gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Entirely rework cycle canceling algorithms (#180) - Move the cycle canceling algorithms (CycleCanceling, CancelAndTighten) into one class (CycleCanceling). - Add a Method parameter to the run() function to be able to select the used cycle canceling method. - Use the new interface similarly to NetworkSimplex. - Rework the implementations using an efficient internal structure for handling the residual network. This improvement made the codes much faster. - Handle GEQ supply type (LEQ is not supported). - Handle infinite upper bounds. - Handle negative costs (for arcs of finite upper bound). - Extend the documentation.
1 2 0
default
3 files changed with 949 insertions and 1170 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -61,9 +61,8 @@
61 61
	lemon/bfs.h \
62 62
	lemon/bin_heap.h \
63 63
	lemon/binom_heap.h \
64 64
	lemon/bucket_heap.h \
65
	lemon/cancel_and_tighten.h \
66 65
	lemon/capacity_scaling.h \
67 66
	lemon/cbc.h \
68 67
	lemon/circulation.h \
69 68
	lemon/clp.h \
Ignore white space 8 line context
... ...
@@ -18,443 +18,819 @@
18 18

	
19 19
#ifndef LEMON_CYCLE_CANCELING_H
20 20
#define LEMON_CYCLE_CANCELING_H
21 21

	
22
/// \ingroup min_cost_flow
23
///
22
/// \ingroup min_cost_flow_algs
24 23
/// \file
25
/// \brief Cycle-canceling algorithm for finding a minimum cost flow.
24
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
26 25

	
27 26
#include <vector>
27
#include <limits>
28

	
29
#include <lemon/core.h>
30
#include <lemon/maps.h>
31
#include <lemon/path.h>
32
#include <lemon/math.h>
33
#include <lemon/static_graph.h>
28 34
#include <lemon/adaptors.h>
29
#include <lemon/path.h>
30

	
31 35
#include <lemon/circulation.h>
32 36
#include <lemon/bellman_ford.h>
33 37
#include <lemon/howard.h>
34 38

	
35 39
namespace lemon {
36 40

	
37
  /// \addtogroup min_cost_flow
41
  /// \addtogroup min_cost_flow_algs
38 42
  /// @{
39 43

	
40
  /// \brief Implementation of a cycle-canceling algorithm for
41
  /// finding a minimum cost flow.
44
  /// \brief Implementation of cycle-canceling algorithms for
45
  /// finding a \ref min_cost_flow "minimum cost flow".
42 46
  ///
43
  /// \ref CycleCanceling implements a cycle-canceling algorithm for
44
  /// finding a minimum cost flow.
47
  /// \ref CycleCanceling implements three different cycle-canceling
48
  /// algorithms for finding a \ref min_cost_flow "minimum cost flow".
49
  /// The most efficent one (both theoretically and practically)
50
  /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
51
  /// thus it is the default method.
52
  /// It is strongly polynomial, but in practice, it is typically much
53
  /// slower than the scaling algorithms and NetworkSimplex.
45 54
  ///
46
  /// \tparam Digraph The digraph type the algorithm runs on.
47
  /// \tparam LowerMap The type of the lower bound map.
48
  /// \tparam CapacityMap The type of the capacity (upper bound) map.
49
  /// \tparam CostMap The type of the cost (length) map.
50
  /// \tparam SupplyMap The type of the supply map.
55
  /// Most of the parameters of the problem (except for the digraph)
56
  /// can be given using separate functions, and the algorithm can be
57
  /// executed using the \ref run() function. If some parameters are not
58
  /// specified, then default values will be used.
51 59
  ///
52
  /// \warning
53
  /// - Arc capacities and costs should be \e non-negative \e integers.
54
  /// - Supply values should be \e signed \e integers.
55
  /// - The value types of the maps should be convertible to each other.
56
  /// - \c CostMap::Value must be signed type.
60
  /// \tparam GR The digraph type the algorithm runs on.
61
  /// \tparam V The number type used for flow amounts, capacity bounds
62
  /// and supply values in the algorithm. By default, it is \c int.
63
  /// \tparam C The number type used for costs and potentials in the
64
  /// algorithm. By default, it is the same as \c V.
57 65
  ///
58
  /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
59
  /// used for negative cycle detection with limited iteration number.
60
  /// However \ref CycleCanceling also provides the "Minimum Mean
61
  /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
62
  /// but rather slower in practice.
63
  /// To use this version of the algorithm, call \ref run() with \c true
64
  /// parameter.
66
  /// \warning Both number types must be signed and all input data must
67
  /// be integer.
68
  /// \warning This algorithm does not support negative costs for such
69
  /// arcs that have infinite upper bound.
65 70
  ///
66
  /// \author Peter Kovacs
67
  template < typename Digraph,
68
             typename LowerMap = typename Digraph::template ArcMap<int>,
69
             typename CapacityMap = typename Digraph::template ArcMap<int>,
70
             typename CostMap = typename Digraph::template ArcMap<int>,
71
             typename SupplyMap = typename Digraph::template NodeMap<int> >
71
  /// \note For more information about the three available methods,
72
  /// see \ref Method.
73
#ifdef DOXYGEN
74
  template <typename GR, typename V, typename C>
75
#else
76
  template <typename GR, typename V = int, typename C = V>
77
#endif
72 78
  class CycleCanceling
73 79
  {
74
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
80
  public:
75 81

	
76
    typedef typename CapacityMap::Value Capacity;
77
    typedef typename CostMap::Value Cost;
78
    typedef typename SupplyMap::Value Supply;
79
    typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
80
    typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
81

	
82
    typedef ResidualDigraph< const Digraph,
83
      CapacityArcMap, CapacityArcMap > ResDigraph;
84
    typedef typename ResDigraph::Node ResNode;
85
    typedef typename ResDigraph::NodeIt ResNodeIt;
86
    typedef typename ResDigraph::Arc ResArc;
87
    typedef typename ResDigraph::ArcIt ResArcIt;
82
    /// The type of the digraph
83
    typedef GR Digraph;
84
    /// The type of the flow amounts, capacity bounds and supply values
85
    typedef V Value;
86
    /// The type of the arc costs
87
    typedef C Cost;
88 88

	
89 89
  public:
90 90

	
91
    /// The type of the flow map.
92
    typedef typename Digraph::template ArcMap<Capacity> FlowMap;
93
    /// The type of the potential map.
94
    typedef typename Digraph::template NodeMap<Cost> PotentialMap;
91
    /// \brief Problem type constants for the \c run() function.
92
    ///
93
    /// Enum type containing the problem type constants that can be
94
    /// returned by the \ref run() function of the algorithm.
95
    enum ProblemType {
96
      /// The problem has no feasible solution (flow).
97
      INFEASIBLE,
98
      /// The problem has optimal solution (i.e. it is feasible and
99
      /// bounded), and the algorithm has found optimal flow and node
100
      /// potentials (primal and dual solutions).
101
      OPTIMAL,
102
      /// The digraph contains an arc of negative cost and infinite
103
      /// upper bound. It means that the objective function is unbounded
104
      /// on that arc, however, note that it could actually be bounded
105
      /// over the feasible flows, but this algroithm cannot handle
106
      /// these cases.
107
      UNBOUNDED
108
    };
109

	
110
    /// \brief Constants for selecting the used method.
111
    ///
112
    /// Enum type containing constants for selecting the used method
113
    /// for the \ref run() function.
114
    ///
115
    /// \ref CycleCanceling provides three different cycle-canceling
116
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
117
    /// is used, which proved to be the most efficient and the most robust
118
    /// on various test inputs.
119
    /// However, the other methods can be selected using the \ref run()
120
    /// function with the proper parameter.
121
    enum Method {
122
      /// A simple cycle-canceling method, which uses the
123
      /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
124
      /// number for detecting negative cycles in the residual network.
125
      SIMPLE_CYCLE_CANCELING,
126
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
127
      /// well-known strongly polynomial method. It improves along a
128
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
129
      /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
130
      MINIMUM_MEAN_CYCLE_CANCELING,
131
      /// The "Cancel And Tighten" algorithm, which can be viewed as an
132
      /// improved version of the previous method.
133
      /// It is faster both in theory and in practice, its running time
134
      /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
135
      CANCEL_AND_TIGHTEN
136
    };
95 137

	
96 138
  private:
97 139

	
98
    /// \brief Map adaptor class for handling residual arc costs.
99
    ///
100
    /// Map adaptor class for handling residual arc costs.
101
    class ResidualCostMap : public MapBase<ResArc, Cost>
102
    {
103
    private:
140
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
141
    
142
    typedef std::vector<int> IntVector;
143
    typedef std::vector<char> CharVector;
144
    typedef std::vector<double> DoubleVector;
145
    typedef std::vector<Value> ValueVector;
146
    typedef std::vector<Cost> CostVector;
104 147

	
105
      const CostMap &_cost_map;
106

	
148
  private:
149
  
150
    template <typename KT, typename VT>
151
    class VectorMap {
107 152
    public:
108

	
109
      ///\e
110
      ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
111

	
112
      ///\e
113
      Cost operator[](const ResArc &e) const {
114
        return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
153
      typedef KT Key;
154
      typedef VT Value;
155
      
156
      VectorMap(std::vector<Value>& v) : _v(v) {}
157
      
158
      const Value& operator[](const Key& key) const {
159
        return _v[StaticDigraph::id(key)];
115 160
      }
116 161

	
117
    }; //class ResidualCostMap
162
      Value& operator[](const Key& key) {
163
        return _v[StaticDigraph::id(key)];
164
      }
165
      
166
      void set(const Key& key, const Value& val) {
167
        _v[StaticDigraph::id(key)] = val;
168
      }
169

	
170
    private:
171
      std::vector<Value>& _v;
172
    };
173

	
174
    typedef VectorMap<StaticDigraph::Node, Cost> CostNodeMap;
175
    typedef VectorMap<StaticDigraph::Arc, Cost> CostArcMap;
118 176

	
119 177
  private:
120 178

	
121
    // The maximum number of iterations for the first execution of the
122
    // Bellman-Ford algorithm. It should be at least 2.
123
    static const int BF_FIRST_LIMIT  = 2;
124
    // The iteration limit for the Bellman-Ford algorithm is multiplied
125
    // by BF_LIMIT_FACTOR/100 in every round.
126
    static const int BF_LIMIT_FACTOR = 150;
127 179

	
128
  private:
180
    // Data related to the underlying digraph
181
    const GR &_graph;
182
    int _node_num;
183
    int _arc_num;
184
    int _res_node_num;
185
    int _res_arc_num;
186
    int _root;
129 187

