gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Minor doc fixes. Replaced \c by \ref and \ref by \c to work properly and to be uniform.
0 1 0
default
1 file changed with 37 insertions and 36 deletions:
↑ Collapse diff ↑
Ignore white space 32 line context
... ...
@@ -145,33 +145,33 @@
145 145
    ConstMap() { }
146 146
    ///\e
147 147
    V operator[](const K&) const { return v; }
148 148
    ///\e
149 149
    void set(const K&, const V&) { }
150 150
  };
151 151

	
152 152
  ///Returns a \c ConstMap class
153 153

	
154 154
  ///This function just returns a \c ConstMap class with inlined value.
155 155
  ///\relates ConstMap
156 156
  template<typename K, typename V, V v> 
157 157
  inline ConstMap<K, Const<V, v> > constMap() {
158 158
    return ConstMap<K, Const<V, v> >();
159 159
  }
160 160

	
161
  ///Map based on std::map
161
  ///Map based on \c std::map
162 162

	
163 163
  ///This is essentially a wrapper for \c std::map with addition that
164 164
  ///you can specify a default value different from \c Value().
165 165
  template <typename K, typename T, typename Compare = std::less<K> >
166 166
  class StdMap : public MapBase<K, T> {
167 167
    template <typename K1, typename T1, typename C1>
168 168
    friend class StdMap;
169 169
  public:
170 170

	
171 171
    typedef MapBase<K, T> Parent;
172 172
    ///\e
173 173
    typedef typename Parent::Key Key;
174 174
    ///\e
175 175
    typedef typename Parent::Value Value;
176 176
    ///\e
177 177
    typedef T& Reference;
... ...
@@ -229,45 +229,45 @@
229 229
    void set(const Key &k, const T &t) {
230 230
      typename Map::iterator it = _map.lower_bound(k);
231 231
      if (it != _map.end() && !_map.key_comp()(k, it->first))
232 232
	it->second = t;
233 233
      else
234 234
	_map.insert(it, std::make_pair(k, t));
235 235
    }
236 236

	
237 237
    /// \e
238 238
    void setAll(const T &t) {
239 239
      _value = t;
240 240
      _map.clear();
241 241
    }    
242 242

	
243 243
  };
244 244
  
245
  ///Returns a \ref StdMap class
245
  ///Returns a \c StdMap class
246 246

	
247
  ///This function just returns a \ref StdMap class with specified 
247
  ///This function just returns a \c StdMap class with specified 
248 248
  ///default value.
249 249
  ///\relates StdMap
250 250
  template<typename K, typename V, typename Compare = std::less<K> > 
251 251
  inline StdMap<K, V, Compare> stdMap(const V& value = V()) {
252 252
    return StdMap<K, V, Compare>(value);
253 253
  }
254 254

	
255
  ///Returns a \ref StdMap class created from an appropriate std::map
255
  ///Returns a \c StdMap class created from an appropriate std::map
256 256

	
257
  ///This function just returns a \ref StdMap class created from an 
257
  ///This function just returns a \c StdMap class created from an 
258 258
  ///appropriate std::map.
259 259
  ///\relates StdMap
260 260
  template<typename K, typename V, typename Compare = std::less<K> > 
261 261
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
262 262
                                       const V& value = V() ) {
263 263
    return StdMap<K, V, Compare>(map, value);
264 264
  }
265 265

	
266 266
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
267 267
  ///
268 268
  /// The current map has the <tt>[0..size-1]</tt> keyset and the values
269 269
  /// are stored in a \c std::vector<T>  container. It can be used with
270 270
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
271 271
  /// the used items are small integer numbers. 
272 272
  ///
273 273
  /// \todo Revise its name
... ...
@@ -326,35 +326,35 @@
326 326
    Reference operator[](Key k) {
327 327
      return _vector[k];
328 328
    }
329 329

	
330 330
    /// \e 
331 331
    ConstReference operator[](Key k) const {
332 332
      return _vector[k];
333 333
    }
334 334

	
335 335
    /// \e 
336 336
    void set(const Key &k, const T& t) {
337 337
      _vector[k] = t;
338 338
    }
339 339

	
340 340
  };
341 341
  
342
  ///Returns an \ref IntegerMap class
342
  ///Returns an \c IntegerMap class
343 343

