↑ Collapse diff ↑
Ignore white space 12 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BELLMAN_FORD_H
20
#define LEMON_BELLMAN_FORD_H
21

	
22
/// \ingroup shortest_path
23
/// \file
24
/// \brief Bellman-Ford algorithm.
25

	
26
#include <lemon/bits/path_dump.h>
27
#include <lemon/core.h>
28
#include <lemon/error.h>
29
#include <lemon/maps.h>
30
#include <lemon/path.h>
31

	
32
#include <limits>
33

	
34
namespace lemon {
35

	
36
  /// \brief Default OperationTraits for the BellmanFord algorithm class.
37
  ///  
38
  /// This operation traits class defines all computational operations
39
  /// and constants that are used in the Bellman-Ford algorithm.
40
  /// The default implementation is based on the \c numeric_limits class.
41
  /// If the numeric type does not have infinity value, then the maximum
42
  /// value is used as extremal infinity value.
43
  template <
44
    typename V, 
45
    bool has_inf = std::numeric_limits<V>::has_infinity>
46
  struct BellmanFordDefaultOperationTraits {
47
    /// \e
48
    typedef V Value;
49
    /// \brief Gives back the zero value of the type.
50
    static Value zero() {
51
      return static_cast<Value>(0);
52
    }
53
    /// \brief Gives back the positive infinity value of the type.
54
    static Value infinity() {
55
      return std::numeric_limits<Value>::infinity();
56
    }
57
    /// \brief Gives back the sum of the given two elements.
58
    static Value plus(const Value& left, const Value& right) {
59
      return left + right;
60
    }
61
    /// \brief Gives back \c true only if the first value is less than
62
    /// the second.
63
    static bool less(const Value& left, const Value& right) {
64
      return left < right;
65
    }
66
  };
67

	
68
  template <typename V>
69
  struct BellmanFordDefaultOperationTraits<V, false> {
70
    typedef V Value;
71
    static Value zero() {
72
      return static_cast<Value>(0);
73
    }
74
    static Value infinity() {
75
      return std::numeric_limits<Value>::max();
76
    }
77
    static Value plus(const Value& left, const Value& right) {
78
      if (left == infinity() || right == infinity()) return infinity();
79
      return left + right;
80
    }
81
    static bool less(const Value& left, const Value& right) {
82
      return left < right;
83
    }
84
  };
85
  
86
  /// \brief Default traits class of BellmanFord class.
87
  ///
88
  /// Default traits class of BellmanFord class.
89
  /// \param GR The type of the digraph.
90
  /// \param LEN The type of the length map.
91
  template<typename GR, typename LEN>
92
  struct BellmanFordDefaultTraits {
93
    /// The type of the digraph the algorithm runs on. 
94
    typedef GR Digraph;
95

	
96
    /// \brief The type of the map that stores the arc lengths.
97
    ///
98
    /// The type of the map that stores the arc lengths.
99
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
100
    typedef LEN LengthMap;
101

	
102
    /// The type of the arc lengths.
103
    typedef typename LEN::Value Value;
104

	
105
    /// \brief Operation traits for Bellman-Ford algorithm.
106
    ///
107
    /// It defines the used operations and the infinity value for the
108
    /// given \c Value type.
109
    /// \see BellmanFordDefaultOperationTraits
110
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
111
 
112
    /// \brief The type of the map that stores the last arcs of the 
113
    /// shortest paths.
114
    /// 
115
    /// The type of the map that stores the last
116
    /// arcs of the shortest paths.
117
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
118
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
119

	
120
    /// \brief Instantiates a \c PredMap.
121
    /// 
122
    /// This function instantiates a \ref PredMap. 
123
    /// \param g is the digraph to which we would like to define the
124
    /// \ref PredMap.
125
    static PredMap *createPredMap(const GR& g) {
126
      return new PredMap(g);
127
    }
128

	
129
    /// \brief The type of the map that stores the distances of the nodes.
130
    ///
131
    /// The type of the map that stores the distances of the nodes.
132
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
133
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
134

	
135
    /// \brief Instantiates a \c DistMap.
136
    ///
137
    /// This function instantiates a \ref DistMap. 
138
    /// \param g is the digraph to which we would like to define the 
139
    /// \ref DistMap.
140
    static DistMap *createDistMap(const GR& g) {
141
      return new DistMap(g);
142
    }
143

	
144
  };
145
  
146
  /// \brief %BellmanFord algorithm class.
147
  ///
148
  /// \ingroup shortest_path
149
  /// This class provides an efficient implementation of the Bellman-Ford 
150
  /// algorithm. The maximum time complexity of the algorithm is
151
  /// <tt>O(ne)</tt>.
152
  ///
153
  /// The Bellman-Ford algorithm solves the single-source shortest path
154
  /// problem when the arcs can have negative lengths, but the digraph
155
  /// should not contain directed cycles with negative total length.
156
  /// If all arc costs are non-negative, consider to use the Dijkstra
157
  /// algorithm instead, since it is more efficient.
158
  ///
159
  /// The arc lengths are passed to the algorithm using a
160
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
161
  /// kind of length. The type of the length values is determined by the
162
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
163
  ///
164
  /// There is also a \ref bellmanFord() "function-type interface" for the
165
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
166
  /// it can be used easier.
167
  ///
168
  /// \tparam GR The type of the digraph the algorithm runs on.
169
  /// The default type is \ref ListDigraph.
170
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
171
  /// the lengths of the arcs. The default map type is
172
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
173
#ifdef DOXYGEN
174
  template <typename GR, typename LEN, typename TR>
175
#else
176
  template <typename GR=ListDigraph,
177
            typename LEN=typename GR::template ArcMap<int>,
178
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
179
#endif
180
  class BellmanFord {
181
  public:
182

	
183
    ///The type of the underlying digraph.
184
    typedef typename TR::Digraph Digraph;
185
    
186
    /// \brief The type of the arc lengths.
187
    typedef typename TR::LengthMap::Value Value;
188
    /// \brief The type of the map that stores the arc lengths.
189
    typedef typename TR::LengthMap LengthMap;
190
    /// \brief The type of the map that stores the last
191
    /// arcs of the shortest paths.
192
    typedef typename TR::PredMap PredMap;
193
    /// \brief The type of the map that stores the distances of the nodes.
194
    typedef typename TR::DistMap DistMap;
195
    /// The type of the paths.
196
    typedef PredMapPath<Digraph, PredMap> Path;
197
    ///\brief The \ref BellmanFordDefaultOperationTraits
198
    /// "operation traits class" of the algorithm.
199
    typedef typename TR::OperationTraits OperationTraits;
200

	
201
    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
202
    typedef TR Traits;
203

	
204
  private:
205

	
206
    typedef typename Digraph::Node Node;
207
    typedef typename Digraph::NodeIt NodeIt;
208
    typedef typename Digraph::Arc Arc;
209
    typedef typename Digraph::OutArcIt OutArcIt;
210

	
211
    // Pointer to the underlying digraph.
212
    const Digraph *_gr;
213
    // Pointer to the length map
214
    const LengthMap *_length;
215
    // Pointer to the map of predecessors arcs.
216
    PredMap *_pred;
217
    // Indicates if _pred is locally allocated (true) or not.
218
    bool _local_pred;
219
    // Pointer to the map of distances.
220
    DistMap *_dist;
221
    // Indicates if _dist is locally allocated (true) or not.
222
    bool _local_dist;
223

	
224
    typedef typename Digraph::template NodeMap<bool> MaskMap;
225
    MaskMap *_mask;
226

	
227
    std::vector<Node> _process;
228

	
229
    // Creates the maps if necessary.
230
    void create_maps() {
231
      if(!_pred) {
232
	_local_pred = true;
233
	_pred = Traits::createPredMap(*_gr);
234
      }
235
      if(!_dist) {
236
	_local_dist = true;
237
	_dist = Traits::createDistMap(*_gr);
238
      }
239
      _mask = new MaskMap(*_gr, false);
240
    }
241
    
242
  public :
243
 
244
    typedef BellmanFord Create;
245

	
246
    /// \name Named Template Parameters
247

	
248
    ///@{
249

	
250
    template <class T>
251
    struct SetPredMapTraits : public Traits {
252
      typedef T PredMap;
253
      static PredMap *createPredMap(const Digraph&) {
254
        LEMON_ASSERT(false, "PredMap is not initialized");
255
        return 0; // ignore warnings
256
      }
257
    };
258

	
259
    /// \brief \ref named-templ-param "Named parameter" for setting
260
    /// \c PredMap type.
261
    ///
262
    /// \ref named-templ-param "Named parameter" for setting
263
    /// \c PredMap type.
264
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
265
    template <class T>
266
    struct SetPredMap 
267
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
268
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
269
    };
270
    
271
    template <class T>
272
    struct SetDistMapTraits : public Traits {
273
      typedef T DistMap;
274
      static DistMap *createDistMap(const Digraph&) {
275
        LEMON_ASSERT(false, "DistMap is not initialized");
276
        return 0; // ignore warnings
277
      }
278
    };
279

	
280
    /// \brief \ref named-templ-param "Named parameter" for setting
281
    /// \c DistMap type.
282
    ///
283
    /// \ref named-templ-param "Named parameter" for setting
284
    /// \c DistMap type.
285
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
286
    template <class T>
287
    struct SetDistMap 
288
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
289
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
290
    };
291

	
292
    template <class T>
293
    struct SetOperationTraitsTraits : public Traits {
294
      typedef T OperationTraits;
295
    };
296
    
297
    /// \brief \ref named-templ-param "Named parameter" for setting 
298
    /// \c OperationTraits type.
299
    ///
300
    /// \ref named-templ-param "Named parameter" for setting
301
    /// \c OperationTraits type.
302
    /// For more information see \ref BellmanFordDefaultOperationTraits.
303
    template <class T>
304
    struct SetOperationTraits
305
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
306
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
307
      Create;
308
    };
309
    
310
    ///@}
311

	
312
  protected:
313
    
314
    BellmanFord() {}
315

	
316
  public:      
317
    
318
    /// \brief Constructor.
319
    ///
320
    /// Constructor.
321
    /// \param g The digraph the algorithm runs on.
322
    /// \param length The length map used by the algorithm.
323
    BellmanFord(const Digraph& g, const LengthMap& length) :
324
      _gr(&g), _length(&length),
325
      _pred(0), _local_pred(false),
326
      _dist(0), _local_dist(false), _mask(0) {}
327
    
328
    ///Destructor.
329
    ~BellmanFord() {
330
      if(_local_pred) delete _pred;
331
      if(_local_dist) delete _dist;
332
      if(_mask) delete _mask;
333
    }
334

	
335
    /// \brief Sets the length map.
336
    ///
337
    /// Sets the length map.
338
    /// \return <tt>(*this)</tt>
339
    BellmanFord &lengthMap(const LengthMap &map) {
340
      _length = &map;
341
      return *this;
342
    }
343

	
344
    /// \brief Sets the map that stores the predecessor arcs.
345
    ///
346
    /// Sets the map that stores the predecessor arcs.
347
    /// If you don't use this function before calling \ref run()
348
    /// or \ref init(), an instance will be allocated automatically.
349
    /// The destructor deallocates this automatically allocated map,
350
    /// of course.
351
    /// \return <tt>(*this)</tt>
352
    BellmanFord &predMap(PredMap &map) {
353
      if(_local_pred) {
354
	delete _pred;
355
	_local_pred=false;
356
      }
357
      _pred = &map;
358
      return *this;
359
    }
360

	
361
    /// \brief Sets the map that stores the distances of the nodes.
362
    ///
363
    /// Sets the map that stores the distances of the nodes calculated
364
    /// by the algorithm.
365
    /// If you don't use this function before calling \ref run()
366
    /// or \ref init(), an instance will be allocated automatically.
367
    /// The destructor deallocates this automatically allocated map,
368
    /// of course.
369
    /// \return <tt>(*this)</tt>
370
    BellmanFord &distMap(DistMap &map) {
371
      if(_local_dist) {
372
	delete _dist;
373
	_local_dist=false;
374
      }
375
      _dist = &map;
376
      return *this;
377
    }
378

	
379
    /// \name Execution Control
380
    /// The simplest way to execute the Bellman-Ford algorithm is to use
381
    /// one of the member functions called \ref run().\n
382
    /// If you need better control on the execution, you have to call
383
    /// \ref init() first, then you can add several source nodes
384
    /// with \ref addSource(). Finally the actual path computation can be
385
    /// performed with \ref start(), \ref checkedStart() or
386
    /// \ref limitedStart().
387

	
388
    ///@{
389

	
390
    /// \brief Initializes the internal data structures.
391
    /// 
392
    /// Initializes the internal data structures. The optional parameter
393
    /// is the initial distance of each node.
394
    void init(const Value value = OperationTraits::infinity()) {
395
      create_maps();
396
      for (NodeIt it(*_gr); it != INVALID; ++it) {
397
	_pred->set(it, INVALID);
398
	_dist->set(it, value);
399
      }
400
      _process.clear();
401
      if (OperationTraits::less(value, OperationTraits::infinity())) {
402
	for (NodeIt it(*_gr); it != INVALID; ++it) {
403
	  _process.push_back(it);
404
	  _mask->set(it, true);
405
	}
406
      }
407
    }
408
    
409
    /// \brief Adds a new source node.
410
    ///
411
    /// This function adds a new source node. The optional second parameter
412
    /// is the initial distance of the node.
413
    void addSource(Node source, Value dst = OperationTraits::zero()) {
414
      _dist->set(source, dst);
415
      if (!(*_mask)[source]) {
416
	_process.push_back(source);
417
	_mask->set(source, true);
418
      }
419
    }
420

	
421
    /// \brief Executes one round from the Bellman-Ford algorithm.
422
    ///
423
    /// If the algoritm calculated the distances in the previous round
424
    /// exactly for the paths of at most \c k arcs, then this function
425
    /// will calculate the distances exactly for the paths of at most
426
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
427
    /// calculates the shortest path distances exactly for the paths
428
    /// consisting of at most \c k arcs.
429
    ///
430
    /// \warning The paths with limited arc number cannot be retrieved
431
    /// easily with \ref path() or \ref predArc() functions. If you also
432
    /// need the shortest paths and not only the distances, you should
433
    /// store the \ref predMap() "predecessor map" after each iteration
434
    /// and build the path manually.
435
    ///
436
    /// \return \c true when the algorithm have not found more shorter
437
    /// paths.
438
    ///
439
    /// \see ActiveIt
440
    bool processNextRound() {
441
      for (int i = 0; i < int(_process.size()); ++i) {
442
	_mask->set(_process[i], false);
443
      }
444
      std::vector<Node> nextProcess;
445
      std::vector<Value> values(_process.size());
446
      for (int i = 0; i < int(_process.size()); ++i) {
447
	values[i] = (*_dist)[_process[i]];
448
      }
449
      for (int i = 0; i < int(_process.size()); ++i) {
450
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
451
	  Node target = _gr->target(it);
452
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
453
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
454
	    _pred->set(target, it);
455
	    _dist->set(target, relaxed);
456
	    if (!(*_mask)[target]) {
457
	      _mask->set(target, true);
458
	      nextProcess.push_back(target);
459
	    }
460
	  }	  
461
	}
462
      }
463
      _process.swap(nextProcess);
464
      return _process.empty();
465
    }
466

	
467
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
468
    ///
469
    /// If the algorithm calculated the distances in the previous round
470
    /// at least for the paths of at most \c k arcs, then this function
471
    /// will calculate the distances at least for the paths of at most
472
    /// <tt>k+1</tt> arcs.
473
    /// This function does not make it possible to calculate the shortest
474
    /// path distances exactly for paths consisting of at most \c k arcs,
475
    /// this is why it is called weak round.
476
    ///
477
    /// \return \c true when the algorithm have not found more shorter
478
    /// paths.
479
    ///
480
    /// \see ActiveIt
481
    bool processNextWeakRound() {
482
      for (int i = 0; i < int(_process.size()); ++i) {
483
	_mask->set(_process[i], false);
484
      }
485
      std::vector<Node> nextProcess;
486
      for (int i = 0; i < int(_process.size()); ++i) {
487
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
488
	  Node target = _gr->target(it);
489
	  Value relaxed = 
490
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
491
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
492
	    _pred->set(target, it);
493
	    _dist->set(target, relaxed);
494
	    if (!(*_mask)[target]) {
495
	      _mask->set(target, true);
496
	      nextProcess.push_back(target);
497
	    }
498
	  }	  
499
	}
500
      }
501
      _process.swap(nextProcess);
502
      return _process.empty();
503
    }
504

	
505
    /// \brief Executes the algorithm.
506
    ///
507
    /// Executes the algorithm.
508
    ///
509
    /// This method runs the Bellman-Ford algorithm from the root node(s)
510
    /// in order to compute the shortest path to each node.
511
    ///
512
    /// The algorithm computes
513
    /// - the shortest path tree (forest),
514
    /// - the distance of each node from the root(s).
515
    ///
516
    /// \pre init() must be called and at least one root node should be
517
    /// added with addSource() before using this function.
518
    void start() {
519
      int num = countNodes(*_gr) - 1;
520
      for (int i = 0; i < num; ++i) {
521
	if (processNextWeakRound()) break;
522
      }
523
    }
524

	
525
    /// \brief Executes the algorithm and checks the negative cycles.
526
    ///
527
    /// Executes the algorithm and checks the negative cycles.
528
    ///
529
    /// This method runs the Bellman-Ford algorithm from the root node(s)
530
    /// in order to compute the shortest path to each node and also checks
531
    /// if the digraph contains cycles with negative total length.
532
    ///
533
    /// The algorithm computes 
534
    /// - the shortest path tree (forest),
535
    /// - the distance of each node from the root(s).
536
    /// 
537
    /// \return \c false if there is a negative cycle in the digraph.
538
    ///
539
    /// \pre init() must be called and at least one root node should be
540
    /// added with addSource() before using this function. 
541
    bool checkedStart() {
542
      int num = countNodes(*_gr);
543
      for (int i = 0; i < num; ++i) {
544
	if (processNextWeakRound()) return true;
545
      }
546
      return _process.empty();
547
    }
548

	
549
    /// \brief Executes the algorithm with arc number limit.
550
    ///
551
    /// Executes the algorithm with arc number limit.
552
    ///
553
    /// This method runs the Bellman-Ford algorithm from the root node(s)
554
    /// in order to compute the shortest path distance for each node
555
    /// using only the paths consisting of at most \c num arcs.
556
    ///
557
    /// The algorithm computes
558
    /// - the limited distance of each node from the root(s),
559
    /// - the predecessor arc for each node.
560
    ///
561
    /// \warning The paths with limited arc number cannot be retrieved
562
    /// easily with \ref path() or \ref predArc() functions. If you also
563
    /// need the shortest paths and not only the distances, you should
564
    /// store the \ref predMap() "predecessor map" after each iteration
565
    /// and build the path manually.
566
    ///
567
    /// \pre init() must be called and at least one root node should be
568
    /// added with addSource() before using this function. 
569
    void limitedStart(int num) {
570
      for (int i = 0; i < num; ++i) {
571
	if (processNextRound()) break;
572
      }
573
    }
574
    
575
    /// \brief Runs the algorithm from the given root node.
576
    ///    
577
    /// This method runs the Bellman-Ford algorithm from the given root
578
    /// node \c s in order to compute the shortest path to each node.
579
    ///
580
    /// The algorithm computes
581
    /// - the shortest path tree (forest),
582
    /// - the distance of each node from the root(s).
583
    ///
584
    /// \note bf.run(s) is just a shortcut of the following code.
585
    /// \code
586
    ///   bf.init();
587
    ///   bf.addSource(s);
588
    ///   bf.start();
589
    /// \endcode
590
    void run(Node s) {
591
      init();
592
      addSource(s);
593
      start();
594
    }
595
    
596
    /// \brief Runs the algorithm from the given root node with arc
597
    /// number limit.
598
    ///    
599
    /// This method runs the Bellman-Ford algorithm from the given root
600
    /// node \c s in order to compute the shortest path distance for each
601
    /// node using only the paths consisting of at most \c num arcs.
602
    ///
603
    /// The algorithm computes
604
    /// - the limited distance of each node from the root(s),
605
    /// - the predecessor arc for each node.
606
    ///
607
    /// \warning The paths with limited arc number cannot be retrieved
608
    /// easily with \ref path() or \ref predArc() functions. If you also
609
    /// need the shortest paths and not only the distances, you should
610
    /// store the \ref predMap() "predecessor map" after each iteration
611
    /// and build the path manually.
612
    ///
613
    /// \note bf.run(s, num) is just a shortcut of the following code.
614
    /// \code
615
    ///   bf.init();
616
    ///   bf.addSource(s);
617
    ///   bf.limitedStart(num);
618
    /// \endcode
619
    void run(Node s, int num) {
620
      init();
621
      addSource(s);
622
      limitedStart(num);
623
    }
624
    
625
    ///@}
626

	
627
    /// \brief LEMON iterator for getting the active nodes.
628
    ///
629
    /// This class provides a common style LEMON iterator that traverses
630
    /// the active nodes of the Bellman-Ford algorithm after the last
631
    /// phase. These nodes should be checked in the next phase to
632
    /// find augmenting arcs outgoing from them.
633
    class ActiveIt {
634
    public:
635

	
636
      /// \brief Constructor.
637
      ///
638
      /// Constructor for getting the active nodes of the given BellmanFord
639
      /// instance. 
640
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
641
      {
642
        _index = _algorithm->_process.size() - 1;
643
      }
644

	
645
      /// \brief Invalid constructor.
646
      ///
647
      /// Invalid constructor.
648
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
649

	
650
      /// \brief Conversion to \c Node.
651
      ///
652
      /// Conversion to \c Node.
653
      operator Node() const { 
654
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
655
      }
656

	
657
      /// \brief Increment operator.
658
      ///
659
      /// Increment operator.
660
      ActiveIt& operator++() {
661
        --_index;
662
        return *this; 
663
      }
664

	
665
      bool operator==(const ActiveIt& it) const { 
666
        return static_cast<Node>(*this) == static_cast<Node>(it); 
667
      }
668
      bool operator!=(const ActiveIt& it) const { 
669
        return static_cast<Node>(*this) != static_cast<Node>(it); 
670
      }
671
      bool operator<(const ActiveIt& it) const { 
672
        return static_cast<Node>(*this) < static_cast<Node>(it); 
673
      }
674
      
675
    private:
676
      const BellmanFord* _algorithm;
677
      int _index;
678
    };
679
    
680
    /// \name Query Functions
681
    /// The result of the Bellman-Ford algorithm can be obtained using these
682
    /// functions.\n
683
    /// Either \ref run() or \ref init() should be called before using them.
684
    
685
    ///@{
686

	
687
    /// \brief The shortest path to the given node.
688
    ///    
689
    /// Gives back the shortest path to the given node from the root(s).
690
    ///
691
    /// \warning \c t should be reached from the root(s).
692
    ///
693
    /// \pre Either \ref run() or \ref init() must be called before
694
    /// using this function.
695
    Path path(Node t) const
696
    {
697
      return Path(*_gr, *_pred, t);
698
    }
699
	  
700
    /// \brief The distance of the given node from the root(s).
701
    ///
702
    /// Returns the distance of the given node from the root(s).
703
    ///
704
    /// \warning If node \c v is not reached from the root(s), then
705
    /// the return value of this function is undefined.
706
    ///
707
    /// \pre Either \ref run() or \ref init() must be called before
708
    /// using this function.
709
    Value dist(Node v) const { return (*_dist)[v]; }
710

	
711
    /// \brief Returns the 'previous arc' of the shortest path tree for
712
    /// the given node.
713
    ///
714
    /// This function returns the 'previous arc' of the shortest path
715
    /// tree for node \c v, i.e. it returns the last arc of a
716
    /// shortest path from a root to \c v. It is \c INVALID if \c v
717
    /// is not reached from the root(s) or if \c v is a root.
718
    ///
719
    /// The shortest path tree used here is equal to the shortest path
720
    /// tree used in \ref predNode() and \predMap().
721
    ///
722
    /// \pre Either \ref run() or \ref init() must be called before
723
    /// using this function.
724
    Arc predArc(Node v) const { return (*_pred)[v]; }
725

	
726
    /// \brief Returns the 'previous node' of the shortest path tree for
727
    /// the given node.
728
    ///
729
    /// This function returns the 'previous node' of the shortest path
730
    /// tree for node \c v, i.e. it returns the last but one node of
731
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
732
    /// is not reached from the root(s) or if \c v is a root.
733
    ///
734
    /// The shortest path tree used here is equal to the shortest path
735
    /// tree used in \ref predArc() and \predMap().
736
    ///
737
    /// \pre Either \ref run() or \ref init() must be called before
738
    /// using this function.
739
    Node predNode(Node v) const { 
740
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
741
    }
742
    
743
    /// \brief Returns a const reference to the node map that stores the
744
    /// distances of the nodes.
745
    ///
746
    /// Returns a const reference to the node map that stores the distances
747
    /// of the nodes calculated by the algorithm.
748
    ///
749
    /// \pre Either \ref run() or \ref init() must be called before
750
    /// using this function.
751
    const DistMap &distMap() const { return *_dist;}
752
 
753
    /// \brief Returns a const reference to the node map that stores the
754
    /// predecessor arcs.
755
    ///
756
    /// Returns a const reference to the node map that stores the predecessor
757
    /// arcs, which form the shortest path tree (forest).
758
    ///
759
    /// \pre Either \ref run() or \ref init() must be called before
760
    /// using this function.
761
    const PredMap &predMap() const { return *_pred; }
762
 
763
    /// \brief Checks if a node is reached from the root(s).
764
    ///
765
    /// Returns \c true if \c v is reached from the root(s).
766
    ///
767
    /// \pre Either \ref run() or \ref init() must be called before
768
    /// using this function.
769
    bool reached(Node v) const {
770
      return (*_dist)[v] != OperationTraits::infinity();
771
    }
772

	
773
    /// \brief Gives back a negative cycle.
774
    ///    
775
    /// This function gives back a directed cycle with negative total
776
    /// length if the algorithm has already found one.
777
    /// Otherwise it gives back an empty path.
778
    lemon::Path<Digraph> negativeCycle() {
779
      typename Digraph::template NodeMap<int> state(*_gr, -1);
780
      lemon::Path<Digraph> cycle;
781
      for (int i = 0; i < int(_process.size()); ++i) {
782
        if (state[_process[i]] != -1) continue;
783
        for (Node v = _process[i]; (*_pred)[v] != INVALID;
784
             v = _gr->source((*_pred)[v])) {
785
          if (state[v] == i) {
786
            cycle.addFront((*_pred)[v]);
787
            for (Node u = _gr->source((*_pred)[v]); u != v;
788
                 u = _gr->source((*_pred)[u])) {
789
              cycle.addFront((*_pred)[u]);
790
            }
791
            return cycle;
792
          }
793
          else if (state[v] >= 0) {
794
            break;
795
          }
796
          state[v] = i;
797
        }
798
      }
799
      return cycle;
800
    }
801
    
802
    ///@}
803
  };
804
 
805
  /// \brief Default traits class of bellmanFord() function.
806
  ///
807
  /// Default traits class of bellmanFord() function.
808
  /// \tparam GR The type of the digraph.
809
  /// \tparam LEN The type of the length map.
810
  template <typename GR, typename LEN>
811
  struct BellmanFordWizardDefaultTraits {
812
    /// The type of the digraph the algorithm runs on. 
813
    typedef GR Digraph;
814

	
815
    /// \brief The type of the map that stores the arc lengths.
816
    ///
817
    /// The type of the map that stores the arc lengths.
818
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
819
    typedef LEN LengthMap;
820

	
821
    /// The type of the arc lengths.
822
    typedef typename LEN::Value Value;
823

	
824
    /// \brief Operation traits for Bellman-Ford algorithm.
825
    ///
826
    /// It defines the used operations and the infinity value for the
827
    /// given \c Value type.
828
    /// \see BellmanFordDefaultOperationTraits
829
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
830

	
831
    /// \brief The type of the map that stores the last
832
    /// arcs of the shortest paths.
833
    /// 
834
    /// The type of the map that stores the last arcs of the shortest paths.
835
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
836
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
837

	
838
    /// \brief Instantiates a \c PredMap.
839
    /// 
840
    /// This function instantiates a \ref PredMap.
841
    /// \param g is the digraph to which we would like to define the
842
    /// \ref PredMap.
843
    static PredMap *createPredMap(const GR &g) {
844
      return new PredMap(g);
845
    }
846

	
847
    /// \brief The type of the map that stores the distances of the nodes.
848
    ///
849
    /// The type of the map that stores the distances of the nodes.
850
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
851
    typedef typename GR::template NodeMap<Value> DistMap;
852

	
853
    /// \brief Instantiates a \c DistMap.
854
    ///
855
    /// This function instantiates a \ref DistMap. 
856
    /// \param g is the digraph to which we would like to define the
857
    /// \ref DistMap.
858
    static DistMap *createDistMap(const GR &g) {
859
      return new DistMap(g);
860
    }
861

	
862
    ///The type of the shortest paths.
863

	
864
    ///The type of the shortest paths.
865
    ///It must meet the \ref concepts::Path "Path" concept.
866
    typedef lemon::Path<Digraph> Path;
867
  };
868
  
869
  /// \brief Default traits class used by BellmanFordWizard.
870
  ///
871
  /// Default traits class used by BellmanFordWizard.
872
  /// \tparam GR The type of the digraph.
873
  /// \tparam LEN The type of the length map.
874
  template <typename GR, typename LEN>
875
  class BellmanFordWizardBase 
876
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
877

	
878
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
879
  protected:
880
    // Type of the nodes in the digraph.
881
    typedef typename Base::Digraph::Node Node;
882

	
883
    // Pointer to the underlying digraph.
884
    void *_graph;
885
    // Pointer to the length map
886
    void *_length;
887
    // Pointer to the map of predecessors arcs.
888
    void *_pred;
889
    // Pointer to the map of distances.
890
    void *_dist;
891
    //Pointer to the shortest path to the target node.
892
    void *_path;
893
    //Pointer to the distance of the target node.
894
    void *_di;
895

	
896
    public:
897
    /// Constructor.
898
    
899
    /// This constructor does not require parameters, it initiates
900
    /// all of the attributes to default values \c 0.
901
    BellmanFordWizardBase() :
902
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
903

	
904
    /// Constructor.
905
    
906
    /// This constructor requires two parameters,
907
    /// others are initiated to \c 0.
908
    /// \param gr The digraph the algorithm runs on.
909
    /// \param len The length map.
910
    BellmanFordWizardBase(const GR& gr, 
911
			  const LEN& len) :
912
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
913
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
914
      _pred(0), _dist(0), _path(0), _di(0) {}
915

	
916
  };
917
  
918
  /// \brief Auxiliary class for the function-type interface of the
919
  /// \ref BellmanFord "Bellman-Ford" algorithm.
920
  ///
921
  /// This auxiliary class is created to implement the
922
  /// \ref bellmanFord() "function-type interface" of the
923
  /// \ref BellmanFord "Bellman-Ford" algorithm.
924
  /// It does not have own \ref run() method, it uses the
925
  /// functions and features of the plain \ref BellmanFord.
926
  ///
927
  /// This class should only be used through the \ref bellmanFord()
928
  /// function, which makes it easier to use the algorithm.
929
  template<class TR>
930
  class BellmanFordWizard : public TR {
931
    typedef TR Base;
932

	
933
    typedef typename TR::Digraph Digraph;
934

	
935
    typedef typename Digraph::Node Node;
936
    typedef typename Digraph::NodeIt NodeIt;
937
    typedef typename Digraph::Arc Arc;
938
    typedef typename Digraph::OutArcIt ArcIt;
939
    
940
    typedef typename TR::LengthMap LengthMap;
941
    typedef typename LengthMap::Value Value;
942
    typedef typename TR::PredMap PredMap;
943
    typedef typename TR::DistMap DistMap;
944
    typedef typename TR::Path Path;
945

	
946
  public:
947
    /// Constructor.
948
    BellmanFordWizard() : TR() {}
949

	
950
    /// \brief Constructor that requires parameters.
951
    ///
952
    /// Constructor that requires parameters.
953
    /// These parameters will be the default values for the traits class.
954
    /// \param gr The digraph the algorithm runs on.
955
    /// \param len The length map.
956
    BellmanFordWizard(const Digraph& gr, const LengthMap& len) 
957
      : TR(gr, len) {}
958

	
959
    /// \brief Copy constructor
960
    BellmanFordWizard(const TR &b) : TR(b) {}
961

	
962
    ~BellmanFordWizard() {}
963

	
964
    /// \brief Runs the Bellman-Ford algorithm from the given source node.
965
    ///    
966
    /// This method runs the Bellman-Ford algorithm from the given source
967
    /// node in order to compute the shortest path to each node.
968
    void run(Node s) {
969
      BellmanFord<Digraph,LengthMap,TR> 
970
	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
971
           *reinterpret_cast<const LengthMap*>(Base::_length));
972
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
973
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
974
      bf.run(s);
975
    }
976

	
977
    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
978
    /// between \c s and \c t.
979
    ///
980
    /// This method runs the Bellman-Ford algorithm from node \c s
981
    /// in order to compute the shortest path to node \c t.
982
    /// Actually, it computes the shortest path to each node, but using
983
    /// this function you can retrieve the distance and the shortest path
984
    /// for a single target node easier.
985
    ///
986
    /// \return \c true if \c t is reachable form \c s.
987
    bool run(Node s, Node t) {
988
      BellmanFord<Digraph,LengthMap,TR>
989
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
990
           *reinterpret_cast<const LengthMap*>(Base::_length));
991
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
992
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
993
      bf.run(s);
994
      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
995
      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
996
      return bf.reached(t);
997
    }
998

	
999
    template<class T>
1000
    struct SetPredMapBase : public Base {
1001
      typedef T PredMap;
1002
      static PredMap *createPredMap(const Digraph &) { return 0; };
1003
      SetPredMapBase(const TR &b) : TR(b) {}
1004
    };
1005
    
1006
    /// \brief \ref named-templ-param "Named parameter" for setting
1007
    /// the predecessor map.
1008
    ///
1009
    /// \ref named-templ-param "Named parameter" for setting
1010
    /// the map that stores the predecessor arcs of the nodes.
1011
    template<class T>
1012
    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
1013
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1014
      return BellmanFordWizard<SetPredMapBase<T> >(*this);
1015
    }
1016
    
1017
    template<class T>
1018
    struct SetDistMapBase : public Base {
1019
      typedef T DistMap;
1020
      static DistMap *createDistMap(const Digraph &) { return 0; };
1021
      SetDistMapBase(const TR &b) : TR(b) {}
1022
    };
1023
    
1024
    /// \brief \ref named-templ-param "Named parameter" for setting
1025
    /// the distance map.
1026
    ///
1027
    /// \ref named-templ-param "Named parameter" for setting
1028
    /// the map that stores the distances of the nodes calculated
1029
    /// by the algorithm.
1030
    template<class T>
1031
    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
1032
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1033
      return BellmanFordWizard<SetDistMapBase<T> >(*this);
1034
    }
1035

	
1036
    template<class T>
1037
    struct SetPathBase : public Base {
1038
      typedef T Path;
1039
      SetPathBase(const TR &b) : TR(b) {}
1040
    };
1041

	
1042
    /// \brief \ref named-func-param "Named parameter" for getting
1043
    /// the shortest path to the target node.
1044
    ///
1045
    /// \ref named-func-param "Named parameter" for getting
1046
    /// the shortest path to the target node.
1047
    template<class T>
1048
    BellmanFordWizard<SetPathBase<T> > path(const T &t)
1049
    {
1050
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1051
      return BellmanFordWizard<SetPathBase<T> >(*this);
1052
    }
1053

	
1054
    /// \brief \ref named-func-param "Named parameter" for getting
1055
    /// the distance of the target node.
1056
    ///
1057
    /// \ref named-func-param "Named parameter" for getting
1058
    /// the distance of the target node.
1059
    BellmanFordWizard dist(const Value &d)
1060
    {
1061
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1062
      return *this;
1063
    }
1064
    
1065
  };
1066
  
1067
  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
1068
  /// algorithm.
1069
  ///
1070
  /// \ingroup shortest_path
1071
  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
1072
  /// algorithm.
1073
  ///
1074
  /// This function also has several \ref named-templ-func-param 
1075
  /// "named parameters", they are declared as the members of class 
1076
  /// \ref BellmanFordWizard.
1077
  /// The following examples show how to use these parameters.
1078
  /// \code
1079
  ///   // Compute shortest path from node s to each node
1080
  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
1081
  ///
1082
  ///   // Compute shortest path from s to t
1083
  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
1084
  /// \endcode
1085
  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1086
  /// to the end of the parameter list.
1087
  /// \sa BellmanFordWizard
1088
  /// \sa BellmanFord
1089
  template<typename GR, typename LEN>
1090
  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
1091
  bellmanFord(const GR& digraph,
1092
	      const LEN& length)
1093
  {
1094
    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
1095
  }
1096

	
1097
} //END OF NAMESPACE LEMON
1098

	
1099
#endif
1100

	
Ignore white space 12 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BINOM_HEAP_H
20
#define LEMON_BINOM_HEAP_H
21

	
22
///\file
23
///\ingroup heaps
24
///\brief Binomial Heap implementation.
25

	
26
#include <vector>
27
#include <utility>
28
#include <functional>
29
#include <lemon/math.h>
30
#include <lemon/counter.h>
31

	
32
namespace lemon {
33

	
34
  /// \ingroup heaps
35
  ///
36
  ///\brief Binomial heap data structure.
37
  ///
38
  /// This class implements the \e binomial \e heap data structure.
39
  /// It fully conforms to the \ref concepts::Heap "heap concept".
40
  ///
41
  /// The methods \ref increase() and \ref erase() are not efficient
42
  /// in a binomial heap. In case of many calls of these operations,
43
  /// it is better to use other heap structure, e.g. \ref BinHeap
44
  /// "binary heap".
45
  ///
46
  /// \tparam PR Type of the priorities of the items.
47
  /// \tparam IM A read-writable item map with \c int values, used
48
  /// internally to handle the cross references.
49
  /// \tparam CMP A functor class for comparing the priorities.
50
  /// The default is \c std::less<PR>.
51
#ifdef DOXYGEN
52
  template <typename PR, typename IM, typename CMP>
53
#else
54
  template <typename PR, typename IM, typename CMP = std::less<PR> >
55
#endif
56
  class BinomHeap {
57
  public:
58
    /// Type of the item-int map.
59
    typedef IM ItemIntMap;
60
    /// Type of the priorities.
61
    typedef PR Prio;
62
    /// Type of the items stored in the heap.
63
    typedef typename ItemIntMap::Key Item;
64
    /// Functor type for comparing the priorities.
65
    typedef CMP Compare;
66

	
67
    /// \brief Type to represent the states of the items.
68
    ///
69
    /// Each item has a state associated to it. It can be "in heap",
70
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
71
    /// heap's point of view, but may be useful to the user.
72
    ///
73
    /// The item-int map must be initialized in such way that it assigns
74
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
75
    enum State {
76
      IN_HEAP = 0,    ///< = 0.
77
      PRE_HEAP = -1,  ///< = -1.
78
      POST_HEAP = -2  ///< = -2.
79
    };
80

	
81
  private:
82
    class Store;
83

	
84
    std::vector<Store> _data;
85
    int _min, _head;
86
    ItemIntMap &_iim;
87
    Compare _comp;
88
    int _num_items;
89

	
90
  public:
91
    /// \brief Constructor.
92
    ///
93
    /// Constructor.
94
    /// \param map A map that assigns \c int values to the items.
95
    /// It is used internally to handle the cross references.
96
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
97
    explicit BinomHeap(ItemIntMap &map)
98
      : _min(0), _head(-1), _iim(map), _num_items(0) {}
99

	
100
    /// \brief Constructor.
101
    ///
102
    /// Constructor.
103
    /// \param map A map that assigns \c int values to the items.
104
    /// It is used internally to handle the cross references.
105
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
106
    /// \param comp The function object used for comparing the priorities.
107
    BinomHeap(ItemIntMap &map, const Compare &comp)
108
      : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
109

	
110
    /// \brief The number of items stored in the heap.
111
    ///
112
    /// This function returns the number of items stored in the heap.
113
    int size() const { return _num_items; }
114

	
115
    /// \brief Check if the heap is empty.
116
    ///
117
    /// This function returns \c true if the heap is empty.
118
    bool empty() const { return _num_items==0; }
119

	
120
    /// \brief Make the heap empty.
121
    ///
122
    /// This functon makes the heap empty.
123
    /// It does not change the cross reference map. If you want to reuse
124
    /// a heap that is not surely empty, you should first clear it and
125
    /// then you should set the cross reference map to \c PRE_HEAP
126
    /// for each item.
127
    void clear() {
128
      _data.clear(); _min=0; _num_items=0; _head=-1;
129
    }
130

