0
2
4
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
///\ingroup concept |
|
20 |
///\file |
|
21 |
///\brief Classes for representing paths in digraphs. |
|
22 |
/// |
|
23 |
///\todo Iterators have obsolete style |
|
24 |
|
|
25 |
#ifndef LEMON_CONCEPT_PATH_H |
|
26 |
#define LEMON_CONCEPT_PATH_H |
|
27 |
|
|
28 |
#include <lemon/bits/invalid.h> |
|
29 |
#include <lemon/bits/utility.h> |
|
30 |
#include <lemon/concept_check.h> |
|
31 |
|
|
32 |
namespace lemon { |
|
33 |
namespace concepts { |
|
34 |
|
|
35 |
/// \addtogroup concept |
|
36 |
/// @{ |
|
37 |
|
|
38 |
/// \brief A skeleton structure for representing directed paths in |
|
39 |
/// a digraph. |
|
40 |
/// |
|
41 |
/// A skeleton structure for representing directed paths in a |
|
42 |
/// digraph. |
|
43 |
/// \param _Digraph The digraph type in which the path is. |
|
44 |
/// |
|
45 |
/// In a sense, the path can be treated as a list of arcs. The |
|
46 |
/// lemon path type stores just this list. As a consequence it |
|
47 |
/// cannot enumerate the nodes in the path and the zero length |
|
48 |
/// paths cannot store the source. |
|
49 |
/// |
|
50 |
template <typename _Digraph> |
|
51 |
class Path { |
|
52 |
public: |
|
53 |
|
|
54 |
/// Type of the underlying digraph. |
|
55 |
typedef _Digraph Digraph; |
|
56 |
/// Arc type of the underlying digraph. |
|
57 |
typedef typename Digraph::Arc Arc; |
|
58 |
|
|
59 |
class ArcIt; |
|
60 |
|
|
61 |
/// \brief Default constructor |
|
62 |
Path() {} |
|
63 |
|
|
64 |
/// \brief Template constructor |
|
65 |
template <typename CPath> |
|
66 |
Path(const CPath& cpath) {} |
|
67 |
|
|
68 |
/// \brief Template assigment |
|
69 |
template <typename CPath> |
|
70 |
Path& operator=(const CPath& cpath) {} |
|
71 |
|
|
72 |
/// Length of the path ie. the number of arcs in the path. |
|
73 |
int length() const { return 0;} |
|
74 |
|
|
75 |
/// Returns whether the path is empty. |
|
76 |
bool empty() const { return true;} |
|
77 |
|
|
78 |
/// Resets the path to an empty path. |
|
79 |
void clear() {} |
|
80 |
|
|
81 |
/// \brief Lemon style iterator for path arcs |
|
82 |
/// |
|
83 |
/// This class is used to iterate on the arcs of the paths. |
|
84 |
class ArcIt { |
|
85 |
public: |
|
86 |
/// Default constructor |
|
87 |
ArcIt() {} |
|
88 |
/// Invalid constructor |
|
89 |
ArcIt(Invalid) {} |
|
90 |
/// Constructor for first arc |
|
91 |
ArcIt(const Path &) {} |
|
92 |
|
|
93 |
/// Conversion to Arc |
|
94 |
operator Arc() const { return INVALID; } |
|
95 |
|
|
96 |
/// Next arc |
|
97 |
ArcIt& operator++() {return *this;} |
|
98 |
|
|
99 |
/// Comparison operator |
|
100 |
bool operator==(const ArcIt&) const {return true;} |
|
101 |
/// Comparison operator |
|
102 |
bool operator!=(const ArcIt&) const {return true;} |
|
103 |
/// Comparison operator |
|
104 |
bool operator<(const ArcIt&) const {return false;} |
|
105 |
|
|
106 |
}; |
|
107 |
|
|
108 |
template <typename _Path> |
|
109 |
struct Constraints { |
|
110 |
void constraints() { |
|
111 |
Path<Digraph> pc; |
|
112 |
_Path p, pp(pc); |
|
113 |
int l = p.length(); |
|
114 |
int e = p.empty(); |
|
115 |
p.clear(); |
|
116 |
|
|
117 |
p = pc; |
|
118 |
|
|
119 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
|
120 |
|
|
121 |
++i; |
|
122 |
typename Digraph::Arc ed = i; |
|
123 |
|
|
124 |
e = (i == ii); |
|
125 |
e = (i != ii); |
|
126 |
e = (i < ii); |
|
127 |
|
|
128 |
ignore_unused_variable_warning(l); |
|
129 |
ignore_unused_variable_warning(pp); |
|
130 |
ignore_unused_variable_warning(e); |
|
131 |
ignore_unused_variable_warning(id); |
|
132 |
ignore_unused_variable_warning(ii); |
|
133 |
ignore_unused_variable_warning(ed); |
|
134 |
} |
|
135 |
}; |
|
136 |
|
|
137 |
}; |
|
138 |
|
|
139 |
namespace _path_bits { |
|
140 |
|
|
141 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
|
142 |
struct PathDumperConstraints { |
|
143 |
void constraints() { |
|
144 |
int l = p.length(); |
|
145 |
int e = p.empty(); |
|
146 |
|
|
147 |
typename _Path::ArcIt id, i(p); |
|
148 |
|
|
149 |
++i; |
|
150 |
typename _Digraph::Arc ed = i; |
|
151 |
|
|
152 |
e = (i == INVALID); |
|
153 |
e = (i != INVALID); |
|
154 |
|
|
155 |
ignore_unused_variable_warning(l); |
|
156 |
ignore_unused_variable_warning(e); |
|
157 |
ignore_unused_variable_warning(id); |
|
158 |
ignore_unused_variable_warning(ed); |
|
159 |
} |
|
160 |
_Path& p; |
|
161 |
}; |
|
162 |
|
|
163 |
template <typename _Digraph, typename _Path> |
|
164 |
struct PathDumperConstraints< |
|
165 |
_Digraph, _Path, |
|
166 |
typename enable_if<typename _Path::RevPathTag, void>::type |
|
167 |
> { |
|
168 |
void constraints() { |
|
169 |
int l = p.length(); |
|
170 |
int e = p.empty(); |
|
171 |
|
|
172 |
typename _Path::RevArcIt id, i(p); |
|
173 |
|
|
174 |
++i; |
|
175 |
typename _Digraph::Arc ed = i; |
|
176 |
|
|
177 |
e = (i == INVALID); |
|
178 |
e = (i != INVALID); |
|
179 |
|
|
180 |
ignore_unused_variable_warning(l); |
|
181 |
ignore_unused_variable_warning(e); |
|
182 |
ignore_unused_variable_warning(id); |
|
183 |
ignore_unused_variable_warning(ed); |
|
184 |
} |
|
185 |
_Path& p; |
|
186 |
}; |
|
187 |
|
|
188 |
} |
|
189 |
|
|
190 |
|
|
191 |
/// \brief A skeleton structure for path dumpers. |
|
192 |
/// |
|
193 |
/// A skeleton structure for path dumpers. The path dumpers are |
|
194 |
/// the generalization of the paths. The path dumpers can |
|
195 |
/// enumerate the arcs of the path wheter in forward or in |
|
196 |
/// backward order. In most time these classes are not used |
|
197 |
/// directly rather it used to assign a dumped class to a real |
|
198 |
/// path type. |
|
199 |
/// |
|
200 |
/// The main purpose of this concept is that the shortest path |
|
201 |
/// algorithms can enumerate easily the arcs in reverse order. |
|
202 |
/// If we would like to give back a real path from these |
|
203 |
/// algorithms then we should create a temporarly path object. In |
|
204 |
