0
1
1
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_HAO_ORLIN_H |
|
20 |
#define LEMON_HAO_ORLIN_H |
|
21 |
|
|
22 |
#include <vector> |
|
23 |
#include <list> |
|
24 |
#include <limits> |
|
25 |
|
|
26 |
#include <lemon/maps.h> |
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/tolerance.h> |
|
29 |
|
|
30 |
/// \file |
|
31 |
/// \ingroup min_cut |
|
32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
|
33 |
/// |
|
34 |
/// Implementation of the Hao-Orlin algorithm class for testing network |
|
35 |
/// reliability. |
|
36 |
|
|
37 |
namespace lemon { |
|
38 |
|
|
39 |
/// \ingroup min_cut |
|
40 |
/// |
|
41 |
/// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs. |
|
42 |
/// |
|
43 |
/// Hao-Orlin calculates a minimum cut in a directed graph |
|
44 |
/// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and |
|
45 |
/// consists of two phases: in the first phase it determines a |
|
46 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
|
47 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal |
|
48 |
/// out-degree) and in the second phase it determines a minimum cut |
|
49 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
|
50 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal |
|
51 |
/// out-degree). Obviously, the smaller of these two cuts will be a |
|
52 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
|
53 |
/// push-relabel preflow algorithm and our implementation calculates |
|
54 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
|
55 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
|
56 |
/// purpose of such algorithm is testing network reliability. For an |
|
57 |
/// undirected graph you can run just the first phase of the |
|
58 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki |
|
59 |
/// which solves the undirected problem in |
|
60 |
/// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the |
|
61 |
/// NagamochiIbaraki algorithm class. |
|
62 |
/// |
|
63 |
/// \param _Digraph is the graph type of the algorithm. |
|
64 |
/// \param _CapacityMap is an edge map of capacities which should |
|
65 |
/// be any numreric type. The default type is _Digraph::ArcMap<int>. |
|
66 |
/// \param _Tolerance is the handler of the inexact computation. The |
|
67 |
/// default type for this is Tolerance<CapacityMap::Value>. |
|
68 |
#ifdef DOXYGEN |
|
69 |
template <typename _Digraph, typename _CapacityMap, typename _Tolerance> |
|
70 |
#else |
|
71 |
template <typename _Digraph, |
|
72 |
typename _CapacityMap = typename _Digraph::template ArcMap<int>, |
|
73 |
typename _Tolerance = Tolerance<typename _CapacityMap::Value> > |
|
74 |
#endif |
|
75 |
class HaoOrlin { |
|
76 |
private: |
|
77 |
|
|
78 |
typedef _Digraph Digraph; |
|
79 |
typedef _CapacityMap CapacityMap; |
|
80 |
typedef _Tolerance Tolerance; |
|
81 |
|
|
82 |
typedef typename CapacityMap::Value Value; |
|
83 |
|
|
84 |
TEMPLATE_GRAPH_TYPEDEFS(Digraph); |
|
85 |
|
|
86 |
const Digraph& _graph; |
|
87 |
const CapacityMap* _capacity; |
|
88 |
|
|
89 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
90 |
FlowMap* _flow; |
|
91 |
|
|
92 |
Node _source; |
|
93 |
|
|
94 |
int _node_num; |
|
95 |
|
|
96 |
// Bucketing structure |
|
97 |
std::vector<Node> _first, _last; |
|
98 |
typename Digraph::template NodeMap<Node>* _next; |
|
99 |
typename Digraph::template NodeMap<Node>* _prev; |
|
100 |
typename Digraph::template NodeMap<bool>* _active; |
|
101 |
typename Digraph::template NodeMap<int>* _bucket; |
|
102 |
|
|
103 |
std::vector<bool> _dormant; |
|
104 |
|
|
105 |
std::list<std::list<int> > _sets; |
|
106 |
std::list<int>::iterator _highest; |
|
107 |
|
|
108 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
109 |
ExcessMap* _excess; |
|
110 |
|
|
111 |
typedef typename Digraph::template NodeMap<bool> SourceSetMap; |
|
112 |
SourceSetMap* _source_set; |
|
113 |
|
|
114 |
Value _min_cut; |
|
115 |
|
|
116 |
typedef typename Digraph::template NodeMap<bool> MinCutMap; |