	
344
  ///This function just returns an \ref IntegerMap class.
344
  ///This function just returns an \c IntegerMap class.
345 345
  ///\relates IntegerMap
346 346
  template<typename T>
347 347
  inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) {
348 348
    return IntegerMap<T>(size, value);
349 349
  }
350 350

	
351 351
  /// @}
352 352

	
353 353
  /// \addtogroup map_adaptors
354 354
  /// @{
355 355

	
356 356
  /// \brief Identity map.
357 357
  ///
358 358
  /// This map gives back the given key as value without any
359 359
  /// modification. 
360 360
  template <typename T>
... ...
@@ -370,33 +370,33 @@
370 370
    }
371 371
  };
372 372

	
373 373
  ///Returns an \c IdentityMap class
374 374

	
375 375
  ///This function just returns an \c IdentityMap class.
376 376
  ///\relates IdentityMap
377 377
  template<typename T>
378 378
  inline IdentityMap<T> identityMap() {
379 379
    return IdentityMap<T>();
380 380
  }
381 381
  
382 382

	
383 383
  ///\brief Convert the \c Value of a map to another type using
384 384
  ///the default conversion.
385 385
  ///
386
  ///This \c concepts::ReadMap "read only map"
386
  ///This \ref concepts::ReadMap "read only map"
387 387
  ///converts the \c Value of a map to type \c T.
388 388
  ///Its \c Key is inherited from \c M.
389 389
  template <typename M, typename T> 
390 390
  class ConvertMap : public MapBase<typename M::Key, T> {
391 391
    const M& m;
392 392
  public:
393 393
    typedef MapBase<typename M::Key, T> Parent;
394 394
    typedef typename Parent::Key Key;
395 395
    typedef typename Parent::Value Value;
396 396

	
397 397
    ///Constructor
398 398

	
399 399
    ///Constructor.
400 400
    ///\param _m is the underlying map.
401 401
    ConvertMap(const M &_m) : m(_m) {};
402 402

	
... ...
@@ -427,113 +427,113 @@
427 427
  /// \todo Revise the misleading name 
428 428
  template<typename M> 
429 429
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
430 430
    const M& m;
431 431

	
432 432
  public:
433 433
    typedef MapBase<typename M::Key, typename M::Value> Parent;
434 434
    typedef typename Parent::Key Key;
435 435
    typedef typename Parent::Value Value;
436 436

	
437 437
    ///Constructor
438 438
    SimpleMap(const M &_m) : m(_m) {};
439 439
    ///\e
440 440
    Value operator[](Key k) const {return m[k];}
441 441
  };
442 442
  
443
  ///Returns a \ref SimpleMap class
443
  ///Returns a \c SimpleMap class
444 444

	
445
  ///This function just returns a \ref SimpleMap class.
445
  ///This function just returns a \c SimpleMap class.
446 446
  ///\relates SimpleMap
447 447
  template<typename M>
448 448
  inline SimpleMap<M> simpleMap(const M &m) {
449 449
    return SimpleMap<M>(m);
450 450
  }
451 451

	
452 452
  ///Simple writable wrapping of a map
453 453

	
454
  ///This \ref concepts::WriteMap "write map" returns the simple
454
  ///This \ref concepts::ReadWriteMap "read-write map" returns the simple
455 455
  ///wrapping of the given map. Sometimes the reference maps cannot be
456 456
  ///combined with simple read-write maps. This map adaptor wraps the
457 457
  ///given map to simple read-write map.
458 458
  ///
459 459
  ///\sa SimpleMap
460 460
  ///
461 461
  /// \todo Revise the misleading name
462 462
  template<typename M> 
463 463
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
464 464
    M& m;
465 465

	
466 466
  public:
467 467
    typedef MapBase<typename M::Key, typename M::Value> Parent;
468 468
    typedef typename Parent::Key Key;
469 469
    typedef typename Parent::Value Value;
470 470

	
471 471
    ///Constructor
472 472
    SimpleWriteMap(M &_m) : m(_m) {};
473 473
    ///\e
474 474
    Value operator[](Key k) const {return m[k];}
475 475
    ///\e
476 476
    void set(Key k, const Value& c) { m.set(k, c); }
477 477
  };
478 478

	
479
  ///Returns a \ref SimpleWriteMap class
479
  ///Returns a \c SimpleWriteMap class
480 480

	
481
  ///This function just returns a \ref SimpleWriteMap class.
481
  ///This function just returns a \c SimpleWriteMap class.
482 482
  ///\relates SimpleWriteMap
483 483
  template<typename M>
484 484
  inline SimpleWriteMap<M> simpleWriteMap(M &m) {
485 485
    return SimpleWriteMap<M>(m);
486 486
  }
487 487

