1 |
1 |
/* -*- C++ -*-
|
2 |
2 |
*
|
3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
4 |
4 |
*
|
5 |
5 |
* Copyright (C) 2003-2008
|
6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
8 |
8 |
*
|
9 |
9 |
* Permission to use, modify and distribute this software is granted
|
10 |
10 |
* provided that this copyright notice appears in all copies. For
|
11 |
11 |
* precise terms see the accompanying LICENSE file.
|
12 |
12 |
*
|
13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
15 |
15 |
* purpose.
|
16 |
16 |
*
|
17 |
17 |
*/
|
18 |
18 |
|
19 |
19 |
/**
|
20 |
20 |
@defgroup datas Data Structures
|
21 |
21 |
This group describes the several graph structures implemented in LEMON.
|
22 |
22 |
*/
|
23 |
23 |
|
24 |
24 |
/**
|
25 |
25 |
@defgroup graphs Graph Structures
|
26 |
26 |
@ingroup datas
|
27 |
27 |
\brief Graph structures implemented in LEMON.
|
28 |
28 |
|
29 |
29 |
The implementation of combinatorial algorithms heavily relies on
|
30 |
30 |
efficient graph implementations. LEMON offers data structures which are
|
31 |
31 |
planned to be easily used in an experimental phase of implementation studies,
|
32 |
32 |
and thereafter the program code can be made efficient by small modifications.
|
33 |
33 |
|
34 |
34 |
The most efficient implementation of diverse applications require the
|
35 |
35 |
usage of different physical graph implementations. These differences
|
36 |
36 |
appear in the size of graph we require to handle, memory or time usage
|
37 |
37 |
limitations or in the set of operations through which the graph can be
|
38 |
38 |
accessed. LEMON provides several physical graph structures to meet
|
39 |
39 |
the diverging requirements of the possible users. In order to save on
|
40 |
40 |
running time or on memory usage, some structures may fail to provide
|
41 |
41 |
some graph features like edge or node deletion.
|
42 |
42 |
|
43 |
43 |
Alteration of standard containers need a very limited number of
|
44 |
44 |
operations, these together satisfy the everyday requirements.
|
45 |
45 |
In the case of graph structures, different operations are needed which do
|
46 |
46 |
not alter the physical graph, but gives another view. If some nodes or
|
47 |
47 |
edges have to be hidden or the reverse oriented graph have to be used, then
|
48 |
48 |
this is the case. It also may happen that in a flow implementation
|
49 |
49 |
the residual graph can be accessed by another algorithm, or a node-set
|
50 |
50 |
is to be shrunk for another algorithm.
|
51 |
51 |
LEMON also provides a variety of graphs for these requirements called
|
52 |
52 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
|
53 |
53 |
in conjunction with other graph representation.
|
54 |
54 |
|
55 |
55 |
You are free to use the graph structure that fit your requirements
|
56 |
56 |
the best, most graph algorithms and auxiliary data structures can be used
|
57 |
57 |
with any graph structures.
|
58 |
58 |
*/
|
59 |
59 |
|
60 |
60 |
/**
|
61 |
61 |
@defgroup semi_adaptors Semi-Adaptors Classes for Graphs
|
62 |
62 |
@ingroup graphs
|
63 |
63 |
\brief Graph types between real graphs and graph adaptors.
|
64 |
64 |
|
65 |
65 |
Graph types between real graphs and graph adaptors. These classes wrap
|
66 |
66 |
graphs to give new functionality as the adaptors do it. On the other
|
67 |
67 |
hand they are not light-weight structures as the adaptors.
|
68 |
68 |
*/
|
69 |
69 |
|
70 |
70 |
/**
|
71 |
71 |
@defgroup maps Maps
|
72 |
72 |
@ingroup datas
|
73 |
73 |
\brief Some special purpose map to make life easier.
|
74 |
74 |
|
75 |
75 |
LEMON provides several special maps that e.g. combine
|
76 |
76 |
new maps from existing ones.
|
77 |
77 |
*/
|
78 |
78 |
|
79 |
79 |
/**
|
80 |
80 |
@defgroup graph_maps Graph Maps
|
81 |
81 |
@ingroup maps
|
82 |
82 |
\brief Special Graph-Related Maps.