|
117 |
MinCutMap* _min_cut_map; |
|
118 |
|
|
119 |
Tolerance _tolerance; |
|
120 |
|
|
121 |
public: |
|
122 |
|
|
123 |
/// \brief Constructor |
|
124 |
/// |
|
125 |
/// Constructor of the algorithm class. |
|
126 |
HaoOrlin(const Digraph& graph, const CapacityMap& capacity, |
|
127 |
const Tolerance& tolerance = Tolerance()) : |
|
128 |
_graph(graph), _capacity(&capacity), _flow(0), _source(), |
|
129 |
_node_num(), _first(), _last(), _next(0), _prev(0), |
|
130 |
_active(0), _bucket(0), _dormant(), _sets(), _highest(), |
|
131 |
_excess(0), _source_set(0), _min_cut(), _min_cut_map(0), |
|
132 |
_tolerance(tolerance) {} |
|
133 |
|
|
134 |
~HaoOrlin() { |
|
135 |
if (_min_cut_map) { |
|
136 |
delete _min_cut_map; |
|
137 |
} |
|
138 |
if (_source_set) { |
|
139 |
delete _source_set; |
|
140 |
} |
|
141 |
if (_excess) { |
|
142 |
delete _excess; |
|
143 |
} |
|
144 |
if (_next) { |
|
145 |
delete _next; |
|
146 |
} |
|
147 |
if (_prev) { |
|
148 |
delete _prev; |
|
149 |
} |
|
150 |
if (_active) { |
|
151 |
delete _active; |
|
152 |
} |
|
153 |
if (_bucket) { |
|
154 |
delete _bucket; |
|
155 |
} |
|
156 |
if (_flow) { |
|
157 |
delete _flow; |
|
158 |
} |
|
159 |
} |
|
160 |
|
|
161 |
private: |
|
162 |
|
|
163 |
void activate(const Node& i) { |
|
164 |
_active->set(i, true); |
|
165 |
|
|
166 |
int bucket = (*_bucket)[i]; |
|
167 |
|
|
168 |
if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return; |
|
169 |
//unlace |
|
170 |
_next->set((*_prev)[i], (*_next)[i]); |
|
171 |
if ((*_next)[i] != INVALID) { |
|
172 |
_prev->set((*_next)[i], (*_prev)[i]); |
|
173 |
} else { |
|
174 |
_last[bucket] = (*_prev)[i]; |
|
175 |
} |
|
176 |
//lace |
|
177 |
_next->set(i, _first[bucket]); |
|
178 |
_prev->set(_first[bucket], i); |
|
179 |
_prev->set(i, INVALID); |
|
180 |
_first[bucket] = i; |
|
181 |
} |
|
182 |
|
|
183 |
void deactivate(const Node& i) { |
|
184 |
_active->set(i, false); |
|
185 |
int bucket = (*_bucket)[i]; |
|
186 |
|
|
187 |
if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return; |
|
188 |
|
|
189 |
//unlace |
|
190 |
_prev->set((*_next)[i], (*_prev)[i]); |
|
191 |
if ((*_prev)[i] != INVALID) { |
|
192 |
_next->set((*_prev)[i], (*_next)[i]); |
|
193 |
} else { |
|
194 |
_first[bucket] = (*_next)[i]; |
|
195 |
} |
|
196 |
//lace |
|
197 |
_prev->set(i, _last[bucket]); |
|
198 |
_next->set(_last[bucket], i); |
|
199 |
_next->set(i, INVALID); |
|
200 |
_last[bucket] = i; |
|
201 |
} |
|
202 |
|
|
203 |
void addItem(const Node& i, int bucket) { |
|
204 |
(*_bucket)[i] = bucket; |
|
205 |
if (_last[bucket] != INVALID) { |
|
206 |
_prev->set(i, _last[bucket]); |
|
207 |
_next->set(_last[bucket], i); |
|
208 |
_next->set(i, INVALID); |
|
209 |
_last[bucket] = i; |
|
210 |
} else { |
|
211 |
_prev->set(i, INVALID); |
|
212 |
_first[bucket] = i; |
|
213 |
_next->set(i, INVALID); |
|
214 |
_last[bucket] = i; |
|
215 |
} |
|
216 |
} |
|
217 |
|
|
218 |
void findMinCutOut() { |
|
219 |
|
|
220 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
221 |
_excess->set(n, 0); |
|
222 |
} |
|
223 |
|
|
224 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
225 |
_flow->set(a, 0); |
|
226 |
} |
|
227 |
|
|
228 |
int bucket_num = 1; |
|
229 |
|
|
230 |
{ |
|
231 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
|
232 |
|
|
233 |
reached.set(_source, true); |
|
234 |
|
|
235 |
bool first_set = true; |
|
236 |
|
|
237 |
for (NodeIt t(_graph); t != INVALID; ++t) { |
|
238 |
if (reached[t]) continue; |
|
239 |
_sets.push_front(std::list<int>()); |
|
240 |
_sets.front().push_front(bucket_num); |
|
241 |
_dormant[bucket_num] = !first_set; |
|
242 |
|
|
243 |
_bucket->set(t, bucket_num); |
|
244 |
_first[bucket_num] = _last[bucket_num] = t; |
|
245 |
_next->set(t, INVALID); |
|
246 |
_prev->set(t, INVALID); |
|
247 |
|
|
248 |
++bucket_num; |
|
249 |
|
|
250 |
std::vector<Node> queue; |
|
251 |
queue.push_back(t); |
|
252 |
reached.set(t, true); |