	
488 488
  ///Sum of two maps
489 489

	
490
  ///This \c concepts::ReadMap "read only map" returns the sum of the two
490
  ///This \ref concepts::ReadMap "read only map" returns the sum of the two
491 491
  ///given maps.
492 492
  ///Its \c Key and \c Value are inherited from \c M1.
493 493
  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
494 494
  template<typename M1, typename M2> 
495 495
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
496 496
    const M1& m1;
497 497
    const M2& m2;
498 498

	
499 499
  public:
500 500
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
501 501
    typedef typename Parent::Key Key;
502 502
    typedef typename Parent::Value Value;
503 503

	
504 504
    ///Constructor
505 505
    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
506 506
    ///\e
507 507
    Value operator[](Key k) const {return m1[k]+m2[k];}
508 508
  };
509 509
  
510 510
  ///Returns an \c AddMap class
511 511

	
512 512
  ///This function just returns an \c AddMap class.
513 513
  ///\todo How to call these type of functions?
514 514
  ///
515 515
  ///\relates AddMap
516 516
  template<typename M1, typename M2> 
517 517
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
518 518
    return AddMap<M1, M2>(m1,m2);
519 519
  }
520 520

	
521 521
  ///Shift a map with a constant.
522 522

	
523
  ///This \c concepts::ReadMap "read only map" returns the sum of the
523
  ///This \ref concepts::ReadMap "read only map" returns the sum of the
524 524
  ///given map and a constant value.
525 525
  ///Its \c Key and \c Value are inherited from \c M.
526 526
  ///
527 527
  ///Actually,
528 528
  ///\code
529 529
  ///  ShiftMap<X> sh(x,v);
530 530
  ///\endcode
531 531
  ///is equivalent to
532 532
  ///\code
533 533
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
534 534
  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
535 535
  ///\endcode
536 536
  ///
537 537
  ///\sa ShiftWriteMap
538 538
  template<typename M, typename C = typename M::Value> 
539 539
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
... ...
@@ -543,33 +543,33 @@
543 543
    typedef MapBase<typename M::Key, typename M::Value> Parent;
544 544
    typedef typename Parent::Key Key;
545 545
    typedef typename Parent::Value Value;
546 546

	
547 547
    ///Constructor
548 548

	
549 549
    ///Constructor.
550 550
    ///\param _m is the undelying map.
551 551
    ///\param _v is the shift value.
552 552
    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
553 553
    ///\e
554 554
    Value operator[](Key k) const {return m[k] + v;}
555 555
  };
556 556

	
557 557
  ///Shift a map with a constant (ReadWrite version).
558 558

	
559
  ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
559
  ///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the
560 560
  ///given map and a constant value. It makes also possible to write the map.
561 561
  ///Its \c Key and \c Value are inherited from \c M.
562 562
  ///
563 563
  ///\sa ShiftMap
564 564
  template<typename M, typename C = typename M::Value> 
565 565
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
566 566
    M& m;
567 567
    C v;
568 568
  public:
569 569
    typedef MapBase<typename M::Key, typename M::Value> Parent;
570 570
    typedef typename Parent::Key Key;
571 571
    typedef typename Parent::Value Value;
572 572

	
573 573
    ///Constructor
574 574

	
575 575
    ///Constructor.
... ...
@@ -589,96 +589,96 @@
589 589
  template<typename M, typename C> 
590 590
  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
591 591
    return ShiftMap<M, C>(m,v);
592 592
  }
593 593

	
594 594
  ///Returns a \c ShiftWriteMap class
595 595

	
596 596
  ///This function just returns a \c ShiftWriteMap class.
597 597
  ///\relates ShiftWriteMap
598 598
  template<typename M, typename C> 
599 599
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
600 600
    return ShiftWriteMap<M, C>(m,v);
601 601
  }
602 602

	
603 603
  ///Difference of two maps
604 604

	
605
  ///This \c concepts::ReadMap "read only map" returns the difference
605
  ///This \ref concepts::ReadMap "read only map" returns the difference
606 606
  ///of the values of the two given maps.
607 607
  ///Its \c Key and \c Value are inherited from \c M1.
608 608
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
609 609
  ///
610 610
  /// \todo Revise the misleading name
611 611
  template<typename M1, typename M2> 
612 612
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
613 613
    const M1& m1;
614 614
    const M2& m2;
615 615
  public:
616 616
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
617 617
    typedef typename Parent::Key Key;
618 618
    typedef typename Parent::Value Value;
619 619