	
131
    /// \brief Set the priority of an item or insert it, if it is
132
    /// not stored in the heap.
133
    ///
134
    /// This method sets the priority of the given item if it is
135
    /// already stored in the heap. Otherwise it inserts the given
136
    /// item into the heap with the given priority.
137
    /// \param item The item.
138
    /// \param value The priority.
139
    void set (const Item& item, const Prio& value) {
140
      int i=_iim[item];
141
      if ( i >= 0 && _data[i].in ) {
142
        if ( _comp(value, _data[i].prio) ) decrease(item, value);
143
        if ( _comp(_data[i].prio, value) ) increase(item, value);
144
      } else push(item, value);
145
    }
146

	
147
    /// \brief Insert an item into the heap with the given priority.
148
    ///
149
    /// This function inserts the given item into the heap with the
150
    /// given priority.
151
    /// \param item The item to insert.
152
    /// \param value The priority of the item.
153
    /// \pre \e item must not be stored in the heap.
154
    void push (const Item& item, const Prio& value) {
155
      int i=_iim[item];
156
      if ( i<0 ) {
157
        int s=_data.size();
158
        _iim.set( item,s );
159
        Store st;
160
        st.name=item;
161
        st.prio=value;
162
        _data.push_back(st);
163
        i=s;
164
      }
165
      else {
166
        _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
167
        _data[i].degree=0;
168
        _data[i].in=true;
169
        _data[i].prio=value;
170
      }
171

	
172
      if( 0==_num_items ) {
173
        _head=i;
174
        _min=i;
175
      } else {
176
        merge(i);
177
        if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
178
      }
179
      ++_num_items;
180
    }
181

	
182
    /// \brief Return the item having minimum priority.
183
    ///
184
    /// This function returns the item having minimum priority.
185
    /// \pre The heap must be non-empty.
186
    Item top() const { return _data[_min].name; }
187

	
188
    /// \brief The minimum priority.
189
    ///
190
    /// This function returns the minimum priority.
191
    /// \pre The heap must be non-empty.
192
    Prio prio() const { return _data[_min].prio; }
193

	
194
    /// \brief The priority of the given item.
195
    ///
196
    /// This function returns the priority of the given item.
197
    /// \param item The item.
198
    /// \pre \e item must be in the heap.
199
    const Prio& operator[](const Item& item) const {
200
      return _data[_iim[item]].prio;
201
    }
202

	
203
    /// \brief Remove the item having minimum priority.
204
    ///
205
    /// This function removes the item having minimum priority.
206
    /// \pre The heap must be non-empty.
207
    void pop() {
208
      _data[_min].in=false;
209

	
210
      int head_child=-1;
211
      if ( _data[_min].child!=-1 ) {
212
        int child=_data[_min].child;
213
        int neighb;
214
        while( child!=-1 ) {
215
          neighb=_data[child].right_neighbor;
216
          _data[child].parent=-1;
217
          _data[child].right_neighbor=head_child;
218
          head_child=child;
219
          child=neighb;
220
        }
221
      }
222

	
223
      if ( _data[_head].right_neighbor==-1 ) {
224
        // there was only one root
225
        _head=head_child;
226
      }
227
      else {
228
        // there were more roots
229
        if( _head!=_min )  { unlace(_min); }
230
        else { _head=_data[_head].right_neighbor; }
231
        merge(head_child);
232
      }
233
      _min=findMin();
234
      --_num_items;
235
    }
236

	
237
    /// \brief Remove the given item from the heap.
238
    ///
239
    /// This function removes the given item from the heap if it is
240
    /// already stored.
241
    /// \param item The item to delete.
242
    /// \pre \e item must be in the heap.
243
    void erase (const Item& item) {
244
      int i=_iim[item];
245
      if ( i >= 0 && _data[i].in ) {
246
        decrease( item, _data[_min].prio-1 );
247
        pop();
248
      }
249
    }
250

	
251
    /// \brief Decrease the priority of an item to the given value.
252
    ///
253
    /// This function decreases the priority of an item to the given value.
254
    /// \param item The item.
255
    /// \param value The priority.
256
    /// \pre \e item must be stored in the heap with priority at least \e value.
257
    void decrease (Item item, const Prio& value) {
258
      int i=_iim[item];
259
      int p=_data[i].parent;
260
      _data[i].prio=value;
261
      
262
      while( p!=-1 && _comp(value, _data[p].prio) ) {
263
        _data[i].name=_data[p].name;
264
        _data[i].prio=_data[p].prio;
265
        _data[p].name=item;
266
        _data[p].prio=value;
267
        _iim[_data[i].name]=i;
268
        i=p;
269
        p=_data[p].parent;
270
      }
271
      _iim[item]=i;
272
      if ( _comp(value, _data[_min].prio) ) _min=i;
273
    }
274

	
275
    /// \brief Increase the priority of an item to the given value.
276
    ///
277
    /// This function increases the priority of an item to the given value.
278
    /// \param item The item.
279
    /// \param value The priority.
280
    /// \pre \e item must be stored in the heap with priority at most \e value.
281
    void increase (Item item, const Prio& value) {
282
      erase(item);
283
      push(item, value);
284
    }
285

	
286
    /// \brief Return the state of an item.
287
    ///
288
    /// This method returns \c PRE_HEAP if the given item has never
289
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
290
    /// and \c POST_HEAP otherwise.
291
    /// In the latter case it is possible that the item will get back
292
    /// to the heap again.
293
    /// \param item The item.
294
    State state(const Item &item) const {
295
      int i=_iim[item];
296
      if( i>=0 ) {
297
        if ( _data[i].in ) i=0;
298
        else i=-2;
299
      }
300
      return State(i);
301
    }
302

	
303
    /// \brief Set the state of an item in the heap.
304
    ///
305
    /// This function sets the state of the given item in the heap.
306
    /// It can be used to manually clear the heap when it is important
307
    /// to achive better time complexity.
308
    /// \param i The item.
309
    /// \param st The state. It should not be \c IN_HEAP.
310
    void state(const Item& i, State st) {
311
      switch (st) {
312
      case POST_HEAP:
313
      case PRE_HEAP:
314
        if (state(i) == IN_HEAP) {
315
          erase(i);
316
        }
317
        _iim[i] = st;
318
        break;
319
      case IN_HEAP:
320
        break;
321
      }
322
    }
323

	
324
  private:
325
    
326
    // Find the minimum of the roots
327
    int findMin() {
328
      if( _head!=-1 ) {
329
        int min_loc=_head, min_val=_data[_head].prio;
330
        for( int x=_data[_head].right_neighbor; x!=-1;
331
             x=_data[x].right_neighbor ) {
332
          if( _comp( _data[x].prio,min_val ) ) {
333
            min_val=_data[x].prio;
334
            min_loc=x;
335
          }
336
        }
337
        return min_loc;
338
      }
339
      else return -1;
340
    }
341

	
342
    // Merge the heap with another heap starting at the given position
343
    void merge(int a) {
344
      if( _head==-1 || a==-1 ) return;
345
      if( _data[a].right_neighbor==-1 &&
346
          _data[a].degree<=_data[_head].degree ) {
347
        _data[a].right_neighbor=_head;
348
        _head=a;
349
      } else {
350
        interleave(a);
351
      }
352
      if( _data[_head].right_neighbor==-1 ) return;
353
      
354
      int x=_head;
355
      int x_prev=-1, x_next=_data[x].right_neighbor;
356
      while( x_next!=-1 ) {
357
        if( _data[x].degree!=_data[x_next].degree ||
358
            ( _data[x_next].right_neighbor!=-1 &&
359
              _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
360
          x_prev=x;
361
          x=x_next;
362
        }
363
        else {
364
          if( _comp(_data[x_next].prio,_data[x].prio) ) {
365
            if( x_prev==-1 ) {
366
              _head=x_next;
367
            } else {
368
              _data[x_prev].right_neighbor=x_next;
369
            }
370
            fuse(x,x_next);
371
            x=x_next;
372
          }
373
          else {
374
            _data[x].right_neighbor=_data[x_next].right_neighbor;
375
            fuse(x_next,x);
376
          }
377
        }
378
        x_next=_data[x].right_neighbor;
379
      }
380
    }
381

	
382
    // Interleave the elements of the given list into the list of the roots
383
    void interleave(int a) {
384
      int p=_head, q=a;
385
      int curr=_data.size();
386
      _data.push_back(Store());
387
      
388
      while( p!=-1 || q!=-1 ) {
389
        if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
390
          _data[curr].right_neighbor=p;
391
          curr=p;
392
          p=_data[p].right_neighbor;
393
        }
394
        else {
395
          _data[curr].right_neighbor=q;
396
          curr=q;
397
          q=_data[q].right_neighbor;
398
        }
399
      }
400
      
401
      _head=_data.back().right_neighbor;
402
      _data.pop_back();
403
    }
404

	
405
    // Lace node a under node b
406
    void fuse(int a, int b) {
407
      _data[a].parent=b;
408
      _data[a].right_neighbor=_data[b].child;
409
      _data[b].child=a;
410

	
411
      ++_data[b].degree;
412
    }
413

	
414
    // Unlace node a (if it has siblings)
415
    void unlace(int a) {
416
      int neighb=_data[a].right_neighbor;
417
      int other=_head;
418

	
419
      while( _data[other].right_neighbor!=a )
420
        other=_data[other].right_neighbor;
421
      _data[other].right_neighbor=neighb;
422
    }
423

	
424
  private:
425

	
426
    class Store {
427
      friend class BinomHeap;
428

	
429
      Item name;
430
      int parent;
431
      int right_neighbor;
432
      int child;
433
      int degree;
434
      bool in;
435
      Prio prio;
436

	
437
      Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
438
        in(true) {}
439
    };
440
  };
441

	
442
} //namespace lemon
443

	
444
#endif //LEMON_BINOM_HEAP_H
445

	
Ignore white space 12 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_FOURARY_HEAP_H
20
#define LEMON_FOURARY_HEAP_H
21

	
22
///\ingroup heaps
23
///\file
24
///\brief Fourary heap implementation.
25

	
26
#include <vector>
27
#include <utility>
28
#include <functional>
29

	
30
namespace lemon {
31

	
32
  /// \ingroup heaps
33
  ///
34
  ///\brief Fourary heap data structure.
35
  ///
36
  /// This class implements the \e fourary \e heap data structure.
37
  /// It fully conforms to the \ref concepts::Heap "heap concept".
38
  ///
39
  /// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap"
40
  /// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap",
41
  /// but its nodes have at most four children, instead of two.
42
  ///
43
  /// \tparam PR Type of the priorities of the items.
44
  /// \tparam IM A read-writable item map with \c int values, used
45
  /// internally to handle the cross references.
46
  /// \tparam CMP A functor class for comparing the priorities.
47
  /// The default is \c std::less<PR>.
48
  ///
49
  ///\sa BinHeap
50
  ///\sa KaryHeap
51
#ifdef DOXYGEN
52
  template <typename PR, typename IM, typename CMP>
53
#else
54
  template <typename PR, typename IM, typename CMP = std::less<PR> >
55
#endif
56
  class FouraryHeap {
57
  public:
58
    /// Type of the item-int map.
59
    typedef IM ItemIntMap;
60
    /// Type of the priorities.
61
    typedef PR Prio;
62
    /// Type of the items stored in the heap.
63
    typedef typename ItemIntMap::Key Item;
64
    /// Type of the item-priority pairs.
65
    typedef std::pair<Item,Prio> Pair;
66
    /// Functor type for comparing the priorities.
67
    typedef CMP Compare;
68

	
69
    /// \brief Type to represent the states of the items.
70
    ///
71
    /// Each item has a state associated to it. It can be "in heap",
72
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
73
    /// heap's point of view, but may be useful to the user.
74
    ///
75
    /// The item-int map must be initialized in such way that it assigns
76
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
77
    enum State {
78
      IN_HEAP = 0,    ///< = 0.
79
      PRE_HEAP = -1,  ///< = -1.
80
      POST_HEAP = -2  ///< = -2.
81
    };
82

	
83
  private:
84
    std::vector<Pair> _data;
85
    Compare _comp;
86
    ItemIntMap &_iim;
87

	
88
  public:
89
    /// \brief Constructor.
90
    ///
91
    /// Constructor.
92
    /// \param map A map that assigns \c int values to the items.
93
    /// It is used internally to handle the cross references.
94
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
95
    explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
96

	
97
    /// \brief Constructor.
98
    ///
99
    /// Constructor.
100
    /// \param map A map that assigns \c int values to the items.
101
    /// It is used internally to handle the cross references.
102
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
103
    /// \param comp The function object used for comparing the priorities.
104
    FouraryHeap(ItemIntMap &map, const Compare &comp)
105
      : _iim(map), _comp(comp) {}
106

	
107
    /// \brief The number of items stored in the heap.
108
    ///
109
    /// This function returns the number of items stored in the heap.
110
    int size() const { return _data.size(); }
111

	
112
    /// \brief Check if the heap is empty.
113
    ///
114
    /// This function returns \c true if the heap is empty.
115
    bool empty() const { return _data.empty(); }
116

	
117
    /// \brief Make the heap empty.
118
    ///
119
    /// This functon makes the heap empty.
120
    /// It does not change the cross reference map. If you want to reuse
121
    /// a heap that is not surely empty, you should first clear it and
122
    /// then you should set the cross reference map to \c PRE_HEAP
123
    /// for each item.
124
    void clear() { _data.clear(); }
125

	
126
  private:
127
    static int parent(int i) { return (i-1)/4; }
128
    static int firstChild(int i) { return 4*i+1; }
129

	
130
    bool less(const Pair &p1, const Pair &p2) const {
131
      return _comp(p1.second, p2.second);
132
    }
133

	
134
    void bubbleUp(int hole, Pair p) {
135
      int par = parent(hole);
136
      while( hole>0 && less(p,_data[par]) ) {
137
        move(_data[par],hole);
138
        hole = par;
139
        par = parent(hole);
140
      }
141
      move(p, hole);
142
    }
143

	
144
    void bubbleDown(int hole, Pair p, int length) {
145
      if( length>1 ) {
146
        int child = firstChild(hole);
147
        while( child+3<length ) {
148
          int min=child;
149
          if( less(_data[++child], _data[min]) ) min=child;
150
          if( less(_data[++child], _data[min]) ) min=child;
151
          if( less(_data[++child], _data[min]) ) min=child;
152
          if( !less(_data[min], p) )
153
            goto ok;
154
          move(_data[min], hole);
155
          hole = min;
156
          child = firstChild(hole);
157
        }
158
        if ( child<length ) {
159
          int min = child;
160
          if( ++child<length && less(_data[child], _data[min]) ) min=child;
161
          if( ++child<length && less(_data[child], _data[min]) ) min=child;
162
          if( less(_data[min], p) ) {
163
            move(_data[min], hole);
164
            hole = min;
165
          }
166
        }
167
      }
168
    ok:
169
      move(p, hole);
170
    }
171

	
172
    void move(const Pair &p, int i) {
173
      _data[i] = p;
174
      _iim.set(p.first, i);
175
    }
176

	
177
  public:
178
    /// \brief Insert a pair of item and priority into the heap.
179
    ///
180
    /// This function inserts \c p.first to the heap with priority
181
    /// \c p.second.
182
    /// \param p The pair to insert.
183
    /// \pre \c p.first must not be stored in the heap.
184
    void push(const Pair &p) {
185
      int n = _data.size();
186
      _data.resize(n+1);
187
      bubbleUp(n, p);
188
    }
189

	
190
    /// \brief Insert an item into the heap with the given priority.
191
    ///
192
    /// This function inserts the given item into the heap with the
193
    /// given priority.
194
    /// \param i The item to insert.
195
    /// \param p The priority of the item.
196
    /// \pre \e i must not be stored in the heap.
197
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
198

	
199
    /// \brief Return the item having minimum priority.
200
    ///
201
    /// This function returns the item having minimum priority.
202
    /// \pre The heap must be non-empty.
203
    Item top() const { return _data[0].first; }
204

	
205
    /// \brief The minimum priority.
206
    ///
207
    /// This function returns the minimum priority.
208
    /// \pre The heap must be non-empty.
209
    Prio prio() const { return _data[0].second; }
210

	
211
    /// \brief Remove the item having minimum priority.
212
    ///
213
    /// This function removes the item having minimum priority.
214
    /// \pre The heap must be non-empty.
215
    void pop() {
216
      int n = _data.size()-1;
217
      _iim.set(_data[0].first, POST_HEAP);
218
      if (n>0) bubbleDown(0, _data[n], n);
219
      _data.pop_back();
220
    }
221

	
222
    /// \brief Remove the given item from the heap.
223
    ///
224
    /// This function removes the given item from the heap if it is
225
    /// already stored.
226
    /// \param i The item to delete.
227
    /// \pre \e i must be in the heap.
228
    void erase(const Item &i) {
229
      int h = _iim[i];
230
      int n = _data.size()-1;
231
      _iim.set(_data[h].first, POST_HEAP);
232
      if( h<n ) {
233
        if( less(_data[parent(h)], _data[n]) )
234
          bubbleDown(h, _data[n], n);
235
        else
236
          bubbleUp(h, _data[n]);
237
      }
238
      _data.pop_back();
239
    }
240

	
241
    /// \brief The priority of the given item.
242
    ///
243
    /// This function returns the priority of the given item.
244
    /// \param i The item.
245
    /// \pre \e i must be in the heap.
246
    Prio operator[](const Item &i) const {
247
      int idx = _iim[i];
248
      return _data[idx].second;
249
    }
250

	
251
    /// \brief Set the priority of an item or insert it, if it is
252
    /// not stored in the heap.
253
    ///
254
    /// This method sets the priority of the given item if it is
255
    /// already stored in the heap. Otherwise it inserts the given
256
    /// item into the heap with the given priority.
257
    /// \param i The item.
258
    /// \param p The priority.
259
    void set(const Item &i, const Prio &p) {
260
      int idx = _iim[i];
261
      if( idx < 0 )
262
        push(i,p);
263
      else if( _comp(p, _data[idx].second) )
264
        bubbleUp(idx, Pair(i,p));
265
      else
266
        bubbleDown(idx, Pair(i,p), _data.size());
267
    }
268

	
269
    /// \brief Decrease the priority of an item to the given value.
270
    ///
271
    /// This function decreases the priority of an item to the given value.
272
    /// \param i The item.
273
    /// \param p The priority.
274
    /// \pre \e i must be stored in the heap with priority at least \e p.
275
    void decrease(const Item &i, const Prio &p) {
276
      int idx = _iim[i];
277
      bubbleUp(idx, Pair(i,p));
278
    }
279

	
280
    /// \brief Increase the priority of an item to the given value.
281
    ///
282
    /// This function increases the priority of an item to the given value.
283
    /// \param i The item.
284
    /// \param p The priority.
285
    /// \pre \e i must be stored in the heap with priority at most \e p.
286
    void increase(const Item &i, const Prio &p) {
287
      int idx = _iim[i];
288
      bubbleDown(idx, Pair(i,p), _data.size());
289
    }
290

	
291
    /// \brief Return the state of an item.
292
    ///
293
    /// This method returns \c PRE_HEAP if the given item has never
294
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
295
    /// and \c POST_HEAP otherwise.
296
    /// In the latter case it is possible that the item will get back
297
    /// to the heap again.
298
    /// \param i The item.
299
    State state(const Item &i) const {
300
      int s = _iim[i];
301
      if (s>=0) s=0;
302
      return State(s);
303
    }
304

	
305
    /// \brief Set the state of an item in the heap.
306
    ///
307
    /// This function sets the state of the given item in the heap.
308
    /// It can be used to manually clear the heap when it is important
309
    /// to achive better time complexity.
310
    /// \param i The item.
311
    /// \param st The state. It should not be \c IN_HEAP.
312
    void state(const Item& i, State st) {
313
      switch (st) {
314
        case POST_HEAP:
315
        case PRE_HEAP:
316
          if (state(i) == IN_HEAP) erase(i);
317
          _iim[i] = st;
318
          break;
319
        case IN_HEAP:
320
          break;
321
      }
322
    }
323

	
324
    /// \brief Replace an item in the heap.
325
    ///
326
    /// This function replaces item \c i with item \c j.
327
    /// Item \c i must be in the heap, while \c j must be out of the heap.
328
    /// After calling this method, item \c i will be out of the
329
    /// heap and \c j will be in the heap with the same prioriority
330
    /// as item \c i had before.
331
    void replace(const Item& i, const Item& j) {
332
      int idx = _iim[i];
333
      _iim.set(i, _iim[j]);
334
      _iim.set(j, idx);
335
      _data[idx].first = j;
336
    }
337

	
338
  }; // class FouraryHeap
339

	
340
} // namespace lemon
341

	
342
#endif // LEMON_FOURARY_HEAP_H
Ignore white space 12 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_KARY_HEAP_H
20
#define LEMON_KARY_HEAP_H
21

	
22
///\ingroup heaps
23
///\file
24
///\brief Fourary heap implementation.
25

	
26
#include <vector>
27
#include <utility>
28
#include <functional>
29

	
30
namespace lemon {
31

	
32
  /// \ingroup heaps
33
  ///
34
  ///\brief K-ary heap data structure.
35
  ///
36
  /// This class implements the \e K-ary \e heap data structure.
37
  /// It fully conforms to the \ref concepts::Heap "heap concept".
38
  ///
39
  /// The \ref KaryHeap "K-ary heap" is a generalization of the
40
  /// \ref BinHeap "binary heap" structure, its nodes have at most
41
  /// \c K children, instead of two.
42
  /// \ref BinHeap and \ref FouraryHeap are specialized implementations
43
  /// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively.
44
  ///
45
  /// \tparam PR Type of the priorities of the items.
46
  /// \tparam IM A read-writable item map with \c int values, used
47
  /// internally to handle the cross references.
48
  /// \tparam K The degree of the heap, each node have at most \e K
49
  /// children. The default is 16. Powers of two are suggested to use
50
  /// so that the multiplications and divisions needed to traverse the
51
  /// nodes of the heap could be performed faster.
52
  /// \tparam CMP A functor class for comparing the priorities.
53
  /// The default is \c std::less<PR>.
54
  ///
55
  ///\sa BinHeap
56
  ///\sa FouraryHeap
57
#ifdef DOXYGEN
58
  template <typename PR, typename IM, int K, typename CMP>
59
#else
60
  template <typename PR, typename IM, int K = 16,
61
            typename CMP = std::less<PR> >
62
#endif
63
  class KaryHeap {
64
  public:
65
    /// Type of the item-int map.
66
    typedef IM ItemIntMap;
67
    /// Type of the priorities.
68
    typedef PR Prio;
69
    /// Type of the items stored in the heap.
70
    typedef typename ItemIntMap::Key Item;
71
    /// Type of the item-priority pairs.
72
    typedef std::pair<Item,Prio> Pair;
73
    /// Functor type for comparing the priorities.
74
    typedef CMP Compare;
75

	
76
    /// \brief Type to represent the states of the items.
77
    ///
78
    /// Each item has a state associated to it. It can be "in heap",
79
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
80
    /// heap's point of view, but may be useful to the user.
81
    ///
82
    /// The item-int map must be initialized in such way that it assigns
83
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
84
    enum State {
85
      IN_HEAP = 0,    ///< = 0.
86
      PRE_HEAP = -1,  ///< = -1.
87
      POST_HEAP = -2  ///< = -2.
88
    };
89

	
90
  private:
91
    std::vector<Pair> _data;
92
    Compare _comp;
93
    ItemIntMap &_iim;
94

	
95
  public:
96
    /// \brief Constructor.
97
    ///
98
    /// Constructor.
99
    /// \param map A map that assigns \c int values to the items.
100
    /// It is used internally to handle the cross references.
101
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
102
    explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
103

	
104
    /// \brief Constructor.
105
    ///
106
    /// Constructor.
107
    /// \param map A map that assigns \c int values to the items.
108
    /// It is used internally to handle the cross references.
109
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
110
    /// \param comp The function object used for comparing the priorities.
111
    KaryHeap(ItemIntMap &map, const Compare &comp)
112
      : _iim(map), _comp(comp) {}
113

	
114
    /// \brief The number of items stored in the heap.
115
    ///
116
    /// This function returns the number of items stored in the heap.
117
    int size() const { return _data.size(); }
118

	
119
    /// \brief Check if the heap is empty.
120
    ///
121
    /// This function returns \c true if the heap is empty.
122
    bool empty() const { return _data.empty(); }
123

	
124
    /// \brief Make the heap empty.
125
    ///
126
    /// This functon makes the heap empty.
127
    /// It does not change the cross reference map. If you want to reuse
128
    /// a heap that is not surely empty, you should first clear it and
129
    /// then you should set the cross reference map to \c PRE_HEAP
130
    /// for each item.
131
    void clear() { _data.clear(); }
132

	
133
  private:
134
    int parent(int i) { return (i-1)/K; }
135
    int firstChild(int i) { return K*i+1; }
136

	
137
    bool less(const Pair &p1, const Pair &p2) const {
138
      return _comp(p1.second, p2.second);
139
    }
140

	
141
    void bubbleUp(int hole, Pair p) {
142
      int par = parent(hole);
143
      while( hole>0 && less(p,_data[par]) ) {
144
        move(_data[par],hole);
145
        hole = par;
146
        par = parent(hole);
147
      }
148
      move(p, hole);
149
    }
150

	
151
    void bubbleDown(int hole, Pair p, int length) {
152
      if( length>1 ) {
153
        int child = firstChild(hole);
154
        while( child+K<=length ) {
155
          int min=child;
156
          for (int i=1; i<K; ++i) {
157
            if( less(_data[child+i], _data[min]) )
158
              min=child+i;
159
          }
160
          if( !less(_data[min], p) )
161
            goto ok;
162
          move(_data[min], hole);
163
          hole = min;
164
          child = firstChild(hole);
165
        }
166
        if ( child<length ) {
167
          int min = child;
168
          while (++child < length) {
169
            if( less(_data[child], _data[min]) )
170
              min=child;
171
          }
172
          if( less(_data[min], p) ) {
173
            move(_data[min], hole);
174
            hole = min;
175
          }
176
        }
177
      }
178
    ok:
179
      move(p, hole);
180
    }
181

	
182
    void move(const Pair &p, int i) {
183
      _data[i] = p;
184
      _iim.set(p.first, i);
185
    }
186

	
187
  public:
188
    /// \brief Insert a pair of item and priority into the heap.
189
    ///
190
    /// This function inserts \c p.first to the heap with priority
191
    /// \c p.second.
192
    /// \param p The pair to insert.
193
    /// \pre \c p.first must not be stored in the heap.
194
    void push(const Pair &p) {
195
      int n = _data.size();
196
      _data.resize(n+1);
197
      bubbleUp(n, p);
198
    }
199

	
200
    /// \brief Insert an item into the heap with the given priority.
201
    ///
202
    /// This function inserts the given item into the heap with the
203
    /// given priority.
204
    /// \param i The item to insert.
205
    /// \param p The priority of the item.
206
    /// \pre \e i must not be stored in the heap.
207
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
208

	
209
    /// \brief Return the item having minimum priority.
210
    ///
211
    /// This function returns the item having minimum priority.
212
    /// \pre The heap must be non-empty.
213
    Item top() const { return _data[0].first; }
214

	
215
    /// \brief The minimum priority.
216
    ///
217
    /// This function returns the minimum priority.
218
    /// \pre The heap must be non-empty.
219
    Prio prio() const { return _data[0].second; }
220

	
221
    /// \brief Remove the item having minimum priority.
222
    ///
223
    /// This function removes the item having minimum priority.
224
    /// \pre The heap must be non-empty.
225
    void pop() {
226
      int n = _data.size()-1;
227
      _iim.set(_data[0].first, POST_HEAP);
228
      if (n>0) bubbleDown(0, _data[n], n);
229
      _data.pop_back();
230
    }
231

	
232
    /// \brief Remove the given item from the heap.
233
    ///
234
    /// This function removes the given item from the heap if it is
235
    /// already stored.
236
    /// \param i The item to delete.
237
    /// \pre \e i must be in the heap.
238
    void erase(const Item &i) {
239
      int h = _iim[i];
240
      int n = _data.size()-1;
241
      _iim.set(_data[h].first, POST_HEAP);
242
      if( h<n ) {
243
        if( less(_data[parent(h)], _data[n]) )
244
          bubbleDown(h, _data[n], n);
245
        else
246
          bubbleUp(h, _data[n]);
247
      }
248
      _data.pop_back();
249
    }
250

	
251
    /// \brief The priority of the given item.
252
    ///
253
    /// This function returns the priority of the given item.
254
    /// \param i The item.
255
    /// \pre \e i must be in the heap.
256
    Prio operator[](const Item &i) const {
257
      int idx = _iim[i];
258
      return _data[idx].second;
259
    }
260

	
261
    /// \brief Set the priority of an item or insert it, if it is
262
    /// not stored in the heap.
263
    ///
264
    /// This method sets the priority of the given item if it is
265
    /// already stored in the heap. Otherwise it inserts the given
266
    /// item into the heap with the given priority.
267
    /// \param i The item.
268
    /// \param p The priority.
269
    void set(const Item &i, const Prio &p) {
270
      int idx = _iim[i];
271
      if( idx<0 )
272
        push(i,p);
273
      else if( _comp(p, _data[idx].second) )
274
        bubbleUp(idx, Pair(i,p));
275
      else
276
        bubbleDown(idx, Pair(i,p), _data.size());
277
    }
278

	
279
    /// \brief Decrease the priority of an item to the given value.
280
    ///
281
    /// This function decreases the priority of an item to the given value.
282
    /// \param i The item.
283
    /// \param p The priority.
284
    /// \pre \e i must be stored in the heap with priority at least \e p.
285
    void decrease(const Item &i, const Prio &p) {
286
      int idx = _iim[i];
287
      bubbleUp(idx, Pair(i,p));
288
    }
289

	
290
    /// \brief Increase the priority of an item to the given value.
291
    ///
292
    /// This function increases the priority of an item to the given value.
293
    /// \param i The item.
294
    /// \param p The priority.
295
    /// \pre \e i must be stored in the heap with priority at most \e p.
296
    void increase(const Item &i, const Prio &p) {
297
      int idx = _iim[i];
298
      bubbleDown(idx, Pair(i,p), _data.size());
299
    }
300

	
301
    /// \brief Return the state of an item.
302
    ///
303
    /// This method returns \c PRE_HEAP if the given item has never
304
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
305
    /// and \c POST_HEAP otherwise.
306
    /// In the latter case it is possible that the item will get back
307
    /// to the heap again.
308
    /// \param i The item.
309
    State state(const Item &i) const {
310
      int s = _iim[i];
311
      if (s>=0) s=0;
312
      return State(s);
313
    }
314

	
315
    /// \brief Set the state of an item in the heap.
316
    ///
317
    /// This function sets the state of the given item in the heap.
318
    /// It can be used to manually clear the heap when it is important
319
    /// to achive better time complexity.
320
    /// \param i The item.
321
    /// \param st The state. It should not be \c IN_HEAP.
322
    void state(const Item& i, State st) {
323
      switch (st) {
324
        case POST_HEAP:
325
        case PRE_HEAP:
326
          if (state(i) == IN_HEAP) erase(i);
327
          _iim[i] = st;
328
          break;
329
        case IN_HEAP:
330
          break;
331
      }
332
    }
333

	
334
    /// \brief Replace an item in the heap.
335
    ///
336
    /// This function replaces item \c i with item \c j.
337
    /// Item \c i must be in the heap, while \c j must be out of the heap.
338
    /// After calling this method, item \c i will be out of the
339
    /// heap and \c j will be in the heap with the same prioriority
340
    /// as item \c i had before.
341
    void replace(const Item& i, const Item& j) {
342
      int idx=_iim[i];
343
      _iim.set(i, _iim[j]);
344
      _iim.set(j, idx);
345
      _data[idx].first=j;
346
    }
347

	
348
  }; // class KaryHeap
349

	
350
} // namespace lemon
351

	
352
#endif // LEMON_KARY_HEAP_H
Ignore white space 12 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_PAIRING_HEAP_H
20
#define LEMON_PAIRING_HEAP_H
21

	
22
///\file
23
///\ingroup heaps
24
///\brief Pairing heap implementation.
25

	
26
#include <vector>
27
#include <utility>
28
#include <functional>
29
#include <lemon/math.h>
30

	
31
namespace lemon {
32

	
33
  /// \ingroup heaps
34
  ///
35
  ///\brief Pairing Heap.
36
  ///
37
  /// This class implements the \e pairing \e heap data structure.
38
  /// It fully conforms to the \ref concepts::Heap "heap concept".
39
  ///
40
  /// The methods \ref increase() and \ref erase() are not efficient
41
  /// in a pairing heap. In case of many calls of these operations,
42
  /// it is better to use other heap structure, e.g. \ref BinHeap
43
  /// "binary heap".
44
  ///
45
  /// \tparam PR Type of the priorities of the items.
46
  /// \tparam IM A read-writable item map with \c int values, used
47
  /// internally to handle the cross references.
48
  /// \tparam CMP A functor class for comparing the priorities.
49
  /// The default is \c std::less<PR>.
50
#ifdef DOXYGEN
51
  template <typename PR, typename IM, typename CMP>
52
#else
53
  template <typename PR, typename IM, typename CMP = std::less<PR> >
54
#endif
55
  class PairingHeap {
56
  public:
57
    /// Type of the item-int map.
58
    typedef IM ItemIntMap;
59
    /// Type of the priorities.
60
    typedef PR Prio;
61
    /// Type of the items stored in the heap.
62
    typedef typename ItemIntMap::Key Item;
63
    /// Functor type for comparing the priorities.
64
    typedef CMP Compare;
65

	
66
    /// \brief Type to represent the states of the items.
67
    ///
68
    /// Each item has a state associated to it. It can be "in heap",
69
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
70
    /// heap's point of view, but may be useful to the user.
71
    ///
72
    /// The item-int map must be initialized in such way that it assigns
73
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
74
    enum State {
75
      IN_HEAP = 0,    ///< = 0.
76
      PRE_HEAP = -1,  ///< = -1.
77
      POST_HEAP = -2  ///< = -2.
78
    };
79

	
80
  private:
81
    class store;
82

	
83
    std::vector<store> _data;
84
    int _min;
85
    ItemIntMap &_iim;
86
    Compare _comp;
87
    int _num_items;
88

	
89
  public:
90
    /// \brief Constructor.
91
    ///
92
    /// Constructor.
93
    /// \param map A map that assigns \c int values to the items.
94
    /// It is used internally to handle the cross references.
95
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
96
    explicit PairingHeap(ItemIntMap &map)
97
      : _min(0), _iim(map), _num_items(0) {}
98

	
99
    /// \brief Constructor.
100
    ///
101
    /// Constructor.
102
    /// \param map A map that assigns \c int values to the items.
103
    /// It is used internally to handle the cross references.
104
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
105
    /// \param comp The function object used for comparing the priorities.
106
    PairingHeap(ItemIntMap &map, const Compare &comp)
107
      : _min(0), _iim(map), _comp(comp), _num_items(0) {}
108

	
109
    /// \brief The number of items stored in the heap.
110
    ///
111
    /// This function returns the number of items stored in the heap.
112
    int size() const { return _num_items; }
113

	
114
    /// \brief Check if the heap is empty.
115
    ///
116
    /// This function returns \c true if the heap is empty.
117
    bool empty() const { return _num_items==0; }
118

	
119
    /// \brief Make the heap empty.
120
    ///
121
    /// This functon makes the heap empty.
122
    /// It does not change the cross reference map. If you want to reuse
123
    /// a heap that is not surely empty, you should first clear it and
124
    /// then you should set the cross reference map to \c PRE_HEAP
125
    /// for each item.
126
    void clear() {
127
      _data.clear();
128
      _min = 0;
129
      _num_items = 0;
130
    }
131

	
132
    /// \brief Set the priority of an item or insert it, if it is
133
    /// not stored in the heap.
134
    ///
135
    /// This method sets the priority of the given item if it is
136
    /// already stored in the heap. Otherwise it inserts the given
137
    /// item into the heap with the given priority.
138
    /// \param item The item.
139
    /// \param value The priority.
140
    void set (const Item& item, const Prio& value) {
141
      int i=_iim[item];
142
      if ( i>=0 && _data[i].in ) {
143
        if ( _comp(value, _data[i].prio) ) decrease(item, value);
144
        if ( _comp(_data[i].prio, value) ) increase(item, value);
145
      } else push(item, value);
146
    }
147

	
148
    /// \brief Insert an item into the heap with the given priority.
149
    ///
150
    /// This function inserts the given item into the heap with the
151
    /// given priority.
152
    /// \param item The item to insert.
153
    /// \param value The priority of the item.
154
    /// \pre \e item must not be stored in the heap.
155
    void push (const Item& item, const Prio& value) {
156
      int i=_iim[item];
157
      if( i<0 ) {
158
        int s=_data.size();
159
        _iim.set(item, s);
160
        store st;
161
        st.name=item;
162
        _data.push_back(st);
163
        i=s;
164
      } else {
165
        _data[i].parent=_data[i].child=-1;
166
        _data[i].left_child=false;
167
        _data[i].degree=0;
168
        _data[i].in=true;
169
      }
170

	
171
      _data[i].prio=value;
172

	
173
      if ( _num_items!=0 ) {
174
        if ( _comp( value, _data[_min].prio) ) {
175
          fuse(i,_min);
176
          _min=i;
177
        }
178
        else fuse(_min,i);
179
      }
180
      else _min=i;
181

	
182
      ++_num_items;
183
    }
184

	
185
    /// \brief Return the item having minimum priority.
186
    ///
187
    /// This function returns the item having minimum priority.
188
    /// \pre The heap must be non-empty.
189
    Item top() const { return _data[_min].name; }
190

	
191
    /// \brief The minimum priority.
192
    ///
193
    /// This function returns the minimum priority.
194
    /// \pre The heap must be non-empty.
195
    const Prio& prio() const { return _data[_min].prio; }
196

	
197
    /// \brief The priority of the given item.
198
    ///
199
    /// This function returns the priority of the given item.
200
    /// \param item The item.
201
    /// \pre \e item must be in the heap.
202
    const Prio& operator[](const Item& item) const {
203
      return _data[_iim[item]].prio;
204
    }
205

	
206
    /// \brief Remove the item having minimum priority.
207
    ///
208
    /// This function removes the item having minimum priority.
209
    /// \pre The heap must be non-empty.
210
    void pop() {
211
      std::vector<int> trees;
212
      int i=0, child_right = 0;
213
      _data[_min].in=false;
214

	
215
      if( -1!=_data[_min].child ) {
216
        i=_data[_min].child;
217
        trees.push_back(i);
218
        _data[i].parent = -1;
219
        _data[_min].child = -1;
220

	
221
        int ch=-1;
222
        while( _data[i].child!=-1 ) {
223
          ch=_data[i].child;
224
          if( _data[ch].left_child && i==_data[ch].parent ) {
225
            break;
226
          } else {
227
            if( _data[ch].left_child ) {
228
              child_right=_data[ch].parent;
229
              _data[ch].parent = i;
230
              --_data[i].degree;
231
            }
232
            else {
233
              child_right=ch;
234
              _data[i].child=-1;
235
              _data[i].degree=0;
236
            }
237
            _data[child_right].parent = -1;
238
            trees.push_back(child_right);
239
            i = child_right;
240
          }
241
        }
242

	
243
        int num_child = trees.size();
244
        int other;
245
        for( i=0; i<num_child-1; i+=2 ) {
246
          if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
247
            other=trees[i];
248
            trees[i]=trees[i+1];
249
            trees[i+1]=other;
250
          }
251
          fuse( trees[i], trees[i+1] );
252
        }
253

	
254
        i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
255
        while(i>=2) {
256
          if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
257
            other=trees[i];
258
            trees[i]=trees[i-2];
259
            trees[i-2]=other;
260
          }
261
          fuse( trees[i-2], trees[i] );
262
          i-=2;
263
        }
264
        _min = trees[0];
265
      }
266
      else {
267
        _min = _data[_min].child;
268
      }
269

	
270
      if (_min >= 0) _data[_min].left_child = false;
271
      --_num_items;
272
    }
273

	
274
    /// \brief Remove the given item from the heap.
275
    ///
276
    /// This function removes the given item from the heap if it is
277
    /// already stored.
278
    /// \param item The item to delete.
279
    /// \pre \e item must be in the heap.
280
    void erase (const Item& item) {
281
      int i=_iim[item];
282
      if ( i>=0 && _data[i].in ) {
283
        decrease( item, _data[_min].prio-1 );
284
        pop();
285
      }
286
    }
287

	
288
    /// \brief Decrease the priority of an item to the given value.
289
    ///
290
    /// This function decreases the priority of an item to the given value.
291
    /// \param item The item.
292
    /// \param value The priority.
293
    /// \pre \e item must be stored in the heap with priority at least \e value.
294
    void decrease (Item item, const Prio& value) {
295
      int i=_iim[item];
296
      _data[i].prio=value;
297
      int p=_data[i].parent;
298

	
299
      if( _data[i].left_child && i!=_data[p].child ) {
300
        p=_data[p].parent;
301
      }
302

