gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Minor doc fixes. Replaced \c by \ref and \ref by \c to work properly and to be uniform.
0 1 0
default
1 file changed with 37 insertions and 36 deletions:
↑ Collapse diff ↑
Ignore white space 12 line context
... ...
@@ -155,13 +155,13 @@
155 155
  ///\relates ConstMap
156 156
  template<typename K, typename V, V v> 
157 157
  inline ConstMap<K, Const<V, v> > constMap() {
158 158
    return ConstMap<K, Const<V, v> >();
159 159
  }
160 160

	
161
  ///Map based on std::map
161
  ///Map based on \c std::map
162 162

	
163 163
  ///This is essentially a wrapper for \c std::map with addition that
164 164
  ///you can specify a default value different from \c Value().
165 165
  template <typename K, typename T, typename Compare = std::less<K> >
166 166
  class StdMap : public MapBase<K, T> {
167 167
    template <typename K1, typename T1, typename C1>
... ...
@@ -239,25 +239,25 @@
239 239
      _value = t;
240 240
      _map.clear();
241 241
    }    
242 242

	
243 243
  };
244 244
  
245
  ///Returns a \ref StdMap class
245
  ///Returns a \c StdMap class
246 246

	
247
  ///This function just returns a \ref StdMap class with specified 
247
  ///This function just returns a \c StdMap class with specified 
248 248
  ///default value.
249 249
  ///\relates StdMap
250 250
  template<typename K, typename V, typename Compare = std::less<K> > 
251 251
  inline StdMap<K, V, Compare> stdMap(const V& value = V()) {
252 252
    return StdMap<K, V, Compare>(value);
253 253
  }
254 254

	
255
  ///Returns a \ref StdMap class created from an appropriate std::map
255
  ///Returns a \c StdMap class created from an appropriate std::map
256 256

	
257
  ///This function just returns a \ref StdMap class created from an 
257
  ///This function just returns a \c StdMap class created from an 
258 258
  ///appropriate std::map.
259 259
  ///\relates StdMap
260 260
  template<typename K, typename V, typename Compare = std::less<K> > 
261 261
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
262 262
                                       const V& value = V() ) {
263 263
    return StdMap<K, V, Compare>(map, value);
... ...
@@ -336,15 +336,15 @@
336 336
    void set(const Key &k, const T& t) {
337 337
      _vector[k] = t;
338 338
    }
339 339

	
340 340
  };
341 341
  
342
  ///Returns an \ref IntegerMap class
342
  ///Returns an \c IntegerMap class
343 343

	
344
  ///This function just returns an \ref IntegerMap class.
344
  ///This function just returns an \c IntegerMap class.
345 345
  ///\relates IntegerMap
346 346
  template<typename T>
347 347
  inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) {
348 348
    return IntegerMap<T>(size, value);
349 349
  }
350 350

	
... ...
@@ -380,13 +380,13 @@
380 380
  }
381 381
  
382 382

	
383 383
  ///\brief Convert the \c Value of a map to another type using
384 384
  ///the default conversion.
385 385
  ///
386
  ///This \c concepts::ReadMap "read only map"
386
  ///This \ref concepts::ReadMap "read only map"
387 387
  ///converts the \c Value of a map to type \c T.
388 388
  ///Its \c Key is inherited from \c M.
389 389
  template <typename M, typename T> 
390 390
  class ConvertMap : public MapBase<typename M::Key, T> {
391 391
    const M& m;
392 392
  public:
... ...
@@ -437,24 +437,24 @@
437 437
    ///Constructor
438 438
    SimpleMap(const M &_m) : m(_m) {};
439 439
    ///\e
440 440
    Value operator[](Key k) const {return m[k];}
441 441
  };
442 442
  
443
  ///Returns a \ref SimpleMap class
443
  ///Returns a \c SimpleMap class
444 444

	
445
  ///This function just returns a \ref SimpleMap class.
445
  ///This function just returns a \c SimpleMap class.
446 446
  ///\relates SimpleMap
447 447
  template<typename M>
448 448
  inline SimpleMap<M> simpleMap(const M &m) {
449 449
    return SimpleMap<M>(m);
450 450
  }
451 451

	
452 452
  ///Simple writable wrapping of a map
453 453

	
454
  ///This \ref concepts::WriteMap "write map" returns the simple
454
  ///This \ref concepts::ReadWriteMap "read-write map" returns the simple
455 455
  ///wrapping of the given map. Sometimes the reference maps cannot be
456 456
  ///combined with simple read-write maps. This map adaptor wraps the
457 457
  ///given map to simple read-write map.
458 458
  ///
459 459
  ///\sa SimpleMap
460 460
  ///
... ...
@@ -473,24 +473,24 @@
473 473
    ///\e
474 474
    Value operator[](Key k) const {return m[k];}
475 475
    ///\e
476 476
    void set(Key k, const Value& c) { m.set(k, c); }
477 477
  };
478 478

