... |
... |
@@ -16,541 +16,1118 @@
|
16 |
16 |
*
|
17 |
17 |
*/
|
18 |
18 |
|
19 |
19 |
#ifndef LEMON_CYCLE_CANCELING_H
|
20 |
20 |
#define LEMON_CYCLE_CANCELING_H
|
21 |
21 |
|
22 |
|
/// \ingroup min_cost_flow
|
23 |
|
///
|
|
22 |
/// \ingroup min_cost_flow_algs
|
24 |
23 |
/// \file
|
25 |
|
/// \brief Cycle-canceling algorithm for finding a minimum cost flow.
|
|
24 |
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
|
26 |
25 |
|
27 |
26 |
#include <vector>
|
|
27 |
#include <limits>
|
|
28 |
|
|
29 |
#include <lemon/core.h>
|
|
30 |
#include <lemon/maps.h>
|
|
31 |
#include <lemon/path.h>
|
|
32 |
#include <lemon/math.h>
|
|
33 |
#include <lemon/static_graph.h>
|
28 |
34 |
#include <lemon/adaptors.h>
|
29 |
|
#include <lemon/path.h>
|
30 |
|
|
31 |
35 |
#include <lemon/circulation.h>
|
32 |
36 |
#include <lemon/bellman_ford.h>
|
33 |
37 |
#include <lemon/howard.h>
|
34 |
38 |
|
35 |
39 |
namespace lemon {
|
36 |
40 |
|
37 |
|
/// \addtogroup min_cost_flow
|
|
41 |
/// \addtogroup min_cost_flow_algs
|
38 |
42 |
/// @{
|
39 |
43 |
|
40 |
|
/// \brief Implementation of a cycle-canceling algorithm for
|
41 |
|
/// finding a minimum cost flow.
|
|
44 |
/// \brief Implementation of cycle-canceling algorithms for
|
|
45 |
/// finding a \ref min_cost_flow "minimum cost flow".
|
42 |
46 |
///
|
43 |
|
/// \ref CycleCanceling implements a cycle-canceling algorithm for
|
44 |
|
/// finding a minimum cost flow.
|
|
47 |
/// \ref CycleCanceling implements three different cycle-canceling
|
|
48 |
/// algorithms for finding a \ref min_cost_flow "minimum cost flow".
|
|
49 |
/// The most efficent one (both theoretically and practically)
|
|
50 |
/// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
|
|
51 |
/// thus it is the default method.
|
|
52 |
/// It is strongly polynomial, but in practice, it is typically much
|
|
53 |
/// slower than the scaling algorithms and NetworkSimplex.
|
45 |
54 |
///
|
46 |
|
/// \tparam Digraph The digraph type the algorithm runs on.
|
47 |
|
/// \tparam LowerMap The type of the lower bound map.
|
48 |
|
/// \tparam CapacityMap The type of the capacity (upper bound) map.
|
49 |
|
/// \tparam CostMap The type of the cost (length) map.
|
50 |
|
/// \tparam SupplyMap The type of the supply map.
|
|
55 |
/// Most of the parameters of the problem (except for the digraph)
|
|
56 |
/// can be given using separate functions, and the algorithm can be
|
|
57 |
/// executed using the \ref run() function. If some parameters are not
|
|
58 |
/// specified, then default values will be used.
|
51 |
59 |
///
|
52 |
|
/// \warning
|
53 |
|
/// - Arc capacities and costs should be \e non-negative \e integers.
|
54 |
|
/// - Supply values should be \e signed \e integers.
|
55 |
|
/// - The value types of the maps should be convertible to each other.
|
56 |
|
/// - \c CostMap::Value must be signed type.
|
|
60 |
/// \tparam GR The digraph type the algorithm runs on.
|
|
61 |
/// \tparam V The number type used for flow amounts, capacity bounds
|
|
62 |
/// and supply values in the algorithm. By default, it is \c int.
|
|
63 |
/// \tparam C The number type used for costs and potentials in the
|
|
64 |
/// algorithm. By default, it is the same as \c V.
|
57 |
65 |
///
|
58 |
|
/// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
|
59 |
|
/// used for negative cycle detection with limited iteration number.
|
60 |
|
/// However \ref CycleCanceling also provides the "Minimum Mean
|
61 |
|
/// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
|
62 |
|
/// but rather slower in practice.
|
63 |
|
/// To use this version of the algorithm, call \ref run() with \c true
|
64 |
|
/// parameter.
|
|
66 |
/// \warning Both number types must be signed and all input data must
|
|
67 |
/// be integer.
|
|
68 |
/// \warning This algorithm does not support negative costs for such
|
|
69 |
/// arcs that have infinite upper bound.
|
65 |
70 |
///
|
66 |
|
/// \author Peter Kovacs
|
67 |
|
template < typename Digraph,
|
68 |
|
typename LowerMap = typename Digraph::template ArcMap<int>,
|
69 |
|
typename CapacityMap = typename Digraph::template ArcMap<int>,
|
70 |
|
typename CostMap = typename Digraph::template ArcMap<int>,
|
71 |
|
typename SupplyMap = typename Digraph::template NodeMap<int> >
|
|
71 |
/// \note For more information about the three available methods,
|
|
72 |
/// see \ref Method.
|
|
73 |
#ifdef DOXYGEN
|
|
74 |
template <typename GR, typename V, typename C>
|
|
75 |
#else
|
|
76 |
template <typename GR, typename V = int, typename C = V>
|
|
77 |
#endif
|
72 |
78 |
class CycleCanceling
|
73 |
79 |
{
|
74 |
|
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
|
80 |
public:
|
75 |
81 |
|
76 |
|
typedef typename CapacityMap::Value Capacity;
|
77 |
|
typedef typename CostMap::Value Cost;
|
78 |
|
typedef typename SupplyMap::Value Supply;
|
79 |
|
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
|
80 |
|
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
|
81 |
|
|
82 |
|
typedef ResidualDigraph< const Digraph,
|
83 |
|
CapacityArcMap, CapacityArcMap > ResDigraph;
|
84 |
|
typedef typename ResDigraph::Node ResNode;
|
85 |
|
typedef typename ResDigraph::NodeIt ResNodeIt;
|
86 |
|
typedef typename ResDigraph::Arc ResArc;
|
87 |
|
typedef typename ResDigraph::ArcIt ResArcIt;
|
|
82 |
/// The type of the digraph
|
|
83 |
typedef GR Digraph;
|
|
84 |
/// The type of the flow amounts, capacity bounds and supply values
|
|
85 |
typedef V Value;
|
|
86 |
/// The type of the arc costs
|
|
87 |
typedef C Cost;
|
88 |
88 |
|
89 |
89 |
public:
|
90 |
90 |
|
91 |
|
/// The type of the flow map.
|
92 |
|
typedef typename Digraph::template ArcMap<Capacity> FlowMap;
|
93 |
|
/// The type of the potential map.
|
94 |
|
typedef typename Digraph::template NodeMap<Cost> PotentialMap;
|
|
91 |
/// \brief Problem type constants for the \c run() function.
|
|
92 |
///
|
|
93 |
/// Enum type containing the problem type constants that can be
|
|
94 |
/// returned by the \ref run() function of the algorithm.
|
|
95 |
enum ProblemType {
|
|
96 |
/// The problem has no feasible solution (flow).
|
|
97 |
INFEASIBLE,
|
|
98 |
/// The problem has optimal solution (i.e. it is feasible and
|
|
99 |
/// bounded), and the algorithm has found optimal flow and node
|
|
100 |
/// potentials (primal and dual solutions).
|
|
101 |
OPTIMAL,
|
|
102 |
/// The digraph contains an arc of negative cost and infinite
|
|
103 |
/// upper bound. It means that the objective function is unbounded
|
|
104 |
/// on that arc, however, note that it could actually be bounded
|
|
105 |
/// over the feasible flows, but this algroithm cannot handle
|
|
106 |
/// these cases.
|
|
107 |
UNBOUNDED
|
|
108 |
};
|
|
109 |
|
|
110 |
/// \brief Constants for selecting the used method.
|
|
111 |
///
|
|
112 |
/// Enum type containing constants for selecting the used method
|
|
113 |
/// for the \ref run() function.
|
|
114 |
///
|
|
115 |
/// \ref CycleCanceling provides three different cycle-canceling
|
|
116 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
|
|
117 |
/// is used, which proved to be the most efficient and the most robust
|
|
118 |
/// on various test inputs.
|
|
119 |
/// However, the other methods can be selected using the \ref run()
|
|
120 |
/// function with the proper parameter.
|
|
121 |
enum Method {
|
|
122 |
/// A simple cycle-canceling method, which uses the
|
|
123 |
/// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
|
|
124 |
/// number for detecting negative cycles in the residual network.
|
|
125 |
SIMPLE_CYCLE_CANCELING,
|
|
126 |
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a
|
|
127 |
/// well-known strongly polynomial method. It improves along a
|
|
128 |
/// \ref min_mean_cycle "minimum mean cycle" in each iteration.