	
303
      if ( p!=-1 && _comp(value,_data[p].prio) ) {
304
        cut(i,p);
305
        if ( _comp(_data[_min].prio,value) ) {
306
          fuse(_min,i);
307
        } else {
308
          fuse(i,_min);
309
          _min=i;
310
        }
311
      }
312
    }
313

	
314
    /// \brief Increase the priority of an item to the given value.
315
    ///
316
    /// This function increases the priority of an item to the given value.
317
    /// \param item The item.
318
    /// \param value The priority.
319
    /// \pre \e item must be stored in the heap with priority at most \e value.
320
    void increase (Item item, const Prio& value) {
321
      erase(item);
322
      push(item,value);
323
    }
324

	
325
    /// \brief Return the state of an item.
326
    ///
327
    /// This method returns \c PRE_HEAP if the given item has never
328
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
329
    /// and \c POST_HEAP otherwise.
330
    /// In the latter case it is possible that the item will get back
331
    /// to the heap again.
332
    /// \param item The item.
333
    State state(const Item &item) const {
334
      int i=_iim[item];
335
      if( i>=0 ) {
336
        if( _data[i].in ) i=0;
337
        else i=-2;
338
      }
339
      return State(i);
340
    }
341

	
342
    /// \brief Set the state of an item in the heap.
343
    ///
344
    /// This function sets the state of the given item in the heap.
345
    /// It can be used to manually clear the heap when it is important
346
    /// to achive better time complexity.
347
    /// \param i The item.
348
    /// \param st The state. It should not be \c IN_HEAP.
349
    void state(const Item& i, State st) {
350
      switch (st) {
351
      case POST_HEAP:
352
      case PRE_HEAP:
353
        if (state(i) == IN_HEAP) erase(i);
354
        _iim[i]=st;
355
        break;
356
      case IN_HEAP:
357
        break;
358
      }
359
    }
360

	
361
  private:
362

	
363
    void cut(int a, int b) {
364
      int child_a;
365
      switch (_data[a].degree) {
366
        case 2:
367
          child_a = _data[_data[a].child].parent;
368
          if( _data[a].left_child ) {
369
            _data[child_a].left_child=true;
370
            _data[b].child=child_a;
371
            _data[child_a].parent=_data[a].parent;
372
          }
373
          else {
374
            _data[child_a].left_child=false;
375
            _data[child_a].parent=b;
376
            if( a!=_data[b].child )
377
              _data[_data[b].child].parent=child_a;
378
            else
379
              _data[b].child=child_a;
380
          }
381
          --_data[a].degree;
382
          _data[_data[a].child].parent=a;
383
          break;
384

	
385
        case 1:
386
          child_a = _data[a].child;
387
          if( !_data[child_a].left_child ) {
388
            --_data[a].degree;
389
            if( _data[a].left_child ) {
390
              _data[child_a].left_child=true;
391
              _data[child_a].parent=_data[a].parent;
392
              _data[b].child=child_a;
393
            }
394
            else {
395
              _data[child_a].left_child=false;
396
              _data[child_a].parent=b;
397
              if( a!=_data[b].child )
398
                _data[_data[b].child].parent=child_a;
399
              else
400
                _data[b].child=child_a;
401
            }
402
            _data[a].child=-1;
403
          }
404
          else {
405
            --_data[b].degree;
406
            if( _data[a].left_child ) {
407
              _data[b].child =
408
                (1==_data[b].degree) ? _data[a].parent : -1;
409
            } else {
410
              if (1==_data[b].degree)
411
                _data[_data[b].child].parent=b;
412
              else
413
                _data[b].child=-1;
414
            }
415
          }
416
          break;
417

	
418
        case 0:
419
          --_data[b].degree;
420
          if( _data[a].left_child ) {
421
            _data[b].child =
422
              (0!=_data[b].degree) ? _data[a].parent : -1;
423
          } else {
424
            if( 0!=_data[b].degree )
425
              _data[_data[b].child].parent=b;
426
            else
427
              _data[b].child=-1;
428
          }
429
          break;
430
      }
431
      _data[a].parent=-1;
432
      _data[a].left_child=false;
433
    }
434

	
435
    void fuse(int a, int b) {
436
      int child_a = _data[a].child;
437
      int child_b = _data[b].child;
438
      _data[a].child=b;
439
      _data[b].parent=a;
440
      _data[b].left_child=true;
441

	
442
      if( -1!=child_a ) {
443
        _data[b].child=child_a;
444
        _data[child_a].parent=b;
445
        _data[child_a].left_child=false;
446
        ++_data[b].degree;
447

	
448
        if( -1!=child_b ) {
449
           _data[b].child=child_b;
450
           _data[child_b].parent=child_a;
451
        }
452
      }
453
      else { ++_data[a].degree; }
454
    }
455

	
456
    class store {
457
      friend class PairingHeap;
458

	
459
      Item name;
460
      int parent;
461
      int child;
462
      bool left_child;
463
      int degree;
464
      bool in;
465
      Prio prio;
466

	
467
      store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
468
    };
469
  };
470

	
471
} //namespace lemon
472

	
473
#endif //LEMON_PAIRING_HEAP_H
474

	
Ignore white space 12 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <lemon/concepts/digraph.h>
20
#include <lemon/smart_graph.h>
21
#include <lemon/list_graph.h>
22
#include <lemon/lgf_reader.h>
23
#include <lemon/bellman_ford.h>
24
#include <lemon/path.h>
25

	
26
#include "graph_test.h"
27
#include "test_tools.h"
28

	
29
using namespace lemon;
30

	
31
char test_lgf[] =
32
  "@nodes\n"
33
  "label\n"
34
  "0\n"
35
  "1\n"
36
  "2\n"
37
  "3\n"
38
  "4\n"
39
  "@arcs\n"
40
  "    length\n"
41
  "0 1 3\n"
42
  "1 2 -3\n"
43
  "1 2 -5\n"
44
  "1 3 -2\n"
45
  "0 2 -1\n"
46
  "1 2 -4\n"
47
  "0 3 2\n"
48
  "4 2 -5\n"
49
  "2 3 1\n"
50
  "@attributes\n"
51
  "source 0\n"
52
  "target 3\n";
53

	
54

	
55
void checkBellmanFordCompile()
56
{
57
  typedef int Value;
58
  typedef concepts::Digraph Digraph;
59
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
60
  typedef BellmanFord<Digraph, LengthMap> BF;
61
  typedef Digraph::Node Node;
62
  typedef Digraph::Arc Arc;
63

	
64
  Digraph gr;
65
  Node s, t, n;
66
  Arc e;
67
  Value l;
68
  int k;
69
  bool b;
70
  BF::DistMap d(gr);
71
  BF::PredMap p(gr);
72
  LengthMap length;
73
  concepts::Path<Digraph> pp;
74

	
75
  {
76
    BF bf_test(gr,length);
77
    const BF& const_bf_test = bf_test;
78

	
79
    bf_test.run(s);
80
    bf_test.run(s,k);
81

	
82
    bf_test.init();
83
    bf_test.addSource(s);
84
    bf_test.addSource(s, 1);
85
    b = bf_test.processNextRound();
86
    b = bf_test.processNextWeakRound();
87

	
88
    bf_test.start();
89
    bf_test.checkedStart();
90
    bf_test.limitedStart(k);
91

	
92
    l  = const_bf_test.dist(t);
93
    e  = const_bf_test.predArc(t);
94
    s  = const_bf_test.predNode(t);
95
    b  = const_bf_test.reached(t);
96
    d  = const_bf_test.distMap();
97
    p  = const_bf_test.predMap();
98
    pp = const_bf_test.path(t);
99
    
100
    for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
101
  }
102
  {
103
    BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
104
      ::SetDistMap<concepts::ReadWriteMap<Node,Value> >
105
      ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
106
      ::Create bf_test(gr,length);
107

	
108
    LengthMap length_map;
109
    concepts::ReadWriteMap<Node,Arc> pred_map;
110
    concepts::ReadWriteMap<Node,Value> dist_map;
111
    
112
    bf_test
113
      .lengthMap(length_map)
114
      .predMap(pred_map)
115
      .distMap(dist_map);
116

	
117
    bf_test.run(s);
118
    bf_test.run(s,k);
119

	
120
    bf_test.init();
121
    bf_test.addSource(s);
122
    bf_test.addSource(s, 1);
123
    b = bf_test.processNextRound();
124
    b = bf_test.processNextWeakRound();
125

	
126
    bf_test.start();
127
    bf_test.checkedStart();
128
    bf_test.limitedStart(k);
129

	
130
    l  = bf_test.dist(t);
131
    e  = bf_test.predArc(t);
132
    s  = bf_test.predNode(t);
133
    b  = bf_test.reached(t);
134
    pp = bf_test.path(t);
135
  }
136
}
137

	
138
void checkBellmanFordFunctionCompile()
139
{
140
  typedef int Value;
141
  typedef concepts::Digraph Digraph;
142
  typedef Digraph::Arc Arc;
143
  typedef Digraph::Node Node;
144
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
145

	
146
  Digraph g;
147
  bool b;
148
  bellmanFord(g,LengthMap()).run(Node());
149
  b = bellmanFord(g,LengthMap()).run(Node(),Node());
150
  bellmanFord(g,LengthMap())
151
    .predMap(concepts::ReadWriteMap<Node,Arc>())
152
    .distMap(concepts::ReadWriteMap<Node,Value>())
153
    .run(Node());
154
  b=bellmanFord(g,LengthMap())
155
    .predMap(concepts::ReadWriteMap<Node,Arc>())
156
    .distMap(concepts::ReadWriteMap<Node,Value>())
157
    .path(concepts::Path<Digraph>())
158
    .dist(Value())
159
    .run(Node(),Node());
160
}
161

	
162

	
163
template <typename Digraph, typename Value>
164
void checkBellmanFord() {
165
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
166
  typedef typename Digraph::template ArcMap<Value> LengthMap;
167

	
168
  Digraph gr;
169
  Node s, t;
170
  LengthMap length(gr);
171

	
172
  std::istringstream input(test_lgf);
173
  digraphReader(gr, input).
174
    arcMap("length", length).
175
    node("source", s).
176
    node("target", t).
177
    run();
178

	
179
  BellmanFord<Digraph, LengthMap>
180
    bf(gr, length);
181
  bf.run(s);
182
  Path<Digraph> p = bf.path(t);
183

	
184
  check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
185
  check(p.length() == 3, "path() found a wrong path.");
186
  check(checkPath(gr, p), "path() found a wrong path.");
187
  check(pathSource(gr, p) == s, "path() found a wrong path.");
188
  check(pathTarget(gr, p) == t, "path() found a wrong path.");
189
  
190
  ListPath<Digraph> path;
191
  Value dist;
192
  bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
193

	
194
  check(reached && dist == -1, "Bellman-Ford found a wrong path.");
195
  check(path.length() == 3, "path() found a wrong path.");
196
  check(checkPath(gr, path), "path() found a wrong path.");
197
  check(pathSource(gr, path) == s, "path() found a wrong path.");
198
  check(pathTarget(gr, path) == t, "path() found a wrong path.");
199

	
200
  for(ArcIt e(gr); e!=INVALID; ++e) {
201
    Node u=gr.source(e);
202
    Node v=gr.target(e);
203
    check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]),
204
          "Wrong output. dist(target)-dist(source)-arc_length=" <<
205
          bf.dist(v) - bf.dist(u) - length[e]);
206
  }
207

	
208
  for(NodeIt v(gr); v!=INVALID; ++v) {
209
    if (bf.reached(v)) {
210
      check(v==s || bf.predArc(v)!=INVALID, "Wrong tree.");
211
      if (bf.predArc(v)!=INVALID ) {
212
        Arc e=bf.predArc(v);
213
        Node u=gr.source(e);
214
        check(u==bf.predNode(v),"Wrong tree.");
215
        check(bf.dist(v) - bf.dist(u) == length[e],
216
              "Wrong distance! Difference: " <<
217
              bf.dist(v) - bf.dist(u) - length[e]);
218
      }
219
    }
220
  }
221
}
222

	
223
void checkBellmanFordNegativeCycle() {
224
  DIGRAPH_TYPEDEFS(SmartDigraph);
225

	
226
  SmartDigraph gr;
227
  IntArcMap length(gr);
228
  
229
  Node n1 = gr.addNode();
230
  Node n2 = gr.addNode();
231
  Node n3 = gr.addNode();
232
  Node n4 = gr.addNode();
233
  
234
  Arc a1 = gr.addArc(n1, n2);
235
  Arc a2 = gr.addArc(n2, n2);
236
  
237
  length[a1] = 2;
238
  length[a2] = -1;
239
  
240
  {
241
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
242
    bf.run(n1);
243
    StaticPath<SmartDigraph> p = bf.negativeCycle();
244
    check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
245
          "Wrong negative cycle.");
246
  }
247
 
248
  length[a2] = 0;
249
  
250
  {
251
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
252
    bf.run(n1);
253
    check(bf.negativeCycle().empty(),
254
          "Negative cycle should not be found.");
255
  }
256
  
257
  length[gr.addArc(n1, n3)] = 5;
258
  length[gr.addArc(n4, n3)] = 1;
259
  length[gr.addArc(n2, n4)] = 2;
260
  length[gr.addArc(n3, n2)] = -4;
261
  
262
  {
263
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
264
    bf.init();
265
    bf.addSource(n1);
266
    for (int i = 0; i < 4; ++i) {
267
      check(bf.negativeCycle().empty(),
268
            "Negative cycle should not be found.");
269
      bf.processNextRound();
270
    }
271
    StaticPath<SmartDigraph> p = bf.negativeCycle();
272
    check(p.length() == 3, "Wrong negative cycle.");
273
    check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1,
274
          "Wrong negative cycle.");
275
  }
276
}
277

	
278
int main() {
279
  checkBellmanFord<ListDigraph, int>();
280
  checkBellmanFord<SmartDigraph, double>();
281
  checkBellmanFordNegativeCycle();
282
  return 0;
283
}
Ignore white space 12 line context
... ...
@@ -223,45 +223,88 @@
223 223
the two maps which can be done implicitly with the \c DivMap template
224 224
class. We use the implicit minimum time map as the length map of the
225 225
\c Dijkstra algorithm.
226 226
*/
227 227

	
228 228
/**
229
@defgroup matrices Matrices
230
@ingroup datas
231
\brief Two dimensional data storages implemented in LEMON.
232

	
233
This group contains two dimensional data storages implemented in LEMON.
234
*/
235

	
236
/**
237 229
@defgroup paths Path Structures
238 230
@ingroup datas
239 231
\brief %Path structures implemented in LEMON.
240 232

	
241 233
This group contains the path structures implemented in LEMON.
242 234

	
243 235
LEMON provides flexible data structures to work with paths.
244 236
All of them have similar interfaces and they can be copied easily with
245 237
assignment operators and copy constructors. This makes it easy and
246 238
efficient to have e.g. the Dijkstra algorithm to store its result in
247 239
any kind of path structure.
248 240

	
249
\sa lemon::concepts::Path
241
\sa \ref concepts::Path "Path concept"
242
*/
243

	
244
/**
245
@defgroup heaps Heap Structures
246
@ingroup datas
247
\brief %Heap structures implemented in LEMON.
248

	
249
This group contains the heap structures implemented in LEMON.
250

	
251
LEMON provides several heap classes. They are efficient implementations
252
of the abstract data type \e priority \e queue. They store items with
253
specified values called \e priorities in such a way that finding and
254
removing the item with minimum priority are efficient.
255
The basic operations are adding and erasing items, changing the priority
256
of an item, etc.
257

	
258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
259
The heap implementations have the same interface, thus any of them can be
260
used easily in such algorithms.
261

	
262
\sa \ref concepts::Heap "Heap concept"
263
*/
264

	
265
/**
266
@defgroup matrices Matrices
267
@ingroup datas
268
\brief Two dimensional data storages implemented in LEMON.
269

	
270
This group contains two dimensional data storages implemented in LEMON.
250 271
*/
251 272

	
252 273
/**
253 274
@defgroup auxdat Auxiliary Data Structures
254 275
@ingroup datas
255 276
\brief Auxiliary data structures implemented in LEMON.
256 277

	
257 278
This group contains some data structures implemented in LEMON in
258 279
order to make it easier to implement combinatorial algorithms.
259 280
*/
260 281

	
261 282
/**
283
@defgroup geomdat Geometric Data Structures
284
@ingroup auxdat
285
\brief Geometric data structures implemented in LEMON.
286

	
287
This group contains geometric data structures implemented in LEMON.
288

	
289
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
290
   vector with the usual operations.
291
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
292
   rectangular bounding box of a set of \ref lemon::dim2::Point
293
   "dim2::Point"'s.
294
*/
295

	
296
/**
297
@defgroup matrices Matrices
298
@ingroup auxdat
299
\brief Two dimensional data storages implemented in LEMON.
300

	
301
This group contains two dimensional data storages implemented in LEMON.
302
*/
303

	
304
/**
262 305
@defgroup algs Algorithms
263 306
\brief This group contains the several algorithms
264 307
implemented in LEMON.
265 308

	
266 309
This group contains the several algorithms
267 310
implemented in LEMON.
... ...
@@ -295,12 +338,21 @@
295 338
   not contain directed cycles with negative total length.
296 339
 - \ref Suurballe A successive shortest path algorithm for finding
297 340
   arc-disjoint paths between two nodes having minimum total length.
298 341
*/
299 342

	
300 343
/**
344
@defgroup spantree Minimum Spanning Tree Algorithms
345
@ingroup algs
346
\brief Algorithms for finding minimum cost spanning trees and arborescences.
347

	
348
This group contains the algorithms for finding minimum cost spanning
349
trees and arborescences.
350
*/
351

	
352
/**
301 353
@defgroup max_flow Maximum Flow Algorithms
302 354
@ingroup algs
303 355
\brief Algorithms for finding maximum flows.
304 356

	
305 357
This group contains the algorithms for finding maximum flows and
306 358
feasible circulations.
... ...
@@ -372,13 +424,13 @@
372 424
\f$X\f$ subset of the nodes with minimum overall capacity on
373 425
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
374 426
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
375 427
cut is the \f$X\f$ solution of the next optimization problem:
376 428

	
377 429
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
378
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
430
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
379 431

	
380 432
LEMON contains several algorithms related to minimum cut problems:
381 433

	
382 434
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
383 435
  in directed graphs.
384 436
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
... ...
@@ -388,36 +440,12 @@
388 440

	
389 441
If you want to find minimum cut just between two distinict nodes,
390 442
see the \ref max_flow "maximum flow problem".
391 443
*/
392 444

	
393 445
/**
394
@defgroup graph_properties Connectivity and Other Graph Properties
395
@ingroup algs
396
\brief Algorithms for discovering the graph properties
397

	
398
This group contains the algorithms for discovering the graph properties
399
like connectivity, bipartiteness, euler property, simplicity etc.
400

	
401
\image html edge_biconnected_components.png
402
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
403
*/
404

	
405
/**
406
@defgroup planar Planarity Embedding and Drawing
407
@ingroup algs
408
\brief Algorithms for planarity checking, embedding and drawing
409

	
410
This group contains the algorithms for planarity checking,
411
embedding and drawing.
412

	
413
\image html planar.png
414
\image latex planar.eps "Plane graph" width=\textwidth
415
*/
416

	
417
/**
418 446
@defgroup matching Matching Algorithms
419 447
@ingroup algs
420 448
\brief Algorithms for finding matchings in graphs and bipartite graphs.
421 449

	
422 450
This group contains the algorithms for calculating
423 451
matchings in graphs and bipartite graphs. The general matching problem is
... ...
@@ -452,39 +480,54 @@
452 480

	
453 481
\image html bipartite_matching.png
454 482
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
455 483
*/
456 484

	
457 485
/**
458
@defgroup spantree Minimum Spanning Tree Algorithms
486
@defgroup graph_properties Connectivity and Other Graph Properties
459 487
@ingroup algs
460
\brief Algorithms for finding minimum cost spanning trees and arborescences.
488
\brief Algorithms for discovering the graph properties
461 489

	
462
This group contains the algorithms for finding minimum cost spanning
463
trees and arborescences.
490
This group contains the algorithms for discovering the graph properties
491
like connectivity, bipartiteness, euler property, simplicity etc.
492

	
493
\image html connected_components.png
494
\image latex connected_components.eps "Connected components" width=\textwidth
495
*/
496

	
497
/**
498
@defgroup planar Planarity Embedding and Drawing
499
@ingroup algs
500
\brief Algorithms for planarity checking, embedding and drawing
501

	
502
This group contains the algorithms for planarity checking,
503
embedding and drawing.
504

	
505
\image html planar.png
506
\image latex planar.eps "Plane graph" width=\textwidth
507
*/
508

	
509
/**
510
@defgroup approx Approximation Algorithms
511
@ingroup algs
512
\brief Approximation algorithms.
513

	
514
This group contains the approximation and heuristic algorithms
515
implemented in LEMON.
464 516
*/
465 517

	
466 518
/**
467 519
@defgroup auxalg Auxiliary Algorithms
468 520
@ingroup algs
469 521
\brief Auxiliary algorithms implemented in LEMON.
470 522

	
471 523
This group contains some algorithms implemented in LEMON
472 524
in order to make it easier to implement complex algorithms.
473 525
*/
474 526

	
475 527
/**
476
@defgroup approx Approximation Algorithms
477
@ingroup algs
478
\brief Approximation algorithms.
479

	
480
This group contains the approximation and heuristic algorithms
481
implemented in LEMON.
482
*/
483

	
484
/**
485 528
@defgroup gen_opt_group General Optimization Tools
486 529
\brief This group contains some general optimization frameworks
487 530
implemented in LEMON.
488 531

	
489 532
This group contains some general optimization frameworks
490 533
implemented in LEMON.
... ...
@@ -584,13 +627,13 @@
584 627

	
585 628
This group contains general \c EPS drawing methods and special
586 629
graph exporting tools.
587 630
*/
588 631

	
589 632
/**
590
@defgroup dimacs_group DIMACS format
633
@defgroup dimacs_group DIMACS Format
591 634
@ingroup io_group
592 635
\brief Read and write files in DIMACS format
593 636

	
594 637
Tools to read a digraph from or write it to a file in DIMACS format data.
595 638
*/
596 639

	
... ...
@@ -646,27 +689,27 @@
646 689
\brief Skeleton and concept checking classes for maps
647 690

	
648 691
This group contains the skeletons and concept checking classes of maps.
649 692
*/
650 693

	
651 694
/**
695
@defgroup tools Standalone Utility Applications
696

	
697
Some utility applications are listed here.
698

	
699
The standard compilation procedure (<tt>./configure;make</tt>) will compile
700
them, as well.
701
*/
702

	
703
/**
652 704
\anchor demoprograms
653 705

	
654 706
@defgroup demos Demo Programs
655 707

	
656 708
Some demo programs are listed here. Their full source codes can be found in
657 709
the \c demo subdirectory of the source tree.
658 710

	
659 711
In order to compile them, use the <tt>make demo</tt> or the
660 712
<tt>make check</tt> commands.
661 713
*/
662 714

	
663
/**
664
@defgroup tools Standalone Utility Applications
665

	
666
Some utility applications are listed here.
667

	
668
The standard compilation procedure (<tt>./configure;make</tt>) will compile
669
them, as well.
670
*/
671

	
672 715
}
Ignore white space 12 line context
... ...
@@ -54,14 +54,16 @@
54 54
endif
55 55

	
56 56
lemon_HEADERS += \
57 57
	lemon/adaptors.h \
58 58
	lemon/arg_parser.h \
59 59
	lemon/assert.h \
60
	lemon/bellman_ford.h \
60 61
	lemon/bfs.h \
61 62
	lemon/bin_heap.h \
63
	lemon/binom_heap.h \
62 64
	lemon/bucket_heap.h \
63 65
	lemon/cbc.h \
64 66
	lemon/circulation.h \
65 67
	lemon/clp.h \
66 68
	lemon/color.h \
67 69
	lemon/concept_check.h \
... ...
@@ -75,33 +77,35 @@
75 77
	lemon/dimacs.h \
76 78
	lemon/edge_set.h \
77 79
	lemon/elevator.h \
78 80
	lemon/error.h \
79 81
	lemon/euler.h \
80 82
	lemon/fib_heap.h \
83
	lemon/fourary_heap.h \
81 84
	lemon/full_graph.h \
82 85
	lemon/glpk.h \
83 86
	lemon/gomory_hu.h \
84 87
	lemon/graph_to_eps.h \
85 88
	lemon/grid_graph.h \
86 89
	lemon/hypercube_graph.h \
90
	lemon/kary_heap.h \
87 91
	lemon/kruskal.h \
88 92
	lemon/hao_orlin.h \
89 93
	lemon/lgf_reader.h \
90 94
	lemon/lgf_writer.h \
91 95
	lemon/list_graph.h \
92 96
	lemon/lp.h \
93 97
	lemon/lp_base.h \
94 98
	lemon/lp_skeleton.h \
95
	lemon/list_graph.h \
96 99
	lemon/maps.h \
97 100
	lemon/matching.h \
98 101
	lemon/math.h \
99 102
	lemon/min_cost_arborescence.h \
100 103
	lemon/nauty_reader.h \
101 104
	lemon/network_simplex.h \
105
	lemon/pairing_heap.h \
102 106
	lemon/path.h \
103 107
	lemon/preflow.h \
104 108
	lemon/radix_heap.h \
105 109
	lemon/radix_sort.h \
106 110
	lemon/random.h \
107 111
	lemon/smart_graph.h \
Ignore white space 12 line context
... ...
@@ -44,13 +44,13 @@
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a \c PredMap.
53 53

	
54 54
    ///This function instantiates a \ref PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///\ref PredMap.
... ...
@@ -59,13 +59,14 @@
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
66
    ///By default it is a NullMap.
66 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67 68
    ///Instantiates a \c ProcessedMap.
68 69

	
69 70
    ///This function instantiates a \ref ProcessedMap.
70 71
    ///\param g is the digraph, to which
71 72
    ///we would like to define the \ref ProcessedMap
... ...
@@ -78,13 +79,13 @@
78 79
      return new ProcessedMap();
79 80
    }
80 81

	
81 82
    ///The type of the map that indicates which nodes are reached.
82 83

	
83 84
    ///The type of the map that indicates which nodes are reached.
84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86 87
    ///Instantiates a \c ReachedMap.
87 88

	
88 89
    ///This function instantiates a \ref ReachedMap.
89 90
    ///\param g is the digraph, to which
90 91
    ///we would like to define the \ref ReachedMap.
... ...
@@ -93,13 +94,13 @@
93 94
      return new ReachedMap(g);
94 95
    }
95 96

	
96 97
    ///The type of the map that stores the distances of the nodes.
97 98

	
98 99
    ///The type of the map that stores the distances of the nodes.
99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
100 101
    typedef typename Digraph::template NodeMap<int> DistMap;
101 102
    ///Instantiates a \c DistMap.
102 103

	
103 104
    ///This function instantiates a \ref DistMap.
104 105
    ///\param g is the digraph, to which we would like to define the
105 106
    ///\ref DistMap.
... ...
@@ -222,13 +223,13 @@
222 223
    };
223 224
    ///\brief \ref named-templ-param "Named parameter" for setting
224 225
    ///\c PredMap type.
225 226
    ///
226 227
    ///\ref named-templ-param "Named parameter" for setting
227 228
    ///\c PredMap type.
228
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
229
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
229 230
    template <class T>
230 231
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
231 232
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
232 233
    };
233 234

	
234 235
    template <class T>
... ...
@@ -242,13 +243,13 @@
242 243
    };
243 244
    ///\brief \ref named-templ-param "Named parameter" for setting
244 245
    ///\c DistMap type.
245 246
    ///
246 247
    ///\ref named-templ-param "Named parameter" for setting
247 248
    ///\c DistMap type.
248
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
249
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
249 250
    template <class T>
250 251
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
251 252
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
252 253
    };
253 254

	
254 255
    template <class T>
... ...
@@ -262,13 +263,13 @@
262 263
    };
263 264
    ///\brief \ref named-templ-param "Named parameter" for setting
264 265
    ///\c ReachedMap type.
265 266
    ///
266 267
    ///\ref named-templ-param "Named parameter" for setting
267 268
    ///\c ReachedMap type.
268
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
269
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
269 270
    template <class T>
270 271
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
271 272
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
272 273
    };
273 274

	
274 275
    template <class T>
... ...
@@ -282,13 +283,13 @@
282 283
    };
283 284
    ///\brief \ref named-templ-param "Named parameter" for setting
284 285
    ///\c ProcessedMap type.
285 286
    ///
286 287
    ///\ref named-templ-param "Named parameter" for setting
287 288
    ///\c ProcessedMap type.
288
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
289
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
289 290
    template <class T>
290 291
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
291 292
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
292 293
    };
293 294

	
294 295
    struct SetStandardProcessedMapTraits : public Traits {
... ...
@@ -410,14 +411,14 @@
410 411

	
411 412
  public:
412 413

	
413 414
    ///\name Execution Control
414 415
    ///The simplest way to execute the BFS algorithm is to use one of the
415 416
    ///member functions called \ref run(Node) "run()".\n
416
    ///If you need more control on the execution, first you have to call
417
    ///\ref init(), then you can add several source nodes with
417
    ///If you need better control on the execution, you have to call
418
    ///\ref init() first, then you can add several source nodes with
418 419
    ///\ref addSource(). Finally the actual path computation can be
419 420
    ///performed with one of the \ref start() functions.
420 421

	
421 422
    ///@{
422 423

	
423 424
    ///\brief Initializes the internal data structures.
... ...
@@ -734,56 +735,58 @@
734 735
    ///functions.\n
735 736
    ///Either \ref run(Node) "run()" or \ref start() should be called
736 737
    ///before using them.
737 738

	
738 739
    ///@{
739 740

	
740
    ///The shortest path to a node.
741
    ///The shortest path to the given node.
741 742

	
742
    ///Returns the shortest path to a node.
743
    ///Returns the shortest path to the given node from the root(s).
743 744
    ///
744 745
    ///\warning \c t should be reached from the root(s).
745 746
    ///
746 747
    ///\pre Either \ref run(Node) "run()" or \ref init()
747 748
    ///must be called before using this function.
748 749
    Path path(Node t) const { return Path(*G, *_pred, t); }
749 750

	
750
    ///The distance of a node from the root(s).
751
    ///The distance of the given node from the root(s).
751 752

	
752
    ///Returns the distance of a node from the root(s).
753
    ///Returns the distance of the given node from the root(s).
753 754
    ///
754 755
    ///\warning If node \c v is not reached from the root(s), then
755 756
    ///the return value of this function is undefined.
756 757
    ///
757 758
    ///\pre Either \ref run(Node) "run()" or \ref init()
758 759
    ///must be called before using this function.
759 760
    int dist(Node v) const { return (*_dist)[v]; }
760 761

	
761
    ///Returns the 'previous arc' of the shortest path tree for a node.
762

	
762
    ///\brief Returns the 'previous arc' of the shortest path tree for
763
    ///the given node.
764
    ///
763 765
    ///This function returns the 'previous arc' of the shortest path
764 766
    ///tree for the node \c v, i.e. it returns the last arc of a
765 767
    ///shortest path from a root to \c v. It is \c INVALID if \c v
766 768
    ///is not reached from the root(s) or if \c v is a root.
767 769
    ///
768 770
    ///The shortest path tree used here is equal to the shortest path
769
    ///tree used in \ref predNode().
771
    ///tree used in \ref predNode() and \ref predMap().
770 772
    ///
771 773
    ///\pre Either \ref run(Node) "run()" or \ref init()
772 774
    ///must be called before using this function.
773 775
    Arc predArc(Node v) const { return (*_pred)[v];}
774 776

	
775
    ///Returns the 'previous node' of the shortest path tree for a node.
776

	
777
    ///\brief Returns the 'previous node' of the shortest path tree for
778
    ///the given node.
779
    ///
777 780
    ///This function returns the 'previous node' of the shortest path
778 781
    ///tree for the node \c v, i.e. it returns the last but one node
779
    ///from a shortest path from a root to \c v. It is \c INVALID
782
    ///of a shortest path from a root to \c v. It is \c INVALID
780 783
    ///if \c v is not reached from the root(s) or if \c v is a root.
781 784
    ///
782 785
    ///The shortest path tree used here is equal to the shortest path
783
    ///tree used in \ref predArc().
786
    ///tree used in \ref predArc() and \ref predMap().
784 787
    ///
785 788
    ///\pre Either \ref run(Node) "run()" or \ref init()
786 789
    ///must be called before using this function.
787 790
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
788 791
                                  G->source((*_pred)[v]); }
789 792

	
... ...
@@ -798,19 +801,19 @@
798 801
    const DistMap &distMap() const { return *_dist;}
799 802

	
800 803
    ///\brief Returns a const reference to the node map that stores the
801 804
    ///predecessor arcs.
802 805
    ///
803 806
    ///Returns a const reference to the node map that stores the predecessor
804
    ///arcs, which form the shortest path tree.
807
    ///arcs, which form the shortest path tree (forest).
805 808
    ///
806 809
    ///\pre Either \ref run(Node) "run()" or \ref init()
807 810
    ///must be called before using this function.
808 811
    const PredMap &predMap() const { return *_pred;}
809 812

	
810
    ///Checks if a node is reached from the root(s).
813
    ///Checks if the given node is reached from the root(s).
811 814

	
812 815
    ///Returns \c true if \c v is reached from the root(s).
813 816
    ///
814 817
    ///\pre Either \ref run(Node) "run()" or \ref init()
815 818
    ///must be called before using this function.
816 819
    bool reached(Node v) const { return (*_reached)[v]; }
... ...
@@ -830,13 +833,13 @@
830 833

	
831 834
    ///\brief The type of the map that stores the predecessor
832 835
    ///arcs of the shortest paths.
833 836
    ///
834 837
    ///The type of the map that stores the predecessor
835 838
    ///arcs of the shortest paths.
836
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
839
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
837 840
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
838 841
    ///Instantiates a PredMap.
839 842

	
840 843
    ///This function instantiates a PredMap.
841 844
    ///\param g is the digraph, to which we would like to define the
842 845
    ///PredMap.
... ...
@@ -845,13 +848,13 @@
845 848
      return new PredMap(g);
846 849
    }
847 850

	
848 851
    ///The type of the map that indicates which nodes are processed.
849 852

	
850 853
    ///The type of the map that indicates which nodes are processed.
851
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
854
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
852 855
    ///By default it is a NullMap.
853 856
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
854 857
    ///Instantiates a ProcessedMap.
855 858

	
856 859
    ///This function instantiates a ProcessedMap.
857 860
    ///\param g is the digraph, to which
... ...
@@ -865,13 +868,13 @@
865 868
      return new ProcessedMap();
866 869
    }
867 870

	
868 871
    ///The type of the map that indicates which nodes are reached.
869 872

	
870 873
    ///The type of the map that indicates which nodes are reached.
871
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
874
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
872 875
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
873 876
    ///Instantiates a ReachedMap.
874 877

	
875 878
    ///This function instantiates a ReachedMap.
876 879
    ///\param g is the digraph, to which
877 880
    ///we would like to define the ReachedMap.
... ...
@@ -880,13 +883,13 @@
880 883
      return new ReachedMap(g);
881 884
    }
882 885

	
883 886
    ///The type of the map that stores the distances of the nodes.
884 887

	
885 888
    ///The type of the map that stores the distances of the nodes.
886
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
889
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
887 890
    typedef typename Digraph::template NodeMap<int> DistMap;
888 891
    ///Instantiates a DistMap.
889 892

	
890 893
    ///This function instantiates a DistMap.
891 894
    ///\param g is the digraph, to which we would like to define
892 895
    ///the DistMap
... ...
@@ -895,24 +898,20 @@
895 898
      return new DistMap(g);
896 899
    }
897 900

	
898 901
    ///The type of the shortest paths.
899 902

	
900 903
    ///The type of the shortest paths.
901
    ///It must meet the \ref concepts::Path "Path" concept.
904
    ///It must conform to the \ref concepts::Path "Path" concept.
902 905
    typedef lemon::Path<Digraph> Path;
903 906
  };
904 907

	
905 908
  /// Default traits class used by BfsWizard
906 909

	
907
  /// To make it easier to use Bfs algorithm
908
  /// we have created a wizard class.
909
  /// This \ref BfsWizard class needs default traits,
910
  /// as well as the \ref Bfs class.
911
  /// The \ref BfsWizardBase is a class to be the default traits of the
912
  /// \ref BfsWizard class.
910
  /// Default traits class used by BfsWizard.
911
  /// \tparam GR The type of the digraph.
913 912
  template<class GR>
914 913
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
915 914
  {
916 915

	
917 916
    typedef BfsWizardDefaultTraits<GR> Base;
918 917
  protected:
... ...
@@ -934,13 +933,13 @@
934 933
    //Pointer to the distance of the target node.
935 934
    int *_di;
936 935

	
937 936
    public:
938 937
    /// Constructor.
939 938

	
940
    /// This constructor does not require parameters, therefore it initiates
939
    /// This constructor does not require parameters, it initiates
941 940
    /// all of the attributes to \c 0.
942 941
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
943 942
                      _dist(0), _path(0), _di(0) {}
944 943

	
945 944
    /// Constructor.
946 945

	
... ...
@@ -964,30 +963,23 @@
964 963
  /// which makes it easier to use the algorithm.
965 964
  template<class TR>
966 965
  class BfsWizard : public TR
967 966
  {
968 967
    typedef TR Base;
969 968

	
970
    ///The type of the digraph the algorithm runs on.
971 969
    typedef typename TR::Digraph Digraph;
972 970

	
973 971
    typedef typename Digraph::Node Node;
974 972
    typedef typename Digraph::NodeIt NodeIt;
975 973
    typedef typename Digraph::Arc Arc;
976 974
    typedef typename Digraph::OutArcIt OutArcIt;
977 975

	
978
    ///\brief The type of the map that stores the predecessor
979
    ///arcs of the shortest paths.
980 976
    typedef typename TR::PredMap PredMap;
981
    ///\brief The type of the map that stores the distances of the nodes.
982 977
    typedef typename TR::DistMap DistMap;
983
    ///\brief The type of the map that indicates which nodes are reached.
984 978
    typedef typename TR::ReachedMap ReachedMap;
985
    ///\brief The type of the map that indicates which nodes are processed.
986 979
    typedef typename TR::ProcessedMap ProcessedMap;
987
    ///The type of the shortest paths
988 980
    typedef typename TR::Path Path;
989 981

	
990 982
  public:
991 983

	
992 984
    /// Constructor.
993 985
    BfsWizard() : TR() {}
... ...
@@ -1064,17 +1056,18 @@
1064 1056
    template<class T>
1065 1057
    struct SetPredMapBase : public Base {
1066 1058
      typedef T PredMap;
1067 1059
      static PredMap *createPredMap(const Digraph &) { return 0; };
1068 1060
      SetPredMapBase(const TR &b) : TR(b) {}
1069 1061
    };
1070
    ///\brief \ref named-func-param "Named parameter"
1071
    ///for setting PredMap object.
1062

	
1063
    ///\brief \ref named-templ-param "Named parameter" for setting
1064
    ///the predecessor map.
1072 1065
    ///
1073
    ///\ref named-func-param "Named parameter"
1074
    ///for setting PredMap object.
1066
    ///\ref named-templ-param "Named parameter" function for setting
1067
    ///the map that stores the predecessor arcs of the nodes.
1075 1068
    template<class T>
1076 1069
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
1077 1070
    {
1078 1071
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1079 1072
      return BfsWizard<SetPredMapBase<T> >(*this);
1080 1073
    }
... ...
@@ -1082,17 +1075,18 @@
1082 1075
    template<class T>
1083 1076
    struct SetReachedMapBase : public Base {
1084 1077
      typedef T ReachedMap;
1085 1078
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1086 1079
      SetReachedMapBase(const TR &b) : TR(b) {}
1087 1080
    };
1088
    ///\brief \ref named-func-param "Named parameter"
1089
    ///for setting ReachedMap object.
1081

	
1082
    ///\brief \ref named-templ-param "Named parameter" for setting
1083
    ///the reached map.
1090 1084
    ///
1091
    /// \ref named-func-param "Named parameter"
1092
    ///for setting ReachedMap object.
1085
    ///\ref named-templ-param "Named parameter" function for setting
1086
    ///the map that indicates which nodes are reached.
1093 1087
    template<class T>
1094 1088
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1095 1089
    {
1096 1090
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1097 1091
      return BfsWizard<SetReachedMapBase<T> >(*this);
1098 1092
    }
... ...
@@ -1100,17 +1094,19 @@
1100 1094
    template<class T>
1101 1095
    struct SetDistMapBase : public Base {
1102 1096
      typedef T DistMap;
1103 1097
      static DistMap *createDistMap(const Digraph &) { return 0; };
1104 1098
      SetDistMapBase(const TR &b) : TR(b) {}
1105 1099
    };
1106
    ///\brief \ref named-func-param "Named parameter"
1107
    ///for setting DistMap object.
1100