	
620 620
    ///Constructor
621 621
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
622 622
    /// \e
623 623
    Value operator[](Key k) const {return m1[k]-m2[k];}
624 624
  };
625 625
  
626 626
  ///Returns a \c SubMap class
627 627

	
628 628
  ///This function just returns a \c SubMap class.
629 629
  ///
630 630
  ///\relates SubMap
631 631
  template<typename M1, typename M2> 
632 632
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
633 633
    return SubMap<M1, M2>(m1, m2);
634 634
  }
635 635

	
636 636
  ///Product of two maps
637 637

	
638
  ///This \c concepts::ReadMap "read only map" returns the product of the
638
  ///This \ref concepts::ReadMap "read only map" returns the product of the
639 639
  ///values of the two given maps.
640 640
  ///Its \c Key and \c Value are inherited from \c M1.
641 641
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
642 642
  template<typename M1, typename M2> 
643 643
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
644 644
    const M1& m1;
645 645
    const M2& m2;
646 646
  public:
647 647
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
648 648
    typedef typename Parent::Key Key;
649 649
    typedef typename Parent::Value Value;
650 650

	
651 651
    ///Constructor
652 652
    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
653 653
    /// \e
654 654
    Value operator[](Key k) const {return m1[k]*m2[k];}
655 655
  };
656 656
  
657 657
  ///Returns a \c MulMap class
658 658

	
659 659
  ///This function just returns a \c MulMap class.
660 660
  ///\relates MulMap
661 661
  template<typename M1, typename M2> 
662 662
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
663 663
    return MulMap<M1, M2>(m1,m2);
664 664
  }
665 665
 
666 666
  ///Scales a map with a constant.
667 667

	
668
  ///This \c concepts::ReadMap "read only map" returns the value of the
668
  ///This \ref concepts::ReadMap "read only map" returns the value of the
669 669
  ///given map multiplied from the left side with a constant value.
670 670
  ///Its \c Key and \c Value are inherited from \c M.
671 671
  ///
672 672
  ///Actually,
673 673
  ///\code
674 674
  ///  ScaleMap<X> sc(x,v);
675 675
  ///\endcode
676 676
  ///is equivalent to
677 677
  ///\code
678 678
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
679 679
  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
680 680
  ///\endcode
681 681
  ///
682 682
  ///\sa ScaleWriteMap
683 683
  template<typename M, typename C = typename M::Value> 
684 684
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
... ...
@@ -688,33 +688,33 @@
688 688
    typedef MapBase<typename M::Key, typename M::Value> Parent;
689 689
    typedef typename Parent::Key Key;
690 690
    typedef typename Parent::Value Value;
691 691

	
692 692
    ///Constructor
693 693

	
694 694
    ///Constructor.
695 695
    ///\param _m is the undelying map.
696 696
    ///\param _v is the scaling value.
697 697
    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
698 698
    /// \e
699 699
    Value operator[](Key k) const {return v * m[k];}
700 700
  };
701 701

	
702 702
  ///Scales a map with a constant (ReadWrite version).
703 703

	
704
  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
704
  ///This \ref concepts::ReadWriteMap "read-write map" returns the value of the
705 705
  ///given map multiplied from the left side with a constant value. It can
706 706
  ///also be used as write map if the \c / operator is defined between
707 707
  ///\c Value and \c C and the given multiplier is not zero.
708 708
  ///Its \c Key and \c Value are inherited from \c M.
709 709
  ///
710 710
  ///\sa ScaleMap
711 711
  template<typename M, typename C = typename M::Value> 
712 712
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
713 713
    M& m;
714 714
    C v;
715 715
  public:
716 716
    typedef MapBase<typename M::Key, typename M::Value> Parent;
717 717
    typedef typename Parent::Key Key;
718 718
    typedef typename Parent::Value Value;
719 719

	
720 720
    ///Constructor
... ...
@@ -736,63 +736,63 @@
736 736
  template<typename M, typename C> 
737 737
  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
738 738
    return ScaleMap<M, C>(m,v);
739 739
  }
740 740