|
253 |
|
|
254 |
while (!queue.empty()) { |
|
255 |
_sets.front().push_front(bucket_num); |
|
256 |
_dormant[bucket_num] = !first_set; |
|
257 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
258 |
|
|
259 |
std::vector<Node> nqueue; |
|
260 |
for (int i = 0; i < int(queue.size()); ++i) { |
|
261 |
Node n = queue[i]; |
|
262 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
263 |
Node u = _graph.source(a); |
|
264 |
if (!reached[u] && _tolerance.positive((*_capacity)[a])) { |
|
265 |
reached.set(u, true); |
|
266 |
addItem(u, bucket_num); |
|
267 |
nqueue.push_back(u); |
|
268 |
} |
|
269 |
} |
|
270 |
} |
|
271 |
queue.swap(nqueue); |
|
272 |
++bucket_num; |
|
273 |
} |
|
274 |
_sets.front().pop_front(); |
|
275 |
--bucket_num; |
|
276 |
first_set = false; |
|
277 |
} |
|
278 |
|
|
279 |
_bucket->set(_source, 0); |
|
280 |
_dormant[0] = true; |
|
281 |
} |
|
282 |
_source_set->set(_source, true); |
|
283 |
|
|
284 |
Node target = _last[_sets.back().back()]; |
|
285 |
{ |
|
286 |
for (OutArcIt a(_graph, _source); a != INVALID; ++a) { |
|
287 |
if (_tolerance.positive((*_capacity)[a])) { |
|
288 |
Node u = _graph.target(a); |
|
289 |
_flow->set(a, (*_capacity)[a]); |
|
290 |
_excess->set(u, (*_excess)[u] + (*_capacity)[a]); |
|
291 |
if (!(*_active)[u] && u != _source) { |
|
292 |
activate(u); |
|
293 |
} |
|
294 |
} |
|
295 |
} |
|
296 |
|
|
297 |
if ((*_active)[target]) { |
|
298 |
deactivate(target); |
|
299 |
} |
|
300 |
|
|
301 |
_highest = _sets.back().begin(); |
|
302 |
while (_highest != _sets.back().end() && |
|
303 |
!(*_active)[_first[*_highest]]) { |
|
304 |
++_highest; |
|
305 |
} |
|
306 |
} |
|
307 |
|
|
308 |
while (true) { |
|
309 |
while (_highest != _sets.back().end()) { |
|
310 |
Node n = _first[*_highest]; |
|
311 |
Value excess = (*_excess)[n]; |
|
312 |
int next_bucket = _node_num; |
|
313 |
|
|
314 |
int under_bucket; |
|
315 |
if (++std::list<int>::iterator(_highest) == _sets.back().end()) { |
|
316 |
under_bucket = -1; |
|
317 |
} else { |
|
318 |
under_bucket = *(++std::list<int>::iterator(_highest)); |
|
319 |
} |
|
320 |
|
|
321 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
|
322 |
Node v = _graph.target(a); |
|
323 |
if (_dormant[(*_bucket)[v]]) continue; |
|
324 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
325 |
if (!_tolerance.positive(rem)) continue; |
|
326 |
if ((*_bucket)[v] == under_bucket) { |
|
327 |
if (!(*_active)[v] && v != target) { |
|
328 |
activate(v); |
|
329 |
} |
|
330 |
if (!_tolerance.less(rem, excess)) { |
|
331 |
_flow->set(a, (*_flow)[a] + excess); |
|
332 |
_excess->set(v, (*_excess)[v] + excess); |
|
333 |
excess = 0; |
|
334 |
goto no_more_push; |
|
335 |
} else { |
|
336 |
excess -= rem; |
|
337 |
_excess->set(v, (*_excess)[v] + rem); |
|
338 |
_flow->set(a, (*_capacity)[a]); |
|
339 |
} |
|
340 |
} else if (next_bucket > (*_bucket)[v]) { |
|
341 |
next_bucket = (*_bucket)[v]; |
|
342 |
} |
|
343 |
} |
|
344 |
|
|
345 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
346 |
Node v = _graph.source(a); |
|
347 |
if (_dormant[(*_bucket)[v]]) continue; |
|
348 |
Value rem = (*_flow)[a]; |
|
349 |
if (!_tolerance.positive(rem)) continue; |
|
350 |
if ((*_bucket)[v] == under_bucket) { |
|
351 |
if (!(*_active)[v] && v != target) { |
|
352 |
activate(v); |
|
353 |
} |
|
354 |
if (!_tolerance.less(rem, excess)) { |
|
355 |
_flow->set(a, (*_flow)[a] - excess); |
|
356 |
_excess->set(v, (*_excess)[v] + excess); |
|
357 |
excess = 0; |
|
358 |
goto no_more_push; |
|
359 |
} else { |
|
360 |
excess -= rem; |
|
361 |
_excess->set(v, (*_excess)[v] + rem); |
|
362 |
_flow->set(a, 0); |
|
363 |
} |
|
364 |
} else if (next_bucket > (*_bucket)[v]) { |
|
365 |
next_bucket = (*_bucket)[v]; |
|
366 |
} |
|
367 |
} |
|
368 |
|
|
369 |
no_more_push: |
|
370 |
|
|
371 |
_excess->set(n, excess); |
|
372 |
|
|
373 |
if (excess != 0) { |
|
374 |
if ((*_next)[n] == INVALID) { |
|
375 |
typename std::list<std::list<int> >::iterator new_set = |
