| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct BfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \ref PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 |
///\todo The digraph alone may be insufficient to initialize |
|
| 58 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 59 | 58 |
{
|
| 60 | 59 |
return new PredMap(g); |
| 61 | 60 |
} |
| 62 | 61 |
|
| 63 | 62 |
///The type of the map that indicates which nodes are processed. |
| 64 | 63 |
|
| 65 | 64 |
///The type of the map that indicates which nodes are processed. |
| 66 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 67 |
///By default it is a NullMap. |
|
| 68 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 69 | 67 |
///Instantiates a \ref ProcessedMap. |
| 70 | 68 |
|
| 71 | 69 |
///This function instantiates a \ref ProcessedMap. |
| 72 | 70 |
///\param g is the digraph, to which |
| 73 | 71 |
///we would like to define the \ref ProcessedMap |
| 74 | 72 |
#ifdef DOXYGEN |
| 75 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 76 | 74 |
#else |
| 77 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 78 | 76 |
#endif |
| 79 | 77 |
{
|
| 80 | 78 |
return new ProcessedMap(); |
| 81 | 79 |
} |
| 82 | 80 |
|
| 83 | 81 |
///The type of the map that indicates which nodes are reached. |
| 84 | 82 |
|
| 85 | 83 |
///The type of the map that indicates which nodes are reached. |
| 86 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 87 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 88 | 86 |
///Instantiates a \ref ReachedMap. |
| 89 | 87 |
|
| 90 | 88 |
///This function instantiates a \ref ReachedMap. |
| 91 | 89 |
///\param g is the digraph, to which |
| 92 | 90 |
///we would like to define the \ref ReachedMap. |
| 93 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 94 | 92 |
{
|
| 95 | 93 |
return new ReachedMap(g); |
| 96 | 94 |
} |
| 97 | 95 |
|
| 98 | 96 |
///The type of the map that stores the distances of the nodes. |
| 99 | 97 |
|
| 100 | 98 |
///The type of the map that stores the distances of the nodes. |
| 101 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 102 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 103 | 101 |
///Instantiates a \ref DistMap. |
| 104 | 102 |
|
| 105 | 103 |
///This function instantiates a \ref DistMap. |
| 106 | 104 |
///\param g is the digraph, to which we would like to define the |
| 107 | 105 |
///\ref DistMap. |
| 108 | 106 |
static DistMap *createDistMap(const Digraph &g) |
| 109 | 107 |
{
|
| 110 | 108 |
return new DistMap(g); |
| 111 | 109 |
} |
| 112 | 110 |
}; |
| 113 | 111 |
|
| 114 | 112 |
///%BFS algorithm class. |
| 115 | 113 |
|
| 116 | 114 |
///\ingroup search |
| 117 | 115 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 118 | 116 |
/// |
| 119 | 117 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 120 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
| 121 | 119 |
///used easier. |
| 122 | 120 |
/// |
| 123 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 124 | 122 |
///The default value is \ref ListDigraph. The value of GR is not used |
| 125 | 123 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
| 126 | 124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
| 127 | 125 |
///The default traits class is |
| 128 | 126 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
| 129 | 127 |
///See \ref BfsDefaultTraits for the documentation of |
| 130 | 128 |
///a Bfs traits class. |
| 131 | 129 |
#ifdef DOXYGEN |
| 132 | 130 |
template <typename GR, |
| 133 | 131 |
typename TR> |
| 134 | 132 |
#else |
| 135 | 133 |
template <typename GR=ListDigraph, |
| 136 | 134 |
typename TR=BfsDefaultTraits<GR> > |
| 137 | 135 |
#endif |
| 138 | 136 |
class Bfs {
|
| 139 | 137 |
public: |
| 140 | 138 |
///\ref Exception for uninitialized parameters. |
| 141 | 139 |
|
| 142 | 140 |
///This error represents problems in the initialization of the |
| 143 | 141 |
///parameters of the algorithm. |
| 144 | 142 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 145 | 143 |
public: |
| 146 | 144 |
virtual const char* what() const throw() {
|
| 147 | 145 |
return "lemon::Bfs::UninitializedParameter"; |
| 148 | 146 |
} |
| 149 | 147 |
}; |
| 150 | 148 |
|
| 151 | 149 |
///The type of the digraph the algorithm runs on. |
| 152 | 150 |
typedef typename TR::Digraph Digraph; |
| 153 | 151 |
|
| 154 | 152 |
///\brief The type of the map that stores the predecessor arcs of the |
| 155 | 153 |
///shortest paths. |
| 156 | 154 |
typedef typename TR::PredMap PredMap; |
| 157 | 155 |
///The type of the map that stores the distances of the nodes. |
| 158 | 156 |
typedef typename TR::DistMap DistMap; |
| 159 | 157 |
///The type of the map that indicates which nodes are reached. |
| 160 | 158 |
typedef typename TR::ReachedMap ReachedMap; |
| 161 | 159 |
///The type of the map that indicates which nodes are processed. |
| 162 | 160 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 163 | 161 |
///The type of the paths. |
| 164 | 162 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 165 | 163 |
|
| 166 | 164 |
///The traits class. |
| 167 | 165 |
typedef TR Traits; |
| 168 | 166 |
|
| 169 | 167 |
private: |
| 170 | 168 |
|
| 171 | 169 |
typedef typename Digraph::Node Node; |
| 172 | 170 |
typedef typename Digraph::NodeIt NodeIt; |
| 173 | 171 |
typedef typename Digraph::Arc Arc; |
| 174 | 172 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 175 | 173 |
|
| 176 | 174 |
//Pointer to the underlying digraph. |
| 177 | 175 |
const Digraph *G; |
| 178 | 176 |
//Pointer to the map of predecessor arcs. |
| 179 | 177 |
PredMap *_pred; |
| 180 | 178 |
//Indicates if _pred is locally allocated (true) or not. |
| 181 | 179 |
bool local_pred; |
| 182 | 180 |
//Pointer to the map of distances. |
| 183 | 181 |
DistMap *_dist; |
| 184 | 182 |
//Indicates if _dist is locally allocated (true) or not. |
| 185 | 183 |
bool local_dist; |
| 186 | 184 |
//Pointer to the map of reached status of the nodes. |
| 187 | 185 |
ReachedMap *_reached; |
| 188 | 186 |
//Indicates if _reached is locally allocated (true) or not. |
| 189 | 187 |
bool local_reached; |
| 190 | 188 |
//Pointer to the map of processed status of the nodes. |
| 191 | 189 |
ProcessedMap *_processed; |
| 192 | 190 |
//Indicates if _processed is locally allocated (true) or not. |
| 193 | 191 |
bool local_processed; |
| 194 | 192 |
|
| 195 | 193 |
std::vector<typename Digraph::Node> _queue; |
| 196 | 194 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 197 | 195 |
int _curr_dist; |
| 198 | 196 |
|
| 199 |
///Creates the maps if necessary. |
|
| 200 |
///\todo Better memory allocation (instead of new). |
|
| 197 |
//Creates the maps if necessary. |
|
| 201 | 198 |
void create_maps() |
| 202 | 199 |
{
|
| 203 | 200 |
if(!_pred) {
|
| 204 | 201 |
local_pred = true; |
| 205 | 202 |
_pred = Traits::createPredMap(*G); |
| 206 | 203 |
} |
| 207 | 204 |
if(!_dist) {
|
| 208 | 205 |
local_dist = true; |
| 209 | 206 |
_dist = Traits::createDistMap(*G); |
| 210 | 207 |
} |
| 211 | 208 |
if(!_reached) {
|
| 212 | 209 |
local_reached = true; |
| 213 | 210 |
_reached = Traits::createReachedMap(*G); |
| 214 | 211 |
} |
| 215 | 212 |
if(!_processed) {
|
| 216 | 213 |
local_processed = true; |
| 217 | 214 |
_processed = Traits::createProcessedMap(*G); |
| 218 | 215 |
} |
| 219 | 216 |
} |
| 220 | 217 |
|
| 221 | 218 |
protected: |
| 222 | 219 |
|
| 223 | 220 |
Bfs() {}
|
| 224 | 221 |
|
| 225 | 222 |
public: |
| 226 | 223 |
|
| 227 | 224 |
typedef Bfs Create; |
| 228 | 225 |
|
| 229 | 226 |
///\name Named template parameters |
| 230 | 227 |
|
| 231 | 228 |
///@{
|
| 232 | 229 |
|
| 233 | 230 |
template <class T> |
| 234 | 231 |
struct SetPredMapTraits : public Traits {
|
| 235 | 232 |
typedef T PredMap; |
| 236 | 233 |
static PredMap *createPredMap(const Digraph &) |
| 237 | 234 |
{
|
| 238 | 235 |
throw UninitializedParameter(); |
| 239 | 236 |
} |
| 240 | 237 |
}; |
| 241 | 238 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 242 | 239 |
///\ref PredMap type. |
| 243 | 240 |
/// |
| 244 | 241 |
///\ref named-templ-param "Named parameter" for setting |
| 245 | 242 |
///\ref PredMap type. |
| 246 | 243 |
template <class T> |
| 247 | 244 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 248 | 245 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 249 | 246 |
}; |
| 250 | 247 |
|
| 251 | 248 |
template <class T> |
| 252 | 249 |
struct SetDistMapTraits : public Traits {
|
| 253 | 250 |
typedef T DistMap; |
| 254 | 251 |
static DistMap *createDistMap(const Digraph &) |
| 255 | 252 |
{
|
| 256 | 253 |
throw UninitializedParameter(); |
| 257 | 254 |
} |
| 258 | 255 |
}; |
| 259 | 256 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 260 | 257 |
///\ref DistMap type. |
| 261 | 258 |
/// |
| 262 | 259 |
///\ref named-templ-param "Named parameter" for setting |
| 263 | 260 |
///\ref DistMap type. |
| 264 | 261 |
template <class T> |
| 265 | 262 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 266 | 263 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 267 | 264 |
}; |
| 268 | 265 |
|
| 269 | 266 |
template <class T> |
| 270 | 267 |
struct SetReachedMapTraits : public Traits {
|
| 271 | 268 |
typedef T ReachedMap; |
| 272 | 269 |
static ReachedMap *createReachedMap(const Digraph &) |
| 273 | 270 |
{
|
| 274 | 271 |
throw UninitializedParameter(); |
| 275 | 272 |
} |
| 276 | 273 |
}; |
| 277 | 274 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 278 | 275 |
///\ref ReachedMap type. |
| 279 | 276 |
/// |
| 280 | 277 |
///\ref named-templ-param "Named parameter" for setting |
| 281 | 278 |
///\ref ReachedMap type. |
| 282 | 279 |
template <class T> |
| 283 | 280 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 284 | 281 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 285 | 282 |
}; |
| 286 | 283 |
|
| 287 | 284 |
template <class T> |
| 288 | 285 |
struct SetProcessedMapTraits : public Traits {
|
| 289 | 286 |
typedef T ProcessedMap; |
| 290 | 287 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 291 | 288 |
{
|
| 292 | 289 |
throw UninitializedParameter(); |
| 293 | 290 |
} |
| 294 | 291 |
}; |
| 295 | 292 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 296 | 293 |
///\ref ProcessedMap type. |
| 297 | 294 |
/// |
| 298 | 295 |
///\ref named-templ-param "Named parameter" for setting |
| 299 | 296 |
///\ref ProcessedMap type. |
| 300 | 297 |
template <class T> |
| 301 | 298 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 302 | 299 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 303 | 300 |
}; |
| 304 | 301 |
|
| 305 | 302 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 306 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 307 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 308 | 305 |
{
|
| 309 | 306 |
return new ProcessedMap(g); |
| 310 | 307 |
} |
| 311 | 308 |
}; |
| 312 | 309 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 313 | 310 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 314 | 311 |
/// |
| 315 | 312 |
///\ref named-templ-param "Named parameter" for setting |
| 316 | 313 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 317 | 314 |
///If you don't set it explicitly, it will be automatically allocated. |
| 318 | 315 |
struct SetStandardProcessedMap : |
| 319 | 316 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 320 | 317 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 321 | 318 |
}; |
| 322 | 319 |
|
| 323 | 320 |
///@} |
| 324 | 321 |
|
| 325 | 322 |
public: |
| 326 | 323 |
|
| 327 | 324 |
///Constructor. |
| 328 | 325 |
|
| 329 | 326 |
///Constructor. |
| 330 | 327 |
///\param g The digraph the algorithm runs on. |
| 331 | 328 |
Bfs(const Digraph &g) : |
| 332 | 329 |
G(&g), |
| 333 | 330 |
_pred(NULL), local_pred(false), |
| 334 | 331 |
_dist(NULL), local_dist(false), |
| 335 | 332 |
_reached(NULL), local_reached(false), |
| 336 | 333 |
_processed(NULL), local_processed(false) |
| 337 | 334 |
{ }
|
| 338 | 335 |
|
| 339 | 336 |
///Destructor. |
| 340 | 337 |
~Bfs() |
| 341 | 338 |
{
|
| 342 | 339 |
if(local_pred) delete _pred; |
| 343 | 340 |
if(local_dist) delete _dist; |
| 344 | 341 |
if(local_reached) delete _reached; |
| 345 | 342 |
if(local_processed) delete _processed; |
| 346 | 343 |
} |
| 347 | 344 |
|
| 348 | 345 |
///Sets the map that stores the predecessor arcs. |
| 349 | 346 |
|
| 350 | 347 |
///Sets the map that stores the predecessor arcs. |
| 351 | 348 |
///If you don't use this function before calling \ref run(), |
| 352 | 349 |
///it will allocate one. The destructor deallocates this |
| 353 | 350 |
///automatically allocated map, of course. |
| 354 | 351 |
///\return <tt> (*this) </tt> |
| 355 | 352 |
Bfs &predMap(PredMap &m) |
| 356 | 353 |
{
|
| 357 | 354 |
if(local_pred) {
|
| 358 | 355 |
delete _pred; |
| 359 | 356 |
local_pred=false; |
| 360 | 357 |
} |
| 361 | 358 |
_pred = &m; |
| 362 | 359 |
return *this; |
| 363 | 360 |
} |
| 364 | 361 |
|
| 365 | 362 |
///Sets the map that indicates which nodes are reached. |
| 366 | 363 |
|
| 367 | 364 |
///Sets the map that indicates which nodes are reached. |
| 368 | 365 |
///If you don't use this function before calling \ref run(), |
| 369 | 366 |
///it will allocate one. The destructor deallocates this |
| 370 | 367 |
///automatically allocated map, of course. |
| 371 | 368 |
///\return <tt> (*this) </tt> |
| 372 | 369 |
Bfs &reachedMap(ReachedMap &m) |
| 373 | 370 |
{
|
| 374 | 371 |
if(local_reached) {
|
| 375 | 372 |
delete _reached; |
| 376 | 373 |
local_reached=false; |
| 377 | 374 |
} |
| 378 | 375 |
_reached = &m; |
| 379 | 376 |
return *this; |
| 380 | 377 |
} |
| 381 | 378 |
|
| 382 | 379 |
///Sets the map that indicates which nodes are processed. |
| 383 | 380 |
|
| 384 | 381 |
///Sets the map that indicates which nodes are processed. |
| 385 | 382 |
///If you don't use this function before calling \ref run(), |
| 386 | 383 |
///it will allocate one. The destructor deallocates this |
| 387 | 384 |
///automatically allocated map, of course. |
| 388 | 385 |
///\return <tt> (*this) </tt> |
| 389 | 386 |
Bfs &processedMap(ProcessedMap &m) |
| 390 | 387 |
{
|
| 391 | 388 |
if(local_processed) {