	
130
    // The digraph the algorithm runs on
131
    const Digraph &_graph;
132
    // The original lower bound map
133
    const LowerMap *_lower;
134
    // The modified capacity map
135
    CapacityArcMap _capacity;
136
    // The original cost map
137
    const CostMap &_cost;
138
    // The modified supply map
139
    SupplyNodeMap _supply;
140
    bool _valid_supply;
188
    // Parameters of the problem
189
    bool _have_lower;
190
    Value _sum_supply;
141 191

	
142
    // Arc map of the current flow
143
    FlowMap *_flow;
144
    bool _local_flow;
145
    // Node map of the current potentials
146
    PotentialMap *_potential;
147
    bool _local_potential;
192
    // Data structures for storing the digraph
193
    IntNodeMap _node_id;
194
    IntArcMap _arc_idf;
195
    IntArcMap _arc_idb;
196
    IntVector _first_out;
197
    CharVector _forward;
198
    IntVector _source;
199
    IntVector _target;
200
    IntVector _reverse;
148 201

	
149
    // The residual digraph
150
    ResDigraph *_res_graph;
151
    // The residual cost map
152
    ResidualCostMap _res_cost;
202
    // Node and arc data
203
    ValueVector _lower;
204
    ValueVector _upper;
205
    CostVector _cost;
206
    ValueVector _supply;
207

	
208
    ValueVector _res_cap;
209
    CostVector _pi;
210

	
211
    // Data for a StaticDigraph structure
212
    typedef std::pair<int, int> IntPair;
213
    StaticDigraph _sgr;
214
    std::vector<IntPair> _arc_vec;
215
    std::vector<Cost> _cost_vec;
216
    IntVector _id_vec;
217
    CostArcMap _cost_map;
218
    CostNodeMap _pi_map;
219
  
220
  public:
221
  
222
    /// \brief Constant for infinite upper bounds (capacities).
223
    ///
224
    /// Constant for infinite upper bounds (capacities).
225
    /// It is \c std::numeric_limits<Value>::infinity() if available,
226
    /// \c std::numeric_limits<Value>::max() otherwise.
227
    const Value INF;
153 228

	
154 229
  public:
155 230

	
156
    /// \brief General constructor (with lower bounds).
231
    /// \brief Constructor.
157 232
    ///
158
    /// General constructor (with lower bounds).
233
    /// The constructor of the class.
159 234
    ///
160
    /// \param digraph The digraph the algorithm runs on.
161
    /// \param lower The lower bounds of the arcs.
162
    /// \param capacity The capacities (upper bounds) of the arcs.
163
    /// \param cost The cost (length) values of the arcs.
164
    /// \param supply The supply values of the nodes (signed).
165
    CycleCanceling( const Digraph &digraph,
166
                    const LowerMap &lower,
167
                    const CapacityMap &capacity,
168
                    const CostMap &cost,
169
                    const SupplyMap &supply ) :
170
      _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
171
      _supply(digraph), _flow(NULL), _local_flow(false),
172
      _potential(NULL), _local_potential(false),
173
      _res_graph(NULL), _res_cost(_cost)
235
    /// \param graph The digraph the algorithm runs on.
236
    CycleCanceling(const GR& graph) :
237
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
238
      _cost_map(_cost_vec), _pi_map(_pi),
239
      INF(std::numeric_limits<Value>::has_infinity ?
240
          std::numeric_limits<Value>::infinity() :
241
          std::numeric_limits<Value>::max())
174 242
    {
175
      // Check the sum of supply values
176
      Supply sum = 0;
177
      for (NodeIt n(_graph); n != INVALID; ++n) {
178
        _supply[n] = supply[n];
179
        sum += _supply[n];
243
      // Check the number types
244
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
245
        "The flow type of CycleCanceling must be signed");
246
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
247
        "The cost type of CycleCanceling must be signed");
248

	
249
      // Resize vectors
250
      _node_num = countNodes(_graph);
251
      _arc_num = countArcs(_graph);
252
      _res_node_num = _node_num + 1;
253
      _res_arc_num = 2 * (_arc_num + _node_num);
254
      _root = _node_num;
255

	
256
      _first_out.resize(_res_node_num + 1);
257
      _forward.resize(_res_arc_num);
258
      _source.resize(_res_arc_num);
259
      _target.resize(_res_arc_num);
260
      _reverse.resize(_res_arc_num);
261

	
262
      _lower.resize(_res_arc_num);
263
      _upper.resize(_res_arc_num);
264
      _cost.resize(_res_arc_num);
265
      _supply.resize(_res_node_num);
266
      
267
      _res_cap.resize(_res_arc_num);
268
      _pi.resize(_res_node_num);
269

	
270
      _arc_vec.reserve(_res_arc_num);
271
      _cost_vec.reserve(_res_arc_num);
272
      _id_vec.reserve(_res_arc_num);
273

	
274
      // Copy the graph
275
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
276
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
277
        _node_id[n] = i;
180 278
      }
181
      _valid_supply = sum == 0;
182

	
183
      // Remove non-zero lower bounds
184
      for (ArcIt e(_graph); e != INVALID; ++e) {
185
        _capacity[e] = capacity[e];
186
        if (lower[e] != 0) {
187
          _capacity[e] -= lower[e];
188
          _supply[_graph.source(e)] -= lower[e];
189
          _supply[_graph.target(e)] += lower[e];
279
      i = 0;
280
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
281
        _first_out[i] = j;
282
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
283
          _arc_idf[a] = j;
284
          _forward[j] = true;
285
          _source[j] = i;
286
          _target[j] = _node_id[_graph.runningNode(a)];
190 287
        }
288
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
289
          _arc_idb[a] = j;
290
          _forward[j] = false;
291
          _source[j] = i;
292
          _target[j] = _node_id[_graph.runningNode(a)];
293
        }
294
        _forward[j] = false;
295
        _source[j] = i;
296
        _target[j] = _root;
297
        _reverse[j] = k;
298
        _forward[k] = true;
299
        _source[k] = _root;
300
        _target[k] = i;
301
        _reverse[k] = j;
302
        ++j; ++k;
191 303
      }
192
    }
193
/*
194
    /// \brief General constructor (without lower bounds).
195
    ///
196
    /// General constructor (without lower bounds).
197
    ///
198
    /// \param digraph The digraph the algorithm runs on.
199
    /// \param capacity The capacities (upper bounds) of the arcs.
200
    /// \param cost The cost (length) values of the arcs.
201
    /// \param supply The supply values of the nodes (signed).
202
    CycleCanceling( const Digraph &digraph,
203
                    const CapacityMap &capacity,
204
                    const CostMap &cost,
205
                    const SupplyMap &supply ) :
206
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
207
      _supply(supply), _flow(NULL), _local_flow(false),
208
      _potential(NULL), _local_potential(false), _res_graph(NULL),
209
      _res_cost(_cost)
210
    {
211
      // Check the sum of supply values
212
      Supply sum = 0;
213
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
214
      _valid_supply = sum == 0;
304
      _first_out[i] = j;
305
      _first_out[_res_node_num] = k;
306
      for (ArcIt a(_graph); a != INVALID; ++a) {
307
        int fi = _arc_idf[a];
308
        int bi = _arc_idb[a];
309
        _reverse[fi] = bi;
310
        _reverse[bi] = fi;
311
      }
312
      
313
      // Reset parameters
314
      reset();
215 315
    }
216 316

	
217
    /// \brief Simple constructor (with lower bounds).
317
    /// \name Parameters
318
    /// The parameters of the algorithm can be specified using these
319
    /// functions.
320

	
321
    /// @{
322

	
323
    /// \brief Set the lower bounds on the arcs.
218 324
    ///
219
    /// Simple constructor (with lower bounds).
325
    /// This function sets the lower bounds on the arcs.
326
    /// If it is not used before calling \ref run(), the lower bounds
327
    /// will be set to zero on all arcs.
220 328
    ///
221
    /// \param digraph The digraph the algorithm runs on.
222
    /// \param lower The lower bounds of the arcs.
223
    /// \param capacity The capacities (upper bounds) of the arcs.
224
    /// \param cost The cost (length) values of the arcs.
225
    /// \param s The source node.
226
    /// \param t The target node.
227
    /// \param flow_value The required amount of flow from node \c s
228
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
229
    CycleCanceling( const Digraph &digraph,
230
                    const LowerMap &lower,
231
                    const CapacityMap &capacity,
232
                    const CostMap &cost,
233
                    Node s, Node t,
234
                    Supply flow_value ) :
235
      _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
236
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
237
      _potential(NULL), _local_potential(false), _res_graph(NULL),
238
      _res_cost(_cost)
239
    {
240
      // Remove non-zero lower bounds
241
      _supply[s] =  flow_value;
242
      _supply[t] = -flow_value;
243
      for (ArcIt e(_graph); e != INVALID; ++e) {
244
        if (lower[e] != 0) {
245
          _capacity[e] -= lower[e];
246
          _supply[_graph.source(e)] -= lower[e];
247
          _supply[_graph.target(e)] += lower[e];
248
        }
329
    /// \param map An arc map storing the lower bounds.
330
    /// Its \c Value type must be convertible to the \c Value type
331
    /// of the algorithm.
332
    ///
333
    /// \return <tt>(*this)</tt>
334
    template <typename LowerMap>
335
    CycleCanceling& lowerMap(const LowerMap& map) {
336
      _have_lower = true;
337
      for (ArcIt a(_graph); a != INVALID; ++a) {
338
        _lower[_arc_idf[a]] = map[a];
339
        _lower[_arc_idb[a]] = map[a];
249 340
      }
250
      _valid_supply = true;
251
    }
252

	
253
    /// \brief Simple constructor (without lower bounds).
254
    ///
255
    /// Simple constructor (without lower bounds).
256
    ///
257
    /// \param digraph The digraph the algorithm runs on.
258
    /// \param capacity The capacities (upper bounds) of the arcs.
259
    /// \param cost The cost (length) values of the arcs.
260
    /// \param s The source node.
261
    /// \param t The target node.
262
    /// \param flow_value The required amount of flow from node \c s
263
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
264
    CycleCanceling( const Digraph &digraph,
265
                    const CapacityMap &capacity,
266
                    const CostMap &cost,
267
                    Node s, Node t,
268
                    Supply flow_value ) :
269
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
270
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
271
      _potential(NULL), _local_potential(false), _res_graph(NULL),
272
      _res_cost(_cost)
273
    {
274
      _supply[s] =  flow_value;
275
      _supply[t] = -flow_value;
276
      _valid_supply = true;
277
    }
278
*/
279
    /// Destructor.
280
    ~CycleCanceling() {
281
      if (_local_flow) delete _flow;
282
      if (_local_potential) delete _potential;
283
      delete _res_graph;
284
    }
285