/// Lemon such algorithms gives back a path dumper what can |
|
205 |
/// assigned to a real path and the dumpers can be implemented as |
|
206 |
/// an adaptor class to the predecessor map. |
|
207 |
|
|
208 |
/// \param _Digraph The digraph type in which the path is. |
|
209 |
/// |
|
210 |
/// The paths can be constructed from any path type by a |
|
211 |
/// template constructor or a template assignment operator. |
|
212 |
/// |
|
213 |
template <typename _Digraph> |
|
214 |
class PathDumper { |
|
215 |
public: |
|
216 |
|
|
217 |
/// Type of the underlying digraph. |
|
218 |
typedef _Digraph Digraph; |
|
219 |
/// Arc type of the underlying digraph. |
|
220 |
typedef typename Digraph::Arc Arc; |
|
221 |
|
|
222 |
/// Length of the path ie. the number of arcs in the path. |
|
223 |
int length() const { return 0;} |
|
224 |
|
|
225 |
/// Returns whether the path is empty. |
|
226 |
bool empty() const { return true;} |
|
227 |
|
|
228 |
/// \brief Forward or reverse dumping |
|
229 |
/// |
|
230 |
/// If the RevPathTag is defined and true then reverse dumping |
|
231 |
/// is provided in the path dumper. In this case instead of the |
|
232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
|
233 |
/// dumper. |
|
234 |
typedef False RevPathTag; |
|
235 |
|
|
236 |
/// \brief Lemon style iterator for path arcs |
|
237 |
/// |
|
238 |
/// This class is used to iterate on the arcs of the paths. |
|
239 |
class ArcIt { |
|
240 |
public: |
|
241 |
/// Default constructor |
|
242 |
ArcIt() {} |
|
243 |
/// Invalid constructor |
|
244 |
ArcIt(Invalid) {} |
|
245 |
/// Constructor for first arc |
|
246 |
ArcIt(const PathDumper&) {} |
|
247 |
|
|
248 |
/// Conversion to Arc |
|
249 |
operator Arc() const { return INVALID; } |
|
250 |
|
|
251 |
/// Next arc |
|
252 |
ArcIt& operator++() {return *this;} |
|
253 |
|
|
254 |
/// Comparison operator |
|
255 |
bool operator==(const ArcIt&) const {return true;} |
|
256 |
/// Comparison operator |
|
257 |
bool operator!=(const ArcIt&) const {return true;} |
|
258 |
/// Comparison operator |
|
259 |
bool operator<(const ArcIt&) const {return false;} |
|
260 |
|
|
261 |
}; |
|
262 |
|
|
263 |
/// \brief Lemon style iterator for path arcs |
|
264 |
/// |
|
265 |
/// This class is used to iterate on the arcs of the paths in |
|
266 |
/// reverse direction. |
|
267 |
class RevArcIt { |
|
268 |
public: |
|
269 |
/// Default constructor |
|
270 |
RevArcIt() {} |
|
271 |
/// Invalid constructor |
|
272 |
RevArcIt(Invalid) {} |
|
273 |
/// Constructor for first arc |
|
274 |
RevArcIt(const PathDumper &) {} |
|
275 |
|
|
276 |
/// Conversion to Arc |
|
277 |
operator Arc() const { return INVALID; } |
|
278 |
|
|
279 |
/// Next arc |
|
280 |
RevArcIt& operator++() {return *this;} |
|
281 |
|
|
282 |
/// Comparison operator |
|
283 |
bool operator==(const RevArcIt&) const {return true;} |
|
284 |
/// Comparison operator |
|
285 |
bool operator!=(const RevArcIt&) const {return true;} |
|
286 |
/// Comparison operator |
|
287 |
bool operator<(const RevArcIt&) const {return false;} |
|
288 |
|
|
289 |
}; |
|
290 |
|
|
291 |
template <typename _Path> |
|
292 |
struct Constraints { |
|
293 |
void constraints() { |
|
294 |
function_requires<_path_bits:: |
|
295 |
PathDumperConstraints<Digraph, _Path> >(); |
|
296 |
} |
|
297 |
}; |
|
298 |
|
|
299 |
}; |
|
300 |
|
|
301 |
|
|
302 |
///@} |
|
303 |
} |
|
304 |
|
|
305 |
} // namespace lemon |
|
306 |
|
|
307 |
#endif // LEMON_CONCEPT_PATH_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
///\ingroup paths |
|
20 |
///\file |
|
21 |
///\brief Classes for representing paths in digraphs. |
|
22 |
/// |
|
23 |
|
|
24 |
#ifndef LEMON_PATH_H |
|
25 |
#define LEMON_PATH_H |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <algorithm> |
|
29 |
|
|
30 |
#include <lemon/path_utils.h> |
|
31 |
#include <lemon/error.h> |
|
32 |
#include <lemon/bits/invalid.h> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \addtogroup paths |
|
37 |
/// @{ |
|
38 |
|
|
39 |
|
|
40 |
/// \brief A structure for representing directed paths in a digraph. |
|
41 |
/// |
|
42 |
/// A structure for representing directed path in a digraph. |
|
43 |
/// \param Digraph The digraph type in which the path is. |
|
44 |
/// |
|
45 |
/// In a sense, the path can be treated as a list of arcs. The |
|
46 |
/// lemon path type stores just this list. As a consequence it |
|
47 |
/// cannot enumerate the nodes in the path and the zero length paths |
|
48 |
/// cannot store the source. |
|
49 |
/// |
|
50 |
/// This implementation is a back and front insertable and erasable |
|
51 |
/// path type. It can be indexed in O(1) time. The front and back |
|
52 |
/// insertion and erasure is amortized O(1) time. The |
|
53 |
/// impelementation is based on two opposite organized vectors. |
|
54 |
template <typename _Digraph> |
|
55 |
class Path { |
|
56 |
public: |
|
57 |
|
|
58 |
typedef _Digraph Digraph; |
|
59 |
typedef typename Digraph::Arc Arc; |
|
60 |
|
|
61 |
/// \brief Default constructor |
|
62 |
/// |
|
63 |
/// Default constructor |
|
64 |
Path() {} |
|
65 |
|
|
66 |
/// \brief Template copy constructor |
|
67 |
/// |
|
68 |
/// This path can be initialized with any other path type. It just |
|
69 |
/// makes a copy of the given path. |
|
70 |
template <typename CPath> |
|
71 |
Path(const CPath& cpath) { |
|
72 |
copyPath(*this, cpath); |
|
73 |
} |
|
74 |
|
|
75 |
/// \brief Template copy assignment |
|
76 |
/// |
|
77 |
/// This path can be initialized with any other path type. It just |
|
78 |
/// makes a copy of the given path. |
|
79 |
template <typename CPath> |
|
80 |
Path& operator=(const CPath& cpath) { |
|
81 |
copyPath(*this, cpath); |
|
82 |
return *this; |
|
83 |
} |
|
84 |
|
|
85 |
/// \brief Lemon style iterator for path arcs |
|
86 |
/// |
|
87 |
/// This class is used to iterate on the arcs of the paths. |
|
88 |
class ArcIt { |
|
89 |
friend class Path; |
|
90 |
public: |