|
| 392 | 389 |
delete _processed; |
| 393 | 390 |
local_processed=false; |
| 394 | 391 |
} |
| 395 | 392 |
_processed = &m; |
| 396 | 393 |
return *this; |
| 397 | 394 |
} |
| 398 | 395 |
|
| 399 | 396 |
///Sets the map that stores the distances of the nodes. |
| 400 | 397 |
|
| 401 | 398 |
///Sets the map that stores the distances of the nodes calculated by |
| 402 | 399 |
///the algorithm. |
| 403 | 400 |
///If you don't use this function before calling \ref run(), |
| 404 | 401 |
///it will allocate one. The destructor deallocates this |
| 405 | 402 |
///automatically allocated map, of course. |
| 406 | 403 |
///\return <tt> (*this) </tt> |
| 407 | 404 |
Bfs &distMap(DistMap &m) |
| 408 | 405 |
{
|
| 409 | 406 |
if(local_dist) {
|
| 410 | 407 |
delete _dist; |
| 411 | 408 |
local_dist=false; |
| 412 | 409 |
} |
| 413 | 410 |
_dist = &m; |
| 414 | 411 |
return *this; |
| 415 | 412 |
} |
| 416 | 413 |
|
| 417 | 414 |
public: |
| 418 | 415 |
|
| 419 | 416 |
///\name Execution control |
| 420 | 417 |
///The simplest way to execute the algorithm is to use |
| 421 | 418 |
///one of the member functions called \ref lemon::Bfs::run() "run()". |
| 422 | 419 |
///\n |
| 423 | 420 |
///If you need more control on the execution, first you must call |
| 424 | 421 |
///\ref lemon::Bfs::init() "init()", then you can add several source |
| 425 | 422 |
///nodes with \ref lemon::Bfs::addSource() "addSource()". |
| 426 | 423 |
///Finally \ref lemon::Bfs::start() "start()" will perform the |
| 427 | 424 |
///actual path computation. |
| 428 | 425 |
|
| 429 | 426 |
///@{
|
| 430 | 427 |
|
| 431 | 428 |
///Initializes the internal data structures. |
| 432 | 429 |
|
| 433 | 430 |
///Initializes the internal data structures. |
| 434 | 431 |
/// |
| 435 | 432 |
void init() |
| 436 | 433 |
{
|
| 437 | 434 |
create_maps(); |
| 438 | 435 |
_queue.resize(countNodes(*G)); |
| 439 | 436 |
_queue_head=_queue_tail=0; |
| 440 | 437 |
_curr_dist=1; |
| 441 | 438 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 442 | 439 |
_pred->set(u,INVALID); |
| 443 | 440 |
_reached->set(u,false); |
| 444 | 441 |
_processed->set(u,false); |
| 445 | 442 |
} |
| 446 | 443 |
} |
| 447 | 444 |
|
| 448 | 445 |
///Adds a new source node. |
| 449 | 446 |
|
| 450 | 447 |
///Adds a new source node to the set of nodes to be processed. |
| 451 | 448 |
/// |
| 452 | 449 |
void addSource(Node s) |
| 453 | 450 |
{
|
| 454 | 451 |
if(!(*_reached)[s]) |
| 455 | 452 |
{
|
| 456 | 453 |
_reached->set(s,true); |
| 457 | 454 |
_pred->set(s,INVALID); |
| 458 | 455 |
_dist->set(s,0); |
| 459 | 456 |
_queue[_queue_head++]=s; |
| 460 | 457 |
_queue_next_dist=_queue_head; |
| 461 | 458 |
} |
| 462 | 459 |
} |
| 463 | 460 |
|
| 464 | 461 |
///Processes the next node. |
| 465 | 462 |
|
| 466 | 463 |
///Processes the next node. |
| 467 | 464 |
/// |
| 468 | 465 |
///\return The processed node. |
| 469 | 466 |
/// |
| 470 | 467 |
///\pre The queue must not be empty. |
| 471 | 468 |
Node processNextNode() |
| 472 | 469 |
{
|
| 473 | 470 |
if(_queue_tail==_queue_next_dist) {
|
| 474 | 471 |
_curr_dist++; |
| 475 | 472 |
_queue_next_dist=_queue_head; |
| 476 | 473 |
} |
| 477 | 474 |
Node n=_queue[_queue_tail++]; |
| 478 | 475 |
_processed->set(n,true); |
| 479 | 476 |
Node m; |
| 480 | 477 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 481 | 478 |
if(!(*_reached)[m=G->target(e)]) {
|
| 482 | 479 |
_queue[_queue_head++]=m; |
| 483 | 480 |
_reached->set(m,true); |
| 484 | 481 |
_pred->set(m,e); |
| 485 | 482 |
_dist->set(m,_curr_dist); |
| 486 | 483 |
} |
| 487 | 484 |
return n; |
| 488 | 485 |
} |
| 489 | 486 |
|
| 490 | 487 |
///Processes the next node. |
| 491 | 488 |
|
| 492 | 489 |
///Processes the next node and checks if the given target node |
| 493 | 490 |
///is reached. If the target node is reachable from the processed |
| 494 | 491 |
///node, then the \c reach parameter will be set to \c true. |
| 495 | 492 |
/// |
| 496 | 493 |
///\param target The target node. |
| 497 | 494 |
///\retval reach Indicates if the target node is reached. |
| 498 | 495 |
///It should be initially \c false. |
| 499 | 496 |
/// |
| 500 | 497 |
///\return The processed node. |
| 501 | 498 |
/// |
| 502 | 499 |
///\pre The queue must not be empty. |
| 503 | 500 |
Node processNextNode(Node target, bool& reach) |
| 504 | 501 |
{
|
| 505 | 502 |
if(_queue_tail==_queue_next_dist) {
|
| 506 | 503 |
_curr_dist++; |
| 507 | 504 |
_queue_next_dist=_queue_head; |
| 508 | 505 |
} |
| 509 | 506 |
Node n=_queue[_queue_tail++]; |
| 510 | 507 |
_processed->set(n,true); |
| 511 | 508 |
Node m; |
| 512 | 509 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 513 | 510 |
if(!(*_reached)[m=G->target(e)]) {
|
| 514 | 511 |
_queue[_queue_head++]=m; |
| 515 | 512 |
_reached->set(m,true); |
| 516 | 513 |
_pred->set(m,e); |
| 517 | 514 |
_dist->set(m,_curr_dist); |
| 518 | 515 |
reach = reach || (target == m); |
| 519 | 516 |
} |
| 520 | 517 |
return n; |
| 521 | 518 |
} |
| 522 | 519 |
|
| 523 | 520 |
///Processes the next node. |
| 524 | 521 |
|
| 525 | 522 |
///Processes the next node and checks if at least one of reached |
| 526 | 523 |
///nodes has \c true value in the \c nm node map. If one node |
| 527 | 524 |
///with \c true value is reachable from the processed node, then the |
| 528 | 525 |
///\c rnode parameter will be set to the first of such nodes. |
| 529 | 526 |
/// |
| 530 | 527 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 531 | 528 |
///possible targets. |
| 532 | 529 |
///\retval rnode The reached target node. |
| 533 | 530 |
///It should be initially \c INVALID. |
| 534 | 531 |
/// |
| 535 | 532 |
///\return The processed node. |
| 536 | 533 |
/// |
| 537 | 534 |
///\pre The queue must not be empty. |
| 538 | 535 |
template<class NM> |
| 539 | 536 |
Node processNextNode(const NM& nm, Node& rnode) |
| 540 | 537 |
{
|
| 541 | 538 |
if(_queue_tail==_queue_next_dist) {
|
| 542 | 539 |
_curr_dist++; |
| 543 | 540 |
_queue_next_dist=_queue_head; |
| 544 | 541 |
} |
| 545 | 542 |
Node n=_queue[_queue_tail++]; |
| 546 | 543 |
_processed->set(n,true); |
| 547 | 544 |
Node m; |
| 548 | 545 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 549 | 546 |
if(!(*_reached)[m=G->target(e)]) {
|
| 550 | 547 |
_queue[_queue_head++]=m; |
| 551 | 548 |
_reached->set(m,true); |
| 552 | 549 |
_pred->set(m,e); |
| 553 | 550 |
_dist->set(m,_curr_dist); |
| 554 | 551 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 555 | 552 |
} |
| 556 | 553 |
return n; |
| 557 | 554 |
} |
| 558 | 555 |
|
| 559 | 556 |
///The next node to be processed. |
| 560 | 557 |
|
| 561 | 558 |
///Returns the next node to be processed or \c INVALID if the queue |
| 562 | 559 |
///is empty. |
| 563 | 560 |
Node nextNode() const |
| 564 | 561 |
{
|
| 565 | 562 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 566 | 563 |
} |
| 567 | 564 |
|
| 568 | 565 |
///\brief Returns \c false if there are nodes |
| 569 | 566 |
///to be processed. |
| 570 | 567 |
/// |
| 571 | 568 |
///Returns \c false if there are nodes |
| 572 | 569 |
///to be processed in the queue. |
| 573 | 570 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 574 | 571 |
|
| 575 | 572 |
///Returns the number of the nodes to be processed. |
| 576 | 573 |
|
| 577 | 574 |
///Returns the number of the nodes to be processed in the queue. |
| 578 | 575 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 579 | 576 |
|
| 580 | 577 |
///Executes the algorithm. |
| 581 | 578 |
|
| 582 | 579 |
///Executes the algorithm. |
| 583 | 580 |
/// |
| 584 | 581 |
///This method runs the %BFS algorithm from the root node(s) |
| 585 | 582 |
///in order to compute the shortest path to each node. |
| 586 | 583 |
/// |
| 587 | 584 |
///The algorithm computes |
| 588 | 585 |
///- the shortest path tree (forest), |
| 589 | 586 |
///- the distance of each node from the root(s). |
| 590 | 587 |
/// |
| 591 | 588 |
///\pre init() must be called and at least one root node should be |
| 592 | 589 |
///added with addSource() before using this function. |
| 593 | 590 |
/// |
| 594 | 591 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 595 | 592 |
///\code |
| 596 | 593 |
/// while ( !b.emptyQueue() ) {
|
| 597 | 594 |
/// b.processNextNode(); |
| 598 | 595 |
/// } |
| 599 | 596 |
///\endcode |
| 600 | 597 |
void start() |
| 601 | 598 |
{
|
| 602 | 599 |
while ( !emptyQueue() ) processNextNode(); |
| 603 | 600 |
} |
| 604 | 601 |
|
| 605 | 602 |
///Executes the algorithm until the given target node is reached. |
| 606 | 603 |
|
| 607 | 604 |
///Executes the algorithm until the given target node is reached. |
| 608 | 605 |
/// |
| 609 | 606 |
///This method runs the %BFS algorithm from the root node(s) |
| 610 | 607 |
///in order to compute the shortest path to \c t. |
| 611 | 608 |
/// |
| 612 | 609 |
///The algorithm computes |
| 613 | 610 |
///- the shortest path to \c t, |
| 614 | 611 |
///- the distance of \c t from the root(s). |
| 615 | 612 |
/// |
| 616 | 613 |
///\pre init() must be called and at least one root node should be |
| 617 | 614 |
///added with addSource() before using this function. |
| 618 | 615 |
/// |
| 619 | 616 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 620 | 617 |
///\code |
| 621 | 618 |
/// bool reach = false; |
| 622 | 619 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 623 | 620 |
/// b.processNextNode(t, reach); |
| 624 | 621 |
/// } |
| 625 | 622 |
///\endcode |
| 626 | 623 |
void start(Node t) |
| 627 | 624 |
{
|
| 628 | 625 |
bool reach = false; |
| 629 | 626 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 630 | 627 |
} |
| 631 | 628 |
|
| 632 | 629 |
///Executes the algorithm until a condition is met. |
| 633 | 630 |
|
| 634 | 631 |
///Executes the algorithm until a condition is met. |
| 635 | 632 |
/// |
| 636 | 633 |
///This method runs the %BFS algorithm from the root node(s) in |
| 637 | 634 |
///order to compute the shortest path to a node \c v with |
| 638 | 635 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 639 | 636 |
/// |
| 640 | 637 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 641 | 638 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 642 | 639 |
/// |
| 643 | 640 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 644 | 641 |
///\c INVALID if no such node was found. |
| 645 | 642 |
/// |
| 646 | 643 |
///\pre init() must be called and at least one root node should be |
| 647 | 644 |
///added with addSource() before using this function. |
| 648 | 645 |
/// |
| 649 | 646 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 650 | 647 |
///\code |
| 651 | 648 |
/// Node rnode = INVALID; |
| 652 | 649 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 653 | 650 |
/// b.processNextNode(nm, rnode); |
| 654 | 651 |
/// } |
| 655 | 652 |
/// return rnode; |
| 656 | 653 |
///\endcode |
| 657 | 654 |
template<class NodeBoolMap> |
| 658 | 655 |
Node start(const NodeBoolMap &nm) |
| 659 | 656 |
{
|
| 660 | 657 |
Node rnode = INVALID; |
| 661 | 658 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 662 | 659 |
processNextNode(nm, rnode); |
| 663 | 660 |
} |
| 664 | 661 |
return rnode; |
| 665 | 662 |
} |
| 666 | 663 |
|
| 667 | 664 |
///Runs the algorithm from the given source node. |
| 668 | 665 |
|
| 669 | 666 |
///This method runs the %BFS algorithm from node \c s |
| 670 | 667 |
///in order to compute the shortest path to each node. |
| 671 | 668 |
/// |
| 672 | 669 |
///The algorithm computes |
| 673 | 670 |
///- the shortest path tree, |
| 674 | 671 |
///- the distance of each node from the root. |
| 675 | 672 |
/// |
| 676 | 673 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 677 | 674 |
///\code |
| 678 | 675 |
/// b.init(); |
| 679 | 676 |
/// b.addSource(s); |
| 680 | 677 |
/// b.start(); |
| 681 | 678 |
///\endcode |
| 682 | 679 |
void run(Node s) {
|
| 683 | 680 |
init(); |
| 684 | 681 |
addSource(s); |
| 685 | 682 |
start(); |
| 686 | 683 |
} |
| 687 | 684 |
|
| 688 | 685 |
///Finds the shortest path between \c s and \c t. |
| 689 | 686 |
|
| 690 | 687 |
///This method runs the %BFS algorithm from node \c s |
| 691 | 688 |
///in order to compute the shortest path to node \c t |
| 692 | 689 |
///(it stops searching when \c t is processed). |
| 693 | 690 |
/// |
| 694 | 691 |
///\return \c true if \c t is reachable form \c s. |
| 695 | 692 |
/// |
| 696 | 693 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 697 | 694 |
///shortcut of the following code. |
| 698 | 695 |
///\code |
| 699 | 696 |
/// b.init(); |
| 700 | 697 |
/// b.addSource(s); |
| 701 | 698 |
/// b.start(t); |
| 702 | 699 |
///\endcode |
| 703 | 700 |
bool run(Node s,Node t) {
|
| 704 | 701 |
init(); |
| 705 | 702 |
addSource(s); |
| 706 | 703 |
start(t); |
| 707 | 704 |
return reached(t); |
| 708 | 705 |
} |
| 709 | 706 |
|
| 710 | 707 |
///Runs the algorithm to visit all nodes in the digraph. |
| 711 | 708 |
|
| 712 | 709 |
///This method runs the %BFS algorithm in order to |
| 713 | 710 |
///compute the shortest path to each node. |
| 714 | 711 |
/// |
| 715 | 712 |
///The algorithm computes |
| 716 | 713 |
///- the shortest path tree (forest), |
| 717 | 714 |
///- the distance of each node from the root(s). |
| 718 | 715 |
/// |
| 719 | 716 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 720 | 717 |
///\code |
| 721 | 718 |
/// b.init(); |
| 722 | 719 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 723 | 720 |
/// if (!b.reached(n)) {
|
| 724 | 721 |
/// b.addSource(n); |
| 725 | 722 |
/// b.start(); |
| 726 | 723 |
/// } |
| 727 | 724 |
/// } |
| 728 | 725 |
///\endcode |
| 729 | 726 |
void run() {
|
| 730 | 727 |
init(); |
| 731 | 728 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 732 | 729 |
if (!reached(n)) {
|
| 733 | 730 |
addSource(n); |
| 734 | 731 |
start(); |
| 735 | 732 |
} |
| 736 | 733 |
} |
| 737 | 734 |
} |
| 738 | 735 |
|
| 739 | 736 |
///@} |
| 740 | 737 |
|
| 741 | 738 |
///\name Query Functions |
| 742 | 739 |
///The result of the %BFS algorithm can be obtained using these |
| 743 | 740 |
///functions.\n |
| 744 | 741 |
///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
| 745 | 742 |
///"start()" must be called before using them. |