|
83 |
83 |
|
84 |
84 |
These maps are specifically designed to assign values to the nodes and edges of
|
85 |
85 |
graphs.
|
86 |
86 |
*/
|
87 |
87 |
|
88 |
88 |
|
89 |
89 |
/**
|
90 |
90 |
\defgroup map_adaptors Map Adaptors
|
91 |
91 |
\ingroup maps
|
92 |
92 |
\brief Tools to create new maps from existing ones
|
93 |
93 |
|
94 |
94 |
Map adaptors are used to create "implicit" maps from other maps.
|
95 |
95 |
|
96 |
96 |
Most of them are \ref lemon::concepts::ReadMap "ReadMap"s. They can
|
97 |
97 |
make arithmetic operations between one or two maps (negation, scaling,
|
98 |
98 |
addition, multiplication etc.) or e.g. convert a map to another one
|
99 |
99 |
of different Value type.
|
100 |
100 |
|
101 |
101 |
The typical usage of this classes is the passing implicit maps to
|
102 |
102 |
algorithms. If a function type algorithm is called then the function
|
103 |
103 |
type map adaptors can be used comfortable. For example let's see the
|
104 |
104 |
usage of map adaptors with the \c graphToEps() function:
|
105 |
105 |
\code
|
106 |
106 |
Color nodeColor(int deg) {
|
107 |
107 |
if (deg >= 2) {
|
108 |
108 |
return Color(0.5, 0.0, 0.5);
|
109 |
109 |
} else if (deg == 1) {
|
110 |
110 |
return Color(1.0, 0.5, 1.0);
|
111 |
111 |
} else {
|
112 |
112 |
return Color(0.0, 0.0, 0.0);
|
113 |
113 |
}
|
114 |
114 |
}
|
115 |
115 |
|
116 |
116 |
Graph::NodeMap<int> degree_map(graph);
|
117 |
117 |
|
118 |
118 |
graphToEps(graph, "graph.eps")
|
119 |
119 |
.coords(coords).scaleToA4().undirected()
|
120 |
120 |
.nodeColors(composeMap(functorMap(nodeColor), degree_map))
|
121 |
121 |
.run();
|
122 |
122 |
\endcode
|
123 |
123 |
The \c functorMap() function makes an \c int to \c Color map from the
|
124 |
124 |
\e nodeColor() function. The \c composeMap() compose the \e degree_map
|
125 |
125 |
and the previous created map. The composed map is proper function to
|
126 |
126 |
get color of each node.
|
127 |
127 |
|
128 |
128 |
The usage with class type algorithms is little bit harder. In this
|
129 |
129 |
case the function type map adaptors can not be used, because the
|
130 |
130 |
function map adaptors give back temporarly objects.
|
131 |
131 |
\code
|
132 |
132 |
Graph graph;
|
133 |
133 |
|
134 |
134 |
typedef Graph::EdgeMap<double> DoubleEdgeMap;
|
135 |
135 |
DoubleEdgeMap length(graph);
|
136 |
136 |
DoubleEdgeMap speed(graph);
|
137 |
137 |
|
138 |
138 |
typedef DivMap<DoubleEdgeMap, DoubleEdgeMap> TimeMap;
|
139 |
139 |
|
140 |
140 |
TimeMap time(length, speed);
|
141 |
141 |
|
142 |
142 |
Dijkstra<Graph, TimeMap> dijkstra(graph, time);
|
143 |
143 |
dijkstra.run(source, target);
|
144 |
144 |
\endcode
|
145 |
145 |
|
146 |
146 |
We have a length map and a maximum speed map on a graph. The minimum
|
147 |
147 |
time to pass the edge can be calculated as the division of the two
|
148 |
148 |
maps which can be done implicitly with the \c DivMap template
|
149 |
149 |
class. We use the implicit minimum time map as the length map of the
|
150 |
150 |
\c Dijkstra algorithm.
|
151 |
151 |
*/
|
152 |
152 |
|
153 |
153 |
/**
|
154 |
154 |
@defgroup matrices Matrices
|
155 |
155 |
@ingroup datas
|
156 |
156 |
\brief Two dimensional data storages.
|
157 |
157 |
|
158 |
158 |
Two dimensional data storages.