|
|
129 |
/// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
|
|
130 |
MINIMUM_MEAN_CYCLE_CANCELING,
|
|
131 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an
|
|
132 |
/// improved version of the previous method.
|
|
133 |
/// It is faster both in theory and in practice, its running time
|
|
134 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
|
|
135 |
CANCEL_AND_TIGHTEN
|
|
136 |
};
|
95 |
137 |
|
96 |
138 |
private:
|
97 |
139 |
|
98 |
|
/// \brief Map adaptor class for handling residual arc costs.
|
99 |
|
///
|
100 |
|
/// Map adaptor class for handling residual arc costs.
|
101 |
|
class ResidualCostMap : public MapBase<ResArc, Cost>
|
102 |
|
{
|
|
140 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
|
141 |
|
|
142 |
typedef std::vector<int> IntVector;
|
|
143 |
typedef std::vector<char> CharVector;
|
|
144 |
typedef std::vector<double> DoubleVector;
|
|
145 |
typedef std::vector<Value> ValueVector;
|
|
146 |
typedef std::vector<Cost> CostVector;
|
|
147 |
|
103 |
148 |
private:
|
104 |
149 |
|
105 |
|
const CostMap &_cost_map;
|
|
150 |
template <typename KT, typename VT>
|
|
151 |
class VectorMap {
|
|
152 |
public:
|
|
153 |
typedef KT Key;
|
|
154 |
typedef VT Value;
|
|
155 |
|
|
156 |
VectorMap(std::vector<Value>& v) : _v(v) {}
|
|
157 |
|
|
158 |
const Value& operator[](const Key& key) const {
|
|
159 |
return _v[StaticDigraph::id(key)];
|
|
160 |
}
|
|
161 |
|
|
162 |
Value& operator[](const Key& key) {
|
|
163 |
return _v[StaticDigraph::id(key)];
|
|
164 |
}
|
|
165 |
|
|
166 |
void set(const Key& key, const Value& val) {
|
|
167 |
_v[StaticDigraph::id(key)] = val;
|
|
168 |
}
|
|
169 |
|
|
170 |
private:
|
|
171 |
std::vector<Value>& _v;
|
|
172 |
};
|
|
173 |
|
|
174 |
typedef VectorMap<StaticDigraph::Node, Cost> CostNodeMap;
|
|
175 |
typedef VectorMap<StaticDigraph::Arc, Cost> CostArcMap;
|
|
176 |
|
|
177 |
private:
|
|
178 |
|
|
179 |
|
|
180 |
// Data related to the underlying digraph
|
|
181 |
const GR &_graph;
|
|
182 |
int _node_num;
|
|
183 |
int _arc_num;
|
|
184 |
int _res_node_num;
|
|
185 |
int _res_arc_num;
|
|
186 |
int _root;
|
|
187 |
|
|
188 |
// Parameters of the problem
|
|
189 |
bool _have_lower;
|
|
190 |
Value _sum_supply;
|
|
191 |
|
|
192 |
// Data structures for storing the digraph
|
|
193 |
IntNodeMap _node_id;
|
|
194 |
IntArcMap _arc_idf;
|
|
195 |
IntArcMap _arc_idb;
|
|
196 |
IntVector _first_out;
|
|
197 |
CharVector _forward;
|
|
198 |
IntVector _source;
|
|
199 |
IntVector _target;
|
|
200 |
IntVector _reverse;
|
|
201 |
|
|
202 |
// Node and arc data
|
|
203 |
ValueVector _lower;
|
|
204 |
ValueVector _upper;
|
|
205 |
CostVector _cost;
|
|
206 |
ValueVector _supply;
|
|
207 |
|
|
208 |
ValueVector _res_cap;
|
|
209 |
CostVector _pi;
|
|
210 |
|
|
211 |
// Data for a StaticDigraph structure
|
|
212 |
typedef std::pair<int, int> IntPair;
|
|
213 |
StaticDigraph _sgr;
|
|
214 |
std::vector<IntPair> _arc_vec;
|
|
215 |
std::vector<Cost> _cost_vec;
|
|
216 |
IntVector _id_vec;
|
|
217 |
CostArcMap _cost_map;
|
|
218 |
CostNodeMap _pi_map;
|
106 |
219 |
|
107 |
220 |
public:
|
108 |
221 |
|
109 |
|
///\e
|
110 |
|
ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
|
111 |
|
|
112 |
|
///\e
|
113 |
|
Cost operator[](const ResArc &e) const {
|
114 |
|
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
|
115 |
|
}
|
116 |
|
|
117 |
|
}; //class ResidualCostMap
|
118 |
|
|
119 |
|
private:
|
120 |
|
|
121 |
|
// The maximum number of iterations for the first execution of the
|
122 |
|
// Bellman-Ford algorithm. It should be at least 2.
|
123 |
|
static const int BF_FIRST_LIMIT = 2;
|
124 |
|
// The iteration limit for the Bellman-Ford algorithm is multiplied
|
125 |
|
// by BF_LIMIT_FACTOR/100 in every round.
|
126 |
|
static const int BF_LIMIT_FACTOR = 150;
|
127 |
|
|
128 |
|
private:
|
129 |
|
|
130 |
|
// The digraph the algorithm runs on
|
131 |
|
const Digraph &_graph;
|
132 |
|
// The original lower bound map
|
133 |
|
const LowerMap *_lower;
|
134 |
|
// The modified capacity map
|
135 |
|
CapacityArcMap _capacity;
|
136 |
|
// The original cost map
|
137 |
|
const CostMap &_cost;
|
138 |
|
// The modified supply map
|
139 |
|
SupplyNodeMap _supply;
|
140 |
|
bool _valid_supply;
|
141 |
|
|
142 |
|
// Arc map of the current flow
|
143 |
|
FlowMap *_flow;
|
144 |
|
bool _local_flow;
|
145 |
|
// Node map of the current potentials
|
146 |
|
PotentialMap *_potential;
|
147 |
|
bool _local_potential;
|
148 |
|
|
149 |
|
// The residual digraph
|
150 |
|
ResDigraph *_res_graph;
|
151 |
|
// The residual cost map
|
152 |
|
ResidualCostMap _res_cost;
|
|
222 |
/// \brief Constant for infinite upper bounds (capacities).
|
|
223 |
///
|
|
224 |
/// Constant for infinite upper bounds (capacities).
|
|
225 |
/// It is \c std::numeric_limits<Value>::infinity() if available,
|
|
226 |
/// \c std::numeric_limits<Value>::max() otherwise.
|
|
227 |
const Value INF;
|
153 |
228 |
|
154 |
229 |
public:
|
155 |
230 |
|
156 |
|
/// \brief General constructor (with lower bounds).
|
|
231 |
/// \brief Constructor.
|
157 |
232 |
///
|
158 |
|
/// General constructor (with lower bounds).
|
|
233 |
/// The constructor of the class.
|
159 |
234 |
///
|
160 |
|
/// \param digraph The digraph the algorithm runs on.
|
161 |
|
/// \param lower The lower bounds of the arcs.
|
162 |
|
/// \param capacity The capacities (upper bounds) of the arcs.
|
163 |
|
/// \param cost The cost (length) values of the arcs.
|
164 |
|
/// \param supply The supply values of the nodes (signed).
|
165 |
|
CycleCanceling( const Digraph &digraph,
|
166 |
|
const LowerMap &lower,
|
167 |
|
const CapacityMap &capacity,
|
168 |
|
const CostMap &cost,
|
169 |
|
const SupplyMap &supply ) :
|
170 |
|
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
|
171 |
|
_supply(digraph), _flow(NULL), _local_flow(false),
|
172 |
|
_potential(NULL), _local_potential(false),
|
173 |
|
_res_graph(NULL), _res_cost(_cost)
|
|
235 |
/// \param graph The digraph the algorithm runs on.
|
|
236 |
CycleCanceling(const GR& graph) :
|
|
237 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
|
|
238 |
_cost_map(_cost_vec), _pi_map(_pi),
|
|
239 |
INF(std::numeric_limits<Value>::has_infinity ?