| 746 | 743 |
|
| 747 | 744 |
///@{
|
| 748 | 745 |
|
| 749 | 746 |
///The shortest path to a node. |
| 750 | 747 |
|
| 751 | 748 |
///Returns the shortest path to a node. |
| 752 | 749 |
/// |
| 753 | 750 |
///\warning \c t should be reachable from the root(s). |
| 754 | 751 |
/// |
| 755 | 752 |
///\pre Either \ref run() or \ref start() must be called before |
| 756 | 753 |
///using this function. |
| 757 | 754 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 758 | 755 |
|
| 759 | 756 |
///The distance of a node from the root(s). |
| 760 | 757 |
|
| 761 | 758 |
///Returns the distance of a node from the root(s). |
| 762 | 759 |
/// |
| 763 | 760 |
///\warning If node \c v is not reachable from the root(s), then |
| 764 | 761 |
///the return value of this function is undefined. |
| 765 | 762 |
/// |
| 766 | 763 |
///\pre Either \ref run() or \ref start() must be called before |
| 767 | 764 |
///using this function. |
| 768 | 765 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 769 | 766 |
|
| 770 | 767 |
///Returns the 'previous arc' of the shortest path tree for a node. |
| 771 | 768 |
|
| 772 | 769 |
///This function returns the 'previous arc' of the shortest path |
| 773 | 770 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 774 | 771 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
| 775 | 772 |
///is not reachable from the root(s) or if \c v is a root. |
| 776 | 773 |
/// |
| 777 | 774 |
///The shortest path tree used here is equal to the shortest path |
| 778 | 775 |
///tree used in \ref predNode(). |
| 779 | 776 |
/// |
| 780 | 777 |
///\pre Either \ref run() or \ref start() must be called before |
| 781 | 778 |
///using this function. |
| 782 | 779 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 783 | 780 |
|
| 784 | 781 |
///Returns the 'previous node' of the shortest path tree for a node. |
| 785 | 782 |
|
| 786 | 783 |
///This function returns the 'previous node' of the shortest path |
| 787 | 784 |
///tree for the node \c v, i.e. it returns the last but one node |
| 788 | 785 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
| 789 | 786 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 790 | 787 |
/// |
| 791 | 788 |
///The shortest path tree used here is equal to the shortest path |
| 792 | 789 |
///tree used in \ref predArc(). |
| 793 | 790 |
/// |
| 794 | 791 |
///\pre Either \ref run() or \ref start() must be called before |
| 795 | 792 |
///using this function. |
| 796 | 793 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 797 | 794 |
G->source((*_pred)[v]); } |
| 798 | 795 |
|
| 799 | 796 |
///\brief Returns a const reference to the node map that stores the |
| 800 | 797 |
/// distances of the nodes. |
| 801 | 798 |
/// |
| 802 | 799 |
///Returns a const reference to the node map that stores the distances |
| 803 | 800 |
///of the nodes calculated by the algorithm. |
| 804 | 801 |
/// |
| 805 | 802 |
///\pre Either \ref run() or \ref init() |
| 806 | 803 |
///must be called before using this function. |
| 807 | 804 |
const DistMap &distMap() const { return *_dist;}
|
| 808 | 805 |
|
| 809 | 806 |
///\brief Returns a const reference to the node map that stores the |
| 810 | 807 |
///predecessor arcs. |
| 811 | 808 |
/// |
| 812 | 809 |
///Returns a const reference to the node map that stores the predecessor |
| 813 | 810 |
///arcs, which form the shortest path tree. |
| 814 | 811 |
/// |
| 815 | 812 |
///\pre Either \ref run() or \ref init() |
| 816 | 813 |
///must be called before using this function. |
| 817 | 814 |
const PredMap &predMap() const { return *_pred;}
|
| 818 | 815 |
|
| 819 | 816 |
///Checks if a node is reachable from the root(s). |
| 820 | 817 |
|
| 821 | 818 |
///Returns \c true if \c v is reachable from the root(s). |
| 822 | 819 |
///\pre Either \ref run() or \ref start() |
| 823 | 820 |
///must be called before using this function. |
| 824 | 821 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 825 | 822 |
|
| 826 | 823 |
///@} |
| 827 | 824 |
}; |
| 828 | 825 |
|
| 829 | 826 |
///Default traits class of bfs() function. |
| 830 | 827 |
|
| 831 | 828 |
///Default traits class of bfs() function. |
| 832 | 829 |
///\tparam GR Digraph type. |
| 833 | 830 |
template<class GR> |
| 834 | 831 |
struct BfsWizardDefaultTraits |
| 835 | 832 |
{
|
| 836 | 833 |
///The type of the digraph the algorithm runs on. |
| 837 | 834 |
typedef GR Digraph; |
| 838 | 835 |
|
| 839 | 836 |
///\brief The type of the map that stores the predecessor |
| 840 | 837 |
///arcs of the shortest paths. |
| 841 | 838 |
/// |
| 842 | 839 |
///The type of the map that stores the predecessor |
| 843 | 840 |
///arcs of the shortest paths. |
| 844 | 841 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 845 | 842 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 846 | 843 |
///Instantiates a \ref PredMap. |
| 847 | 844 |
|
| 848 | 845 |
///This function instantiates a \ref PredMap. |
| 849 | 846 |
///\param g is the digraph, to which we would like to define the |
| 850 | 847 |
///\ref PredMap. |
| 851 |
///\todo The digraph alone may be insufficient to initialize |
|
| 852 | 848 |
static PredMap *createPredMap(const Digraph &g) |
| 853 | 849 |
{
|
| 854 | 850 |
return new PredMap(g); |
| 855 | 851 |
} |
| 856 | 852 |
|
| 857 | 853 |
///The type of the map that indicates which nodes are processed. |
| 858 | 854 |
|
| 859 | 855 |
///The type of the map that indicates which nodes are processed. |
| 860 | 856 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 861 | 857 |
///By default it is a NullMap. |
| 862 | 858 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 863 | 859 |
///Instantiates a \ref ProcessedMap. |
| 864 | 860 |
|
| 865 | 861 |
///This function instantiates a \ref ProcessedMap. |
| 866 | 862 |
///\param g is the digraph, to which |
| 867 | 863 |
///we would like to define the \ref ProcessedMap. |
| 868 | 864 |
#ifdef DOXYGEN |
| 869 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 870 | 866 |
#else |
| 871 | 867 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 872 | 868 |
#endif |
| 873 | 869 |
{
|
| 874 | 870 |
return new ProcessedMap(); |
| 875 | 871 |
} |
| 876 | 872 |
|
| 877 | 873 |
///The type of the map that indicates which nodes are reached. |
| 878 | 874 |
|
| 879 | 875 |
///The type of the map that indicates which nodes are reached. |
| 880 | 876 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 881 | 877 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 882 | 878 |
///Instantiates a \ref ReachedMap. |
| 883 | 879 |
|
| 884 | 880 |
///This function instantiates a \ref ReachedMap. |
| 885 | 881 |
///\param g is the digraph, to which |
| 886 | 882 |
///we would like to define the \ref ReachedMap. |
| 887 | 883 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 888 | 884 |
{
|
| 889 | 885 |
return new ReachedMap(g); |
| 890 | 886 |
} |
| 891 | 887 |
|
| 892 | 888 |
///The type of the map that stores the distances of the nodes. |
| 893 | 889 |
|
| 894 | 890 |
///The type of the map that stores the distances of the nodes. |
| 895 | 891 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 896 | 892 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 897 | 893 |
///Instantiates a \ref DistMap. |
| 898 | 894 |
|
| 899 | 895 |
///This function instantiates a \ref DistMap. |
| 900 | 896 |
///\param g is the digraph, to which we would like to define |
| 901 | 897 |
///the \ref DistMap |
| 902 | 898 |
static DistMap *createDistMap(const Digraph &g) |
| 903 | 899 |
{
|
| 904 | 900 |
return new DistMap(g); |
| 905 | 901 |
} |
| 906 | 902 |
|
| 907 | 903 |
///The type of the shortest paths. |
| 908 | 904 |
|
| 909 | 905 |
///The type of the shortest paths. |
| 910 | 906 |
///It must meet the \ref concepts::Path "Path" concept. |
| 911 | 907 |
typedef lemon::Path<Digraph> Path; |
| 912 | 908 |
}; |
| 913 | 909 |
|
| 914 | 910 |
/// Default traits class used by \ref BfsWizard |
| 915 | 911 |
|
| 916 | 912 |
/// To make it easier to use Bfs algorithm |
| 917 | 913 |
/// we have created a wizard class. |
| 918 | 914 |
/// This \ref BfsWizard class needs default traits, |
| 919 | 915 |
/// as well as the \ref Bfs class. |
| 920 | 916 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
| 921 | 917 |
/// \ref BfsWizard class. |
| 922 | 918 |
template<class GR> |
| 923 | 919 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 924 | 920 |
{
|
| 925 | 921 |
|
| 926 | 922 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 927 | 923 |
protected: |
| 928 | 924 |
//The type of the nodes in the digraph. |
| 929 | 925 |
typedef typename Base::Digraph::Node Node; |
| 930 | 926 |
|
| 931 | 927 |
//Pointer to the digraph the algorithm runs on. |
| 932 | 928 |
void *_g; |
| 933 | 929 |
//Pointer to the map of reached nodes. |
| 934 | 930 |
void *_reached; |
| 935 | 931 |
//Pointer to the map of processed nodes. |
| 936 | 932 |
void *_processed; |
| 937 | 933 |
//Pointer to the map of predecessors arcs. |
| 938 | 934 |
void *_pred; |
| 939 | 935 |
//Pointer to the map of distances. |
| 940 | 936 |
void *_dist; |
| 941 | 937 |
//Pointer to the shortest path to the target node. |
| 942 | 938 |
void *_path; |
| 943 | 939 |
//Pointer to the distance of the target node. |
| 944 | 940 |
int *_di; |
| 945 | 941 |
|
| 946 | 942 |
public: |
| 947 | 943 |
/// Constructor. |
| 948 | 944 |
|
| 949 | 945 |
/// This constructor does not require parameters, therefore it initiates |
| 950 | 946 |
/// all of the attributes to \c 0. |
| 951 | 947 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 952 | 948 |
_dist(0), _path(0), _di(0) {}
|
| 953 | 949 |
|
| 954 | 950 |
/// Constructor. |
| 955 | 951 |
|
| 956 | 952 |
/// This constructor requires one parameter, |
| 957 | 953 |
/// others are initiated to \c 0. |
| 958 | 954 |
/// \param g The digraph the algorithm runs on. |
| 959 | 955 |
BfsWizardBase(const GR &g) : |
| 960 | 956 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 961 | 957 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 962 | 958 |
|
| 963 | 959 |
}; |
| 964 | 960 |
|
| 965 | 961 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 966 | 962 |
|
| 967 | 963 |
/// This auxiliary class is created to implement the |
| 968 | 964 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 969 | 965 |
/// It does not have own \ref run() method, it uses the functions |
| 970 | 966 |
/// and features of the plain \ref Bfs. |
| 971 | 967 |
/// |
| 972 | 968 |
/// This class should only be used through the \ref bfs() function, |
| 973 | 969 |
/// which makes it easier to use the algorithm. |
| 974 | 970 |
template<class TR> |
| 975 | 971 |
class BfsWizard : public TR |
| 976 | 972 |
{
|
| 977 | 973 |
typedef TR Base; |
| 978 | 974 |
|
| 979 | 975 |
///The type of the digraph the algorithm runs on. |
| 980 | 976 |
typedef typename TR::Digraph Digraph; |
| 981 | 977 |
|
| 982 | 978 |
typedef typename Digraph::Node Node; |
| 983 | 979 |
typedef typename Digraph::NodeIt NodeIt; |
| 984 | 980 |
typedef typename Digraph::Arc Arc; |
| 985 | 981 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 986 | 982 |
|
| 987 | 983 |
///\brief The type of the map that stores the predecessor |
| 988 | 984 |
///arcs of the shortest paths. |
| 989 | 985 |
typedef typename TR::PredMap PredMap; |
| 990 | 986 |
///\brief The type of the map that stores the distances of the nodes. |
| 991 | 987 |
typedef typename TR::DistMap DistMap; |
| 992 | 988 |
///\brief The type of the map that indicates which nodes are reached. |
| 993 | 989 |
typedef typename TR::ReachedMap ReachedMap; |
| 994 | 990 |
///\brief The type of the map that indicates which nodes are processed. |
| 995 | 991 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 996 | 992 |
///The type of the shortest paths |
| 997 | 993 |
typedef typename TR::Path Path; |
| 998 | 994 |
|
| 999 | 995 |
public: |
| 1000 | 996 |
|
| 1001 | 997 |
/// Constructor. |
| 1002 | 998 |
BfsWizard() : TR() {}
|
| 1003 | 999 |
|
| 1004 | 1000 |
/// Constructor that requires parameters. |
| 1005 | 1001 |
|
| 1006 | 1002 |
/// Constructor that requires parameters. |
| 1007 | 1003 |
/// These parameters will be the default values for the traits class. |
| 1008 | 1004 |
/// \param g The digraph the algorithm runs on. |
| 1009 | 1005 |
BfsWizard(const Digraph &g) : |
| 1010 | 1006 |
TR(g) {}
|
| 1011 | 1007 |
|
| 1012 | 1008 |
///Copy constructor |
| 1013 | 1009 |
BfsWizard(const TR &b) : TR(b) {}
|
| 1014 | 1010 |
|
| 1015 | 1011 |
~BfsWizard() {}
|
| 1016 | 1012 |
|
| 1017 | 1013 |
///Runs BFS algorithm from the given source node. |
| 1018 | 1014 |
|
| 1019 | 1015 |
///This method runs BFS algorithm from node \c s |
| 1020 | 1016 |
///in order to compute the shortest path to each node. |
| 1021 | 1017 |
void run(Node s) |
| 1022 | 1018 |
{
|
| 1023 | 1019 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1024 | 1020 |
if (Base::_pred) |
| 1025 | 1021 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1026 | 1022 |
if (Base::_dist) |
| 1027 | 1023 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1028 | 1024 |
if (Base::_reached) |
| 1029 | 1025 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1030 | 1026 |
if (Base::_processed) |
| 1031 | 1027 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1032 | 1028 |
if (s!=INVALID) |
| 1033 | 1029 |
alg.run(s); |
| 1034 | 1030 |
else |
| 1035 | 1031 |
alg.run(); |
| 1036 | 1032 |
} |
| 1037 | 1033 |
|
| 1038 | 1034 |
///Finds the shortest path between \c s and \c t. |
| 1039 | 1035 |
|
| 1040 | 1036 |
///This method runs BFS algorithm from node \c s |
| 1041 | 1037 |
///in order to compute the shortest path to node \c t |
| 1042 | 1038 |
///(it stops searching when \c t is processed). |
| 1043 | 1039 |
/// |
| 1044 | 1040 |
///\return \c true if \c t is reachable form \c s. |
| 1045 | 1041 |
bool run(Node s, Node t) |
| 1046 | 1042 |
{
|
| 1047 | 1043 |
if (s==INVALID || t==INVALID) throw UninitializedParameter(); |
| 1048 | 1044 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1049 | 1045 |
if (Base::_pred) |
| 1050 | 1046 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1051 | 1047 |
if (Base::_dist) |