|
159 |
159 |
*/
|
160 |
160 |
|
161 |
161 |
/**
|
162 |
162 |
@defgroup paths Path Structures
|
163 |
163 |
@ingroup datas
|
164 |
164 |
\brief Path structures implemented in LEMON.
|
165 |
165 |
|
166 |
166 |
LEMON provides flexible data structures
|
167 |
167 |
to work with paths.
|
168 |
168 |
|
169 |
169 |
All of them have similar interfaces, and it can be copied easily with
|
170 |
170 |
assignment operator and copy constructor. This make it easy and
|
171 |
171 |
efficient to have e.g. the Dijkstra algorithm to store its result in
|
172 |
172 |
any kind of path structure.
|
173 |
173 |
|
174 |
174 |
\sa lemon::concepts::Path
|
175 |
175 |
|
176 |
176 |
*/
|
177 |
177 |
|
178 |
178 |
/**
|
179 |
179 |
@defgroup auxdat Auxiliary Data Structures
|
180 |
180 |
@ingroup datas
|
181 |
181 |
\brief Some data structures implemented in LEMON.
|
182 |
182 |
|
183 |
183 |
This group describes the data structures implemented in LEMON in
|
184 |
184 |
order to make it easier to implement combinatorial algorithms.
|
185 |
185 |
*/
|
186 |
186 |
|
187 |
187 |
|
188 |
188 |
/**
|
189 |
189 |
@defgroup algs Algorithms
|
190 |
190 |
\brief This group describes the several algorithms
|
191 |
191 |
implemented in LEMON.
|
192 |
192 |
|
193 |
193 |
This group describes the several algorithms
|
194 |
194 |
implemented in LEMON.
|
195 |
195 |
*/
|
196 |
196 |
|
197 |
197 |
/**
|
198 |
198 |
@defgroup search Graph Search
|
199 |
199 |
@ingroup algs
|
200 |
200 |
\brief This group contains the common graph
|
201 |
201 |
search algorithms.
|
202 |
202 |
|
203 |
203 |
This group contains the common graph
|
204 |
204 |
search algorithms like Bfs and Dfs.
|
205 |
205 |
*/
|
206 |
206 |
|
207 |
207 |
/**
|
208 |
208 |
@defgroup shortest_path Shortest Path algorithms
|
209 |
209 |
@ingroup algs
|
210 |
210 |
\brief This group describes the algorithms
|
211 |
211 |
for finding shortest paths.
|
212 |
212 |
|
213 |
213 |
This group describes the algorithms for finding shortest paths in
|
214 |
214 |
graphs.
|
215 |
215 |
|
216 |
216 |
*/
|
217 |
217 |
|
218 |
218 |
/**
|
219 |
219 |
@defgroup max_flow Maximum Flow algorithms
|
220 |
220 |
@ingroup algs
|
221 |
221 |
\brief This group describes the algorithms for finding maximum flows.
|
222 |
222 |
|
223 |
223 |
This group describes the algorithms for finding maximum flows and
|
224 |
224 |
feasible circulations.
|
225 |
225 |
|
226 |
226 |
The maximum flow problem is to find a flow between a single-source and
|
227 |
227 |
single-target that is maximum. Formally, there is \f$G=(V,A)\f$
|
228 |
228 |
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity
|
229 |
229 |
function and given \f$s, t \in V\f$ source and target node. The
|
230 |
230 |
maximum flow is the solution of the next optimization problem:
|
231 |
231 |
|
232 |
232 |
\f[ 0 \le f_a \le c_a \f]
|
233 |
233 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} \quad u \in V \setminus \{s,t\}\f]
|
234 |
234 |
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]
|
235 |
235 |
|
236 |
236 |
The lemon contains several algorithms for solve maximum flow problems:
|
237 |
237 |
- \ref lemon::EdmondsKarp "Edmonds-Karp"
|
238 |
238 |
- \ref lemon::Preflow "Goldberg's Preflow algorithm"
|
239 |
239 |
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic tree"
|
240 |
240 |
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"
|
241 |
241 |
|
242 |
242 |
In most cases the \ref lemon::Preflow "preflow" algorithm provides the
|
243 |
243 |
fastest method to compute the maximum flow. All impelementations
|
244 |
244 |
provides functions for query the minimum cut, which is the dual linear
|
245 |
245 |
programming probelm of the maximum flow.