|
|
240 |
std::numeric_limits<Value>::infinity() :
|
|
241 |
std::numeric_limits<Value>::max())
|
174 |
242 |
{
|
175 |
|
// Check the sum of supply values
|
176 |
|
Supply sum = 0;
|
177 |
|
for (NodeIt n(_graph); n != INVALID; ++n) {
|
178 |
|
_supply[n] = supply[n];
|
179 |
|
sum += _supply[n];
|
|
243 |
// Check the number types
|
|
244 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
|
|
245 |
"The flow type of CycleCanceling must be signed");
|
|
246 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
|
|
247 |
"The cost type of CycleCanceling must be signed");
|
|
248 |
|
|
249 |
// Resize vectors
|
|
250 |
_node_num = countNodes(_graph);
|
|
251 |
_arc_num = countArcs(_graph);
|
|
252 |
_res_node_num = _node_num + 1;
|
|
253 |
_res_arc_num = 2 * (_arc_num + _node_num);
|
|
254 |
_root = _node_num;
|
|
255 |
|
|
256 |
_first_out.resize(_res_node_num + 1);
|
|
257 |
_forward.resize(_res_arc_num);
|
|
258 |
_source.resize(_res_arc_num);
|
|
259 |
_target.resize(_res_arc_num);
|
|
260 |
_reverse.resize(_res_arc_num);
|
|
261 |
|
|
262 |
_lower.resize(_res_arc_num);
|
|
263 |
_upper.resize(_res_arc_num);
|
|
264 |
_cost.resize(_res_arc_num);
|
|
265 |
_supply.resize(_res_node_num);
|
|
266 |
|
|
267 |
_res_cap.resize(_res_arc_num);
|
|
268 |
_pi.resize(_res_node_num);
|
|
269 |
|
|
270 |
_arc_vec.reserve(_res_arc_num);
|
|
271 |
_cost_vec.reserve(_res_arc_num);
|
|
272 |
_id_vec.reserve(_res_arc_num);
|
|
273 |
|
|
274 |
// Copy the graph
|
|
275 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num;
|
|
276 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
277 |
_node_id[n] = i;
|
180 |
278 |
}
|
181 |
|
_valid_supply = sum == 0;
|
182 |
|
|
183 |
|
// Remove non-zero lower bounds
|
184 |
|
for (ArcIt e(_graph); e != INVALID; ++e) {
|
185 |
|
_capacity[e] = capacity[e];
|
186 |
|
if (lower[e] != 0) {
|
187 |
|
_capacity[e] -= lower[e];
|
188 |
|
_supply[_graph.source(e)] -= lower[e];
|
189 |
|
_supply[_graph.target(e)] += lower[e];
|
|
279 |
i = 0;
|
|
280 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
281 |
_first_out[i] = j;
|
|
282 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
283 |
_arc_idf[a] = j;
|
|
284 |
_forward[j] = true;
|
|
285 |
_source[j] = i;
|
|
286 |
_target[j] = _node_id[_graph.runningNode(a)];
|
190 |
287 |
}
|
|
288 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
289 |
_arc_idb[a] = j;
|
|
290 |
_forward[j] = false;
|
|
291 |
_source[j] = i;
|
|
292 |
_target[j] = _node_id[_graph.runningNode(a)];
|
191 |
293 |
}
|
|
294 |
_forward[j] = false;
|
|
295 |
_source[j] = i;
|
|
296 |
_target[j] = _root;
|
|
297 |
_reverse[j] = k;
|
|
298 |
_forward[k] = true;
|
|
299 |
_source[k] = _root;
|
|
300 |
_target[k] = i;
|
|
301 |
_reverse[k] = j;
|
|
302 |
++j; ++k;
|
192 |
303 |
}
|
193 |
|
/*
|
194 |
|
/// \brief General constructor (without lower bounds).
|
195 |
|
///
|
196 |
|
/// General constructor (without lower bounds).
|
197 |
|
///
|
198 |
|
/// \param digraph The digraph the algorithm runs on.
|
199 |
|
/// \param capacity The capacities (upper bounds) of the arcs.
|
200 |
|
/// \param cost The cost (length) values of the arcs.
|
201 |
|
/// \param supply The supply values of the nodes (signed).
|
202 |
|
CycleCanceling( const Digraph &digraph,
|
203 |
|
const CapacityMap &capacity,
|
204 |
|
const CostMap &cost,
|
205 |
|
const SupplyMap &supply ) :
|
206 |
|
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
|
207 |
|
_supply(supply), _flow(NULL), _local_flow(false),
|
208 |
|
_potential(NULL), _local_potential(false), _res_graph(NULL),
|
209 |
|
_res_cost(_cost)
|
210 |
|
{
|
211 |
|
// Check the sum of supply values
|
212 |
|
Supply sum = 0;
|
213 |
|
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
|
214 |
|
_valid_supply = sum == 0;
|
|
304 |
_first_out[i] = j;
|
|
305 |
_first_out[_res_node_num] = k;
|
|
306 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
307 |
int fi = _arc_idf[a];
|
|
308 |
int bi = _arc_idb[a];
|
|
309 |
_reverse[fi] = bi;
|
|
310 |
_reverse[bi] = fi;
|
215 |
311 |
}
|
216 |
312 |
|
217 |
|
/// \brief Simple constructor (with lower bounds).
|
218 |
|
///
|
219 |
|
/// Simple constructor (with lower bounds).
|
220 |
|
///
|
221 |
|
/// \param digraph The digraph the algorithm runs on.
|
222 |
|
/// \param lower The lower bounds of the arcs.
|
223 |
|
/// \param capacity The capacities (upper bounds) of the arcs.
|
224 |
|
/// \param cost The cost (length) values of the arcs.
|
225 |
|
/// \param s The source node.
|
226 |
|
/// \param t The target node.
|
227 |
|
/// \param flow_value The required amount of flow from node \c s
|
228 |
|
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
229 |
|
CycleCanceling( const Digraph &digraph,
|
230 |
|
const LowerMap &lower,
|
231 |
|
const CapacityMap &capacity,
|
232 |
|
const CostMap &cost,
|
233 |
|
Node s, Node t,
|
234 |
|
Supply flow_value ) :
|
235 |
|
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
|
236 |
|
_supply(digraph, 0), _flow(NULL), _local_flow(false),
|
237 |
|
_potential(NULL), _local_potential(false), _res_graph(NULL),
|
238 |
|
_res_cost(_cost)
|
239 |
|
{
|
240 |
|
// Remove non-zero lower bounds
|
241 |
|
_supply[s] = flow_value;
|
242 |
|
_supply[t] = -flow_value;
|
243 |
|
for (ArcIt e(_graph); e != INVALID; ++e) {
|
244 |
|
if (lower[e] != 0) {
|
245 |
|
_capacity[e] -= lower[e];
|
246 |
|
_supply[_graph.source(e)] -= lower[e];
|
247 |
|
_supply[_graph.target(e)] += lower[e];
|
248 |
|
}
|
249 |
|
}
|
250 |
|
_valid_supply = true;
|
|
313 |
// Reset parameters
|
|
314 |
reset();
|
251 |
315 |
}
|
252 |
316 |
|
253 |
|
/// \brief Simple constructor (without lower bounds).
|
|
317 |
/// \name Parameters
|
|
318 |
/// The parameters of the algorithm can be specified using these
|
|
319 |
/// functions.
|
|
320 |
|
|
321 |
/// @{
|
|
322 |
|
|
323 |
/// \brief Set the lower bounds on the arcs.
|
254 |
324 |
///
|
255 |
|
/// Simple constructor (without lower bounds).
|
|
325 |
/// This function sets the lower bounds on the arcs.
|
|
326 |
/// If it is not used before calling \ref run(), the lower bounds
|
|
327 |
/// will be set to zero on all arcs.
|
256 |
328 |
///
|
257 |
|
/// \param digraph The digraph the algorithm runs on.
|
258 |
|
/// \param capacity The capacities (upper bounds) of the arcs.
|
259 |
|
/// \param cost The cost (length) values of the arcs.
|
260 |
|
/// \param s The source node.
|
261 |
|
/// \param t The target node.
|
262 |
|
/// \param flow_value The required amount of flow from node \c s
|
263 |
|
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
264 |
|
CycleCanceling( const Digraph &digraph,
|
265 |
|
const CapacityMap &capacity,
|
266 |
|
const CostMap &cost,
|
267 |
|
Node s, Node t,
|
268 |
|
Supply flow_value ) :
|
269 |
|
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
|
270 |
|
_supply(digraph, 0), _flow(NULL), _local_flow(false),
|
271 |
|
_potential(NULL), _local_potential(false), _res_graph(NULL),
|
272 |
|
_res_cost(_cost)
|
273 |
|
{
|
274 |
|
_supply[s] = flow_value;
|
275 |
|
_supply[t] = -flow_value;
|
276 |
|
_valid_supply = true;
|
|
329 |
/// \param map An arc map storing the lower bounds.
|
|
330 |
/// Its \c Value type must be convertible to the \c Value type
|
|
331 |
/// of the algorithm.
|
|
332 |
///
|
|
333 |
/// \return <tt>(*this)</tt>
|
|
334 |
template <typename LowerMap>
|
|
335 |
CycleCanceling& lowerMap(const LowerMap& map) {
|
|
336 |
_have_lower = true;
|
|
337 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
338 |
_lower[_arc_idf[a]] = map[a];
|
|
339 |
_lower[_arc_idb[a]] = map[a];
|
277 |
340 |
}
|
278 |
|
*/
|
279 |
|
/// Destructor.
|
280 |
|
~CycleCanceling() {
|
281 |
|
if (_local_flow) delete _flow;
|
282 |
|
if (_local_potential) delete _potential;
|
283 |
|
delete _res_graph;
|
284 |
|
}
|
285 |
|
|
286 |
|
/// \brief Set the flow map.
|
287 |
|
///
|
288 |
|
/// Set the flow map.