| 1052 | 1048 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1053 | 1049 |
if (Base::_reached) |
| 1054 | 1050 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1055 | 1051 |
if (Base::_processed) |
| 1056 | 1052 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1057 | 1053 |
alg.run(s,t); |
| 1058 | 1054 |
if (Base::_path) |
| 1059 | 1055 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1060 | 1056 |
if (Base::_di) |
| 1061 | 1057 |
*Base::_di = alg.dist(t); |
| 1062 | 1058 |
return alg.reached(t); |
| 1063 | 1059 |
} |
| 1064 | 1060 |
|
| 1065 | 1061 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1066 | 1062 |
|
| 1067 | 1063 |
///This method runs BFS algorithm in order to compute |
| 1068 | 1064 |
///the shortest path to each node. |
| 1069 | 1065 |
void run() |
| 1070 | 1066 |
{
|
| 1071 | 1067 |
run(INVALID); |
| 1072 | 1068 |
} |
| 1073 | 1069 |
|
| 1074 | 1070 |
template<class T> |
| 1075 | 1071 |
struct SetPredMapBase : public Base {
|
| 1076 | 1072 |
typedef T PredMap; |
| 1077 | 1073 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1078 | 1074 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1079 | 1075 |
}; |
| 1080 | 1076 |
///\brief \ref named-func-param "Named parameter" |
| 1081 | 1077 |
///for setting \ref PredMap object. |
| 1082 | 1078 |
/// |
| 1083 | 1079 |
///\ref named-func-param "Named parameter" |
| 1084 | 1080 |
///for setting \ref PredMap object. |
| 1085 | 1081 |
template<class T> |
| 1086 | 1082 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1087 | 1083 |
{
|
| 1088 | 1084 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1089 | 1085 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1090 | 1086 |
} |
| 1091 | 1087 |
|
| 1092 | 1088 |
template<class T> |
| 1093 | 1089 |
struct SetReachedMapBase : public Base {
|
| 1094 | 1090 |
typedef T ReachedMap; |
| 1095 | 1091 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1096 | 1092 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1097 | 1093 |
}; |
| 1098 | 1094 |
///\brief \ref named-func-param "Named parameter" |
| 1099 | 1095 |
///for setting \ref ReachedMap object. |
| 1100 | 1096 |
/// |
| 1101 | 1097 |
/// \ref named-func-param "Named parameter" |
| 1102 | 1098 |
///for setting \ref ReachedMap object. |
| 1103 | 1099 |
template<class T> |
| 1104 | 1100 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1105 | 1101 |
{
|
| 1106 | 1102 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1107 | 1103 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1108 | 1104 |
} |
| 1109 | 1105 |
|
| 1110 | 1106 |
template<class T> |
| 1111 | 1107 |
struct SetDistMapBase : public Base {
|
| 1112 | 1108 |
typedef T DistMap; |
| 1113 | 1109 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1114 | 1110 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1115 | 1111 |
}; |
| 1116 | 1112 |
///\brief \ref named-func-param "Named parameter" |
| 1117 | 1113 |
///for setting \ref DistMap object. |
| 1118 | 1114 |
/// |
| 1119 | 1115 |
/// \ref named-func-param "Named parameter" |
| 1120 | 1116 |
///for setting \ref DistMap object. |
| 1121 | 1117 |
template<class T> |
| 1122 | 1118 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1123 | 1119 |
{
|
| 1124 | 1120 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1125 | 1121 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1126 | 1122 |
} |
| 1127 | 1123 |
|
| 1128 | 1124 |
template<class T> |
| 1129 | 1125 |
struct SetProcessedMapBase : public Base {
|
| 1130 | 1126 |
typedef T ProcessedMap; |
| 1131 | 1127 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1132 | 1128 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1133 | 1129 |
}; |
| 1134 | 1130 |
///\brief \ref named-func-param "Named parameter" |
| 1135 | 1131 |
///for setting \ref ProcessedMap object. |
| 1136 | 1132 |
/// |
| 1137 | 1133 |
/// \ref named-func-param "Named parameter" |
| 1138 | 1134 |
///for setting \ref ProcessedMap object. |
| 1139 | 1135 |
template<class T> |
| 1140 | 1136 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1141 | 1137 |
{
|
| 1142 | 1138 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1143 | 1139 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1144 | 1140 |
} |
| 1145 | 1141 |
|
| 1146 | 1142 |
template<class T> |
| 1147 | 1143 |
struct SetPathBase : public Base {
|
| 1148 | 1144 |
typedef T Path; |
| 1149 | 1145 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1150 | 1146 |
}; |
| 1151 | 1147 |
///\brief \ref named-func-param "Named parameter" |
| 1152 | 1148 |
///for getting the shortest path to the target node. |
| 1153 | 1149 |
/// |
| 1154 | 1150 |
///\ref named-func-param "Named parameter" |
| 1155 | 1151 |
///for getting the shortest path to the target node. |
| 1156 | 1152 |
template<class T> |
| 1157 | 1153 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1158 | 1154 |
{
|
| 1159 | 1155 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1160 | 1156 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1161 | 1157 |
} |
| 1162 | 1158 |
|
| 1163 | 1159 |
///\brief \ref named-func-param "Named parameter" |
| 1164 | 1160 |
///for getting the distance of the target node. |
| 1165 | 1161 |
/// |
| 1166 | 1162 |
///\ref named-func-param "Named parameter" |
| 1167 | 1163 |
///for getting the distance of the target node. |
| 1168 | 1164 |
BfsWizard dist(const int &d) |
| 1169 | 1165 |
{
|
| 1170 | 1166 |
Base::_di=const_cast<int*>(&d); |
| 1171 | 1167 |
return *this; |
| 1172 | 1168 |
} |
| 1173 | 1169 |
|
| 1174 | 1170 |
}; |
| 1175 | 1171 |
|
| 1176 | 1172 |
///Function-type interface for BFS algorithm. |
| 1177 | 1173 |
|
| 1178 | 1174 |
/// \ingroup search |
| 1179 | 1175 |
///Function-type interface for BFS algorithm. |
| 1180 | 1176 |
/// |
| 1181 | 1177 |
///This function also has several \ref named-func-param "named parameters", |
| 1182 | 1178 |
///they are declared as the members of class \ref BfsWizard. |
| 1183 | 1179 |
///The following examples show how to use these parameters. |
| 1184 | 1180 |
///\code |
| 1185 | 1181 |
/// // Compute shortest path from node s to each node |
| 1186 | 1182 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| 1187 | 1183 |
/// |
| 1188 | 1184 |
/// // Compute shortest path from s to t |
| 1189 | 1185 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
| 1190 | 1186 |
///\endcode |
| 1191 | 1187 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
| 1192 | 1188 |
///to the end of the parameter list. |
| 1193 | 1189 |
///\sa BfsWizard |
| 1194 | 1190 |
///\sa Bfs |
| 1195 | 1191 |
template<class GR> |
| 1196 | 1192 |
BfsWizard<BfsWizardBase<GR> > |
| 1197 | 1193 |
bfs(const GR &digraph) |
| 1198 | 1194 |
{
|
| 1199 | 1195 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
| 1200 | 1196 |
} |
| 1201 | 1197 |
|
| 1202 | 1198 |
#ifdef DOXYGEN |
| 1203 | 1199 |
/// \brief Visitor class for BFS. |
| 1204 | 1200 |
/// |
| 1205 | 1201 |
/// This class defines the interface of the BfsVisit events, and |
| 1206 | 1202 |
/// it could be the base of a real visitor class. |
| 1207 | 1203 |
template <typename _Digraph> |
| 1208 | 1204 |
struct BfsVisitor {
|
| 1209 | 1205 |
typedef _Digraph Digraph; |
| 1210 | 1206 |
typedef typename Digraph::Arc Arc; |
| 1211 | 1207 |
typedef typename Digraph::Node Node; |
| 1212 | 1208 |
/// \brief Called for the source node(s) of the BFS. |
| 1213 | 1209 |
/// |
| 1214 | 1210 |
/// This function is called for the source node(s) of the BFS. |
| 1215 | 1211 |
void start(const Node& node) {}
|
| 1216 | 1212 |
/// \brief Called when a node is reached first time. |
| 1217 | 1213 |
/// |
| 1218 | 1214 |
/// This function is called when a node is reached first time. |
| 1219 | 1215 |
void reach(const Node& node) {}
|
| 1220 | 1216 |
/// \brief Called when a node is processed. |
| 1221 | 1217 |
/// |
| 1222 | 1218 |
/// This function is called when a node is processed. |
| 1223 | 1219 |
void process(const Node& node) {}
|
| 1224 | 1220 |
/// \brief Called when an arc reaches a new node. |
| 1225 | 1221 |
/// |
| 1226 | 1222 |
/// This function is called when the BFS finds an arc whose target node |
| 1227 | 1223 |
/// is not reached yet. |
| 1228 | 1224 |
void discover(const Arc& arc) {}
|
| 1229 | 1225 |
/// \brief Called when an arc is examined but its target node is |
| 1230 | 1226 |
/// already discovered. |
| 1231 | 1227 |
/// |
| 1232 | 1228 |
/// This function is called when an arc is examined but its target node is |
| 1233 | 1229 |
/// already discovered. |
| 1234 | 1230 |
void examine(const Arc& arc) {}
|
| 1235 | 1231 |
}; |
| 1236 | 1232 |
#else |
| 1237 | 1233 |
template <typename _Digraph> |
| 1238 | 1234 |
struct BfsVisitor {
|
| 1239 | 1235 |
typedef _Digraph Digraph; |
| 1240 | 1236 |
typedef typename Digraph::Arc Arc; |
| 1241 | 1237 |
typedef typename Digraph::Node Node; |
| 1242 | 1238 |
void start(const Node&) {}
|
| 1243 | 1239 |
void reach(const Node&) {}
|
| 1244 | 1240 |
void process(const Node&) {}
|
| 1245 | 1241 |
void discover(const Arc&) {}
|
| 1246 | 1242 |
void examine(const Arc&) {}
|
| 1247 | 1243 |
|
| 1248 | 1244 |
template <typename _Visitor> |
| 1249 | 1245 |
struct Constraints {
|
| 1250 | 1246 |
void constraints() {
|
| 1251 | 1247 |
Arc arc; |
| 1252 | 1248 |
Node node; |
| 1253 | 1249 |
visitor.start(node); |
| 1254 | 1250 |
visitor.reach(node); |
| 1255 | 1251 |
visitor.process(node); |
| 1256 | 1252 |
visitor.discover(arc); |
| 1257 | 1253 |
visitor.examine(arc); |
| 1258 | 1254 |
} |
| 1259 | 1255 |
_Visitor& visitor; |
| 1260 | 1256 |
}; |
| 1261 | 1257 |
}; |
| 1262 | 1258 |
#endif |
| 1263 | 1259 |
|
| 1264 | 1260 |
/// \brief Default traits class of BfsVisit class. |
| 1265 | 1261 |
/// |
| 1266 | 1262 |
/// Default traits class of BfsVisit class. |
| 1267 | 1263 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1268 | 1264 |
template<class _Digraph> |
| 1269 | 1265 |
struct BfsVisitDefaultTraits {
|
| 1270 | 1266 |
|
| 1271 | 1267 |
/// \brief The type of the digraph the algorithm runs on. |
| 1272 | 1268 |
typedef _Digraph Digraph; |
| 1273 | 1269 |
|
| 1274 | 1270 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1275 | 1271 |
/// |
| 1276 | 1272 |
/// The type of the map that indicates which nodes are reached. |
| 1277 | 1273 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1278 | 1274 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1279 | 1275 |
|
| 1280 | 1276 |
/// \brief Instantiates a \ref ReachedMap. |
| 1281 | 1277 |
/// |
| 1282 | 1278 |
/// This function instantiates a \ref ReachedMap. |
| 1283 | 1279 |
/// \param digraph is the digraph, to which |
| 1284 | 1280 |
/// we would like to define the \ref ReachedMap. |
| 1285 | 1281 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1286 | 1282 |
return new ReachedMap(digraph); |
| 1287 | 1283 |
} |
| 1288 | 1284 |
|
| 1289 | 1285 |
}; |
| 1290 | 1286 |
|
| 1291 | 1287 |
/// \ingroup search |
| 1292 | 1288 |
/// |
| 1293 | 1289 |
/// \brief %BFS algorithm class with visitor interface. |
| 1294 | 1290 |
/// |
| 1295 | 1291 |
/// This class provides an efficient implementation of the %BFS algorithm |
| 1296 | 1292 |
/// with visitor interface. |
| 1297 | 1293 |
/// |
| 1298 | 1294 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
| 1299 | 1295 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1300 | 1296 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1301 | 1297 |
/// |
| 1302 | 1298 |
/// This interface of the BFS algorithm should be used in special cases |
| 1303 | 1299 |
/// when extra actions have to be performed in connection with certain |
| 1304 | 1300 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1305 | 1301 |
/// instead. |
| 1306 | 1302 |
/// |
| 1307 | 1303 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1308 | 1304 |
/// The default value is |
| 1309 | 1305 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
| 1310 | 1306 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
| 1311 | 1307 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
| 1312 | 1308 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
| 1313 | 1309 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1314 | 1310 |
/// events, you should implement your own visitor class. |
| 1315 | 1311 |
/// \tparam _Traits Traits class to set various data types used by the |
| 1316 | 1312 |
/// algorithm. The default traits class is |
| 1317 | 1313 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
| 1318 | 1314 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1319 | 1315 |
/// a BFS visit traits class. |
| 1320 | 1316 |
#ifdef DOXYGEN |
| 1321 | 1317 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
| 1322 | 1318 |
#else |
| 1323 | 1319 |
template <typename _Digraph = ListDigraph, |
| 1324 | 1320 |
typename _Visitor = BfsVisitor<_Digraph>, |
| 1325 | 1321 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
| 1326 | 1322 |
#endif |
| 1327 | 1323 |
class BfsVisit {
|
| 1328 | 1324 |
public: |
| 1329 | 1325 |
|
| 1330 | 1326 |
/// \brief \ref Exception for uninitialized parameters. |
| 1331 | 1327 |
/// |
| 1332 | 1328 |
/// This error represents problems in the initialization |
| 1333 | 1329 |
/// of the parameters of the algorithm. |
| 1334 | 1330 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 1335 | 1331 |
public: |
| 1336 | 1332 |
virtual const char* what() const throw() |
| 1337 | 1333 |
{
|
| 1338 | 1334 |
return "lemon::BfsVisit::UninitializedParameter"; |
| 1339 | 1335 |
} |
| 1340 | 1336 |
}; |
| 1341 | 1337 |
|
| 1342 | 1338 |
///The traits class. |
| 1343 | 1339 |
typedef _Traits Traits; |
| 1344 | 1340 |
|
| 1345 | 1341 |
///The type of the digraph the algorithm runs on. |
| 1346 | 1342 |
typedef typename Traits::Digraph Digraph; |
| 1347 | 1343 |
|
| 1348 | 1344 |
///The visitor type used by the algorithm. |
| 1349 | 1345 |
typedef _Visitor Visitor; |
| 1350 | 1346 |
|
| 1351 | 1347 |
///The type of the map that indicates which nodes are reached. |
| 1352 | 1348 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1353 | 1349 |
|
| 1354 | 1350 |
private: |
| 1355 | 1351 |
|
| 1356 | 1352 |
typedef typename Digraph::Node Node; |
| 1357 | 1353 |