	
286
    /// \brief Set the flow map.
287
    ///
288
    /// Set the flow map.
289
    ///
290
    /// \return \c (*this)
291
    CycleCanceling& flowMap(FlowMap &map) {
292
      if (_local_flow) {
293
        delete _flow;
294
        _local_flow = false;
295
      }
296
      _flow = &map;
297 341
      return *this;
298 342
    }
299 343

	
300
    /// \brief Set the potential map.
344
    /// \brief Set the upper bounds (capacities) on the arcs.
301 345
    ///
302
    /// Set the potential map.
346
    /// This function sets the upper bounds (capacities) on the arcs.
347
    /// If it is not used before calling \ref run(), the upper bounds
348
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
349
    /// unbounded from above).
303 350
    ///
304
    /// \return \c (*this)
305
    CycleCanceling& potentialMap(PotentialMap &map) {
306
      if (_local_potential) {
307
        delete _potential;
308
        _local_potential = false;
351
    /// \param map An arc map storing the upper bounds.
352
    /// Its \c Value type must be convertible to the \c Value type
353
    /// of the algorithm.
354
    ///
355
    /// \return <tt>(*this)</tt>
356
    template<typename UpperMap>
357
    CycleCanceling& upperMap(const UpperMap& map) {
358
      for (ArcIt a(_graph); a != INVALID; ++a) {
359
        _upper[_arc_idf[a]] = map[a];
309 360
      }
310
      _potential = &map;
311 361
      return *this;
312 362
    }
313 363

	
364
    /// \brief Set the costs of the arcs.
365
    ///
366
    /// This function sets the costs of the arcs.
367
    /// If it is not used before calling \ref run(), the costs
368
    /// will be set to \c 1 on all arcs.
369
    ///
370
    /// \param map An arc map storing the costs.
371
    /// Its \c Value type must be convertible to the \c Cost type
372
    /// of the algorithm.
373
    ///
374
    /// \return <tt>(*this)</tt>
375
    template<typename CostMap>
376
    CycleCanceling& costMap(const CostMap& map) {
377
      for (ArcIt a(_graph); a != INVALID; ++a) {
378
        _cost[_arc_idf[a]] =  map[a];
379
        _cost[_arc_idb[a]] = -map[a];
380
      }
381
      return *this;
382
    }
383

	
384
    /// \brief Set the supply values of the nodes.
385
    ///
386
    /// This function sets the supply values of the nodes.
387
    /// If neither this function nor \ref stSupply() is used before
388
    /// calling \ref run(), the supply of each node will be set to zero.
389
    ///
390
    /// \param map A node map storing the supply values.
391
    /// Its \c Value type must be convertible to the \c Value type
392
    /// of the algorithm.
393
    ///
394
    /// \return <tt>(*this)</tt>
395
    template<typename SupplyMap>
396
    CycleCanceling& supplyMap(const SupplyMap& map) {
397
      for (NodeIt n(_graph); n != INVALID; ++n) {
398
        _supply[_node_id[n]] = map[n];
399
      }
400
      return *this;
401
    }
402

	
403
    /// \brief Set single source and target nodes and a supply value.
404
    ///
405
    /// This function sets a single source node and a single target node
406
    /// and the required flow value.
407
    /// If neither this function nor \ref supplyMap() is used before
408
    /// calling \ref run(), the supply of each node will be set to zero.
409
    ///
410
    /// Using this function has the same effect as using \ref supplyMap()
411
    /// with such a map in which \c k is assigned to \c s, \c -k is
412
    /// assigned to \c t and all other nodes have zero supply value.
413
    ///
414
    /// \param s The source node.
415
    /// \param t The target node.
416
    /// \param k The required amount of flow from node \c s to node \c t
417
    /// (i.e. the supply of \c s and the demand of \c t).
418
    ///
419
    /// \return <tt>(*this)</tt>
420
    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
421
      for (int i = 0; i != _res_node_num; ++i) {
422
        _supply[i] = 0;
423
      }
424
      _supply[_node_id[s]] =  k;
425
      _supply[_node_id[t]] = -k;
426
      return *this;
427
    }
428
    
429
    /// @}
430

	
314 431
    /// \name Execution control
432
    /// The algorithm can be executed using \ref run().
315 433

	
316 434
    /// @{
317 435

	
318 436
    /// \brief Run the algorithm.
319 437
    ///
320
    /// Run the algorithm.
438
    /// This function runs the algorithm.
439
    /// The paramters can be specified using functions \ref lowerMap(),
440
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
441
    /// For example,
442
    /// \code
443
    ///   CycleCanceling<ListDigraph> cc(graph);
444
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
445
    ///     .supplyMap(sup).run();
446
    /// \endcode
321 447
    ///
322
    /// \param min_mean_cc Set this parameter to \c true to run the
323
    /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
324
    /// polynomial, but rather slower in practice.
448
    /// This function can be called more than once. All the parameters
449
    /// that have been given are kept for the next call, unless
450
    /// \ref reset() is called, thus only the modified parameters
451
    /// have to be set again. See \ref reset() for examples.
452
    /// However, the underlying digraph must not be modified after this
453
    /// class have been constructed, since it copies and extends the graph.
325 454
    ///
326
    /// \return \c true if a feasible flow can be found.
327
    bool run(bool min_mean_cc = false) {
328
      return init() && start(min_mean_cc);
455
    /// \param method The cycle-canceling method that will be used.
456
    /// For more information, see \ref Method.
457
    ///
458
    /// \return \c INFEASIBLE if no feasible flow exists,
459
    /// \n \c OPTIMAL if the problem has optimal solution
460
    /// (i.e. it is feasible and bounded), and the algorithm has found
461
    /// optimal flow and node potentials (primal and dual solutions),
462
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
463
    /// and infinite upper bound. It means that the objective function
464
    /// is unbounded on that arc, however, note that it could actually be
465
    /// bounded over the feasible flows, but this algroithm cannot handle
466
    /// these cases.
467
    ///
468
    /// \see ProblemType, Method
469
    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
470
      ProblemType pt = init();
471
      if (pt != OPTIMAL) return pt;
472
      start(method);
473
      return OPTIMAL;
474
    }
475

	
476
    /// \brief Reset all the parameters that have been given before.
477
    ///
478
    /// This function resets all the paramaters that have been given
479
    /// before using functions \ref lowerMap(), \ref upperMap(),
480
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
481
    ///
482
    /// It is useful for multiple run() calls. If this function is not
483
    /// used, all the parameters given before are kept for the next
484
    /// \ref run() call.
485
    /// However, the underlying digraph must not be modified after this
486
    /// class have been constructed, since it copies and extends the graph.
487
    ///
488
    /// For example,
489
    /// \code
490
    ///   CycleCanceling<ListDigraph> cs(graph);
491
    ///
492
    ///   // First run
493
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
494
    ///     .supplyMap(sup).run();
495
    ///
496
    ///   // Run again with modified cost map (reset() is not called,
497
    ///   // so only the cost map have to be set again)
498
    ///   cost[e] += 100;
499
    ///   cc.costMap(cost).run();
500
    ///
501
    ///   // Run again from scratch using reset()
502
    ///   // (the lower bounds will be set to zero on all arcs)
503
    ///   cc.reset();
504
    ///   cc.upperMap(capacity).costMap(cost)
505
    ///     .supplyMap(sup).run();
506
    /// \endcode
507
    ///
508
    /// \return <tt>(*this)</tt>
509
    CycleCanceling& reset() {
510
      for (int i = 0; i != _res_node_num; ++i) {
511
        _supply[i] = 0;
512
      }
513
      int limit = _first_out[_root];
514
      for (int j = 0; j != limit; ++j) {
515
        _lower[j] = 0;
516
        _upper[j] = INF;
517
        _cost[j] = _forward[j] ? 1 : -1;
518
      }
519
      for (int j = limit; j != _res_arc_num; ++j) {
520
        _lower[j] = 0;
521
        _upper[j] = INF;
522
        _cost[j] = 0;
523
        _cost[_reverse[j]] = 0;
524
      }      
525
      _have_lower = false;
526
      return *this;
329 527
    }
330 528

	
331 529
    /// @}
332 530

	
333 531
    /// \name Query Functions
334
    /// The result of the algorithm can be obtained using these
532
    /// The results of the algorithm can be obtained using these
335 533
    /// functions.\n
336
    /// \ref lemon::CycleCanceling::run() "run()" must be called before
337
    /// using them.
534
    /// The \ref run() function must be called before using them.
338 535

	
339 536
    /// @{
340 537

	
341
    /// \brief Return a const reference to the arc map storing the
342
    /// found flow.
538
    /// \brief Return the total cost of the found flow.
343 539
    ///
344
    /// Return a const reference to the arc map storing the found flow.
540
    /// This function returns the total cost of the found flow.
541
    /// Its complexity is O(e).
542
    ///
543
    /// \note The return type of the function can be specified as a
544
    /// template parameter. For example,
545
    /// \code
546
    ///   cc.totalCost<double>();
547
    /// \endcode
548
    /// It is useful if the total cost cannot be stored in the \c Cost
549
    /// type of the algorithm, which is the default return type of the
550
    /// function.
345 551
    ///
346 552
    /// \pre \ref run() must be called before using this function.
347
    const FlowMap& flowMap() const {
348
      return *_flow;
553
    template <typename Number>
554
    Number totalCost() const {
555
      Number c = 0;
556
      for (ArcIt a(_graph); a != INVALID; ++a) {
557
        int i = _arc_idb[a];
558
        c += static_cast<Number>(_res_cap[i]) *
559
             (-static_cast<Number>(_cost[i]));
560
      }
561
      return c;
349 562
    }
350 563

	
351
    /// \brief Return a const reference to the node map storing the
352
    /// found potentials (the dual solution).
353
    ///
354
    /// Return a const reference to the node map storing the found
355
    /// potentials (the dual solution).
356
    ///
357
    /// \pre \ref run() must be called before using this function.
358
    const PotentialMap& potentialMap() const {
359
      return *_potential;
564
#ifndef DOXYGEN
565
    Cost totalCost() const {
566
      return totalCost<Cost>();
360 567
    }
568
#endif
361 569

	
362 570
    /// \brief Return the flow on the given arc.
363 571
    ///
364
    /// Return the flow on the given arc.
572
    /// This function returns the flow on the given arc.
365 573
    ///
366 574
    /// \pre \ref run() must be called before using this function.
367
    Capacity flow(const Arc& arc) const {
368
      return (*_flow)[arc];
575
    Value flow(const Arc& a) const {
576
      return _res_cap[_arc_idb[a]];
369 577
    }
370 578

