\brief Metaheuristics for LEMON library.
455 528

	
456 529
This group describes some metaheuristic optimization tools.
457 530
*/
458 531

	
459 532
/**
460 533
@defgroup utils Tools and Utilities
461 534
\brief Tools and utilities for programming in LEMON
462 535

	
463 536
Tools and utilities for programming in LEMON.
464 537
*/
465 538

	
466 539
/**
467 540
@defgroup gutils Basic Graph Utilities
468 541
@ingroup utils
469 542
\brief Simple basic graph utilities.
470 543

	
471 544
This group describes some simple basic graph utilities.
472 545
*/
473 546

	
474 547
/**
475 548
@defgroup misc Miscellaneous Tools
476 549
@ingroup utils
477 550
\brief Tools for development, debugging and testing.
478 551

	
479 552
This group describes several useful tools for development,
480 553
debugging and testing.
481 554
*/
482 555

	
483 556
/**
484 557
@defgroup timecount Time Measuring and Counting
485 558
@ingroup misc
486 559
\brief Simple tools for measuring the performance of algorithms.
487 560

	
488 561
This group describes simple tools for measuring the performance
489 562
of algorithms.
490 563
*/
491 564

	
492 565
/**
493 566
@defgroup exceptions Exceptions
494 567
@ingroup utils
495 568
\brief Exceptions defined in LEMON.
496 569

	
497 570
This group describes the exceptions defined in LEMON.
498 571
*/
499 572

	
500 573
/**
501 574
@defgroup io_group Input-Output
502 575
\brief Graph Input-Output methods
503 576

	
504 577
This group describes the tools for importing and exporting graphs
505 578
and graph related data. Now it supports the \ref lgf-format
506 579
"LEMON Graph Format", the \c DIMACS format and the encapsulated
507 580
postscript (EPS) format.
508 581
*/
509 582

	
510 583
/**
511 584
@defgroup lemon_io LEMON Graph Format
512 585
@ingroup io_group
513 586
\brief Reading and writing LEMON Graph Format.
514 587

	
515 588
This group describes methods for reading and writing
516 589
\ref lgf-format "LEMON Graph Format".
517 590
*/
518 591

	
519 592
/**
520 593
@defgroup eps_io Postscript Exporting
521 594
@ingroup io_group
522 595
\brief General \c EPS drawer and graph exporter
523 596

	
524 597
This group describes general \c EPS drawing methods and special
525 598
graph exporting tools.
526 599
*/
527 600

	
528 601
/**
529 602
@defgroup dimacs_group DIMACS format
530 603
@ingroup io_group
531 604
\brief Read and write files in DIMACS format
532 605

	
533 606
Tools to read a digraph from or write it to a file in DIMACS format data.
534 607
*/
535 608

	
536 609
/**
537 610
@defgroup nauty_group NAUTY Format
538 611
@ingroup io_group
539 612
\brief Read \e Nauty format
540 613

	
541 614
Tool to read graphs from \e Nauty format data.
542 615
*/
543 616

	
544 617
/**
545 618
@defgroup concept Concepts
546 619
\brief Skeleton classes and concept checking classes
547 620

	
548 621
This group describes the data/algorithm skeletons and concept checking
549 622
classes implemented in LEMON.
550 623

	
551 624
The purpose of the classes in this group is fourfold.
552 625

	
553 626
- These classes contain the documentations of the %concepts. In order
554 627
  to avoid document multiplications, an implementation of a concept
555 628
  simply refers to the corresponding concept class.
556 629

	
557 630
- These classes declare every functions, <tt>typedef</tt>s etc. an
558 631
  implementation of the %concepts should provide, however completely
559 632
  without implementations and real data structures behind the
560 633
  interface. On the other hand they should provide nothing else. All
561 634
  the algorithms working on a data structure meeting a certain concept
562 635
  should compile with these classes. (Though it will not run properly,
563 636
  of course.) In this way it is easily to check if an algorithm
564 637
  doesn't use any extra feature of a certain implementation.
565 638

	
566 639
- The concept descriptor classes also provide a <em>checker class</em>
567 640
  that makes it possible to check whether a certain implementation of a
568 641
  concept indeed provides all the required features.
569 642