typedef typename Digraph::NodeIt NodeIt; |
| 1358 | 1354 |
typedef typename Digraph::Arc Arc; |
| 1359 | 1355 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1360 | 1356 |
|
| 1361 | 1357 |
//Pointer to the underlying digraph. |
| 1362 | 1358 |
const Digraph *_digraph; |
| 1363 | 1359 |
//Pointer to the visitor object. |
| 1364 | 1360 |
Visitor *_visitor; |
| 1365 | 1361 |
//Pointer to the map of reached status of the nodes. |
| 1366 | 1362 |
ReachedMap *_reached; |
| 1367 | 1363 |
//Indicates if _reached is locally allocated (true) or not. |
| 1368 | 1364 |
bool local_reached; |
| 1369 | 1365 |
|
| 1370 | 1366 |
std::vector<typename Digraph::Node> _list; |
| 1371 | 1367 |
int _list_front, _list_back; |
| 1372 | 1368 |
|
| 1373 |
///Creates the maps if necessary. |
|
| 1374 |
///\todo Better memory allocation (instead of new). |
|
| 1369 |
//Creates the maps if necessary. |
|
| 1375 | 1370 |
void create_maps() {
|
| 1376 | 1371 |
if(!_reached) {
|
| 1377 | 1372 |
local_reached = true; |
| 1378 | 1373 |
_reached = Traits::createReachedMap(*_digraph); |
| 1379 | 1374 |
} |
| 1380 | 1375 |
} |
| 1381 | 1376 |
|
| 1382 | 1377 |
protected: |
| 1383 | 1378 |
|
| 1384 | 1379 |
BfsVisit() {}
|
| 1385 | 1380 |
|
| 1386 | 1381 |
public: |
| 1387 | 1382 |
|
| 1388 | 1383 |
typedef BfsVisit Create; |
| 1389 | 1384 |
|
| 1390 | 1385 |
/// \name Named template parameters |
| 1391 | 1386 |
|
| 1392 | 1387 |
///@{
|
| 1393 | 1388 |
template <class T> |
| 1394 | 1389 |
struct SetReachedMapTraits : public Traits {
|
| 1395 | 1390 |
typedef T ReachedMap; |
| 1396 | 1391 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1397 | 1392 |
throw UninitializedParameter(); |
| 1398 | 1393 |
} |
| 1399 | 1394 |
}; |
| 1400 | 1395 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1401 | 1396 |
/// ReachedMap type. |
| 1402 | 1397 |
/// |
| 1403 | 1398 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1404 | 1399 |
template <class T> |
| 1405 | 1400 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1406 | 1401 |
SetReachedMapTraits<T> > {
|
| 1407 | 1402 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1408 | 1403 |
}; |
| 1409 | 1404 |
///@} |
| 1410 | 1405 |
|
| 1411 | 1406 |
public: |
| 1412 | 1407 |
|
| 1413 | 1408 |
/// \brief Constructor. |
| 1414 | 1409 |
/// |
| 1415 | 1410 |
/// Constructor. |
| 1416 | 1411 |
/// |
| 1417 | 1412 |
/// \param digraph The digraph the algorithm runs on. |
| 1418 | 1413 |
/// \param visitor The visitor object of the algorithm. |
| 1419 | 1414 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1420 | 1415 |
: _digraph(&digraph), _visitor(&visitor), |
| 1421 | 1416 |
_reached(0), local_reached(false) {}
|
| 1422 | 1417 |
|
| 1423 | 1418 |
/// \brief Destructor. |
| 1424 | 1419 |
~BfsVisit() {
|
| 1425 | 1420 |
if(local_reached) delete _reached; |
| 1426 | 1421 |
} |
| 1427 | 1422 |
|
| 1428 | 1423 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1429 | 1424 |
/// |
| 1430 | 1425 |
/// Sets the map that indicates which nodes are reached. |
| 1431 | 1426 |
/// If you don't use this function before calling \ref run(), |
| 1432 | 1427 |
/// it will allocate one. The destructor deallocates this |
| 1433 | 1428 |
/// automatically allocated map, of course. |
| 1434 | 1429 |
/// \return <tt> (*this) </tt> |
| 1435 | 1430 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1436 | 1431 |
if(local_reached) {
|
| 1437 | 1432 |
delete _reached; |
| 1438 | 1433 |
local_reached = false; |
| 1439 | 1434 |
} |
| 1440 | 1435 |
_reached = &m; |
| 1441 | 1436 |
return *this; |
| 1442 | 1437 |
} |
| 1443 | 1438 |
|
| 1444 | 1439 |
public: |
| 1445 | 1440 |
|
| 1446 | 1441 |
/// \name Execution control |
| 1447 | 1442 |
/// The simplest way to execute the algorithm is to use |
| 1448 | 1443 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
| 1449 | 1444 |
/// "run()". |
| 1450 | 1445 |
/// \n |
| 1451 | 1446 |
/// If you need more control on the execution, first you must call |
| 1452 | 1447 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
| 1453 | 1448 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
| 1454 | 1449 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
| 1455 | 1450 |
/// actual path computation. |
| 1456 | 1451 |
|
| 1457 | 1452 |
/// @{
|
| 1458 | 1453 |
|
| 1459 | 1454 |
/// \brief Initializes the internal data structures. |
| 1460 | 1455 |
/// |
| 1461 | 1456 |
/// Initializes the internal data structures. |
| 1462 | 1457 |
void init() {
|
| 1463 | 1458 |
create_maps(); |
| 1464 | 1459 |
_list.resize(countNodes(*_digraph)); |
| 1465 | 1460 |
_list_front = _list_back = -1; |
| 1466 | 1461 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1467 | 1462 |
_reached->set(u, false); |
| 1468 | 1463 |
} |
| 1469 | 1464 |
} |
| 1470 | 1465 |
|
| 1471 | 1466 |
/// \brief Adds a new source node. |
| 1472 | 1467 |
/// |
| 1473 | 1468 |
/// Adds a new source node to the set of nodes to be processed. |
| 1474 | 1469 |
void addSource(Node s) {
|
| 1475 | 1470 |
if(!(*_reached)[s]) {
|
| 1476 | 1471 |
_reached->set(s,true); |
| 1477 | 1472 |
_visitor->start(s); |
| 1478 | 1473 |
_visitor->reach(s); |
| 1479 | 1474 |
_list[++_list_back] = s; |
| 1480 | 1475 |
} |
| 1481 | 1476 |
} |
| 1482 | 1477 |
|
| 1483 | 1478 |
/// \brief Processes the next node. |
| 1484 | 1479 |
/// |
| 1485 | 1480 |
/// Processes the next node. |
| 1486 | 1481 |
/// |
| 1487 | 1482 |
/// \return The processed node. |
| 1488 | 1483 |
/// |
| 1489 | 1484 |
/// \pre The queue must not be empty. |
| 1490 | 1485 |
Node processNextNode() {
|
| 1491 | 1486 |
Node n = _list[++_list_front]; |
| 1492 | 1487 |
_visitor->process(n); |
| 1493 | 1488 |
Arc e; |
| 1494 | 1489 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1495 | 1490 |
Node m = _digraph->target(e); |
| 1496 | 1491 |
if (!(*_reached)[m]) {
|
| 1497 | 1492 |
_visitor->discover(e); |
| 1498 | 1493 |
_visitor->reach(m); |
| 1499 | 1494 |
_reached->set(m, true); |
| 1500 | 1495 |
_list[++_list_back] = m; |
| 1501 | 1496 |
} else {
|
| 1502 | 1497 |
_visitor->examine(e); |
| 1503 | 1498 |
} |
| 1504 | 1499 |
} |
| 1505 | 1500 |
return n; |
| 1506 | 1501 |
} |
| 1507 | 1502 |
|
| 1508 | 1503 |
/// \brief Processes the next node. |
| 1509 | 1504 |
/// |
| 1510 | 1505 |
/// Processes the next node and checks if the given target node |
| 1511 | 1506 |
/// is reached. If the target node is reachable from the processed |
| 1512 | 1507 |
/// node, then the \c reach parameter will be set to \c true. |
| 1513 | 1508 |
/// |
| 1514 | 1509 |
/// \param target The target node. |
| 1515 | 1510 |
/// \retval reach Indicates if the target node is reached. |
| 1516 | 1511 |
/// It should be initially \c false. |
| 1517 | 1512 |
/// |
| 1518 | 1513 |
/// \return The processed node. |
| 1519 | 1514 |
/// |
| 1520 | 1515 |
/// \pre The queue must not be empty. |
| 1521 | 1516 |
Node processNextNode(Node target, bool& reach) {
|
| 1522 | 1517 |
Node n = _list[++_list_front]; |
| 1523 | 1518 |
_visitor->process(n); |
| 1524 | 1519 |
Arc e; |
| 1525 | 1520 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1526 | 1521 |
Node m = _digraph->target(e); |
| 1527 | 1522 |
if (!(*_reached)[m]) {
|
| 1528 | 1523 |
_visitor->discover(e); |
| 1529 | 1524 |
_visitor->reach(m); |
| 1530 | 1525 |
_reached->set(m, true); |
| 1531 | 1526 |
_list[++_list_back] = m; |
| 1532 | 1527 |
reach = reach || (target == m); |
| 1533 | 1528 |
} else {
|
| 1534 | 1529 |
_visitor->examine(e); |
| 1535 | 1530 |
} |
| 1536 | 1531 |
} |
| 1537 | 1532 |
return n; |
| 1538 | 1533 |
} |
| 1539 | 1534 |
|
| 1540 | 1535 |
/// \brief Processes the next node. |
| 1541 | 1536 |
/// |
| 1542 | 1537 |
/// Processes the next node and checks if at least one of reached |
| 1543 | 1538 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1544 | 1539 |
/// with \c true value is reachable from the processed node, then the |
| 1545 | 1540 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1546 | 1541 |
/// |
| 1547 | 1542 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1548 | 1543 |
/// possible targets. |
| 1549 | 1544 |
/// \retval rnode The reached target node. |
| 1550 | 1545 |
/// It should be initially \c INVALID. |
| 1551 | 1546 |
/// |
| 1552 | 1547 |
/// \return The processed node. |
| 1553 | 1548 |
/// |
| 1554 | 1549 |
/// \pre The queue must not be empty. |
| 1555 | 1550 |
template <typename NM> |
| 1556 | 1551 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1557 | 1552 |
Node n = _list[++_list_front]; |
| 1558 | 1553 |
_visitor->process(n); |
| 1559 | 1554 |
Arc e; |
| 1560 | 1555 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1561 | 1556 |
Node m = _digraph->target(e); |
| 1562 | 1557 |
if (!(*_reached)[m]) {
|
| 1563 | 1558 |
_visitor->discover(e); |
| 1564 | 1559 |
_visitor->reach(m); |
| 1565 | 1560 |
_reached->set(m, true); |
| 1566 | 1561 |
_list[++_list_back] = m; |
| 1567 | 1562 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1568 | 1563 |
} else {
|
| 1569 | 1564 |
_visitor->examine(e); |
| 1570 | 1565 |
} |
| 1571 | 1566 |
} |
| 1572 | 1567 |
return n; |
| 1573 | 1568 |
} |
| 1574 | 1569 |
|
| 1575 | 1570 |
/// \brief The next node to be processed. |
| 1576 | 1571 |
/// |
| 1577 | 1572 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1578 | 1573 |
/// is empty. |
| 1579 | 1574 |
Node nextNode() const {
|
| 1580 | 1575 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1581 | 1576 |
} |
| 1582 | 1577 |
|
| 1583 | 1578 |
/// \brief Returns \c false if there are nodes |
| 1584 | 1579 |
/// to be processed. |
| 1585 | 1580 |
/// |
| 1586 | 1581 |
/// Returns \c false if there are nodes |
| 1587 | 1582 |
/// to be processed in the queue. |
| 1588 | 1583 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1589 | 1584 |
|
| 1590 | 1585 |
/// \brief Returns the number of the nodes to be processed. |
| 1591 | 1586 |
/// |
| 1592 | 1587 |
/// Returns the number of the nodes to be processed in the queue. |
| 1593 | 1588 |
int queueSize() const { return _list_back - _list_front; }
|
| 1594 | 1589 |
|
| 1595 | 1590 |
/// \brief Executes the algorithm. |
| 1596 | 1591 |
/// |
| 1597 | 1592 |
/// Executes the algorithm. |
| 1598 | 1593 |
/// |
| 1599 | 1594 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1600 | 1595 |
/// in order to compute the shortest path to each node. |
| 1601 | 1596 |
/// |
| 1602 | 1597 |
/// The algorithm computes |
| 1603 | 1598 |
/// - the shortest path tree (forest), |
| 1604 | 1599 |
/// - the distance of each node from the root(s). |
| 1605 | 1600 |
/// |
| 1606 | 1601 |
/// \pre init() must be called and at least one root node should be added |
| 1607 | 1602 |
/// with addSource() before using this function. |
| 1608 | 1603 |
/// |
| 1609 | 1604 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1610 | 1605 |
/// \code |
| 1611 | 1606 |
/// while ( !b.emptyQueue() ) {
|
| 1612 | 1607 |
/// b.processNextNode(); |
| 1613 | 1608 |
/// } |
| 1614 | 1609 |
/// \endcode |
| 1615 | 1610 |
void start() {
|
| 1616 | 1611 |
while ( !emptyQueue() ) processNextNode(); |
| 1617 | 1612 |
} |
| 1618 | 1613 |
|
| 1619 | 1614 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1620 | 1615 |
/// |
| 1621 | 1616 |
/// Executes the algorithm until the given target node is reached. |
| 1622 | 1617 |
/// |
| 1623 | 1618 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1624 | 1619 |
/// in order to compute the shortest path to \c t. |
| 1625 | 1620 |
/// |
| 1626 | 1621 |
/// The algorithm computes |
| 1627 | 1622 |
/// - the shortest path to \c t, |
| 1628 | 1623 |
/// - the distance of \c t from the root(s). |
| 1629 | 1624 |
/// |
| 1630 | 1625 |
/// \pre init() must be called and at least one root node should be |
| 1631 | 1626 |
/// added with addSource() before using this function. |
| 1632 | 1627 |
/// |
| 1633 | 1628 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1634 | 1629 |
/// \code |
| 1635 | 1630 |
/// bool reach = false; |
| 1636 | 1631 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1637 | 1632 |
/// b.processNextNode(t, reach); |
| 1638 | 1633 |
/// } |
| 1639 | 1634 |
/// \endcode |
| 1640 | 1635 |
void start(Node t) {
|
| 1641 | 1636 |
bool reach = false; |
| 1642 | 1637 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 1643 | 1638 |
} |
| 1644 | 1639 |
|
| 1645 | 1640 |
/// \brief Executes the algorithm until a condition is met. |
| 1646 | 1641 |
/// |
| 1647 | 1642 |
/// Executes the algorithm until a condition is met. |
| 1648 | 1643 |
/// |
| 1649 | 1644 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1650 | 1645 |
/// order to compute the shortest path to a node \c v with |
| 1651 | 1646 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1652 | 1647 |
/// |
| 1653 | 1648 |
/// \param nm must be a bool (or convertible) node map. The |
| 1654 | 1649 |
/// algorithm will stop when it reaches a node \c v with |
| 1655 | 1650 |
/// <tt>nm[v]</tt> true. |
| 1656 | 1651 |
/// |
| 1657 | 1652 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1658 | 1653 |
/// \c INVALID if no such node was found. |
| 1659 | 1654 |
/// |
| 1660 | 1655 |
/// \pre init() must be called and at least one root node should be |
| 1661 | 1656 |
/// added with addSource() before using this function. |
| 1662 | 1657 |
/// |
| 1663 | 1658 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1664 | 1659 |
/// \code |
| 1665 | 1660 |
/// Node rnode = INVALID; |
| 1666 | 1661 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1667 | 1662 |
/// b.processNextNode(nm, rnode); |
| 1668 | 1663 |
/// } |
| 1669 | 1664 |
/// return rnode; |
| 1670 | 1665 |
/// \endcode |
| 1671 | 1666 |
template <typename NM> |
| 1672 | 1667 |
Node start(const NM &nm) {
|
| 1673 | 1668 |
Node rnode = INVALID; |
| 1674 | 1669 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1675 | 1670 |
processNextNode(nm, rnode); |
| 1676 | 1671 |
} |
| 1677 | 1672 |
return rnode; |
| 1678 | 1673 |
} |
| 1679 | 1674 |
|
| 1680 | 1675 |
/// \brief Runs the algorithm from the given source node. |
| 1681 | 1676 |
/// |
| 1682 | 1677 |
/// This method runs the %BFS algorithm from node \c s |
| 1683 | 1678 |
/// in order to compute the shortest path to each node. |