	
371
    /// \brief Return the potential of the given node.
579
    /// \brief Return the flow map (the primal solution).
372 580
    ///
373
    /// Return the potential of the given node.
581
    /// This function copies the flow value on each arc into the given
582
    /// map. The \c Value type of the algorithm must be convertible to
583
    /// the \c Value type of the map.
374 584
    ///
375 585
    /// \pre \ref run() must be called before using this function.
376
    Cost potential(const Node& node) const {
377
      return (*_potential)[node];
586
    template <typename FlowMap>
587
    void flowMap(FlowMap &map) const {
588
      for (ArcIt a(_graph); a != INVALID; ++a) {
589
        map.set(a, _res_cap[_arc_idb[a]]);
590
      }
378 591
    }
379 592

	
380
    /// \brief Return the total cost of the found flow.
593
    /// \brief Return the potential (dual value) of the given node.
381 594
    ///
382
    /// Return the total cost of the found flow. The complexity of the
383
    /// function is \f$ O(e) \f$.
595
    /// This function returns the potential (dual value) of the
596
    /// given node.
384 597
    ///
385 598
    /// \pre \ref run() must be called before using this function.
386
    Cost totalCost() const {
387
      Cost c = 0;
388
      for (ArcIt e(_graph); e != INVALID; ++e)
389
        c += (*_flow)[e] * _cost[e];
390
      return c;
599
    Cost potential(const Node& n) const {
600
      return static_cast<Cost>(_pi[_node_id[n]]);
601
    }
602

	
603
    /// \brief Return the potential map (the dual solution).
604
    ///
605
    /// This function copies the potential (dual value) of each node
606
    /// into the given map.
607
    /// The \c Cost type of the algorithm must be convertible to the
608
    /// \c Value type of the map.
609
    ///
610
    /// \pre \ref run() must be called before using this function.
611
    template <typename PotentialMap>
612
    void potentialMap(PotentialMap &map) const {
613
      for (NodeIt n(_graph); n != INVALID; ++n) {
614
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
615
      }
391 616
    }
392 617

	
393 618
    /// @}
394 619

	
395 620
  private:
396 621

	
397
    /// Initialize the algorithm.
398
    bool init() {
399
      if (!_valid_supply) return false;
622
    // Initialize the algorithm
623
    ProblemType init() {
624
      if (_res_node_num <= 1) return INFEASIBLE;
400 625

	
401
      // Initializing flow and potential maps
402
      if (!_flow) {
403
        _flow = new FlowMap(_graph);
404
        _local_flow = true;
626
      // Check the sum of supply values
627
      _sum_supply = 0;
628
      for (int i = 0; i != _root; ++i) {
629
        _sum_supply += _supply[i];
405 630
      }
406
      if (!_potential) {
407
        _potential = new PotentialMap(_graph);
408
        _local_potential = true;
631
      if (_sum_supply > 0) return INFEASIBLE;
632
      
633

	
634
      // Initialize vectors
635
      for (int i = 0; i != _res_node_num; ++i) {
636
        _pi[i] = 0;
637
      }
638
      ValueVector excess(_supply);
639
      
640
      // Remove infinite upper bounds and check negative arcs
641
      const Value MAX = std::numeric_limits<Value>::max();
642
      int last_out;
643
      if (_have_lower) {
644
        for (int i = 0; i != _root; ++i) {
645
          last_out = _first_out[i+1];
646
          for (int j = _first_out[i]; j != last_out; ++j) {
647
            if (_forward[j]) {
648
              Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
649
              if (c >= MAX) return UNBOUNDED;
650
              excess[i] -= c;
651
              excess[_target[j]] += c;
652
            }
653
          }
654
        }
655
      } else {
656
        for (int i = 0; i != _root; ++i) {
657
          last_out = _first_out[i+1];
658
          for (int j = _first_out[i]; j != last_out; ++j) {
659
            if (_forward[j] && _cost[j] < 0) {
660
              Value c = _upper[j];
661
              if (c >= MAX) return UNBOUNDED;
662
              excess[i] -= c;
663
              excess[_target[j]] += c;
664
            }
665
          }
666
        }
667
      }
668
      Value ex, max_cap = 0;
669
      for (int i = 0; i != _res_node_num; ++i) {
670
        ex = excess[i];
671
        if (ex < 0) max_cap -= ex;
672
      }
673
      for (int j = 0; j != _res_arc_num; ++j) {
674
        if (_upper[j] >= MAX) _upper[j] = max_cap;
409 675
      }
410 676

	
411
      _res_graph = new ResDigraph(_graph, _capacity, *_flow);
677
      // Initialize maps for Circulation and remove non-zero lower bounds
678
      ConstMap<Arc, Value> low(0);
679
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
680
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
681
      ValueArcMap cap(_graph), flow(_graph);
682
      ValueNodeMap sup(_graph);
683
      for (NodeIt n(_graph); n != INVALID; ++n) {
684
        sup[n] = _supply[_node_id[n]];
685
      }
686
      if (_have_lower) {
687
        for (ArcIt a(_graph); a != INVALID; ++a) {
688
          int j = _arc_idf[a];
689
          Value c = _lower[j];
690
          cap[a] = _upper[j] - c;
691
          sup[_graph.source(a)] -= c;
692
          sup[_graph.target(a)] += c;
693
        }
694
      } else {
695
        for (ArcIt a(_graph); a != INVALID; ++a) {
696
          cap[a] = _upper[_arc_idf[a]];
697
        }
698
      }
412 699

	
413
      // Finding a feasible flow using Circulation
414
      Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap,
415
                   SupplyMap >
416
        circulation( _graph, constMap<Arc>(Capacity(0)), _capacity,
417
                     _supply );
418
      return circulation.flowMap(*_flow).run();
700
      // Find a feasible flow using Circulation
701
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
702
        circ(_graph, low, cap, sup);
703
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
704

	
705
      // Set residual capacities and handle GEQ supply type
706
      if (_sum_supply < 0) {
707
        for (ArcIt a(_graph); a != INVALID; ++a) {
708
          Value fa = flow[a];
709
          _res_cap[_arc_idf[a]] = cap[a] - fa;
710
          _res_cap[_arc_idb[a]] = fa;
711
          sup[_graph.source(a)] -= fa;
712
          sup[_graph.target(a)] += fa;
713
        }
714
        for (NodeIt n(_graph); n != INVALID; ++n) {
715
          excess[_node_id[n]] = sup[n];
716
        }
717
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
718
          int u = _target[a];
719
          int ra = _reverse[a];
720
          _res_cap[a] = -_sum_supply + 1;
721
          _res_cap[ra] = -excess[u];
722
          _cost[a] = 0;
723
          _cost[ra] = 0;
724
        }
725
      } else {
726
        for (ArcIt a(_graph); a != INVALID; ++a) {
727
          Value fa = flow[a];
728
          _res_cap[_arc_idf[a]] = cap[a] - fa;
729
          _res_cap[_arc_idb[a]] = fa;
730
        }
731
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
732
          int ra = _reverse[a];
733
          _res_cap[a] = 1;
734
          _res_cap[ra] = 0;
735
          _cost[a] = 0;
736
          _cost[ra] = 0;
737
        }
738
      }
739
      
740
      return OPTIMAL;
741
    }
742
    
743
    // Build a StaticDigraph structure containing the current
744
    // residual network
745
    void buildResidualNetwork() {
746
      _arc_vec.clear();
747
      _cost_vec.clear();
748
      _id_vec.clear();
749
      for (int j = 0; j != _res_arc_num; ++j) {
750
        if (_res_cap[j] > 0) {
751
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
752
          _cost_vec.push_back(_cost[j]);
753
          _id_vec.push_back(j);
754
        }
755
      }
756
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
419 757
    }
420 758

	
421
    bool start(bool min_mean_cc) {
422
      if (min_mean_cc)
423
        startMinMean();
424
      else
425
        start();
759
    // Execute the algorithm and transform the results
760
    void start(Method method) {
761
      // Execute the algorithm
762
      switch (method) {
763
        case SIMPLE_CYCLE_CANCELING:
764
          startSimpleCycleCanceling();
765
          break;
766
        case MINIMUM_MEAN_CYCLE_CANCELING:
767
          startMinMeanCycleCanceling();
768
          break;
769
        case CANCEL_AND_TIGHTEN:
770
          startCancelAndTighten();
771
          break;
772
      }
426 773

	
427
      // Handling non-zero lower bounds
428
      if (_lower) {
429
        for (ArcIt e(_graph); e != INVALID; ++e)
430
          (*_flow)[e] += (*_lower)[e];
774
      // Compute node potentials
775
      if (method != SIMPLE_CYCLE_CANCELING) {
776
        buildResidualNetwork();
777
        typename BellmanFord<StaticDigraph, CostArcMap>
778
          ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
779
        bf.distMap(_pi_map);
780
        bf.init(0);
781
        bf.start();
431 782
      }
432
      return true;
783

	
784
      // Handle non-zero lower bounds
785
      if (_have_lower) {
786
        int limit = _first_out[_root];
787
        for (int j = 0; j != limit; ++j) {
788
          if (!_forward[j]) _res_cap[j] += _lower[j];
789
        }
790
      }
433 791
    }
434 792

	
435
    /// \brief Execute the algorithm using \ref BellmanFord.
436
    ///
437
    /// Execute the algorithm using the \ref BellmanFord
438
    /// "Bellman-Ford" algorithm for negative cycle detection with
439
    /// successively larger limit for the number of iterations.
440
    void start() {
441
      typename BellmanFord<ResDigraph, ResidualCostMap>::PredMap pred(*_res_graph);
442
      typename ResDigraph::template NodeMap<int> visited(*_res_graph);
443
      std::vector<ResArc> cycle;
444
      int node_num = countNodes(_graph);
793
    // Execute the "Simple Cycle Canceling" method
794
    void startSimpleCycleCanceling() {
795
      // Constants for computing the iteration limits
796
      const int BF_FIRST_LIMIT  = 2;
797
      const double BF_LIMIT_FACTOR = 1.5;
798
      
799
      typedef VectorMap<StaticDigraph::Arc, Value> FilterMap;
800
      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
801
      typedef VectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
802
      typedef typename BellmanFord<ResDigraph, CostArcMap>
803
        ::template SetDistMap<CostNodeMap>
804
        ::template SetPredMap<PredMap>::Create BF;
805
      