	
1101
    ///\brief \ref named-templ-param "Named parameter" for setting
1102
    ///the distance map.
1108 1103
    ///
1109
    /// \ref named-func-param "Named parameter"
1110
    ///for setting DistMap object.
1104
    ///\ref named-templ-param "Named parameter" function for setting
1105
    ///the map that stores the distances of the nodes calculated
1106
    ///by the algorithm.
1111 1107
    template<class T>
1112 1108
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
1113 1109
    {
1114 1110
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1115 1111
      return BfsWizard<SetDistMapBase<T> >(*this);
1116 1112
    }
... ...
@@ -1118,17 +1114,18 @@
1118 1114
    template<class T>
1119 1115
    struct SetProcessedMapBase : public Base {
1120 1116
      typedef T ProcessedMap;
1121 1117
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1122 1118
      SetProcessedMapBase(const TR &b) : TR(b) {}
1123 1119
    };
1124
    ///\brief \ref named-func-param "Named parameter"
1125
    ///for setting ProcessedMap object.
1120

	
1121
    ///\brief \ref named-func-param "Named parameter" for setting
1122
    ///the processed map.
1126 1123
    ///
1127
    /// \ref named-func-param "Named parameter"
1128
    ///for setting ProcessedMap object.
1124
    ///\ref named-templ-param "Named parameter" function for setting
1125
    ///the map that indicates which nodes are processed.
1129 1126
    template<class T>
1130 1127
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1131 1128
    {
1132 1129
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1133 1130
      return BfsWizard<SetProcessedMapBase<T> >(*this);
1134 1131
    }
... ...
@@ -1261,13 +1258,13 @@
1261 1258
    /// \brief The type of the digraph the algorithm runs on.
1262 1259
    typedef GR Digraph;
1263 1260

	
1264 1261
    /// \brief The type of the map that indicates which nodes are reached.
1265 1262
    ///
1266 1263
    /// The type of the map that indicates which nodes are reached.
1267
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1264
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1268 1265
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1269 1266

	
1270 1267
    /// \brief Instantiates a ReachedMap.
1271 1268
    ///
1272 1269
    /// This function instantiates a ReachedMap.
1273 1270
    /// \param digraph is the digraph, to which
... ...
@@ -1422,14 +1419,14 @@
1422 1419

	
1423 1420
  public:
1424 1421

	
1425 1422
    /// \name Execution Control
1426 1423
    /// The simplest way to execute the BFS algorithm is to use one of the
1427 1424
    /// member functions called \ref run(Node) "run()".\n
1428
    /// If you need more control on the execution, first you have to call
1429
    /// \ref init(), then you can add several source nodes with
1425
    /// If you need better control on the execution, you have to call
1426
    /// \ref init() first, then you can add several source nodes with
1430 1427
    /// \ref addSource(). Finally the actual path computation can be
1431 1428
    /// performed with one of the \ref start() functions.
1432 1429

	
1433 1430
    /// @{
1434 1431

	
1435 1432
    /// \brief Initializes the internal data structures.
... ...
@@ -1732,13 +1729,13 @@
1732 1729
    /// functions.\n
1733 1730
    /// Either \ref run(Node) "run()" or \ref start() should be called
1734 1731
    /// before using them.
1735 1732

	
1736 1733
    ///@{
1737 1734

	
1738
    /// \brief Checks if a node is reached from the root(s).
1735
    /// \brief Checks if the given node is reached from the root(s).
1739 1736
    ///
1740 1737
    /// Returns \c true if \c v is reached from the root(s).
1741 1738
    ///
1742 1739
    /// \pre Either \ref run(Node) "run()" or \ref init()
1743 1740
    /// must be called before using this function.
1744 1741
    bool reached(Node v) const { return (*_reached)[v]; }
Ignore white space 12 line context
... ...
@@ -16,61 +16,57 @@
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22
///\ingroup auxdat
22
///\ingroup heaps
23 23
///\file
24
///\brief Binary Heap implementation.
24
///\brief Binary heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32
  ///\ingroup auxdat
32
  /// \ingroup heaps
33 33
  ///
34
  ///\brief A Binary Heap implementation.
34
  /// \brief Binary heap data structure.
35 35
  ///
36
  ///This class implements the \e binary \e heap data structure.
36
  /// This class implements the \e binary \e heap data structure.
37
  /// It fully conforms to the \ref concepts::Heap "heap concept".
37 38
  ///
38
  ///A \e heap is a data structure for storing items with specified values
39
  ///called \e priorities in such a way that finding the item with minimum
40
  ///priority is efficient. \c CMP specifies the ordering of the priorities.
41
  ///In a heap one can change the priority of an item, add or erase an
42
  ///item, etc.
43
  ///
44
  ///\tparam PR Type of the priority of the items.
45
  ///\tparam IM A read and writable item map with int values, used internally
46
  ///to handle the cross references.
47
  ///\tparam CMP A functor class for the ordering of the priorities.
48
  ///The default is \c std::less<PR>.
49
  ///
50
  ///\sa FibHeap
51
  ///\sa Dijkstra
39
  /// \tparam PR Type of the priorities of the items.
40
  /// \tparam IM A read-writable item map with \c int values, used
41
  /// internally to handle the cross references.
42
  /// \tparam CMP A functor class for comparing the priorities.
43
  /// The default is \c std::less<PR>.
44
#ifdef DOXYGEN
45
  template <typename PR, typename IM, typename CMP>
46
#else
52 47
  template <typename PR, typename IM, typename CMP = std::less<PR> >
48
#endif
53 49
  class BinHeap {
50
  public:
54 51

	
55
  public:
56
    ///\e
52
    /// Type of the item-int map.
57 53
    typedef IM ItemIntMap;
58
    ///\e
54
    /// Type of the priorities.
59 55
    typedef PR Prio;
60
    ///\e
56
    /// Type of the items stored in the heap.
61 57
    typedef typename ItemIntMap::Key Item;
62
    ///\e
58
    /// Type of the item-priority pairs.
63 59
    typedef std::pair<Item,Prio> Pair;
64
    ///\e
60
    /// Functor type for comparing the priorities.
65 61
    typedef CMP Compare;
66 62

	
67
    /// \brief Type to represent the items states.
63
    /// \brief Type to represent the states of the items.
68 64
    ///
69
    /// Each Item element have a state associated to it. It may be "in heap",
70
    /// "pre heap" or "post heap". The latter two are indifferent from the
65
    /// Each item has a state associated to it. It can be "in heap",
66
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
71 67
    /// heap's point of view, but may be useful to the user.
72 68
    ///
73 69
    /// The item-int map must be initialized in such way that it assigns
74 70
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
75 71
    enum State {
76 72
      IN_HEAP = 0,    ///< = 0.
... ...
@@ -81,82 +77,83 @@
81 77
  private:
82 78
    std::vector<Pair> _data;
83 79
    Compare _comp;
84 80
    ItemIntMap &_iim;
85 81

	
86 82
  public:
87
    /// \brief The constructor.
83

	
84
    /// \brief Constructor.
88 85
    ///
89
    /// The constructor.
90
    /// \param map should be given to the constructor, since it is used
91
    /// internally to handle the cross references. The value of the map
92
    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
86
    /// Constructor.
87
    /// \param map A map that assigns \c int values to the items.
88
    /// It is used internally to handle the cross references.
89
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
93 90
    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
94 91

	
95
    /// \brief The constructor.
92
    /// \brief Constructor.
96 93
    ///
97
    /// The constructor.
98
    /// \param map should be given to the constructor, since it is used
99
    /// internally to handle the cross references. The value of the map
100
    /// should be PRE_HEAP (-1) for each element.
101
    ///
102
    /// \param comp The comparator function object.
94
    /// Constructor.
95
    /// \param map A map that assigns \c int values to the items.
96
    /// It is used internally to handle the cross references.
97
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
98
    /// \param comp The function object used for comparing the priorities.
103 99
    BinHeap(ItemIntMap &map, const Compare &comp)
104 100
      : _iim(map), _comp(comp) {}
105 101

	
106 102

	
107
    /// The number of items stored in the heap.
103
    /// \brief The number of items stored in the heap.
108 104
    ///
109
    /// \brief Returns the number of items stored in the heap.
105
    /// This function returns the number of items stored in the heap.
110 106
    int size() const { return _data.size(); }
111 107

	
112
    /// \brief Checks if the heap stores no items.
108
    /// \brief Check if the heap is empty.
113 109
    ///
114
    /// Returns \c true if and only if the heap stores no items.
110
    /// This function returns \c true if the heap is empty.
115 111
    bool empty() const { return _data.empty(); }
116 112

	
117
    /// \brief Make empty this heap.
113
    /// \brief Make the heap empty.
118 114
    ///
119
    /// Make empty this heap. It does not change the cross reference map.
120
    /// If you want to reuse what is not surely empty you should first clear
121
    /// the heap and after that you should set the cross reference map for
122
    /// each item to \c PRE_HEAP.
115
    /// This functon makes the heap empty.
116
    /// It does not change the cross reference map. If you want to reuse
117
    /// a heap that is not surely empty, you should first clear it and
118
    /// then you should set the cross reference map to \c PRE_HEAP
119
    /// for each item.
123 120
    void clear() {
124 121
      _data.clear();
125 122
    }
126 123

	
127 124
  private:
128 125
    static int parent(int i) { return (i-1)/2; }
129 126

	
130
    static int second_child(int i) { return 2*i+2; }
127
    static int secondChild(int i) { return 2*i+2; }
131 128
    bool less(const Pair &p1, const Pair &p2) const {
132 129
      return _comp(p1.second, p2.second);
133 130
    }
134 131

	
135
    int bubble_up(int hole, Pair p) {
132
    int bubbleUp(int hole, Pair p) {
136 133
      int par = parent(hole);
137 134
      while( hole>0 && less(p,_data[par]) ) {
138 135
        move(_data[par],hole);
139 136
        hole = par;
140 137
        par = parent(hole);
141 138
      }
142 139
      move(p, hole);
143 140
      return hole;
144 141
    }
145 142

	
146
    int bubble_down(int hole, Pair p, int length) {
147
      int child = second_child(hole);
143
    int bubbleDown(int hole, Pair p, int length) {
144
      int child = secondChild(hole);
148 145
      while(child < length) {
149 146
        if( less(_data[child-1], _data[child]) ) {
150 147
          --child;
151 148
        }
152 149
        if( !less(_data[child], p) )
153 150
          goto ok;
154 151
        move(_data[child], hole);
155 152
        hole = child;
156
        child = second_child(hole);
153
        child = secondChild(hole);
157 154
      }
158 155
      child--;
159 156
      if( child<length && less(_data[child], p) ) {
160 157
        move(_data[child], hole);
161 158
        hole=child;
162 159
      }
... ...
@@ -168,152 +165,154 @@
168 165
    void move(const Pair &p, int i) {
169 166
      _data[i] = p;
170 167
      _iim.set(p.first, i);
171 168
    }
172 169

	
173 170
  public:
171

	
174 172
    /// \brief Insert a pair of item and priority into the heap.
175 173
    ///
176
    /// Adds \c p.first to the heap with priority \c p.second.
174
    /// This function inserts \c p.first to the heap with priority
175
    /// \c p.second.
177 176
    /// \param p The pair to insert.
177
    /// \pre \c p.first must not be stored in the heap.
178 178
    void push(const Pair &p) {
179 179
      int n = _data.size();
180 180
      _data.resize(n+1);
181
      bubble_up(n, p);
181
      bubbleUp(n, p);
182 182
    }
183 183

	
184
    /// \brief Insert an item into the heap with the given heap.
184
    /// \brief Insert an item into the heap with the given priority.
185 185
    ///
186
    /// Adds \c i to the heap with priority \c p.
186
    /// This function inserts the given item into the heap with the
187
    /// given priority.
187 188
    /// \param i The item to insert.
188 189
    /// \param p The priority of the item.
190
    /// \pre \e i must not be stored in the heap.
189 191
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
190 192

	
191
    /// \brief Returns the item with minimum priority relative to \c Compare.
193
    /// \brief Return the item having minimum priority.
192 194
    ///
193
    /// This method returns the item with minimum priority relative to \c
194
    /// Compare.
195
    /// \pre The heap must be nonempty.
195
    /// This function returns the item having minimum priority.
196
    /// \pre The heap must be non-empty.
196 197
    Item top() const {
197 198
      return _data[0].first;
198 199
    }
199 200

	
200
    /// \brief Returns the minimum priority relative to \c Compare.
201
    /// \brief The minimum priority.
201 202
    ///
202
    /// It returns the minimum priority relative to \c Compare.
203
    /// \pre The heap must be nonempty.
203
    /// This function returns the minimum priority.
204
    /// \pre The heap must be non-empty.
204 205
    Prio prio() const {
205 206
      return _data[0].second;
206 207
    }
207 208

	
208
    /// \brief Deletes the item with minimum priority relative to \c Compare.
209
    /// \brief Remove the item having minimum priority.
209 210
    ///
210
    /// This method deletes the item with minimum priority relative to \c
211
    /// Compare from the heap.
211
    /// This function removes the item having minimum priority.
212 212
    /// \pre The heap must be non-empty.
213 213
    void pop() {
214 214
      int n = _data.size()-1;
215 215
      _iim.set(_data[0].first, POST_HEAP);
216 216
      if (n > 0) {
217
        bubble_down(0, _data[n], n);
217
        bubbleDown(0, _data[n], n);
218 218
      }
219 219
      _data.pop_back();
220 220
    }
221 221

	
222
    /// \brief Deletes \c i from the heap.
222
    /// \brief Remove the given item from the heap.
223 223
    ///
224
    /// This method deletes item \c i from the heap.
225
    /// \param i The item to erase.
226
    /// \pre The item should be in the heap.
224
    /// This function removes the given item from the heap if it is
225
    /// already stored.
226
    /// \param i The item to delete.
227
    /// \pre \e i must be in the heap.
227 228
    void erase(const Item &i) {
228 229
      int h = _iim[i];
229 230
      int n = _data.size()-1;
230 231
      _iim.set(_data[h].first, POST_HEAP);
231 232
      if( h < n ) {
232
        if ( bubble_up(h, _data[n]) == h) {
233
          bubble_down(h, _data[n], n);
233
        if ( bubbleUp(h, _data[n]) == h) {
234
          bubbleDown(h, _data[n], n);
234 235
        }
235 236
      }
236 237
      _data.pop_back();
237 238
    }
238 239

	
239

	
240
    /// \brief Returns the priority of \c i.
240
    /// \brief The priority of the given item.
241 241
    ///
242
    /// This function returns the priority of item \c i.
242
    /// This function returns the priority of the given item.
243 243
    /// \param i The item.
244
    /// \pre \c i must be in the heap.
244
    /// \pre \e i must be in the heap.
245 245
    Prio operator[](const Item &i) const {
246 246
      int idx = _iim[i];
247 247
      return _data[idx].second;
248 248
    }
249 249

	
250
    /// \brief \c i gets to the heap with priority \c p independently
251
    /// if \c i was already there.
250
    /// \brief Set the priority of an item or insert it, if it is
251
    /// not stored in the heap.
252 252
    ///
253
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
254
    /// in the heap and sets the priority of \c i to \c p otherwise.
253
    /// This method sets the priority of the given item if it is
254
    /// already stored in the heap. Otherwise it inserts the given
255
    /// item into the heap with the given priority.
255 256
    /// \param i The item.
256 257
    /// \param p The priority.
257 258
    void set(const Item &i, const Prio &p) {
258 259
      int idx = _iim[i];
259 260
      if( idx < 0 ) {
260 261
        push(i,p);
261 262
      }
262 263
      else if( _comp(p, _data[idx].second) ) {
263
        bubble_up(idx, Pair(i,p));
264
        bubbleUp(idx, Pair(i,p));
264 265
      }
265 266
      else {
266
        bubble_down(idx, Pair(i,p), _data.size());
267
        bubbleDown(idx, Pair(i,p), _data.size());
267 268
      }
268 269
    }
269 270

	
270
    /// \brief Decreases the priority of \c i to \c p.
271
    /// \brief Decrease the priority of an item to the given value.
271 272
    ///
272
    /// This method decreases the priority of item \c i to \c p.
273
    /// This function decreases the priority of an item to the given value.
273 274
    /// \param i The item.
274 275
    /// \param p The priority.
275
    /// \pre \c i must be stored in the heap with priority at least \c
276
    /// p relative to \c Compare.
276
    /// \pre \e i must be stored in the heap with priority at least \e p.
277 277
    void decrease(const Item &i, const Prio &p) {
278 278
      int idx = _iim[i];
279
      bubble_up(idx, Pair(i,p));
279
      bubbleUp(idx, Pair(i,p));
280 280
    }
281 281

	
282
    /// \brief Increases the priority of \c i to \c p.
282
    /// \brief Increase the priority of an item to the given value.
283 283
    ///
284
    /// This method sets the priority of item \c i to \c p.
284
    /// This function increases the priority of an item to the given value.
285 285
    /// \param i The item.
286 286
    /// \param p The priority.
287
    /// \pre \c i must be stored in the heap with priority at most \c
288
    /// p relative to \c Compare.
287
    /// \pre \e i must be stored in the heap with priority at most \e p.
289 288
    void increase(const Item &i, const Prio &p) {
290 289
      int idx = _iim[i];
291
      bubble_down(idx, Pair(i,p), _data.size());
290
      bubbleDown(idx, Pair(i,p), _data.size());
292 291
    }
293 292

	
294
    /// \brief Returns if \c item is in, has already been in, or has
295
    /// never been in the heap.
293
    /// \brief Return the state of an item.
296 294
    ///
297
    /// This method returns PRE_HEAP if \c item has never been in the
298
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
299
    /// otherwise. In the latter case it is possible that \c item will
300
    /// get back to the heap again.
295
    /// This method returns \c PRE_HEAP if the given item has never
296
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
297
    /// and \c POST_HEAP otherwise.
298
    /// In the latter case it is possible that the item will get back
299
    /// to the heap again.
301 300
    /// \param i The item.
302 301
    State state(const Item &i) const {
303 302
      int s = _iim[i];
304 303
      if( s>=0 )
305 304
        s=0;
306 305
      return State(s);
307 306
    }
308 307

	
309
    /// \brief Sets the state of the \c item in the heap.
308
    /// \brief Set the state of an item in the heap.
310 309
    ///
311
    /// Sets the state of the \c item in the heap. It can be used to
312
    /// manually clear the heap when it is important to achive the
313
    /// better time complexity.
310
    /// This function sets the state of the given item in the heap.
311
    /// It can be used to manually clear the heap when it is important
312
    /// to achive better time complexity.
314 313
    /// \param i The item.
315 314
    /// \param st The state. It should not be \c IN_HEAP.
316 315
    void state(const Item& i, State st) {
317 316
      switch (st) {
318 317
      case POST_HEAP:
319 318
      case PRE_HEAP:
... ...
@@ -324,18 +323,19 @@
324 323
        break;
325 324
      case IN_HEAP:
326 325
        break;
327 326
      }
328 327
    }
329 328

	
330
    /// \brief Replaces an item in the heap.
329
    /// \brief Replace an item in the heap.
331 330
    ///
332
    /// The \c i item is replaced with \c j item. The \c i item should
333
    /// be in the heap, while the \c j should be out of the heap. The
334
    /// \c i item will out of the heap and \c j will be in the heap
335
    /// with the same prioriority as prevoiusly the \c i item.
331
    /// This function replaces item \c i with item \c j.
332
    /// Item \c i must be in the heap, while \c j must be out of the heap.
333
    /// After calling this method, item \c i will be out of the
334
    /// heap and \c j will be in the heap with the same prioriority
335
    /// as item \c i had before.
336 336
    void replace(const Item& i, const Item& j) {
337 337
      int idx = _iim[i];
338 338
      _iim.set(i, _iim[j]);
339 339
      _iim.set(j, idx);
340 340
      _data[idx].first = j;
341 341
    }
Ignore white space 12 line context
... ...
@@ -534,13 +534,13 @@
534 534
    template <typename _Value>
535 535
    class ArcMap 
536 536
      : public MapExtender<DefaultMap<Graph, Arc, _Value> > {
537 537
      typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
538 538

	
539 539
    public:
540
      ArcMap(const Graph& _g) 
540
      explicit ArcMap(const Graph& _g) 
541 541
	: Parent(_g) {}
542 542
      ArcMap(const Graph& _g, const _Value& _v) 
543 543
	: Parent(_g, _v) {}
544 544

	
545 545
      ArcMap& operator=(const ArcMap& cmap) {
546 546
	return operator=<ArcMap>(cmap);
... ...
@@ -558,13 +558,13 @@
558 558
    template <typename _Value>
559 559
    class EdgeMap 
560 560
      : public MapExtender<DefaultMap<Graph, Edge, _Value> > {
561 561
      typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
562 562

	
563 563
    public:
564
      EdgeMap(const Graph& _g) 
564
      explicit EdgeMap(const Graph& _g) 
565 565
	: Parent(_g) {}
566 566

	
567 567
      EdgeMap(const Graph& _g, const _Value& _v) 
568 568
	: Parent(_g, _v) {}
569 569

	
570 570
      EdgeMap& operator=(const EdgeMap& cmap) {
Ignore white space 12 line context
... ...
@@ -601,13 +601,13 @@
601 601
    template <typename _Value>
602 602
    class NodeMap
603 603
      : public MapExtender<DefaultMap<Graph, Node, _Value> > {
604 604
      typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent;
605 605

	
606 606
    public:
607
      NodeMap(const Graph& graph)
607
      explicit NodeMap(const Graph& graph)
608 608
        : Parent(graph) {}
609 609
      NodeMap(const Graph& graph, const _Value& value)
610 610
        : Parent(graph, value) {}
611 611

	
612 612
    private:
613 613
      NodeMap& operator=(const NodeMap& cmap) {
... ...
@@ -625,13 +625,13 @@
625 625
    template <typename _Value>
626 626
    class ArcMap
627 627
      : public MapExtender<DefaultMap<Graph, Arc, _Value> > {
628 628
      typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
629 629

	
630 630
    public:
631
      ArcMap(const Graph& graph)
631
      explicit ArcMap(const Graph& graph)
632 632
        : Parent(graph) {}
633 633
      ArcMap(const Graph& graph, const _Value& value)
634 634
        : Parent(graph, value) {}
635 635

	
636 636
    private:
637 637
      ArcMap& operator=(const ArcMap& cmap) {
... ...
@@ -649,13 +649,13 @@
649 649
    template <typename _Value>
650 650
    class EdgeMap
651 651
      : public MapExtender<DefaultMap<Graph, Edge, _Value> > {
652 652
      typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
653 653

	
654 654
    public:
655
      EdgeMap(const Graph& graph)
655
      explicit EdgeMap(const Graph& graph)
656 656
        : Parent(graph) {}
657 657

	
658 658
      EdgeMap(const Graph& graph, const _Value& value)
659 659
        : Parent(graph, value) {}
660 660

	
661 661
    private:
Ignore white space 12 line context
... ...
@@ -16,15 +16,15 @@
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BUCKET_HEAP_H
20 20
#define LEMON_BUCKET_HEAP_H
21 21

	
22
///\ingroup auxdat
22
///\ingroup heaps
23 23
///\file
24
///\brief Bucket Heap implementation.
24
///\brief Bucket heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
... ...
@@ -50,94 +50,102 @@
50 50
        --value;
51 51
      }
52 52
    };
53 53

	
54 54
  }
55 55

	
56
  /// \ingroup auxdat
56
  /// \ingroup heaps
57 57
  ///
58
  /// \brief A Bucket Heap implementation.
58
  /// \brief Bucket heap data structure.
59 59
  ///
60
  /// This class implements the \e bucket \e heap data structure. A \e heap
61
  /// is a data structure for storing items with specified values called \e
62
  /// priorities in such a way that finding the item with minimum priority is
63
  /// efficient. The bucket heap is very simple implementation, it can store
64
  /// only integer priorities and it stores for each priority in the
65
  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
66
  /// the priorities are small. It is not intended to use as dijkstra heap.
60
  /// This class implements the \e bucket \e heap data structure.
61
  /// It practically conforms to the \ref concepts::Heap "heap concept",
62
  /// but it has some limitations.
67 63
  ///
68
  /// \param IM A read and write Item int map, used internally
69
  /// to handle the cross references.
70
  /// \param MIN If the given parameter is false then instead of the
71
  /// minimum value the maximum can be retrivied with the top() and
72
  /// prio() member functions.
64
  /// The bucket heap is a very simple structure. It can store only
65
  /// \c int priorities and it maintains a list of items for each priority
66
  /// in the range <tt>[0..C)</tt>. So it should only be used when the
67
  /// priorities are small. It is not intended to use as a Dijkstra heap.
68
  ///
69
  /// \tparam IM A read-writable item map with \c int values, used
70
  /// internally to handle the cross references.
71
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
72
  /// The default is \e min-heap. If this parameter is set to \c false,
73
  /// then the comparison is reversed, so the top(), prio() and pop()
74
  /// functions deal with the item having maximum priority instead of the
75
  /// minimum.
76
  ///
77
  /// \sa SimpleBucketHeap
73 78
  template <typename IM, bool MIN = true>
74 79
  class BucketHeap {
75 80

	
76 81
  public:
77
    /// \e
78
    typedef typename IM::Key Item;
79
    /// \e
82

	
83
    /// Type of the item-int map.
84
    typedef IM ItemIntMap;
85
    /// Type of the priorities.
80 86
    typedef int Prio;
81
    /// \e
82
    typedef std::pair<Item, Prio> Pair;
83
    /// \e
84
    typedef IM ItemIntMap;
87
    /// Type of the items stored in the heap.
88
    typedef typename ItemIntMap::Key Item;
89
    /// Type of the item-priority pairs.
90
    typedef std::pair<Item,Prio> Pair;
85 91

	
86 92
  private:
87 93

	
88 94
    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
89 95

	
90 96
  public:
91 97

	
92
    /// \brief Type to represent the items states.
98
    /// \brief Type to represent the states of the items.
93 99
    ///
94
    /// Each Item element have a state associated to it. It may be "in heap",
95
    /// "pre heap" or "post heap". The latter two are indifferent from the
100
    /// Each item has a state associated to it. It can be "in heap",
101
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
96 102
    /// heap's point of view, but may be useful to the user.
97 103
    ///
98 104
    /// The item-int map must be initialized in such way that it assigns
99 105
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
100 106
    enum State {
101 107
      IN_HEAP = 0,    ///< = 0.
102 108
      PRE_HEAP = -1,  ///< = -1.
103 109
      POST_HEAP = -2  ///< = -2.
104 110
    };
105 111

	
106 112
  public:
107
    /// \brief The constructor.
113

	
114
    /// \brief Constructor.
108 115
    ///
109
    /// The constructor.
110
    /// \param map should be given to the constructor, since it is used
111
    /// internally to handle the cross references. The value of the map
112
    /// should be PRE_HEAP (-1) for each element.
116
    /// Constructor.
117
    /// \param map A map that assigns \c int values to the items.
118
    /// It is used internally to handle the cross references.
119
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
113 120
    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
114 121

	
115
    /// The number of items stored in the heap.
122
    /// \brief The number of items stored in the heap.
116 123
    ///
117
    /// \brief Returns the number of items stored in the heap.
124
    /// This function returns the number of items stored in the heap.
118 125
    int size() const { return _data.size(); }
119 126

	
120
    /// \brief Checks if the heap stores no items.
127
    /// \brief Check if the heap is empty.
121 128
    ///
122
    /// Returns \c true if and only if the heap stores no items.
129
    /// This function returns \c true if the heap is empty.
123 130
    bool empty() const { return _data.empty(); }
124 131

	
125
    /// \brief Make empty this heap.
132
    /// \brief Make the heap empty.
126 133
    ///
127
    /// Make empty this heap. It does not change the cross reference
128
    /// map.  If you want to reuse a heap what is not surely empty you
129
    /// should first clear the heap and after that you should set the
130
    /// cross reference map for each item to \c PRE_HEAP.
134
    /// This functon makes the heap empty.
135
    /// It does not change the cross reference map. If you want to reuse
136
    /// a heap that is not surely empty, you should first clear it and
137
    /// then you should set the cross reference map to \c PRE_HEAP
138
    /// for each item.
131 139
    void clear() {
132 140
      _data.clear(); _first.clear(); _minimum = 0;
133 141
    }
134 142

	
135 143
  private:
136 144

	
137
    void relocate_last(int idx) {
145
    void relocateLast(int idx) {
138 146
      if (idx + 1 < int(_data.size())) {
139 147
        _data[idx] = _data.back();
140 148
        if (_data[idx].prev != -1) {
141 149
          _data[_data[idx].prev].next = idx;
142 150
        } else {
143 151
          _first[_data[idx].value] = idx;
... ...
@@ -171,99 +179,105 @@
171 179
      }
172 180
      _first[_data[idx].value] = idx;
173 181
      _data[idx].prev = -1;
174 182
    }
175 183

	
176 184
  public:
185

	
177 186
    /// \brief Insert a pair of item and priority into the heap.
178 187
    ///
179
    /// Adds \c p.first to the heap with priority \c p.second.
188
    /// This function inserts \c p.first to the heap with priority
189
    /// \c p.second.
180 190
    /// \param p The pair to insert.
191
    /// \pre \c p.first must not be stored in the heap.
181 192
    void push(const Pair& p) {
182 193
      push(p.first, p.second);
183 194
    }
184 195

	
185 196
    /// \brief Insert an item into the heap with the given priority.
186 197
    ///
187
    /// Adds \c i to the heap with priority \c p.
198
    /// This function inserts the given item into the heap with the
199
    /// given priority.
188 200
    /// \param i The item to insert.
189 201
    /// \param p The priority of the item.
202
    /// \pre \e i must not be stored in the heap.
190 203
    void push(const Item &i, const Prio &p) {
191 204
      int idx = _data.size();
192 205
      _iim[i] = idx;
193 206
      _data.push_back(BucketItem(i, p));
194 207
      lace(idx);
195 208
      if (Direction::less(p, _minimum)) {
196 209
        _minimum = p;
197 210
      }
198 211
    }
199 212

	
200
    /// \brief Returns the item with minimum priority.
213
    /// \brief Return the item having minimum priority.
201 214
    ///
202
    /// This method returns the item with minimum priority.
203
    /// \pre The heap must be nonempty.
215
    /// This function returns the item having minimum priority.
216
    /// \pre The heap must be non-empty.
204 217
    Item top() const {
205 218
      while (_first[_minimum] == -1) {
206 219
        Direction::increase(_minimum);
207 220
      }
208 221
      return _data[_first[_minimum]].item;
209 222
    }
210 223

	
211
    /// \brief Returns the minimum priority.
224
    /// \brief The minimum priority.
212 225
    ///
213
    /// It returns the minimum priority.
214
    /// \pre The heap must be nonempty.
226
    /// This function returns the minimum priority.
227
    /// \pre The heap must be non-empty.
215 228
    Prio prio() const {
216 229
      while (_first[_minimum] == -1) {
217 230
        Direction::increase(_minimum);
218 231
      }
219 232
      return _minimum;
220 233
    }
221 234

	
222
    /// \brief Deletes the item with minimum priority.
235
    /// \brief Remove the item having minimum priority.
223 236
    ///
224
    /// This method deletes the item with minimum priority from the heap.
237
    /// This function removes the item having minimum priority.
225 238
    /// \pre The heap must be non-empty.
226 239
    void pop() {
227 240
      while (_first[_minimum] == -1) {
228 241
        Direction::increase(_minimum);
229 242
      }
230 243
      int idx = _first[_minimum];
231 244
      _iim[_data[idx].item] = -2;
232 245
      unlace(idx);
233
      relocate_last(idx);
246
      relocateLast(idx);
234 247
    }
235 248

	
236
    /// \brief Deletes \c i from the heap.
249
    /// \brief Remove the given item from the heap.
237 250
    ///
238
    /// This method deletes item \c i from the heap, if \c i was
239
    /// already stored in the heap.
240
    /// \param i The item to erase.
251
    /// This function removes the given item from the heap if it is
252
    /// already stored.
253
    /// \param i The item to delete.
254
    /// \pre \e i must be in the heap.
241 255
    void erase(const Item &i) {
242 256
      int idx = _iim[i];
243 257
      _iim[_data[idx].item] = -2;
244 258
      unlace(idx);
245
      relocate_last(idx);
259
      relocateLast(idx);
246 260
    }
247 261

	
248

	
249
    /// \brief Returns the priority of \c i.
262
    /// \brief The priority of the given item.
250 263
    ///
251
    /// This function returns the priority of item \c i.
252
    /// \pre \c i must be in the heap.
264
    /// This function returns the priority of the given item.
253 265
    /// \param i The item.
266
    /// \pre \e i must be in the heap.
254 267
    Prio operator[](const Item &i) const {
255 268
      int idx = _iim[i];
256 269
      return _data[idx].value;
257 270
    }
258 271

	
259
    /// \brief \c i gets to the heap with priority \c p independently
260
    /// if \c i was already there.
272
    /// \brief Set the priority of an item or insert it, if it is
273
    /// not stored in the heap.
261 274
    ///
262
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
263
    /// in the heap and sets the priority of \c i to \c p otherwise.
275
    /// This method sets the priority of the given item if it is
276
    /// already stored in the heap. Otherwise it inserts the given
277
    /// item into the heap with the given priority.
264 278
    /// \param i The item.
265 279
    /// \param p The priority.
266 280
    void set(const Item &i, const Prio &p) {
267 281
      int idx = _iim[i];
268 282
      if (idx < 0) {
269 283
        push(i, p);
... ...
@@ -271,62 +285,60 @@
271 285
        decrease(i, p);
272 286
      } else {
273 287
        increase(i, p);
274 288
      }
275 289
    }
276 290

	
277
    /// \brief Decreases the priority of \c i to \c p.
291
    /// \brief Decrease the priority of an item to the given value.
278 292
    ///
279
    /// This method decreases the priority of item \c i to \c p.
280
    /// \pre \c i must be stored in the heap with priority at least \c
281
    /// p relative to \c Compare.
293
    /// This function decreases the priority of an item to the given value.
282 294
    /// \param i The item.
283 295
    /// \param p The priority.
296
    /// \pre \e i must be stored in the heap with priority at least \e p.
284 297
    void decrease(const Item &i, const Prio &p) {
285 298
      int idx = _iim[i];
286 299
      unlace(idx);
287 300
      _data[idx].value = p;
288 301
      if (Direction::less(p, _minimum)) {
289 302
        _minimum = p;
290 303
      }
291 304
      lace(idx);
292 305
    }
293 306

	
294
    /// \brief Increases the priority of \c i to \c p.
307
    /// \brief Increase the priority of an item to the given value.
295 308
    ///
296
    /// This method sets the priority of item \c i to \c p.
297
    /// \pre \c i must be stored in the heap with priority at most \c
298
    /// p relative to \c Compare.
309
    /// This function increases the priority of an item to the given value.
299 310
    /// \param i The item.
300 311
    /// \param p The priority.
312
    /// \pre \e i must be stored in the heap with priority at most \e p.
301 313
    void increase(const Item &i, const Prio &p) {
302 314
      int idx = _iim[i];
303 315
      unlace(idx);
304 316
      _data[idx].value = p;
305 317
      lace(idx);
306 318
    }
307 319

	
308
    /// \brief Returns if \c item is in, has already been in, or has
309
    /// never been in the heap.
320
    /// \brief Return the state of an item.
310 321
    ///
311
    /// This method returns PRE_HEAP if \c item has never been in the
312
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
313
    /// otherwise. In the latter case it is possible that \c item will
314
    /// get back to the heap again.
322
    /// This method returns \c PRE_HEAP if the given item has never
323
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
324
    /// and \c POST_HEAP otherwise.
325
    /// In the latter case it is possible that the item will get back
326
    /// to the heap again.
315 327
    /// \param i The item.
316 328
    State state(const Item &i) const {
317 329
      int idx = _iim[i];
318 330
      if (idx >= 0) idx = 0;
319 331
      return State(idx);
320 332
    }
321 333

	
322
    /// \brief Sets the state of the \c item in the heap.
334
    /// \brief Set the state of an item in the heap.
323 335
    ///
324
    /// Sets the state of the \c item in the heap. It can be used to
325
    /// manually clear the heap when it is important to achive the
326
    /// better time complexity.
336
    /// This function sets the state of the given item in the heap.
337
    /// It can be used to manually clear the heap when it is important
338
    /// to achive better time complexity.
327 339
    /// \param i The item.
328 340
    /// \param st The state. It should not be \c IN_HEAP.
329 341
    void state(const Item& i, State st) {
330 342
      switch (st) {
331 343
      case POST_HEAP:
332 344
      case PRE_HEAP:
... ...
@@ -356,104 +368,120 @@
356 368
    std::vector<int> _first;
357 369
    std::vector<BucketItem> _data;
358 370
    mutable int _minimum;
359 371

	
360 372
  }; // class BucketHeap
361 373

	
362
  /// \ingroup auxdat
374
  /// \ingroup heaps
363 375
  ///
364
  /// \brief A Simplified Bucket Heap implementation.
376
  /// \brief Simplified bucket heap data structure.
365 377
  ///
366 378
  /// This class implements a simplified \e bucket \e heap data
367
  /// structure.  It does not provide some functionality but it faster
368
  /// and simplier data structure than the BucketHeap. The main
369
  /// difference is that the BucketHeap stores for every key a double
370
  /// linked list while this class stores just simple lists. In the
371
  /// other way it does not support erasing each elements just the
372
  /// minimal and it does not supports key increasing, decreasing.
379
  /// structure. It does not provide some functionality, but it is
380
  /// faster and simpler than BucketHeap. The main difference is
381
  /// that BucketHeap stores a doubly-linked list for each key while
382
  /// this class stores only simply-linked lists. It supports erasing
383
  /// only for the item having minimum priority and it does not support
384
  /// key increasing and decreasing.
373 385
  ///
374
  /// \param IM A read and write Item int map, used internally
375
  /// to handle the cross references.
376
  /// \param MIN If the given parameter is false then instead of the
377
  /// minimum value the maximum can be retrivied with the top() and
378
  /// prio() member functions.
386
  /// Note that this implementation does not conform to the
387
  /// \ref concepts::Heap "heap concept" due to the lack of some 
388
  /// functionality.
389
  ///
390
  /// \tparam IM A read-writable item map with \c int values, used
391
  /// internally to handle the cross references.
392
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
393
  /// The default is \e min-heap. If this parameter is set to \c false,
394
  /// then the comparison is reversed, so the top(), prio() and pop()
395
  /// functions deal with the item having maximum priority instead of the
396
  /// minimum.
379 397
  ///
380 398
  /// \sa BucketHeap
381 399
  template <typename IM, bool MIN = true >
382 400
  class SimpleBucketHeap {
383 401

	
384 402
  public:
385
    typedef typename IM::Key Item;
403

	
404
    /// Type of the item-int map.
405
    typedef IM ItemIntMap;
406
    /// Type of the priorities.
386 407
    typedef int Prio;
387
    typedef std::pair<Item, Prio> Pair;
388
    typedef IM ItemIntMap;
408
    /// Type of the items stored in the heap.
409
    typedef typename ItemIntMap::Key Item;
410
    /// Type of the item-priority pairs.
411
    typedef std::pair<Item,Prio> Pair;
389 412

	
390 413
  private:
391 414

	
392 415
    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
393 416

	
394 417
  public:
395 418

	
396
    /// \brief Type to represent the items states.
419
    /// \brief Type to represent the states of the items.
397 420
    ///
398
    /// Each Item element have a state associated to it. It may be "in heap",
399
    /// "pre heap" or "post heap". The latter two are indifferent from the
421
    /// Each item has a state associated to it. It can be "in heap",
422
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
400 423
    /// heap's point of view, but may be useful to the user.
401 424
    ///
402 425
    /// The item-int map must be initialized in such way that it assigns
403 426
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
404 427
    enum State {
405 428
      IN_HEAP = 0,    ///< = 0.
406 429
      PRE_HEAP = -1,  ///< = -1.
407 430
      POST_HEAP = -2  ///< = -2.
408 431
    };
409 432

	
410 433
  public:
411 434

	
412
    /// \brief The constructor.
435
    /// \brief Constructor.
413 436
    ///
414
    /// The constructor.
415
    /// \param map should be given to the constructor, since it is used
416
    /// internally to handle the cross references. The value of the map
417
    /// should be PRE_HEAP (-1) for each element.
437
    /// Constructor.
438
    /// \param map A map that assigns \c int values to the items.
439
    /// It is used internally to handle the cross references.
440
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
418 441
    explicit SimpleBucketHeap(ItemIntMap &map)
419 442
      : _iim(map), _free(-1), _num(0), _minimum(0) {}
420 443

	
421
    /// \brief Returns the number of items stored in the heap.
444
    /// \brief The number of items stored in the heap.
422 445
    ///
423
    /// The number of items stored in the heap.
446
    /// This function returns the number of items stored in the heap.
424 447
    int size() const { return _num; }
425 448