	
570 643
- Finally, They can serve as a skeleton of a new implementation of a concept.
571 644
*/
572 645

	
573 646
/**
574 647
@defgroup graph_concepts Graph Structure Concepts
575 648
@ingroup concept
576 649
\brief Skeleton and concept checking classes for graph structures
577 650

	
578 651
This group describes the skeletons and concept checking classes of LEMON's
579 652
graph structures and helper classes used to implement these.
580 653
*/
581 654

	
582 655
/**
583 656
@defgroup map_concepts Map Concepts
584 657
@ingroup concept
585 658
\brief Skeleton and concept checking classes for maps
586 659

	
587 660
This group describes the skeletons and concept checking classes of maps.
588 661
*/
589 662

	
590 663
/**
591 664
\anchor demoprograms
592 665

	
593 666
@defgroup demos Demo Programs
594 667

	
595 668
Some demo programs are listed here. Their full source codes can be found in
596 669
the \c demo subdirectory of the source tree.
597 670

	
598 671
It order to compile them, use <tt>--enable-demo</tt> configure option when
599 672
build the library.
600 673
*/
601 674

	
602 675
/**
603 676
@defgroup tools Standalone Utility Applications
604 677

	
605 678
Some utility applications are listed here.
606 679

	
607 680
The standard compilation procedure (<tt>./configure;make</tt>) will compile
608 681
them, as well.
609 682
*/
610 683

	
611 684
}
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	lemon/lemon.pc.in \
3 3
	lemon/CMakeLists.txt
4 4

	
5 5
pkgconfig_DATA += lemon/lemon.pc
6 6

	
7 7
lib_LTLIBRARIES += lemon/libemon.la
8 8

	
9 9
lemon_libemon_la_SOURCES = \
10 10
        lemon/arg_parser.cc \
11 11
        lemon/base.cc \
12 12
        lemon/color.cc \
13 13
        lemon/random.cc
14 14

	
15 15
#lemon_libemon_la_CXXFLAGS = $(GLPK_CFLAGS) $(CPLEX_CFLAGS) $(SOPLEX_CXXFLAGS) $(AM_CXXFLAGS)
16 16
#lemon_libemon_la_LDFLAGS = $(GLPK_LIBS) $(CPLEX_LIBS) $(SOPLEX_LIBS)
17 17

	
18 18
lemon_HEADERS += \
19
	lemon/adaptors.h \
19 20
        lemon/arg_parser.h \
20 21
	lemon/assert.h \
21 22
        lemon/bfs.h \
22 23
        lemon/bin_heap.h \
23 24
        lemon/circulation.h \
24 25
        lemon/color.h \
25 26
	lemon/concept_check.h \
26 27
        lemon/counter.h \
27 28
	lemon/core.h \
28 29
        lemon/dfs.h \
29 30
        lemon/dijkstra.h \
30 31
        lemon/dim2.h \
31 32
        lemon/dimacs.h \
32 33
	lemon/elevator.h \
33 34
	lemon/error.h \
34 35
	lemon/full_graph.h \
35 36
        lemon/graph_to_eps.h \
36 37
        lemon/grid_graph.h \
37 38
	lemon/hypercube_graph.h \
38 39
	lemon/kruskal.h \
39 40
	lemon/hao_orlin.h \
40 41
	lemon/lgf_reader.h \
41 42
	lemon/lgf_writer.h \
42 43
	lemon/list_graph.h \
43 44
	lemon/maps.h \
44 45
	lemon/math.h \
45 46
	lemon/max_matching.h \
46 47
	lemon/nauty_reader.h \
47 48
	lemon/path.h \
48 49
	lemon/preflow.h \
49 50
        lemon/random.h \
50 51
	lemon/smart_graph.h \
51 52
	lemon/suurballe.h \
52 53
        lemon/time_measure.h \
53 54
        lemon/tolerance.h \
54 55
	lemon/unionfind.h
55 56