|
376 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
377 |
new_set->splice(new_set->end(), _sets.back(), |
|
378 |
_sets.back().begin(), ++_highest); |
|
379 |
for (std::list<int>::iterator it = new_set->begin(); |
|
380 |
it != new_set->end(); ++it) { |
|
381 |
_dormant[*it] = true; |
|
382 |
} |
|
383 |
while (_highest != _sets.back().end() && |
|
384 |
!(*_active)[_first[*_highest]]) { |
|
385 |
++_highest; |
|
386 |
} |
|
387 |
} else if (next_bucket == _node_num) { |
|
388 |
_first[(*_bucket)[n]] = (*_next)[n]; |
|
389 |
_prev->set((*_next)[n], INVALID); |
|
390 |
|
|
391 |
std::list<std::list<int> >::iterator new_set = |
|
392 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
393 |
|
|
394 |
new_set->push_front(bucket_num); |
|
395 |
_bucket->set(n, bucket_num); |
|
396 |
_first[bucket_num] = _last[bucket_num] = n; |
|
397 |
_next->set(n, INVALID); |
|
398 |
_prev->set(n, INVALID); |
|
399 |
_dormant[bucket_num] = true; |
|
400 |
++bucket_num; |
|
401 |
|
|
402 |
while (_highest != _sets.back().end() && |
|
403 |
!(*_active)[_first[*_highest]]) { |
|
404 |
++_highest; |
|
405 |
} |
|
406 |
} else { |
|
407 |
_first[*_highest] = (*_next)[n]; |
|
408 |
_prev->set((*_next)[n], INVALID); |
|
409 |
|
|
410 |
while (next_bucket != *_highest) { |
|
411 |
--_highest; |
|
412 |
} |
|
413 |
|
|
414 |
if (_highest == _sets.back().begin()) { |
|
415 |
_sets.back().push_front(bucket_num); |
|
416 |
_dormant[bucket_num] = false; |
|
417 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
418 |
++bucket_num; |
|
419 |
} |
|
420 |
--_highest; |
|
421 |
|
|
422 |
_bucket->set(n, *_highest); |
|
423 |
_next->set(n, _first[*_highest]); |
|
424 |
if (_first[*_highest] != INVALID) { |
|
425 |
_prev->set(_first[*_highest], n); |
|
426 |
} else { |
|
427 |
_last[*_highest] = n; |
|
428 |
} |
|
429 |
_first[*_highest] = n; |
|
430 |
} |
|
431 |
} else { |
|
432 |
|
|
433 |
deactivate(n); |
|
434 |
if (!(*_active)[_first[*_highest]]) { |
|
435 |
++_highest; |
|
436 |
if (_highest != _sets.back().end() && |
|
437 |
!(*_active)[_first[*_highest]]) { |
|
438 |
_highest = _sets.back().end(); |
|
439 |
} |
|
440 |
} |
|
441 |
} |
|
442 |
} |
|
443 |
|
|
444 |
if ((*_excess)[target] < _min_cut) { |
|
445 |
_min_cut = (*_excess)[target]; |
|
446 |
for (NodeIt i(_graph); i != INVALID; ++i) { |
|
447 |
_min_cut_map->set(i, true); |
|
448 |
} |
|
449 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
450 |
it != _sets.back().end(); ++it) { |
|
451 |
Node n = _first[*it]; |
|
452 |
while (n != INVALID) { |
|
453 |
_min_cut_map->set(n, false); |
|
454 |
n = (*_next)[n]; |
|
455 |
} |
|
456 |
} |
|
457 |
} |
|
458 |
|
|
459 |
{ |
|
460 |
Node new_target; |
|
461 |
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { |
|
462 |
if ((*_next)[target] == INVALID) { |
|
463 |
_last[(*_bucket)[target]] = (*_prev)[target]; |
|
464 |
new_target = (*_prev)[target]; |
|
465 |
} else { |
|
466 |
_prev->set((*_next)[target], (*_prev)[target]); |
|
467 |
new_target = (*_next)[target]; |
|
468 |
} |
|
469 |
if ((*_prev)[target] == INVALID) { |
|
470 |
_first[(*_bucket)[target]] = (*_next)[target]; |
|
471 |
} else { |
|
472 |
_next->set((*_prev)[target], (*_next)[target]); |
|
473 |
} |
|
474 |
} else { |
|
475 |
_sets.back().pop_back(); |
|
476 |
if (_sets.back().empty()) { |
|
477 |
_sets.pop_back(); |
|
478 |
if (_sets.empty()) |
|
479 |
break; |
|
480 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
481 |
it != _sets.back().end(); ++it) { |
|
482 |
_dormant[*it] = false; |
|
483 |
} |
|
484 |
} |
|
485 |
new_target = _last[_sets.back().back()]; |
|
486 |
} |
|
487 |
|
|
488 |
_bucket->set(target, 0); |
|
489 |
|
|
490 |
_source_set->set(target, true); |
|
491 |
for (OutArcIt a(_graph, target); a != INVALID; ++a) { |
|
492 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
493 |
if (!_tolerance.positive(rem)) continue; |
|
494 |
Node v = _graph.target(a); |
|
495 |