|
246 |
246 |
|
247 |
247 |
*/
|
248 |
248 |
|
249 |
249 |
/**
|
250 |
250 |
@defgroup min_cost_flow Minimum Cost Flow algorithms
|
251 |
251 |
@ingroup algs
|
252 |
252 |
|
253 |
253 |
\brief This group describes the algorithms
|
254 |
254 |
for finding minimum cost flows and circulations.
|
255 |
255 |
|
256 |
256 |
This group describes the algorithms for finding minimum cost flows and
|
257 |
257 |
circulations.
|
258 |
258 |
*/
|
259 |
259 |
|
260 |
260 |
/**
|
261 |
261 |
@defgroup min_cut Minimum Cut algorithms
|
262 |
262 |
@ingroup algs
|
263 |
263 |
|
264 |
264 |
\brief This group describes the algorithms for finding minimum cut in
|
265 |
265 |
graphs.
|
266 |
266 |
|
267 |
267 |
This group describes the algorithms for finding minimum cut in graphs.
|
268 |
268 |
|
269 |
269 |
The minimum cut problem is to find a non-empty and non-complete
|
270 |
270 |
\f$X\f$ subset of the vertices with minimum overall capacity on
|
271 |
271 |
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an
|
272 |
272 |
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
273 |
273 |
cut is the solution of the next optimization problem:
|
274 |
274 |
|
275 |
275 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]
|
276 |
276 |
|
277 |
277 |
The lemon contains several algorithms related to minimum cut problems:
|
278 |
278 |
|
279 |
279 |
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" for calculate minimum cut
|
280 |
280 |
in directed graphs
|
281 |
281 |
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
|
282 |
282 |
calculate minimum cut in undirected graphs
|
283 |
283 |
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" for calculate all
|
284 |
284 |
pairs minimum cut in undirected graphs
|
285 |
285 |
|
286 |
286 |
If you want to find minimum cut just between two distinict nodes,
|
287 |
287 |
please see the \ref max_flow "Maximum Flow page".
|
288 |
288 |
|
289 |
289 |
*/
|
290 |
290 |
|
291 |
291 |
/**
|
292 |
292 |
@defgroup graph_prop Connectivity and other graph properties
|
293 |
293 |
@ingroup algs
|
294 |
294 |
\brief This group describes the algorithms
|
295 |
295 |
for discover the graph properties
|
296 |
296 |
|
297 |
297 |
This group describes the algorithms for discover the graph properties
|
298 |
298 |
like connectivity, bipartiteness, euler property, simplicity, etc...
|
299 |
299 |
|
300 |
300 |
\image html edge_biconnected_components.png
|
301 |
301 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
|
302 |
302 |
*/
|
303 |
303 |
|
304 |
304 |
/**
|
305 |
305 |
@defgroup planar Planarity embedding and drawing
|
306 |
306 |
@ingroup algs
|
307 |
307 |
\brief This group contains algorithms for planarity embedding and drawing
|
308 |
308 |
|
309 |
309 |
This group contains algorithms for planarity checking, embedding and drawing.
|
310 |
310 |
|
311 |
311 |
\image html planar.png
|
312 |
312 |
\image latex planar.eps "Plane graph" width=\textwidth
|
313 |
313 |
*/
|
314 |
314 |
|
315 |
315 |
/**
|
316 |
316 |
@defgroup matching Matching algorithms
|
317 |
317 |
@ingroup algs
|
318 |
318 |
\brief This group describes the algorithms
|
319 |
319 |
for find matchings in graphs and bipartite graphs.
|
320 |
320 |
|
321 |
321 |
This group provides some algorithm objects and function to calculate
|
322 |
322 |
matchings in graphs and bipartite graphs. The general matching problem is
|
323 |
323 |
finding a subset of the edges which does not shares common endpoints.
|
324 |
324 |
|
325 |
325 |
There are several different algorithms for calculate matchings in
|
326 |
326 |
graphs. The matching problems in bipartite graphs are generally
|
327 |
327 |
easier than in general graphs. The goal of the matching optimization
|
328 |
328 |
can be the finding maximum cardinality, maximum weight or minimum cost
|
329 |
329 |
matching. The search can be constrained to find perfect or
|
330 |
330 |
maximum cardinality matching.