	
479
  ///Returns a \ref SimpleWriteMap class
479
  ///Returns a \c SimpleWriteMap class
480 480

	
481
  ///This function just returns a \ref SimpleWriteMap class.
481
  ///This function just returns a \c SimpleWriteMap class.
482 482
  ///\relates SimpleWriteMap
483 483
  template<typename M>
484 484
  inline SimpleWriteMap<M> simpleWriteMap(M &m) {
485 485
    return SimpleWriteMap<M>(m);
486 486
  }
487 487

	
488 488
  ///Sum of two maps
489 489

	
490
  ///This \c concepts::ReadMap "read only map" returns the sum of the two
490
  ///This \ref concepts::ReadMap "read only map" returns the sum of the two
491 491
  ///given maps.
492 492
  ///Its \c Key and \c Value are inherited from \c M1.
493 493
  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
494 494
  template<typename M1, typename M2> 
495 495
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
496 496
    const M1& m1;
... ...
@@ -517,13 +517,13 @@
517 517
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
518 518
    return AddMap<M1, M2>(m1,m2);
519 519
  }
520 520

	
521 521
  ///Shift a map with a constant.
522 522

	
523
  ///This \c concepts::ReadMap "read only map" returns the sum of the
523
  ///This \ref concepts::ReadMap "read only map" returns the sum of the
524 524
  ///given map and a constant value.
525 525
  ///Its \c Key and \c Value are inherited from \c M.
526 526
  ///
527 527
  ///Actually,
528 528
  ///\code
529 529
  ///  ShiftMap<X> sh(x,v);
... ...
@@ -553,13 +553,13 @@
553 553
    ///\e
554 554
    Value operator[](Key k) const {return m[k] + v;}
555 555
  };
556 556

	
557 557
  ///Shift a map with a constant (ReadWrite version).
558 558

	
559
  ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
559
  ///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the
560 560
  ///given map and a constant value. It makes also possible to write the map.
561 561
  ///Its \c Key and \c Value are inherited from \c M.
562 562
  ///
563 563
  ///\sa ShiftMap
564 564
  template<typename M, typename C = typename M::Value> 
565 565
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
... ...
@@ -599,13 +599,13 @@
599 599
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
600 600
    return ShiftWriteMap<M, C>(m,v);
601 601
  }
602 602

	
603 603
  ///Difference of two maps
604 604

	
605
  ///This \c concepts::ReadMap "read only map" returns the difference
605
  ///This \ref concepts::ReadMap "read only map" returns the difference
606 606
  ///of the values of the two given maps.
607 607
  ///Its \c Key and \c Value are inherited from \c M1.
608 608
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
609 609
  ///
610 610
  /// \todo Revise the misleading name
611 611
  template<typename M1, typename M2> 
... ...
@@ -632,13 +632,13 @@
632 632
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
633 633
    return SubMap<M1, M2>(m1, m2);
634 634
  }
635 635

	
636 636
  ///Product of two maps
637 637

	
638
  ///This \c concepts::ReadMap "read only map" returns the product of the
638
  ///This \ref concepts::ReadMap "read only map" returns the product of the
639 639
  ///values of the two given maps.
640 640
  ///Its \c Key and \c Value are inherited from \c M1.
641 641
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
642 642
  template<typename M1, typename M2> 
643 643
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
644 644
    const M1& m1;
... ...
@@ -662,13 +662,13 @@
662 662
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
663 663
    return MulMap<M1, M2>(m1,m2);
664 664
  }
665 665
 
666 666
  ///Scales a map with a constant.
667 667

	
668
  ///This \c concepts::ReadMap "read only map" returns the value of the
668
  ///This \ref concepts::ReadMap "read only map" returns the value of the
669 669
  ///given map multiplied from the left side with a constant value.
670 670
  ///Its \c Key and \c Value are inherited from \c M.
671 671
  ///
672 672
  ///Actually,
673 673
  ///\code
674 674
  ///  ScaleMap<X> sc(x,v);
... ...
@@ -698,13 +698,13 @@
698 698
    /// \e
699 699
    Value operator[](Key k) const {return v * m[k];}
700 700
  };
701 701