	
741 741
  ///Returns a \c ScaleWriteMap class
742 742

	
743 743
  ///This function just returns a \c ScaleWriteMap class.
744 744
  ///\relates ScaleWriteMap
745 745
  template<typename M, typename C> 
746 746
  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
747 747
    return ScaleWriteMap<M, C>(m,v);
748 748
  }
749 749

	
750 750
  ///Quotient of two maps
751 751

	
752
  ///This \c concepts::ReadMap "read only map" returns the quotient of the
752
  ///This \ref concepts::ReadMap "read only map" returns the quotient of the
753 753
  ///values of the two given maps.
754 754
  ///Its \c Key and \c Value are inherited from \c M1.
755 755
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
756 756
  template<typename M1, typename M2> 
757 757
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
758 758
    const M1& m1;
759 759
    const M2& m2;
760 760
  public:
761 761
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
762 762
    typedef typename Parent::Key Key;
763 763
    typedef typename Parent::Value Value;
764 764

	
765 765
    ///Constructor
766 766
    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
767 767
    /// \e
768 768
    Value operator[](Key k) const {return m1[k]/m2[k];}
769 769
  };
770 770
  
771 771
  ///Returns a \c DivMap class
772 772

	
773 773
  ///This function just returns a \c DivMap class.
774 774
  ///\relates DivMap
775 775
  template<typename M1, typename M2> 
776 776
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
777 777
    return DivMap<M1, M2>(m1,m2);
778 778
  }
779 779
  
780 780
  ///Composition of two maps
781 781

	
782
  ///This \c concepts::ReadMap "read only map" returns the composition of
782
  ///This \ref concepts::ReadMap "read only map" returns the composition of
783 783
  ///two given maps.
784 784
  ///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2,
785 785
  ///then for
786 786
  ///\code
787 787
  ///  ComposeMap<M1, M2> cm(m1,m2);
788 788
  ///\endcode
789 789
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
790 790
  ///
791 791
  ///Its \c Key is inherited from \c M2 and its \c Value is from \c M1.
792 792
  ///\c M2::Value must be convertible to \c M1::Key.
793 793
  ///
794 794
  ///\sa CombineMap
795 795
  ///
796 796
  ///\todo Check the requirements.
797 797
  template <typename M1, typename M2> 
798 798
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
... ...
@@ -817,33 +817,33 @@
817 817
    operator[](Key k) const {return m1[m2[k]];}
818 818
  };
819 819

	
820 820
  ///Returns a \c ComposeMap class
821 821

	
822 822
  ///This function just returns a \c ComposeMap class.
823 823
  ///\relates ComposeMap
824 824
  template <typename M1, typename M2> 
825 825
  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
826 826
    return ComposeMap<M1, M2>(m1,m2);
827 827
  }
828 828
  
829 829
  ///Combine of two maps using an STL (binary) functor.
830 830

	
831 831
  ///Combine of two maps using an STL (binary) functor.
832 832
  ///
833
  ///This \c concepts::ReadMap "read only map" takes two maps and a
833
  ///This \ref concepts::ReadMap "read only map" takes two maps and a
834 834
  ///binary functor and returns the composition of the two
835 835
  ///given maps unsing the functor. 
836 836
  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
837 837
  ///and \c f is of \c F, then for
838 838
  ///\code
839 839
  ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
840 840
  ///\endcode
841 841
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
842 842
  ///
843 843
  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
844 844
  ///\c M2::Value and \c M1::Value must be convertible to the corresponding
845 845
  ///input parameter of \c F and the return type of \c F must be convertible
846 846
  ///to \c V.
847 847
  ///
848 848
  ///\sa ComposeMap
849 849
  ///
... ...
@@ -890,55 +890,55 @@
890 890
  }
891 891

	
892 892
  template<typename M1, typename M2, typename F> 
893 893
  inline CombineMap<M1, M2, F, typename F::result_type> 
894 894
  combineMap(const M1& m1, const M2& m2, const F& f) {
895 895
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
896 896
  }
897 897

	
898 898
  template<typename M1, typename M2, typename K1, typename K2, typename V> 
899 899
  inline CombineMap<M1, M2, V (*)(K1, K2), V> 
900 900
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
901 901
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
902 902
  }
903 903