	
56 57
bits_HEADERS += \
57 58
	lemon/bits/alteration_notifier.h \
58 59
	lemon/bits/array_map.h \
59 60
	lemon/bits/base_extender.h \
60 61
        lemon/bits/bezier.h \
61 62
	lemon/bits/default_map.h \
62 63
        lemon/bits/enable_if.h \
64
	lemon/bits/graph_adaptor_extender.h \
63 65
	lemon/bits/graph_extender.h \
64 66
	lemon/bits/map_extender.h \
65 67
	lemon/bits/path_dump.h \
66 68
	lemon/bits/traits.h \
69
	lemon/bits/variant.h \
67 70
	lemon/bits/vector_map.h
68 71

	
69 72
concept_HEADERS += \
70 73
	lemon/concepts/digraph.h \
71 74
	lemon/concepts/graph.h \
72 75
	lemon/concepts/graph_components.h \
73 76
	lemon/concepts/heap.h \
74 77
	lemon/concepts/maps.h \
75 78
	lemon/concepts/path.h
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	test/CMakeLists.txt \
3 3
        test/min_cost_flow_test.lgf \
4 4
        test/preflow_graph.lgf
5 5

	
6 6
noinst_HEADERS += \
7 7
	test/graph_test.h \
8 8
        test/test_tools.h
9 9

	
10 10
check_PROGRAMS += \
11 11
	test/bfs_test \
12 12
        test/circulation_test \
13 13
        test/counter_test \
14 14
	test/dfs_test \
15 15
	test/digraph_test \
16 16
	test/dijkstra_test \
17 17
        test/dim_test \
18 18
	test/error_test \
19
	test/graph_adaptor_test \
19 20
	test/graph_copy_test \
20 21
	test/graph_test \
21 22
	test/graph_utils_test \
22 23
	test/heap_test \
23 24
	test/kruskal_test \
24 25
	test/hao_orlin_test \
25 26
        test/maps_test \
26 27
	test/max_matching_test \
27 28
        test/random_test \
28 29
        test/path_test \
29 30
        test/preflow_test \
30 31
        test/suurballe_test \
31 32
        test/test_tools_fail \
32 33
        test/test_tools_pass \
33 34
        test/time_measure_test \
34 35
	test/unionfind_test
35 36

	
36 37
TESTS += $(check_PROGRAMS)
37 38
XFAIL_TESTS += test/test_tools_fail$(EXEEXT)
38 39

	
39 40
test_bfs_test_SOURCES = test/bfs_test.cc
40 41
test_circulation_test_SOURCES = test/circulation_test.cc
41 42
test_counter_test_SOURCES = test/counter_test.cc
42 43
test_dfs_test_SOURCES = test/dfs_test.cc
43 44
test_digraph_test_SOURCES = test/digraph_test.cc
44 45
test_dijkstra_test_SOURCES = test/dijkstra_test.cc
45 46
test_dim_test_SOURCES = test/dim_test.cc
46 47
test_error_test_SOURCES = test/error_test.cc
48
test_graph_adaptor_test_SOURCES = test/graph_adaptor_test.cc
47 49
test_graph_copy_test_SOURCES = test/graph_copy_test.cc
48 50
test_graph_test_SOURCES = test/graph_test.cc
49 51
test_graph_utils_test_SOURCES = test/graph_utils_test.cc
50 52
test_heap_test_SOURCES = test/heap_test.cc
51 53
test_kruskal_test_SOURCES = test/kruskal_test.cc
52 54
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc
53 55
test_maps_test_SOURCES = test/maps_test.cc
54 56
test_max_matching_test_SOURCES = test/max_matching_test.cc
55 57
test_path_test_SOURCES = test/path_test.cc
56 58
test_preflow_test_SOURCES = test/preflow_test.cc
57 59
test_suurballe_test_SOURCES = test/suurballe_test.cc
58 60
test_random_test_SOURCES = test/random_test.cc
59 61
test_test_tools_fail_SOURCES = test/test_tools_fail.cc
60 62
test_test_tools_pass_SOURCES = test/test_tools_pass.cc
61 63
test_time_measure_test_SOURCES = test/time_measure_test.cc
62 64
test_unionfind_test_SOURCES = test/unionfind_test.cc
0 comments (0 inline)