if (!(*_active)[v] && !(*_source_set)[v]) { |
|
496 |
activate(v); |
|
497 |
} |
|
498 |
_excess->set(v, (*_excess)[v] + rem); |
|
499 |
_flow->set(a, (*_capacity)[a]); |
|
500 |
} |
|
501 |
|
|
502 |
for (InArcIt a(_graph, target); a != INVALID; ++a) { |
|
503 |
Value rem = (*_flow)[a]; |
|
504 |
if (!_tolerance.positive(rem)) continue; |
|
505 |
Node v = _graph.source(a); |
|
506 |
if (!(*_active)[v] && !(*_source_set)[v]) { |
|
507 |
activate(v); |
|
508 |
} |
|
509 |
_excess->set(v, (*_excess)[v] + rem); |
|
510 |
_flow->set(a, 0); |
|
511 |
} |
|
512 |
|
|
513 |
target = new_target; |
|
514 |
if ((*_active)[target]) { |
|
515 |
deactivate(target); |
|
516 |
} |
|
517 |
|
|
518 |
_highest = _sets.back().begin(); |
|
519 |
while (_highest != _sets.back().end() && |
|
520 |
!(*_active)[_first[*_highest]]) { |
|
521 |
++_highest; |
|
522 |
} |
|
523 |
} |
|
524 |
} |
|
525 |
} |
|
526 |
|
|
527 |
void findMinCutIn() { |
|
528 |
|
|
529 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
530 |
_excess->set(n, 0); |
|
531 |
} |
|
532 |
|
|
533 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
534 |
_flow->set(a, 0); |
|
535 |
} |
|
536 |
|
|
537 |
int bucket_num = 1; |
|
538 |
|
|
539 |
{ |
|
540 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
|
541 |
|
|
542 |
reached.set(_source, true); |
|
543 |
|
|
544 |
bool first_set = true; |
|
545 |
|
|
546 |
for (NodeIt t(_graph); t != INVALID; ++t) { |
|
547 |
if (reached[t]) continue; |
|
548 |
_sets.push_front(std::list<int>()); |
|
549 |
_sets.front().push_front(bucket_num); |
|
550 |
_dormant[bucket_num] = !first_set; |
|
551 |
|
|
552 |
_bucket->set(t, bucket_num); |
|
553 |
_first[bucket_num] = _last[bucket_num] = t; |
|
554 |
_next->set(t, INVALID); |
|
555 |
_prev->set(t, INVALID); |
|
556 |
|
|
557 |
++bucket_num; |
|
558 |
|
|
559 |
std::vector<Node> queue; |
|
560 |
queue.push_back(t); |
|
561 |
reached.set(t, true); |
|
562 |
|
|
563 |
while (!queue.empty()) { |
|
564 |
_sets.front().push_front(bucket_num); |
|
565 |
_dormant[bucket_num] = !first_set; |
|
566 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
567 |
|
|
568 |
std::vector<Node> nqueue; |
|
569 |
for (int i = 0; i < int(queue.size()); ++i) { |
|
570 |
Node n = queue[i]; |
|
571 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
|
572 |
Node u = _graph.target(a); |
|
573 |
if (!reached[u] && _tolerance.positive((*_capacity)[a])) { |
|
574 |
reached.set(u, true); |
|
575 |
addItem(u, bucket_num); |
|
576 |
nqueue.push_back(u); |
|
577 |
} |
|
578 |
} |
|
579 |
} |
|
580 |
queue.swap(nqueue); |
|
581 |
++bucket_num; |
|
582 |
} |
|
583 |
_sets.front().pop_front(); |
|
584 |
--bucket_num; |
|
585 |
first_set = false; |
|
586 |
} |
|
587 |
|
|
588 |
_bucket->set(_source, 0); |
|
589 |
_dormant[0] = true; |
|
590 |
} |
|
591 |
_source_set->set(_source, true); |
|
592 |
|
|
593 |
Node target = _last[_sets.back().back()]; |
|
594 |
{ |
|
595 |
for (InArcIt a(_graph, _source); a != INVALID; ++a) { |
|
596 |
if (_tolerance.positive((*_capacity)[a])) { |
|
597 |
Node u = _graph.source(a); |
|
598 |
_flow->set(a, (*_capacity)[a]); |
|
599 |
_excess->set(u, (*_excess)[u] + (*_capacity)[a]); |
|
600 |
if (!(*_active)[u] && u != _source) { |
|
601 |
activate(u); |
|
602 |
} |
|
603 |
} |
|
604 |
} |
|
605 |
if ((*_active)[target]) { |
|
606 |
deactivate(target); |
|
607 |
} |
|
608 |
|
|
609 |
_highest = _sets.back().begin(); |
|
610 |
while (_highest != _sets.back().end() && |
|
611 |
!(*_active)[_first[*_highest]]) { |
|
612 |
++_highest; |
|
613 |
} |
|
614 |
} |
|
615 |
|
|
616 |
|
|
617 |
while (true) { |
|
618 |
while (_highest != _sets.back().end()) { |
|
619 |
Node n = _first[*_highest]; |
|
620 |
Value excess = (*_excess)[n]; |
|
621 |
int next_bucket = _node_num; |
|
622 |
|
|
623 |
int under_bucket; |
|
624 |
if (++std::list<int>::iterator(_highest) == _sets.back().end()) { |
|
625 |
under_bucket = -1; |
|
626 |
} else { |
|
627 |