|
91 |
/// \brief Default constructor |
|
92 |
ArcIt() {} |
|
93 |
/// \brief Invalid constructor |
|
94 |
ArcIt(Invalid) : path(0), idx(-1) {} |
|
95 |
/// \brief Initializate the constructor to the first arc of path |
|
96 |
ArcIt(const Path &_path) |
|
97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
|
98 |
|
|
99 |
private: |
|
100 |
|
|
101 |
ArcIt(const Path &_path, int _idx) |
|
102 |
: path(&_path), idx(_idx) {} |
|
103 |
|
|
104 |
public: |
|
105 |
|
|
106 |
/// \brief Conversion to Arc |
|
107 |
operator const Arc&() const { |
|
108 |
return path->nth(idx); |
|
109 |
} |
|
110 |
|
|
111 |
/// \brief Next arc |
|
112 |
ArcIt& operator++() { |
|
113 |
++idx; |
|
114 |
if (idx >= path->length()) idx = -1; |
|
115 |
return *this; |
|
116 |
} |
|
117 |
|
|
118 |
/// \brief Comparison operator |
|
119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
|
120 |
/// \brief Comparison operator |
|
121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
|
122 |
/// \brief Comparison operator |
|
123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
|
124 |
|
|
125 |
private: |
|
126 |
const Path *path; |
|
127 |
int idx; |
|
128 |
}; |
|
129 |
|
|
130 |
/// \brief Length of the path. |
|
131 |
int length() const { return head.size() + tail.size(); } |
|
132 |
/// \brief Returns whether the path is empty. |
|
133 |
bool empty() const { return head.empty() && tail.empty(); } |
|
134 |
|
|
135 |
/// \brief Resets the path to an empty path. |
|
136 |
void clear() { head.clear(); tail.clear(); } |
|
137 |
|
|
138 |
/// \brief Gives back the nth arc. |
|
139 |
/// |
|
140 |
/// \pre n is in the [0..length() - 1] range |
|
141 |
const Arc& nth(int n) const { |
|
142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
|
143 |
*(tail.begin() + (n - head.size())); |
|
144 |
} |
|
145 |
|
|
146 |
/// \brief Initializes arc iterator to point to the nth arc |
|
147 |
/// |
|
148 |
/// \pre n is in the [0..length() - 1] range |
|
149 |
ArcIt nthIt(int n) const { |
|
150 |
return ArcIt(*this, n); |
|
151 |
} |
|
152 |
|
|
153 |
/// \brief Gives back the first arc of the path |
|
154 |
const Arc& front() const { |
|
155 |
return head.empty() ? tail.front() : head.back(); |
|
156 |
} |
|
157 |
|
|
158 |
/// \brief Add a new arc before the current path |
|
159 |
void addFront(const Arc& arc) { |
|
160 |
head.push_back(arc); |
|
161 |
} |
|
162 |
|
|
163 |
/// \brief Erase the first arc of the path |
|
164 |
void eraseFront() { |
|
165 |
if (!head.empty()) { |
|
166 |
head.pop_back(); |
|
167 |
} else { |
|
168 |
head.clear(); |
|
169 |
int halfsize = tail.size() / 2; |
|
170 |
head.resize(halfsize); |
|
171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
|
172 |
head.rbegin()); |
|
173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
|
174 |
tail.resize(tail.size() - halfsize - 1); |
|
175 |
} |
|
176 |
} |
|
177 |
|
|
178 |
/// \brief Gives back the last arc of the path |
|
179 |
const Arc& back() const { |
|
180 |
return tail.empty() ? head.front() : tail.back(); |
|
181 |
} |
|
182 |
|
|
183 |
/// \brief Add a new arc behind the current path |
|
184 |
void addBack(const Arc& arc) { |
|
185 |
tail.push_back(arc); |
|
186 |
} |
|
187 |
|
|
188 |
/// \brief Erase the last arc of the path |
|
189 |
void eraseBack() { |
|
190 |
if (!tail.empty()) { |
|
191 |
tail.pop_back(); |
|
192 |
} else { |
|
193 |
int halfsize = head.size() / 2; |
|
194 |
tail.resize(halfsize); |
|
195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
|
196 |
tail.rbegin()); |
|
197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
|
198 |
head.resize(head.size() - halfsize - 1); |
|
199 |
} |
|
200 |
} |
|
201 |
|
|
202 |
|
|
203 |
|
|
204 |
typedef True BuildTag; |
|
205 |
|
|
206 |
template <typename CPath> |
|
207 |
void build(const CPath& path) { |
|
208 |
int len = path.length(); |
|
209 |
tail.reserve(len); |
|
210 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
|
211 |
tail.push_back(it); |
|
212 |
} |
|
213 |
} |
|
214 |
|
|
215 |
template <typename CPath> |
|
216 |
void buildRev(const CPath& path) { |
|
217 |
int len = path.length(); |
|
218 |
head.reserve(len); |
|
219 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
|
220 |
head.push_back(it); |
|
221 |
} |
|
222 |
} |
|
223 |
|
|
224 |
protected: |
|
225 |
typedef std::vector<Arc> Container; |
|
226 |
Container head, tail; |
|
227 |
|
|
228 |
}; |
|
229 |
|
|
230 |
/// \brief A structure for representing directed paths in a digraph. |
|
231 |
/// |
|
232 |
/// A structure for representing directed path in a digraph. |
|
233 |
/// \param Digraph The digraph type in which the path is. |
|
234 |
/// |
|
235 |
/// In a sense, the path can be treated as a list of arcs. The |
|
236 |
/// lemon path type stores just this list. As a consequence it |
|
237 |
/// cannot enumerate the nodes in the path and the zero length paths |
|
238 |
/// cannot store the source. |
|
239 |
/// |
|
240 |
/// This implementation is a just back insertable and erasable path |
|
241 |
/// type. It can be indexed in O(1) time. The back insertion and |
|
242 |
/// erasure is amortized O(1) time. This implementation is faster |
|
243 |
/// then the \c Path type because it use just one vector for the |
|
244 |
/// arcs. |
|
245 |
template <typename _Digraph> |
|
246 |
class SimplePath { |
|
247 |
public: |
|
248 |
|
|
249 |
typedef _Digraph Digraph; |
|
250 |
typedef typename Digraph::Arc Arc; |
|
251 |
|
|
252 |
/// \brief Default constructor |
|
253 |
/// |
|
254 |
/// Default constructor |
|
255 |
SimplePath() {} |
|
256 |
|
|
257 |
/// \brief Template copy constructor |
|
258 |
/// |
|
259 |
/// This path can be initialized with any other path type. It just |
|
260 |
/// makes a copy of the given path. |
|
261 |
template <typename CPath> |
|
262 |
SimplePath(const CPath& cpath) { |
|
263 |
copyPath(*this, cpath); |
|
264 |
} |
|
265 |
|
|
266 |
/// \brief Template copy assignment |
|
267 |