	
426
    /// \brief Checks if the heap stores no items.
449
    /// \brief Check if the heap is empty.
427 450
    ///
428
    /// Returns \c true if and only if the heap stores no items.
451
    /// This function returns \c true if the heap is empty.
429 452
    bool empty() const { return _num == 0; }
430 453

	
431
    /// \brief Make empty this heap.
454
    /// \brief Make the heap empty.
432 455
    ///
433
    /// Make empty this heap. It does not change the cross reference
434
    /// map.  If you want to reuse a heap what is not surely empty you
435
    /// should first clear the heap and after that you should set the
436
    /// cross reference map for each item to \c PRE_HEAP.
456
    /// This functon makes the heap empty.
457
    /// It does not change the cross reference map. If you want to reuse
458
    /// a heap that is not surely empty, you should first clear it and
459
    /// then you should set the cross reference map to \c PRE_HEAP
460
    /// for each item.
437 461
    void clear() {
438 462
      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
439 463
    }
440 464

	
441 465
    /// \brief Insert a pair of item and priority into the heap.
442 466
    ///
443
    /// Adds \c p.first to the heap with priority \c p.second.
467
    /// This function inserts \c p.first to the heap with priority
468
    /// \c p.second.
444 469
    /// \param p The pair to insert.
470
    /// \pre \c p.first must not be stored in the heap.
445 471
    void push(const Pair& p) {
446 472
      push(p.first, p.second);
447 473
    }
448 474

	
449 475
    /// \brief Insert an item into the heap with the given priority.
450 476
    ///
451
    /// Adds \c i to the heap with priority \c p.
477
    /// This function inserts the given item into the heap with the
478
    /// given priority.
452 479
    /// \param i The item to insert.
453 480
    /// \param p The priority of the item.
481
    /// \pre \e i must not be stored in the heap.
454 482
    void push(const Item &i, const Prio &p) {
455 483
      int idx;
456 484
      if (_free == -1) {
457 485
        idx = _data.size();
458 486
        _data.push_back(BucketItem(i));
459 487
      } else {
... ...
@@ -468,37 +496,37 @@
468 496
      if (Direction::less(p, _minimum)) {
469 497
        _minimum = p;
470 498
      }
471 499
      ++_num;
472 500
    }
473 501

	
474
    /// \brief Returns the item with minimum priority.
502
    /// \brief Return the item having minimum priority.
475 503
    ///
476
    /// This method returns the item with minimum priority.
477
    /// \pre The heap must be nonempty.
504
    /// This function returns the item having minimum priority.
505
    /// \pre The heap must be non-empty.
478 506
    Item top() const {
479 507
      while (_first[_minimum] == -1) {
480 508
        Direction::increase(_minimum);
481 509
      }
482 510
      return _data[_first[_minimum]].item;
483 511
    }
484 512

	
485
    /// \brief Returns the minimum priority.
513
    /// \brief The minimum priority.
486 514
    ///
487
    /// It returns the minimum priority.
488
    /// \pre The heap must be nonempty.
515
    /// This function returns the minimum priority.
516
    /// \pre The heap must be non-empty.
489 517
    Prio prio() const {
490 518
      while (_first[_minimum] == -1) {
491 519
        Direction::increase(_minimum);
492 520
      }
493 521
      return _minimum;
494 522
    }
495 523

	
496
    /// \brief Deletes the item with minimum priority.
524
    /// \brief Remove the item having minimum priority.
497 525
    ///
498
    /// This method deletes the item with minimum priority from the heap.
526
    /// This function removes the item having minimum priority.
499 527
    /// \pre The heap must be non-empty.
500 528
    void pop() {
501 529
      while (_first[_minimum] == -1) {
502 530
        Direction::increase(_minimum);
503 531
      }
504 532
      int idx = _first[_minimum];
... ...
@@ -506,40 +534,39 @@
506 534
      _first[_minimum] = _data[idx].next;
507 535
      _data[idx].next = _free;
508 536
      _free = idx;
509 537
      --_num;
510 538
    }
511 539

	
512
    /// \brief Returns the priority of \c i.
540
    /// \brief The priority of the given item.
513 541
    ///
514
    /// This function returns the priority of item \c i.
515
    /// \warning This operator is not a constant time function
516
    /// because it scans the whole data structure to find the proper
517
    /// value.
518
    /// \pre \c i must be in the heap.
542
    /// This function returns the priority of the given item.
519 543
    /// \param i The item.
544
    /// \pre \e i must be in the heap.
545
    /// \warning This operator is not a constant time function because
546
    /// it scans the whole data structure to find the proper value.
520 547
    Prio operator[](const Item &i) const {
521
      for (int k = 0; k < _first.size(); ++k) {
548
      for (int k = 0; k < int(_first.size()); ++k) {
522 549
        int idx = _first[k];
523 550
        while (idx != -1) {
524 551
          if (_data[idx].item == i) {
525 552
            return k;
526 553
          }
527 554
          idx = _data[idx].next;
528 555
        }
529 556
      }
530 557
      return -1;
531 558
    }
532 559

	
533
    /// \brief Returns if \c item is in, has already been in, or has
534
    /// never been in the heap.
560
    /// \brief Return the state of an item.
535 561
    ///
536
    /// This method returns PRE_HEAP if \c item has never been in the
537
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
538
    /// otherwise. In the latter case it is possible that \c item will
539
    /// get back to the heap again.
562
    /// This method returns \c PRE_HEAP if the given item has never
563
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
564
    /// and \c POST_HEAP otherwise.
565
    /// In the latter case it is possible that the item will get back
566
    /// to the heap again.
540 567
    /// \param i The item.
541 568
    State state(const Item &i) const {
542 569
      int idx = _iim[i];
543 570
      if (idx >= 0) idx = 0;
544 571
      return State(idx);
545 572
    }
Ignore white space 12 line context
... ...
@@ -69,13 +69,17 @@
69 69

	
70 70
    /// \brief The type of the map that stores the flow values.
71 71
    ///
72 72
    /// The type of the map that stores the flow values.
73 73
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
74 74
    /// concept.
75
#ifdef DOXYGEN
76
    typedef GR::ArcMap<Value> FlowMap;
77
#else
75 78
    typedef typename Digraph::template ArcMap<Value> FlowMap;
79
#endif
76 80

	
77 81
    /// \brief Instantiates a FlowMap.
78 82
    ///
79 83
    /// This function instantiates a \ref FlowMap.
80 84
    /// \param digraph The digraph for which we would like to define
81 85
    /// the flow map.
... ...
@@ -84,15 +88,18 @@
84 88
    }
85 89

	
86 90
    /// \brief The elevator type used by the algorithm.
87 91
    ///
88 92
    /// The elevator type used by the algorithm.
89 93
    ///
90
    /// \sa Elevator
91
    /// \sa LinkedElevator
94
    /// \sa Elevator, LinkedElevator
95
#ifdef DOXYGEN
96
    typedef lemon::Elevator<GR, GR::Node> Elevator;
97
#else
92 98
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
99
#endif
93 100

	
94 101
    /// \brief Instantiates an Elevator.
95 102
    ///
96 103
    /// This function instantiates an \ref Elevator.
97 104
    /// \param digraph The digraph for which we would like to define
98 105
    /// the elevator.
... ...
@@ -447,31 +454,33 @@
447 454
    /// \pre Either \ref run() or \ref init() must be called before
448 455
    /// using this function.
449 456
    const Elevator& elevator() const {
450 457
      return *_level;
451 458
    }
452 459

	
453
    /// \brief Sets the tolerance used by algorithm.
460
    /// \brief Sets the tolerance used by the algorithm.
454 461
    ///
455
    /// Sets the tolerance used by algorithm.
456
    Circulation& tolerance(const Tolerance& tolerance) const {
462
    /// Sets the tolerance object used by the algorithm.
463
    /// \return <tt>(*this)</tt>
464
    Circulation& tolerance(const Tolerance& tolerance) {
457 465
      _tol = tolerance;
458 466
      return *this;
459 467
    }
460 468

	
461 469
    /// \brief Returns a const reference to the tolerance.
462 470
    ///
463
    /// Returns a const reference to the tolerance.
471
    /// Returns a const reference to the tolerance object used by
472
    /// the algorithm.
464 473
    const Tolerance& tolerance() const {
465
      return tolerance;
474
      return _tol;
466 475
    }
467 476

	
468 477
    /// \name Execution Control
469 478
    /// The simplest way to execute the algorithm is to call \ref run().\n
470
    /// If you need more control on the initial solution or the execution,
471
    /// first you have to call one of the \ref init() functions, then
479
    /// If you need better control on the initial solution or the execution,
480
    /// you have to call one of the \ref init() functions first, then
472 481
    /// the \ref start() function.
473 482

	
474 483
    ///@{
475 484

	
476 485
    /// Initializes the internal data structures.
477 486

	
Ignore white space 12 line context
... ...
@@ -13,46 +13,52 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_CONCEPTS_HEAP_H
20
#define LEMON_CONCEPTS_HEAP_H
21

	
19 22
///\ingroup concept
20 23
///\file
21 24
///\brief The concept of heaps.
22 25

	
23
#ifndef LEMON_CONCEPTS_HEAP_H
24
#define LEMON_CONCEPTS_HEAP_H
25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concept_check.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief The heap concept.
37 37
    ///
38
    /// Concept class describing the main interface of heaps. A \e heap
39
    /// is a data structure for storing items with specified values called
40
    /// \e priorities in such a way that finding the item with minimum
41
    /// priority is efficient. In a heap one can change the priority of an
42
    /// item, add or erase an item, etc.
38
    /// This concept class describes the main interface of heaps.
39
    /// The various \ref heaps "heap structures" are efficient
40
    /// implementations of the abstract data type \e priority \e queue.
41
    /// They store items with specified values called \e priorities
42
    /// in such a way that finding and removing the item with minimum
43
    /// priority are efficient. The basic operations are adding and
44
    /// erasing items, changing the priority of an item, etc.
43 45
    ///
44
    /// \tparam PR Type of the priority of the items.
45
    /// \tparam IM A read and writable item map with int values, used
46
    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
47
    /// Any class that conforms to this concept can be used easily in such
48
    /// algorithms.
49
    ///
50
    /// \tparam PR Type of the priorities of the items.
51
    /// \tparam IM A read-writable item map with \c int values, used
46 52
    /// internally to handle the cross references.
47
    /// \tparam Comp A functor class for the ordering of the priorities.
53
    /// \tparam CMP A functor class for comparing the priorities.
48 54
    /// The default is \c std::less<PR>.
49 55
#ifdef DOXYGEN
50
    template <typename PR, typename IM, typename Comp = std::less<PR> >
56
    template <typename PR, typename IM, typename CMP>
51 57
#else
52
    template <typename PR, typename IM>
58
    template <typename PR, typename IM, typename CMP = std::less<PR> >
53 59
#endif
54 60
    class Heap {
55 61
    public:
56 62

	
57 63
      /// Type of the item-int map.
58 64
      typedef IM ItemIntMap;
... ...
@@ -61,129 +67,145 @@
61 67
      /// Type of the items stored in the heap.
62 68
      typedef typename ItemIntMap::Key Item;
63 69

	
64 70
      /// \brief Type to represent the states of the items.
65 71
      ///
66 72
      /// Each item has a state associated to it. It can be "in heap",
67
      /// "pre heap" or "post heap". The later two are indifferent
68
      /// from the point of view of the heap, but may be useful for
69
      /// the user.
73
      /// "pre-heap" or "post-heap". The latter two are indifferent from the
74
      /// heap's point of view, but may be useful to the user.
70 75
      ///
71 76
      /// The item-int map must be initialized in such way that it assigns
72 77
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
73 78
      enum State {
74 79
        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
75
        PRE_HEAP = -1,  ///< = -1. The "pre heap" state constant.
76
        POST_HEAP = -2  ///< = -2. The "post heap" state constant.
80
        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
81
        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
77 82
      };
78 83

	
79
      /// \brief The constructor.
84
      /// \brief Constructor.
80 85
      ///
81
      /// The constructor.
86
      /// Constructor.
82 87
      /// \param map A map that assigns \c int values to keys of type
83 88
      /// \c Item. It is used internally by the heap implementations to
84 89
      /// handle the cross references. The assigned value must be
85
      /// \c PRE_HEAP (<tt>-1</tt>) for every item.
90
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
86 91
      explicit Heap(ItemIntMap &map) {}
87 92

	
93
      /// \brief Constructor.
94
      ///
95
      /// Constructor.
96
      /// \param map A map that assigns \c int values to keys of type
97
      /// \c Item. It is used internally by the heap implementations to
98
      /// handle the cross references. The assigned value must be
99
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
100
      /// \param comp The function object used for comparing the priorities.
101
      explicit Heap(ItemIntMap &map, const CMP &comp) {}
102

	
88 103
      /// \brief The number of items stored in the heap.
89 104
      ///
90
      /// Returns the number of items stored in the heap.
105
      /// This function returns the number of items stored in the heap.
91 106
      int size() const { return 0; }
92 107

	
93
      /// \brief Checks if the heap is empty.
108
      /// \brief Check if the heap is empty.
94 109
      ///
95
      /// Returns \c true if the heap is empty.
110
      /// This function returns \c true if the heap is empty.
96 111
      bool empty() const { return false; }
97 112

	
98
      /// \brief Makes the heap empty.
113
      /// \brief Make the heap empty.
99 114
      ///
100
      /// Makes the heap empty.
101
      void clear();
115
      /// This functon makes the heap empty.
116
      /// It does not change the cross reference map. If you want to reuse
117
      /// a heap that is not surely empty, you should first clear it and
118
      /// then you should set the cross reference map to \c PRE_HEAP
119
      /// for each item.
120
      void clear() {}
102 121

	
103
      /// \brief Inserts an item into the heap with the given priority.
122
      /// \brief Insert an item into the heap with the given priority.
104 123
      ///
105
      /// Inserts the given item into the heap with the given priority.
124
      /// This function inserts the given item into the heap with the
125
      /// given priority.
106 126
      /// \param i The item to insert.
107 127
      /// \param p The priority of the item.
128
      /// \pre \e i must not be stored in the heap.
108 129
      void push(const Item &i, const Prio &p) {}
109 130

	
110
      /// \brief Returns the item having minimum priority.
131
      /// \brief Return the item having minimum priority.
111 132
      ///
112
      /// Returns the item having minimum priority.
133
      /// This function returns the item having minimum priority.
113 134
      /// \pre The heap must be non-empty.
114 135
      Item top() const {}
115 136

	
116 137
      /// \brief The minimum priority.
117 138
      ///
118
      /// Returns the minimum priority.
139
      /// This function returns the minimum priority.
119 140
      /// \pre The heap must be non-empty.
120 141
      Prio prio() const {}
121 142

	
122
      /// \brief Removes the item having minimum priority.
143
      /// \brief Remove the item having minimum priority.
123 144
      ///
124
      /// Removes the item having minimum priority.
145
      /// This function removes the item having minimum priority.
125 146
      /// \pre The heap must be non-empty.
126 147
      void pop() {}
127 148

	
128
      /// \brief Removes an item from the heap.
149
      /// \brief Remove the given item from the heap.
129 150
      ///
130
      /// Removes the given item from the heap if it is already stored.
151
      /// This function removes the given item from the heap if it is
152
      /// already stored.
131 153
      /// \param i The item to delete.
154
      /// \pre \e i must be in the heap.
132 155
      void erase(const Item &i) {}
133 156

	
134
      /// \brief The priority of an item.
157
      /// \brief The priority of the given item.
135 158
      ///
136
      /// Returns the priority of the given item.
159
      /// This function returns the priority of the given item.
137 160
      /// \param i The item.
138
      /// \pre \c i must be in the heap.
161
      /// \pre \e i must be in the heap.
139 162
      Prio operator[](const Item &i) const {}
140 163

	
141
      /// \brief Sets the priority of an item or inserts it, if it is
164
      /// \brief Set the priority of an item or insert it, if it is
142 165
      /// not stored in the heap.
143 166
      ///
144 167
      /// This method sets the priority of the given item if it is
145
      /// already stored in the heap.
146
      /// Otherwise it inserts the given item with the given priority.
168
      /// already stored in the heap. Otherwise it inserts the given
169
      /// item into the heap with the given priority.
147 170
      ///
148 171
      /// \param i The item.
149 172
      /// \param p The priority.
150 173
      void set(const Item &i, const Prio &p) {}
151 174

	
152
      /// \brief Decreases the priority of an item to the given value.
175
      /// \brief Decrease the priority of an item to the given value.
153 176
      ///
154
      /// Decreases the priority of an item to the given value.
177
      /// This function decreases the priority of an item to the given value.
155 178
      /// \param i The item.
156 179
      /// \param p The priority.
157
      /// \pre \c i must be stored in the heap with priority at least \c p.
180
      /// \pre \e i must be stored in the heap with priority at least \e p.
158 181
      void decrease(const Item &i, const Prio &p) {}
159 182

	
160
      /// \brief Increases the priority of an item to the given value.
183
      /// \brief Increase the priority of an item to the given value.
161 184
      ///
162
      /// Increases the priority of an item to the given value.
185
      /// This function increases the priority of an item to the given value.
163 186
      /// \param i The item.
164 187
      /// \param p The priority.
165
      /// \pre \c i must be stored in the heap with priority at most \c p.
188
      /// \pre \e i must be stored in the heap with priority at most \e p.
166 189
      void increase(const Item &i, const Prio &p) {}
167 190

	
168
      /// \brief Returns if an item is in, has already been in, or has
169
      /// never been in the heap.
191
      /// \brief Return the state of an item.
170 192
      ///
171 193
      /// This method returns \c PRE_HEAP if the given item has never
172 194
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
173 195
      /// and \c POST_HEAP otherwise.
174 196
      /// In the latter case it is possible that the item will get back
175 197
      /// to the heap again.
176 198
      /// \param i The item.
177 199
      State state(const Item &i) const {}
178 200

	
179
      /// \brief Sets the state of an item in the heap.
201
      /// \brief Set the state of an item in the heap.
180 202
      ///
181
      /// Sets the state of the given item in the heap. It can be used
182
      /// to manually clear the heap when it is important to achive the
183
      /// better time complexity.
203
      /// This function sets the state of the given item in the heap.
204
      /// It can be used to manually clear the heap when it is important
205
      /// to achive better time complexity.
184 206
      /// \param i The item.
185 207
      /// \param st The state. It should not be \c IN_HEAP.
186 208
      void state(const Item& i, State st) {}
187 209

	
188 210

	
189 211
      template <typename _Heap>
Ignore white space 12 line context
... ...
@@ -44,13 +44,13 @@
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the %DFS paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the %DFS paths.
50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a \c PredMap.
53 53

	
54 54
    ///This function instantiates a \ref PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///\ref PredMap.
... ...
@@ -59,13 +59,14 @@
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
66
    ///By default it is a NullMap.
66 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67 68
    ///Instantiates a \c ProcessedMap.
68 69

	
69 70
    ///This function instantiates a \ref ProcessedMap.
70 71
    ///\param g is the digraph, to which
71 72
    ///we would like to define the \ref ProcessedMap.
... ...
@@ -78,13 +79,13 @@
78 79
      return new ProcessedMap();
79 80
    }
80 81

	
81 82
    ///The type of the map that indicates which nodes are reached.
82 83

	
83 84
    ///The type of the map that indicates which nodes are reached.
84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86 87
    ///Instantiates a \c ReachedMap.
87 88

	
88 89
    ///This function instantiates a \ref ReachedMap.
89 90
    ///\param g is the digraph, to which
90 91
    ///we would like to define the \ref ReachedMap.
... ...
@@ -93,13 +94,13 @@
93 94
      return new ReachedMap(g);
94 95
    }
95 96

	
96 97
    ///The type of the map that stores the distances of the nodes.
97 98

	
98 99
    ///The type of the map that stores the distances of the nodes.
99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
100 101
    typedef typename Digraph::template NodeMap<int> DistMap;
101 102
    ///Instantiates a \c DistMap.
102 103

	
103 104
    ///This function instantiates a \ref DistMap.
104 105
    ///\param g is the digraph, to which we would like to define the
105 106
    ///\ref DistMap.
... ...
@@ -221,13 +222,13 @@
221 222
    };
222 223
    ///\brief \ref named-templ-param "Named parameter" for setting
223 224
    ///\c PredMap type.
224 225
    ///
225 226
    ///\ref named-templ-param "Named parameter" for setting
226 227
    ///\c PredMap type.
227
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
228
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
228 229
    template <class T>
229 230
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
230 231
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
231 232
    };
232 233

	
233 234
    template <class T>
... ...
@@ -241,13 +242,13 @@
241 242
    };
242 243
    ///\brief \ref named-templ-param "Named parameter" for setting
243 244
    ///\c DistMap type.
244 245
    ///
245 246
    ///\ref named-templ-param "Named parameter" for setting
246 247
    ///\c DistMap type.
247
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
248
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
248 249
    template <class T>
249 250
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
250 251
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
251 252
    };
252 253

	
253 254
    template <class T>
... ...
@@ -261,13 +262,13 @@
261 262
    };
262 263
    ///\brief \ref named-templ-param "Named parameter" for setting
263 264
    ///\c ReachedMap type.
264 265
    ///
265 266
    ///\ref named-templ-param "Named parameter" for setting
266 267
    ///\c ReachedMap type.
267
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
268
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
268 269
    template <class T>
269 270
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
270 271
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
271 272
    };
272 273

	
273 274
    template <class T>
... ...
@@ -281,13 +282,13 @@
281 282
    };
282 283
    ///\brief \ref named-templ-param "Named parameter" for setting
283 284
    ///\c ProcessedMap type.
284 285
    ///
285 286
    ///\ref named-templ-param "Named parameter" for setting
286 287
    ///\c ProcessedMap type.
287
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
288
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
288 289
    template <class T>
289 290
    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
290 291
      typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
291 292
    };
292 293

	
293 294
    struct SetStandardProcessedMapTraits : public Traits {
... ...
@@ -408,14 +409,14 @@
408 409

	
409 410
  public:
410 411

	
411 412
    ///\name Execution Control
412 413
    ///The simplest way to execute the DFS algorithm is to use one of the
413 414
    ///member functions called \ref run(Node) "run()".\n
414
    ///If you need more control on the execution, first you have to call
415
    ///\ref init(), then you can add a source node with \ref addSource()
415
    ///If you need better control on the execution, you have to call
416
    ///\ref init() first, then you can add a source node with \ref addSource()
416 417
    ///and perform the actual computation with \ref start().
417 418
    ///This procedure can be repeated if there are nodes that have not
418 419
    ///been reached.
419 420

	
420 421
    ///@{
421 422

	
... ...
@@ -666,56 +667,56 @@
666 667
    ///functions.\n
667 668
    ///Either \ref run(Node) "run()" or \ref start() should be called
668 669
    ///before using them.
669 670

	
670 671
    ///@{
671 672

	
672
    ///The DFS path to a node.
673
    ///The DFS path to the given node.
673 674

	
674
    ///Returns the DFS path to a node.
675
    ///Returns the DFS path to the given node from the root(s).
675 676
    ///
676 677
    ///\warning \c t should be reached from the root(s).
677 678
    ///
678 679
    ///\pre Either \ref run(Node) "run()" or \ref init()
679 680
    ///must be called before using this function.
680 681
    Path path(Node t) const { return Path(*G, *_pred, t); }
681 682

	
682
    ///The distance of a node from the root(s).
683
    ///The distance of the given node from the root(s).
683 684

	
684
    ///Returns the distance of a node from the root(s).
685
    ///Returns the distance of the given node from the root(s).
685 686
    ///
686 687
    ///\warning If node \c v is not reached from the root(s), then
687 688
    ///the return value of this function is undefined.
688 689
    ///
689 690
    ///\pre Either \ref run(Node) "run()" or \ref init()
690 691
    ///must be called before using this function.
691 692
    int dist(Node v) const { return (*_dist)[v]; }
692 693

	
693
    ///Returns the 'previous arc' of the %DFS tree for a node.
694
    ///Returns the 'previous arc' of the %DFS tree for the given node.
694 695

	
695 696
    ///This function returns the 'previous arc' of the %DFS tree for the
696 697
    ///node \c v, i.e. it returns the last arc of a %DFS path from a
697 698
    ///root to \c v. It is \c INVALID if \c v is not reached from the
698 699
    ///root(s) or if \c v is a root.
699 700
    ///
700 701
    ///The %DFS tree used here is equal to the %DFS tree used in
701
    ///\ref predNode().
702
    ///\ref predNode() and \ref predMap().
702 703
    ///
703 704
    ///\pre Either \ref run(Node) "run()" or \ref init()
704 705
    ///must be called before using this function.
705 706
    Arc predArc(Node v) const { return (*_pred)[v];}
706 707

	
707
    ///Returns the 'previous node' of the %DFS tree.
708
    ///Returns the 'previous node' of the %DFS tree for the given node.
708 709

	
709 710
    ///This function returns the 'previous node' of the %DFS
710 711
    ///tree for the node \c v, i.e. it returns the last but one node
711
    ///from a %DFS path from a root to \c v. It is \c INVALID
712
    ///of a %DFS path from a root to \c v. It is \c INVALID
712 713
    ///if \c v is not reached from the root(s) or if \c v is a root.
713 714
    ///
714 715
    ///The %DFS tree used here is equal to the %DFS tree used in
715
    ///\ref predArc().
716
    ///\ref predArc() and \ref predMap().
716 717
    ///
717 718
    ///\pre Either \ref run(Node) "run()" or \ref init()
718 719
    ///must be called before using this function.
719 720
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
720 721
                                  G->source((*_pred)[v]); }
721 722

	
... ...
@@ -730,19 +731,19 @@
730 731
    const DistMap &distMap() const { return *_dist;}
731 732

	
732 733
    ///\brief Returns a const reference to the node map that stores the
733 734
    ///predecessor arcs.
734 735
    ///
735 736
    ///Returns a const reference to the node map that stores the predecessor
736
    ///arcs, which form the DFS tree.
737
    ///arcs, which form the DFS tree (forest).
737 738
    ///
738 739
    ///\pre Either \ref run(Node) "run()" or \ref init()
739 740
    ///must be called before using this function.
740 741
    const PredMap &predMap() const { return *_pred;}
741 742

	
742
    ///Checks if a node is reached from the root(s).
743
    ///Checks if the given node. node is reached from the root(s).
743 744

	
744 745
    ///Returns \c true if \c v is reached from the root(s).
745 746
    ///
746 747
    ///\pre Either \ref run(Node) "run()" or \ref init()
747 748
    ///must be called before using this function.
748 749
    bool reached(Node v) const { return (*_reached)[v]; }
... ...
@@ -762,13 +763,13 @@
762 763

	
763 764
    ///\brief The type of the map that stores the predecessor
764 765
    ///arcs of the %DFS paths.
765 766
    ///
766 767
    ///The type of the map that stores the predecessor
767 768
    ///arcs of the %DFS paths.
768
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
769
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
769 770
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
770 771
    ///Instantiates a PredMap.
771 772

	
772 773
    ///This function instantiates a PredMap.
773 774
    ///\param g is the digraph, to which we would like to define the
774 775
    ///PredMap.
... ...
@@ -777,13 +778,13 @@
777 778
      return new PredMap(g);
778 779
    }
779 780

	
780 781
    ///The type of the map that indicates which nodes are processed.
781 782

	
782 783
    ///The type of the map that indicates which nodes are processed.
783
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
784
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
784 785
    ///By default it is a NullMap.
785 786
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
786 787
    ///Instantiates a ProcessedMap.
787 788

	
788 789
    ///This function instantiates a ProcessedMap.
789 790
    ///\param g is the digraph, to which
... ...
@@ -797,13 +798,13 @@
797 798
      return new ProcessedMap();
798 799
    }
799 800

	
800 801
    ///The type of the map that indicates which nodes are reached.
801 802

	
802 803
    ///The type of the map that indicates which nodes are reached.
803
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
804
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
804 805
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
805 806
    ///Instantiates a ReachedMap.
806 807

	
807 808
    ///This function instantiates a ReachedMap.
808 809
    ///\param g is the digraph, to which
809 810
    ///we would like to define the ReachedMap.
... ...
@@ -812,13 +813,13 @@
812 813
      return new ReachedMap(g);
813 814
    }
814 815

	
815 816
    ///The type of the map that stores the distances of the nodes.
816 817

	
817 818
    ///The type of the map that stores the distances of the nodes.
818
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
819
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
819 820
    typedef typename Digraph::template NodeMap<int> DistMap;
820 821
    ///Instantiates a DistMap.
821 822

	
822 823
    ///This function instantiates a DistMap.
823 824
    ///\param g is the digraph, to which we would like to define
824 825
    ///the DistMap
... ...
@@ -827,24 +828,20 @@
827 828
      return new DistMap(g);
828 829
    }
829 830

	
830 831
    ///The type of the DFS paths.
831 832

	
832 833
    ///The type of the DFS paths.
833
    ///It must meet the \ref concepts::Path "Path" concept.
834
    ///It must conform to the \ref concepts::Path "Path" concept.
834 835
    typedef lemon::Path<Digraph> Path;
835 836
  };
836 837

	
837 838
  /// Default traits class used by DfsWizard
838 839

	
839
  /// To make it easier to use Dfs algorithm
840
  /// we have created a wizard class.
841
  /// This \ref DfsWizard class needs default traits,
842
  /// as well as the \ref Dfs class.
843
  /// The \ref DfsWizardBase is a class to be the default traits of the
844
  /// \ref DfsWizard class.
840
  /// Default traits class used by DfsWizard.
841
  /// \tparam GR The type of the digraph.
845 842
  template<class GR>
846 843
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
847 844
  {
848 845

	
849 846
    typedef DfsWizardDefaultTraits<GR> Base;
850 847
  protected:
... ...
@@ -866,13 +863,13 @@
866 863
    //Pointer to the distance of the target node.
867 864
    int *_di;
868 865

	
869 866
    public:
870 867
    /// Constructor.
871 868

	
872
    /// This constructor does not require parameters, therefore it initiates
869
    /// This constructor does not require parameters, it initiates
873 870
    /// all of the attributes to \c 0.
874 871
    DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
875 872
                      _dist(0), _path(0), _di(0) {}
876 873

	
877 874
    /// Constructor.
878 875

	
... ...
@@ -896,30 +893,23 @@
896 893
  /// which makes it easier to use the algorithm.
897 894
  template<class TR>
898 895
  class DfsWizard : public TR
899 896
  {
900 897
    typedef TR Base;
901 898

	
902
    ///The type of the digraph the algorithm runs on.
903 899
    typedef typename TR::Digraph Digraph;
904 900

	
905 901
    typedef typename Digraph::Node Node;
906 902
    typedef typename Digraph::NodeIt NodeIt;
907 903
    typedef typename Digraph::Arc Arc;
908 904
    typedef typename Digraph::OutArcIt OutArcIt;
909 905

	
910
    ///\brief The type of the map that stores the predecessor
911
    ///arcs of the DFS paths.
912 906
    typedef typename TR::PredMap PredMap;
913
    ///\brief The type of the map that stores the distances of the nodes.
914 907
    typedef typename TR::DistMap DistMap;
915
    ///\brief The type of the map that indicates which nodes are reached.
916 908
    typedef typename TR::ReachedMap ReachedMap;
917
    ///\brief The type of the map that indicates which nodes are processed.
918 909
    typedef typename TR::ProcessedMap ProcessedMap;
919
    ///The type of the DFS paths
920 910
    typedef typename TR::Path Path;
921 911

	
922 912
  public:
923 913

	
924 914
    /// Constructor.
925 915
    DfsWizard() : TR() {}
... ...
@@ -996,17 +986,18 @@
996 986
    template<class T>
997 987
    struct SetPredMapBase : public Base {
998 988
      typedef T PredMap;
999 989
      static PredMap *createPredMap(const Digraph &) { return 0; };
1000 990
      SetPredMapBase(const TR &b) : TR(b) {}
1001 991
    };
1002
    ///\brief \ref named-func-param "Named parameter"
1003
    ///for setting PredMap object.
992

	
993
    ///\brief \ref named-templ-param "Named parameter" for setting
994
    ///the predecessor map.
1004 995
    ///
1005
    ///\ref named-func-param "Named parameter"
1006
    ///for setting PredMap object.
996
    ///\ref named-templ-param "Named parameter" function for setting
997
    ///the map that stores the predecessor arcs of the nodes.
1007 998
    template<class T>
1008 999
    DfsWizard<SetPredMapBase<T> > predMap(const T &t)
1009 1000
    {
1010 1001
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1011 1002
      return DfsWizard<SetPredMapBase<T> >(*this);
1012 1003
    }
... ...
@@ -1014,17 +1005,18 @@
1014 1005
    template<class T>
1015 1006
    struct SetReachedMapBase : public Base {
1016 1007
      typedef T ReachedMap;
1017 1008
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1018 1009
      SetReachedMapBase(const TR &b) : TR(b) {}
1019 1010
    };
1020
    ///\brief \ref named-func-param "Named parameter"
1021
    ///for setting ReachedMap object.
1011

	
1012
    ///\brief \ref named-templ-param "Named parameter" for setting
1013
    ///the reached map.
1022 1014
    ///
1023
    /// \ref named-func-param "Named parameter"
1024
    ///for setting ReachedMap object.
1015
    ///\ref named-templ-param "Named parameter" function for setting
1016
    ///the map that indicates which nodes are reached.
1025 1017
    template<class T>
1026 1018
    DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1027 1019
    {
1028 1020
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1029 1021
      return DfsWizard<SetReachedMapBase<T> >(*this);
1030 1022
    }
... ...
@@ -1032,17 +1024,19 @@
1032 1024
    template<class T>
1033 1025
    struct SetDistMapBase : public Base {
1034 1026
      typedef T DistMap;
1035 1027
      static DistMap *createDistMap(const Digraph &) { return 0; };
1036 1028
      SetDistMapBase(const TR &b) : TR(b) {}
1037 1029
    };
1038
    ///\brief \ref named-func-param "Named parameter"
1039
    ///for setting DistMap object.
1030

	
1031
    ///\brief \ref named-templ-param "Named parameter" for setting
1032
    ///the distance map.
1040 1033
    ///
1041
    /// \ref named-func-param "Named parameter"
1042
    ///for setting DistMap object.
1034
    ///\ref named-templ-param "Named parameter" function for setting
1035
    ///the map that stores the distances of the nodes calculated
1036
    ///by the algorithm.
1043 1037
    template<class T>
1044 1038
    DfsWizard<SetDistMapBase<T> > distMap(const T &t)
1045 1039
    {
1046 1040
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1047 1041
      return DfsWizard<SetDistMapBase<T> >(*this);
1048 1042
    }
... ...
@@ -1050,17 +1044,18 @@
1050 1044
    template<class T>
1051 1045
    struct SetProcessedMapBase : public Base {
1052 1046
      typedef T ProcessedMap;
1053 1047
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1054 1048
      SetProcessedMapBase(const TR &b) : TR(b) {}
1055 1049
    };
1056
    ///\brief \ref named-func-param "Named parameter"
1057
    ///for setting ProcessedMap object.
1050

	
1051
    ///\brief \ref named-func-param "Named parameter" for setting
1052
    ///the processed map.
1058 1053
    ///
1059
    /// \ref named-func-param "Named parameter"
1060
    ///for setting ProcessedMap object.
1054
    ///\ref named-templ-param "Named parameter" function for setting
1055
    ///the map that indicates which nodes are processed.
1061 1056
    template<class T>
1062 1057
    DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1063 1058
    {
1064 1059
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1065 1060
      return DfsWizard<SetProcessedMapBase<T> >(*this);
1066 1061
    }
... ...
@@ -1205,13 +1200,13 @@
1205 1200
    /// \brief The type of the digraph the algorithm runs on.
1206 1201
    typedef GR Digraph;
1207 1202

	
1208 1203
    /// \brief The type of the map that indicates which nodes are reached.
1209 1204
    ///
1210 1205
    /// The type of the map that indicates which nodes are reached.
1211
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1206
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1212 1207
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1213 1208

	
1214 1209
    /// \brief Instantiates a ReachedMap.
1215 1210
    ///
1216 1211
    /// This function instantiates a ReachedMap.
1217 1212
    /// \param digraph is the digraph, to which
... ...
@@ -1366,14 +1361,14 @@
1366 1361

	
1367 1362
  public:
1368 1363

	
1369 1364
    /// \name Execution Control
1370 1365
    /// The simplest way to execute the DFS algorithm is to use one of the
1371 1366
    /// member functions called \ref run(Node) "run()".\n
1372
    /// If you need more control on the execution, first you have to call
1373
    /// \ref init(), then you can add a source node with \ref addSource()
1367
    /// If you need better control on the execution, you have to call
1368
    /// \ref init() first, then you can add a source node with \ref addSource()
1374 1369
    /// and perform the actual computation with \ref start().
1375 1370
    /// This procedure can be repeated if there are nodes that have not
1376 1371
    /// been reached.
1377 1372

	
1378 1373
    /// @{
1379 1374

	
... ...
@@ -1617,13 +1612,13 @@
1617 1612
    /// functions.\n
1618 1613
    /// Either \ref run(Node) "run()" or \ref start() should be called
1619 1614
    /// before using them.
1620 1615

	
1621 1616
    ///@{
1622 1617

	
1623
    /// \brief Checks if a node is reached from the root(s).
1618
    /// \brief Checks if the given node is reached from the root(s).
1624 1619
    ///
1625 1620
    /// Returns \c true if \c v is reached from the root(s).
1626 1621
    ///
1627 1622
    /// \pre Either \ref run(Node) "run()" or \ref init()
1628 1623
    /// must be called before using this function.
1629 1624
    bool reached(Node v) const { return (*_reached)[v]; }
Ignore white space 12 line context
... ...
@@ -67,15 +67,15 @@
67 67
    ///The type of the digraph the algorithm runs on.
68 68
    typedef GR Digraph;
69 69

	
70 70
    ///The type of the map that stores the arc lengths.
71 71

	
72 72
    ///The type of the map that stores the arc lengths.
73
    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
73
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
74 74
    typedef LEN LengthMap;
75
    ///The type of the length of the arcs.
75
    ///The type of the arc lengths.
76 76
    typedef typename LEN::Value Value;
77 77

	
78 78
    /// Operation traits for %Dijkstra algorithm.
79 79

	
80 80
    /// This class defines the operations that are used in the algorithm.
81 81
    /// \see DijkstraDefaultOperationTraits
... ...
@@ -113,13 +113,13 @@
113 113

	
114 114
    ///\brief The type of the map that stores the predecessor
115 115
    ///arcs of the shortest paths.
116 116
    ///
117 117
    ///The type of the map that stores the predecessor
118 118
    ///arcs of the shortest paths.
119
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
119
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
120 120
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
121 121
    ///Instantiates a \c PredMap.
122 122

	
123 123
    ///This function instantiates a \ref PredMap.
124 124
    ///\param g is the digraph, to which we would like to define the
125 125
    ///\ref PredMap.
... ...
@@ -128,13 +128,13 @@
128 128
      return new PredMap(g);
129 129
    }
130 130

	
131 131
    ///The type of the map that indicates which nodes are processed.
132 132

	
133 133
    ///The type of the map that indicates which nodes are processed.
134
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
134
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
135 135
    ///By default it is a NullMap.
136 136
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
137 137
    ///Instantiates a \c ProcessedMap.
138 138

	
139 139
    ///This function instantiates a \ref ProcessedMap.
140 140
    ///\param g is the digraph, to which
... ...
@@ -148,13 +148,13 @@
148 148
      return new ProcessedMap();
149 149
    }
150 150

	
151 151
    ///The type of the map that stores the distances of the nodes.
152 152

	
153 153
    ///The type of the map that stores the distances of the nodes.
154
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
154
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
155 155
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
156 156
    ///Instantiates a \c DistMap.
157 157

	
158 158
    ///This function instantiates a \ref DistMap.
159 159
    ///\param g is the digraph, to which we would like to define
160 160
    ///the \ref DistMap.
... ...
@@ -166,12 +166,16 @@
166 166

	
167 167
  ///%Dijkstra algorithm class.
168 168

	
169 169
  /// \ingroup shortest_path
170 170
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
171 171
  ///
172
  ///The %Dijkstra algorithm solves the single-source shortest path problem
173
  ///when all arc lengths are non-negative. If there are negative lengths,
174
  ///the BellmanFord algorithm should be used instead.
175
  ///
172 176
  ///The arc lengths are passed to the algorithm using a
173 177
  ///\ref concepts::ReadMap "ReadMap",
174 178
  ///so it is easy to change it to any kind of length.
175 179
  ///The type of the length is determined by the
176 180
  ///\ref concepts::ReadMap::Value "Value" of the length map.
177 181
  ///It is also possible to change the underlying priority heap.
... ...
@@ -198,13 +202,13 @@
198 202
  class Dijkstra {
199 203
  public:
200 204

	
201 205
    ///The type of the digraph the algorithm runs on.
202 206
    typedef typename TR::Digraph Digraph;
203 207