806
      // Build the residual network
807
      _arc_vec.clear();
808
      _cost_vec.clear();
809
      for (int j = 0; j != _res_arc_num; ++j) {
810
        _arc_vec.push_back(IntPair(_source[j], _target[j]));
811
        _cost_vec.push_back(_cost[j]);
812
      }
813
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
814

	
815
      FilterMap filter_map(_res_cap);
816
      ResDigraph rgr(_sgr, filter_map);
817
      std::vector<int> cycle;
818
      std::vector<StaticDigraph::Arc> pred(_res_arc_num);
819
      PredMap pred_map(pred);
820
      BF bf(rgr, _cost_map);
821
      bf.distMap(_pi_map).predMap(pred_map);
445 822

	
446 823
      int length_bound = BF_FIRST_LIMIT;
447 824
      bool optimal = false;
448 825
      while (!optimal) {
449
        BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
450
        bf.predMap(pred);
451 826
        bf.init(0);
452 827
        int iter_num = 0;
453 828
        bool cycle_found = false;
454 829
        while (!cycle_found) {
455
          int curr_iter_num = iter_num + length_bound <= node_num ?
456
                              length_bound : node_num - iter_num;
830
          // Perform some iterations of the Bellman-Ford algorithm
831
          int curr_iter_num = iter_num + length_bound <= _node_num ?
832
            length_bound : _node_num - iter_num;
457 833
          iter_num += curr_iter_num;
458 834
          int real_iter_num = curr_iter_num;
459 835
          for (int i = 0; i < curr_iter_num; ++i) {
460 836
            if (bf.processNextWeakRound()) {
... ...
@@ -464,91 +840,292 @@
464 840
          }
465 841
          if (real_iter_num < curr_iter_num) {
466 842
            // Optimal flow is found
467 843
            optimal = true;
468
            // Setting node potentials
469
            for (NodeIt n(_graph); n != INVALID; ++n)
470
              (*_potential)[n] = bf.dist(n);
471 844
            break;
472 845
          } else {
473
            // Searching for node disjoint negative cycles
474
            for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
475
              visited[n] = 0;
846
            // Search for node disjoint negative cycles
847
            std::vector<int> state(_res_node_num, 0);
476 848
            int id = 0;
477
            for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
478
              if (visited[n] > 0) continue;
479
              visited[n] = ++id;
480
              ResNode u = pred[n] == INVALID ?
481
                          INVALID : _res_graph->source(pred[n]);
482
              while (u != INVALID && visited[u] == 0) {
483
                visited[u] = id;
484
                u = pred[u] == INVALID ?
485
                    INVALID : _res_graph->source(pred[u]);
849
            for (int u = 0; u != _res_node_num; ++u) {
850
              if (state[u] != 0) continue;
851
              ++id;
852
              int v = u;
853
              for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
854
                   -1 : rgr.id(rgr.source(pred[v]))) {
855
                state[v] = id;
486 856
              }
487
              if (u != INVALID && visited[u] == id) {
488
                // Finding the negative cycle
857
              if (v != -1 && state[v] == id) {
858
                // A negative cycle is found
489 859
                cycle_found = true;
490 860
                cycle.clear();
491
                ResArc e = pred[u];
492
                cycle.push_back(e);
493
                Capacity d = _res_graph->residualCapacity(e);
494
                while (_res_graph->source(e) != u) {
495
                  cycle.push_back(e = pred[_res_graph->source(e)]);
496
                  if (_res_graph->residualCapacity(e) < d)
497
                    d = _res_graph->residualCapacity(e);
861
                StaticDigraph::Arc a = pred[v];
862
                Value d, delta = _res_cap[rgr.id(a)];
863
                cycle.push_back(rgr.id(a));
864
                while (rgr.id(rgr.source(a)) != v) {
865
                  a = pred_map[rgr.source(a)];
866
                  d = _res_cap[rgr.id(a)];
867
                  if (d < delta) delta = d;
868
                  cycle.push_back(rgr.id(a));
498 869
                }
499 870

	
500
                // Augmenting along the cycle
501
                for (int i = 0; i < int(cycle.size()); ++i)
502
                  _res_graph->augment(cycle[i], d);
871
                // Augment along the cycle
872
                for (int i = 0; i < int(cycle.size()); ++i) {
873
                  int j = cycle[i];
874
                  _res_cap[j] -= delta;
875
                  _res_cap[_reverse[j]] += delta;
876
                }
503 877
              }
504 878
            }
505 879
          }
506 880

	
507
          if (!cycle_found)
508
            length_bound = length_bound * BF_LIMIT_FACTOR / 100;
881
          // Increase iteration limit if no cycle is found
882
          if (!cycle_found) {
883
            length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
884
          }
509 885
        }
510 886
      }
511 887
    }
512 888

	
513
    /// \brief Execute the algorithm using \ref Howard.
514
    ///
515
    /// Execute the algorithm using \ref Howard for negative
516
    /// cycle detection.
517
    void startMinMean() {
518
      typedef Path<ResDigraph> ResPath;
519
      Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
520
      ResPath cycle;
889
    // Execute the "Minimum Mean Cycle Canceling" method
890
    void startMinMeanCycleCanceling() {
891
      typedef SimplePath<StaticDigraph> SPath;
892
      typedef typename SPath::ArcIt SPathArcIt;
893
      typedef typename Howard<StaticDigraph, CostArcMap>
894
        ::template SetPath<SPath>::Create MMC;
895
      
896
      SPath cycle;
897
      MMC mmc(_sgr, _cost_map);
898
      mmc.cycle(cycle);
899
      buildResidualNetwork();
900
      while (mmc.findMinMean() && mmc.cycleLength() < 0) {
901
        // Find the cycle
902
        mmc.findCycle();
521 903

	
522
      mmc.cycle(cycle);
523
      if (mmc.findMinMean()) {
524
        while (mmc.cycleLength() < 0) {
525
          // Finding the cycle
526
          mmc.findCycle();
904
        // Compute delta value
905
        Value delta = INF;
906
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
907
          Value d = _res_cap[_id_vec[_sgr.id(a)]];
908
          if (d < delta) delta = d;
909
        }
527 910

	
528
          // Finding the largest flow amount that can be augmented
529
          // along the cycle
530
          Capacity delta = 0;
531
          for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) {
532
            if (delta == 0 || _res_graph->residualCapacity(e) < delta)
533
              delta = _res_graph->residualCapacity(e);
911
        // Augment along the cycle
912
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
913
          int j = _id_vec[_sgr.id(a)];
914
          _res_cap[j] -= delta;
915
          _res_cap[_reverse[j]] += delta;
916
        }
917

	
918
        // Rebuild the residual network        
919
        buildResidualNetwork();
920
      }
921
    }
922

	
923
    // Execute the "Cancel And Tighten" method
924
    void startCancelAndTighten() {
925
      // Constants for the min mean cycle computations
926
      const double LIMIT_FACTOR = 1.0;
927
      const int MIN_LIMIT = 5;
928

	
929
      // Contruct auxiliary data vectors
930
      DoubleVector pi(_res_node_num, 0.0);
931
      IntVector level(_res_node_num);
932
      CharVector reached(_res_node_num);
933
      CharVector processed(_res_node_num);
934
      IntVector pred_node(_res_node_num);
935
      IntVector pred_arc(_res_node_num);
936
      std::vector<int> stack(_res_node_num);
937
      std::vector<int> proc_vector(_res_node_num);
938

	
939
      // Initialize epsilon
940
      double epsilon = 0;
941
      for (int a = 0; a != _res_arc_num; ++a) {
942
        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
943
          epsilon = -_cost[a];
944
      }
945

	
946
      // Start phases
947
      Tolerance<double> tol;
948
      tol.epsilon(1e-6);
949
      int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
950
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
951
      int iter = limit;
952
      while (epsilon * _res_node_num >= 1) {
953
        // Find and cancel cycles in the admissible network using DFS
954
        for (int u = 0; u != _res_node_num; ++u) {
955
          reached[u] = false;
956
          processed[u] = false;
957
        }
958
        int stack_head = -1;
959
        int proc_head = -1;
960
        for (int start = 0; start != _res_node_num; ++start) {
961
          if (reached[start]) continue;
962

	
963
          // New start node
964
          reached[start] = true;
965
          pred_arc[start] = -1;
966
          pred_node[start] = -1;
967

	
968
          // Find the first admissible outgoing arc
969
          double p = pi[start];
970
          int a = _first_out[start];
971
          int last_out = _first_out[start+1];
972
          for (; a != last_out && (_res_cap[a] == 0 ||
973
               !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
974
          if (a == last_out) {
975
            processed[start] = true;
976
            proc_vector[++proc_head] = start;
977
            continue;
978
          }
979
          stack[++stack_head] = a;
980

	
981
          while (stack_head >= 0) {
982
            int sa = stack[stack_head];
983
            int u = _source[sa];
984
            int v = _target[sa];
985

	
986
            if (!reached[v]) {
987
              // A new node is reached
988
              reached[v] = true;
989
              pred_node[v] = u;
990
              pred_arc[v] = sa;
991
              p = pi[v];
992
              a = _first_out[v];
993
              last_out = _first_out[v+1];
994
              for (; a != last_out && (_res_cap[a] == 0 ||
995
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
996
              stack[++stack_head] = a == last_out ? -1 : a;
997
            } else {
998
              if (!processed[v]) {
999
                // A cycle is found
1000
                int n, w = u;
1001
                Value d, delta = _res_cap[sa];
1002
                for (n = u; n != v; n = pred_node[n]) {
1003
                  d = _res_cap[pred_arc[n]];
1004
                  if (d <= delta) {
1005
                    delta = d;
1006
                    w = pred_node[n];
1007
                  }
1008
                }
1009

	
1010
                // Augment along the cycle
1011
                _res_cap[sa] -= delta;
1012
                _res_cap[_reverse[sa]] += delta;
1013
                for (n = u; n != v; n = pred_node[n]) {
1014
                  int pa = pred_arc[n];
1015
                  _res_cap[pa] -= delta;
1016
                  _res_cap[_reverse[pa]] += delta;
1017
                }
1018
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
1019
                  --stack_head;
1020
                  reached[n] = false;
1021
                }
1022
                u = w;
1023
              }
1024
              v = u;
1025

	
1026
              // Find the next admissible outgoing arc
1027
              p = pi[v];
1028
              a = stack[stack_head] + 1;
1029
              last_out = _first_out[v+1];
1030
              for (; a != last_out && (_res_cap[a] == 0 ||
1031
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1032
              stack[stack_head] = a == last_out ? -1 : a;
1033
            }
1034