/// |
|
268 |
/// This path can be initialized with any other path type. It just |
|
269 |
/// makes a copy of the given path. |
|
270 |
template <typename CPath> |
|
271 |
SimplePath& operator=(const CPath& cpath) { |
|
272 |
copyPath(*this, cpath); |
|
273 |
return *this; |
|
274 |
} |
|
275 |
|
|
276 |
/// \brief Iterator class to iterate on the arcs of the paths |
|
277 |
/// |
|
278 |
/// This class is used to iterate on the arcs of the paths |
|
279 |
/// |
|
280 |
/// Of course it converts to Digraph::Arc |
|
281 |
class ArcIt { |
|
282 |
friend class SimplePath; |
|
283 |
public: |
|
284 |
/// Default constructor |
|
285 |
ArcIt() {} |
|
286 |
/// Invalid constructor |
|
287 |
ArcIt(Invalid) : path(0), idx(-1) {} |
|
288 |
/// \brief Initializate the constructor to the first arc of path |
|
289 |
ArcIt(const SimplePath &_path) |
|
290 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
|
291 |
|
|
292 |
private: |
|
293 |
|
|
294 |
/// Constructor with starting point |
|
295 |
ArcIt(const SimplePath &_path, int _idx) |
|
296 |
: idx(_idx), path(&_path) {} |
|
297 |
|
|
298 |
public: |
|
299 |
|
|
300 |
///Conversion to Digraph::Arc |
|
301 |
operator const Arc&() const { |
|
302 |
return path->nth(idx); |
|
303 |
} |
|
304 |
|
|
305 |
/// Next arc |
|
306 |
ArcIt& operator++() { |
|
307 |
++idx; |
|
308 |
if (idx >= path->length()) idx = -1; |
|
309 |
return *this; |
|
310 |
} |
|
311 |
|
|
312 |
/// Comparison operator |
|
313 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
|
314 |
/// Comparison operator |
|
315 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
|
316 |
/// Comparison operator |
|
317 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
|
318 |
|
|
319 |
private: |
|
320 |
const SimplePath *path; |
|
321 |
int idx; |
|
322 |
}; |
|
323 |
|
|
324 |
/// \brief Length of the path. |
|
325 |
int length() const { return data.size(); } |
|
326 |
/// \brief Returns whether the path is empty. |
|
327 |
bool empty() const { return data.empty(); } |
|
328 |
|
|
329 |
/// \brief Resets the path to an empty path. |
|
330 |
void clear() { data.clear(); } |
|
331 |
|
|
332 |
/// \brief Gives back the nth arc. |
|
333 |
/// |
|
334 |
/// \pre n is in the [0..length() - 1] range |
|
335 |
const Arc& nth(int n) const { |
|
336 |
return data[n]; |
|
337 |
} |
|
338 |
|
|
339 |
/// \brief Initializes arc iterator to point to the nth arc. |
|
340 |
ArcIt nthIt(int n) const { |
|
341 |
return ArcIt(*this, n); |
|
342 |
} |
|
343 |
|
|
344 |
/// \brief Gives back the first arc of the path. |
|
345 |
const Arc& front() const { |
|
346 |
return data.front(); |
|
347 |
} |
|
348 |
|
|
349 |
/// \brief Gives back the last arc of the path. |
|
350 |
const Arc& back() const { |
|
351 |
return data.back(); |
|
352 |
} |
|
353 |
|
|
354 |
/// \brief Add a new arc behind the current path. |
|
355 |
void addBack(const Arc& arc) { |
|
356 |
data.push_back(arc); |
|
357 |
} |
|
358 |
|
|
359 |
/// \brief Erase the last arc of the path |
|
360 |
void eraseBack() { |
|
361 |
data.pop_back(); |
|
362 |
} |
|
363 |
|
|
364 |
typedef True BuildTag; |
|
365 |
|
|
366 |
template <typename CPath> |
|
367 |
void build(const CPath& path) { |
|
368 |
int len = path.length(); |
|
369 |
data.resize(len); |
|
370 |
int index = 0; |
|
371 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
|
372 |
data[index] = it;; |
|
373 |
++index; |
|
374 |
} |
|
375 |
} |
|
376 |
|
|
377 |
template <typename CPath> |
|
378 |
void buildRev(const CPath& path) { |
|
379 |
int len = path.length(); |
|
380 |
data.resize(len); |
|
381 |
int index = len; |
|
382 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
|
383 |
--index; |
|
384 |
data[index] = it;; |
|
385 |
} |
|
386 |
} |
|
387 |
|
|
388 |
protected: |
|
389 |
typedef std::vector<Arc> Container; |
|
390 |
Container data; |
|
391 |
|
|
392 |
}; |
|
393 |
|
|
394 |
/// \brief A structure for representing directed paths in a digraph. |
|
395 |
/// |
|
396 |
/// A structure for representing directed path in a digraph. |
|
397 |
/// \param Digraph The digraph type in which the path is. |
|
398 |
/// |
|
399 |
/// In a sense, the path can be treated as a list of arcs. The |
|
400 |
/// lemon path type stores just this list. As a consequence it |
|
401 |
/// cannot enumerate the nodes in the path and the zero length paths |
|
402 |
/// cannot store the source. |
|
403 |
/// |
|
404 |
/// This implementation is a back and front insertable and erasable |
|
405 |
/// path type. It can be indexed in O(k) time, where k is the rank |
|
406 |
/// of the arc in the path. The length can be computed in O(n) |
|
407 |
/// time. The front and back insertion and erasure is O(1) time |
|
408 |
/// and it can be splited and spliced in O(1) time. |
|
409 |
template <typename _Digraph> |
|
410 |
class ListPath { |
|
411 |
public: |
|
412 |
|
|
413 |
typedef _Digraph Digraph; |
|
414 |
typedef typename Digraph::Arc Arc; |
|
415 |
|
|
416 |
protected: |
|
417 |
|
|
418 |
// the std::list<> is incompatible |
|
419 |
// hard to create invalid iterator |
|
420 |
struct Node { |
|
421 |
Arc arc; |
|
422 |
Node *next, *prev; |
|
423 |
}; |
|
424 |
|
|
425 |
Node *first, *last; |
|
426 |
|
|
427 |
std::allocator<Node> alloc; |
|
428 |
|
|
429 |
public: |
|
430 |
|
|
431 |
/// \brief Default constructor |
|
432 |
/// |
|
433 |
/// Default constructor |
|
434 |
ListPath() : first(0), last(0) {} |
|
435 |
|
|
436 |
/// \brief Template copy constructor |
|
437 |
/// |
|
438 |
/// This path can be initialized with any other path type. It just |
|
439 |
/// makes a copy of the given path. |
|
440 |
template <typename CPath> |
|
441 |
ListPath(const CPath& cpath) : first(0), last(0) { |
|
442 |
copyPath(*this, cpath); |
|
443 |
} |
|
444 |
|
|
445 |
/// \brief Destructor of the path |
|
446 |
/// |
|
447 |
/// Destructor of the path |
|
448 |
~ListPath() { |
|
449 |
clear(); |
|
450 |
} |
|
451 |
|
|
452 |