under_bucket = *(++std::list<int>::iterator(_highest)); |
|
628 |
} |
|
629 |
|
|
630 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
631 |
Node v = _graph.source(a); |
|
632 |
if (_dormant[(*_bucket)[v]]) continue; |
|
633 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
634 |
if (!_tolerance.positive(rem)) continue; |
|
635 |
if ((*_bucket)[v] == under_bucket) { |
|
636 |
if (!(*_active)[v] && v != target) { |
|
637 |
activate(v); |
|
638 |
} |
|
639 |
if (!_tolerance.less(rem, excess)) { |
|
640 |
_flow->set(a, (*_flow)[a] + excess); |
|
641 |
_excess->set(v, (*_excess)[v] + excess); |
|
642 |
excess = 0; |
|
643 |
goto no_more_push; |
|
644 |
} else { |
|
645 |
excess -= rem; |
|
646 |
_excess->set(v, (*_excess)[v] + rem); |
|
647 |
_flow->set(a, (*_capacity)[a]); |
|
648 |
} |
|
649 |
} else if (next_bucket > (*_bucket)[v]) { |
|
650 |
next_bucket = (*_bucket)[v]; |
|
651 |
} |
|
652 |
} |
|
653 |
|
|
654 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
|
655 |
Node v = _graph.target(a); |
|
656 |
if (_dormant[(*_bucket)[v]]) continue; |
|
657 |
Value rem = (*_flow)[a]; |
|
658 |
if (!_tolerance.positive(rem)) continue; |
|
659 |
if ((*_bucket)[v] == under_bucket) { |
|
660 |
if (!(*_active)[v] && v != target) { |
|
661 |
activate(v); |
|
662 |
} |
|
663 |
if (!_tolerance.less(rem, excess)) { |
|
664 |
_flow->set(a, (*_flow)[a] - excess); |
|
665 |
_excess->set(v, (*_excess)[v] + excess); |
|
666 |
excess = 0; |
|
667 |
goto no_more_push; |
|
668 |
} else { |
|
669 |
excess -= rem; |
|
670 |
_excess->set(v, (*_excess)[v] + rem); |
|
671 |
_flow->set(a, 0); |
|
672 |
} |
|
673 |
} else if (next_bucket > (*_bucket)[v]) { |
|
674 |
next_bucket = (*_bucket)[v]; |
|
675 |
} |
|
676 |
} |
|
677 |
|
|
678 |
no_more_push: |
|
679 |
|
|
680 |
_excess->set(n, excess); |
|
681 |
|
|
682 |
if (excess != 0) { |
|
683 |
if ((*_next)[n] == INVALID) { |
|
684 |
typename std::list<std::list<int> >::iterator new_set = |
|
685 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
686 |
new_set->splice(new_set->end(), _sets.back(), |
|
687 |
_sets.back().begin(), ++_highest); |
|
688 |
for (std::list<int>::iterator it = new_set->begin(); |
|
689 |
it != new_set->end(); ++it) { |
|
690 |
_dormant[*it] = true; |
|
691 |
} |
|
692 |
while (_highest != _sets.back().end() && |
|
693 |
!(*_active)[_first[*_highest]]) { |
|
694 |
++_highest; |
|
695 |
} |
|
696 |
} else if (next_bucket == _node_num) { |
|
697 |
_first[(*_bucket)[n]] = (*_next)[n]; |
|
698 |
_prev->set((*_next)[n], INVALID); |
|
699 |
|
|
700 |
std::list<std::list<int> >::iterator new_set = |
|
701 |
_sets.insert(--_sets.end(), std::list<int>()); |
|
702 |
|
|
703 |
new_set->push_front(bucket_num); |
|
704 |
_bucket->set(n, bucket_num); |
|
705 |
_first[bucket_num] = _last[bucket_num] = n; |
|
706 |
_next->set(n, INVALID); |
|
707 |
_prev->set(n, INVALID); |
|
708 |
_dormant[bucket_num] = true; |
|
709 |
++bucket_num; |
|
710 |
|
|
711 |
while (_highest != _sets.back().end() && |
|
712 |
!(*_active)[_first[*_highest]]) { |
|
713 |
++_highest; |
|
714 |
} |
|
715 |
} else { |
|
716 |
_first[*_highest] = (*_next)[n]; |
|
717 |
_prev->set((*_next)[n], INVALID); |
|
718 |
|
|
719 |
while (next_bucket != *_highest) { |
|
720 |
--_highest; |
|
721 |
} |
|
722 |
if (_highest == _sets.back().begin()) { |
|
723 |
_sets.back().push_front(bucket_num); |
|
724 |
_dormant[bucket_num] = false; |
|
725 |
_first[bucket_num] = _last[bucket_num] = INVALID; |
|
726 |
++bucket_num; |
|
727 |
} |
|
728 |
--_highest; |
|
729 |
|
|
730 |
_bucket->set(n, *_highest); |
|
731 |
_next->set(n, _first[*_highest]); |
|
732 |
if (_first[*_highest] != INVALID) { |
|
733 |
_prev->set(_first[*_highest], n); |
|
734 |
} else { |
|
735 |
_last[*_highest] = n; |
|
736 |
} |
|
737 |
_first[*_highest] = n; |
|
738 |
} |
|
739 |
} else { |
|
740 |
|
|
741 |
deactivate(n); |
|
742 |
if (!(*_active)[_first[*_highest]]) { |
|
743 |
++_highest; |
|
744 |
if (_highest != _sets.back().end() && |