| 1684 | 1679 |
/// |
| 1685 | 1680 |
/// The algorithm computes |
| 1686 | 1681 |
/// - the shortest path tree, |
| 1687 | 1682 |
/// - the distance of each node from the root. |
| 1688 | 1683 |
/// |
| 1689 | 1684 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1690 | 1685 |
///\code |
| 1691 | 1686 |
/// b.init(); |
| 1692 | 1687 |
/// b.addSource(s); |
| 1693 | 1688 |
/// b.start(); |
| 1694 | 1689 |
///\endcode |
| 1695 | 1690 |
void run(Node s) {
|
| 1696 | 1691 |
init(); |
| 1697 | 1692 |
addSource(s); |
| 1698 | 1693 |
start(); |
| 1699 | 1694 |
} |
| 1700 | 1695 |
|
| 1701 | 1696 |
/// \brief Finds the shortest path between \c s and \c t. |
| 1702 | 1697 |
/// |
| 1703 | 1698 |
/// This method runs the %BFS algorithm from node \c s |
| 1704 | 1699 |
/// in order to compute the shortest path to node \c t |
| 1705 | 1700 |
/// (it stops searching when \c t is processed). |
| 1706 | 1701 |
/// |
| 1707 | 1702 |
/// \return \c true if \c t is reachable form \c s. |
| 1708 | 1703 |
/// |
| 1709 | 1704 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 1710 | 1705 |
/// shortcut of the following code. |
| 1711 | 1706 |
///\code |
| 1712 | 1707 |
/// b.init(); |
| 1713 | 1708 |
/// b.addSource(s); |
| 1714 | 1709 |
/// b.start(t); |
| 1715 | 1710 |
///\endcode |
| 1716 | 1711 |
bool run(Node s,Node t) {
|
| 1717 | 1712 |
init(); |
| 1718 | 1713 |
addSource(s); |
| 1719 | 1714 |
start(t); |
| 1720 | 1715 |
return reached(t); |
| 1721 | 1716 |
} |
| 1722 | 1717 |
|
| 1723 | 1718 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1724 | 1719 |
/// |
| 1725 | 1720 |
/// This method runs the %BFS algorithm in order to |
| 1726 | 1721 |
/// compute the shortest path to each node. |
| 1727 | 1722 |
/// |
| 1728 | 1723 |
/// The algorithm computes |
| 1729 | 1724 |
/// - the shortest path tree (forest), |
| 1730 | 1725 |
/// - the distance of each node from the root(s). |
| 1731 | 1726 |
/// |
| 1732 | 1727 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1733 | 1728 |
///\code |
| 1734 | 1729 |
/// b.init(); |
| 1735 | 1730 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1736 | 1731 |
/// if (!b.reached(n)) {
|
| 1737 | 1732 |
/// b.addSource(n); |
| 1738 | 1733 |
/// b.start(); |
| 1739 | 1734 |
/// } |
| 1740 | 1735 |
/// } |
| 1741 | 1736 |
///\endcode |
| 1742 | 1737 |
void run() {
|
| 1743 | 1738 |
init(); |
| 1744 | 1739 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1745 | 1740 |
if (!reached(it)) {
|
| 1746 | 1741 |
addSource(it); |
| 1747 | 1742 |
start(); |
| 1748 | 1743 |
} |
| 1749 | 1744 |
} |
| 1750 | 1745 |
} |
| 1751 | 1746 |
|
| 1752 | 1747 |
///@} |
| 1753 | 1748 |
|
| 1754 | 1749 |
/// \name Query Functions |
| 1755 | 1750 |
/// The result of the %BFS algorithm can be obtained using these |
| 1756 | 1751 |
/// functions.\n |
| 1757 | 1752 |
/// Either \ref lemon::BfsVisit::run() "run()" or |
| 1758 | 1753 |
/// \ref lemon::BfsVisit::start() "start()" must be called before |
| 1759 | 1754 |
/// using them. |
| 1760 | 1755 |
///@{
|
| 1761 | 1756 |
|
| 1762 | 1757 |
/// \brief Checks if a node is reachable from the root(s). |
| 1763 | 1758 |
/// |
| 1764 | 1759 |
/// Returns \c true if \c v is reachable from the root(s). |
| 1765 | 1760 |
/// \pre Either \ref run() or \ref start() |
| 1766 | 1761 |
/// must be called before using this function. |
| 1767 | 1762 |
bool reached(Node v) { return (*_reached)[v]; }
|
| 1768 | 1763 |
|
| 1769 | 1764 |
///@} |
| 1770 | 1765 |
|
| 1771 | 1766 |
}; |
| 1772 | 1767 |
|
| 1773 | 1768 |
} //END OF NAMESPACE LEMON |
| 1774 | 1769 |
|
| 1775 | 1770 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_BASE_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/bits/map_extender.h> |
| 26 | 26 |
#include <lemon/bits/default_map.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/maps.h> |
| 30 | 30 |
|
| 31 | 31 |
///\ingroup digraphbits |
| 32 | 32 |
///\file |
| 33 | 33 |
///\brief Extenders for the digraph types |
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \ingroup digraphbits |
| 37 | 37 |
/// |
| 38 | 38 |
/// \brief BaseDigraph to BaseGraph extender |
| 39 | 39 |
template <typename Base> |
| 40 | 40 |
class UndirDigraphExtender : public Base {
|
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef Base Parent; |
| 45 | 45 |
typedef typename Parent::Arc Edge; |
| 46 | 46 |
typedef typename Parent::Node Node; |
| 47 | 47 |
|
| 48 | 48 |
typedef True UndirectedTag; |
| 49 | 49 |
|
| 50 | 50 |
class Arc : public Edge {
|
| 51 | 51 |
friend class UndirDigraphExtender; |
| 52 | 52 |
|
| 53 | 53 |
protected: |
| 54 | 54 |
bool forward; |
| 55 | 55 |
|
| 56 | 56 |
Arc(const Edge &ue, bool _forward) : |
| 57 | 57 |
Edge(ue), forward(_forward) {}
|
| 58 | 58 |
|
| 59 | 59 |
public: |
| 60 | 60 |
Arc() {}
|
| 61 | 61 |
|
| 62 | 62 |
// Invalid arc constructor |
| 63 | 63 |
Arc(Invalid i) : Edge(i), forward(true) {}
|
| 64 | 64 |
|
| 65 | 65 |
bool operator==(const Arc &that) const {
|
| 66 | 66 |
return forward==that.forward && Edge(*this)==Edge(that); |
| 67 | 67 |
} |
| 68 | 68 |
bool operator!=(const Arc &that) const {
|
| 69 | 69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
| 70 | 70 |
} |
| 71 | 71 |
bool operator<(const Arc &that) const {
|
| 72 | 72 |
return forward<that.forward || |
| 73 | 73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
| 74 | 74 |
} |
| 75 | 75 |
}; |
| 76 | 76 |
|
| 77 | 77 |
/// First node of the edge |
| 78 | 78 |
Node u(const Edge &e) const {
|
| 79 | 79 |
return Parent::source(e); |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
/// Source of the given arc |
| 83 | 83 |
Node source(const Arc &e) const {
|
| 84 | 84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
| 85 | 85 |
} |
| 86 | 86 |
|
| 87 | 87 |
/// Second node of the edge |
| 88 | 88 |
Node v(const Edge &e) const {
|
| 89 | 89 |
return Parent::target(e); |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
/// Target of the given arc |
| 93 | 93 |
Node target(const Arc &e) const {
|
| 94 | 94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
/// \brief Directed arc from an edge. |
| 98 | 98 |
/// |
| 99 | 99 |
/// Returns a directed arc corresponding to the specified edge. |
| 100 | 100 |
/// If the given bool is true, the first node of the given edge and |
| 101 | 101 |
/// the source node of the returned arc are the same. |
| 102 | 102 |
static Arc direct(const Edge &e, bool d) {
|
| 103 | 103 |
return Arc(e, d); |
| 104 | 104 |
} |
| 105 | 105 |
|
| 106 | 106 |
/// Returns whether the given directed arc has the same orientation |
| 107 | 107 |
/// as the corresponding edge. |
| 108 |
/// |
|
| 109 |
/// \todo reference to the corresponding point of the undirected digraph |
|
| 110 |
/// concept. "What does the direction of an edge mean?" |
|
| 111 | 108 |
static bool direction(const Arc &a) { return a.forward; }
|
| 112 | 109 |
|
| 113 | 110 |
using Parent::first; |
| 114 | 111 |
using Parent::next; |
| 115 | 112 |
|
| 116 | 113 |
void first(Arc &e) const {
|
| 117 | 114 |
Parent::first(e); |
| 118 | 115 |
e.forward=true; |
| 119 | 116 |
} |
| 120 | 117 |
|
| 121 | 118 |
void next(Arc &e) const {
|
| 122 | 119 |
if( e.forward ) {
|
| 123 | 120 |
e.forward = false; |
| 124 | 121 |
} |
| 125 | 122 |
else {
|
| 126 | 123 |
Parent::next(e); |
| 127 | 124 |
e.forward = true; |
| 128 | 125 |
} |
| 129 | 126 |
} |
| 130 | 127 |
|
| 131 | 128 |
void firstOut(Arc &e, const Node &n) const {
|
| 132 | 129 |
Parent::firstIn(e,n); |
| 133 | 130 |
if( Edge(e) != INVALID ) {
|
| 134 | 131 |
e.forward = false; |
| 135 | 132 |
} |
| 136 | 133 |
else {
|
| 137 | 134 |
Parent::firstOut(e,n); |
| 138 | 135 |
e.forward = true; |
| 139 | 136 |
} |
| 140 | 137 |
} |
| 141 | 138 |
void nextOut(Arc &e) const {
|
| 142 | 139 |
if( ! e.forward ) {
|
| 143 | 140 |
Node n = Parent::target(e); |
| 144 | 141 |
Parent::nextIn(e); |
| 145 | 142 |
if( Edge(e) == INVALID ) {
|
| 146 | 143 |
Parent::firstOut(e, n); |
| 147 | 144 |
e.forward = true; |
| 148 | 145 |
} |
| 149 | 146 |
} |
| 150 | 147 |
else {
|
| 151 | 148 |
Parent::nextOut(e); |
| 152 | 149 |
} |
| 153 | 150 |
} |
| 154 | 151 |
|
| 155 | 152 |
void firstIn(Arc &e, const Node &n) const {
|
| 156 | 153 |
Parent::firstOut(e,n); |
| 157 | 154 |
if( Edge(e) != INVALID ) {
|
| 158 | 155 |
e.forward = false; |
| 159 | 156 |
} |
| 160 | 157 |
else {
|
| 161 | 158 |
Parent::firstIn(e,n); |
| 162 | 159 |
e.forward = true; |
| 163 | 160 |
} |
| 164 | 161 |
} |
| 165 | 162 |
void nextIn(Arc &e) const {
|
| 166 | 163 |
if( ! e.forward ) {
|
| 167 | 164 |
Node n = Parent::source(e); |
| 168 | 165 |
Parent::nextOut(e); |
| 169 | 166 |
if( Edge(e) == INVALID ) {
|
| 170 | 167 |
Parent::firstIn(e, n); |
| 171 | 168 |
e.forward = true; |
| 172 | 169 |
} |
| 173 | 170 |
} |
| 174 | 171 |
else {
|
| 175 | 172 |
Parent::nextIn(e); |
| 176 | 173 |
} |
| 177 | 174 |
} |
| 178 | 175 |
|
| 179 | 176 |
void firstInc(Edge &e, bool &d, const Node &n) const {
|
| 180 | 177 |
d = true; |
| 181 | 178 |
Parent::firstOut(e, n); |
| 182 | 179 |
if (e != INVALID) return; |
| 183 | 180 |
d = false; |
| 184 | 181 |
Parent::firstIn(e, n); |
| 185 | 182 |
} |
| 186 | 183 |
|
| 187 | 184 |
void nextInc(Edge &e, bool &d) const {
|
| 188 | 185 |
if (d) {
|
| 189 | 186 |
Node s = Parent::source(e); |
| 190 | 187 |
Parent::nextOut(e); |
| 191 | 188 |
if (e != INVALID) return; |
| 192 | 189 |
d = false; |
| 193 | 190 |
Parent::firstIn(e, s); |
| 194 | 191 |
} else {
|
| 195 | 192 |
Parent::nextIn(e); |
| 196 | 193 |
} |
| 197 | 194 |
} |
| 198 | 195 |
|
| 199 | 196 |
Node nodeFromId(int ix) const {
|
| 200 | 197 |
return Parent::nodeFromId(ix); |
| 201 | 198 |
} |
| 202 | 199 |
|
| 203 | 200 |
Arc arcFromId(int ix) const {
|
| 204 | 201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
| 205 | 202 |
} |
| 206 | 203 |
|
| 207 | 204 |
Edge edgeFromId(int ix) const {
|
| 208 | 205 |
return Parent::arcFromId(ix); |
| 209 | 206 |
} |
| 210 | 207 |
|
| 211 | 208 |
int id(const Node &n) const {
|
| 212 | 209 |
return Parent::id(n); |
| 213 | 210 |
} |
| 214 | 211 |
|
| 215 | 212 |
int id(const Edge &e) const {
|
| 216 | 213 |
return Parent::id(e); |
| 217 | 214 |
} |
| 218 | 215 |
|
| 219 | 216 |
int id(const Arc &e) const {
|
| 220 | 217 |
return 2 * Parent::id(e) + int(e.forward); |
| 221 | 218 |
} |
| 222 | 219 |
|
| 223 | 220 |
int maxNodeId() const {
|
| 224 | 221 |
return Parent::maxNodeId(); |
| 225 | 222 |
} |
| 226 | 223 |
|
| 227 | 224 |
int maxArcId() const {
|
| 228 | 225 |
return 2 * Parent::maxArcId() + 1; |
| 229 | 226 |
} |
| 230 | 227 |
|
| 231 | 228 |
int maxEdgeId() const {
|
| 232 | 229 |
return Parent::maxArcId(); |
| 233 | 230 |
} |
| 234 | 231 |
|
| 235 | 232 |
int arcNum() const {
|
| 236 | 233 |
return 2 * Parent::arcNum(); |
| 237 | 234 |
} |
| 238 | 235 |
|
| 239 | 236 |
int edgeNum() const {
|
| 240 | 237 |
return Parent::arcNum(); |
| 241 | 238 |
} |
| 242 | 239 |
|
| 243 | 240 |
Arc findArc(Node s, Node t, Arc p = INVALID) const {
|
| 244 | 241 |
if (p == INVALID) {
|
| 245 | 242 |
Edge arc = Parent::findArc(s, t); |
| 246 | 243 |
if (arc != INVALID) return direct(arc, true); |
| 247 | 244 |
arc = Parent::findArc(t, s); |
| 248 | 245 |
if (arc != INVALID) return direct(arc, false); |
| 249 | 246 |
} else if (direction(p)) {
|
| 250 | 247 |
Edge arc = Parent::findArc(s, t, p); |
| 251 | 248 |
if (arc != INVALID) return direct(arc, true); |
| 252 | 249 |
arc = Parent::findArc(t, s); |
| 253 | 250 |
if (arc != INVALID) return direct(arc, false); |
| 254 | 251 |
} else {
|
| 255 | 252 |
Edge arc = Parent::findArc(t, s, p); |
| 256 | 253 |
if (arc != INVALID) return direct(arc, false); |
| 257 | 254 |
} |
| 258 | 255 |
return INVALID; |
| 259 | 256 |
} |
| 260 | 257 |
|
| 261 | 258 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
|
| 262 | 259 |
if (s != t) {
|
| 263 | 260 |
if (p == INVALID) {
|
| 264 | 261 |
Edge arc = Parent::findArc(s, t); |
| 265 | 262 |
if (arc != INVALID) return arc; |
| 266 | 263 |
arc = Parent::findArc(t, s); |
| 267 | 264 |
if (arc != INVALID) return arc; |
| 268 | 265 |
} else if (Parent::s(p) == s) {
|
| 269 | 266 |
Edge arc = Parent::findArc(s, t, p); |
| 270 | 267 |
if (arc != INVALID) return arc; |
| 271 | 268 |
arc = Parent::findArc(t, s); |
| 272 | 269 |
if (arc != INVALID) return arc; |
| 273 | 270 |
} else {
|
| 274 | 271 |
Edge arc = Parent::findArc(t, s, p); |
| 275 | 272 |
if (arc != INVALID) return arc; |
| 276 | 273 |
} |
| 277 | 274 |
} else {
|
| 278 | 275 |
return Parent::findArc(s, t, p); |
| 279 | 276 |
} |
| 280 | 277 |
return INVALID; |
| 281 | 278 |
} |
| 282 | 279 |
}; |
| 283 | 280 |
|
| 284 | 281 |
template <typename Base> |
| 285 | 282 |
class BidirBpGraphExtender : public Base {
|
| 286 | 283 |
public: |
| 287 | 284 |
typedef Base Parent; |
| 288 | 285 |
typedef BidirBpGraphExtender Digraph; |
| 289 | 286 |
|
| 290 | 287 |
typedef typename Parent::Node Node; |
| 291 | 288 |
typedef typename Parent::Edge Edge; |
| 292 | 289 |
|
| 293 | 290 |
|
| 294 | 291 |
using Parent::first; |
| 295 | 292 |
using Parent::next; |
| 296 | 293 |
|
| 297 | 294 |
using Parent::id; |
| 298 | 295 |
|
| 299 | 296 |
class Red : public Node {
|
| 300 | 297 |
friend class BidirBpGraphExtender; |
| 301 | 298 |
public: |
| 302 | 299 |
Red() {}
|
| 303 | 300 |
Red(const Node& node) : Node(node) {
|
| 304 | 301 |
LEMON_ASSERT(Parent::red(node) || node == INVALID, |
| 305 | 302 |
typename Parent::NodeSetError()); |
| 306 | 303 |
} |
| 307 | 304 |
Red& operator=(const Node& node) {
|
| 308 | 305 |
LEMON_ASSERT(Parent::red(node) || node == INVALID, |
| 309 | 306 |
typename Parent::NodeSetError()); |
| 310 | 307 |
Node::operator=(node); |
| 311 | 308 |
return *this; |
| 312 | 309 |
} |
| 313 | 310 |
Red(Invalid) : Node(INVALID) {}
|
| 314 | 311 |
Red& operator=(Invalid) {
|
| 315 | 312 |
Node::operator=(INVALID); |
| 316 | 313 |
return *this; |
| 317 | 314 |
} |
| 318 | 315 |
}; |
| 319 | 316 |
|
| 320 | 317 |
void first(Red& node) const {
|
| 321 | 318 |
Parent::firstRed(static_cast<Node&>(node)); |
| 322 | 319 |
} |
| 323 | 320 |
void next(Red& node) const {
|
| 324 | 321 |
Parent::nextRed(static_cast<Node&>(node)); |