	
702 702
  ///Scales a map with a constant (ReadWrite version).
703 703

	
704
  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
704
  ///This \ref concepts::ReadWriteMap "read-write map" returns the value of the
705 705
  ///given map multiplied from the left side with a constant value. It can
706 706
  ///also be used as write map if the \c / operator is defined between
707 707
  ///\c Value and \c C and the given multiplier is not zero.
708 708
  ///Its \c Key and \c Value are inherited from \c M.
709 709
  ///
710 710
  ///\sa ScaleMap
... ...
@@ -746,13 +746,13 @@
746 746
  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
747 747
    return ScaleWriteMap<M, C>(m,v);
748 748
  }
749 749

	
750 750
  ///Quotient of two maps
751 751

	
752
  ///This \c concepts::ReadMap "read only map" returns the quotient of the
752
  ///This \ref concepts::ReadMap "read only map" returns the quotient of the
753 753
  ///values of the two given maps.
754 754
  ///Its \c Key and \c Value are inherited from \c M1.
755 755
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
756 756
  template<typename M1, typename M2> 
757 757
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
758 758
    const M1& m1;
... ...
@@ -776,13 +776,13 @@
776 776
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
777 777
    return DivMap<M1, M2>(m1,m2);
778 778
  }
779 779
  
780 780
  ///Composition of two maps
781 781

	
782
  ///This \c concepts::ReadMap "read only map" returns the composition of
782
  ///This \ref concepts::ReadMap "read only map" returns the composition of
783 783
  ///two given maps.
784 784
  ///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2,
785 785
  ///then for
786 786
  ///\code
787 787
  ///  ComposeMap<M1, M2> cm(m1,m2);
788 788
  ///\endcode
... ...
@@ -827,13 +827,13 @@
827 827
  }
828 828
  
829 829
  ///Combine of two maps using an STL (binary) functor.
830 830

	
831 831
  ///Combine of two maps using an STL (binary) functor.
832 832
  ///
833
  ///This \c concepts::ReadMap "read only map" takes two maps and a
833
  ///This \ref concepts::ReadMap "read only map" takes two maps and a
834 834
  ///binary functor and returns the composition of the two
835 835
  ///given maps unsing the functor. 
836 836
  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
837 837
  ///and \c f is of \c F, then for
838 838
  ///\code
839 839
  ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
... ...
@@ -900,13 +900,13 @@
900 900
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
901 901
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
902 902
  }
903 903

	
904 904
  ///Negative value of a map
905 905

	
906
  ///This \c concepts::ReadMap "read only map" returns the negative
906
  ///This \ref concepts::ReadMap "read only map" returns the negative
907 907
  ///value of the value returned by the given map.
908 908
  ///Its \c Key and \c Value are inherited from \c M.
909 909
  ///The unary \c - operator must be defined for \c Value, of course.
910 910
  ///
911 911
  ///\sa NegWriteMap
912 912
  template<typename M> 
... ...
@@ -922,13 +922,13 @@
922 922
    /// \e
923 923
    Value operator[](Key k) const {return -m[k];}
924 924
  };
925 925
  
926 926
  ///Negative value of a map (ReadWrite version)
927 927

	
928
  ///This \c concepts::ReadWriteMap "read-write map" returns the negative
928
  ///This \ref concepts::ReadWriteMap "read-write map" returns the negative
929 929
  ///value of the value returned by the given map.
930 930
  ///Its \c Key and \c Value are inherited from \c M.
931 931
  ///The unary \c - operator must be defined for \c Value, of course.
932 932
  ///
933 933
  /// \sa NegMap
934 934
  template<typename M> 
... ...
@@ -964,13 +964,13 @@
964 964
  inline NegWriteMap<M> negMap(M &m) {
965 965
    return NegWriteMap<M>(m);
966 966
  }
967 967

	
968 968
  ///Absolute value of a map
969 969

	
970
  ///This \c concepts::ReadMap "read only map" returns the absolute value
970
  ///This \ref concepts::ReadMap "read only map" returns the absolute value
971 971
  ///of the value returned by the given map.
972 972
  ///Its \c Key and \c Value are inherited from \c M. 
973 973
  ///\c Value must be comparable to \c 0 and the unary \c -
974 974
  ///operator must be defined for it, of course.
975 975
  template<typename M> 
976 976
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
... ...
@@ -998,13 +998,13 @@
998 998
  inline AbsMap<M> absMap(const M &m) {
999 999
    return AbsMap<M>(m);
1000 1000
  }
1001 1001

	
1002 1002
  ///Converts an STL style functor to a map
1003 1003

	
1004
  ///This \c concepts::ReadMap "read only map" returns the value
1004
  ///This \ref concepts::ReadMap "read only map" returns the value
1005 1005
  ///of a given functor.
1006 1006
  ///
1007 1007
  ///Template parameters \c K and \c V will become its
1008 1008
  ///\c Key and \c Value. 
1009 1009
  ///In most cases they have to be given explicitly because a 
1010 1010
  ///functor typically does not provide such typedefs.
... ...
@@ -1056,13 +1056,13 @@
1056 1056
  ///Converts a map to an STL style (unary) functor
1057 1057