	
904 904
  ///Negative value of a map
905 905

	
906
  ///This \c concepts::ReadMap "read only map" returns the negative
906
  ///This \ref concepts::ReadMap "read only map" returns the negative
907 907
  ///value of the value returned by the given map.
908 908
  ///Its \c Key and \c Value are inherited from \c M.
909 909
  ///The unary \c - operator must be defined for \c Value, of course.
910 910
  ///
911 911
  ///\sa NegWriteMap
912 912
  template<typename M> 
913 913
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
914 914
    const M& m;
915 915
  public:
916 916
    typedef MapBase<typename M::Key, typename M::Value> Parent;
917 917
    typedef typename Parent::Key Key;
918 918
    typedef typename Parent::Value Value;
919 919

	
920 920
    ///Constructor
921 921
    NegMap(const M &_m) : m(_m) {};
922 922
    /// \e
923 923
    Value operator[](Key k) const {return -m[k];}
924 924
  };
925 925
  
926 926
  ///Negative value of a map (ReadWrite version)
927 927

	
928
  ///This \c concepts::ReadWriteMap "read-write map" returns the negative
928
  ///This \ref concepts::ReadWriteMap "read-write map" returns the negative
929 929
  ///value of the value returned by the given map.
930 930
  ///Its \c Key and \c Value are inherited from \c M.
931 931
  ///The unary \c - operator must be defined for \c Value, of course.
932 932
  ///
933 933
  /// \sa NegMap
934 934
  template<typename M> 
935 935
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
936 936
    M& m;
937 937
  public:
938 938
    typedef MapBase<typename M::Key, typename M::Value> Parent;
939 939
    typedef typename Parent::Key Key;
940 940
    typedef typename Parent::Value Value;
941 941

	
942 942
    ///Constructor
943 943
    NegWriteMap(M &_m) : m(_m) {};
944 944
    /// \e
... ...
@@ -954,33 +954,33 @@
954 954
  template <typename M> 
955 955
  inline NegMap<M> negMap(const M &m) {
956 956
    return NegMap<M>(m);
957 957
  }
958 958

	
959 959
  ///Returns a \c NegWriteMap class
960 960

	
961 961
  ///This function just returns a \c NegWriteMap class.
962 962
  ///\relates NegWriteMap
963 963
  template <typename M> 
964 964
  inline NegWriteMap<M> negMap(M &m) {
965 965
    return NegWriteMap<M>(m);
966 966
  }
967 967

	
968 968
  ///Absolute value of a map
969 969

	
970
  ///This \c concepts::ReadMap "read only map" returns the absolute value
970
  ///This \ref concepts::ReadMap "read only map" returns the absolute value
971 971
  ///of the value returned by the given map.
972 972
  ///Its \c Key and \c Value are inherited from \c M. 
973 973
  ///\c Value must be comparable to \c 0 and the unary \c -
974 974
  ///operator must be defined for it, of course.
975 975
  template<typename M> 
976 976
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
977 977
    const M& m;
978 978
  public:
979 979
    typedef MapBase<typename M::Key, typename M::Value> Parent;
980 980
    typedef typename Parent::Key Key;
981 981
    typedef typename Parent::Value Value;
982 982

	
983 983
    ///Constructor
984 984
    AbsMap(const M &_m) : m(_m) {};
985 985
    /// \e
986 986
    Value operator[](Key k) const {
... ...
@@ -988,33 +988,33 @@
988 988
      return tmp >= 0 ? tmp : -tmp;
989 989
    }
990 990

	
991 991
  };
992 992
  
993 993
  ///Returns an \c AbsMap class
994 994

	
995 995
  ///This function just returns an \c AbsMap class.
996 996
  ///\relates AbsMap
997 997
  template<typename M> 
998 998
  inline AbsMap<M> absMap(const M &m) {
999 999
    return AbsMap<M>(m);
1000 1000
  }
1001 1001

	
1002 1002
  ///Converts an STL style functor to a map
1003 1003

	
1004
  ///This \c concepts::ReadMap "read only map" returns the value
1004
  ///This \ref concepts::ReadMap "read only map" returns the value
1005 1005
  ///of a given functor.
1006 1006
  ///
1007 1007
  ///Template parameters \c K and \c V will become its
1008 1008
  ///\c Key and \c Value. 
1009 1009
  ///In most cases they have to be given explicitly because a 
1010 1010
  ///functor typically does not provide such typedefs.
1011 1011
  ///
1012 1012
  ///Parameter \c F is the type of the used functor.
1013 1013
  ///
1014 1014
  ///\sa MapFunctor
1015 1015
  template<typename F, 
1016 1016
	   typename K = typename F::argument_type, 
1017 1017
	   typename V = typename F::result_type> 
1018 1018
  class FunctorMap : public MapBase<K, V> {
1019 1019
    F f;
1020 1020
  public:
... ...
@@ -1046,33 +1046,33 @@
1046 1046
    return FunctorMap<F, typename F::argument_type, 
1047 1047
      typename F::result_type>(f);
1048 1048
  }
1049 1049