	
1035
            while (stack_head >= 0 && stack[stack_head] == -1) {
1036
              processed[v] = true;
1037
              proc_vector[++proc_head] = v;
1038
              if (--stack_head >= 0) {
1039
                // Find the next admissible outgoing arc
1040
                v = _source[stack[stack_head]];
1041
                p = pi[v];
1042
                a = stack[stack_head] + 1;
1043
                last_out = _first_out[v+1];
1044
                for (; a != last_out && (_res_cap[a] == 0 ||
1045
                     !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1046
                stack[stack_head] = a == last_out ? -1 : a;
1047
              }
1048
            }
1049
          }
1050
        }
1051

	
1052
        // Tighten potentials and epsilon
1053
        if (--iter > 0) {
1054
          for (int u = 0; u != _res_node_num; ++u) {
1055
            level[u] = 0;
1056
          }
1057
          for (int i = proc_head; i > 0; --i) {
1058
            int u = proc_vector[i];
1059
            double p = pi[u];
1060
            int l = level[u] + 1;
1061
            int last_out = _first_out[u+1];
1062
            for (int a = _first_out[u]; a != last_out; ++a) {
1063
              int v = _target[a];
1064
              if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
1065
                  l > level[v]) level[v] = l;
1066
            }
534 1067
          }
535 1068

	
536
          // Augmenting along the cycle
537
          for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e)
538
            _res_graph->augment(e, delta);
1069
          // Modify potentials
1070
          double q = std::numeric_limits<double>::max();
1071
          for (int u = 0; u != _res_node_num; ++u) {
1072
            int lu = level[u];
1073
            double p, pu = pi[u];
1074
            int last_out = _first_out[u+1];
1075
            for (int a = _first_out[u]; a != last_out; ++a) {
1076
              if (_res_cap[a] == 0) continue;
1077
              int v = _target[a];
1078
              int ld = lu - level[v];
1079
              if (ld > 0) {
1080
                p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
1081
                if (p < q) q = p;
1082
              }
1083
            }
1084
          }
1085
          for (int u = 0; u != _res_node_num; ++u) {
1086
            pi[u] -= q * level[u];
1087
          }
539 1088

	
540
          // Finding the minimum cycle mean for the modified residual
541
          // digraph
542
          if (!mmc.findMinMean()) break;
1089
          // Modify epsilon
1090
          epsilon = 0;
1091
          for (int u = 0; u != _res_node_num; ++u) {
1092
            double curr, pu = pi[u];
1093
            int last_out = _first_out[u+1];
1094
            for (int a = _first_out[u]; a != last_out; ++a) {
1095
              if (_res_cap[a] == 0) continue;
1096
              curr = _cost[a] + pu - pi[_target[a]];
1097
              if (-curr > epsilon) epsilon = -curr;
1098
            }
1099
          }
1100
        } else {
1101
          typedef Howard<StaticDigraph, CostArcMap> MMC;
1102
          typedef typename BellmanFord<StaticDigraph, CostArcMap>
1103
            ::template SetDistMap<CostNodeMap>::Create BF;
1104

	
1105
          // Set epsilon to the minimum cycle mean
1106
          buildResidualNetwork();
1107
          MMC mmc(_sgr, _cost_map);
1108
          mmc.findMinMean();
1109
          epsilon = -mmc.cycleMean();
1110
          Cost cycle_cost = mmc.cycleLength();
1111
          int cycle_size = mmc.cycleArcNum();
1112
          
1113
          // Compute feasible potentials for the current epsilon
1114
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
1115
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1116
          }
1117
          BF bf(_sgr, _cost_map);
1118
          bf.distMap(_pi_map);
1119
          bf.init(0);
1120
          bf.start();
1121
          for (int u = 0; u != _res_node_num; ++u) {
1122
            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1123
          }
1124
        
1125
          iter = limit;
543 1126
        }
544 1127
      }
545

	
546
      // Computing node potentials
547
      BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
548
      bf.init(0); bf.start();
549
      for (NodeIt n(_graph); n != INVALID; ++n)
550
        (*_potential)[n] = bf.dist(n);
551 1128
    }
552 1129

	
553 1130
  }; //class CycleCanceling
554 1131

	
Ignore white space 6 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_CANCEL_AND_TIGHTEN_H
20
#define LEMON_CANCEL_AND_TIGHTEN_H
21

	
22
/// \ingroup min_cost_flow
23
///
24
/// \file
25
/// \brief Cancel and Tighten algorithm for finding a minimum cost flow.
26

	
27
#include <vector>
28

	
29
#include <lemon/circulation.h>
30
#include <lemon/bellman_ford.h>
31
#include <lemon/howard.h>
32
#include <lemon/adaptors.h>
33
#include <lemon/tolerance.h>
34
#include <lemon/math.h>
35

	
36
#include <lemon/static_graph.h>
37

	
38
namespace lemon {
39

	
40
  /// \addtogroup min_cost_flow
41
  /// @{
42

	
43
  /// \brief Implementation of the Cancel and Tighten algorithm for
44
  /// finding a minimum cost flow.
45
  ///
46
  /// \ref CancelAndTighten implements the Cancel and Tighten algorithm for
47
  /// finding a minimum cost flow.
48
  ///
49
  /// \tparam Digraph The digraph type the algorithm runs on.
50
  /// \tparam LowerMap The type of the lower bound map.
51
  /// \tparam CapacityMap The type of the capacity (upper bound) map.
52
  /// \tparam CostMap The type of the cost (length) map.
53
  /// \tparam SupplyMap The type of the supply map.
54
  ///
55
  /// \warning
56
  /// - Arc capacities and costs should be \e non-negative \e integers.
57
  /// - Supply values should be \e signed \e integers.
58
  /// - The value types of the maps should be convertible to each other.
59
  /// - \c CostMap::Value must be signed type.
60
  ///
61
  /// \author Peter Kovacs
62
  template < typename Digraph,
63
             typename LowerMap = typename Digraph::template ArcMap<int>,
64
             typename CapacityMap = typename Digraph::template ArcMap<int>,
65
             typename CostMap = typename Digraph::template ArcMap<int>,
66
             typename SupplyMap = typename Digraph::template NodeMap<int> >
67
  class CancelAndTighten
68
  {
69
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
70

	
71
    typedef typename CapacityMap::Value Capacity;
72
    typedef typename CostMap::Value Cost;
73
    typedef typename SupplyMap::Value Supply;
74
    typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
75
    typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
76

	
77
    typedef ResidualDigraph< const Digraph,
78
      CapacityArcMap, CapacityArcMap > ResDigraph;
79

	
80
  public:
81

	
82
    /// The type of the flow map.
83
    typedef typename Digraph::template ArcMap<Capacity> FlowMap;
84
    /// The type of the potential map.
85
    typedef typename Digraph::template NodeMap<Cost> PotentialMap;
86

	
87
  private:
88

	
89
    /// \brief Map adaptor class for handling residual arc costs.
90
    ///
91
    /// Map adaptor class for handling residual arc costs.
92
    class ResidualCostMap : public MapBase<typename ResDigraph::Arc, Cost>
93
    {
94
      typedef typename ResDigraph::Arc Arc;
95
      
96
    private:
97

	
98
      const CostMap &_cost_map;
99

	
100
    public:
101

	
102
      ///\e
103
      ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
104

	
105
      ///\e
106
      Cost operator[](const Arc &e) const {
107
        return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
108
      }
109

	
110
    }; //class ResidualCostMap
111

	
112
    /// \brief Map adaptor class for handling reduced arc costs.
113
    ///
114
    /// Map adaptor class for handling reduced arc costs.
115
    class ReducedCostMap : public MapBase<Arc, Cost>
116
    {
117
    private:
118

	
119
      const Digraph &_gr;
120
      const CostMap &_cost_map;
121
      const PotentialMap &_pot_map;
122

	
123
    public:
124

	
125
      ///\e
126
      ReducedCostMap( const Digraph &gr,
127
                      const CostMap &cost_map,
128
                      const PotentialMap &pot_map ) :
129
        _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
130

	
131
      ///\e
132
      inline Cost operator[](const Arc &e) const {
133
        return _cost_map[e] + _pot_map[_gr.source(e)]
134
                            - _pot_map[_gr.target(e)];
135
      }
136

	
137
    }; //class ReducedCostMap
138

	
139
    struct BFOperationTraits {
140
      static double zero() { return 0; }
141

	
142
      static double infinity() {
143
        return std::numeric_limits<double>::infinity();
144
      }
145

	
146
      static double plus(const double& left, const double& right) {
147
        return left + right;
148
      }
149

	
150
      static bool less(const double& left, const double& right) {
151
        return left + 1e-6 < right;
152
      }
153
    }; // class BFOperationTraits
154

	
155
  private:
156

	
157
    // The digraph the algorithm runs on
158
    const Digraph &_graph;
159
    // The original lower bound map
160
    const LowerMap *_lower;
161
    // The modified capacity map
162
    CapacityArcMap _capacity;
163
    // The original cost map
164
    const CostMap &_cost;
165
    // The modified supply map
166
    SupplyNodeMap _supply;
167
    bool _valid_supply;
168

	
169
    // Arc map of the current flow
170
    FlowMap *_flow;
171
    bool _local_flow;
172
    // Node map of the current potentials
173
    PotentialMap *_potential;
174
    bool _local_potential;
175

	
176
    // The residual digraph
177
    ResDigraph *_res_graph;
178
    // The residual cost map
179
    ResidualCostMap _res_cost;
180

	
181
  public:
182

	
183
    /// \brief General constructor (with lower bounds).
184
    ///
185
    /// General constructor (with lower bounds).
186
    ///
187
    /// \param digraph The digraph the algorithm runs on.
188
    /// \param lower The lower bounds of the arcs.
189
    /// \param capacity The capacities (upper bounds) of the arcs.
190
    /// \param cost The cost (length) values of the arcs.
191
    /// \param supply The supply values of the nodes (signed).
192
    CancelAndTighten( const Digraph &digraph,
193
                      const LowerMap &lower,
194
                      const CapacityMap &capacity,
195
                      const CostMap &cost,
196
                      const SupplyMap &supply ) :
197
      _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
198
      _supply(digraph), _flow(NULL), _local_flow(false),
199
      _potential(NULL), _local_potential(false),
200
      _res_graph(NULL), _res_cost(_cost)
201
    {
202
      // Check the sum of supply values
203
      Supply sum = 0;
204
      for (NodeIt n(_graph); n != INVALID; ++n) {
205
        _supply[n] = supply[n];
206
        sum += _supply[n];
207
      }
208
      _valid_supply = sum == 0;
209