	
204
    ///The type of the length of the arcs.
208
    ///The type of the arc lengths.
205 209
    typedef typename TR::LengthMap::Value Value;
206 210
    ///The type of the map that stores the arc lengths.
207 211
    typedef typename TR::LengthMap LengthMap;
208 212
    ///\brief The type of the map that stores the predecessor arcs of the
209 213
    ///shortest paths.
210 214
    typedef typename TR::PredMap PredMap;
... ...
@@ -301,13 +305,13 @@
301 305
    };
302 306
    ///\brief \ref named-templ-param "Named parameter" for setting
303 307
    ///\c PredMap type.
304 308
    ///
305 309
    ///\ref named-templ-param "Named parameter" for setting
306 310
    ///\c PredMap type.
307
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
311
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
308 312
    template <class T>
309 313
    struct SetPredMap
310 314
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
311 315
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
312 316
    };
313 317

	
... ...
@@ -322,13 +326,13 @@
322 326
    };
323 327
    ///\brief \ref named-templ-param "Named parameter" for setting
324 328
    ///\c DistMap type.
325 329
    ///
326 330
    ///\ref named-templ-param "Named parameter" for setting
327 331
    ///\c DistMap type.
328
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
332
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
329 333
    template <class T>
330 334
    struct SetDistMap
331 335
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
332 336
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
333 337
    };
334 338

	
... ...
@@ -343,13 +347,13 @@
343 347
    };
344 348
    ///\brief \ref named-templ-param "Named parameter" for setting
345 349
    ///\c ProcessedMap type.
346 350
    ///
347 351
    ///\ref named-templ-param "Named parameter" for setting
348 352
    ///\c ProcessedMap type.
349
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
353
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
350 354
    template <class T>
351 355
    struct SetProcessedMap
352 356
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
353 357
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
354 358
    };
355 359

	
... ...
@@ -440,12 +444,13 @@
440 444

	
441 445
    /// \brief \ref named-templ-param "Named parameter" for setting
442 446
    ///\c OperationTraits type
443 447
    ///
444 448
    ///\ref named-templ-param "Named parameter" for setting
445 449
    ///\c OperationTraits type.
450
    /// For more information see \ref DijkstraDefaultOperationTraits.
446 451
    template <class T>
447 452
    struct SetOperationTraits
448 453
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
449 454
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
450 455
      Create;
451 456
    };
... ...
@@ -581,14 +586,14 @@
581 586

	
582 587
  public:
583 588

	
584 589
    ///\name Execution Control
585 590
    ///The simplest way to execute the %Dijkstra algorithm is to use
586 591
    ///one of the member functions called \ref run(Node) "run()".\n
587
    ///If you need more control on the execution, first you have to call
588
    ///\ref init(), then you can add several source nodes with
592
    ///If you need better control on the execution, you have to call
593
    ///\ref init() first, then you can add several source nodes with
589 594
    ///\ref addSource(). Finally the actual path computation can be
590 595
    ///performed with one of the \ref start() functions.
591 596

	
592 597
    ///@{
593 598

	
594 599
    ///\brief Initializes the internal data structures.
... ...
@@ -798,61 +803,63 @@
798 803

	
799 804
    ///@}
800 805

	
801 806
    ///\name Query Functions
802 807
    ///The results of the %Dijkstra algorithm can be obtained using these
803 808
    ///functions.\n
804
    ///Either \ref run(Node) "run()" or \ref start() should be called
809
    ///Either \ref run(Node) "run()" or \ref init() should be called
805 810
    ///before using them.
806 811

	
807 812
    ///@{
808 813

	
809
    ///The shortest path to a node.
814
    ///The shortest path to the given node.
810 815

	
811
    ///Returns the shortest path to a node.
816
    ///Returns the shortest path to the given node from the root(s).
812 817
    ///
813 818
    ///\warning \c t should be reached from the root(s).
814 819
    ///
815 820
    ///\pre Either \ref run(Node) "run()" or \ref init()
816 821
    ///must be called before using this function.
817 822
    Path path(Node t) const { return Path(*G, *_pred, t); }
818 823

	
819
    ///The distance of a node from the root(s).
824
    ///The distance of the given node from the root(s).
820 825

	
821
    ///Returns the distance of a node from the root(s).
826
    ///Returns the distance of the given node from the root(s).
822 827
    ///
823 828
    ///\warning If node \c v is not reached from the root(s), then
824 829
    ///the return value of this function is undefined.
825 830
    ///
826 831
    ///\pre Either \ref run(Node) "run()" or \ref init()
827 832
    ///must be called before using this function.
828 833
    Value dist(Node v) const { return (*_dist)[v]; }
829 834

	
830
    ///Returns the 'previous arc' of the shortest path tree for a node.
831

	
835
    ///\brief Returns the 'previous arc' of the shortest path tree for
836
    ///the given node.
837
    ///
832 838
    ///This function returns the 'previous arc' of the shortest path
833 839
    ///tree for the node \c v, i.e. it returns the last arc of a
834 840
    ///shortest path from a root to \c v. It is \c INVALID if \c v
835 841
    ///is not reached from the root(s) or if \c v is a root.
836 842
    ///
837 843
    ///The shortest path tree used here is equal to the shortest path
838
    ///tree used in \ref predNode().
844
    ///tree used in \ref predNode() and \ref predMap().
839 845
    ///
840 846
    ///\pre Either \ref run(Node) "run()" or \ref init()
841 847
    ///must be called before using this function.
842 848
    Arc predArc(Node v) const { return (*_pred)[v]; }
843 849

	
844
    ///Returns the 'previous node' of the shortest path tree for a node.
845

	
850
    ///\brief Returns the 'previous node' of the shortest path tree for
851
    ///the given node.
852
    ///
846 853
    ///This function returns the 'previous node' of the shortest path
847 854
    ///tree for the node \c v, i.e. it returns the last but one node
848
    ///from a shortest path from a root to \c v. It is \c INVALID
855
    ///of a shortest path from a root to \c v. It is \c INVALID
849 856
    ///if \c v is not reached from the root(s) or if \c v is a root.
850 857
    ///
851 858
    ///The shortest path tree used here is equal to the shortest path
852
    ///tree used in \ref predArc().
859
    ///tree used in \ref predArc() and \ref predMap().
853 860
    ///
854 861
    ///\pre Either \ref run(Node) "run()" or \ref init()
855 862
    ///must be called before using this function.
856 863
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
857 864
                                  G->source((*_pred)[v]); }
858 865

	
... ...
@@ -867,19 +874,19 @@
867 874
    const DistMap &distMap() const { return *_dist;}
868 875

	
869 876
    ///\brief Returns a const reference to the node map that stores the
870 877
    ///predecessor arcs.
871 878
    ///
872 879
    ///Returns a const reference to the node map that stores the predecessor
873
    ///arcs, which form the shortest path tree.
880
    ///arcs, which form the shortest path tree (forest).
874 881
    ///
875 882
    ///\pre Either \ref run(Node) "run()" or \ref init()
876 883
    ///must be called before using this function.
877 884
    const PredMap &predMap() const { return *_pred;}
878 885

	
879
    ///Checks if a node is reached from the root(s).
886
    ///Checks if the given node is reached from the root(s).
880 887

	
881 888
    ///Returns \c true if \c v is reached from the root(s).
882 889
    ///
883 890
    ///\pre Either \ref run(Node) "run()" or \ref init()
884 891
    ///must be called before using this function.
885 892
    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
... ...
@@ -892,15 +899,15 @@
892 899
    ///
893 900
    ///\pre Either \ref run(Node) "run()" or \ref init()
894 901
    ///must be called before using this function.
895 902
    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
896 903
                                          Heap::POST_HEAP; }
897 904

	
898
    ///The current distance of a node from the root(s).
905
    ///The current distance of the given node from the root(s).
899 906

	
900
    ///Returns the current distance of a node from the root(s).
907
    ///Returns the current distance of the given node from the root(s).
901 908
    ///It may be decreased in the following processes.
902 909
    ///
903 910
    ///\pre Either \ref run(Node) "run()" or \ref init()
904 911
    ///must be called before using this function and
905 912
    ///node \c v must be reached but not necessarily processed.
906 913
    Value currentDist(Node v) const {
... ...
@@ -921,15 +928,15 @@
921 928
  {
922 929
    ///The type of the digraph the algorithm runs on.
923 930
    typedef GR Digraph;
924 931
    ///The type of the map that stores the arc lengths.
925 932

	
926 933
    ///The type of the map that stores the arc lengths.
927
    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
934
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
928 935
    typedef LEN LengthMap;
929
    ///The type of the length of the arcs.
936
    ///The type of the arc lengths.
930 937
    typedef typename LEN::Value Value;
931 938

	
932 939
    /// Operation traits for Dijkstra algorithm.
933 940

	
934 941
    /// This class defines the operations that are used in the algorithm.
935 942
    /// \see DijkstraDefaultOperationTraits
... ...
@@ -970,13 +977,13 @@
970 977

	
971 978
    ///\brief The type of the map that stores the predecessor
972 979
    ///arcs of the shortest paths.
973 980
    ///
974 981
    ///The type of the map that stores the predecessor
975 982
    ///arcs of the shortest paths.
976
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
983
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
977 984
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
978 985
    ///Instantiates a PredMap.
979 986

	
980 987
    ///This function instantiates a PredMap.
981 988
    ///\param g is the digraph, to which we would like to define the
982 989
    ///PredMap.
... ...
@@ -985,13 +992,13 @@
985 992
      return new PredMap(g);
986 993
    }
987 994

	
988 995
    ///The type of the map that indicates which nodes are processed.
989 996

	
990 997
    ///The type of the map that indicates which nodes are processed.
991
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
998
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
992 999
    ///By default it is a NullMap.
993 1000
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
994 1001
    ///Instantiates a ProcessedMap.
995 1002

	
996 1003
    ///This function instantiates a ProcessedMap.
997 1004
    ///\param g is the digraph, to which
... ...
@@ -1005,13 +1012,13 @@
1005 1012
      return new ProcessedMap();
1006 1013
    }
1007 1014

	
1008 1015
    ///The type of the map that stores the distances of the nodes.
1009 1016

	
1010 1017
    ///The type of the map that stores the distances of the nodes.
1011
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1018
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
1012 1019
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
1013 1020
    ///Instantiates a DistMap.
1014 1021

	
1015 1022
    ///This function instantiates a DistMap.
1016 1023
    ///\param g is the digraph, to which we would like to define
1017 1024
    ///the DistMap
... ...
@@ -1020,24 +1027,21 @@
1020 1027
      return new DistMap(g);
1021 1028
    }
1022 1029

	
1023 1030
    ///The type of the shortest paths.
1024 1031

	
1025 1032
    ///The type of the shortest paths.
1026
    ///It must meet the \ref concepts::Path "Path" concept.
1033
    ///It must conform to the \ref concepts::Path "Path" concept.
1027 1034
    typedef lemon::Path<Digraph> Path;
1028 1035
  };
1029 1036

	
1030 1037
  /// Default traits class used by DijkstraWizard
1031 1038

	
1032
  /// To make it easier to use Dijkstra algorithm
1033
  /// we have created a wizard class.
1034
  /// This \ref DijkstraWizard class needs default traits,
1035
  /// as well as the \ref Dijkstra class.
1036
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
1037
  /// \ref DijkstraWizard class.
1039
  /// Default traits class used by DijkstraWizard.
1040
  /// \tparam GR The type of the digraph.
1041
  /// \tparam LEN The type of the length map.
1038 1042
  template<typename GR, typename LEN>
1039 1043
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
1040 1044
  {
1041 1045
    typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
1042 1046
  protected:
1043 1047
    //The type of the nodes in the digraph.
... ...
@@ -1090,34 +1094,25 @@
1090 1094
  /// which makes it easier to use the algorithm.
1091 1095
  template<class TR>
1092 1096
  class DijkstraWizard : public TR
1093 1097
  {
1094 1098
    typedef TR Base;
1095 1099

	
1096
    ///The type of the digraph the algorithm runs on.
1097 1100
    typedef typename TR::Digraph Digraph;
1098 1101

	
1099 1102
    typedef typename Digraph::Node Node;
1100 1103
    typedef typename Digraph::NodeIt NodeIt;
1101 1104
    typedef typename Digraph::Arc Arc;
1102 1105
    typedef typename Digraph::OutArcIt OutArcIt;
1103 1106

	
1104
    ///The type of the map that stores the arc lengths.
1105 1107
    typedef typename TR::LengthMap LengthMap;
1106
    ///The type of the length of the arcs.
1107 1108
    typedef typename LengthMap::Value Value;
1108
    ///\brief The type of the map that stores the predecessor
1109
    ///arcs of the shortest paths.
1110 1109
    typedef typename TR::PredMap PredMap;
1111
    ///The type of the map that stores the distances of the nodes.
1112 1110
    typedef typename TR::DistMap DistMap;
1113
    ///The type of the map that indicates which nodes are processed.
1114 1111
    typedef typename TR::ProcessedMap ProcessedMap;
1115
    ///The type of the shortest paths
1116 1112
    typedef typename TR::Path Path;
1117
    ///The heap type used by the dijkstra algorithm.
1118 1113
    typedef typename TR::Heap Heap;
1119 1114

	
1120 1115
  public:
1121 1116

	
1122 1117
    /// Constructor.
1123 1118
    DijkstraWizard() : TR() {}
... ...
@@ -1183,17 +1178,18 @@
1183 1178
    template<class T>
1184 1179
    struct SetPredMapBase : public Base {
1185 1180
      typedef T PredMap;
1186 1181
      static PredMap *createPredMap(const Digraph &) { return 0; };
1187 1182
      SetPredMapBase(const TR &b) : TR(b) {}
1188 1183
    };
1189
    ///\brief \ref named-func-param "Named parameter"
1190
    ///for setting PredMap object.
1184

	
1185
    ///\brief \ref named-templ-param "Named parameter" for setting
1186
    ///the predecessor map.
1191 1187
    ///
1192
    ///\ref named-func-param "Named parameter"
1193
    ///for setting PredMap object.
1188
    ///\ref named-templ-param "Named parameter" function for setting
1189
    ///the map that stores the predecessor arcs of the nodes.
1194 1190
    template<class T>
1195 1191
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1196 1192
    {
1197 1193
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1198 1194
      return DijkstraWizard<SetPredMapBase<T> >(*this);
1199 1195
    }
... ...
@@ -1201,17 +1197,19 @@
1201 1197
    template<class T>
1202 1198
    struct SetDistMapBase : public Base {
1203 1199
      typedef T DistMap;
1204 1200
      static DistMap *createDistMap(const Digraph &) { return 0; };
1205 1201
      SetDistMapBase(const TR &b) : TR(b) {}
1206 1202
    };
1207
    ///\brief \ref named-func-param "Named parameter"
1208
    ///for setting DistMap object.
1203

	
1204
    ///\brief \ref named-templ-param "Named parameter" for setting
1205
    ///the distance map.
1209 1206
    ///
1210
    ///\ref named-func-param "Named parameter"
1211
    ///for setting DistMap object.
1207
    ///\ref named-templ-param "Named parameter" function for setting
1208
    ///the map that stores the distances of the nodes calculated
1209
    ///by the algorithm.
1212 1210
    template<class T>
1213 1211
    DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1214 1212
    {
1215 1213
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1216 1214
      return DijkstraWizard<SetDistMapBase<T> >(*this);
1217 1215
    }
... ...
@@ -1219,29 +1217,31 @@
1219 1217
    template<class T>
1220 1218
    struct SetProcessedMapBase : public Base {
1221 1219
      typedef T ProcessedMap;
1222 1220
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1223 1221
      SetProcessedMapBase(const TR &b) : TR(b) {}
1224 1222
    };
1225
    ///\brief \ref named-func-param "Named parameter"
1226
    ///for setting ProcessedMap object.
1223

	
1224
    ///\brief \ref named-func-param "Named parameter" for setting
1225
    ///the processed map.
1227 1226
    ///
1228
    /// \ref named-func-param "Named parameter"
1229
    ///for setting ProcessedMap object.
1227
    ///\ref named-templ-param "Named parameter" function for setting
1228
    ///the map that indicates which nodes are processed.
1230 1229
    template<class T>
1231 1230
    DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1232 1231
    {
1233 1232
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1234 1233
      return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1235 1234
    }
1236 1235

	
1237 1236
    template<class T>
1238 1237
    struct SetPathBase : public Base {
1239 1238
      typedef T Path;
1240 1239
      SetPathBase(const TR &b) : TR(b) {}
1241 1240
    };
1241

	
1242 1242
    ///\brief \ref named-func-param "Named parameter"
1243 1243
    ///for getting the shortest path to the target node.
1244 1244
    ///
1245 1245
    ///\ref named-func-param "Named parameter"
1246 1246
    ///for getting the shortest path to the target node.
1247 1247
    template<class T>
Ignore white space 12 line context
... ...
@@ -18,32 +18,25 @@
18 18

	
19 19
#ifndef LEMON_DIM2_H
20 20
#define LEMON_DIM2_H
21 21

	
22 22
#include <iostream>
23 23

	
24
///\ingroup misc
24
///\ingroup geomdat
25 25
///\file
26 26
///\brief A simple two dimensional vector and a bounding box implementation
27
///
28
/// The class \ref lemon::dim2::Point "dim2::Point" implements
29
/// a two dimensional vector with the usual operations.
30
///
31
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine
32
/// the rectangular bounding box of a set of
33
/// \ref lemon::dim2::Point "dim2::Point"'s.
34 27

	
35 28
namespace lemon {
36 29

	
37 30
  ///Tools for handling two dimensional coordinates
38 31

	
39 32
  ///This namespace is a storage of several
40 33
  ///tools for handling two dimensional coordinates
41 34
  namespace dim2 {
42 35

	
43
  /// \addtogroup misc
36
  /// \addtogroup geomdat
44 37
  /// @{
45 38

	
46 39
  /// Two dimensional vector (plain vector)
47 40

	
48 41
  /// A simple two dimensional vector (plain vector) implementation
49 42
  /// with the usual vector operations.
Ignore white space 12 line context
... ...
@@ -17,59 +17,55 @@
17 17
 */
18 18

	
19 19
#ifndef LEMON_FIB_HEAP_H
20 20
#define LEMON_FIB_HEAP_H
21 21

	
22 22
///\file
23
///\ingroup auxdat
24
///\brief Fibonacci Heap implementation.
23
///\ingroup heaps
24
///\brief Fibonacci heap implementation.
25 25

	
26 26
#include <vector>
27
#include <utility>
27 28
#include <functional>
28 29
#include <lemon/math.h>
29 30

	
30 31
namespace lemon {
31 32

	
32
  /// \ingroup auxdat
33
  /// \ingroup heaps
33 34
  ///
34
  ///\brief Fibonacci Heap.
35
  /// \brief Fibonacci heap data structure.
35 36
  ///
36
  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
37
  ///is a data structure for storing items with specified values called \e
38
  ///priorities in such a way that finding the item with minimum priority is
39
  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
40
  ///one can change the priority of an item, add or erase an item, etc.
37
  /// This class implements the \e Fibonacci \e heap data structure.
38
  /// It fully conforms to the \ref concepts::Heap "heap concept".
41 39
  ///
42
  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
43
  ///heap. In case of many calls to these operations, it is better to use a
44
  ///\ref BinHeap "binary heap".
40
  /// The methods \ref increase() and \ref erase() are not efficient in a
41
  /// Fibonacci heap. In case of many calls of these operations, it is
42
  /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
45 43
  ///
46
  ///\param PRIO Type of the priority of the items.
47
  ///\param IM A read and writable Item int map, used internally
48
  ///to handle the cross references.
49
  ///\param CMP A class for the ordering of the priorities. The
50
  ///default is \c std::less<PRIO>.
51
  ///
52
  ///\sa BinHeap
53
  ///\sa Dijkstra
44
  /// \tparam PR Type of the priorities of the items.
45
  /// \tparam IM A read-writable item map with \c int values, used
46
  /// internally to handle the cross references.
47
  /// \tparam CMP A functor class for comparing the priorities.
48
  /// The default is \c std::less<PR>.
54 49
#ifdef DOXYGEN
55
  template <typename PRIO, typename IM, typename CMP>
50
  template <typename PR, typename IM, typename CMP>
56 51
#else
57
  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
52
  template <typename PR, typename IM, typename CMP = std::less<PR> >
58 53
#endif
59 54
  class FibHeap {
60 55
  public:
61
    ///\e
56

	
57
    /// Type of the item-int map.
62 58
    typedef IM ItemIntMap;
63
    ///\e
64
    typedef PRIO Prio;
65
    ///\e
59
    /// Type of the priorities.
60
    typedef PR Prio;
61
    /// Type of the items stored in the heap.
66 62
    typedef typename ItemIntMap::Key Item;
67
    ///\e
63
    /// Type of the item-priority pairs.
68 64
    typedef std::pair<Item,Prio> Pair;
69
    ///\e
65
    /// Functor type for comparing the priorities.
70 66
    typedef CMP Compare;
71 67

	
72 68
  private:
73 69
    class Store;
74 70

	
75 71
    std::vector<Store> _data;
... ...
@@ -77,80 +73,74 @@
77 73
    ItemIntMap &_iim;
78 74
    Compare _comp;
79 75
    int _num;
80 76

	
81 77
  public:
82 78

	
83
    /// \brief Type to represent the items states.
79
    /// \brief Type to represent the states of the items.
84 80
    ///
85
    /// Each Item element have a state associated to it. It may be "in heap",
86
    /// "pre heap" or "post heap". The latter two are indifferent from the
81
    /// Each item has a state associated to it. It can be "in heap",
82
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
87 83
    /// heap's point of view, but may be useful to the user.
88 84
    ///
89 85
    /// The item-int map must be initialized in such way that it assigns
90 86
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
91 87
    enum State {
92 88
      IN_HEAP = 0,    ///< = 0.
93 89
      PRE_HEAP = -1,  ///< = -1.
94 90
      POST_HEAP = -2  ///< = -2.
95 91
    };
96 92

	
97
    /// \brief The constructor
93
    /// \brief Constructor.
98 94
    ///
99
    /// \c map should be given to the constructor, since it is
100
    ///   used internally to handle the cross references.
95
    /// Constructor.
96
    /// \param map A map that assigns \c int values to the items.
97
    /// It is used internally to handle the cross references.
98
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
101 99
    explicit FibHeap(ItemIntMap &map)
102 100
      : _minimum(0), _iim(map), _num() {}
103 101

	
104
    /// \brief The constructor
102
    /// \brief Constructor.
105 103
    ///
106
    /// \c map should be given to the constructor, since it is used
107
    /// internally to handle the cross references. \c comp is an
108
    /// object for ordering of the priorities.
104
    /// Constructor.
105
    /// \param map A map that assigns \c int values to the items.
106
    /// It is used internally to handle the cross references.
107
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
108
    /// \param comp The function object used for comparing the priorities.
109 109
    FibHeap(ItemIntMap &map, const Compare &comp)
110 110
      : _minimum(0), _iim(map), _comp(comp), _num() {}
111 111

	
112 112
    /// \brief The number of items stored in the heap.
113 113
    ///
114
    /// Returns the number of items stored in the heap.
114
    /// This function returns the number of items stored in the heap.
115 115
    int size() const { return _num; }
116 116

	
117
    /// \brief Checks if the heap stores no items.
117
    /// \brief Check if the heap is empty.
118 118
    ///
119
    ///   Returns \c true if and only if the heap stores no items.
119
    /// This function returns \c true if the heap is empty.
120 120
    bool empty() const { return _num==0; }
121 121

	
122
    /// \brief Make empty this heap.
122
    /// \brief Make the heap empty.
123 123
    ///
124
    /// Make empty this heap. It does not change the cross reference
125
    /// map.  If you want to reuse a heap what is not surely empty you
126
    /// should first clear the heap and after that you should set the
127
    /// cross reference map for each item to \c PRE_HEAP.
124
    /// This functon makes the heap empty.
125
    /// It does not change the cross reference map. If you want to reuse
126
    /// a heap that is not surely empty, you should first clear it and
127
    /// then you should set the cross reference map to \c PRE_HEAP
128
    /// for each item.
128 129
    void clear() {
129 130
      _data.clear(); _minimum = 0; _num = 0;
130 131
    }
131 132

	
132
    /// \brief \c item gets to the heap with priority \c value independently
133
    /// if \c item was already there.
133
    /// \brief Insert an item into the heap with the given priority.
134 134
    ///
135
    /// This method calls \ref push(\c item, \c value) if \c item is not
136
    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
137
    /// \ref increase(\c item, \c value) otherwise.
138
    void set (const Item& item, const Prio& value) {
139
      int i=_iim[item];
140
      if ( i >= 0 && _data[i].in ) {
141
        if ( _comp(value, _data[i].prio) ) decrease(item, value);
142
        if ( _comp(_data[i].prio, value) ) increase(item, value);
143
      } else push(item, value);
144
    }
145

	
146
    /// \brief Adds \c item to the heap with priority \c value.
147
    ///
148
    /// Adds \c item to the heap with priority \c value.
149
    /// \pre \c item must not be stored in the heap.
150
    void push (const Item& item, const Prio& value) {
135
    /// This function inserts the given item into the heap with the
136
    /// given priority.
137
    /// \param item The item to insert.
138
    /// \param prio The priority of the item.
139
    /// \pre \e item must not be stored in the heap.
140
    void push (const Item& item, const Prio& prio) {
151 141
      int i=_iim[item];
152 142
      if ( i < 0 ) {
153 143
        int s=_data.size();
154 144
        _iim.set( item, s );
155 145
        Store st;
156 146
        st.name=item;
... ...
@@ -165,82 +155,74 @@
165 155

	
166 156
      if ( _num ) {
167 157
        _data[_data[_minimum].right_neighbor].left_neighbor=i;
168 158
        _data[i].right_neighbor=_data[_minimum].right_neighbor;
169 159
        _data[_minimum].right_neighbor=i;
170 160
        _data[i].left_neighbor=_minimum;
171
        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
161
        if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
172 162
      } else {
173 163
        _data[i].right_neighbor=_data[i].left_neighbor=i;
174 164
        _minimum=i;
175 165
      }
176
      _data[i].prio=value;
166
      _data[i].prio=prio;
177 167
      ++_num;
178 168
    }
179 169

	
180
    /// \brief Returns the item with minimum priority relative to \c Compare.
170
    /// \brief Return the item having minimum priority.
181 171
    ///
182
    /// This method returns the item with minimum priority relative to \c
183
    /// Compare.
184
    /// \pre The heap must be nonempty.
172
    /// This function returns the item having minimum priority.
173
    /// \pre The heap must be non-empty.
185 174
    Item top() const { return _data[_minimum].name; }
186 175

	
187
    /// \brief Returns the minimum priority relative to \c Compare.
176
    /// \brief The minimum priority.
188 177
    ///
189
    /// It returns the minimum priority relative to \c Compare.
190
    /// \pre The heap must be nonempty.
191
    const Prio& prio() const { return _data[_minimum].prio; }
178
    /// This function returns the minimum priority.
179
    /// \pre The heap must be non-empty.
180
    Prio prio() const { return _data[_minimum].prio; }
192 181

	
193
    /// \brief Returns the priority of \c item.
182
    /// \brief Remove the item having minimum priority.
194 183
    ///
195
    /// It returns the priority of \c item.
196
    /// \pre \c item must be in the heap.
197
    const Prio& operator[](const Item& item) const {
198
      return _data[_iim[item]].prio;
199
    }
200

	
201
    /// \brief Deletes the item with minimum priority relative to \c Compare.
202
    ///
203
    /// This method deletes the item with minimum priority relative to \c
204
    /// Compare from the heap.
184
    /// This function removes the item having minimum priority.
205 185
    /// \pre The heap must be non-empty.
206 186
    void pop() {
207 187
      /*The first case is that there are only one root.*/
208 188
      if ( _data[_minimum].left_neighbor==_minimum ) {
209 189
        _data[_minimum].in=false;
210 190
        if ( _data[_minimum].degree!=0 ) {
211
          makeroot(_data[_minimum].child);
191
          makeRoot(_data[_minimum].child);
212 192
          _minimum=_data[_minimum].child;
213 193
          balance();
214 194
        }
215 195
      } else {
216 196
        int right=_data[_minimum].right_neighbor;
217 197
        unlace(_minimum);
218 198
        _data[_minimum].in=false;
219 199
        if ( _data[_minimum].degree > 0 ) {
220 200
          int left=_data[_minimum].left_neighbor;
221 201
          int child=_data[_minimum].child;
222 202
          int last_child=_data[child].left_neighbor;
223 203

	
224
          makeroot(child);
204
          makeRoot(child);
225 205

	
226 206
          _data[left].right_neighbor=child;
227 207
          _data[child].left_neighbor=left;
228 208
          _data[right].left_neighbor=last_child;
229 209
          _data[last_child].right_neighbor=right;
230 210
        }
231 211
        _minimum=right;
232 212
        balance();
233 213
      } // the case where there are more roots
234 214
      --_num;
235 215
    }
236 216

	
237
    /// \brief Deletes \c item from the heap.
217
    /// \brief Remove the given item from the heap.
238 218
    ///
239
    /// This method deletes \c item from the heap, if \c item was already
240
    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
219
    /// This function removes the given item from the heap if it is
220
    /// already stored.
221
    /// \param item The item to delete.
222
    /// \pre \e item must be in the heap.
241 223
    void erase (const Item& item) {
242 224
      int i=_iim[item];
243 225

	
244 226
      if ( i >= 0 && _data[i].in ) {
245 227
        if ( _data[i].parent!=-1 ) {
246 228
          int p=_data[i].parent;
... ...
@@ -249,63 +231,88 @@
249 231
        }
250 232
        _minimum=i;     //As if its prio would be -infinity
251 233
        pop();
252 234
      }
253 235
    }
254 236

	
255
    /// \brief Decreases the priority of \c item to \c value.
237
    /// \brief The priority of the given item.
256 238
    ///
257
    /// This method decreases the priority of \c item to \c value.
258
    /// \pre \c item must be stored in the heap with priority at least \c
259
    ///   value relative to \c Compare.
260
    void decrease (Item item, const Prio& value) {
239
    /// This function returns the priority of the given item.
240
    /// \param item The item.
241
    /// \pre \e item must be in the heap.
242
    Prio operator[](const Item& item) const {
243
      return _data[_iim[item]].prio;
244
    }
245

	
246
    /// \brief Set the priority of an item or insert it, if it is
247
    /// not stored in the heap.
248
    ///
249
    /// This method sets the priority of the given item if it is
250
    /// already stored in the heap. Otherwise it inserts the given
251
    /// item into the heap with the given priority.
252
    /// \param item The item.
253
    /// \param prio The priority.
254
    void set (const Item& item, const Prio& prio) {
261 255
      int i=_iim[item];
262
      _data[i].prio=value;
256
      if ( i >= 0 && _data[i].in ) {
257
        if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
258
        if ( _comp(_data[i].prio, prio) ) increase(item, prio);
259
      } else push(item, prio);
260
    }
261

	
262
    /// \brief Decrease the priority of an item to the given value.
263
    ///
264
    /// This function decreases the priority of an item to the given value.
265
    /// \param item The item.
266
    /// \param prio The priority.
267
    /// \pre \e item must be stored in the heap with priority at least \e prio.
268
    void decrease (const Item& item, const Prio& prio) {
269
      int i=_iim[item];
270
      _data[i].prio=prio;
263 271
      int p=_data[i].parent;
264 272

	
265
      if ( p!=-1 && _comp(value, _data[p].prio) ) {
273
      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
266 274
        cut(i,p);
267 275
        cascade(p);
268 276
      }
269
      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
277
      if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
270 278
    }
271 279

	
272
    /// \brief Increases the priority of \c item to \c value.
280
    /// \brief Increase the priority of an item to the given value.
273 281
    ///
274
    /// This method sets the priority of \c item to \c value. Though
275
    /// there is no precondition on the priority of \c item, this
276
    /// method should be used only if it is indeed necessary to increase
277
    /// (relative to \c Compare) the priority of \c item, because this
278
    /// method is inefficient.
279
    void increase (Item item, const Prio& value) {
282
    /// This function increases the priority of an item to the given value.
283
    /// \param item The item.
284
    /// \param prio The priority.
285
    /// \pre \e item must be stored in the heap with priority at most \e prio.
286
    void increase (const Item& item, const Prio& prio) {
280 287
      erase(item);
281
      push(item, value);
288
      push(item, prio);
282 289
    }
283 290

	
284

	
285
    /// \brief Returns if \c item is in, has already been in, or has never
286
    /// been in the heap.
291
    /// \brief Return the state of an item.
287 292
    ///
288
    /// This method returns PRE_HEAP if \c item has never been in the
289
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
290
    /// otherwise. In the latter case it is possible that \c item will
291
    /// get back to the heap again.
293
    /// This method returns \c PRE_HEAP if the given item has never
294
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
295
    /// and \c POST_HEAP otherwise.
296
    /// In the latter case it is possible that the item will get back
297
    /// to the heap again.
298
    /// \param item The item.
292 299
    State state(const Item &item) const {
293 300
      int i=_iim[item];
294 301
      if( i>=0 ) {
295 302
        if ( _data[i].in ) i=0;
296 303
        else i=-2;
297 304
      }
298 305
      return State(i);
299 306
    }
300 307

	
301
    /// \brief Sets the state of the \c item in the heap.
308
    /// \brief Set the state of an item in the heap.
302 309
    ///
303
    /// Sets the state of the \c item in the heap. It can be used to
304
    /// manually clear the heap when it is important to achive the
305
    /// better time _complexity.
310
    /// This function sets the state of the given item in the heap.
311
    /// It can be used to manually clear the heap when it is important
312
    /// to achive better time complexity.
306 313
    /// \param i The item.
307 314
    /// \param st The state. It should not be \c IN_HEAP.
308 315
    void state(const Item& i, State st) {
309 316
      switch (st) {
310 317
      case POST_HEAP:
311 318
      case PRE_HEAP:
... ...
@@ -362,13 +369,13 @@
362 369
      do {
363 370
        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
364 371
        s=_data[s].right_neighbor;
365 372
      } while ( s != m );
366 373
    }
367 374

	
368
    void makeroot(int c) {
375
    void makeRoot(int c) {
369 376
      int s=c;
370 377
      do {
371 378
        _data[s].parent=-1;
372 379
        s=_data[s].right_neighbor;
373 380
      } while ( s != c );
374 381
    }
Ignore white space 12 line context
... ...
@@ -356,16 +356,16 @@
356 356
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
357 357
    /// and call its \ref GomoryHu::run() "run()" method.
358 358
    ///
359 359
    /// This example counts the nodes in the minimum cut separating \c s from
360 360
    /// \c t.
361 361
    /// \code
362
    /// GomoruHu<Graph> gom(g, capacities);
362
    /// GomoryHu<Graph> gom(g, capacities);
363 363
    /// gom.run();
364 364
    /// int cnt=0;
365
    /// for(GomoruHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
365
    /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
366 366
    /// \endcode
367 367
    class MinCutNodeIt
368 368
    {
369 369
      bool _side;
370 370
      typename Graph::NodeIt _node_it;
371 371
      typename Graph::template NodeMap<bool> _cut;
... ...
@@ -453,16 +453,16 @@
453 453
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
454 454
    /// and call its \ref GomoryHu::run() "run()" method.
455 455
    ///
456 456
    /// This example computes the value of the minimum cut separating \c s from
457 457
    /// \c t.
458 458
    /// \code
459
    /// GomoruHu<Graph> gom(g, capacities);
459
    /// GomoryHu<Graph> gom(g, capacities);
460 460
    /// gom.run();
461 461
    /// int value=0;
462
    /// for(GomoruHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
462
    /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
463 463
    ///   value+=capacities[e];
464 464
    /// \endcode
465 465
    /// The result will be the same as the value returned by
466 466
    /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".
467 467
    class MinCutEdgeIt
468 468
    {
Ignore white space 12 line context
... ...
@@ -19,21 +19,20 @@
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25
#include <map>
25 26

	
26 27
#include <lemon/core.h>
27 28

	
28 29
///\file
29 30
///\ingroup maps
30 31
///\brief Miscellaneous property maps
31 32

	
32
#include <map>
33

	
34 33
namespace lemon {
35 34

	
36 35
  /// \addtogroup maps
37 36
  /// @{
38 37

	
39 38
  /// Base class of maps.
... ...
@@ -1787,17 +1786,17 @@
1787 1786
  /// The most important usage of it is storing certain nodes or arcs
1788 1787
  /// that were marked \c true by an algorithm.
1789 1788
  /// For example it makes easier to store the nodes in the processing
1790 1789
  /// order of Dfs algorithm, as the following examples show.
1791 1790
  /// \code
1792 1791
  ///   std::vector<Node> v;
1793
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1792
  ///   dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
1794 1793
  /// \endcode
1795 1794
  /// \code
1796 1795
  ///   std::vector<Node> v(countNodes(g));
1797
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1796
  ///   dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
1798 1797
  /// \endcode
1799 1798
  ///
1800 1799
  /// \note The container of the iterator must contain enough space
1801 1800
  /// for the elements or the iterator should be an inserter iterator.
1802 1801
  ///
1803 1802
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
... ...
@@ -1815,13 +1814,13 @@
1815 1814
  /// \addtogroup graph_maps
1816 1815
  /// @{
1817 1816

	
1818 1817
  /// \brief Provides an immutable and unique id for each item in a graph.
1819 1818
  ///
1820 1819
  /// IdMap provides a unique and immutable id for each item of the
1821
  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is 
1820
  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1822 1821
  ///  - \b unique: different items get different ids,
1823 1822
  ///  - \b immutable: the id of an item does not change (even if you
1824 1823
  ///    delete other nodes).
1825 1824
  ///
1826 1825
  /// Using this map you get access (i.e. can read) the inner id values of
1827 1826
  /// the items stored in the graph, which is returned by the \c id()
... ...
@@ -1899,19 +1898,20 @@
1899 1898
  };
1900 1899

	
1901 1900

	
1902 1901
  /// \brief General cross reference graph map type.
1903 1902

	
1904 1903
  /// This class provides simple invertable graph maps.
1905
  /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
1906
  /// and if a key is set to a new value then store it
1907
  /// in the inverse map.
1908
  ///
1904
  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1905
  /// and if a key is set to a new value, then stores it in the inverse map.
1909 1906
  /// The values of the map can be accessed
1910 1907
  /// with stl compatible forward iterator.
1911 1908
  ///
1909
  /// This type is not reference map, so it cannot be modified with
1910
  /// the subscript operator.
1911
  ///
1912 1912
  /// \tparam GR The graph type.
1913 1913
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1914 1914
  /// \c GR::Edge).
1915 1915
  /// \tparam V The value type of the map.
1916 1916
  ///
1917 1917
  /// \see IterableValueMap
... ...
@@ -1920,13 +1920,13 @@
1920 1920
    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
1921 1921
  private:
1922 1922

	
1923 1923
    typedef typename ItemSetTraits<GR, K>::
1924 1924
      template Map<V>::Type Map;
1925 1925

	
1926
    typedef std::map<V, K> Container;
1926
    typedef std::multimap<V, K> Container;
1927 1927
    Container _inv_map;
1928 1928

	
1929 1929
  public:
1930 1930

	
1931 1931
    /// The graph type of CrossRefMap.
1932 1932
    typedef GR Graph;
... ...
@@ -1945,12 +1945,14 @@
1945 1945

	
1946 1946
    /// \brief Forward iterator for values.
1947 1947
    ///
1948 1948
    /// This iterator is an stl compatible forward
1949 1949
    /// iterator on the values of the map. The values can
1950 1950
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1951
    /// They are considered with multiplicity, so each value is
1952
    /// traversed for each item it is assigned to.
1951 1953
    class ValueIterator
1952 1954
      : public std::iterator<std::forward_iterator_tag, Value> {
1953 1955
      friend class CrossRefMap;
1954 1956
    private:
1955 1957
      ValueIterator(typename Container::const_iterator _it)
1956 1958
        : it(_it) {}
... ...
@@ -1997,61 +1999,76 @@
1997 1999

	
1998 2000
    /// \brief Sets the value associated with the given key.
1999 2001
    ///
2000 2002
    /// Sets the value associated with the given key.
2001 2003
    void set(const Key& key, const Value& val) {
2002 2004
      Value oldval = Map::operator[](key);
2003
      typename Container::iterator it = _inv_map.find(oldval);
2004
      if (it != _inv_map.end() && it->second == key) {
2005
        _inv_map.erase(it);
2005
      typename Container::iterator it;
2006
      for (it = _inv_map.equal_range(oldval).first;
2007
           it != _inv_map.equal_range(oldval).second; ++it) {
2008
        if (it->second == key) {
2009
          _inv_map.erase(it);
2010
          break;
2011
        }
2006 2012
      }
2007
      _inv_map.insert(make_pair(val, key));
2013
      _inv_map.insert(std::make_pair(val, key));
2008 2014
      Map::set(key, val);
2009 2015
    }
2010 2016

	
2011 2017
    /// \brief Returns the value associated with the given key.
2012 2018
    ///
2013 2019
    /// Returns the value associated with the given key.
2014 2020
    typename MapTraits<Map>::ConstReturnValue
2015 2021
    operator[](const Key& key) const {
2016 2022
      return Map::operator[](key);
2017 2023
    }
2018 2024