/// \brief Template copy assignment |
|
453 |
/// |
|
454 |
/// This path can be initialized with any other path type. It just |
|
455 |
/// makes a copy of the given path. |
|
456 |
template <typename CPath> |
|
457 |
ListPath& operator=(const CPath& cpath) { |
|
458 |
copyPath(*this, cpath); |
|
459 |
return *this; |
|
460 |
} |
|
461 |
|
|
462 |
/// \brief Iterator class to iterate on the arcs of the paths |
|
463 |
/// |
|
464 |
/// This class is used to iterate on the arcs of the paths |
|
465 |
/// |
|
466 |
/// Of course it converts to Digraph::Arc |
|
467 |
class ArcIt { |
|
468 |
friend class ListPath; |
|
469 |
public: |
|
470 |
/// Default constructor |
|
471 |
ArcIt() {} |
|
472 |
/// Invalid constructor |
|
473 |
ArcIt(Invalid) : path(0), node(0) {} |
|
474 |
/// \brief Initializate the constructor to the first arc of path |
|
475 |
ArcIt(const ListPath &_path) |
|
476 |
: path(&_path), node(_path.first) {} |
|
477 |
|
|
478 |
protected: |
|
479 |
|
|
480 |
ArcIt(const ListPath &_path, Node *_node) |
|
481 |
: path(&_path), node(_node) {} |
|
482 |
|
|
483 |
|
|
484 |
public: |
|
485 |
|
|
486 |
///Conversion to Digraph::Arc |
|
487 |
operator const Arc&() const { |
|
488 |
return node->arc; |
|
489 |
} |
|
490 |
|
|
491 |
/// Next arc |
|
492 |
ArcIt& operator++() { |
|
493 |
node = node->next; |
|
494 |
return *this; |
|
495 |
} |
|
496 |
|
|
497 |
/// Comparison operator |
|
498 |
bool operator==(const ArcIt& e) const { return node==e.node; } |
|
499 |
/// Comparison operator |
|
500 |
bool operator!=(const ArcIt& e) const { return node!=e.node; } |
|
501 |
/// Comparison operator |
|
502 |
bool operator<(const ArcIt& e) const { return node<e.node; } |
|
503 |
|
|
504 |
private: |
|
505 |
const ListPath *path; |
|
506 |
Node *node; |
|
507 |
}; |
|
508 |
|
|
509 |
/// \brief Gives back the nth arc. |
|
510 |
/// |
|
511 |
/// Gives back the nth arc in O(n) time. |
|
512 |
/// \pre n is in the [0..length() - 1] range |
|
513 |
const Arc& nth(int n) const { |
|
514 |
Node *node = first; |
|
515 |
for (int i = 0; i < n; ++i) { |
|
516 |
node = node->next; |
|
517 |
} |
|
518 |
return node->arc; |
|
519 |
} |
|
520 |
|
|
521 |
/// \brief Initializes arc iterator to point to the nth arc. |
|
522 |
ArcIt nthIt(int n) const { |
|
523 |
Node *node = first; |
|
524 |
for (int i = 0; i < n; ++i) { |
|
525 |
node = node->next; |
|
526 |
} |
|
527 |
return ArcIt(*this, node); |
|
528 |
} |
|
529 |
|
|
530 |
/// \brief Length of the path. |
|
531 |
int length() const { |
|
532 |
int len = 0; |
|
533 |
Node *node = first; |
|
534 |
while (node != 0) { |
|
535 |
node = node->next; |
|
536 |
++len; |
|
537 |
} |
|
538 |
return len; |
|
539 |
} |
|
540 |
|
|
541 |
/// \brief Returns whether the path is empty. |
|
542 |
bool empty() const { return first == 0; } |
|
543 |
|
|
544 |
/// \brief Resets the path to an empty path. |
|
545 |
void clear() { |
|
546 |
while (first != 0) { |
|
547 |
last = first->next; |
|
548 |
alloc.destroy(first); |
|
549 |
alloc.deallocate(first, 1); |
|
550 |
first = last; |
|
551 |
} |
|
552 |
} |
|
553 |
|
|
554 |
/// \brief Gives back the first arc of the path |
|
555 |
const Arc& front() const { |
|
556 |
return first->arc; |
|
557 |
} |
|
558 |
|
|
559 |
/// \brief Add a new arc before the current path |
|
560 |
void addFront(const Arc& arc) { |
|
561 |
Node *node = alloc.allocate(1); |
|
562 |
alloc.construct(node, Node()); |
|
563 |
node->prev = 0; |
|
564 |
node->next = first; |
|
565 |
node->arc = arc; |
|
566 |
if (first) { |
|
567 |
first->prev = node; |
|
568 |
first = node; |
|
569 |
} else { |
|
570 |
first = last = node; |
|
571 |
} |
|
572 |
} |
|
573 |
|
|
574 |
/// \brief Erase the first arc of the path |
|
575 |
void eraseFront() { |
|
576 |
Node *node = first; |
|
577 |
first = first->next; |
|
578 |
if (first) { |
|
579 |
first->prev = 0; |
|
580 |
} else { |
|
581 |
last = 0; |
|
582 |
} |
|
583 |
alloc.destroy(node); |
|
584 |
alloc.deallocate(node, 1); |
|
585 |
} |
|
586 |
|
|
587 |
/// \brief Gives back the last arc of the path. |
|
588 |
const Arc& back() const { |
|
589 |
return last->arc; |
|
590 |
} |
|
591 |
|
|
592 |
/// \brief Add a new arc behind the current path. |
|
593 |
void addBack(const Arc& arc) { |
|
594 |
Node *node = alloc.allocate(1); |
|
595 |
alloc.construct(node, Node()); |
|
596 |
node->next = 0; |
|
597 |
node->prev = last; |
|
598 |
node->arc = arc; |
|
599 |
if (last) { |
|
600 |
last->next = node; |
|
601 |
last = node; |
|
602 |
} else { |
|
603 |
last = first = node; |
|
604 |
} |
|
605 |
} |
|
606 |
|
|
607 |
/// \brief Erase the last arc of the path |
|
608 |
void eraseBack() { |
|
609 |
Node *node = last; |
|
610 |
last = last->prev; |
|
611 |
if (last) { |
|
612 |
last->next = 0; |
|
613 |
} else { |
|
614 |
first = 0; |
|
615 |
} |
|
616 |
alloc.destroy(node); |
|
617 |
alloc.deallocate(node, 1); |
|
618 |
} |
|
619 |
|
|
620 |
/// \brief Splicing the given path to the current path. |
|
621 |
/// |
|
622 |
/// It splices the \c tpath to the back of the current path and \c |
|
623 |
/// tpath becomes empty. The time complexity of this function is |
|
624 |
/// O(1). |
|
625 |
void spliceBack(ListPath& tpath) { |
|
626 |
if (first) { |
|
627 |
if (tpath.first) { |
|
628 |
last->next = tpath.first; |
|
629 |
tpath.first->prev = last; |
|
630 |
last = tpath.last; |
|
631 |
} |
|
632 |
} else { |
|
633 |
first = tpath.first; |
|
634 |
last = tpath.last; |
|
635 |
} |
|
636 |
tpath.first = tpath.last = 0; |
|
637 |
} |
|
638 |
|
|
639 |
/// \brief Splicing the given path to the current path. |
|
640 |
/// |
|
641 |
/// It splices the \c tpath before the current path and \c tpath |
|
642 |
/// becomes empty. The time complexity of this function |
|
643 |
/// is O(1). |
|
644 |
void spliceFront(ListPath& tpath) { |
|
645 |
if (first) { |
|
646 |
if (tpath.first) { |
|
647 |
first->prev = tpath.last; |
|
648 |
tpath.last->next = first; |
|
649 |