	
210
      // Remove non-zero lower bounds
211
      for (ArcIt e(_graph); e != INVALID; ++e) {
212
        _capacity[e] = capacity[e];
213
        if (lower[e] != 0) {
214
          _capacity[e] -= lower[e];
215
          _supply[_graph.source(e)] -= lower[e];
216
          _supply[_graph.target(e)] += lower[e];
217
        }
218
      }
219
    }
220
/*
221
    /// \brief General constructor (without lower bounds).
222
    ///
223
    /// General constructor (without lower bounds).
224
    ///
225
    /// \param digraph The digraph the algorithm runs on.
226
    /// \param capacity The capacities (upper bounds) of the arcs.
227
    /// \param cost The cost (length) values of the arcs.
228
    /// \param supply The supply values of the nodes (signed).
229
    CancelAndTighten( const Digraph &digraph,
230
                      const CapacityMap &capacity,
231
                      const CostMap &cost,
232
                      const SupplyMap &supply ) :
233
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
234
      _supply(supply), _flow(NULL), _local_flow(false),
235
      _potential(NULL), _local_potential(false),
236
      _res_graph(NULL), _res_cost(_cost)
237
    {
238
      // Check the sum of supply values
239
      Supply sum = 0;
240
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
241
      _valid_supply = sum == 0;
242
    }
243

	
244
    /// \brief Simple constructor (with lower bounds).
245
    ///
246
    /// Simple constructor (with lower bounds).
247
    ///
248
    /// \param digraph The digraph the algorithm runs on.
249
    /// \param lower The lower bounds of the arcs.
250
    /// \param capacity The capacities (upper bounds) of the arcs.
251
    /// \param cost The cost (length) values of the arcs.
252
    /// \param s The source node.
253
    /// \param t The target node.
254
    /// \param flow_value The required amount of flow from node \c s
255
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
256
    CancelAndTighten( const Digraph &digraph,
257
                      const LowerMap &lower,
258
                      const CapacityMap &capacity,
259
                      const CostMap &cost,
260
                      Node s, Node t,
261
                      Supply flow_value ) :
262
      _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
263
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
264
      _potential(NULL), _local_potential(false),
265
      _res_graph(NULL), _res_cost(_cost)
266
    {
267
      // Remove non-zero lower bounds
268
      _supply[s] =  flow_value;
269
      _supply[t] = -flow_value;
270
      for (ArcIt e(_graph); e != INVALID; ++e) {
271
        if (lower[e] != 0) {
272
          _capacity[e] -= lower[e];
273
          _supply[_graph.source(e)] -= lower[e];
274
          _supply[_graph.target(e)] += lower[e];
275
        }
276
      }
277
      _valid_supply = true;
278
    }
279

	
280
    /// \brief Simple constructor (without lower bounds).
281
    ///
282
    /// Simple constructor (without lower bounds).
283
    ///
284
    /// \param digraph The digraph the algorithm runs on.
285
    /// \param capacity The capacities (upper bounds) of the arcs.
286
    /// \param cost The cost (length) values of the arcs.
287
    /// \param s The source node.
288
    /// \param t The target node.
289
    /// \param flow_value The required amount of flow from node \c s
290
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
291
    CancelAndTighten( const Digraph &digraph,
292
                      const CapacityMap &capacity,
293
                      const CostMap &cost,
294
                      Node s, Node t,
295
                      Supply flow_value ) :
296
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
297
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
298
      _potential(NULL), _local_potential(false),
299
      _res_graph(NULL), _res_cost(_cost)
300
    {
301
      _supply[s] =  flow_value;
302
      _supply[t] = -flow_value;
303
      _valid_supply = true;
304
    }
305
*/
306
    /// Destructor.
307
    ~CancelAndTighten() {
308
      if (_local_flow) delete _flow;
309
      if (_local_potential) delete _potential;
310
      delete _res_graph;
311
    }
312

	
313
    /// \brief Set the flow map.
314
    ///
315
    /// Set the flow map.
316
    ///
317
    /// \return \c (*this)
318
    CancelAndTighten& flowMap(FlowMap &map) {
319
      if (_local_flow) {
320
        delete _flow;
321
        _local_flow = false;
322
      }
323
      _flow = &map;
324
      return *this;
325
    }
326

	
327
    /// \brief Set the potential map.
328
    ///
329
    /// Set the potential map.
330
    ///
331
    /// \return \c (*this)
332
    CancelAndTighten& potentialMap(PotentialMap &map) {
333
      if (_local_potential) {
334
        delete _potential;
335
        _local_potential = false;
336
      }
337
      _potential = &map;
338
      return *this;
339
    }
340

	
341
    /// \name Execution control
342

	
343
    /// @{
344

	
345
    /// \brief Run the algorithm.
346
    ///
347
    /// Run the algorithm.
348
    ///
349
    /// \return \c true if a feasible flow can be found.
350
    bool run() {
351
      return init() && start();
352
    }
353

	
354
    /// @}
355

	
356
    /// \name Query Functions
357
    /// The result of the algorithm can be obtained using these
358
    /// functions.\n
359
    /// \ref lemon::CancelAndTighten::run() "run()" must be called before
360
    /// using them.
361

	
362
    /// @{
363

	
364
    /// \brief Return a const reference to the arc map storing the
365
    /// found flow.
366
    ///
367
    /// Return a const reference to the arc map storing the found flow.
368
    ///
369
    /// \pre \ref run() must be called before using this function.
370
    const FlowMap& flowMap() const {
371
      return *_flow;
372
    }
373

	
374
    /// \brief Return a const reference to the node map storing the
375
    /// found potentials (the dual solution).
376
    ///
377
    /// Return a const reference to the node map storing the found
378
    /// potentials (the dual solution).
379
    ///
380
    /// \pre \ref run() must be called before using this function.
381
    const PotentialMap& potentialMap() const {
382
      return *_potential;
383
    }
384

	
385
    /// \brief Return the flow on the given arc.
386
    ///
387
    /// Return the flow on the given arc.
388
    ///
389
    /// \pre \ref run() must be called before using this function.
390
    Capacity flow(const Arc& arc) const {
391
      return (*_flow)[arc];
392
    }
393

	
394
    /// \brief Return the potential of the given node.
395
    ///
396
    /// Return the potential of the given node.
397
    ///
398
    /// \pre \ref run() must be called before using this function.
399
    Cost potential(const Node& node) const {
400
      return (*_potential)[node];
401
    }
402

	
403
    /// \brief Return the total cost of the found flow.
404
    ///
405
    /// Return the total cost of the found flow. The complexity of the
406
    /// function is \f$ O(e) \f$.
407
    ///
408
    /// \pre \ref run() must be called before using this function.
409
    Cost totalCost() const {
410
      Cost c = 0;
411
      for (ArcIt e(_graph); e != INVALID; ++e)
412
        c += (*_flow)[e] * _cost[e];
413
      return c;
414
    }
415

	
416
    /// @}
417

	
418
  private:
419

	
420
    /// Initialize the algorithm.
421
    bool init() {
422
      if (!_valid_supply) return false;
423

	
424
      // Initialize flow and potential maps
425
      if (!_flow) {
426
        _flow = new FlowMap(_graph);
427
        _local_flow = true;
428
      }
429
      if (!_potential) {
430
        _potential = new PotentialMap(_graph);
431
        _local_potential = true;
432
      }
433

	
434
      _res_graph = new ResDigraph(_graph, _capacity, *_flow);
435

	
436
      // Find a feasible flow using Circulation
437
      Circulation< Digraph, ConstMap<Arc, Capacity>,
438
                   CapacityArcMap, SupplyMap >
439
        circulation( _graph, constMap<Arc>(Capacity(0)),
440
                     _capacity, _supply );
441
      return circulation.flowMap(*_flow).run();
442
    }
443

	
444
    bool start() {
445
      const double LIMIT_FACTOR = 0.01;
446
      const int MIN_LIMIT = 3;
447

	
448
      typedef typename Digraph::template NodeMap<double> FloatPotentialMap;
449
      typedef typename Digraph::template NodeMap<int> LevelMap;
450
      typedef typename Digraph::template NodeMap<bool> BoolNodeMap;
451
      typedef typename Digraph::template NodeMap<Node> PredNodeMap;
452
      typedef typename Digraph::template NodeMap<Arc> PredArcMap;
453
      typedef typename ResDigraph::template ArcMap<double> ResShiftCostMap;
454
      FloatPotentialMap pi(_graph);
455
      LevelMap level(_graph);
456
      BoolNodeMap reached(_graph);
457
      BoolNodeMap processed(_graph);
458
      PredNodeMap pred_node(_graph);
459
      PredArcMap pred_arc(_graph);
460
      int node_num = countNodes(_graph);
461
      typedef std::pair<Arc, bool> pair;
462
      std::vector<pair> stack(node_num);
463
      std::vector<Node> proc_vector(node_num);
464
      ResShiftCostMap shift_cost(*_res_graph);
465

	
466
      Tolerance<double> tol;
467
      tol.epsilon(1e-6);
468

	
469
      Timer t1, t2, t3;
470
      t1.reset();
471
      t2.reset();
472
      t3.reset();
473

	
474
      // Initialize epsilon and the node potentials
475
      double epsilon = 0;
476
      for (ArcIt e(_graph); e != INVALID; ++e) {
477
        if (_capacity[e] - (*_flow)[e] > 0 && _cost[e] < -epsilon)
478
          epsilon = -_cost[e];
479
        else if ((*_flow)[e] > 0 && _cost[e] > epsilon)
480
          epsilon = _cost[e];
481
      }
482
      for (NodeIt v(_graph); v != INVALID; ++v) {
483
        pi[v] = 0;
484
      }
485

	
486
      // Start phases
487
      int limit = int(LIMIT_FACTOR * node_num);
488
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
489
      int iter = limit;
490
      while (epsilon * node_num >= 1) {
491
        t1.start();
492
        // Find and cancel cycles in the admissible digraph using DFS
493
        for (NodeIt n(_graph); n != INVALID; ++n) {
494
          reached[n] = false;
495
          processed[n] = false;
496
        }
497
        int stack_head = -1;
498
        int proc_head = -1;
499

	
500
        for (NodeIt start(_graph); start != INVALID; ++start) {
501
          if (reached[start]) continue;
502

	
503
          // New start node
504
          reached[start] = true;
505
          pred_arc[start] = INVALID;
506
          pred_node[start] = INVALID;
507