|
289 |
|
///
|
290 |
|
/// \return \c (*this)
|
291 |
|
CycleCanceling& flowMap(FlowMap &map) {
|
292 |
|
if (_local_flow) {
|
293 |
|
delete _flow;
|
294 |
|
_local_flow = false;
|
295 |
|
}
|
296 |
|
_flow = ↦
|
297 |
341 |
return *this;
|
298 |
342 |
}
|
299 |
343 |
|
300 |
|
/// \brief Set the potential map.
|
|
344 |
/// \brief Set the upper bounds (capacities) on the arcs.
|
301 |
345 |
///
|
302 |
|
/// Set the potential map.
|
|
346 |
/// This function sets the upper bounds (capacities) on the arcs.
|
|
347 |
/// If it is not used before calling \ref run(), the upper bounds
|
|
348 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be
|
|
349 |
/// unbounded from above).
|
303 |
350 |
///
|
304 |
|
/// \return \c (*this)
|
305 |
|
CycleCanceling& potentialMap(PotentialMap &map) {
|
306 |
|
if (_local_potential) {
|
307 |
|
delete _potential;
|
308 |
|
_local_potential = false;
|
|
351 |
/// \param map An arc map storing the upper bounds.
|
|
352 |
/// Its \c Value type must be convertible to the \c Value type
|
|
353 |
/// of the algorithm.
|
|
354 |
///
|
|
355 |
/// \return <tt>(*this)</tt>
|
|
356 |
template<typename UpperMap>
|
|
357 |
CycleCanceling& upperMap(const UpperMap& map) {
|
|
358 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
359 |
_upper[_arc_idf[a]] = map[a];
|
309 |
360 |
}
|
310 |
|
_potential = ↦
|
311 |
361 |
return *this;
|
312 |
362 |
}
|
313 |
363 |
|
|
364 |
/// \brief Set the costs of the arcs.
|
|
365 |
///
|
|
366 |
/// This function sets the costs of the arcs.
|
|
367 |
/// If it is not used before calling \ref run(), the costs
|
|
368 |
/// will be set to \c 1 on all arcs.
|
|
369 |
///
|
|
370 |
/// \param map An arc map storing the costs.
|
|
371 |
/// Its \c Value type must be convertible to the \c Cost type
|
|
372 |
/// of the algorithm.
|
|
373 |
///
|
|
374 |
/// \return <tt>(*this)</tt>
|
|
375 |
template<typename CostMap>
|
|
376 |
CycleCanceling& costMap(const CostMap& map) {
|
|
377 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
378 |
_cost[_arc_idf[a]] = map[a];
|
|
379 |
_cost[_arc_idb[a]] = -map[a];
|
|
380 |
}
|
|
381 |
return *this;
|
|
382 |
}
|
|
383 |
|
|
384 |
/// \brief Set the supply values of the nodes.
|
|
385 |
///
|
|
386 |
/// This function sets the supply values of the nodes.
|
|
387 |
/// If neither this function nor \ref stSupply() is used before
|
|
388 |
/// calling \ref run(), the supply of each node will be set to zero.
|
|
389 |
///
|
|
390 |
/// \param map A node map storing the supply values.
|
|
391 |
/// Its \c Value type must be convertible to the \c Value type
|
|
392 |
/// of the algorithm.
|
|
393 |
///
|
|
394 |
/// \return <tt>(*this)</tt>
|
|
395 |
template<typename SupplyMap>
|
|
396 |
CycleCanceling& supplyMap(const SupplyMap& map) {
|
|
397 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
398 |
_supply[_node_id[n]] = map[n];
|
|
399 |
}
|
|
400 |
return *this;
|
|
401 |
}
|
|
402 |
|
|
403 |
/// \brief Set single source and target nodes and a supply value.
|
|
404 |
///
|
|
405 |
/// This function sets a single source node and a single target node
|
|
406 |
/// and the required flow value.
|
|
407 |
/// If neither this function nor \ref supplyMap() is used before
|
|
408 |
/// calling \ref run(), the supply of each node will be set to zero.
|
|
409 |
///
|
|
410 |
/// Using this function has the same effect as using \ref supplyMap()
|
|
411 |
/// with such a map in which \c k is assigned to \c s, \c -k is
|
|
412 |
/// assigned to \c t and all other nodes have zero supply value.
|
|
413 |
///
|
|
414 |
/// \param s The source node.
|
|
415 |
/// \param t The target node.
|
|
416 |
/// \param k The required amount of flow from node \c s to node \c t
|
|
417 |
/// (i.e. the supply of \c s and the demand of \c t).
|
|
418 |
///
|
|
419 |
/// \return <tt>(*this)</tt>
|
|
420 |
CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
|
|
421 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
422 |
_supply[i] = 0;
|
|
423 |
}
|
|
424 |
_supply[_node_id[s]] = k;
|
|
425 |
_supply[_node_id[t]] = -k;
|
|
426 |
return *this;
|
|
427 |
}
|
|
428 |
|
|
429 |
/// @}
|
|
430 |
|
314 |
431 |
/// \name Execution control
|
|
432 |
/// The algorithm can be executed using \ref run().
|
315 |
433 |
|
316 |
434 |
/// @{
|
317 |
435 |
|
318 |
436 |
/// \brief Run the algorithm.
|
319 |
437 |
///
|
320 |
|
/// Run the algorithm.
|
|
438 |
/// This function runs the algorithm.
|
|
439 |
/// The paramters can be specified using functions \ref lowerMap(),
|
|
440 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
|
|
441 |
/// For example,
|
|
442 |
/// \code
|
|
443 |
/// CycleCanceling<ListDigraph> cc(graph);
|
|
444 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost)
|
|
445 |
/// .supplyMap(sup).run();
|
|
446 |
/// \endcode
|
321 |
447 |
///
|
322 |
|
/// \param min_mean_cc Set this parameter to \c true to run the
|
323 |
|
/// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
|
324 |
|
/// polynomial, but rather slower in practice.
|
|
448 |
/// This function can be called more than once. All the parameters
|
|
449 |
/// that have been given are kept for the next call, unless
|
|
450 |
/// \ref reset() is called, thus only the modified parameters
|
|
451 |
/// have to be set again. See \ref reset() for examples.
|
|
452 |
/// However, the underlying digraph must not be modified after this
|
|
453 |
/// class have been constructed, since it copies and extends the graph.
|
325 |
454 |
///
|
326 |
|
/// \return \c true if a feasible flow can be found.
|
327 |
|
bool run(bool min_mean_cc = false) {
|
328 |
|
return init() && start(min_mean_cc);
|
|
455 |
/// \param method The cycle-canceling method that will be used.
|
|
456 |
/// For more information, see \ref Method.
|
|
457 |
///
|
|
458 |
/// \return \c INFEASIBLE if no feasible flow exists,
|
|
459 |
/// \n \c OPTIMAL if the problem has optimal solution
|
|
460 |
/// (i.e. it is feasible and bounded), and the algorithm has found
|
|
461 |
/// optimal flow and node potentials (primal and dual solutions),
|
|
462 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
|
|
463 |
/// and infinite upper bound. It means that the objective function
|
|
464 |
/// is unbounded on that arc, however, note that it could actually be
|
|
465 |
/// bounded over the feasible flows, but this algroithm cannot handle
|
|
466 |
/// these cases.
|
|
467 |
///
|
|
468 |
/// \see ProblemType, Method
|
|
469 |
ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
|
|
470 |
ProblemType pt = init();
|
|
471 |
if (pt != OPTIMAL) return pt;
|
|
472 |
start(method);
|
|
473 |
return OPTIMAL;
|
|
474 |
}
|
|
475 |
|
|
476 |
/// \brief Reset all the parameters that have been given before.
|
|
477 |
///
|
|
478 |
/// This function resets all the paramaters that have been given
|
|
479 |
/// before using functions \ref lowerMap(), \ref upperMap(),
|
|
480 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
|
|
481 |
///
|
|
482 |
/// It is useful for multiple run() calls. If this function is not
|
|
483 |
/// used, all the parameters given before are kept for the next
|
|
484 |
/// \ref run() call.
|
|
485 |
/// However, the underlying digraph must not be modified after this
|
|
486 |
/// class have been constructed, since it copies and extends the graph.