first = tpath.first; |
|
650 |
} |
|
651 |
} else { |
|
652 |
first = tpath.first; |
|
653 |
last = tpath.last; |
|
654 |
} |
|
655 |
tpath.first = tpath.last = 0; |
|
656 |
} |
|
657 |
|
|
658 |
/// \brief Splicing the given path into the current path. |
|
659 |
/// |
|
660 |
/// It splices the \c tpath into the current path before the |
|
661 |
/// position of \c it iterator and \c tpath becomes empty. The |
|
662 |
/// time complexity of this function is O(1). If the \c it is \c |
|
663 |
/// INVALID then it will splice behind the current path. |
|
664 |
void splice(ArcIt it, ListPath& tpath) { |
|
665 |
if (it.node) { |
|
666 |
if (tpath.first) { |
|
667 |
tpath.first->prev = it.node->prev; |
|
668 |
if (it.node->prev) { |
|
669 |
it.node->prev->next = tpath.first; |
|
670 |
} else { |
|
671 |
first = tpath.first; |
|
672 |
} |
|
673 |
it.node->prev = tpath.last; |
|
674 |
tpath.last->next = it.node; |
|
675 |
} |
|
676 |
} else { |
|
677 |
if (first) { |
|
678 |
if (tpath.first) { |
|
679 |
last->next = tpath.first; |
|
680 |
tpath.first->prev = last; |
|
681 |
last = tpath.last; |
|
682 |
} |
|
683 |
} else { |
|
684 |
first = tpath.first; |
|
685 |
last = tpath.last; |
|
686 |
} |
|
687 |
} |
|
688 |
tpath.first = tpath.last = 0; |
|
689 |
} |
|
690 |
|
|
691 |
/// \brief Spliting the current path. |
|
692 |
/// |
|
693 |
/// It splits the current path into two parts. The part before \c |
|
694 |
/// it iterator will remain in the current path and the part from |
|
695 |
/// the it will put into the \c tpath. If the \c tpath had arcs |
|
696 |
/// before the operation they will be removed first. The time |
|
697 |
/// complexity of this function is O(1) plus the clearing of \c |
|
698 |
/// tpath. If the \c it is \c INVALID then it just clears \c |
|
699 |
/// tpath. |
|
700 |
void split(ArcIt it, ListPath& tpath) { |
|
701 |
tpath.clear(); |
|
702 |
if (it.node) { |
|
703 |
tpath.first = it.node; |
|
704 |
tpath.last = last; |
|
705 |
if (it.node->prev) { |
|
706 |
last = it.node->prev; |
|
707 |
last->next = 0; |
|
708 |
} else { |
|
709 |
first = last = 0; |
|
710 |
} |
|
711 |
it.node->prev = 0; |
|
712 |
} |
|
713 |
} |
|
714 |
|
|
715 |
|
|
716 |
typedef True BuildTag; |
|
717 |
|
|
718 |
template <typename CPath> |
|
719 |
void build(const CPath& path) { |
|
720 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
|
721 |
addBack(it); |
|
722 |
} |
|
723 |
} |
|
724 |
|
|
725 |
template <typename CPath> |
|
726 |
void buildRev(const CPath& path) { |
|
727 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
|
728 |
addFront(it); |
|
729 |
} |
|
730 |
} |
|
731 |
|
|
732 |
}; |
|
733 |
|
|
734 |
/// \brief A structure for representing directed paths in a digraph. |
|
735 |
/// |
|
736 |
/// A structure for representing directed path in a digraph. |
|
737 |
/// \param Digraph The digraph type in which the path is. |
|
738 |
/// |
|
739 |
/// In a sense, the path can be treated as a list of arcs. The |
|
740 |
/// lemon path type stores just this list. As a consequence it |
|
741 |
/// cannot enumerate the nodes in the path and the zero length paths |
|
742 |
/// cannot store the source. |
|
743 |
/// |
|
744 |
/// This implementation is completly static, so it cannot be |
|
745 |
/// modified exclude the assign an other path. It is intented to be |
|
746 |
/// used when you want to store a large number of paths because it is |
|
747 |
/// the most memory efficient path type in the lemon. |
|
748 |
template <typename _Digraph> |
|
749 |
class StaticPath { |
|
750 |
public: |
|
751 |
|
|
752 |
typedef _Digraph Digraph; |
|
753 |
typedef typename Digraph::Arc Arc; |
|
754 |
|
|
755 |
/// \brief Default constructor |
|
756 |
/// |
|
757 |
/// Default constructor |
|
758 |
StaticPath() : len(0), arcs(0) {} |
|
759 |
|
|
760 |
/// \brief Template copy constructor |
|
761 |
/// |
|
762 |
/// This path can be initialized with any other path type. It just |
|
763 |
/// makes a copy of the given path. |
|
764 |
template <typename CPath> |
|
765 |
StaticPath(const CPath& cpath) : arcs(0) { |
|
766 |
copyPath(*this, cpath); |
|
767 |
} |
|
768 |
|
|
769 |
/// \brief Destructor of the path |
|
770 |
/// |
|
771 |
/// Destructor of the path |
|
772 |
~StaticPath() { |
|
773 |
if (arcs) delete[] arcs; |
|
774 |
} |
|
775 |
|
|
776 |
/// \brief Template copy assignment |
|
777 |
/// |
|
778 |
/// This path can be initialized with any other path type. It just |
|
779 |
/// makes a copy of the given path. |
|
780 |
template <typename CPath> |
|
781 |
StaticPath& operator=(const CPath& cpath) { |
|
782 |
copyPath(*this, cpath); |
|
783 |
return *this; |
|
784 |
} |
|
785 |
|
|
786 |
/// \brief Iterator class to iterate on the arcs of the paths |
|
787 |
/// |
|
788 |
/// This class is used to iterate on the arcs of the paths |
|
789 |
/// |
|
790 |
/// Of course it converts to Digraph::Arc |
|
791 |
class ArcIt { |
|
792 |
friend class StaticPath; |
|
793 |
public: |
|
794 |
/// Default constructor |
|
795 |
ArcIt() {} |
|
796 |
/// Invalid constructor |
|
797 |
ArcIt(Invalid) : path(0), idx(-1) {} |
|
798 |
/// Initializate the constructor to the first arc of path |
|
799 |
ArcIt(const StaticPath &_path) |
|
800 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
|
801 |
|
|
802 |
private: |
|
803 |
|
|
804 |
/// Constructor with starting point |
|
805 |
ArcIt(const StaticPath &_path, int _idx) |
|
806 |
: idx(_idx), path(&_path) {} |
|
807 |
|
|
808 |
public: |
|
809 |
|
|
810 |
///Conversion to Digraph::Arc |
|
811 |
operator const Arc&() const { |
|
812 |
return path->nth(idx); |
|
813 |
} |
|
814 |
|
|
815 |
/// Next arc |
|
816 |
ArcIt& operator++() { |
|
817 |
++idx; |
|
818 |
if (idx >= path->length()) idx = -1; |
|
819 |
return *this; |
|
820 |
} |
|
821 |
|
|
822 |
/// Comparison operator |
|
823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
|
824 |
/// Comparison operator |
|
825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