| 325 | 322 |
} |
| 326 | 323 |
|
| 327 | 324 |
int id(const Red& node) const {
|
| 328 | 325 |
return Parent::redId(node); |
| 329 | 326 |
} |
| 330 | 327 |
|
| 331 | 328 |
class Blue : public Node {
|
| 332 | 329 |
friend class BidirBpGraphExtender; |
| 333 | 330 |
public: |
| 334 | 331 |
Blue() {}
|
| 335 | 332 |
Blue(const Node& node) : Node(node) {
|
| 336 | 333 |
LEMON_ASSERT(Parent::blue(node) || node == INVALID, |
| 337 | 334 |
typename Parent::NodeSetError()); |
| 338 | 335 |
} |
| 339 | 336 |
Blue& operator=(const Node& node) {
|
| 340 | 337 |
LEMON_ASSERT(Parent::blue(node) || node == INVALID, |
| 341 | 338 |
typename Parent::NodeSetError()); |
| 342 | 339 |
Node::operator=(node); |
| 343 | 340 |
return *this; |
| 344 | 341 |
} |
| 345 | 342 |
Blue(Invalid) : Node(INVALID) {}
|
| 346 | 343 |
Blue& operator=(Invalid) {
|
| 347 | 344 |
Node::operator=(INVALID); |
| 348 | 345 |
return *this; |
| 349 | 346 |
} |
| 350 | 347 |
}; |
| 351 | 348 |
|
| 352 | 349 |
void first(Blue& node) const {
|
| 353 | 350 |
Parent::firstBlue(static_cast<Node&>(node)); |
| 354 | 351 |
} |
| 355 | 352 |
void next(Blue& node) const {
|
| 356 | 353 |
Parent::nextBlue(static_cast<Node&>(node)); |
| 357 | 354 |
} |
| 358 | 355 |
|
| 359 | 356 |
int id(const Blue& node) const {
|
| 360 | 357 |
return Parent::redId(node); |
| 361 | 358 |
} |
| 362 | 359 |
|
| 363 | 360 |
Node source(const Edge& arc) const {
|
| 364 | 361 |
return red(arc); |
| 365 | 362 |
} |
| 366 | 363 |
Node target(const Edge& arc) const {
|
| 367 | 364 |
return blue(arc); |
| 368 | 365 |
} |
| 369 | 366 |
|
| 370 | 367 |
void firstInc(Edge& arc, bool& dir, const Node& node) const {
|
| 371 | 368 |
if (Parent::red(node)) {
|
| 372 | 369 |
Parent::firstFromRed(arc, node); |
| 373 | 370 |
dir = true; |
| 374 | 371 |
} else {
|
| 375 | 372 |
Parent::firstFromBlue(arc, node); |
| 376 | 373 |
dir = static_cast<Edge&>(arc) == INVALID; |
| 377 | 374 |
} |
| 378 | 375 |
} |
| 379 | 376 |
void nextInc(Edge& arc, bool& dir) const {
|
| 380 | 377 |
if (dir) {
|
| 381 | 378 |
Parent::nextFromRed(arc); |
| 382 | 379 |
} else {
|
| 383 | 380 |
Parent::nextFromBlue(arc); |
| 384 | 381 |
if (arc == INVALID) dir = true; |
| 385 | 382 |
} |
| 386 | 383 |
} |
| 387 | 384 |
|
| 388 | 385 |
class Arc : public Edge {
|
| 389 | 386 |
friend class BidirBpGraphExtender; |
| 390 | 387 |
protected: |
| 391 | 388 |
bool forward; |
| 392 | 389 |
|
| 393 | 390 |
Arc(const Edge& arc, bool _forward) |
| 394 | 391 |
: Edge(arc), forward(_forward) {}
|
| 395 | 392 |
|
| 396 | 393 |
public: |
| 397 | 394 |
Arc() {}
|
| 398 | 395 |
Arc (Invalid) : Edge(INVALID), forward(true) {}
|
| 399 | 396 |
bool operator==(const Arc& i) const {
|
| 400 | 397 |
return Edge::operator==(i) && forward == i.forward; |
| 401 | 398 |
} |
| 402 | 399 |
bool operator!=(const Arc& i) const {
|
| 403 | 400 |
return Edge::operator!=(i) || forward != i.forward; |
| 404 | 401 |
} |
| 405 | 402 |
bool operator<(const Arc& i) const {
|
| 406 | 403 |
return Edge::operator<(i) || |
| 407 | 404 |
(!(i.forward<forward) && Edge(*this)<Edge(i)); |
| 408 | 405 |
} |
| 409 | 406 |
}; |
| 410 | 407 |
|
| 411 | 408 |
void first(Arc& arc) const {
|
| 412 | 409 |
Parent::first(static_cast<Edge&>(arc)); |
| 413 | 410 |
arc.forward = true; |
| 414 | 411 |
} |
| 415 | 412 |
|
| 416 | 413 |
void next(Arc& arc) const {
|
| 417 | 414 |
if (!arc.forward) {
|
| 418 | 415 |
Parent::next(static_cast<Edge&>(arc)); |
| 419 | 416 |
} |
| 420 | 417 |
arc.forward = !arc.forward; |
| 421 | 418 |
} |
| 422 | 419 |
|
| 423 | 420 |
void firstOut(Arc& arc, const Node& node) const {
|
| 424 | 421 |
if (Parent::red(node)) {
|
| 425 | 422 |
Parent::firstFromRed(arc, node); |
| 426 | 423 |
arc.forward = true; |
| 427 | 424 |
} else {
|
| 428 | 425 |
Parent::firstFromBlue(arc, node); |
| 429 | 426 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
| 430 | 427 |
} |
| 431 | 428 |
} |
| 432 | 429 |
void nextOut(Arc& arc) const {
|
| 433 | 430 |
if (arc.forward) {
|
| 434 | 431 |
Parent::nextFromRed(arc); |
| 435 | 432 |
} else {
|
| 436 | 433 |
Parent::nextFromBlue(arc); |
| 437 | 434 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
| 438 | 435 |
} |
| 439 | 436 |
} |
| 440 | 437 |
|
| 441 | 438 |
void firstIn(Arc& arc, const Node& node) const {
|
| 442 | 439 |
if (Parent::blue(node)) {
|
| 443 | 440 |
Parent::firstFromBlue(arc, node); |
| 444 | 441 |
arc.forward = true; |
| 445 | 442 |
} else {
|
| 446 | 443 |
Parent::firstFromRed(arc, node); |
| 447 | 444 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
| 448 | 445 |
} |
| 449 | 446 |
} |
| 450 | 447 |
void nextIn(Arc& arc) const {
|
| 451 | 448 |
if (arc.forward) {
|
| 452 | 449 |
Parent::nextFromBlue(arc); |
| 453 | 450 |
} else {
|
| 454 | 451 |
Parent::nextFromRed(arc); |
| 455 | 452 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
| 456 | 453 |
} |
| 457 | 454 |
} |
| 458 | 455 |
|
| 459 | 456 |
Node source(const Arc& arc) const {
|
| 460 | 457 |
return arc.forward ? Parent::red(arc) : Parent::blue(arc); |
| 461 | 458 |
} |
| 462 | 459 |
Node target(const Arc& arc) const {
|
| 463 | 460 |
return arc.forward ? Parent::blue(arc) : Parent::red(arc); |
| 464 | 461 |
} |
| 465 | 462 |
|
| 466 | 463 |
int id(const Arc& arc) const {
|
| 467 | 464 |
return (Parent::id(static_cast<const Edge&>(arc)) << 1) + |
| 468 | 465 |
(arc.forward ? 0 : 1); |
| 469 | 466 |
} |
| 470 | 467 |
Arc arcFromId(int ix) const {
|
| 471 | 468 |
return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0); |
| 472 | 469 |
} |
| 473 | 470 |
int maxArcId() const {
|
| 474 | 471 |
return (Parent::maxEdgeId() << 1) + 1; |
| 475 | 472 |
} |
| 476 | 473 |
|
| 477 | 474 |
bool direction(const Arc& arc) const {
|
| 478 | 475 |
return arc.forward; |
| 479 | 476 |
} |
| 480 | 477 |
|
| 481 | 478 |
Arc direct(const Edge& arc, bool dir) const {
|
| 482 | 479 |
return Arc(arc, dir); |
| 483 | 480 |
} |
| 484 | 481 |
|
| 485 | 482 |
int arcNum() const {
|
| 486 | 483 |
return 2 * Parent::edgeNum(); |
| 487 | 484 |
} |
| 488 | 485 |
|
| 489 | 486 |
int edgeNum() const {
|
| 490 | 487 |
return Parent::edgeNum(); |
| 491 | 488 |
} |
| 492 | 489 |
|
| 493 | 490 |
|
| 494 | 491 |
}; |
| 495 | 492 |
} |
| 496 | 493 |
|
| 497 | 494 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
| 20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/core.h> |
| 26 | 26 |
#include <lemon/bits/alteration_notifier.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/maps.h> |
| 30 | 30 |
|
| 31 | 31 |
///\ingroup graphbits |
| 32 | 32 |
/// |
| 33 | 33 |
///\file |
| 34 | 34 |
///\brief Vector based graph maps. |
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \ingroup graphbits |
| 38 | 38 |
/// |
| 39 | 39 |
/// \brief Graph map based on the std::vector storage. |
| 40 | 40 |
/// |
| 41 | 41 |
/// The VectorMap template class is graph map structure what |
| 42 | 42 |
/// automatically updates the map when a key is added to or erased from |
| 43 | 43 |
/// the map. This map type uses the std::vector to store the values. |
| 44 | 44 |
/// |
| 45 |
/// \tparam |
|
| 45 |
/// \tparam _Graph The graph this map is attached to. |
|
| 46 | 46 |
/// \tparam _Item The item type of the graph items. |
| 47 | 47 |
/// \tparam _Value The value type of the map. |
| 48 |
/// \todo Fix the doc: there is _Graph parameter instead of _Notifier. |
|
| 49 | 48 |
template <typename _Graph, typename _Item, typename _Value> |
| 50 | 49 |
class VectorMap |
| 51 | 50 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
|
| 52 | 51 |
private: |
| 53 | 52 |
|
| 54 | 53 |
/// The container type of the map. |
| 55 | 54 |
typedef std::vector<_Value> Container; |
| 56 | 55 |
|
| 57 | 56 |
public: |
| 58 | 57 |
|
| 59 | 58 |
/// The graph type of the map. |
| 60 | 59 |
typedef _Graph Graph; |
| 61 | 60 |
/// The item type of the map. |
| 62 | 61 |
typedef _Item Item; |
| 63 | 62 |
/// The reference map tag. |
| 64 | 63 |
typedef True ReferenceMapTag; |
| 65 | 64 |
|
| 66 | 65 |
/// The key type of the map. |
| 67 | 66 |
typedef _Item Key; |
| 68 | 67 |
/// The value type of the map. |
| 69 | 68 |
typedef _Value Value; |
| 70 | 69 |
|
| 71 | 70 |
/// The notifier type. |
| 72 | 71 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
| 73 | 72 |
|
| 74 | 73 |
/// The map type. |
| 75 | 74 |
typedef VectorMap Map; |
| 76 | 75 |
/// The base class of the map. |
| 77 | 76 |
typedef typename Notifier::ObserverBase Parent; |
| 78 | 77 |
|
| 79 | 78 |
/// The reference type of the map; |
| 80 | 79 |
typedef typename Container::reference Reference; |
| 81 | 80 |
/// The const reference type of the map; |
| 82 | 81 |
typedef typename Container::const_reference ConstReference; |
| 83 | 82 |
|
| 84 | 83 |
|
| 85 | 84 |
/// \brief Constructor to attach the new map into the notifier. |
| 86 | 85 |
/// |
| 87 | 86 |
/// It constructs a map and attachs it into the notifier. |
| 88 | 87 |
/// It adds all the items of the graph to the map. |
| 89 | 88 |
VectorMap(const Graph& graph) {
|
| 90 | 89 |
Parent::attach(graph.notifier(Item())); |
| 91 | 90 |
container.resize(Parent::notifier()->maxId() + 1); |
| 92 | 91 |
} |
| 93 | 92 |
|
| 94 | 93 |
/// \brief Constructor uses given value to initialize the map. |
| 95 | 94 |
/// |
| 96 | 95 |
/// It constructs a map uses a given value to initialize the map. |
| 97 | 96 |
/// It adds all the items of the graph to the map. |
| 98 | 97 |
VectorMap(const Graph& graph, const Value& value) {
|
| 99 | 98 |
Parent::attach(graph.notifier(Item())); |
| 100 | 99 |
container.resize(Parent::notifier()->maxId() + 1, value); |
| 101 | 100 |
} |
| 102 | 101 |
|
| 103 | 102 |
private: |
| 104 | 103 |
/// \brief Copy constructor |
| 105 | 104 |
/// |
| 106 | 105 |
/// Copy constructor. |
| 107 | 106 |
VectorMap(const VectorMap& _copy) : Parent() {
|
| 108 | 107 |
if (_copy.attached()) {
|
| 109 | 108 |
Parent::attach(*_copy.notifier()); |
| 110 | 109 |
container = _copy.container; |
| 111 | 110 |
} |
| 112 | 111 |
} |
| 113 | 112 |
|
| 114 | 113 |
/// \brief Assign operator. |
| 115 | 114 |
/// |
| 116 | 115 |
/// This operator assigns for each item in the map the |
| 117 | 116 |
/// value mapped to the same item in the copied map. |
| 118 | 117 |
/// The parameter map should be indiced with the same |
| 119 | 118 |
/// itemset because this assign operator does not change |
| 120 | 119 |
/// the container of the map. |
| 121 | 120 |
VectorMap& operator=(const VectorMap& cmap) {
|
| 122 | 121 |
return operator=<VectorMap>(cmap); |
| 123 | 122 |
} |
| 124 | 123 |
|
| 125 | 124 |
|
| 126 | 125 |
/// \brief Template assign operator. |
| 127 | 126 |
/// |
| 128 | 127 |
/// The given parameter should be conform to the ReadMap |
| 129 | 128 |
/// concecpt and could be indiced by the current item set of |
| 130 | 129 |
/// the NodeMap. In this case the value for each item |
| 131 | 130 |
/// is assigned by the value of the given ReadMap. |
| 132 | 131 |
template <typename CMap> |
| 133 | 132 |
VectorMap& operator=(const CMap& cmap) {
|
| 134 | 133 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
| 135 | 134 |
const typename Parent::Notifier* nf = Parent::notifier(); |
| 136 | 135 |
Item it; |
| 137 | 136 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 138 | 137 |
set(it, cmap[it]); |
| 139 | 138 |
} |
| 140 | 139 |
return *this; |
| 141 | 140 |
} |
| 142 | 141 |
|
| 143 | 142 |
public: |
| 144 | 143 |
|
| 145 | 144 |
/// \brief The subcript operator. |
| 146 | 145 |
/// |
| 147 | 146 |
/// The subscript operator. The map can be subscripted by the |
| 148 | 147 |
/// actual items of the graph. |
| 149 | 148 |
Reference operator[](const Key& key) {
|
| 150 | 149 |
return container[Parent::notifier()->id(key)]; |
| 151 | 150 |
} |
| 152 | 151 |
|
| 153 | 152 |
/// \brief The const subcript operator. |
| 154 | 153 |
/// |
| 155 | 154 |
/// The const subscript operator. The map can be subscripted by the |
| 156 | 155 |
/// actual items of the graph. |
| 157 | 156 |
ConstReference operator[](const Key& key) const {
|
| 158 | 157 |
return container[Parent::notifier()->id(key)]; |
| 159 | 158 |
} |
| 160 | 159 |
|
| 161 | 160 |
|
| 162 | 161 |
/// \brief The setter function of the map. |
| 163 | 162 |
/// |
| 164 | 163 |
/// It the same as operator[](key) = value expression. |
| 165 | 164 |
void set(const Key& key, const Value& value) {
|
| 166 | 165 |
(*this)[key] = value; |
| 167 | 166 |
} |
| 168 | 167 |
|
| 169 | 168 |
protected: |
| 170 | 169 |
|
| 171 | 170 |
/// \brief Adds a new key to the map. |
| 172 | 171 |
/// |
| 173 | 172 |
/// It adds a new key to the map. It called by the observer notifier |
| 174 | 173 |
/// and it overrides the add() member function of the observer base. |
| 175 | 174 |
virtual void add(const Key& key) {
|
| 176 | 175 |
int id = Parent::notifier()->id(key); |
| 177 | 176 |
if (id >= int(container.size())) {
|
| 178 | 177 |
container.resize(id + 1); |
| 179 | 178 |
} |
| 180 | 179 |
} |
| 181 | 180 |
|
| 182 | 181 |
/// \brief Adds more new keys to the map. |
| 183 | 182 |
/// |
| 184 | 183 |
/// It adds more new keys to the map. It called by the observer notifier |
| 185 | 184 |
/// and it overrides the add() member function of the observer base. |
| 186 | 185 |
virtual void add(const std::vector<Key>& keys) {
|
| 187 | 186 |
int max = container.size() - 1; |
| 188 | 187 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 189 | 188 |
int id = Parent::notifier()->id(keys[i]); |
| 190 | 189 |
if (id >= max) {
|
| 191 | 190 |
max = id; |
| 192 | 191 |
} |
| 193 | 192 |
} |
| 194 | 193 |
container.resize(max + 1); |
| 195 | 194 |
} |
| 196 | 195 |
|
| 197 | 196 |
/// \brief Erase a key from the map. |
| 198 | 197 |
/// |
| 199 | 198 |
/// Erase a key from the map. It called by the observer notifier |
| 200 | 199 |
/// and it overrides the erase() member function of the observer base. |
| 201 | 200 |
virtual void erase(const Key& key) {
|
| 202 | 201 |
container[Parent::notifier()->id(key)] = Value(); |
| 203 | 202 |
} |
| 204 | 203 |
|
| 205 | 204 |
/// \brief Erase more keys from the map. |
| 206 | 205 |
/// |
| 207 | 206 |
/// Erase more keys from the map. It called by the observer notifier |