|
331 |
331 |
|
332 |
332 |
Lemon contains the next algorithms:
|
333 |
333 |
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp
|
334 |
334 |
augmenting path algorithm for calculate maximum cardinality matching in
|
335 |
335 |
bipartite graphs
|
336 |
336 |
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel
|
337 |
337 |
algorithm for calculate maximum cardinality matching in bipartite graphs
|
338 |
338 |
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching"
|
339 |
339 |
Successive shortest path algorithm for calculate maximum weighted matching
|
340 |
340 |
and maximum weighted bipartite matching in bipartite graph
|
341 |
341 |
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching"
|
342 |
342 |
Successive shortest path algorithm for calculate minimum cost maximum
|
343 |
343 |
matching in bipartite graph
|
344 |
344 |
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm
|
345 |
345 |
for calculate maximum cardinality matching in general graph
|
346 |
346 |
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom
|
347 |
347 |
shrinking algorithm for calculate maximum weighted matching in general
|
348 |
348 |
graph
|
349 |
349 |
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"
|
350 |
350 |
Edmond's blossom shrinking algorithm for calculate maximum weighted
|
351 |
351 |
perfect matching in general graph
|
352 |
352 |
|
353 |
353 |
\image html bipartite_matching.png
|
354 |
354 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
|
355 |
355 |
|
356 |
356 |
*/
|
357 |
357 |
|
358 |
358 |
/**
|
359 |
359 |
@defgroup spantree Minimum Spanning Tree algorithms
|
360 |
360 |
@ingroup algs
|
361 |
361 |
\brief This group contains the algorithms for finding a minimum cost spanning
|
362 |
362 |
tree in a graph
|
363 |
363 |
|
364 |
364 |
This group contains the algorithms for finding a minimum cost spanning
|
365 |
365 |
tree in a graph
|
366 |
366 |
*/
|
367 |
367 |
|
368 |
368 |
|
369 |
369 |
/**
|
370 |
370 |
@defgroup auxalg Auxiliary algorithms
|
371 |
371 |
@ingroup algs
|
372 |
372 |
\brief Some algorithms implemented in LEMON.
|
373 |
373 |
|
374 |
374 |
This group describes the algorithms in LEMON in order to make
|
375 |
375 |
it easier to implement complex algorithms.
|
376 |
376 |
*/
|
377 |
377 |
|
378 |
378 |
/**
|
379 |
379 |
@defgroup approx Approximation algorithms
|
380 |
380 |
\brief Approximation algorithms
|
381 |
381 |
|
382 |
382 |
Approximation and heuristic algorithms
|
383 |
383 |
*/
|
384 |
384 |
|
385 |
385 |
/**
|
386 |
386 |
@defgroup gen_opt_group General Optimization Tools
|
387 |
387 |
\brief This group describes some general optimization frameworks
|
388 |
388 |
implemented in LEMON.
|
389 |
389 |
|
390 |
390 |
This group describes some general optimization frameworks
|
391 |
391 |
implemented in LEMON.
|
392 |
392 |
|
393 |
393 |
*/
|
394 |
394 |
|
395 |
395 |
/**
|
396 |
396 |
@defgroup lp_group Lp and Mip solvers
|
397 |
397 |
@ingroup gen_opt_group
|
398 |
398 |
\brief Lp and Mip solver interfaces for LEMON.
|
399 |
399 |
|
400 |
400 |
This group describes Lp and Mip solver interfaces for LEMON. The
|
401 |
401 |
various LP solvers could be used in the same manner with this
|
402 |
402 |
interface.
|
403 |
403 |
|
404 |
404 |
*/
|
405 |
405 |
|
406 |
406 |
/**
|
407 |
407 |
@defgroup lp_utils Tools for Lp and Mip solvers
|
408 |
408 |
@ingroup lp_group
|
409 |
409 |
\brief This group adds some helper tools to the Lp and Mip solvers
|
410 |
410 |
implemented in LEMON.
|
411 |
411 |
|
412 |
412 |
This group adds some helper tools to general optimization framework
|
413 |
413 |
implemented in LEMON.