	
1050 1050
  template <typename K, typename V> inline 
1051 1051
  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
1052 1052
    return FunctorMap<V (*)(K), K, V>(f);
1053 1053
  }
1054 1054

	
1055 1055

	
1056 1056
  ///Converts a map to an STL style (unary) functor
1057 1057

	
1058 1058
  ///This class Converts a map to an STL style (unary) functor.
1059 1059
  ///that is it provides an <tt>operator()</tt> to read its values.
1060 1060
  ///
1061 1061
  ///For the sake of convenience it also works as
1062
  ///a ususal \c concepts::ReadMap "readable map",
1062
  ///a ususal \ref concepts::ReadMap "readable map",
1063 1063
  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1064 1064
  ///
1065 1065
  ///\sa FunctorMap
1066 1066
  template <typename M> 
1067 1067
  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
1068 1068
    const M& m;
1069 1069
  public:
1070 1070
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1071 1071
    typedef typename Parent::Key Key;
1072 1072
    typedef typename Parent::Value Value;
1073 1073

	
1074 1074
    typedef typename M::Key argument_type;
1075 1075
    typedef typename M::Value result_type;
1076 1076

	
1077 1077
    ///Constructor
1078 1078
    MapFunctor(const M &_m) : m(_m) {};
... ...
@@ -1080,63 +1080,63 @@
1080 1080
    Value operator()(Key k) const {return m[k];}
1081 1081
    ///\e
1082 1082
    Value operator[](Key k) const {return m[k];}
1083 1083
  };
1084 1084
  
1085 1085
  ///Returns a \c MapFunctor class
1086 1086

	
1087 1087
  ///This function just returns a \c MapFunctor class.
1088 1088
  ///\relates MapFunctor
1089 1089
  template<typename M> 
1090 1090
  inline MapFunctor<M> mapFunctor(const M &m) {
1091 1091
    return MapFunctor<M>(m);
1092 1092
  }
1093 1093

	
1094 1094
  ///Applies all map setting operations to two maps
1095 1095

	
1096
  ///This map has two \c concepts::ReadMap "readable map"
1096
  ///This map has two \ref concepts::ReadMap "readable map"
1097 1097
  ///parameters and each read request will be passed just to the
1098
  ///first map. This class is the just readable map type of the ForkWriteMap.
1098
  ///first map. This class is the just readable map type of the \c ForkWriteMap.
1099 1099
  ///
1100 1100
  ///The \c Key and \c Value are inherited from \c M1.
1101 1101
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1102 1102
  ///
1103 1103
  ///\sa ForkWriteMap
1104 1104
  ///
1105 1105
  /// \todo Why is it needed?
1106 1106
  template<typename  M1, typename M2> 
1107 1107
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
1108 1108
    const M1& m1;
1109 1109
    const M2& m2;
1110 1110
  public:
1111 1111
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1112 1112
    typedef typename Parent::Key Key;
1113 1113
    typedef typename Parent::Value Value;
1114 1114

	
1115 1115
    ///Constructor
1116 1116
    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
1117 1117
    /// \e
1118 1118
    Value operator[](Key k) const {return m1[k];}
1119 1119
  };
1120 1120

	
1121 1121

	
1122 1122
  ///Applies all map setting operations to two maps
1123 1123

	
1124
  ///This map has two \c concepts::WriteMap "writable map"
1124
  ///This map has two \ref concepts::WriteMap "writable map"
1125 1125
  ///parameters and each write request will be passed to both of them.
1126
  ///If \c M1 is also \c concepts::ReadMap "readable",
1126
  ///If \c M1 is also \ref concepts::ReadMap "readable",
1127 1127
  ///then the read operations will return the
1128 1128
  ///corresponding values of \c M1.
1129 1129
  ///
1130 1130
  ///The \c Key and \c Value are inherited from \c M1.
1131 1131
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1132 1132
  ///
1133 1133
  ///\sa ForkMap
1134 1134
  template<typename  M1, typename M2> 
1135 1135
  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
1136 1136
    M1& m1;
1137 1137
    M2& m2;
1138 1138
  public:
1139 1139
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1140 1140
    typedef typename Parent::Key Key;
1141 1141
    typedef typename Parent::Value Value;
1142 1142