|
826 |
/// Comparison operator |
|
827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
|
828 |
|
|
829 |
private: |
|
830 |
const StaticPath *path; |
|
831 |
int idx; |
|
832 |
}; |
|
833 |
|
|
834 |
/// \brief Gives back the nth arc. |
|
835 |
/// |
|
836 |
/// \pre n is in the [0..length() - 1] range |
|
837 |
const Arc& nth(int n) const { |
|
838 |
return arcs[n]; |
|
839 |
} |
|
840 |
|
|
841 |
/// \brief Initializes arc iterator to point to the nth arc. |
|
842 |
ArcIt nthIt(int n) const { |
|
843 |
return ArcIt(*this, n); |
|
844 |
} |
|
845 |
|
|
846 |
/// \brief Gives back the length of the path. |
|
847 |
int length() const { return len; } |
|
848 |
|
|
849 |
/// \brief Returns true when the path is empty. |
|
850 |
int empty() const { return len == 0; } |
|
851 |
|
|
852 |
/// \break Erase all arc in the digraph. |
|
853 |
void clear() { |
|
854 |
len = 0; |
|
855 |
if (arcs) delete[] arcs; |
|
856 |
arcs = 0; |
|
857 |
} |
|
858 |
|
|
859 |
/// \brief Gives back the first arc of the path. |
|
860 |
const Arc& front() const { |
|
861 |
return arcs[0]; |
|
862 |
} |
|
863 |
|
|
864 |
/// \brief Gives back the last arc of the path. |
|
865 |
const Arc& back() const { |
|
866 |
return arcs[len - 1]; |
|
867 |
} |
|
868 |
|
|
869 |
|
|
870 |
typedef True BuildTag; |
|
871 |
|
|
872 |
template <typename CPath> |
|
873 |
void build(const CPath& path) { |
|
874 |
len = path.length(); |
|
875 |
arcs = new Arc[len]; |
|
876 |
int index = 0; |
|
877 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
|
878 |
arcs[index] = it; |
|
879 |
++index; |
|
880 |
} |
|
881 |
} |
|
882 |
|
|
883 |
template <typename CPath> |
|
884 |
void buildRev(const CPath& path) { |
|
885 |
len = path.length(); |
|
886 |
arcs = new Arc[len]; |
|
887 |
int index = len; |
|
888 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
|
889 |
--index; |
|
890 |
arcs[index] = it; |
|
891 |
} |
|
892 |
} |
|
893 |
|
|
894 |
private: |
|
895 |
int len; |
|
896 |
Arc* arcs; |
|
897 |
}; |
|
898 |
|
|
899 |
///@} |
|
900 |
|
|
901 |
} // namespace lemon |
|
902 |
|
|
903 |
#endif // LEMON_PATH_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
///\ingroup paths |
|
20 |
///\file |
|
21 |
///\brief Classes for representing paths in digraphs. |
|
22 |
/// |
|
23 |
|
|
24 |
#ifndef LEMON_PATH_UTILS_H |
|
25 |
#define LEMON_PATH_UTILS_H |
|
26 |
|
|
27 |
#include <lemon/concepts/path.h> |
|
28 |
|
|
29 |
namespace lemon { |
|
30 |
|
|
31 |
namespace _path_bits { |
|
32 |
|
|
33 |
template <typename Path, typename Enable = void> |
|
34 |
struct RevTagIndicator { |
|
35 |
static const bool value = false; |
|
36 |
}; |
|
37 |
|
|
38 |
template <typename Digraph> |
|
39 |
struct RevTagIndicator< |
|
40 |
Digraph, |
|
41 |
typename enable_if<typename Digraph::RevTag, void>::type |
|
42 |
> { |
|
43 |
static const bool value = true; |
|
44 |
}; |
|
45 |
|
|
46 |
template <typename Target, typename Source, |
|
47 |
typename BuildEnable = void, typename RevEnable = void> |
|
48 |
struct PathCopySelector { |
|
49 |
static void copy(Target& target, const Source& source) { |
|
50 |
target.clear(); |
|
51 |
for (typename Source::ArcIt it(source); it != INVALID; ++it) { |
|
52 |
target.addBack(it); |
|
53 |
} |
|
54 |
} |
|
55 |
}; |
|
56 |
|
|
57 |
template <typename Target, typename Source, typename BuildEnable> |
|
58 |
struct PathCopySelector< |
|
59 |
Target, Source, BuildEnable, |
|
60 |
typename enable_if<typename Source::RevPathTag, void>::type> { |
|
61 |
static void copy(Target& target, const Source& source) { |
|
62 |
target.clear(); |
|
63 |
for (typename Source::RevArcIt it(source); it != INVALID; ++it) { |
|
64 |
target.addFront(it); |
|
65 |
} |
|
66 |
} |
|
67 |
}; |
|
68 |
|
|
69 |
template <typename Target, typename Source, typename RevEnable> |
|
70 |
struct PathCopySelector< |
|
71 |
Target, Source, |
|
72 |
typename enable_if<typename Target::BuildTag, void>::type, RevEnable> { |
|
73 |
static void copy(Target& target, const Source& source) { |
|
74 |
target.clear(); |
|
75 |
target.build(source); |
|
76 |
} |
|
77 |
}; |
|
78 |
|
|
79 |
template <typename Target, typename Source> |
|
80 |
struct PathCopySelector< |
|
81 |
Target, Source, |
|
82 |
typename enable_if<typename Target::BuildTag, void>::type, |
|
83 |
typename enable_if<typename Source::RevPathTag, void>::type> { |
|
84 |
static void copy(Target& target, const Source& source) { |
|
85 |
target.clear(); |
|
86 |
target.buildRev(source); |
|
87 |
} |
|
88 |
}; |
|
89 |
|
|
90 |
} |
|
91 |
|
|
92 |
|
|
93 |
/// \brief Make of copy of a path. |
|
94 |
/// |
|
95 |
/// Make of copy of a path. |
|
96 |
template <typename Target, typename Source> |
|
97 |
void copyPath(Target& target, const Source& source) { |
|
98 |
checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>(); |
|
99 |
_path_bits::PathCopySelector<Target, Source>::copy(target, source); |
|
100 |
} |
|
101 |
|
|
102 |
/// \brief Checks the path's consistency. |
|
103 |
/// |
|
104 |
/// Checks that each arc's target is the next's source. |
|
105 |
/// |
|
106 |
template <typename Digraph, typename Path> |
|
107 |
bool checkPath(const Digraph& digraph, const Path& path) { |
|
108 |
typename Path::ArcIt it(path); |
|
109 |
if (it == INVALID) return true; |
|
110 |
typename Digraph::Node node = digraph.target(it); |
|
111 |
++it; |
|
112 |
while (it != INVALID) { |
|
113 |
if (digraph.source(it) != node) return false; |
|
114 |
node = digraph.target(it); |
|
115 |
++it; |
|
116 |
} |
|
117 |
return true; |
|
118 |
} |
|
119 |
|
|
120 |
/// \brief Gives back the source of the path |
|
121 |
/// |
|
122 |
/// Gives back the source of the path. |
|
123 |
template <typename Digraph, typename Path> |
|
124 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) { |
|
125 |
return digraph.source(path.front()); |
|
126 |
} |
|
127 |
|
|
128 |
/// \brief Gives back the target of the path |
|
129 |
/// |
|
130 |