	
508
          // Find the first admissible residual outgoing arc
509
          double p = pi[start];
510
          Arc e;
511
          _graph.firstOut(e, start);
512
          while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
513
                  !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
514
            _graph.nextOut(e);
515
          if (e != INVALID) {
516
            stack[++stack_head] = pair(e, true);
517
            goto next_step_1;
518
          }
519
          _graph.firstIn(e, start);
520
          while ( e != INVALID && ((*_flow)[e] == 0 ||
521
                  !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
522
            _graph.nextIn(e);
523
          if (e != INVALID) {
524
            stack[++stack_head] = pair(e, false);
525
            goto next_step_1;
526
          }
527
          processed[start] = true;
528
          proc_vector[++proc_head] = start;
529
          continue;
530
        next_step_1:
531

	
532
          while (stack_head >= 0) {
533
            Arc se = stack[stack_head].first;
534
            bool sf = stack[stack_head].second;
535
            Node u, v;
536
            if (sf) {
537
              u = _graph.source(se);
538
              v = _graph.target(se);
539
            } else {
540
              u = _graph.target(se);
541
              v = _graph.source(se);
542
            }
543

	
544
            if (!reached[v]) {
545
              // A new node is reached
546
              reached[v] = true;
547
              pred_node[v] = u;
548
              pred_arc[v] = se;
549
              // Find the first admissible residual outgoing arc
550
              double p = pi[v];
551
              Arc e;
552
              _graph.firstOut(e, v);
553
              while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
554
                      !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
555
                _graph.nextOut(e);
556
              if (e != INVALID) {
557
                stack[++stack_head] = pair(e, true);
558
                goto next_step_2;
559
              }
560
              _graph.firstIn(e, v);
561
              while ( e != INVALID && ((*_flow)[e] == 0 ||
562
                      !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
563
                _graph.nextIn(e);
564
              stack[++stack_head] = pair(e, false);
565
            next_step_2: ;
566
            } else {
567
              if (!processed[v]) {
568
                // A cycle is found
569
                Node n, w = u;
570
                Capacity d, delta = sf ? _capacity[se] - (*_flow)[se] :
571
                                         (*_flow)[se];
572
                for (n = u; n != v; n = pred_node[n]) {
573
                  d = _graph.target(pred_arc[n]) == n ?
574
                      _capacity[pred_arc[n]] - (*_flow)[pred_arc[n]] :
575
                      (*_flow)[pred_arc[n]];
576
                  if (d <= delta) {
577
                    delta = d;
578
                    w = pred_node[n];
579
                  }
580
                }
581

	
582
/*
583
                std::cout << "CYCLE FOUND: ";
584
                if (sf)
585
                  std::cout << _cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)];
586
                else
587
                  std::cout << _graph.id(se) << ":" << -(_cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]);
588
                for (n = u; n != v; n = pred_node[n]) {
589
                  if (_graph.target(pred_arc[n]) == n)
590
                    std::cout << " " << _cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])];
591
                  else
592
                    std::cout << " " << -(_cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])]);
593
                }
594
                std::cout << "\n";
595
*/
596
                // Augment along the cycle
597
                (*_flow)[se] = sf ? (*_flow)[se] + delta :
598
                                    (*_flow)[se] - delta;
599
                for (n = u; n != v; n = pred_node[n]) {
600
                  if (_graph.target(pred_arc[n]) == n)
601
                    (*_flow)[pred_arc[n]] += delta;
602
                  else
603
                    (*_flow)[pred_arc[n]] -= delta;
604
                }
605
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
606
                  --stack_head;
607
                  reached[n] = false;
608
                }
609
                u = w;
610
              }
611
              v = u;
612

	
613
              // Find the next admissible residual outgoing arc
614
              double p = pi[v];
615
              Arc e = stack[stack_head].first;
616
              if (!stack[stack_head].second) {
617
                _graph.nextIn(e);
618
                goto in_arc_3;
619
              }
620
              _graph.nextOut(e);
621
              while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
622
                      !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
623
                _graph.nextOut(e);
624
              if (e != INVALID) {
625
                stack[stack_head] = pair(e, true);
626
                goto next_step_3;
627
              }
628
              _graph.firstIn(e, v);
629
            in_arc_3:
630
              while ( e != INVALID && ((*_flow)[e] == 0 ||
631
                      !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
632
                _graph.nextIn(e);
633
              stack[stack_head] = pair(e, false);
634
            next_step_3: ;
635
            }
636

	
637
            while (stack_head >= 0 && stack[stack_head].first == INVALID) {
638
              processed[v] = true;
639
              proc_vector[++proc_head] = v;
640
              if (--stack_head >= 0) {
641
                v = stack[stack_head].second ?
642
                    _graph.source(stack[stack_head].first) :
643
                    _graph.target(stack[stack_head].first);
644
                // Find the next admissible residual outgoing arc
645
                double p = pi[v];
646
                Arc e = stack[stack_head].first;
647
                if (!stack[stack_head].second) {
648
                  _graph.nextIn(e);
649
                  goto in_arc_4;
650
                }
651
                _graph.nextOut(e);
652
                while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
653
                        !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
654
                  _graph.nextOut(e);
655
                if (e != INVALID) {
656
                  stack[stack_head] = pair(e, true);
657
                  goto next_step_4;
658
                }
659
                _graph.firstIn(e, v);
660
              in_arc_4:
661
                while ( e != INVALID && ((*_flow)[e] == 0 ||
662
                        !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
663
                  _graph.nextIn(e);
664
                stack[stack_head] = pair(e, false);
665
              next_step_4: ;
666
              }
667
            }
668
          }
669
        }
670
        t1.stop();
671

	
672
        // Tighten potentials and epsilon
673
        if (--iter > 0) {
674
          // Compute levels
675
          t2.start();
676
          for (int i = proc_head; i >= 0; --i) {
677
            Node v = proc_vector[i];
678
            double p = pi[v];
679
            int l = 0;
680
            for (InArcIt e(_graph, v); e != INVALID; ++e) {
681
              Node u = _graph.source(e);
682
              if ( _capacity[e] - (*_flow)[e] > 0 &&
683
                   tol.negative(_cost[e] + pi[u] - p) &&
684
                   level[u] + 1 > l ) l = level[u] + 1;
685
            }
686
            for (OutArcIt e(_graph, v); e != INVALID; ++e) {
687
              Node u = _graph.target(e);
688
              if ( (*_flow)[e] > 0 &&
689
                   tol.negative(-_cost[e] + pi[u] - p) &&
690
                   level[u] + 1 > l ) l = level[u] + 1;
691
            }
692
            level[v] = l;
693
          }
694

	
695
          // Modify potentials
696
          double p, q = -1;
697
          for (ArcIt e(_graph); e != INVALID; ++e) {
698
            Node u = _graph.source(e);
699
            Node v = _graph.target(e);
700
            if (_capacity[e] - (*_flow)[e] > 0 && level[u] - level[v] > 0) {
701
              p = (_cost[e] + pi[u] - pi[v] + epsilon) /
702
                  (level[u] - level[v] + 1);
703
              if (q < 0 || p < q) q = p;
704
            }
705
            else if ((*_flow)[e] > 0 && level[v] - level[u] > 0) {
706
              p = (-_cost[e] - pi[u] + pi[v] + epsilon) /
707
                  (level[v] - level[u] + 1);
708
              if (q < 0 || p < q) q = p;
709
            }
710
          }
711
          for (NodeIt v(_graph); v != INVALID; ++v) {
712
            pi[v] -= q * level[v];
713
          }
714

	
715
          // Modify epsilon
716
          epsilon = 0;
717
          for (ArcIt e(_graph); e != INVALID; ++e) {
718
            double curr = _cost[e] + pi[_graph.source(e)]
719
                                   - pi[_graph.target(e)];
720
            if (_capacity[e] - (*_flow)[e] > 0 && curr < -epsilon)
721
              epsilon = -curr;
722
            else if ((*_flow)[e] > 0 && curr > epsilon)
723
              epsilon = curr;
724
          }
725
          t2.stop();
726
        } else {
727
          // Set epsilon to the minimum cycle mean
728
          t3.start();
729

	
730
/**/
731
          StaticDigraph static_graph;
732
          typename ResDigraph::template NodeMap<typename StaticDigraph::Node> node_ref(*_res_graph);
733
          typename ResDigraph::template ArcMap<typename StaticDigraph::Arc> arc_ref(*_res_graph);
734
          static_graph.build(*_res_graph, node_ref, arc_ref);
735
          typename StaticDigraph::template NodeMap<double> static_pi(static_graph);
736
          typename StaticDigraph::template ArcMap<double> static_cost(static_graph);
737

	
738
          for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e)
739
            static_cost[arc_ref[e]] = _res_cost[e];
740

	
741
          Howard<StaticDigraph, typename StaticDigraph::template ArcMap<double> >
742
            mmc(static_graph, static_cost);
743
          mmc.findMinMean();
744
          epsilon = -mmc.cycleMean();
745
/**/
746

	
747
/*
748
          Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
749
          mmc.findMinMean();
750
          epsilon = -mmc.cycleMean();
751
*/
752

	
753
          // Compute feasible potentials for the current epsilon
754
          for (typename StaticDigraph::ArcIt e(static_graph); e != INVALID; ++e)
755
            static_cost[e] += epsilon;
756
          typename BellmanFord<StaticDigraph, typename StaticDigraph::template ArcMap<double> >::
757
            template SetDistMap<typename StaticDigraph::template NodeMap<double> >::
758
            template SetOperationTraits<BFOperationTraits>::Create
759
              bf(static_graph, static_cost);
760
          bf.distMap(static_pi).init(0);
761
          bf.start();
762
          for (NodeIt n(_graph); n != INVALID; ++n)
763
            pi[n] = static_pi[node_ref[n]];
764
          
765
/*
766
          for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e)
767
            shift_cost[e] = _res_cost[e] + epsilon;
768
          typename BellmanFord<ResDigraph, ResShiftCostMap>::
769
            template SetDistMap<FloatPotentialMap>::
770
            template SetOperationTraits<BFOperationTraits>::Create
771
              bf(*_res_graph, shift_cost);
772
          bf.distMap(pi).init(0);
773
          bf.start();
774
*/
775

	
776
          iter = limit;
777
          t3.stop();
778
        }
779
      }
780

	
781
//      std::cout << t1.realTime() << " " << t2.realTime() << " " << t3.realTime() << "\n";
782

	
783
      // Handle non-zero lower bounds
784
      if (_lower) {
785
        for (ArcIt e(_graph); e != INVALID; ++e)
786
          (*_flow)[e] += (*_lower)[e];
787
      }
788
      return true;
789
    }
790

	
791
  }; //class CancelAndTighten
792

	
793
  ///@}
794

	
795
} //namespace lemon
796

	
797
#endif //LEMON_CANCEL_AND_TIGHTEN_H
0 comments (0 inline)