	
1058 1058
  ///This class Converts a map to an STL style (unary) functor.
1059 1059
  ///that is it provides an <tt>operator()</tt> to read its values.
1060 1060
  ///
1061 1061
  ///For the sake of convenience it also works as
1062
  ///a ususal \c concepts::ReadMap "readable map",
1062
  ///a ususal \ref concepts::ReadMap "readable map",
1063 1063
  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1064 1064
  ///
1065 1065
  ///\sa FunctorMap
1066 1066
  template <typename M> 
1067 1067
  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
1068 1068
    const M& m;
... ...
@@ -1090,15 +1090,15 @@
1090 1090
  inline MapFunctor<M> mapFunctor(const M &m) {
1091 1091
    return MapFunctor<M>(m);
1092 1092
  }
1093 1093

	
1094 1094
  ///Applies all map setting operations to two maps
1095 1095

	
1096
  ///This map has two \c concepts::ReadMap "readable map"
1096
  ///This map has two \ref concepts::ReadMap "readable map"
1097 1097
  ///parameters and each read request will be passed just to the
1098
  ///first map. This class is the just readable map type of the ForkWriteMap.
1098
  ///first map. This class is the just readable map type of the \c ForkWriteMap.
1099 1099
  ///
1100 1100
  ///The \c Key and \c Value are inherited from \c M1.
1101 1101
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1102 1102
  ///
1103 1103
  ///\sa ForkWriteMap
1104 1104
  ///
... ...
@@ -1118,15 +1118,15 @@
1118 1118
    Value operator[](Key k) const {return m1[k];}
1119 1119
  };
1120 1120

	
1121 1121

	
1122 1122
  ///Applies all map setting operations to two maps
1123 1123

	
1124
  ///This map has two \c concepts::WriteMap "writable map"
1124
  ///This map has two \ref concepts::WriteMap "writable map"
1125 1125
  ///parameters and each write request will be passed to both of them.
1126
  ///If \c M1 is also \c concepts::ReadMap "readable",
1126
  ///If \c M1 is also \ref concepts::ReadMap "readable",
1127 1127
  ///then the read operations will return the
1128 1128
  ///corresponding values of \c M1.
1129 1129
  ///
1130 1130
  ///The \c Key and \c Value are inherited from \c M1.
1131 1131
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1132 1132
  ///
... ...
@@ -1169,13 +1169,13 @@
1169 1169

	
1170 1170
  
1171 1171
  /* ************* BOOL MAPS ******************* */
1172 1172
  
1173 1173
  ///Logical 'not' of a map
1174 1174
  
1175
  ///This bool \c concepts::ReadMap "read only map" returns the 
1175
  ///This bool \ref concepts::ReadMap "read only map" returns the 
1176 1176
  ///logical negation of the value returned by the given map.
1177 1177
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1178 1178
  ///
1179 1179
  ///\sa NotWriteMap
1180 1180
  template <typename M> 
1181 1181
  class NotMap : public MapBase<typename M::Key, bool> {
... ...
@@ -1190,13 +1190,13 @@
1190 1190
    ///\e
1191 1191
    Value operator[](Key k) const {return !m[k];}
1192 1192
  };
1193 1193

	
1194 1194
  ///Logical 'not' of a map (ReadWrie version)
1195 1195
  
1196
  ///This bool \c concepts::ReadWriteMap "read-write map" returns the 
1196
  ///This bool \ref concepts::ReadWriteMap "read-write map" returns the 
1197 1197
  ///logical negation of the value returned by the given map. When it is set,
1198 1198
  ///the opposite value is set to the original map.
1199 1199
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1200 1200
  ///
1201 1201
  ///\sa NotMap
1202 1202
  template <typename M> 
... ...
@@ -1258,14 +1258,15 @@
1258 1258

	
1259 1259
  }
1260 1260
  
1261 1261

	
1262 1262
  /// \brief Writable bool map for logging each \c true assigned element
1263 1263
  ///
1264
  /// Writable bool map for logging each \c true assigned element, i.e it
1265
  /// copies all the keys set to \c true to the given iterator.
1264
  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging 
1265
  /// each \c true assigned element, i.e it/ copies all the keys set 
1266
  /// to \c true to the given iterator.
1266 1267
  ///
1267 1268
  /// \note The container of the iterator should contain space 
1268 1269
  /// for each element.
1269 1270
  ///
1270 1271
  /// The following example shows how you can write the edges found by the Prim
1271 1272
  /// algorithm directly
0 comments (0 inline)