|
745 |
!(*_active)[_first[*_highest]]) { |
|
746 |
_highest = _sets.back().end(); |
|
747 |
} |
|
748 |
} |
|
749 |
} |
|
750 |
} |
|
751 |
|
|
752 |
if ((*_excess)[target] < _min_cut) { |
|
753 |
_min_cut = (*_excess)[target]; |
|
754 |
for (NodeIt i(_graph); i != INVALID; ++i) { |
|
755 |
_min_cut_map->set(i, false); |
|
756 |
} |
|
757 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
758 |
it != _sets.back().end(); ++it) { |
|
759 |
Node n = _first[*it]; |
|
760 |
while (n != INVALID) { |
|
761 |
_min_cut_map->set(n, true); |
|
762 |
n = (*_next)[n]; |
|
763 |
} |
|
764 |
} |
|
765 |
} |
|
766 |
|
|
767 |
{ |
|
768 |
Node new_target; |
|
769 |
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { |
|
770 |
if ((*_next)[target] == INVALID) { |
|
771 |
_last[(*_bucket)[target]] = (*_prev)[target]; |
|
772 |
new_target = (*_prev)[target]; |
|
773 |
} else { |
|
774 |
_prev->set((*_next)[target], (*_prev)[target]); |
|
775 |
new_target = (*_next)[target]; |
|
776 |
} |
|
777 |
if ((*_prev)[target] == INVALID) { |
|
778 |
_first[(*_bucket)[target]] = (*_next)[target]; |
|
779 |
} else { |
|
780 |
_next->set((*_prev)[target], (*_next)[target]); |
|
781 |
} |
|
782 |
} else { |
|
783 |
_sets.back().pop_back(); |
|
784 |
if (_sets.back().empty()) { |
|
785 |
_sets.pop_back(); |
|
786 |
if (_sets.empty()) |
|
787 |
break; |
|
788 |
for (std::list<int>::iterator it = _sets.back().begin(); |
|
789 |
it != _sets.back().end(); ++it) { |
|
790 |
_dormant[*it] = false; |
|
791 |
} |
|
792 |
} |
|
793 |
new_target = _last[_sets.back().back()]; |
|
794 |
} |
|
795 |
|
|
796 |
_bucket->set(target, 0); |
|
797 |
|
|
798 |
_source_set->set(target, true); |
|
799 |
for (InArcIt a(_graph, target); a != INVALID; ++a) { |
|
800 |
Value rem = (*_capacity)[a] - (*_flow)[a]; |
|
801 |
if (!_tolerance.positive(rem)) continue; |
|
802 |
Node v = _graph.source(a); |
|
803 |
if (!(*_active)[v] && !(*_source_set)[v]) { |
|
804 |
activate(v); |
|
805 |
} |
|
806 |
_excess->set(v, (*_excess)[v] + rem); |
|
807 |
_flow->set(a, (*_capacity)[a]); |
|
808 |
} |
|
809 |
|
|
810 |
for (OutArcIt a(_graph, target); a != INVALID; ++a) { |
|
811 |
Value rem = (*_flow)[a]; |
|
812 |
if (!_tolerance.positive(rem)) continue; |
|
813 |
Node v = _graph.target(a); |
|
814 |
if (!(*_active)[v] && !(*_source_set)[v]) { |
|
815 |
activate(v); |
|
816 |
} |
|
817 |
_excess->set(v, (*_excess)[v] + rem); |
|
818 |
_flow->set(a, 0); |
|
819 |
} |
|
820 |
|
|
821 |
target = new_target; |
|
822 |
if ((*_active)[target]) { |
|
823 |
deactivate(target); |
|
824 |
} |
|
825 |
|
|
826 |
_highest = _sets.back().begin(); |
|
827 |
while (_highest != _sets.back().end() && |
|
828 |
!(*_active)[_first[*_highest]]) { |
|
829 |
++_highest; |
|
830 |
} |
|
831 |
} |
|
832 |
} |
|
833 |
} |
|
834 |
|
|
835 |
public: |
|
836 |
|
|
837 |
/// \name Execution control |
|
838 |
/// The simplest way to execute the algorithm is to use |
|
839 |
/// one of the member functions called \c run(...). |
|
840 |
/// \n |
|
841 |
/// If you need more control on the execution, |
|
842 |
/// first you must call \ref init(), then the \ref calculateIn() or |
|
843 |
/// \ref calculateIn() functions. |
|
844 |
|
|
845 |
/// @{ |
|
846 |
|
|
847 |
/// \brief Initializes the internal data structures. |
|
848 |
/// |
|
849 |
/// Initializes the internal data structures. It creates |
|
850 |
/// the maps, residual graph adaptors and some bucket structures |
|
851 |
/// for the algorithm. |
|
852 |
void init() { |
|
853 |
init(NodeIt(_graph)); |
|
854 |
} |
|
855 |
|
|
856 |
/// \brief Initializes the internal data structures. |
|
857 |
/// |
|
858 |
/// Initializes the internal data structures. It creates |
|
859 |
/// the maps, residual graph adaptor and some bucket structures |
|
860 |
/// for the algorithm. Node \c source is used as the push-relabel |
|
861 |
/// algorithm's source. |
|
862 |
void init(const Node& source) { |
|
863 |
_source = source; |