	
2019
    /// \brief Gives back the item by its value.
2025
    /// \brief Gives back an item by its value.
2020 2026
    ///
2021
    /// Gives back the item by its value.
2022
    Key operator()(const Value& key) const {
2023
      typename Container::const_iterator it = _inv_map.find(key);
2027
    /// This function gives back an item that is assigned to
2028
    /// the given value or \c INVALID if no such item exists.
2029
    /// If there are more items with the same associated value,
2030
    /// only one of them is returned.
2031
    Key operator()(const Value& val) const {
2032
      typename Container::const_iterator it = _inv_map.find(val);
2024 2033
      return it != _inv_map.end() ? it->second : INVALID;
2025 2034
    }
2026 2035

	
2027 2036
  protected:
2028 2037

	
2029 2038
    /// \brief Erase the key from the map and the inverse map.
2030 2039
    ///
2031 2040
    /// Erase the key from the map and the inverse map. It is called by the
2032 2041
    /// \c AlterationNotifier.
2033 2042
    virtual void erase(const Key& key) {
2034 2043
      Value val = Map::operator[](key);
2035
      typename Container::iterator it = _inv_map.find(val);
2036
      if (it != _inv_map.end() && it->second == key) {
2037
        _inv_map.erase(it);
2044
      typename Container::iterator it;
2045
      for (it = _inv_map.equal_range(val).first;
2046
           it != _inv_map.equal_range(val).second; ++it) {
2047
        if (it->second == key) {
2048
          _inv_map.erase(it);
2049
          break;
2050
        }
2038 2051
      }
2039 2052
      Map::erase(key);
2040 2053
    }
2041 2054

	
2042 2055
    /// \brief Erase more keys from the map and the inverse map.
2043 2056
    ///
2044 2057
    /// Erase more keys from the map and the inverse map. It is called by the
2045 2058
    /// \c AlterationNotifier.
2046 2059
    virtual void erase(const std::vector<Key>& keys) {
2047 2060
      for (int i = 0; i < int(keys.size()); ++i) {
2048 2061
        Value val = Map::operator[](keys[i]);
2049
        typename Container::iterator it = _inv_map.find(val);
2050
        if (it != _inv_map.end() && it->second == keys[i]) {
2051
          _inv_map.erase(it);
2062
        typename Container::iterator it;
2063
        for (it = _inv_map.equal_range(val).first;
2064
             it != _inv_map.equal_range(val).second; ++it) {
2065
          if (it->second == keys[i]) {
2066
            _inv_map.erase(it);
2067
            break;
2068
          }
2052 2069
        }
2053 2070
      }
2054 2071
      Map::erase(keys);
2055 2072
    }
2056 2073

	
2057 2074
    /// \brief Clear the keys from the map and the inverse map.
... ...
@@ -2081,14 +2098,15 @@
2081 2098
      typedef typename CrossRefMap::Key Value;
2082 2099
      /// The key type of the InverseMap.
2083 2100
      typedef typename CrossRefMap::Value Key;
2084 2101

	
2085 2102
      /// \brief Subscript operator.
2086 2103
      ///
2087
      /// Subscript operator. It gives back the item
2088
      /// that was last assigned to the given value.
2104
      /// Subscript operator. It gives back an item
2105
      /// that is assigned to the given value or \c INVALID
2106
      /// if no such item exists.
2089 2107
      Value operator[](const Key& key) const {
2090 2108
        return _inverted(key);
2091 2109
      }
2092 2110

	
2093 2111
    private:
2094 2112
      const CrossRefMap& _inverted;
... ...
@@ -2251,13 +2269,13 @@
2251 2269
    /// Gives back the \e RangeId of the item.
2252 2270
    int operator[](const Item& item) const {
2253 2271
      return Map::operator[](item);
2254 2272
    }
2255 2273

	
2256 2274
    /// \brief Gives back the item belonging to a \e RangeId
2257
    /// 
2275
    ///
2258 2276
    /// Gives back the item belonging to a \e RangeId.
2259 2277
    Item operator()(int id) const {
2260 2278
      return _inv_map[id];
2261 2279
    }
2262 2280

	
2263 2281
  private:
... ...
@@ -2308,12 +2326,909 @@
2308 2326
    /// Gives back the inverse of the map.
2309 2327
    const InverseMap inverse() const {
2310 2328
      return InverseMap(*this);
2311 2329
    }
2312 2330
  };
2313 2331

	
2332
  /// \brief Dynamic iterable \c bool map.
2333
  ///
2334
  /// This class provides a special graph map type which can store a
2335
  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
2336
  /// For both \c true and \c false values it is possible to iterate on
2337
  /// the keys.
2338
  ///
2339
  /// This type is a reference map, so it can be modified with the
2340
  /// subscript operator.
2341
  ///
2342
  /// \tparam GR The graph type.
2343
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2344
  /// \c GR::Edge).
2345
  ///
2346
  /// \see IterableIntMap, IterableValueMap
2347
  /// \see CrossRefMap
2348
  template <typename GR, typename K>
2349
  class IterableBoolMap
2350
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2351
  private:
2352
    typedef GR Graph;
2353

	
2354
    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
2355
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
2356

	
2357
    std::vector<K> _array;
2358
    int _sep;
2359

	
2360
  public:
2361

	
2362
    /// Indicates that the map is reference map.
2363
    typedef True ReferenceMapTag;
2364

	
2365
    /// The key type
2366
    typedef K Key;
2367
    /// The value type
2368
    typedef bool Value;
2369
    /// The const reference type.
2370
    typedef const Value& ConstReference;
2371

	
2372
  private:
2373

	
2374
    int position(const Key& key) const {
2375
      return Parent::operator[](key);
2376
    }
2377

	
2378
  public:
2379

	
2380
    /// \brief Reference to the value of the map.
2381
    ///
2382
    /// This class is similar to the \c bool type. It can be converted to
2383
    /// \c bool and it provides the same operators.
2384
    class Reference {
2385
      friend class IterableBoolMap;
2386
    private:
2387
      Reference(IterableBoolMap& map, const Key& key)
2388
        : _key(key), _map(map) {}
2389
    public:
2390

	
2391
      Reference& operator=(const Reference& value) {
2392
        _map.set(_key, static_cast<bool>(value));
2393
         return *this;
2394
      }
2395

	
2396
      operator bool() const {
2397
        return static_cast<const IterableBoolMap&>(_map)[_key];
2398
      }
2399

	
2400
      Reference& operator=(bool value) {
2401
        _map.set(_key, value);
2402
        return *this;
2403
      }
2404
      Reference& operator&=(bool value) {
2405
        _map.set(_key, _map[_key] & value);
2406
        return *this;
2407
      }
2408
      Reference& operator|=(bool value) {
2409
        _map.set(_key, _map[_key] | value);
2410
        return *this;
2411
      }
2412
      Reference& operator^=(bool value) {
2413
        _map.set(_key, _map[_key] ^ value);
2414
        return *this;
2415
      }
2416
    private:
2417
      Key _key;
2418
      IterableBoolMap& _map;
2419
    };
2420

	
2421
    /// \brief Constructor of the map with a default value.
2422
    ///
2423
    /// Constructor of the map with a default value.
2424
    explicit IterableBoolMap(const Graph& graph, bool def = false)
2425
      : Parent(graph) {
2426
      typename Parent::Notifier* nf = Parent::notifier();
2427
      Key it;
2428
      for (nf->first(it); it != INVALID; nf->next(it)) {
2429
        Parent::set(it, _array.size());
2430
        _array.push_back(it);
2431
      }
2432
      _sep = (def ? _array.size() : 0);
2433
    }
2434

	
2435
    /// \brief Const subscript operator of the map.
2436
    ///
2437
    /// Const subscript operator of the map.
2438
    bool operator[](const Key& key) const {
2439
      return position(key) < _sep;
2440
    }
2441

	
2442
    /// \brief Subscript operator of the map.
2443
    ///
2444
    /// Subscript operator of the map.
2445
    Reference operator[](const Key& key) {
2446
      return Reference(*this, key);
2447
    }
2448

	
2449
    /// \brief Set operation of the map.
2450
    ///
2451
    /// Set operation of the map.
2452
    void set(const Key& key, bool value) {
2453
      int pos = position(key);
2454
      if (value) {
2455
        if (pos < _sep) return;
2456
        Key tmp = _array[_sep];
2457
        _array[_sep] = key;
2458
        Parent::set(key, _sep);
2459
        _array[pos] = tmp;
2460
        Parent::set(tmp, pos);
2461
        ++_sep;
2462
      } else {
2463
        if (pos >= _sep) return;
2464
        --_sep;
2465
        Key tmp = _array[_sep];
2466
        _array[_sep] = key;
2467
        Parent::set(key, _sep);
2468
        _array[pos] = tmp;
2469
        Parent::set(tmp, pos);
2470
      }
2471
    }
2472

	
2473
    /// \brief Set all items.
2474
    ///
2475
    /// Set all items in the map.
2476
    /// \note Constant time operation.
2477
    void setAll(bool value) {
2478
      _sep = (value ? _array.size() : 0);
2479
    }
2480

	
2481
    /// \brief Returns the number of the keys mapped to \c true.
2482
    ///
2483
    /// Returns the number of the keys mapped to \c true.
2484
    int trueNum() const {
2485
      return _sep;
2486
    }
2487

	
2488
    /// \brief Returns the number of the keys mapped to \c false.
2489
    ///
2490
    /// Returns the number of the keys mapped to \c false.
2491
    int falseNum() const {
2492
      return _array.size() - _sep;
2493
    }
2494

	
2495
    /// \brief Iterator for the keys mapped to \c true.
2496
    ///
2497
    /// Iterator for the keys mapped to \c true. It works
2498
    /// like a graph item iterator, it can be converted to
2499
    /// the key type of the map, incremented with \c ++ operator, and
2500
    /// if the iterator leaves the last valid key, it will be equal to
2501
    /// \c INVALID.
2502
    class TrueIt : public Key {
2503
    public:
2504
      typedef Key Parent;
2505

	
2506
      /// \brief Creates an iterator.
2507
      ///
2508
      /// Creates an iterator. It iterates on the
2509
      /// keys mapped to \c true.
2510
      /// \param map The IterableBoolMap.
2511
      explicit TrueIt(const IterableBoolMap& map)
2512
        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
2513
          _map(&map) {}
2514

	
2515
      /// \brief Invalid constructor \& conversion.
2516
      ///
2517
      /// This constructor initializes the iterator to be invalid.
2518
      /// \sa Invalid for more details.
2519
      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
2520

	
2521
      /// \brief Increment operator.
2522
      ///
2523
      /// Increment operator.
2524
      TrueIt& operator++() {
2525
        int pos = _map->position(*this);
2526
        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
2527
        return *this;
2528
      }
2529

	
2530
    private:
2531
      const IterableBoolMap* _map;
2532
    };
2533

	
2534
    /// \brief Iterator for the keys mapped to \c false.
2535
    ///
2536
    /// Iterator for the keys mapped to \c false. It works
2537
    /// like a graph item iterator, it can be converted to
2538
    /// the key type of the map, incremented with \c ++ operator, and
2539
    /// if the iterator leaves the last valid key, it will be equal to
2540
    /// \c INVALID.
2541
    class FalseIt : public Key {
2542
    public:
2543
      typedef Key Parent;
2544

	
2545
      /// \brief Creates an iterator.
2546
      ///
2547
      /// Creates an iterator. It iterates on the
2548
      /// keys mapped to \c false.
2549
      /// \param map The IterableBoolMap.
2550
      explicit FalseIt(const IterableBoolMap& map)
2551
        : Parent(map._sep < int(map._array.size()) ?
2552
                 map._array.back() : INVALID), _map(&map) {}
2553

	
2554
      /// \brief Invalid constructor \& conversion.
2555
      ///
2556
      /// This constructor initializes the iterator to be invalid.
2557
      /// \sa Invalid for more details.
2558
      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
2559

	
2560
      /// \brief Increment operator.
2561
      ///
2562
      /// Increment operator.
2563
      FalseIt& operator++() {
2564
        int pos = _map->position(*this);
2565
        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
2566
        return *this;
2567
      }
2568

	
2569
    private:
2570
      const IterableBoolMap* _map;
2571
    };
2572

	
2573
    /// \brief Iterator for the keys mapped to a given value.
2574
    ///
2575
    /// Iterator for the keys mapped to a given value. It works
2576
    /// like a graph item iterator, it can be converted to
2577
    /// the key type of the map, incremented with \c ++ operator, and
2578
    /// if the iterator leaves the last valid key, it will be equal to
2579
    /// \c INVALID.
2580
    class ItemIt : public Key {
2581
    public:
2582
      typedef Key Parent;
2583

	
2584
      /// \brief Creates an iterator with a value.
2585
      ///
2586
      /// Creates an iterator with a value. It iterates on the
2587
      /// keys mapped to the given value.
2588
      /// \param map The IterableBoolMap.
2589
      /// \param value The value.
2590
      ItemIt(const IterableBoolMap& map, bool value)
2591
        : Parent(value ? 
2592
                 (map._sep > 0 ?
2593
                  map._array[map._sep - 1] : INVALID) :
2594
                 (map._sep < int(map._array.size()) ?
2595
                  map._array.back() : INVALID)), _map(&map) {}
2596

	
2597
      /// \brief Invalid constructor \& conversion.
2598
      ///
2599
      /// This constructor initializes the iterator to be invalid.
2600
      /// \sa Invalid for more details.
2601
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2602

	
2603
      /// \brief Increment operator.
2604
      ///
2605
      /// Increment operator.
2606
      ItemIt& operator++() {
2607
        int pos = _map->position(*this);
2608
        int _sep = pos >= _map->_sep ? _map->_sep : 0;
2609
        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
2610
        return *this;
2611
      }
2612

	
2613
    private:
2614
      const IterableBoolMap* _map;
2615
    };
2616

	
2617
  protected:
2618

	
2619
    virtual void add(const Key& key) {
2620
      Parent::add(key);
2621
      Parent::set(key, _array.size());
2622
      _array.push_back(key);
2623
    }
2624

	
2625
    virtual void add(const std::vector<Key>& keys) {
2626
      Parent::add(keys);
2627
      for (int i = 0; i < int(keys.size()); ++i) {
2628
        Parent::set(keys[i], _array.size());
2629
        _array.push_back(keys[i]);
2630
      }
2631
    }
2632

	
2633
    virtual void erase(const Key& key) {
2634
      int pos = position(key);
2635
      if (pos < _sep) {
2636
        --_sep;
2637
        Parent::set(_array[_sep], pos);
2638
        _array[pos] = _array[_sep];
2639
        Parent::set(_array.back(), _sep);
2640
        _array[_sep] = _array.back();
2641
        _array.pop_back();
2642
      } else {
2643
        Parent::set(_array.back(), pos);
2644
        _array[pos] = _array.back();
2645
        _array.pop_back();
2646
      }
2647
      Parent::erase(key);
2648
    }
2649

	
2650
    virtual void erase(const std::vector<Key>& keys) {
2651
      for (int i = 0; i < int(keys.size()); ++i) {
2652
        int pos = position(keys[i]);
2653
        if (pos < _sep) {
2654
          --_sep;
2655
          Parent::set(_array[_sep], pos);
2656
          _array[pos] = _array[_sep];
2657
          Parent::set(_array.back(), _sep);
2658
          _array[_sep] = _array.back();
2659
          _array.pop_back();
2660
        } else {
2661
          Parent::set(_array.back(), pos);
2662
          _array[pos] = _array.back();
2663
          _array.pop_back();
2664
        }
2665
      }
2666
      Parent::erase(keys);
2667
    }
2668

	
2669
    virtual void build() {
2670
      Parent::build();
2671
      typename Parent::Notifier* nf = Parent::notifier();
2672
      Key it;
2673
      for (nf->first(it); it != INVALID; nf->next(it)) {
2674
        Parent::set(it, _array.size());
2675
        _array.push_back(it);
2676
      }
2677
      _sep = 0;
2678
    }
2679

	
2680
    virtual void clear() {
2681
      _array.clear();
2682
      _sep = 0;
2683
      Parent::clear();
2684
    }
2685

	
2686
  };
2687

	
2688

	
2689
  namespace _maps_bits {
2690
    template <typename Item>
2691
    struct IterableIntMapNode {
2692
      IterableIntMapNode() : value(-1) {}
2693
      IterableIntMapNode(int _value) : value(_value) {}
2694
      Item prev, next;
2695
      int value;
2696
    };
2697
  }
2698

	
2699
  /// \brief Dynamic iterable integer map.
2700
  ///
2701
  /// This class provides a special graph map type which can store an
2702
  /// integer value for graph items (\c Node, \c Arc or \c Edge).
2703
  /// For each non-negative value it is possible to iterate on the keys
2704
  /// mapped to the value.
2705
  ///
2706
  /// This type is a reference map, so it can be modified with the
2707
  /// subscript operator.
2708
  ///
2709
  /// \note The size of the data structure depends on the largest
2710
  /// value in the map.
2711
  ///
2712
  /// \tparam GR The graph type.
2713
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2714
  /// \c GR::Edge).
2715
  ///
2716
  /// \see IterableBoolMap, IterableValueMap
2717
  /// \see CrossRefMap
2718
  template <typename GR, typename K>
2719
  class IterableIntMap
2720
    : protected ItemSetTraits<GR, K>::
2721
        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
2722
  public:
2723
    typedef typename ItemSetTraits<GR, K>::
2724
      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
2725

	
2726
    /// The key type
2727
    typedef K Key;
2728
    /// The value type
2729
    typedef int Value;
2730
    /// The graph type
2731
    typedef GR Graph;
2732

	
2733
    /// \brief Constructor of the map.
2734
    ///
2735
    /// Constructor of the map. It sets all values to -1.
2736
    explicit IterableIntMap(const Graph& graph)
2737
      : Parent(graph) {}
2738

	
2739
    /// \brief Constructor of the map with a given value.
2740
    ///
2741
    /// Constructor of the map with a given value.
2742
    explicit IterableIntMap(const Graph& graph, int value)
2743
      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
2744
      if (value >= 0) {
2745
        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
2746
          lace(it);
2747
        }
2748
      }
2749
    }
2750

	
2751
  private:
2752

	
2753
    void unlace(const Key& key) {
2754
      typename Parent::Value& node = Parent::operator[](key);
2755
      if (node.value < 0) return;
2756
      if (node.prev != INVALID) {
2757
        Parent::operator[](node.prev).next = node.next;
2758
      } else {
2759
        _first[node.value] = node.next;
2760
      }
2761
      if (node.next != INVALID) {
2762
        Parent::operator[](node.next).prev = node.prev;
2763
      }
2764
      while (!_first.empty() && _first.back() == INVALID) {
2765
        _first.pop_back();
2766
      }
2767
    }
2768

	
2769
    void lace(const Key& key) {
2770
      typename Parent::Value& node = Parent::operator[](key);
2771
      if (node.value < 0) return;
2772
      if (node.value >= int(_first.size())) {
2773
        _first.resize(node.value + 1, INVALID);
2774
      }
2775
      node.prev = INVALID;
2776
      node.next = _first[node.value];
2777
      if (node.next != INVALID) {
2778
        Parent::operator[](node.next).prev = key;
2779
      }
2780
      _first[node.value] = key;
2781
    }
2782

	
2783
  public:
2784

	
2785
    /// Indicates that the map is reference map.
2786
    typedef True ReferenceMapTag;
2787

	
2788
    /// \brief Reference to the value of the map.
2789
    ///
2790
    /// This class is similar to the \c int type. It can
2791
    /// be converted to \c int and it has the same operators.
2792
    class Reference {
2793
      friend class IterableIntMap;
2794
    private:
2795
      Reference(IterableIntMap& map, const Key& key)
2796
        : _key(key), _map(map) {}
2797
    public:
2798

	
2799
      Reference& operator=(const Reference& value) {
2800
        _map.set(_key, static_cast<const int&>(value));
2801
         return *this;
2802
      }
2803

	
2804
      operator const int&() const {
2805
        return static_cast<const IterableIntMap&>(_map)[_key];
2806
      }
2807

	
2808
      Reference& operator=(int value) {
2809
        _map.set(_key, value);
2810
        return *this;
2811
      }
2812
      Reference& operator++() {
2813
        _map.set(_key, _map[_key] + 1);
2814
        return *this;
2815
      }
2816
      int operator++(int) {
2817
        int value = _map[_key];
2818
        _map.set(_key, value + 1);
2819
        return value;
2820
      }
2821
      Reference& operator--() {
2822
        _map.set(_key, _map[_key] - 1);
2823
        return *this;
2824
      }
2825
      int operator--(int) {
2826
        int value = _map[_key];
2827
        _map.set(_key, value - 1);
2828
        return value;
2829
      }
2830
      Reference& operator+=(int value) {
2831
        _map.set(_key, _map[_key] + value);
2832
        return *this;
2833
      }
2834
      Reference& operator-=(int value) {
2835
        _map.set(_key, _map[_key] - value);
2836
        return *this;
2837
      }
2838
      Reference& operator*=(int value) {
2839
        _map.set(_key, _map[_key] * value);
2840
        return *this;
2841
      }
2842
      Reference& operator/=(int value) {
2843
        _map.set(_key, _map[_key] / value);
2844
        return *this;
2845
      }
2846
      Reference& operator%=(int value) {
2847
        _map.set(_key, _map[_key] % value);
2848
        return *this;
2849
      }
2850
      Reference& operator&=(int value) {
2851
        _map.set(_key, _map[_key] & value);
2852
        return *this;
2853
      }
2854
      Reference& operator|=(int value) {
2855
        _map.set(_key, _map[_key] | value);
2856
        return *this;
2857
      }
2858
      Reference& operator^=(int value) {
2859
        _map.set(_key, _map[_key] ^ value);
2860
        return *this;
2861
      }
2862
      Reference& operator<<=(int value) {
2863
        _map.set(_key, _map[_key] << value);
2864
        return *this;
2865
      }
2866
      Reference& operator>>=(int value) {
2867
        _map.set(_key, _map[_key] >> value);
2868
        return *this;
2869
      }
2870

	
2871
    private:
2872
      Key _key;
2873
      IterableIntMap& _map;
2874
    };
2875

	
2876
    /// The const reference type.
2877
    typedef const Value& ConstReference;
2878

	
2879
    /// \brief Gives back the maximal value plus one.
2880
    ///
2881
    /// Gives back the maximal value plus one.
2882
    int size() const {
2883
      return _first.size();
2884
    }
2885

	
2886
    /// \brief Set operation of the map.
2887
    ///
2888
    /// Set operation of the map.
2889
    void set(const Key& key, const Value& value) {
2890
      unlace(key);
2891
      Parent::operator[](key).value = value;
2892
      lace(key);
2893
    }
2894

	
2895
    /// \brief Const subscript operator of the map.
2896
    ///
2897
    /// Const subscript operator of the map.
2898
    const Value& operator[](const Key& key) const {
2899
      return Parent::operator[](key).value;
2900
    }
2901

	
2902
    /// \brief Subscript operator of the map.
2903
    ///
2904
    /// Subscript operator of the map.
2905
    Reference operator[](const Key& key) {
2906
      return Reference(*this, key);
2907
    }
2908

	
2909
    /// \brief Iterator for the keys with the same value.
2910
    ///
2911
    /// Iterator for the keys with the same value. It works
2912
    /// like a graph item iterator, it can be converted to
2913
    /// the item type of the map, incremented with \c ++ operator, and
2914
    /// if the iterator leaves the last valid item, it will be equal to
2915
    /// \c INVALID.
2916
    class ItemIt : public Key {
2917
    public:
2918
      typedef Key Parent;
2919

	
2920
      /// \brief Invalid constructor \& conversion.
2921
      ///
2922
      /// This constructor initializes the iterator to be invalid.
2923
      /// \sa Invalid for more details.
2924
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2925

	
2926
      /// \brief Creates an iterator with a value.
2927
      ///
2928
      /// Creates an iterator with a value. It iterates on the
2929
      /// keys mapped to the given value.
2930
      /// \param map The IterableIntMap.
2931
      /// \param value The value.
2932
      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
2933
        if (value < 0 || value >= int(_map->_first.size())) {
2934
          Parent::operator=(INVALID);
2935
        } else {
2936
          Parent::operator=(_map->_first[value]);
2937
        }
2938
      }
2939

	
2940
      /// \brief Increment operator.
2941
      ///
2942
      /// Increment operator.
2943
      ItemIt& operator++() {
2944
        Parent::operator=(_map->IterableIntMap::Parent::
2945
                          operator[](static_cast<Parent&>(*this)).next);
2946
        return *this;
2947
      }
2948

	
2949
    private:
2950
      const IterableIntMap* _map;
2951
    };
2952

	
2953
  protected:
2954

	
2955
    virtual void erase(const Key& key) {
2956
      unlace(key);
2957
      Parent::erase(key);
2958
    }
2959

	
2960
    virtual void erase(const std::vector<Key>& keys) {
2961
      for (int i = 0; i < int(keys.size()); ++i) {
2962
        unlace(keys[i]);
2963
      }
2964
      Parent::erase(keys);
2965
    }
2966

	
2967
    virtual void clear() {
2968
      _first.clear();
2969
      Parent::clear();
2970
    }
2971

	
2972
  private:
2973
    std::vector<Key> _first;
2974
  };
2975

	
2976
  namespace _maps_bits {
2977
    template <typename Item, typename Value>
2978
    struct IterableValueMapNode {
2979
      IterableValueMapNode(Value _value = Value()) : value(_value) {}
2980
      Item prev, next;
2981
      Value value;
2982
    };
2983
  }
2984

	
2985
  /// \brief Dynamic iterable map for comparable values.
2986
  ///
2987
  /// This class provides a special graph map type which can store an
2988
  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
2989
  /// For each value it is possible to iterate on the keys mapped to
2990
  /// the value.
2991
  ///
2992
  /// The map stores for each value a linked list with
2993
  /// the items which mapped to the value, and the values are stored
2994
  /// in balanced binary tree. The values of the map can be accessed
2995
  /// with stl compatible forward iterator.
2996
  ///
2997
  /// This type is not reference map, so it cannot be modified with
2998
  /// the subscript operator.
2999
  ///
3000
  /// \tparam GR The graph type.
3001
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
3002
  /// \c GR::Edge).
3003
  /// \tparam V The value type of the map. It can be any comparable
3004
  /// value type.
3005
  ///
3006
  /// \see IterableBoolMap, IterableIntMap
3007
  /// \see CrossRefMap
3008
  template <typename GR, typename K, typename V>
3009
  class IterableValueMap
3010
    : protected ItemSetTraits<GR, K>::
3011
        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
3012
  public:
3013
    typedef typename ItemSetTraits<GR, K>::
3014
      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
3015

	
3016
    /// The key type
3017
    typedef K Key;
3018
    /// The value type
3019
    typedef V Value;
3020
    /// The graph type
3021
    typedef GR Graph;
3022

	
3023
  public:
3024

	
3025
    /// \brief Constructor of the map with a given value.
3026
    ///
3027
    /// Constructor of the map with a given value.
3028
    explicit IterableValueMap(const Graph& graph,
3029
                              const Value& value = Value())
3030
      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
3031
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3032
        lace(it);
3033
      }
3034
    }
3035

	
3036
  protected:
3037

	
3038
    void unlace(const Key& key) {
3039
      typename Parent::Value& node = Parent::operator[](key);
3040
      if (node.prev != INVALID) {
3041
        Parent::operator[](node.prev).next = node.next;
3042
      } else {
3043
        if (node.next != INVALID) {
3044
          _first[node.value] = node.next;
3045
        } else {
3046
          _first.erase(node.value);
3047
        }
3048
      }
3049
      if (node.next != INVALID) {
3050
        Parent::operator[](node.next).prev = node.prev;
3051
      }
3052
    }
3053

	
3054
    void lace(const Key& key) {
3055
      typename Parent::Value& node = Parent::operator[](key);
3056
      typename std::map<Value, Key>::iterator it = _first.find(node.value);
3057
      if (it == _first.end()) {
3058
        node.prev = node.next = INVALID;
3059
        _first.insert(std::make_pair(node.value, key));
3060
      } else {
3061
        node.prev = INVALID;
3062
        node.next = it->second;
3063
        if (node.next != INVALID) {
3064
          Parent::operator[](node.next).prev = key;
3065
        }
3066
        it->second = key;
3067
      }
3068
    }
3069

	
3070
  public:
3071

	
3072
    /// \brief Forward iterator for values.
3073
    ///
3074
    /// This iterator is an stl compatible forward
3075
    /// iterator on the values of the map. The values can
3076
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
3077
    class ValueIterator
3078
      : public std::iterator<std::forward_iterator_tag, Value> {
3079
      friend class IterableValueMap;
3080
    private:
3081
      ValueIterator(typename std::map<Value, Key>::const_iterator _it)
3082
        : it(_it) {}
3083
    public:
3084

	
3085
      ValueIterator() {}
3086

	
3087
      ValueIterator& operator++() { ++it; return *this; }
3088
      ValueIterator operator++(int) {
3089
        ValueIterator tmp(*this);
3090
        operator++();
3091
        return tmp;
3092
      }
3093

	
3094
      const Value& operator*() const { return it->first; }
3095
      const Value* operator->() const { return &(it->first); }
3096

	
3097
      bool operator==(ValueIterator jt) const { return it == jt.it; }
3098
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
3099

	
3100
    private:
3101
      typename std::map<Value, Key>::const_iterator it;
3102
    };
3103

	
3104
    /// \brief Returns an iterator to the first value.
3105
    ///
3106
    /// Returns an stl compatible iterator to the
3107
    /// first value of the map. The values of the
3108
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3109
    /// range.
3110
    ValueIterator beginValue() const {
3111
      return ValueIterator(_first.begin());
3112
    }
3113

	
3114
    /// \brief Returns an iterator after the last value.
3115
    ///
3116
    /// Returns an stl compatible iterator after the
3117
    /// last value of the map. The values of the
3118
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3119
    /// range.
3120
    ValueIterator endValue() const {
3121
      return ValueIterator(_first.end());
3122
    }
3123

	
3124
    /// \brief Set operation of the map.
3125
    ///
3126
    /// Set operation of the map.
3127
    void set(const Key& key, const Value& value) {
3128
      unlace(key);
3129
      Parent::operator[](key).value = value;
3130
      lace(key);
3131
    }
3132

	
3133
    /// \brief Const subscript operator of the map.
3134
    ///
3135
    /// Const subscript operator of the map.
3136
    const Value& operator[](const Key& key) const {
3137
      return Parent::operator[](key).value;
3138
    }
3139

	
3140
    /// \brief Iterator for the keys with the same value.
3141
    ///
3142
    /// Iterator for the keys with the same value. It works
3143
    /// like a graph item iterator, it can be converted to
3144
    /// the item type of the map, incremented with \c ++ operator, and
3145
    /// if the iterator leaves the last valid item, it will be equal to
3146
    /// \c INVALID.
3147
    class ItemIt : public Key {
3148
    public:
3149
      typedef Key Parent;
3150

	
3151
      /// \brief Invalid constructor \& conversion.
3152
      ///
3153
      /// This constructor initializes the iterator to be invalid.
3154
      /// \sa Invalid for more details.
3155
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
3156

	
3157
      /// \brief Creates an iterator with a value.
3158
      ///
3159
      /// Creates an iterator with a value. It iterates on the
3160
      /// keys which have the given value.
3161
      /// \param map The IterableValueMap
3162
      /// \param value The value
3163
      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
3164
        typename std::map<Value, Key>::const_iterator it =
3165
          map._first.find(value);
3166
        if (it == map._first.end()) {
3167
          Parent::operator=(INVALID);
3168
        } else {
3169
          Parent::operator=(it->second);
3170
        }
3171
      }
3172

	
3173
      /// \brief Increment operator.
3174
      ///
3175
      /// Increment Operator.
3176
      ItemIt& operator++() {
3177
        Parent::operator=(_map->IterableValueMap::Parent::
3178
                          operator[](static_cast<Parent&>(*this)).next);
3179
        return *this;
3180
      }
3181

	
3182

	
3183
    private:
3184
      const IterableValueMap* _map;
3185
    };
3186

	
3187
  protected:
3188

	
3189
    virtual void add(const Key& key) {
3190
      Parent::add(key);
3191
      unlace(key);
3192
    }
3193

	
3194
    virtual void add(const std::vector<Key>& keys) {
3195
      Parent::add(keys);
3196
      for (int i = 0; i < int(keys.size()); ++i) {
3197
        lace(keys[i]);
3198
      }
3199
    }
3200

	
3201
    virtual void erase(const Key& key) {
3202
      unlace(key);
3203
      Parent::erase(key);
3204
    }
3205

	
3206
    virtual void erase(const std::vector<Key>& keys) {
3207
      for (int i = 0; i < int(keys.size()); ++i) {
3208
        unlace(keys[i]);
3209
      }
3210
      Parent::erase(keys);
3211
    }
3212

	
3213
    virtual void build() {
3214
      Parent::build();
3215
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3216
        lace(it);
3217
      }
3218
    }
3219

	
3220
    virtual void clear() {
3221
      _first.clear();
3222
      Parent::clear();
3223
    }
3224

	
3225
  private:
3226
    std::map<Value, Key> _first;
3227
  };
3228

	
2314 3229
  /// \brief Map of the source nodes of arcs in a digraph.
2315 3230
  ///
2316 3231
  /// SourceMap provides access for the source node of each arc in a digraph,
2317 3232
  /// which is returned by the \c source() function of the digraph.
2318 3233
  /// \tparam GR The digraph type.
2319 3234
  /// \see TargetMap
... ...
@@ -2477,13 +3392,13 @@
2477 3392
  ///
2478 3393
  /// This map returns the in-degree of a node. Once it is constructed,
2479 3394
  /// the degrees are stored in a standard \c NodeMap, so each query is done
2480 3395
  /// in constant time. On the other hand, the values are updated automatically
2481 3396
  /// whenever the digraph changes.
2482 3397
  ///
2483
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
3398
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
2484 3399
  /// may provide alternative ways to modify the digraph.
2485 3400
  /// The correct behavior of InDegMap is not guarantied if these additional
2486 3401
  /// features are used. For example the functions
2487 3402
  /// \ref ListDigraph::changeSource() "changeSource()",
2488 3403
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
2489 3404
  /// \ref ListDigraph::reverseArc() "reverseArc()"
... ...
@@ -2493,13 +3408,13 @@
2493 3408
  template <typename GR>
2494 3409
  class InDegMap
2495 3410
    : protected ItemSetTraits<GR, typename GR::Arc>
2496 3411
      ::ItemNotifier::ObserverBase {
2497 3412

	
2498 3413
  public:
2499
    
3414

	
2500 3415
    /// The graph type of InDegMap
2501 3416
    typedef GR Graph;
2502 3417
    typedef GR Digraph;
2503 3418
    /// The key type
2504 3419
    typedef typename Digraph::Node Key;
2505 3420
    /// The value type
... ...
@@ -2607,13 +3522,13 @@
2607 3522
  ///
2608 3523
  /// This map returns the out-degree of a node. Once it is constructed,
2609 3524
  /// the degrees are stored in a standard \c NodeMap, so each query is done
2610 3525
  /// in constant time. On the other hand, the values are updated automatically
2611 3526
  /// whenever the digraph changes.
2612 3527
  ///
2613
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
3528
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
2614 3529
  /// may provide alternative ways to modify the digraph.
2615 3530
  /// The correct behavior of OutDegMap is not guarantied if these additional
2616 3531
  /// features are used. For example the functions
2617 3532
  /// \ref ListDigraph::changeSource() "changeSource()",
2618 3533
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
2619 3534
  /// \ref ListDigraph::reverseArc() "reverseArc()"
Ignore white space 12 line context
... ...
@@ -485,14 +485,14 @@
485 485
      return *this;
486 486
    }
487 487

	
488 488
    /// \name Execution Control
489 489
    /// The simplest way to execute the algorithm is to use
490 490
    /// one of the member functions called \c run(...). \n
491
    /// If you need more control on the execution,
492
    /// first you must call \ref init(), then you can add several
491
    /// If you need better control on the execution,
492
    /// you have to call \ref init() first, then you can add several
493 493
    /// source nodes with \ref addSource().
494 494
    /// Finally \ref start() will perform the arborescence
495 495
    /// computation.
496 496

	
497 497
    ///@{
498 498

	
Ignore white space 12 line context
... ...
@@ -49,13 +49,17 @@
49 49
    typedef typename CapacityMap::Value Value;
50 50

	
51 51
    /// \brief The type of the map that stores the flow values.
52 52
    ///
53 53
    /// The type of the map that stores the flow values.
54 54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
55
#ifdef DOXYGEN
56
    typedef GR::ArcMap<Value> FlowMap;
57
#else
55 58
    typedef typename Digraph::template ArcMap<Value> FlowMap;
59
#endif
56 60

	
57 61
    /// \brief Instantiates a FlowMap.
58 62
    ///
59 63
    /// This function instantiates a \ref FlowMap.
60 64
    /// \param digraph The digraph for which we would like to define
61 65
    /// the flow map.
... ...
@@ -64,15 +68,18 @@
64 68
    }
65 69

	
66 70
    /// \brief The elevator type used by Preflow algorithm.
67 71
    ///
68 72
    /// The elevator type used by Preflow algorithm.
69 73
    ///
70
    /// \sa Elevator
71
    /// \sa LinkedElevator
72
    typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
74
    /// \sa Elevator, LinkedElevator
75
#ifdef DOXYGEN
76
    typedef lemon::Elevator<GR, GR::Node> Elevator;
77
#else
78
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
79
#endif
73 80

	
74 81
    /// \brief Instantiates an Elevator.
75 82
    ///
76 83
    /// This function instantiates an \ref Elevator.
77 84
    /// \param digraph The digraph for which we would like to define
78 85
    /// the elevator.
... ...
@@ -94,13 +101,13 @@
94 101
  /// \brief %Preflow algorithm class.
95 102
  ///
96 103
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
97 104
  /// \e push-relabel algorithm producing a \ref max_flow
98 105
  /// "flow of maximum value" in a digraph.
99 106
  /// The preflow algorithms are the fastest known maximum
100
  /// flow algorithms. The current implementation use a mixture of the
107
  /// flow algorithms. The current implementation uses a mixture of the
101 108
  /// \e "highest label" and the \e "bound decrease" heuristics.
102 109
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
103 110
  ///
104 111
  /// The algorithm consists of two phases. After the first phase
105 112
  /// the maximum flow value and the minimum cut is obtained. The
106 113
  /// second phase constructs a feasible maximum flow on each arc.
... ...
@@ -368,32 +375,34 @@
368 375
    /// \pre Either \ref run() or \ref init() must be called before
369 376
    /// using this function.
370 377
    const Elevator& elevator() const {
371 378
      return *_level;
372 379
    }
373 380

	
374
    /// \brief Sets the tolerance used by algorithm.
381
    /// \brief Sets the tolerance used by the algorithm.
375 382
    ///
376
    /// Sets the tolerance used by algorithm.
377
    Preflow& tolerance(const Tolerance& tolerance) const {
383
    /// Sets the tolerance object used by the algorithm.
384
    /// \return <tt>(*this)</tt>
385
    Preflow& tolerance(const Tolerance& tolerance) {
378 386
      _tolerance = tolerance;
379 387
      return *this;
380 388
    }
381 389

	
382 390
    /// \brief Returns a const reference to the tolerance.
383 391
    ///
384
    /// Returns a const reference to the tolerance.
392
    /// Returns a const reference to the tolerance object used by
393
    /// the algorithm.
385 394
    const Tolerance& tolerance() const {
386
      return tolerance;
395
      return _tolerance;
387 396
    }
388 397

	
389 398
    /// \name Execution Control
390 399
    /// The simplest way to execute the preflow algorithm is to use
391 400
    /// \ref run() or \ref runMinCut().\n
392
    /// If you need more control on the initial solution or the execution,
393
    /// first you have to call one of the \ref init() functions, then
401
    /// If you need better control on the initial solution or the execution,
402
    /// you have to call one of the \ref init() functions first, then
394 403
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
395 404

	
396 405
    ///@{
397 406

	
398 407
    /// \brief Initializes the internal data structures.
399 408
    ///
Ignore white space 12 line context
... ...
@@ -16,72 +16,70 @@
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_RADIX_HEAP_H
20 20
#define LEMON_RADIX_HEAP_H
21 21

	
22
///\ingroup auxdat
22
///\ingroup heaps
23 23
///\file
24
///\brief Radix Heap implementation.
24
///\brief Radix heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <lemon/error.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31