|
|
487 |
///
|
|
488 |
/// For example,
|
|
489 |
/// \code
|
|
490 |
/// CycleCanceling<ListDigraph> cs(graph);
|
|
491 |
///
|
|
492 |
/// // First run
|
|
493 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost)
|
|
494 |
/// .supplyMap(sup).run();
|
|
495 |
///
|
|
496 |
/// // Run again with modified cost map (reset() is not called,
|
|
497 |
/// // so only the cost map have to be set again)
|
|
498 |
/// cost[e] += 100;
|
|
499 |
/// cc.costMap(cost).run();
|
|
500 |
///
|
|
501 |
/// // Run again from scratch using reset()
|
|
502 |
/// // (the lower bounds will be set to zero on all arcs)
|
|
503 |
/// cc.reset();
|
|
504 |
/// cc.upperMap(capacity).costMap(cost)
|
|
505 |
/// .supplyMap(sup).run();
|
|
506 |
/// \endcode
|
|
507 |
///
|
|
508 |
/// \return <tt>(*this)</tt>
|
|
509 |
CycleCanceling& reset() {
|
|
510 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
511 |
_supply[i] = 0;
|
|
512 |
}
|
|
513 |
int limit = _first_out[_root];
|
|
514 |
for (int j = 0; j != limit; ++j) {
|
|
515 |
_lower[j] = 0;
|
|
516 |
_upper[j] = INF;
|
|
517 |
_cost[j] = _forward[j] ? 1 : -1;
|
|
518 |
}
|
|
519 |
for (int j = limit; j != _res_arc_num; ++j) {
|
|
520 |
_lower[j] = 0;
|
|
521 |
_upper[j] = INF;
|
|
522 |
_cost[j] = 0;
|
|
523 |
_cost[_reverse[j]] = 0;
|
|
524 |
}
|
|
525 |
_have_lower = false;
|
|
526 |
return *this;
|
329 |
527 |
}
|
330 |
528 |
|
331 |
529 |
/// @}
|
332 |
530 |
|
333 |
531 |
/// \name Query Functions
|
334 |
|
/// The result of the algorithm can be obtained using these
|
|
532 |
/// The results of the algorithm can be obtained using these
|
335 |
533 |
/// functions.\n
|
336 |
|
/// \ref lemon::CycleCanceling::run() "run()" must be called before
|
337 |
|
/// using them.
|
|
534 |
/// The \ref run() function must be called before using them.
|
338 |
535 |
|
339 |
536 |
/// @{
|
340 |
537 |
|
341 |
|
/// \brief Return a const reference to the arc map storing the
|
342 |
|
/// found flow.
|
|
538 |
/// \brief Return the total cost of the found flow.
|
343 |
539 |
///
|
344 |
|
/// Return a const reference to the arc map storing the found flow.
|
|
540 |
/// This function returns the total cost of the found flow.
|
|
541 |
/// Its complexity is O(e).
|
|
542 |
///
|
|
543 |
/// \note The return type of the function can be specified as a
|
|
544 |
/// template parameter. For example,
|
|
545 |
/// \code
|
|
546 |
/// cc.totalCost<double>();
|
|
547 |
/// \endcode
|
|
548 |
/// It is useful if the total cost cannot be stored in the \c Cost
|
|
549 |
/// type of the algorithm, which is the default return type of the
|
|
550 |
/// function.
|
345 |
551 |
///
|
346 |
552 |
/// \pre \ref run() must be called before using this function.
|
347 |
|
const FlowMap& flowMap() const {
|
348 |
|
return *_flow;
|
|
553 |
template <typename Number>
|
|
554 |
Number totalCost() const {
|
|
555 |
Number c = 0;
|
|
556 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
557 |
int i = _arc_idb[a];
|
|
558 |
c += static_cast<Number>(_res_cap[i]) *
|
|
559 |
(-static_cast<Number>(_cost[i]));
|
|
560 |
}
|
|
561 |
return c;
|
349 |
562 |
}
|
350 |
563 |
|
351 |
|
/// \brief Return a const reference to the node map storing the
|
352 |
|
/// found potentials (the dual solution).
|
353 |
|
///
|
354 |
|
/// Return a const reference to the node map storing the found
|
355 |
|
/// potentials (the dual solution).
|
356 |
|
///
|
357 |
|
/// \pre \ref run() must be called before using this function.
|
358 |
|
const PotentialMap& potentialMap() const {
|
359 |
|
return *_potential;
|
|
564 |
#ifndef DOXYGEN
|
|
565 |
Cost totalCost() const {
|
|
566 |
return totalCost<Cost>();
|
360 |
567 |
}
|
|
568 |
#endif
|
361 |
569 |
|
362 |
570 |
/// \brief Return the flow on the given arc.
|
363 |
571 |
///
|
364 |
|
/// Return the flow on the given arc.
|
|
572 |
/// This function returns the flow on the given arc.
|
365 |
573 |
///
|
366 |
574 |
/// \pre \ref run() must be called before using this function.
|
367 |
|
Capacity flow(const Arc& arc) const {
|
368 |
|
return (*_flow)[arc];
|
|
575 |
Value flow(const Arc& a) const {
|
|
576 |
return _res_cap[_arc_idb[a]];
|
369 |
577 |
}
|
370 |
578 |
|
371 |
|
/// \brief Return the potential of the given node.
|
|
579 |
/// \brief Return the flow map (the primal solution).
|
372 |
580 |
///
|
373 |
|
/// Return the potential of the given node.
|
|
581 |
/// This function copies the flow value on each arc into the given
|
|
582 |
/// map. The \c Value type of the algorithm must be convertible to
|
|
583 |
/// the \c Value type of the map.
|
374 |
584 |
///
|
375 |
585 |
/// \pre \ref run() must be called before using this function.
|
376 |
|
Cost potential(const Node& node) const {
|
377 |
|
return (*_potential)[node];
|
|
586 |
template <typename FlowMap>
|
|
587 |
void flowMap(FlowMap &map) const {
|
|
588 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
589 |
map.set(a, _res_cap[_arc_idb[a]]);
|
|
590 |
}
|
378 |
591 |
}
|
379 |
592 |
|
380 |
|
/// \brief Return the total cost of the found flow.
|
|
593 |
/// \brief Return the potential (dual value) of the given node.
|
381 |
594 |
///
|
382 |
|
/// Return the total cost of the found flow. The complexity of the
|
383 |
|
/// function is \f$ O(e) \f$.
|
|
595 |
/// This function returns the potential (dual value) of the
|
|
596 |
/// given node.
|
384 |
597 |
///
|
385 |
598 |
/// \pre \ref run() must be called before using this function.
|
386 |
|
Cost totalCost() const {
|
387 |
|
Cost c = 0;
|
388 |
|
for (ArcIt e(_graph); e != INVALID; ++e)
|
389 |
|
c += (*_flow)[e] * _cost[e];
|
390 |
|
return c;
|
|
599 |
Cost potential(const Node& n) const {
|
|
600 |
return static_cast<Cost>(_pi[_node_id[n]]);
|
|
601 |
}
|
|
602 |
|
|
603 |
/// \brief Return the potential map (the dual solution).
|
|
604 |
///
|
|
605 |
/// This function copies the potential (dual value) of each node
|
|
606 |
/// into the given map.
|
|
607 |
/// The \c Cost type of the algorithm must be convertible to the
|
|
608 |
/// \c Value type of the map.
|
|
609 |
///
|
|
610 |
/// \pre \ref run() must be called before using this function.
|
|
611 |
template <typename PotentialMap>
|
|
612 |
void potentialMap(PotentialMap &map) const {
|
|
613 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
614 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
|
|
615 |
}
|
391 |
616 |
}
|
392 |
617 |
|
393 |
618 |
/// @}
|
394 |
619 |
|
395 |
620 |
private:
|
396 |
621 |
|
397 |
|
/// Initialize the algorithm.