/// Gives back the target of the path. |
|
131 |
template <typename Digraph, typename Path> |
|
132 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) { |
|
133 |
return digraph.target(path.back()); |
|
134 |
} |
|
135 |
|
|
136 |
/// \brief Class which helps to iterate the nodes of a path |
|
137 |
/// |
|
138 |
/// In a sense, the path can be treated as a list of arcs. The |
|
139 |
/// lemon path type stores just this list. As a consequence it |
|
140 |
/// cannot enumerate the nodes in the path and the zero length paths |
|
141 |
/// cannot store the node. |
|
142 |
/// |
|
143 |
/// This class implements the node iterator of a path structure. To |
|
144 |
/// provide this feature, the underlying digraph should be given to |
|
145 |
/// the constructor of the iterator. |
|
146 |
template <typename Path> |
|
147 |
class PathNodeIt { |
|
148 |
private: |
|
149 |
const typename Path::Digraph *_digraph; |
|
150 |
typename Path::ArcIt _it; |
|
151 |
typename Path::Digraph::Node _nd; |
|
152 |
|
|
153 |
public: |
|
154 |
|
|
155 |
typedef typename Path::Digraph Digraph; |
|
156 |
typedef typename Digraph::Node Node; |
|
157 |
|
|
158 |
/// Default constructor |
|
159 |
PathNodeIt() {} |
|
160 |
/// Invalid constructor |
|
161 |
PathNodeIt(Invalid) |
|
162 |
: _digraph(0), _it(INVALID), _nd(INVALID) {} |
|
163 |
/// Constructor |
|
164 |
PathNodeIt(const Digraph& digraph, const Path& path) |
|
165 |
: _digraph(&digraph), _it(path) { |
|
166 |
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID); |
|
167 |
} |
|
168 |
/// Constructor |
|
169 |
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) |
|
170 |
: _digraph(&digraph), _it(path), _nd(src) {} |
|
171 |
|
|
172 |
///Conversion to Digraph::Node |
|
173 |
operator Node() const { |
|
174 |
return _nd; |
|
175 |
} |
|
176 |
|
|
177 |
/// Next node |
|
178 |
PathNodeIt& operator++() { |
|
179 |
if (_it == INVALID) _nd = INVALID; |
|
180 |
else { |
|
181 |
_nd = _digraph->target(_it); |
|
182 |
++_it; |
|
183 |
} |
|
184 |
return *this; |
|
185 |
} |
|
186 |
|
|
187 |
/// Comparison operator |
|
188 |
bool operator==(const PathNodeIt& n) const { |
|
189 |
return _it == n._it && _nd == n._nd; |
|
190 |
} |
|
191 |
/// Comparison operator |
|
192 |
bool operator!=(const PathNodeIt& n) const { |
|
193 |
return _it != n._it || _nd != n._nd; |
|
194 |
} |
|
195 |
/// Comparison operator |
|
196 |
bool operator<(const PathNodeIt& n) const { |
|
197 |
return (_it < n._it && _nd != INVALID); |
|
198 |
} |
|
199 |
|
|
200 |
}; |
|
201 |
|
|
202 |
} |
|
203 |
|
|
204 |
#endif |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <string> |
|
20 |
#include <iostream> |
|
21 |
|
|
22 |
#include <lemon/concepts/path.h> |
|
23 |
#include <lemon/concepts/digraph.h> |
|
24 |
|
|
25 |
#include <lemon/path.h> |
|
26 |
#include <lemon/list_graph.h> |
|
27 |
|
|
28 |
#include "test_tools.h" |
|
29 |
|
|
30 |
using namespace std; |
|
31 |
using namespace lemon; |
|
32 |
|
|
33 |
void check_concepts() { |
|
34 |
checkConcept<concepts::Path<ListDigraph>, concepts::Path<ListDigraph> >(); |
|
35 |
checkConcept<concepts::Path<ListDigraph>, Path<ListDigraph> >(); |
|
36 |
checkConcept<concepts::Path<ListDigraph>, SimplePath<ListDigraph> >(); |
|
37 |
checkConcept<concepts::Path<ListDigraph>, StaticPath<ListDigraph> >(); |
|
38 |
checkConcept<concepts::Path<ListDigraph>, ListPath<ListDigraph> >(); |
|
39 |
} |
|
40 |
|
|
41 |
int main() { |
|
42 |
check_concepts(); |
|
43 |
return 0; |
|
44 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/Makefile \ |
3 | 3 |
lemon/lemon.pc.in |
4 | 4 |
|
5 | 5 |
pkgconfig_DATA += lemon/lemon.pc |
6 | 6 |
|
7 | 7 |
lib_LTLIBRARIES += lemon/libemon.la |
8 | 8 |
|
9 | 9 |
lemon_libemon_la_SOURCES = \ |
10 | 10 |
lemon/base.cc \ |
11 | 11 |
lemon/random.cc |
12 | 12 |
|
13 | 13 |
|
14 | 14 |
lemon_libemon_la_CXXFLAGS = $(GLPK_CFLAGS) $(CPLEX_CFLAGS) $(SOPLEX_CXXFLAGS) |
15 | 15 |
lemon_libemon_la_LDFLAGS = $(GLPK_LIBS) $(CPLEX_LIBS) $(SOPLEX_LIBS) |
16 | 16 |
|
17 | 17 |
lemon_HEADERS += \ |
18 | 18 |
lemon/dim2.h \ |
19 | 19 |
lemon/maps.h \ |
20 |
lemon/path.h \ |
|
21 |
lemon/path_utils.h \ |
|
20 | 22 |
lemon/random.h \ |
21 | 23 |
lemon/list_graph.h \ |
22 | 24 |
lemon/tolerance.h |
23 | 25 |
|
24 | 26 |
bits_HEADERS += \ |
25 | 27 |
lemon/bits/alteration_notifier.h \ |
26 | 28 |
lemon/bits/array_map.h \ |
27 | 29 |
lemon/bits/base_extender.h \ |
28 | 30 |
lemon/bits/default_map.h \ |
29 | 31 |
lemon/bits/graph_extender.h \ |
30 | 32 |
lemon/bits/invalid.h \ |
31 | 33 |
lemon/bits/map_extender.h \ |
32 | 34 |
lemon/bits/traits.h \ |
33 | 35 |
lemon/bits/utility.h \ |
34 | 36 |
lemon/bits/vector_map.h |
35 | 37 |
|
36 | 38 |
concept_HEADERS += \ |
37 | 39 |
lemon/concept_check.h \ |
38 | 40 |
lemon/concepts/digraph.h \ |
39 | 41 |
lemon/concepts/graph.h \ |
40 | 42 |
lemon/concepts/maps.h \ |
43 |
lemon/concepts/path.h \ |
|
41 | 44 |
lemon/concepts/graph_components.h |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/Makefile |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/digraph_test.h \ |
6 | 6 |
test/map_test.h \ |
7 | 7 |
test/test_tools.h |
8 | 8 |
|
9 | 9 |
check_PROGRAMS += \ |
10 | 10 |
test/digraph_test \ |
11 | 11 |
test/dim_test \ |
12 | 12 |
test/graph_test \ |
13 | 13 |
test/random_test \ |
14 |
test/path_test \ |
|
14 | 15 |
test/test_tools_fail \ |
15 | 16 |
test/test_tools_pass |
16 | 17 |
|
17 | 18 |
TESTS += $(check_PROGRAMS) |
18 | 19 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
19 | 20 |
|
20 | 21 |
test_digraph_test_SOURCES = test/digraph_test.cc |
21 | 22 |
test_dim_test_SOURCES = test/dim_test.cc |
22 | 23 |
test_graph_test_SOURCES = test/graph_test.cc |
24 |
test_path_test_SOURCES = test/path_test.cc |
|
23 | 25 |
test_random_test_SOURCES = test/random_test.cc |
24 | 26 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
25 | 27 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
0 comments (0 inline)