|
414 |
414 |
*/
|
415 |
415 |
|
416 |
416 |
/**
|
417 |
417 |
@defgroup metah Metaheuristics
|
418 |
418 |
@ingroup gen_opt_group
|
419 |
419 |
\brief Metaheuristics for LEMON library.
|
420 |
420 |
|
421 |
421 |
This group contains some metaheuristic optimization tools.
|
422 |
422 |
*/
|
423 |
423 |
|
424 |
424 |
/**
|
425 |
425 |
@defgroup utils Tools and Utilities
|
426 |
426 |
\brief Tools and Utilities for Programming in LEMON
|
427 |
427 |
|
428 |
428 |
Tools and Utilities for Programming in LEMON
|
429 |
429 |
*/
|
430 |
430 |
|
431 |
431 |
/**
|
432 |
432 |
@defgroup gutils Basic Graph Utilities
|
433 |
433 |
@ingroup utils
|
434 |
434 |
\brief This group describes some simple basic graph utilities.
|
435 |
435 |
|
436 |
436 |
This group describes some simple basic graph utilities.
|
437 |
437 |
*/
|
438 |
438 |
|
439 |
439 |
/**
|
440 |
440 |
@defgroup misc Miscellaneous Tools
|
441 |
441 |
@ingroup utils
|
442 |
442 |
Here you can find several useful tools for development,
|
443 |
443 |
debugging and testing.
|
444 |
444 |
*/
|
445 |
445 |
|
446 |
446 |
|
447 |
447 |
/**
|
448 |
448 |
@defgroup timecount Time measuring and Counting
|
449 |
449 |
@ingroup misc
|
450 |
450 |
Here you can find simple tools for measuring the performance
|
451 |
451 |
of algorithms.
|
452 |
452 |
*/
|
453 |
453 |
|
454 |
454 |
/**
|
455 |
455 |
@defgroup graphbits Tools for Graph Implementation
|
456 |
456 |
@ingroup utils
|
457 |
457 |
\brief Tools to Make It Easier to Make Graphs.
|
458 |
458 |
|
459 |
459 |
This group describes the tools that makes it easier to make graphs and
|
460 |
460 |
the maps that dynamically update with the graph changes.
|
461 |
461 |
*/
|
462 |
462 |
|
463 |
463 |
/**
|
464 |
464 |
@defgroup exceptions Exceptions
|
465 |
465 |
@ingroup utils
|
466 |
466 |
This group contains the exceptions thrown by LEMON library
|
467 |
467 |
*/
|
468 |
468 |
|
469 |
469 |
/**
|
470 |
470 |
@defgroup io_group Input-Output
|
471 |
471 |
\brief Several Graph Input-Output methods
|
472 |
472 |
|
473 |
473 |
Here you can find tools for importing and exporting graphs
|
474 |
474 |
and graph related data. Now it supports the LEMON format, the
|
475 |
475 |
\c DIMACS format and the encapsulated postscript format.
|
476 |
476 |
*/
|
477 |
477 |
|
478 |
478 |
/**
|
479 |
479 |
@defgroup lemon_io Lemon Input-Output
|
480 |
480 |
@ingroup io_group
|
481 |
481 |
\brief Reading and writing LEMON format
|
482 |
482 |
|
483 |
483 |
Methods for reading and writing LEMON format. More about this
|
484 |
484 |
format you can find on the \ref graph-io-page "Graph Input-Output"
|
485 |
485 |
tutorial pages.
|
486 |
486 |
*/
|
487 |
487 |
|
488 |
488 |
/**
|
489 |
489 |
@defgroup section_io Section readers and writers
|
490 |
490 |
@ingroup lemon_io
|
491 |
491 |
\brief Section readers and writers for lemon Input-Output.
|
492 |
492 |
|
493 |
493 |
Here you can find which section readers and writers can attach to
|
494 |
494 |
the LemonReader and LemonWriter.
|
495 |
495 |
*/
|
496 |
496 |
|
497 |
497 |
/**
|
498 |
498 |
@defgroup item_io Item Readers and Writers
|
499 |
499 |
@ingroup lemon_io
|
500 |
500 |
\brief Item readers and writers for lemon Input-Output.