|
864 |
|
|
865 |
_node_num = countNodes(_graph); |
|
866 |
|
|
867 |
_first.resize(_node_num + 1); |
|
868 |
_last.resize(_node_num + 1); |
|
869 |
|
|
870 |
_dormant.resize(_node_num + 1); |
|
871 |
|
|
872 |
if (!_flow) { |
|
873 |
_flow = new FlowMap(_graph); |
|
874 |
} |
|
875 |
if (!_next) { |
|
876 |
_next = new typename Digraph::template NodeMap<Node>(_graph); |
|
877 |
} |
|
878 |
if (!_prev) { |
|
879 |
_prev = new typename Digraph::template NodeMap<Node>(_graph); |
|
880 |
} |
|
881 |
if (!_active) { |
|
882 |
_active = new typename Digraph::template NodeMap<bool>(_graph); |
|
883 |
} |
|
884 |
if (!_bucket) { |
|
885 |
_bucket = new typename Digraph::template NodeMap<int>(_graph); |
|
886 |
} |
|
887 |
if (!_excess) { |
|
888 |
_excess = new ExcessMap(_graph); |
|
889 |
} |
|
890 |
if (!_source_set) { |
|
891 |
_source_set = new SourceSetMap(_graph); |
|
892 |
} |
|
893 |
if (!_min_cut_map) { |
|
894 |
_min_cut_map = new MinCutMap(_graph); |
|
895 |
} |
|
896 |
|
|
897 |
_min_cut = std::numeric_limits<Value>::max(); |
|
898 |
} |
|
899 |
|
|
900 |
|
|
901 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
|
902 |
/// source-side. |
|
903 |
/// |
|
904 |
/// Calculates a minimum cut with \f$ source \f$ on the |
|
905 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
906 |
/// \in X \f$ and minimal out-degree). |
|
907 |
void calculateOut() { |
|
908 |
findMinCutOut(); |
|
909 |
} |
|
910 |
|
|
911 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
|
912 |
/// target-side. |
|
913 |
/// |
|
914 |
/// Calculates a minimum cut with \f$ source \f$ on the |
|
915 |
/// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
916 |
/// \in X \f$ and minimal out-degree). |
|
917 |
void calculateIn() { |
|
918 |
findMinCutIn(); |
|
919 |
} |
|
920 |
|
|
921 |
|
|
922 |
/// \brief Runs the algorithm. |
|
923 |
/// |
|
924 |
/// Runs the algorithm. It finds nodes \c source and \c target |
|
925 |
/// arbitrarily and then calls \ref init(), \ref calculateOut() |
|
926 |
/// and \ref calculateIn(). |
|
927 |
void run() { |
|
928 |
init(); |
|
929 |
calculateOut(); |
|
930 |
calculateIn(); |
|
931 |
} |
|
932 |
|
|
933 |
/// \brief Runs the algorithm. |
|
934 |
/// |
|
935 |
/// Runs the algorithm. It uses the given \c source node, finds a |
|
936 |
/// proper \c target and then calls the \ref init(), \ref |
|
937 |
/// calculateOut() and \ref calculateIn(). |
|
938 |
void run(const Node& s) { |
|
939 |
init(s); |
|
940 |
calculateOut(); |
|
941 |
calculateIn(); |
|
942 |
} |
|
943 |
|
|
944 |
/// @} |
|
945 |
|
|
946 |
/// \name Query Functions |
|
947 |
/// The result of the %HaoOrlin algorithm |
|
948 |
/// can be obtained using these functions. |
|
949 |
/// \n |
|
950 |
/// Before using these functions, either \ref run(), \ref |
|
951 |
/// calculateOut() or \ref calculateIn() must be called. |
|
952 |
|
|
953 |
/// @{ |
|
954 |
|
|
955 |
/// \brief Returns the value of the minimum value cut. |
|
956 |
/// |
|
957 |
/// Returns the value of the minimum value cut. |
|
958 |
Value minCutValue() const { |
|
959 |
return _min_cut; |
|
960 |
} |
|
961 |
|
|
962 |
|
|
963 |
/// \brief Returns a minimum cut. |
|
964 |
/// |
|
965 |
/// Sets \c nodeMap to the characteristic vector of a minimum |
|
966 |
/// value cut: it will give a nonempty set \f$ X\subsetneq V \f$ |
|
967 |
/// with minimal out-degree (i.e. \c nodeMap will be true exactly |
|
968 |
/// for the nodes of \f$ X \f$). \pre nodeMap should be a |
|
969 |
/// bool-valued node-map. |
|
970 |
template <typename NodeMap> |
|
971 |
Value minCutMap(NodeMap& nodeMap) const { |
|
972 |
for (NodeIt it(_graph); it != INVALID; ++it) { |
|
973 |
nodeMap.set(it, (*_min_cut_map)[it]); |
|
974 |
} |
|
975 |
return _min_cut; |
|
976 |
} |
|
977 |
|
|
978 |
/// @} |
|
979 |
|
|
980 |
}; //class HaoOrlin |
|
981 |
|
|
982 |
|
|
983 |
} //namespace lemon |
|
984 |
|
|
985 |
#endif //LEMON_HAO_ORLIN_H |
0 comments (0 inline)