|
398 |
|
bool init() {
|
399 |
|
if (!_valid_supply) return false;
|
|
622 |
// Initialize the algorithm
|
|
623 |
ProblemType init() {
|
|
624 |
if (_res_node_num <= 1) return INFEASIBLE;
|
400 |
625 |
|
401 |
|
// Initializing flow and potential maps
|
402 |
|
if (!_flow) {
|
403 |
|
_flow = new FlowMap(_graph);
|
404 |
|
_local_flow = true;
|
|
626 |
// Check the sum of supply values
|
|
627 |
_sum_supply = 0;
|
|
628 |
for (int i = 0; i != _root; ++i) {
|
|
629 |
_sum_supply += _supply[i];
|
405 |
630 |
}
|
406 |
|
if (!_potential) {
|
407 |
|
_potential = new PotentialMap(_graph);
|
408 |
|
_local_potential = true;
|
|
631 |
if (_sum_supply > 0) return INFEASIBLE;
|
|
632 |
|
|
633 |
|
|
634 |
// Initialize vectors
|
|
635 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
636 |
_pi[i] = 0;
|
|
637 |
}
|
|
638 |
ValueVector excess(_supply);
|
|
639 |
|
|
640 |
// Remove infinite upper bounds and check negative arcs
|
|
641 |
const Value MAX = std::numeric_limits<Value>::max();
|
|
642 |
int last_out;
|
|
643 |
if (_have_lower) {
|
|
644 |
for (int i = 0; i != _root; ++i) {
|
|
645 |
last_out = _first_out[i+1];
|
|
646 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
647 |
if (_forward[j]) {
|
|
648 |
Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
|
|
649 |
if (c >= MAX) return UNBOUNDED;
|
|
650 |
excess[i] -= c;
|
|
651 |
excess[_target[j]] += c;
|
|
652 |
}
|
|
653 |
}
|
|
654 |
}
|
|
655 |
} else {
|
|
656 |
for (int i = 0; i != _root; ++i) {
|
|
657 |
last_out = _first_out[i+1];
|
|
658 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
659 |
if (_forward[j] && _cost[j] < 0) {
|
|
660 |
Value c = _upper[j];
|
|
661 |
if (c >= MAX) return UNBOUNDED;
|
|
662 |
excess[i] -= c;
|
|
663 |
excess[_target[j]] += c;
|
|
664 |
}
|
|
665 |
}
|
|
666 |
}
|
|
667 |
}
|
|
668 |
Value ex, max_cap = 0;
|
|
669 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
670 |
ex = excess[i];
|
|
671 |
if (ex < 0) max_cap -= ex;
|
|
672 |
}
|
|
673 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
674 |
if (_upper[j] >= MAX) _upper[j] = max_cap;
|
409 |
675 |
}
|
410 |
676 |
|
411 |
|
_res_graph = new ResDigraph(_graph, _capacity, *_flow);
|
412 |
|
|
413 |
|
// Finding a feasible flow using Circulation
|
414 |
|
Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap,
|
415 |
|
SupplyMap >
|
416 |
|
circulation( _graph, constMap<Arc>(Capacity(0)), _capacity,
|
417 |
|
_supply );
|
418 |
|
return circulation.flowMap(*_flow).run();
|
|
677 |
// Initialize maps for Circulation and remove non-zero lower bounds
|
|
678 |
ConstMap<Arc, Value> low(0);
|
|
679 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap;
|
|
680 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
|
|
681 |
ValueArcMap cap(_graph), flow(_graph);
|
|
682 |
ValueNodeMap sup(_graph);
|
|
683 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
684 |
sup[n] = _supply[_node_id[n]];
|
|
685 |
}
|
|
686 |
if (_have_lower) {
|
|
687 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
688 |
int j = _arc_idf[a];
|
|
689 |
Value c = _lower[j];
|
|
690 |
cap[a] = _upper[j] - c;
|
|
691 |
sup[_graph.source(a)] -= c;
|
|
692 |
sup[_graph.target(a)] += c;
|
|
693 |
}
|
|
694 |
} else {
|
|
695 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
696 |
cap[a] = _upper[_arc_idf[a]];
|
|
697 |
}
|
419 |
698 |
}
|
420 |
699 |
|
421 |
|
bool start(bool min_mean_cc) {
|
422 |
|
if (min_mean_cc)
|
423 |
|
startMinMean();
|
424 |
|
else
|
425 |
|
start();
|
|
700 |
// Find a feasible flow using Circulation
|
|
701 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
|
|
702 |
circ(_graph, low, cap, sup);
|
|
703 |
if (!circ.flowMap(flow).run()) return INFEASIBLE;
|
426 |
704 |
|
427 |
|
// Handling non-zero lower bounds
|
428 |
|
if (_lower) {
|
429 |
|
for (ArcIt e(_graph); e != INVALID; ++e)
|
430 |
|
(*_flow)[e] += (*_lower)[e];
|
|
705 |
// Set residual capacities and handle GEQ supply type
|
|
706 |
if (_sum_supply < 0) {
|
|
707 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
708 |
Value fa = flow[a];
|
|
709 |
_res_cap[_arc_idf[a]] = cap[a] - fa;
|
|
710 |
_res_cap[_arc_idb[a]] = fa;
|
|
711 |
sup[_graph.source(a)] -= fa;
|
|
712 |
sup[_graph.target(a)] += fa;
|
431 |
713 |
}
|
432 |
|
return true;
|
|
714 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
715 |
excess[_node_id[n]] = sup[n];
|
|
716 |
}
|
|
717 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
718 |
int u = _target[a];
|
|
719 |
int ra = _reverse[a];
|
|
720 |
_res_cap[a] = -_sum_supply + 1;
|
|
721 |
_res_cap[ra] = -excess[u];
|
|
722 |
_cost[a] = 0;
|
|
723 |
_cost[ra] = 0;
|
|
724 |
}
|
|
725 |
} else {
|
|
726 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
727 |
Value fa = flow[a];
|
|
728 |
_res_cap[_arc_idf[a]] = cap[a] - fa;
|
|
729 |
_res_cap[_arc_idb[a]] = fa;
|
|
730 |
}
|
|
731 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
732 |
int ra = _reverse[a];
|
|
733 |
_res_cap[a] = 1;
|
|
734 |
_res_cap[ra] = 0;
|
|
735 |
_cost[a] = 0;
|
|
736 |
_cost[ra] = 0;
|
|
737 |
}
|
433 |
738 |
}
|
434 |
739 |
|
435 |
|
/// \brief Execute the algorithm using \ref BellmanFord.
|
436 |
|
///
|
437 |
|
/// Execute the algorithm using the \ref BellmanFord
|
438 |
|
/// "Bellman-Ford" algorithm for negative cycle detection with
|
439 |
|
/// successively larger limit for the number of iterations.
|
440 |
|
void start() {
|
441 |
|
typename BellmanFord<ResDigraph, ResidualCostMap>::PredMap pred(*_res_graph);
|
442 |
|
typename ResDigraph::template NodeMap<int> visited(*_res_graph);
|
443 |
|
std::vector<ResArc> cycle;
|
444 |
|
int node_num = countNodes(_graph);
|
|
740 |
return OPTIMAL;
|
|
741 |
}
|
|
742 |
|
|
743 |
// Build a StaticDigraph structure containing the current
|
|
744 |
// residual network
|
|
745 |
void buildResidualNetwork() {
|
|
746 |
_arc_vec.clear();
|
|
747 |
_cost_vec.clear();
|
|
748 |
_id_vec.clear();
|
|
749 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
750 |
if (_res_cap[j] > 0) {
|
|
751 |
_arc_vec.push_back(IntPair(_source[j], _target[j]));
|
|
752 |
_cost_vec.push_back(_cost[j]);
|
|
753 |
_id_vec.push_back(j);
|
|
754 |
}
|
|
755 |
}
|
|
756 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
|
|
757 |
}
|
|
758 |
|
|
759 |
// Execute the algorithm and transform the results
|
|
760 |
void start(Method method) {
|
|
761 |
// Execute the algorithm
|
|
762 |
switch (method) {
|
|
763 |
case SIMPLE_CYCLE_CANCELING:
|
|
764 |
startSimpleCycleCanceling();
|
|
765 |
break;
|
|
766 |
case MINIMUM_MEAN_CYCLE_CANCELING:
|
|
767 |
startMinMeanCycleCanceling();
|
|
768 |
break;
|
|
769 |
case CANCEL_AND_TIGHTEN:
|
|
770 |
startCancelAndTighten();
|
|
771 |
break;
|
|
772 |
}
|
|
773 |
|
|
774 |
// Compute node potentials
|
|
775 |
if (method != SIMPLE_CYCLE_CANCELING) {
|
|
776 |
buildResidualNetwork();
|
|
777 |
typename BellmanFord<StaticDigraph, CostArcMap>
|
|
778 |
::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
|
|
779 |
bf.distMap(_pi_map);
|
|
780 |
bf.init(0);
|
|
781 |
bf.start();
|
|
782 |
}
|
|
783 |
|
|
784 |
// Handle non-zero lower bounds
|
|
785 |
if (_have_lower) {
|
|
786 |
int limit = _first_out[_root];
|
|
787 |
for (int j = 0; j != limit; ++j) {
|
|
788 |
if (!_forward[j]) _res_cap[j] += _lower[j];
|
|
789 |
}
|
|
790 |
}
|
|
791 |
}
|
|
792 |
|
|
793 |
// Execute the "Simple Cycle Canceling" method
|
|
794 |
void startSimpleCycleCanceling() {
|
|
795 |
// Constants for computing the iteration limits
|
|
796 |
const int BF_FIRST_LIMIT = 2;
|
|
797 |
const double BF_LIMIT_FACTOR = 1.5;
|
|
798 |
|
|
799 |
typedef VectorMap<StaticDigraph::Arc, Value> FilterMap;
|
|
800 |
typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
|
|
801 |
typedef VectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
|
|
802 |
typedef typename BellmanFord<ResDigraph, CostArcMap>
|
|
803 |
::template SetDistMap<CostNodeMap>
|
|
804 |
::template SetPredMap<PredMap>::Create BF;
|
|
805 |
|
|
806 |
// Build the residual network
|
|
807 |
_arc_vec.clear();
|
|
808 |
_cost_vec.clear();
|
|
809 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
810 |
_arc_vec.push_back(IntPair(_source[j], _target[j]));
|
|
811 |
_cost_vec.push_back(_cost[j]);
|
|
812 |
}
|
|
813 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
|
|
814 |
|
|
815 |
FilterMap filter_map(_res_cap);
|
|
816 |
ResDigraph rgr(_sgr, filter_map);
|
|
817 |
std::vector<int> cycle;
|
|
818 |
std::vector<StaticDigraph::Arc> pred(_res_arc_num);
|
|
819 |
PredMap pred_map(pred);
|
|
820 |
BF bf(rgr, _cost_map);
|
|
821 |
bf.distMap(_pi_map).predMap(pred_map);
|
445 |
822 |
|
446 |
823 |
int length_bound = BF_FIRST_LIMIT;
|
447 |
824 |
bool optimal = false;
|
448 |
825 |
while (!optimal) {
|
449 |
|
BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
|
450 |
|
bf.predMap(pred);
|
451 |
826 |
bf.init(0);
|
452 |
827 |
int iter_num = 0;
|
453 |
828 |
bool cycle_found = false;
|
454 |
829 |
while (!cycle_found) {
|
455 |
|
int curr_iter_num = iter_num + length_bound <= node_num ?