	
32
  /// \ingroup auxdata
32
  /// \ingroup heaps
33 33
  ///
34
  /// \brief A Radix Heap implementation.
34
  /// \brief Radix heap data structure.
35 35
  ///
36
  /// This class implements the \e radix \e heap data structure. A \e heap
37
  /// is a data structure for storing items with specified values called \e
38
  /// priorities in such a way that finding the item with minimum priority is
39
  /// efficient. This heap type can store only items with \e int priority.
40
  /// In a heap one can change the priority of an item, add or erase an
41
  /// item, but the priority cannot be decreased under the last removed
42
  /// item's priority.
36
  /// This class implements the \e radix \e heap data structure.
37
  /// It practically conforms to the \ref concepts::Heap "heap concept",
38
  /// but it has some limitations due its special implementation.
39
  /// The type of the priorities must be \c int and the priority of an
40
  /// item cannot be decreased under the priority of the last removed item.
43 41
  ///
44
  /// \param IM A read and writable Item int map, used internally
45
  /// to handle the cross references.
46
  ///
47
  /// \see BinHeap
48
  /// \see Dijkstra
42
  /// \tparam IM A read-writable item map with \c int values, used
43
  /// internally to handle the cross references.
49 44
  template <typename IM>
50 45
  class RadixHeap {
51 46

	
52 47
  public:
53
    typedef typename IM::Key Item;
48

	
49
    /// Type of the item-int map.
50
    typedef IM ItemIntMap;
51
    /// Type of the priorities.
54 52
    typedef int Prio;
55
    typedef IM ItemIntMap;
53
    /// Type of the items stored in the heap.
54
    typedef typename ItemIntMap::Key Item;
56 55

	
57 56
    /// \brief Exception thrown by RadixHeap.
58 57
    ///
59
    /// This Exception is thrown when a smaller priority
60
    /// is inserted into the \e RadixHeap then the last time erased.
58
    /// This exception is thrown when an item is inserted into a
59
    /// RadixHeap with a priority smaller than the last erased one.
61 60
    /// \see RadixHeap
62

	
63
    class UnderFlowPriorityError : public Exception {
61
    class PriorityUnderflowError : public Exception {
64 62
    public:
65 63
      virtual const char* what() const throw() {
66
        return "lemon::RadixHeap::UnderFlowPriorityError";
64
        return "lemon::RadixHeap::PriorityUnderflowError";
67 65
      }
68 66
    };
69 67

	
70
    /// \brief Type to represent the items states.
68
    /// \brief Type to represent the states of the items.
71 69
    ///
72
    /// Each Item element have a state associated to it. It may be "in heap",
73
    /// "pre heap" or "post heap". The latter two are indifferent from the
70
    /// Each item has a state associated to it. It can be "in heap",
71
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
74 72
    /// heap's point of view, but may be useful to the user.
75 73
    ///
76
    /// The ItemIntMap \e should be initialized in such way that it maps
77
    /// PRE_HEAP (-1) to any element to be put in the heap...
74
    /// The item-int map must be initialized in such way that it assigns
75
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
78 76
    enum State {
79
      IN_HEAP = 0,
80
      PRE_HEAP = -1,
81
      POST_HEAP = -2
77
      IN_HEAP = 0,    ///< = 0.
78
      PRE_HEAP = -1,  ///< = -1.
79
      POST_HEAP = -2  ///< = -2.
82 80
    };
83 81

	
84 82
  private:
85 83

	
86 84
    struct RadixItem {
87 85
      int prev, next, box;
... ...
@@ -93,326 +91,333 @@
93 91
    struct RadixBox {
94 92
      int first;
95 93
      int min, size;
96 94
      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
97 95
    };
98 96

	
99
    std::vector<RadixItem> data;
100
    std::vector<RadixBox> boxes;
97
    std::vector<RadixItem> _data;
98
    std::vector<RadixBox> _boxes;
101 99

	
102 100
    ItemIntMap &_iim;
103 101

	
102
  public:
104 103

	
105
  public:
106
    /// \brief The constructor.
104
    /// \brief Constructor.
107 105
    ///
108
    /// The constructor.
109
    ///
110
    /// \param map It should be given to the constructor, since it is used
111
    /// internally to handle the cross references. The value of the map
112
    /// should be PRE_HEAP (-1) for each element.
113
    ///
114
    /// \param minimal The initial minimal value of the heap.
115
    /// \param capacity It determines the initial capacity of the heap.
116
    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
117
      : _iim(map) {
118
      boxes.push_back(RadixBox(minimal, 1));
119
      boxes.push_back(RadixBox(minimal + 1, 1));
120
      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
106
    /// Constructor.
107
    /// \param map A map that assigns \c int values to the items.
108
    /// It is used internally to handle the cross references.
109
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
110
    /// \param minimum The initial minimum value of the heap.
111
    /// \param capacity The initial capacity of the heap.
112
    RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0)
113
      : _iim(map)
114
    {
115
      _boxes.push_back(RadixBox(minimum, 1));
116
      _boxes.push_back(RadixBox(minimum + 1, 1));
117
      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
121 118
        extend();
122 119
      }
123 120
    }
124 121

	
125
    /// The number of items stored in the heap.
122
    /// \brief The number of items stored in the heap.
126 123
    ///
127
    /// \brief Returns the number of items stored in the heap.
128
    int size() const { return data.size(); }
129
    /// \brief Checks if the heap stores no items.
124
    /// This function returns the number of items stored in the heap.
125
    int size() const { return _data.size(); }
126

	
127
    /// \brief Check if the heap is empty.
130 128
    ///
131
    /// Returns \c true if and only if the heap stores no items.
132
    bool empty() const { return data.empty(); }
129
    /// This function returns \c true if the heap is empty.
130
    bool empty() const { return _data.empty(); }
133 131

	
134
    /// \brief Make empty this heap.
132
    /// \brief Make the heap empty.
135 133
    ///
136
    /// Make empty this heap. It does not change the cross reference
137
    /// map.  If you want to reuse a heap what is not surely empty you
138
    /// should first clear the heap and after that you should set the
139
    /// cross reference map for each item to \c PRE_HEAP.
140
    void clear(int minimal = 0, int capacity = 0) {
141
      data.clear(); boxes.clear();
142
      boxes.push_back(RadixBox(minimal, 1));
143
      boxes.push_back(RadixBox(minimal + 1, 1));
144
      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
134
    /// This functon makes the heap empty.
135
    /// It does not change the cross reference map. If you want to reuse
136
    /// a heap that is not surely empty, you should first clear it and
137
    /// then you should set the cross reference map to \c PRE_HEAP
138
    /// for each item.
139
    /// \param minimum The minimum value of the heap.
140
    /// \param capacity The capacity of the heap.
141
    void clear(int minimum = 0, int capacity = 0) {
142
      _data.clear(); _boxes.clear();
143
      _boxes.push_back(RadixBox(minimum, 1));
144
      _boxes.push_back(RadixBox(minimum + 1, 1));
145
      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
145 146
        extend();
146 147
      }
147 148
    }
148 149

	
149 150
  private:
150 151

	
151 152
    bool upper(int box, Prio pr) {
152
      return pr < boxes[box].min;
153
      return pr < _boxes[box].min;
153 154
    }
154 155

	
155 156
    bool lower(int box, Prio pr) {
156
      return pr >= boxes[box].min + boxes[box].size;
157
      return pr >= _boxes[box].min + _boxes[box].size;
157 158
    }
158 159

	
159
    /// \brief Remove item from the box list.
160
    // Remove item from the box list
160 161
    void remove(int index) {
161
      if (data[index].prev >= 0) {
162
        data[data[index].prev].next = data[index].next;
162
      if (_data[index].prev >= 0) {
163
        _data[_data[index].prev].next = _data[index].next;
163 164
      } else {
164
        boxes[data[index].box].first = data[index].next;
165
        _boxes[_data[index].box].first = _data[index].next;
165 166
      }
166
      if (data[index].next >= 0) {
167
        data[data[index].next].prev = data[index].prev;
167
      if (_data[index].next >= 0) {
168
        _data[_data[index].next].prev = _data[index].prev;
168 169
      }
169 170
    }
170 171

	
171
    /// \brief Insert item into the box list.
172
    // Insert item into the box list
172 173
    void insert(int box, int index) {
173
      if (boxes[box].first == -1) {
174
        boxes[box].first = index;
175
        data[index].next = data[index].prev = -1;
174
      if (_boxes[box].first == -1) {
175
        _boxes[box].first = index;
176
        _data[index].next = _data[index].prev = -1;
176 177
      } else {
177
        data[index].next = boxes[box].first;
178
        data[boxes[box].first].prev = index;
179
        data[index].prev = -1;
180
        boxes[box].first = index;
178
        _data[index].next = _boxes[box].first;
179
        _data[_boxes[box].first].prev = index;
180
        _data[index].prev = -1;
181
        _boxes[box].first = index;
181 182
      }
182
      data[index].box = box;
183
      _data[index].box = box;
183 184
    }
184 185

	
185
    /// \brief Add a new box to the box list.
186
    // Add a new box to the box list
186 187
    void extend() {
187
      int min = boxes.back().min + boxes.back().size;
188
      int bs = 2 * boxes.back().size;
189
      boxes.push_back(RadixBox(min, bs));
188
      int min = _boxes.back().min + _boxes.back().size;
189
      int bs = 2 * _boxes.back().size;
190
      _boxes.push_back(RadixBox(min, bs));
190 191
    }
191 192

	
192
    /// \brief Move an item up into the proper box.
193
    void bubble_up(int index) {
194
      if (!lower(data[index].box, data[index].prio)) return;
193
    // Move an item up into the proper box.
194
    void bubbleUp(int index) {
195
      if (!lower(_data[index].box, _data[index].prio)) return;
195 196
      remove(index);
196
      int box = findUp(data[index].box, data[index].prio);
197
      int box = findUp(_data[index].box, _data[index].prio);
197 198
      insert(box, index);
198 199
    }
199 200

	
200
    /// \brief Find up the proper box for the item with the given prio.
201
    // Find up the proper box for the item with the given priority
201 202
    int findUp(int start, int pr) {
202 203
      while (lower(start, pr)) {
203
        if (++start == int(boxes.size())) {
204
        if (++start == int(_boxes.size())) {
204 205
          extend();
205 206
        }
206 207
      }
207 208
      return start;
208 209
    }
209 210

	
210
    /// \brief Move an item down into the proper box.
211
    void bubble_down(int index) {
212
      if (!upper(data[index].box, data[index].prio)) return;
211
    // Move an item down into the proper box
212
    void bubbleDown(int index) {
213
      if (!upper(_data[index].box, _data[index].prio)) return;
213 214
      remove(index);
214
      int box = findDown(data[index].box, data[index].prio);
215
      int box = findDown(_data[index].box, _data[index].prio);
215 216
      insert(box, index);
216 217
    }
217 218

	
218
    /// \brief Find up the proper box for the item with the given prio.
219
    // Find down the proper box for the item with the given priority
219 220
    int findDown(int start, int pr) {
220 221
      while (upper(start, pr)) {
221
        if (--start < 0) throw UnderFlowPriorityError();
222
        if (--start < 0) throw PriorityUnderflowError();
222 223
      }
223 224
      return start;
224 225
    }
225 226

	
226
    /// \brief Find the first not empty box.
227
    // Find the first non-empty box
227 228
    int findFirst() {
228 229
      int first = 0;
229
      while (boxes[first].first == -1) ++first;
230
      while (_boxes[first].first == -1) ++first;
230 231
      return first;
231 232
    }
232 233

	
233
    /// \brief Gives back the minimal prio of the box.
234
    // Gives back the minimum priority of the given box
234 235
    int minValue(int box) {
235
      int min = data[boxes[box].first].prio;
236
      for (int k = boxes[box].first; k != -1; k = data[k].next) {
237
        if (data[k].prio < min) min = data[k].prio;
236
      int min = _data[_boxes[box].first].prio;
237
      for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
238
        if (_data[k].prio < min) min = _data[k].prio;
238 239
      }
239 240
      return min;
240 241
    }
241 242

	
242
    /// \brief Rearrange the items of the heap and makes the
243
    /// first box not empty.
243
    // Rearrange the items of the heap and make the first box non-empty
244 244
    void moveDown() {
245 245
      int box = findFirst();
246 246
      if (box == 0) return;
247 247
      int min = minValue(box);
248 248
      for (int i = 0; i <= box; ++i) {
249
        boxes[i].min = min;
250
        min += boxes[i].size;
249
        _boxes[i].min = min;
250
        min += _boxes[i].size;
251 251
      }
252
      int curr = boxes[box].first, next;
252
      int curr = _boxes[box].first, next;
253 253
      while (curr != -1) {
254
        next = data[curr].next;
255
        bubble_down(curr);
254
        next = _data[curr].next;
255
        bubbleDown(curr);
256 256
        curr = next;
257 257
      }
258 258
    }
259 259

	
260
    void relocate_last(int index) {
261
      if (index != int(data.size()) - 1) {
262
        data[index] = data.back();
263
        if (data[index].prev != -1) {
264
          data[data[index].prev].next = index;
260
    void relocateLast(int index) {
261
      if (index != int(_data.size()) - 1) {
262
        _data[index] = _data.back();
263
        if (_data[index].prev != -1) {
264
          _data[_data[index].prev].next = index;
265 265
        } else {
266
          boxes[data[index].box].first = index;
266
          _boxes[_data[index].box].first = index;
267 267
        }
268
        if (data[index].next != -1) {
269
          data[data[index].next].prev = index;
268
        if (_data[index].next != -1) {
269
          _data[_data[index].next].prev = index;
270 270
        }
271
        _iim[data[index].item] = index;
271
        _iim[_data[index].item] = index;
272 272
      }
273
      data.pop_back();
273
      _data.pop_back();
274 274
    }
275 275

	
276 276
  public:
277 277

	
278 278
    /// \brief Insert an item into the heap with the given priority.
279 279
    ///
280
    /// Adds \c i to the heap with priority \c p.
280
    /// This function inserts the given item into the heap with the
281
    /// given priority.
281 282
    /// \param i The item to insert.
282 283
    /// \param p The priority of the item.
284
    /// \pre \e i must not be stored in the heap.
285
    /// \warning This method may throw an \c UnderFlowPriorityException.
283 286
    void push(const Item &i, const Prio &p) {
284
      int n = data.size();
287
      int n = _data.size();
285 288
      _iim.set(i, n);
286
      data.push_back(RadixItem(i, p));
287
      while (lower(boxes.size() - 1, p)) {
289
      _data.push_back(RadixItem(i, p));
290
      while (lower(_boxes.size() - 1, p)) {
288 291
        extend();
289 292
      }
290
      int box = findDown(boxes.size() - 1, p);
293
      int box = findDown(_boxes.size() - 1, p);
291 294
      insert(box, n);
292 295
    }
293 296

	
294
    /// \brief Returns the item with minimum priority.
297
    /// \brief Return the item having minimum priority.
295 298
    ///
296
    /// This method returns the item with minimum priority.
297
    /// \pre The heap must be nonempty.
299
    /// This function returns the item having minimum priority.
300
    /// \pre The heap must be non-empty.
298 301
    Item top() const {
299 302
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
300
      return data[boxes[0].first].item;
303
      return _data[_boxes[0].first].item;
301 304
    }
302 305

	
303
    /// \brief Returns the minimum priority.
306
    /// \brief The minimum priority.
304 307
    ///
305
    /// It returns the minimum priority.
306
    /// \pre The heap must be nonempty.
308
    /// This function returns the minimum priority.
309
    /// \pre The heap must be non-empty.
307 310
    Prio prio() const {
308 311
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
309
      return data[boxes[0].first].prio;
312
      return _data[_boxes[0].first].prio;
310 313
     }
311 314

	
312
    /// \brief Deletes the item with minimum priority.
315
    /// \brief Remove the item having minimum priority.
313 316
    ///
314
    /// This method deletes the item with minimum priority.
317
    /// This function removes the item having minimum priority.
315 318
    /// \pre The heap must be non-empty.
316 319
    void pop() {
317 320
      moveDown();
318
      int index = boxes[0].first;
319
      _iim[data[index].item] = POST_HEAP;
321
      int index = _boxes[0].first;
322
      _iim[_data[index].item] = POST_HEAP;
320 323
      remove(index);
321
      relocate_last(index);
324
      relocateLast(index);
322 325
    }
323 326

	
324
    /// \brief Deletes \c i from the heap.
327
    /// \brief Remove the given item from the heap.
325 328
    ///
326
    /// This method deletes item \c i from the heap, if \c i was
327
    /// already stored in the heap.
328
    /// \param i The item to erase.
329
    /// This function removes the given item from the heap if it is
330
    /// already stored.
331
    /// \param i The item to delete.
332
    /// \pre \e i must be in the heap.
329 333
    void erase(const Item &i) {
330 334
      int index = _iim[i];
331 335
      _iim[i] = POST_HEAP;
332 336
      remove(index);
333
      relocate_last(index);
337
      relocateLast(index);
334 338
   }
335 339

	
336
    /// \brief Returns the priority of \c i.
340
    /// \brief The priority of the given item.
337 341
    ///
338
    /// This function returns the priority of item \c i.
339
    /// \pre \c i must be in the heap.
342
    /// This function returns the priority of the given item.
340 343
    /// \param i The item.
344
    /// \pre \e i must be in the heap.
341 345
    Prio operator[](const Item &i) const {
342 346
      int idx = _iim[i];
343
      return data[idx].prio;
347
      return _data[idx].prio;
344 348
    }
345 349

	
346
    /// \brief \c i gets to the heap with priority \c p independently
347
    /// if \c i was already there.
350
    /// \brief Set the priority of an item or insert it, if it is
351
    /// not stored in the heap.
348 352
    ///
349
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
350
    /// in the heap and sets the priority of \c i to \c p otherwise.
351
    /// It may throw an \e UnderFlowPriorityException.
353
    /// This method sets the priority of the given item if it is
354
    /// already stored in the heap. Otherwise it inserts the given
355
    /// item into the heap with the given priority.
352 356
    /// \param i The item.
353 357
    /// \param p The priority.
358
    /// \pre \e i must be in the heap.
359
    /// \warning This method may throw an \c UnderFlowPriorityException.
354 360
    void set(const Item &i, const Prio &p) {
355 361
      int idx = _iim[i];
356 362
      if( idx < 0 ) {
357 363
        push(i, p);
358 364
      }
359
      else if( p >= data[idx].prio ) {
360
        data[idx].prio = p;
361
        bubble_up(idx);
365
      else if( p >= _data[idx].prio ) {
366
        _data[idx].prio = p;
367
        bubbleUp(idx);
362 368
      } else {
363
        data[idx].prio = p;
364
        bubble_down(idx);
369
        _data[idx].prio = p;
370
        bubbleDown(idx);
365 371
      }
366 372
    }
367 373

	
368

	
369
    /// \brief Decreases the priority of \c i to \c p.
374
    /// \brief Decrease the priority of an item to the given value.
370 375
    ///
371
    /// This method decreases the priority of item \c i to \c p.
372
    /// \pre \c i must be stored in the heap with priority at least \c p, and
373
    /// \c should be greater or equal to the last removed item's priority.
376
    /// This function decreases the priority of an item to the given value.
374 377
    /// \param i The item.
375 378
    /// \param p The priority.
379
    /// \pre \e i must be stored in the heap with priority at least \e p.
380
    /// \warning This method may throw an \c UnderFlowPriorityException.
376 381
    void decrease(const Item &i, const Prio &p) {
377 382
      int idx = _iim[i];
378
      data[idx].prio = p;
379
      bubble_down(idx);
383
      _data[idx].prio = p;
384
      bubbleDown(idx);
380 385
    }
381 386

	
382
    /// \brief Increases the priority of \c i to \c p.
387
    /// \brief Increase the priority of an item to the given value.
383 388
    ///
384
    /// This method sets the priority of item \c i to \c p.
385
    /// \pre \c i must be stored in the heap with priority at most \c p
389
    /// This function increases the priority of an item to the given value.
386 390
    /// \param i The item.
387 391
    /// \param p The priority.
392
    /// \pre \e i must be stored in the heap with priority at most \e p.
388 393
    void increase(const Item &i, const Prio &p) {
389 394
      int idx = _iim[i];
390
      data[idx].prio = p;
391
      bubble_up(idx);
395
      _data[idx].prio = p;
396
      bubbleUp(idx);
392 397
    }
393 398

	
394
    /// \brief Returns if \c item is in, has already been in, or has
395
    /// never been in the heap.
399
    /// \brief Return the state of an item.
396 400
    ///
397
    /// This method returns PRE_HEAP if \c item has never been in the
398
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
399
    /// otherwise. In the latter case it is possible that \c item will
400
    /// get back to the heap again.
401
    /// This method returns \c PRE_HEAP if the given item has never
402
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
403
    /// and \c POST_HEAP otherwise.
404
    /// In the latter case it is possible that the item will get back
405
    /// to the heap again.
401 406
    /// \param i The item.
402 407
    State state(const Item &i) const {
403 408
      int s = _iim[i];
404 409
      if( s >= 0 ) s = 0;
405 410
      return State(s);
406 411
    }
407 412

	
408
    /// \brief Sets the state of the \c item in the heap.
413
    /// \brief Set the state of an item in the heap.
409 414
    ///
410
    /// Sets the state of the \c item in the heap. It can be used to
411
    /// manually clear the heap when it is important to achive the
412
    /// better time complexity.
415
    /// This function sets the state of the given item in the heap.
416
    /// It can be used to manually clear the heap when it is important
417
    /// to achive better time complexity.
413 418
    /// \param i The item.
414 419
    /// \param st The state. It should not be \c IN_HEAP.
415 420
    void state(const Item& i, State st) {
416 421
      switch (st) {
417 422
      case POST_HEAP:
418 423
      case PRE_HEAP:
Ignore white space 12 line context
... ...
@@ -6,12 +6,13 @@
6 6
LINK_DIRECTORIES(
7 7
  ${PROJECT_BINARY_DIR}/lemon
8 8
)
9 9

	
10 10
SET(TESTS
11 11
  adaptors_test
12
  bellman_ford_test
12 13
  bfs_test
13 14
  circulation_test
14 15
  connectivity_test
15 16
  counter_test
16 17
  dfs_test
17 18
  digraph_test
Ignore white space 12 line context
... ...
@@ -4,12 +4,13 @@
4 4
noinst_HEADERS += \
5 5
	test/graph_test.h \
6 6
	test/test_tools.h
7 7

	
8 8
check_PROGRAMS += \
9 9
	test/adaptors_test \
10
	test/bellman_ford_test \
10 11
	test/bfs_test \
11 12
	test/circulation_test \
12 13
	test/connectivity_test \
13 14
	test/counter_test \
14 15
	test/dfs_test \
15 16
	test/digraph_test \
... ...
@@ -49,12 +50,13 @@
49 50
endif HAVE_MIP
50 51

	
51 52
TESTS += $(check_PROGRAMS)
52 53
XFAIL_TESTS += test/test_tools_fail$(EXEEXT)
53 54

	
54 55
test_adaptors_test_SOURCES = test/adaptors_test.cc
56
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc
55 57
test_bfs_test_SOURCES = test/bfs_test.cc
56 58
test_circulation_test_SOURCES = test/circulation_test.cc
57 59
test_counter_test_SOURCES = test/counter_test.cc
58 60
test_connectivity_test_SOURCES = test/connectivity_test.cc
59 61
test_dfs_test_SOURCES = test/dfs_test.cc
60 62
test_digraph_test_SOURCES = test/digraph_test.cc
Ignore white space 12 line context
... ...
@@ -84,12 +84,17 @@
84 84
   
85 85
  circ_test
86 86
    .lowerMap(lcap)
87 87
    .upperMap(ucap)
88 88
    .supplyMap(supply)
89 89
    .flowMap(flow);
90
  
91
  const CirculationType::Elevator& elev = const_circ_test.elevator();
92
  circ_test.elevator(const_cast<CirculationType::Elevator&>(elev));
93
  CirculationType::Tolerance tol = const_circ_test.tolerance();
94
  circ_test.tolerance(tol);
90 95

	
91 96
  circ_test.init();
92 97
  circ_test.greedyInit();
93 98
  circ_test.start();
94 99
  circ_test.run();
95 100

	
Ignore white space 12 line context
... ...
@@ -22,20 +22,23 @@
22 22
#include <vector>
23 23

	
24 24
#include <lemon/concept_check.h>
25 25
#include <lemon/concepts/heap.h>
26 26

	
27 27
#include <lemon/smart_graph.h>
28

	
29 28
#include <lemon/lgf_reader.h>
30 29
#include <lemon/dijkstra.h>
31 30
#include <lemon/maps.h>
32 31

	
33 32
#include <lemon/bin_heap.h>
33
#include <lemon/fourary_heap.h>
34
#include <lemon/kary_heap.h>
34 35
#include <lemon/fib_heap.h>
36
#include <lemon/pairing_heap.h>
35 37
#include <lemon/radix_heap.h>
38
#include <lemon/binom_heap.h>
36 39
#include <lemon/bucket_heap.h>
37 40

	
38 41
#include "test_tools.h"
39 42

	
40 43
using namespace lemon;
41 44
using namespace lemon::concepts;
... ...
@@ -86,53 +89,48 @@
86 89

	
87 90
int test_len = sizeof(test_seq) / sizeof(test_seq[0]);
88 91

	
89 92
template <typename Heap>
90 93
void heapSortTest() {
91 94
  RangeMap<int> map(test_len, -1);
92

	
93 95
  Heap heap(map);
94 96

	
95 97
  std::vector<int> v(test_len);
96

	
97 98
  for (int i = 0; i < test_len; ++i) {
98 99
    v[i] = test_seq[i];
99 100
    heap.push(i, v[i]);
100 101
  }
101 102
  std::sort(v.begin(), v.end());
102 103
  for (int i = 0; i < test_len; ++i) {
103
    check(v[i] == heap.prio() ,"Wrong order in heap sort.");
104
    check(v[i] == heap.prio(), "Wrong order in heap sort.");
104 105
    heap.pop();
105 106
  }
106 107
}
107 108

	
108 109
template <typename Heap>
109 110
void heapIncreaseTest() {
110 111
  RangeMap<int> map(test_len, -1);
111 112

	
112 113
  Heap heap(map);
113 114

	
114 115
  std::vector<int> v(test_len);
115

	
116 116
  for (int i = 0; i < test_len; ++i) {
117 117
    v[i] = test_seq[i];
118 118
    heap.push(i, v[i]);
119 119
  }
120 120
  for (int i = 0; i < test_len; ++i) {
121 121
    v[i] += test_inc[i];
122 122
    heap.increase(i, v[i]);
123 123
  }
124 124
  std::sort(v.begin(), v.end());
125 125
  for (int i = 0; i < test_len; ++i) {
126
    check(v[i] == heap.prio() ,"Wrong order in heap increase test.");
126
    check(v[i] == heap.prio(), "Wrong order in heap increase test.");
127 127
    heap.pop();
128 128
  }
129 129
}
130 130

	
131

	
132

	
133 131
template <typename Heap>
134 132
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length,
135 133
                      Node source) {
136 134

	
137 135
  typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>::
138 136
    Create dijkstra(digraph, length);
... ...
@@ -141,22 +139,22 @@
141 139

	
142 140
  for(ArcIt a(digraph); a != INVALID; ++a) {
143 141
    Node s = digraph.source(a);
144 142
    Node t = digraph.target(a);
145 143
    if (dijkstra.reached(s)) {
146 144
      check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a],
147
             "Error in a shortest path tree!");
145
             "Error in shortest path tree.");
148 146
    }
149 147
  }
150 148

	
151 149
  for(NodeIt n(digraph); n != INVALID; ++n) {
152 150
    if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) {
153 151
      Arc a = dijkstra.predArc(n);
154 152
      Node s = digraph.source(a);
155 153
      check( dijkstra.dist(n) - dijkstra.dist(s) == length[a],
156
             "Error in a shortest path tree!");
154
             "Error in shortest path tree.");
157 155
    }
158 156
  }
159 157

	
160 158
}
161 159

	
162 160
int main() {
... ...
@@ -172,53 +170,107 @@
172 170
  std::istringstream input(test_lgf);
173 171
  digraphReader(digraph, input).
174 172
    arcMap("capacity", length).
175 173
    node("source", source).
176 174
    run();
177 175

	
176
  // BinHeap
178 177
  {
179 178
    typedef BinHeap<Prio, ItemIntMap> IntHeap;
180 179
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
181 180
    heapSortTest<IntHeap>();
182 181
    heapIncreaseTest<IntHeap>();
183 182

	
184 183
    typedef BinHeap<Prio, IntNodeMap > NodeHeap;
185 184
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
186 185
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
187 186
  }
188 187

	
188
  // FouraryHeap
189
  {
190
    typedef FouraryHeap<Prio, ItemIntMap> IntHeap;
191
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
192
    heapSortTest<IntHeap>();
193
    heapIncreaseTest<IntHeap>();
194

	
195
    typedef FouraryHeap<Prio, IntNodeMap > NodeHeap;
196
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
197
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
198
  }
199

	
200
  // KaryHeap
201
  {
202
    typedef KaryHeap<Prio, ItemIntMap> IntHeap;
203
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
204
    heapSortTest<IntHeap>();
205
    heapIncreaseTest<IntHeap>();
206

	
207
    typedef KaryHeap<Prio, IntNodeMap > NodeHeap;
208
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
209
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
210
  }
211

	
212
  // FibHeap
189 213
  {
190 214
    typedef FibHeap<Prio, ItemIntMap> IntHeap;
191 215
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
192 216
    heapSortTest<IntHeap>();
193 217
    heapIncreaseTest<IntHeap>();
194 218

	
195 219
    typedef FibHeap<Prio, IntNodeMap > NodeHeap;
196 220
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
197 221
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
198 222
  }
199 223

	
224
  // PairingHeap
225
  {
226
    typedef PairingHeap<Prio, ItemIntMap> IntHeap;
227
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
228
    heapSortTest<IntHeap>();
229
    heapIncreaseTest<IntHeap>();
230

	
231
    typedef PairingHeap<Prio, IntNodeMap > NodeHeap;
232
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
233
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
234
  }
235

	
236
  // RadixHeap
200 237
  {
201 238
    typedef RadixHeap<ItemIntMap> IntHeap;
202 239
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
203 240
    heapSortTest<IntHeap>();
204 241
    heapIncreaseTest<IntHeap>();
205 242

	
206 243
    typedef RadixHeap<IntNodeMap > NodeHeap;
207 244
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
208 245
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
209 246
  }
210 247

	
248
  // BinomHeap
249
  {
250
    typedef BinomHeap<Prio, ItemIntMap> IntHeap;
251
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
252
    heapSortTest<IntHeap>();
253
    heapIncreaseTest<IntHeap>();
254

	
255
    typedef BinomHeap<Prio, IntNodeMap > NodeHeap;
256
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
257
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
258
  }
259

	
260
  // BucketHeap, SimpleBucketHeap
211 261
  {
212 262
    typedef BucketHeap<ItemIntMap> IntHeap;
213 263
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
214 264
    heapSortTest<IntHeap>();
215 265
    heapIncreaseTest<IntHeap>();
216 266

	
217 267
    typedef BucketHeap<IntNodeMap > NodeHeap;
218 268
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
219 269
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
270

	
271
    typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap;
272
    heapSortTest<SimpleIntHeap>();
220 273
  }
221 274

	
222

	
223 275
  return 0;
224 276
}
Ignore white space 12 line context
... ...
@@ -19,12 +19,13 @@
19 19
#include <deque>
20 20
#include <set>
21 21

	
22 22
#include <lemon/concept_check.h>
23 23
#include <lemon/concepts/maps.h>
24 24
#include <lemon/maps.h>
25
#include <lemon/smart_graph.h>
25 26

	
26 27
#include "test_tools.h"
27 28

	
28 29
using namespace lemon;
29 30
using namespace lemon::concepts;
30 31

	
... ...
@@ -346,8 +347,229 @@
346 347
    int i = 0;
347 348
    for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin();
348 349
          it != map2.end(); ++it )
349 350
      check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
350 351
  }
351 352

	
353
  // CrossRefMap
354
  {
355
    typedef SmartDigraph Graph;
356
    DIGRAPH_TYPEDEFS(Graph);
357

	
358
    checkConcept<ReadWriteMap<Node, int>,
359
                 CrossRefMap<Graph, Node, int> >();
360
    
361
    Graph gr;
362
    typedef CrossRefMap<Graph, Node, char> CRMap;
363
    typedef CRMap::ValueIterator ValueIt;
364
    CRMap map(gr);
365
    
366
    Node n0 = gr.addNode();
367
    Node n1 = gr.addNode();
368
    Node n2 = gr.addNode();
369
    
370
    map.set(n0, 'A');
371
    map.set(n1, 'B');
372
    map.set(n2, 'C');
373
    map.set(n2, 'A');
374
    map.set(n0, 'C');
375

	
376
    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
377
          "Wrong CrossRefMap");
378
    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
379
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
380
    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
381

	
382
    ValueIt it = map.beginValue();
383
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
384
          it == map.endValue(), "Wrong value iterator");
385
  }
386
  
387
  // Iterable bool map
388
  {
389
    typedef SmartGraph Graph;
390
    typedef SmartGraph::Node Item;
391

	
392
    typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
393
    checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>();
394

	
395
    const int num = 10;
396
    Graph g;
397
    std::vector<Item> items;
398
    for (int i = 0; i < num; ++i) {
399
      items.push_back(g.addNode());
400
    }
401

	
402
    Ibm map1(g, true);
403
    int n = 0;
404
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
405
      check(map1[static_cast<Item>(it)], "Wrong TrueIt");
406
      ++n;
407
    }
408
    check(n == num, "Wrong number");
409

	
410
    n = 0;
411
    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
412
        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
413
        ++n;
414
    }
415
    check(n == num, "Wrong number");
416
    check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt");
417
    check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false");
418

	
419
    map1[items[5]] = true;
420

	
421
    n = 0;
422
    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
423
        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
424
        ++n;
425
    }
426
    check(n == num, "Wrong number");
427

	
428
    map1[items[num / 2]] = false;
429
    check(map1[items[num / 2]] == false, "Wrong map value");
430

	
431
    n = 0;
432
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
433
        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
434
        ++n;
435
    }
436
    check(n == num - 1, "Wrong number");
437

	
438
    n = 0;
439
    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
440
        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
441
        ++n;
442
    }
443
    check(n == 1, "Wrong number");
444

	
445
    map1[items[0]] = false;
446
    check(map1[items[0]] == false, "Wrong map value");
447

	
448
    map1[items[num - 1]] = false;
449
    check(map1[items[num - 1]] == false, "Wrong map value");
450

	
451
    n = 0;
452
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
453
        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
454
        ++n;
455
    }
456
    check(n == num - 3, "Wrong number");
457
    check(map1.trueNum() == num - 3, "Wrong number");
458

	
459
    n = 0;
460
    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
461
        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
462
        ++n;
463
    }
464
    check(n == 3, "Wrong number");
465
    check(map1.falseNum() == 3, "Wrong number");
466
  }
467

	
468
  // Iterable int map
469
  {
470
    typedef SmartGraph Graph;
471
    typedef SmartGraph::Node Item;
472
    typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim;
473

	
474
    checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>();
475

	
476
    const int num = 10;
477
    Graph g;
478
    std::vector<Item> items;
479
    for (int i = 0; i < num; ++i) {
480
      items.push_back(g.addNode());
481
    }
482

	
483
    Iim map1(g);
484
    check(map1.size() == 0, "Wrong size");
485

	
486
    for (int i = 0; i < num; ++i) {
487
      map1[items[i]] = i;
488
    }
489
    check(map1.size() == num, "Wrong size");
490

	
491
    for (int i = 0; i < num; ++i) {
492
      Iim::ItemIt it(map1, i);
493
      check(static_cast<Item>(it) == items[i], "Wrong value");
494
      ++it;
495
      check(static_cast<Item>(it) == INVALID, "Wrong value");
496
    }
497

	
498
    for (int i = 0; i < num; ++i) {
499
      map1[items[i]] = i % 2;
500
    }
501
    check(map1.size() == 2, "Wrong size");
502

	
503
    int n = 0;
504
    for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
505
      check(map1[static_cast<Item>(it)] == 0, "Wrong value");
506
      ++n;
507
    }
508
    check(n == (num + 1) / 2, "Wrong number");
509

	
510
    for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
511
      check(map1[static_cast<Item>(it)] == 1, "Wrong value");
512
      ++n;
513
    }
514
    check(n == num, "Wrong number");
515

	
516
  }
517

	
518
  // Iterable value map
519
  {
520
    typedef SmartGraph Graph;
521
    typedef SmartGraph::Node Item;
522
    typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm;
523

	
524
    checkConcept<ReadWriteMap<Item, double>, Ivm>();
525

	
526
    const int num = 10;
527
    Graph g;
528
    std::vector<Item> items;
529
    for (int i = 0; i < num; ++i) {
530
      items.push_back(g.addNode());
531
    }
532

	
533
    Ivm map1(g, 0.0);
534
    check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size");
535
    check(*map1.beginValue() == 0.0, "Wrong value");
536

	
537
    for (int i = 0; i < num; ++i) {
538
      map1.set(items[i], static_cast<double>(i));
539
    }
540
    check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size");
541

	
542
    for (int i = 0; i < num; ++i) {
543
      Ivm::ItemIt it(map1, static_cast<double>(i));
544
      check(static_cast<Item>(it) == items[i], "Wrong value");
545
      ++it;
546
      check(static_cast<Item>(it) == INVALID, "Wrong value");
547
    }
548

	
549
    for (Ivm::ValueIterator vit = map1.beginValue();
550
         vit != map1.endValue(); ++vit) {
551
      check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit,
552
            "Wrong ValueIterator");
553
    }
554

	
555
    for (int i = 0; i < num; ++i) {
556
      map1.set(items[i], static_cast<double>(i % 2));
557
    }
558
    check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size");
559

	
560
    int n = 0;
561
    for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
562
      check(map1[static_cast<Item>(it)] == 0.0, "Wrong value");
563
      ++n;
564
    }
565
    check(n == (num + 1) / 2, "Wrong number");
566

	
567
    for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
568
      check(map1[static_cast<Item>(it)] == 1.0, "Wrong value");
569
      ++n;
570
    }
571
    check(n == num, "Wrong number");
572

	
573
  }
352 574
  return 0;
353 575
}
Ignore white space 12 line context
... ...
@@ -91,12 +91,17 @@
91 91
            ::SetFlowMap<FlowMap>
92 92
            ::SetElevator<Elev>
93 93
            ::SetStandardElevator<LinkedElev>
94 94
            ::Create PreflowType;
95 95
  PreflowType preflow_test(g, cap, n, n);
96 96
  const PreflowType& const_preflow_test = preflow_test;
97
  
98
  const PreflowType::Elevator& elev = const_preflow_test.elevator();
99
  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
100
  PreflowType::Tolerance tol = const_preflow_test.tolerance();
101
  preflow_test.tolerance(tol);
97 102

	
98 103
  preflow_test
99 104
    .capacityMap(cap)
100 105
    .flowMap(flow)
101 106
    .source(n)
102 107
    .target(n);
Ignore white space 12 line context
... ...
@@ -32,16 +32,16 @@
32 32
        -e "s/graph/_digr_aph_label_/g"\
33 33
        -e "s/UEdge/_Ed_ge_label_/g"\
34 34
        -e "s/u[Ee]dge/_ed_ge_label_/g"\
35 35
        -e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\
36 36
        -e "s/Edge\>/_Ar_c_label_/g"\
37 37
        -e "s/\<edge\>/_ar_c_label_/g"\
38
        -e "s/_edge\>/_ar_c_label_/g"\
38
        -e "s/_edge\>/__ar_c_label_/g"\
39 39
        -e "s/Edges\>/_Ar_c_label_s/g"\
40 40
        -e "s/\<edges\>/_ar_c_label_s/g"\
41
        -e "s/_edges\>/_ar_c_label_s/g"\
41
        -e "s/_edges\>/__ar_c_label_s/g"\
42 42
        -e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\
43 43
        -e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\
44 44
        -e "s/Edge/_Ar_c_label_/g"\
45 45
        -e "s/edge/_ar_c_label_/g"\
46 46
        -e "s/A[Nn]ode/_Re_d_label_/g"\
47 47
        -e "s/B[Nn]ode/_Blu_e_label_/g"\
... ...
@@ -65,12 +65,17 @@
65 65
        -e "s/_Re_d_label_/Red/g"\
66 66
        -e "s/_Blu_e_label_/Blue/g"\
67 67
        -e "s/_re_d_label_/red/g"\
68 68
        -e "s/_blu_e_label_/blue/g"\
69 69
        -e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\
70 70
        -e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\
71
        -e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\
72
        -e "s/\<digraph_utils\.h\>/core.h/g"\
73
        -e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\
74
        -e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\
75
        -e "s/\<topology\.h\>/connectivity.h/g"\
71 76
        -e "s/DigraphToEps/GraphToEps/g"\
72 77
        -e "s/digraphToEps/graphToEps/g"\
73 78
        -e "s/\<DefPredMap\>/SetPredMap/g"\
74 79
        -e "s/\<DefDistMap\>/SetDistMap/g"\
75 80
        -e "s/\<DefReachedMap\>/SetReachedMap/g"\
76 81
        -e "s/\<DefProcessedMap\>/SetProcessedMap/g"\
0 comments (0 inline)