|
501 |
501 |
|
502 |
502 |
The Input-Output classes can handle more data type by example
|
503 |
503 |
as map or attribute value. Each of these should be written and
|
504 |
504 |
read some way. The module make possible to do this.
|
505 |
505 |
*/
|
506 |
506 |
|
507 |
507 |
/**
|
508 |
508 |
@defgroup eps_io Postscript exporting
|
509 |
509 |
@ingroup io_group
|
510 |
510 |
\brief General \c EPS drawer and graph exporter
|
511 |
511 |
|
512 |
512 |
This group contains general \c EPS drawing methods and special
|
513 |
513 |
graph exporting tools.
|
514 |
514 |
*/
|
515 |
515 |
|
516 |
516 |
|
517 |
517 |
/**
|
518 |
518 |
@defgroup concept Concepts
|
519 |
519 |
\brief Skeleton classes and concept checking classes
|
520 |
520 |
|
521 |
521 |
This group describes the data/algorithm skeletons and concept checking
|
522 |
522 |
classes implemented in LEMON.
|
523 |
523 |
|
524 |
524 |
The purpose of the classes in this group is fourfold.
|
525 |
525 |
|
526 |
526 |
- These classes contain the documentations of the concepts. In order
|
527 |
527 |
to avoid document multiplications, an implementation of a concept
|
528 |
528 |
simply refers to the corresponding concept class.
|
529 |
529 |
|
530 |
530 |
- These classes declare every functions, <tt>typedef</tt>s etc. an
|
531 |
531 |
implementation of the concepts should provide, however completely
|
532 |
532 |
without implementations and real data structures behind the
|
533 |
533 |
interface. On the other hand they should provide nothing else. All
|
534 |
534 |
the algorithms working on a data structure meeting a certain concept
|
535 |
535 |
should compile with these classes. (Though it will not run properly,
|
536 |
536 |
of course.) In this way it is easily to check if an algorithm
|
537 |
537 |
doesn't use any extra feature of a certain implementation.
|
538 |
538 |
|
539 |
539 |
- The concept descriptor classes also provide a <em>checker class</em>
|
540 |
540 |
that makes it possible check whether a certain implementation of a
|
541 |
541 |
concept indeed provides all the required features.
|
542 |
542 |
|
543 |
543 |
- Finally, They can serve as a skeleton of a new implementation of a concept.
|
544 |
544 |
|
545 |
545 |
*/
|
546 |
546 |
|
547 |
547 |
|
548 |
548 |
/**
|
549 |
549 |
@defgroup graph_concepts Graph Structure Concepts
|
550 |
550 |
@ingroup concept
|
551 |
551 |
\brief Skeleton and concept checking classes for graph structures
|
552 |
552 |
|
553 |
553 |
This group contains the skeletons and concept checking classes of LEMON's
|
554 |
554 |
graph structures and helper classes used to implement these.
|
555 |
555 |
*/
|
556 |
556 |
|
557 |
557 |
/* --- Unused group
|
558 |
558 |
@defgroup experimental Experimental Structures and Algorithms
|
559 |
559 |
This group contains some Experimental structures and algorithms.
|
560 |
560 |
The stuff here is subject to change.
|
561 |
561 |
*/
|
562 |
562 |
|
563 |
563 |
/**
|
564 |
564 |
\anchor demoprograms
|
565 |
565 |
|
566 |
566 |
@defgroup demos Demo programs
|
567 |
567 |
|
568 |
568 |
Some demo programs are listed here. Their full source codes can be found in
|
569 |
569 |
the \c demo subdirectory of the source tree.
|
570 |
570 |
|
571 |
|
The standard compilation procedure (<tt>./configure;make</tt>) will compile
|
572 |
|
them, as well.
|
|
571 |
It order to compile them, use <tt>--enable-demo</tt> configure option when
|
|
572 |
build the library.
|
573 |
573 |
|
574 |
574 |
*/
|
575 |
575 |
|
576 |
576 |
/**
|
577 |
577 |
@defgroup tools Standalone utility applications
|
578 |
578 |
|
579 |
579 |
Some utility applications are listed here.
|
580 |
580 |
|
581 |
581 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile
|
582 |
582 |
them, as well.
|
583 |
583 |
|
584 |
584 |
*/
|
585 |
585 |
|