|
456 |
|
length_bound : node_num - iter_num;
|
|
830 |
// Perform some iterations of the Bellman-Ford algorithm
|
|
831 |
int curr_iter_num = iter_num + length_bound <= _node_num ?
|
|
832 |
length_bound : _node_num - iter_num;
|
457 |
833 |
iter_num += curr_iter_num;
|
458 |
834 |
int real_iter_num = curr_iter_num;
|
459 |
835 |
for (int i = 0; i < curr_iter_num; ++i) {
|
460 |
836 |
if (bf.processNextWeakRound()) {
|
461 |
837 |
real_iter_num = i;
|
462 |
838 |
break;
|
463 |
839 |
}
|
464 |
840 |
}
|
465 |
841 |
if (real_iter_num < curr_iter_num) {
|
466 |
842 |
// Optimal flow is found
|
467 |
843 |
optimal = true;
|
468 |
|
// Setting node potentials
|
469 |
|
for (NodeIt n(_graph); n != INVALID; ++n)
|
470 |
|
(*_potential)[n] = bf.dist(n);
|
471 |
844 |
break;
|
472 |
845 |
} else {
|
473 |
|
// Searching for node disjoint negative cycles
|
474 |
|
for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
|
475 |
|
visited[n] = 0;
|
|
846 |
// Search for node disjoint negative cycles
|
|
847 |
std::vector<int> state(_res_node_num, 0);
|
476 |
848 |
int id = 0;
|
477 |
|
for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
|
478 |
|
if (visited[n] > 0) continue;
|
479 |
|
visited[n] = ++id;
|
480 |
|
ResNode u = pred[n] == INVALID ?
|
481 |
|
INVALID : _res_graph->source(pred[n]);
|
482 |
|
while (u != INVALID && visited[u] == 0) {
|
483 |
|
visited[u] = id;
|
484 |
|
u = pred[u] == INVALID ?
|
485 |
|
INVALID : _res_graph->source(pred[u]);
|
|
849 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
850 |
if (state[u] != 0) continue;
|
|
851 |
++id;
|
|
852 |
int v = u;
|
|
853 |
for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
|
|
854 |
-1 : rgr.id(rgr.source(pred[v]))) {
|
|
855 |
state[v] = id;
|
486 |
856 |
}
|
487 |
|
if (u != INVALID && visited[u] == id) {
|
488 |
|
// Finding the negative cycle
|
|
857 |
if (v != -1 && state[v] == id) {
|
|
858 |
// A negative cycle is found
|
489 |
859 |
cycle_found = true;
|
490 |
860 |
cycle.clear();
|
491 |
|
ResArc e = pred[u];
|
492 |
|
cycle.push_back(e);
|
493 |
|
Capacity d = _res_graph->residualCapacity(e);
|
494 |
|
while (_res_graph->source(e) != u) {
|
495 |
|
cycle.push_back(e = pred[_res_graph->source(e)]);
|
496 |
|
if (_res_graph->residualCapacity(e) < d)
|
497 |
|
d = _res_graph->residualCapacity(e);
|
|
861 |
StaticDigraph::Arc a = pred[v];
|
|
862 |
Value d, delta = _res_cap[rgr.id(a)];
|
|
863 |
cycle.push_back(rgr.id(a));
|
|
864 |
while (rgr.id(rgr.source(a)) != v) {
|
|
865 |
a = pred_map[rgr.source(a)];
|
|
866 |
d = _res_cap[rgr.id(a)];
|
|
867 |
if (d < delta) delta = d;
|
|
868 |
cycle.push_back(rgr.id(a));
|
498 |
869 |
}
|
499 |
870 |
|
500 |
|
// Augmenting along the cycle
|
501 |
|
for (int i = 0; i < int(cycle.size()); ++i)
|
502 |
|
_res_graph->augment(cycle[i], d);
|
|
871 |
// Augment along the cycle
|
|
872 |
for (int i = 0; i < int(cycle.size()); ++i) {
|
|
873 |
int j = cycle[i];
|
|
874 |
_res_cap[j] -= delta;
|
|
875 |
_res_cap[_reverse[j]] += delta;
|
|
876 |
}
|
503 |
877 |
}
|
504 |
878 |
}
|
505 |
879 |
}
|
506 |
880 |
|
507 |
|
if (!cycle_found)
|
508 |
|
length_bound = length_bound * BF_LIMIT_FACTOR / 100;
|
|
881 |
// Increase iteration limit if no cycle is found
|
|
882 |
if (!cycle_found) {
|
|
883 |
length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
|
|
884 |
}
|
509 |
885 |
}
|
510 |
886 |
}
|
511 |
887 |
}
|
512 |
888 |
|
513 |
|
/// \brief Execute the algorithm using \ref Howard.
|
514 |
|
///
|
515 |
|
/// Execute the algorithm using \ref Howard for negative
|
516 |
|
/// cycle detection.
|
517 |
|
void startMinMean() {
|
518 |
|
typedef Path<ResDigraph> ResPath;
|
519 |
|
Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
|
520 |
|
ResPath cycle;
|
|
889 |
// Execute the "Minimum Mean Cycle Canceling" method
|
|
890 |
void startMinMeanCycleCanceling() {
|
|
891 |
typedef SimplePath<StaticDigraph> SPath;
|
|
892 |
typedef typename SPath::ArcIt SPathArcIt;
|
|
893 |
typedef typename Howard<StaticDigraph, CostArcMap>
|
|
894 |
::template SetPath<SPath>::Create MMC;
|
521 |
895 |
|
|
896 |
SPath cycle;
|
|
897 |
MMC mmc(_sgr, _cost_map);
|
522 |
898 |
mmc.cycle(cycle);
|
523 |
|
if (mmc.findMinMean()) {
|
524 |
|
while (mmc.cycleLength() < 0) {
|
525 |
|
// Finding the cycle
|
|
899 |
buildResidualNetwork();
|
|
900 |
while (mmc.findMinMean() && mmc.cycleLength() < 0) {
|
|
901 |
// Find the cycle
|
526 |
902 |
mmc.findCycle();
|
527 |
903 |
|
528 |
|
// Finding the largest flow amount that can be augmented
|
529 |
|
// along the cycle
|
530 |
|
Capacity delta = 0;
|
531 |
|
for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) {
|
532 |
|
if (delta == 0 || _res_graph->residualCapacity(e) < delta)
|
533 |
|
delta = _res_graph->residualCapacity(e);
|
|
904 |
// Compute delta value
|
|
905 |
Value delta = INF;
|
|
906 |
for (SPathArcIt a(cycle); a != INVALID; ++a) {
|
|
907 |
Value d = _res_cap[_id_vec[_sgr.id(a)]];
|
|
908 |
if (d < delta) delta = d;
|
534 |
909 |
}
|
535 |
910 |
|
536 |
|
// Augmenting along the cycle
|
537 |
|
for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e)
|
538 |
|
_res_graph->augment(e, delta);
|
539 |
|
|
540 |
|
// Finding the minimum cycle mean for the modified residual
|
541 |
|
// digraph
|
542 |
|
if (!mmc.findMinMean()) break;
|
543 |
|
}
|
|
911 |
// Augment along the cycle
|
|
912 |
for (SPathArcIt a(cycle); a != INVALID; ++a) {
|
|
913 |
int j = _id_vec[_sgr.id(a)];
|
|
914 |
_res_cap[j] -= delta;
|
|
915 |
_res_cap[_reverse[j]] += delta;
|
544 |
916 |
}
|
545 |
917 |
|
546 |
|
// Computing node potentials
|
547 |
|
BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
|
548 |
|
bf.init(0); bf.start();
|
549 |
|
for (NodeIt n(_graph); n != INVALID; ++n)
|
550 |
|
(*_potential)[n] = bf.dist(n);
|
|
918 |
// Rebuild the residual network
|
|
919 |
buildResidualNetwork();
|
|
920 |
}
|
|
921 |
}
|
|
922 |
|
|
923 |
// Execute the "Cancel And Tighten" method
|
|
924 |
void startCancelAndTighten() {
|
|
925 |
// Constants for the min mean cycle computations
|
|
926 |
const double LIMIT_FACTOR = 1.0;
|
|
927 |
const int MIN_LIMIT = 5;
|
|
928 |
|
|
929 |
// Contruct auxiliary data vectors
|
|
930 |
DoubleVector pi(_res_node_num, 0.0);
|
|
931 |
IntVector level(_res_node_num);
|
|
932 |
CharVector reached(_res_node_num);
|
|
933 |
CharVector processed(_res_node_num);
|
|
934 |
IntVector pred_node(_res_node_num);
|
|
935 |
IntVector pred_arc(_res_node_num);
|
|
936 |
std::vector<int> stack(_res_node_num);
|
|
937 |
std::vector<int> proc_vector(_res_node_num);
|
|
938 |
|
|
939 |
// Initialize epsilon
|
|
940 |
double epsilon = 0;
|
|