	
... ...
@@ -1159,54 +1159,54 @@
1159 1159

	
1160 1160
  ///Returns a \c ForkWriteMap class
1161 1161

	
1162 1162
  ///This function just returns a \c ForkWriteMap class.
1163 1163
  ///\relates ForkWriteMap
1164 1164
  template <typename M1, typename M2> 
1165 1165
  inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
1166 1166
    return ForkWriteMap<M1, M2>(m1,m2);
1167 1167
  }
1168 1168

	
1169 1169

	
1170 1170
  
1171 1171
  /* ************* BOOL MAPS ******************* */
1172 1172
  
1173 1173
  ///Logical 'not' of a map
1174 1174
  
1175
  ///This bool \c concepts::ReadMap "read only map" returns the 
1175
  ///This bool \ref concepts::ReadMap "read only map" returns the 
1176 1176
  ///logical negation of the value returned by the given map.
1177 1177
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1178 1178
  ///
1179 1179
  ///\sa NotWriteMap
1180 1180
  template <typename M> 
1181 1181
  class NotMap : public MapBase<typename M::Key, bool> {
1182 1182
    const M& m;
1183 1183
  public:
1184 1184
    typedef MapBase<typename M::Key, bool> Parent;
1185 1185
    typedef typename Parent::Key Key;
1186 1186
    typedef typename Parent::Value Value;
1187 1187

	
1188 1188
    /// Constructor
1189 1189
    NotMap(const M &_m) : m(_m) {};
1190 1190
    ///\e
1191 1191
    Value operator[](Key k) const {return !m[k];}
1192 1192
  };
1193 1193

	
1194 1194
  ///Logical 'not' of a map (ReadWrie version)
1195 1195
  
1196
  ///This bool \c concepts::ReadWriteMap "read-write map" returns the 
1196
  ///This bool \ref concepts::ReadWriteMap "read-write map" returns the 
1197 1197
  ///logical negation of the value returned by the given map. When it is set,
1198 1198
  ///the opposite value is set to the original map.
1199 1199
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1200 1200
  ///
1201 1201
  ///\sa NotMap
1202 1202
  template <typename M> 
1203 1203
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1204 1204
    M& m;
1205 1205
  public:
1206 1206
    typedef MapBase<typename M::Key, bool> Parent;
1207 1207
    typedef typename Parent::Key Key;
1208 1208
    typedef typename Parent::Value Value;
1209 1209

	
1210 1210
    /// Constructor
1211 1211
    NotWriteMap(M &_m) : m(_m) {};
1212 1212
    ///\e
... ...
@@ -1248,34 +1248,35 @@
1248 1248
    struct IteratorTraits {
1249 1249
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1250 1250
    };
1251 1251

	
1252 1252
    template <typename _Iterator>
1253 1253
    struct IteratorTraits<_Iterator,
1254 1254
      typename exists<typename _Iterator::container_type>::type> 
1255 1255
    {
1256 1256
      typedef typename _Iterator::container_type::value_type Value;
1257 1257
    };
1258 1258

	
1259 1259
  }
1260 1260
  
1261 1261

	
1262 1262
  /// \brief Writable bool map for logging each \c true assigned element
1263 1263
  ///
1264
  /// Writable bool map for logging each \c true assigned element, i.e it
1265
  /// copies all the keys set to \c true to the given iterator.
1264
  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging 
1265
  /// each \c true assigned element, i.e it/ copies all the keys set 
1266
  /// to \c true to the given iterator.
1266 1267
  ///
1267 1268
  /// \note The container of the iterator should contain space 
1268 1269
  /// for each element.
1269 1270
  ///
1270 1271
  /// The following example shows how you can write the edges found by the Prim
1271 1272
  /// algorithm directly
1272 1273
  /// to the standard output.
1273 1274
  ///\code
1274 1275
  /// typedef IdMap<Graph, Edge> EdgeIdMap;
1275 1276
  /// EdgeIdMap edgeId(graph);
1276 1277
  ///
1277 1278
  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
1278 1279
  /// EdgeIdFunctor edgeIdFunctor(edgeId);
1279 1280
  ///
1280 1281
  /// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> 
1281 1282
  ///   writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
0 comments (0 inline)