941 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
942 |
if (_res_cap[a] > 0 && -_cost[a] > epsilon)
|
|
943 |
epsilon = -_cost[a];
|
|
944 |
}
|
|
945 |
|
|
946 |
// Start phases
|
|
947 |
Tolerance<double> tol;
|
|
948 |
tol.epsilon(1e-6);
|
|
949 |
int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
|
|
950 |
if (limit < MIN_LIMIT) limit = MIN_LIMIT;
|
|
951 |
int iter = limit;
|
|
952 |
while (epsilon * _res_node_num >= 1) {
|
|
953 |
// Find and cancel cycles in the admissible network using DFS
|
|
954 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
955 |
reached[u] = false;
|
|
956 |
processed[u] = false;
|
|
957 |
}
|
|
958 |
int stack_head = -1;
|
|
959 |
int proc_head = -1;
|
|
960 |
for (int start = 0; start != _res_node_num; ++start) {
|
|
961 |
if (reached[start]) continue;
|
|
962 |
|
|
963 |
// New start node
|
|
964 |
reached[start] = true;
|
|
965 |
pred_arc[start] = -1;
|
|
966 |
pred_node[start] = -1;
|
|
967 |
|
|
968 |
// Find the first admissible outgoing arc
|
|
969 |
double p = pi[start];
|
|
970 |
int a = _first_out[start];
|
|
971 |
int last_out = _first_out[start+1];
|
|
972 |
for (; a != last_out && (_res_cap[a] == 0 ||
|
|
973 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
|
|
974 |
if (a == last_out) {
|
|
975 |
processed[start] = true;
|
|
976 |
proc_vector[++proc_head] = start;
|
|
977 |
continue;
|
|
978 |
}
|
|
979 |
stack[++stack_head] = a;
|
|
980 |
|
|
981 |
while (stack_head >= 0) {
|
|
982 |
int sa = stack[stack_head];
|
|
983 |
int u = _source[sa];
|
|
984 |
int v = _target[sa];
|
|
985 |
|
|
986 |
if (!reached[v]) {
|
|
987 |
// A new node is reached
|
|
988 |
reached[v] = true;
|
|
989 |
pred_node[v] = u;
|
|
990 |
pred_arc[v] = sa;
|
|
991 |
p = pi[v];
|
|
992 |
a = _first_out[v];
|
|
993 |
last_out = _first_out[v+1];
|
|
994 |
for (; a != last_out && (_res_cap[a] == 0 ||
|
|
995 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
|
|
996 |
stack[++stack_head] = a == last_out ? -1 : a;
|
|
997 |
} else {
|
|
998 |
if (!processed[v]) {
|
|
999 |
// A cycle is found
|
|
1000 |
int n, w = u;
|
|
1001 |
Value d, delta = _res_cap[sa];
|
|
1002 |
for (n = u; n != v; n = pred_node[n]) {
|
|
1003 |
d = _res_cap[pred_arc[n]];
|
|
1004 |
if (d <= delta) {
|
|
1005 |
delta = d;
|
|
1006 |
w = pred_node[n];
|
|
1007 |
}
|
|
1008 |
}
|
|
1009 |
|
|
1010 |
// Augment along the cycle
|
|
1011 |
_res_cap[sa] -= delta;
|
|
1012 |
_res_cap[_reverse[sa]] += delta;
|
|
1013 |
for (n = u; n != v; n = pred_node[n]) {
|
|
1014 |
int pa = pred_arc[n];
|
|
1015 |
_res_cap[pa] -= delta;
|
|
1016 |
_res_cap[_reverse[pa]] += delta;
|
|
1017 |
}
|
|
1018 |
for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
|
|
1019 |
--stack_head;
|
|
1020 |
reached[n] = false;
|
|
1021 |
}
|
|
1022 |
u = w;
|
|
1023 |
}
|
|
1024 |
v = u;
|
|
1025 |
|
|
1026 |
// Find the next admissible outgoing arc
|
|
1027 |
p = pi[v];
|
|
1028 |
a = stack[stack_head] + 1;
|
|
1029 |
last_out = _first_out[v+1];
|
|
1030 |
for (; a != last_out && (_res_cap[a] == 0 ||
|
|
1031 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
|
|
1032 |
stack[stack_head] = a == last_out ? -1 : a;
|
|
1033 |
}
|
|
1034 |
|
|
1035 |
while (stack_head >= 0 && stack[stack_head] == -1) {
|
|
1036 |
processed[v] = true;
|
|
1037 |
proc_vector[++proc_head] = v;
|
|
1038 |
if (--stack_head >= 0) {
|
|
1039 |
// Find the next admissible outgoing arc
|
|
1040 |
v = _source[stack[stack_head]];
|
|
1041 |
p = pi[v];
|
|
1042 |
a = stack[stack_head] + 1;
|
|
1043 |
last_out = _first_out[v+1];
|
|
1044 |
for (; a != last_out && (_res_cap[a] == 0 ||
|
|
1045 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
|
|
1046 |
stack[stack_head] = a == last_out ? -1 : a;
|
|
1047 |
}
|
|
1048 |
}
|
|
1049 |
}
|
|
1050 |
}
|
|
1051 |
|
|
1052 |
// Tighten potentials and epsilon
|
|
1053 |
if (--iter > 0) {
|
|
1054 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
1055 |
level[u] = 0;
|
|
1056 |
}
|
|
1057 |
for (int i = proc_head; i > 0; --i) {
|
|
1058 |
int u = proc_vector[i];
|
|
1059 |
double p = pi[u];
|
|
1060 |
int l = level[u] + 1;
|
|
1061 |
int last_out = _first_out[u+1];
|
|
1062 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
1063 |
int v = _target[a];
|
|
1064 |
if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
|
|
1065 |
l > level[v]) level[v] = l;
|
|
1066 |
}
|
|
1067 |
}
|
|
1068 |
|
|
1069 |
// Modify potentials
|
|
1070 |
double q = std::numeric_limits<double>::max();
|
|
1071 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
1072 |
int lu = level[u];
|
|
1073 |
double p, pu = pi[u];
|
|
1074 |
int last_out = _first_out[u+1];
|
|
1075 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
1076 |
if (_res_cap[a] == 0) continue;
|
|
1077 |
int v = _target[a];
|
|
1078 |
int ld = lu - level[v];
|
|
1079 |
if (ld > 0) {
|
|
1080 |
p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
|
|
1081 |
if (p < q) q = p;
|
|
1082 |
}
|
|
1083 |
}
|
|
1084 |
}
|
|
1085 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
1086 |
pi[u] -= q * level[u];
|
|
1087 |
}
|
|
1088 |
|
|
1089 |
// Modify epsilon
|
|
1090 |
epsilon = 0;
|
|
1091 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
1092 |
double curr, pu = pi[u];
|
|
1093 |
int last_out = _first_out[u+1];
|
|
1094 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
1095 |
if (_res_cap[a] == 0) continue;
|
|
1096 |
curr = _cost[a] + pu - pi[_target[a]];
|
|
1097 |
if (-curr > epsilon) epsilon = -curr;
|
|
1098 |
}
|
|
1099 |
}
|
|
1100 |
} else {
|
|
1101 |
typedef Howard<StaticDigraph, CostArcMap> MMC;
|
|
1102 |
typedef typename BellmanFord<StaticDigraph, CostArcMap>
|
|
1103 |
::template SetDistMap<CostNodeMap>::Create BF;
|
|
1104 |
|
|
1105 |
// Set epsilon to the minimum cycle mean
|
|
1106 |
buildResidualNetwork();
|
|
1107 |
MMC mmc(_sgr, _cost_map);
|
|
1108 |
mmc.findMinMean();
|
|
1109 |
epsilon = -mmc.cycleMean();
|
|
1110 |
Cost cycle_cost = mmc.cycleLength();
|
|
1111 |
int cycle_size = mmc.cycleArcNum();
|
|
1112 |
|
|
1113 |
// Compute feasible potentials for the current epsilon
|
|
1114 |
for (int i = 0; i != int(_cost_vec.size()); ++i) {
|
|
1115 |
_cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
|
|
1116 |
}
|
|
1117 |
BF bf(_sgr, _cost_map);
|
|
1118 |
bf.distMap(_pi_map);
|
|
1119 |
bf.init(0);
|
|
1120 |
bf.start();
|
|
1121 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
1122 |
pi[u] = static_cast<double>(_pi[u]) / cycle_size;
|
|
1123 |
}
|
|
1124 |
|
|
1125 |
iter = limit;
|
|
1126 |
}
|
|
1127 |
}
|
551 |
1128 |
}
|
552 |
1129 |
|
553 |
1130 |
}; //class CycleCanceling
|
554 |
1131 |
|
555 |
1132 |
///@}
|
556 |
1133 |
|