| 208 | 207 |
/// and it overrides the erase() member function of the observer base. |
| 209 | 208 |
virtual void erase(const std::vector<Key>& keys) {
|
| 210 | 209 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 211 | 210 |
container[Parent::notifier()->id(keys[i])] = Value(); |
| 212 | 211 |
} |
| 213 | 212 |
} |
| 214 | 213 |
|
| 215 | 214 |
/// \brief Buildes the map. |
| 216 | 215 |
/// |
| 217 | 216 |
/// It buildes the map. It called by the observer notifier |
| 218 | 217 |
/// and it overrides the build() member function of the observer base. |
| 219 | 218 |
virtual void build() {
|
| 220 | 219 |
int size = Parent::notifier()->maxId() + 1; |
| 221 | 220 |
container.reserve(size); |
| 222 | 221 |
container.resize(size); |
| 223 | 222 |
} |
| 224 | 223 |
|
| 225 | 224 |
/// \brief Clear the map. |
| 226 | 225 |
/// |
| 227 | 226 |
/// It erase all items from the map. It called by the observer notifier |
| 228 | 227 |
/// and it overrides the clear() member function of the observer base. |
| 229 | 228 |
virtual void clear() {
|
| 230 | 229 |
container.clear(); |
| 231 | 230 |
} |
| 232 | 231 |
|
| 233 | 232 |
private: |
| 234 | 233 |
|
| 235 | 234 |
Container container; |
| 236 | 235 |
|
| 237 | 236 |
}; |
| 238 | 237 |
|
| 239 | 238 |
} |
| 240 | 239 |
|
| 241 | 240 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
// This file contains a modified version of the concept checking |
|
| 20 |
// utility from BOOST. |
|
| 21 |
// See the appropriate copyright notice below. |
|
| 22 |
|
|
| 23 |
// (C) Copyright Jeremy Siek 2000. |
|
| 24 |
// Distributed under the Boost Software License, Version 1.0. (See |
|
| 25 |
// accompanying file LICENSE_1_0.txt or copy at |
|
| 26 |
// http://www.boost.org/LICENSE_1_0.txt) |
|
| 27 |
// |
|
| 28 |
// Revision History: |
|
| 29 |
// 05 May 2001: Workarounds for HP aCC from Thomas Matelich. (Jeremy Siek) |
|
| 30 |
// 02 April 2001: Removed limits header altogether. (Jeremy Siek) |
|
| 31 |
// 01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock) |
|
| 32 |
// |
|
| 33 |
|
|
| 34 |
// See http://www.boost.org/libs/concept_check for documentation. |
|
| 19 |
// The contents of this file was inspired by the concept checking |
|
| 20 |
// utility of the BOOST library (http://www.boost.org). |
|
| 35 | 21 |
|
| 36 | 22 |
///\file |
| 37 | 23 |
///\brief Basic utilities for concept checking. |
| 38 | 24 |
/// |
| 39 |
///\todo Are we still using BOOST concept checking utility? |
|
| 40 |
///Is the BOOST copyright notice necessary? |
|
| 41 | 25 |
|
| 42 | 26 |
#ifndef LEMON_CONCEPT_CHECK_H |
| 43 | 27 |
#define LEMON_CONCEPT_CHECK_H |
| 44 | 28 |
|
| 45 | 29 |
namespace lemon {
|
| 46 | 30 |
|
| 47 | 31 |
/* |
| 48 | 32 |
"inline" is used for ignore_unused_variable_warning() |
| 49 | 33 |
and function_requires() to make sure there is no |
| 50 | 34 |
overtarget with g++. |
| 51 | 35 |
*/ |
| 52 | 36 |
|
| 53 | 37 |
template <class T> inline void ignore_unused_variable_warning(const T&) { }
|
| 54 | 38 |
|
| 55 | 39 |
///\e |
| 56 | 40 |
template <class Concept> |
| 57 | 41 |
inline void function_requires() |
| 58 | 42 |
{
|
| 59 | 43 |
#if !defined(NDEBUG) |
| 60 | 44 |
void (Concept::*x)() = & Concept::constraints; |
| 61 | 45 |
ignore_unused_variable_warning(x); |
| 62 | 46 |
#endif |
| 63 | 47 |
} |
| 64 | 48 |
|
| 65 | 49 |
///\e |
| 66 | 50 |
template <typename Concept, typename Type> |
| 67 | 51 |
inline void checkConcept() {
|
| 68 | 52 |
#if !defined(NDEBUG) |
| 69 | 53 |
typedef typename Concept::template Constraints<Type> ConceptCheck; |
| 70 | 54 |
void (ConceptCheck::*x)() = & ConceptCheck::constraints; |
| 71 | 55 |
ignore_unused_variable_warning(x); |
| 72 | 56 |
#endif |
| 73 | 57 |
} |
| 74 | 58 |
|
| 75 | 59 |
} // namespace lemon |
| 76 | 60 |
|
| 77 | 61 |
#endif // LEMON_CONCEPT_CHECK_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Classes for representing paths in digraphs. |
| 22 | 22 |
/// |
| 23 |
///\todo Iterators have obsolete style |
|
| 24 | 23 |
|
| 25 | 24 |
#ifndef LEMON_CONCEPT_PATH_H |
| 26 | 25 |
#define LEMON_CONCEPT_PATH_H |
| 27 | 26 |
|
| 28 | 27 |
#include <lemon/core.h> |
| 29 | 28 |
#include <lemon/concept_check.h> |
| 30 | 29 |
|
| 31 | 30 |
namespace lemon {
|
| 32 | 31 |
namespace concepts {
|
| 33 | 32 |
|
| 34 | 33 |
/// \addtogroup concept |
| 35 | 34 |
/// @{
|
| 36 | 35 |
|
| 37 | 36 |
/// \brief A skeleton structure for representing directed paths in |
| 38 | 37 |
/// a digraph. |
| 39 | 38 |
/// |
| 40 | 39 |
/// A skeleton structure for representing directed paths in a |
| 41 | 40 |
/// digraph. |
| 42 | 41 |
/// \tparam _Digraph The digraph type in which the path is. |
| 43 | 42 |
/// |
| 44 | 43 |
/// In a sense, the path can be treated as a list of arcs. The |
| 45 | 44 |
/// lemon path type stores just this list. As a consequence it |
| 46 | 45 |
/// cannot enumerate the nodes in the path and the zero length |
| 47 | 46 |
/// paths cannot store the source. |
| 48 | 47 |
/// |
| 49 | 48 |
template <typename _Digraph> |
| 50 | 49 |
class Path {
|
| 51 | 50 |
public: |
| 52 | 51 |
|
| 53 | 52 |
/// Type of the underlying digraph. |
| 54 | 53 |
typedef _Digraph Digraph; |
| 55 | 54 |
/// Arc type of the underlying digraph. |
| 56 | 55 |
typedef typename Digraph::Arc Arc; |
| 57 | 56 |
|
| 58 | 57 |
class ArcIt; |
| 59 | 58 |
|
| 60 | 59 |
/// \brief Default constructor |
| 61 | 60 |
Path() {}
|
| 62 | 61 |
|
| 63 | 62 |
/// \brief Template constructor |
| 64 | 63 |
template <typename CPath> |
| 65 | 64 |
Path(const CPath& cpath) {}
|
| 66 | 65 |
|
| 67 | 66 |
/// \brief Template assigment |
| 68 | 67 |
template <typename CPath> |
| 69 | 68 |
Path& operator=(const CPath& cpath) {
|
| 70 | 69 |
ignore_unused_variable_warning(cpath); |
| 71 | 70 |
return *this; |
| 72 | 71 |
} |
| 73 | 72 |
|
| 74 | 73 |
/// Length of the path ie. the number of arcs in the path. |
| 75 | 74 |
int length() const { return 0;}
|
| 76 | 75 |
|
| 77 | 76 |
/// Returns whether the path is empty. |
| 78 | 77 |
bool empty() const { return true;}
|
| 79 | 78 |
|
| 80 | 79 |
/// Resets the path to an empty path. |
| 81 | 80 |
void clear() {}
|
| 82 | 81 |
|
| 83 | 82 |
/// \brief LEMON style iterator for path arcs |
| 84 | 83 |
/// |
| 85 | 84 |
/// This class is used to iterate on the arcs of the paths. |
| 86 | 85 |
class ArcIt {
|
| 87 | 86 |
public: |
| 88 | 87 |
/// Default constructor |
| 89 | 88 |
ArcIt() {}
|
| 90 | 89 |
/// Invalid constructor |
| 91 | 90 |
ArcIt(Invalid) {}
|
| 92 | 91 |
/// Constructor for first arc |
| 93 | 92 |
ArcIt(const Path &) {}
|
| 94 | 93 |
|
| 95 | 94 |
/// Conversion to Arc |
| 96 | 95 |
operator Arc() const { return INVALID; }
|
| 97 | 96 |
|
| 98 | 97 |
/// Next arc |
| 99 | 98 |
ArcIt& operator++() {return *this;}
|
| 100 | 99 |
|
| 101 | 100 |
/// Comparison operator |
| 102 | 101 |
bool operator==(const ArcIt&) const {return true;}
|
| 103 | 102 |
/// Comparison operator |
| 104 | 103 |
bool operator!=(const ArcIt&) const {return true;}
|
| 105 | 104 |
/// Comparison operator |
| 106 | 105 |
bool operator<(const ArcIt&) const {return false;}
|
| 107 | 106 |
|
| 108 | 107 |
}; |
| 109 | 108 |
|
| 110 | 109 |
template <typename _Path> |
| 111 | 110 |
struct Constraints {
|
| 112 | 111 |
void constraints() {
|
| 113 | 112 |
Path<Digraph> pc; |
| 114 | 113 |
_Path p, pp(pc); |
| 115 | 114 |
int l = p.length(); |
| 116 | 115 |
int e = p.empty(); |
| 117 | 116 |
p.clear(); |
| 118 | 117 |
|
| 119 | 118 |
p = pc; |
| 120 | 119 |
|
| 121 | 120 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
| 122 | 121 |
|
| 123 | 122 |
++i; |
| 124 | 123 |
typename Digraph::Arc ed = i; |
| 125 | 124 |
|
| 126 | 125 |
e = (i == ii); |
| 127 | 126 |
e = (i != ii); |
| 128 | 127 |
e = (i < ii); |
| 129 | 128 |
|
| 130 | 129 |
ignore_unused_variable_warning(l); |
| 131 | 130 |
ignore_unused_variable_warning(pp); |
| 132 | 131 |
ignore_unused_variable_warning(e); |
| 133 | 132 |
ignore_unused_variable_warning(id); |
| 134 | 133 |
ignore_unused_variable_warning(ii); |
| 135 | 134 |
ignore_unused_variable_warning(ed); |
| 136 | 135 |
} |
| 137 | 136 |
}; |
| 138 | 137 |
|
| 139 | 138 |
}; |
| 140 | 139 |
|
| 141 | 140 |
namespace _path_bits {
|
| 142 | 141 |
|
| 143 | 142 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
| 144 | 143 |
struct PathDumperConstraints {
|
| 145 | 144 |
void constraints() {
|
| 146 | 145 |
int l = p.length(); |
| 147 | 146 |
int e = p.empty(); |
| 148 | 147 |
|
| 149 | 148 |
typename _Path::ArcIt id, i(p); |
| 150 | 149 |
|
| 151 | 150 |
++i; |
| 152 | 151 |
typename _Digraph::Arc ed = i; |
| 153 | 152 |
|
| 154 | 153 |
e = (i == INVALID); |
| 155 | 154 |
e = (i != INVALID); |
| 156 | 155 |
|
| 157 | 156 |
ignore_unused_variable_warning(l); |
| 158 | 157 |
ignore_unused_variable_warning(e); |
| 159 | 158 |
ignore_unused_variable_warning(id); |
| 160 | 159 |
ignore_unused_variable_warning(ed); |
| 161 | 160 |
} |
| 162 | 161 |
_Path& p; |
| 163 | 162 |
}; |
| 164 | 163 |
|
| 165 | 164 |
template <typename _Digraph, typename _Path> |
| 166 | 165 |
struct PathDumperConstraints< |
| 167 | 166 |
_Digraph, _Path, |
| 168 | 167 |
typename enable_if<typename _Path::RevPathTag, void>::type |
| 169 | 168 |
> {
|
| 170 | 169 |
void constraints() {
|
| 171 | 170 |
int l = p.length(); |
| 172 | 171 |
int e = p.empty(); |
| 173 | 172 |
|
| 174 | 173 |
typename _Path::RevArcIt id, i(p); |
| 175 | 174 |
|
| 176 | 175 |
++i; |
| 177 | 176 |
typename _Digraph::Arc ed = i; |
| 178 | 177 |
|
| 179 | 178 |
e = (i == INVALID); |
| 180 | 179 |
e = (i != INVALID); |
| 181 | 180 |
|
| 182 | 181 |
ignore_unused_variable_warning(l); |
| 183 | 182 |
ignore_unused_variable_warning(e); |
| 184 | 183 |
ignore_unused_variable_warning(id); |
| 185 | 184 |
ignore_unused_variable_warning(ed); |
| 186 | 185 |
} |
| 187 | 186 |
_Path& p; |
| 188 | 187 |
}; |
| 189 | 188 |
|
| 190 | 189 |
} |
| 191 | 190 |
|
| 192 | 191 |
|
| 193 | 192 |
/// \brief A skeleton structure for path dumpers. |
| 194 | 193 |
/// |
| 195 | 194 |
/// A skeleton structure for path dumpers. The path dumpers are |
| 196 | 195 |
/// the generalization of the paths. The path dumpers can |
| 197 | 196 |
/// enumerate the arcs of the path wheter in forward or in |
| 198 | 197 |
/// backward order. In most time these classes are not used |
| 199 | 198 |
/// directly rather it used to assign a dumped class to a real |
| 200 | 199 |
/// path type. |
| 201 | 200 |
/// |
| 202 | 201 |
/// The main purpose of this concept is that the shortest path |
| 203 | 202 |
/// algorithms can enumerate easily the arcs in reverse order. |
| 204 | 203 |
/// If we would like to give back a real path from these |
| 205 | 204 |
/// algorithms then we should create a temporarly path object. In |
| 206 | 205 |
/// LEMON such algorithms gives back a path dumper what can |
| 207 | 206 |
/// assigned to a real path and the dumpers can be implemented as |
| 208 | 207 |
/// an adaptor class to the predecessor map. |
| 209 | 208 |
|
| 210 | 209 |
/// \tparam _Digraph The digraph type in which the path is. |
| 211 | 210 |
/// |
| 212 | 211 |
/// The paths can be constructed from any path type by a |
| 213 | 212 |
/// template constructor or a template assignment operator. |
| 214 | 213 |
/// |
| 215 | 214 |
template <typename _Digraph> |
| 216 | 215 |
class PathDumper {
|
| 217 | 216 |
public: |
| 218 | 217 |
|
| 219 | 218 |
/// Type of the underlying digraph. |
| 220 | 219 |
typedef _Digraph Digraph; |
| 221 | 220 |
/// Arc type of the underlying digraph. |
| 222 | 221 |
typedef typename Digraph::Arc Arc; |
| 223 | 222 |
|
| 224 | 223 |
/// Length of the path ie. the number of arcs in the path. |
| 225 | 224 |
int length() const { return 0;}
|
| 226 | 225 |
|
| 227 | 226 |
/// Returns whether the path is empty. |
| 228 | 227 |
bool empty() const { return true;}
|
| 229 | 228 |
|
| 230 | 229 |
/// \brief Forward or reverse dumping |
| 231 | 230 |
/// |
| 232 | 231 |
/// If the RevPathTag is defined and true then reverse dumping |
| 233 | 232 |
/// is provided in the path dumper. In this case instead of the |
| 234 | 233 |
/// ArcIt the RevArcIt iterator should be implemented in the |
| 235 | 234 |
/// dumper. |
| 236 | 235 |
typedef False RevPathTag; |
| 237 | 236 |
|
| 238 | 237 |
/// \brief LEMON style iterator for path arcs |
| 239 | 238 |
/// |
| 240 | 239 |
/// This class is used to iterate on the arcs of the paths. |
| 241 | 240 |
class ArcIt {
|
| 242 | 241 |
public: |
| 243 | 242 |
/// Default constructor |
| 244 | 243 |
ArcIt() {}
|
| 245 | 244 |
/// Invalid constructor |
| 246 | 245 |
ArcIt(Invalid) {}
|
| 247 | 246 |
/// Constructor for first arc |
| 248 | 247 |
ArcIt(const PathDumper&) {}
|
| 249 | 248 |
|
| 250 | 249 |
/// Conversion to Arc |
| 251 | 250 |
operator Arc() const { return INVALID; }
|
| 252 | 251 |
|
| 253 | 252 |
/// Next arc |
| 254 | 253 |
ArcIt& operator++() {return *this;}
|
| 255 | 254 |
|
| 256 | 255 |
/// Comparison operator |
| 257 | 256 |
bool operator==(const ArcIt&) const {return true;}
|
| 258 | 257 |
/// Comparison operator |
| 259 | 258 |
bool operator!=(const ArcIt&) const {return true;}
|
| 260 | 259 |
/// Comparison operator |
| 261 | 260 |
bool operator<(const ArcIt&) const {return false;}
|
| 262 | 261 |
|
| 263 | 262 |
}; |
| 264 | 263 |
|
| 265 | 264 |
/// \brief LEMON style iterator for path arcs |
| 266 | 265 |
/// |
| 267 | 266 |
/// This class is used to iterate on the arcs of the paths in |
| 268 | 267 |
/// reverse direction. |
| 269 | 268 |
class RevArcIt {
|
| 270 | 269 |
public: |
| 271 | 270 |
/// Default constructor |
| 272 | 271 |
RevArcIt() {}
|
| 273 | 272 |
/// Invalid constructor |
| 274 | 273 |
RevArcIt(Invalid) {}
|
| 275 | 274 |
/// Constructor for first arc |
| 276 | 275 |
RevArcIt(const PathDumper &) {}
|
| 277 | 276 |
|
| 278 | 277 |
/// Conversion to Arc |
| 279 | 278 |
operator Arc() const { return INVALID; }
|
| 280 | 279 |
|
| 281 | 280 |
/// Next arc |
| 282 | 281 |
RevArcIt& operator++() {return *this;}
|
| 283 | 282 |
|
| 284 | 283 |
/// Comparison operator |
| 285 | 284 |
bool operator==(const RevArcIt&) const {return true;}
|
| 286 | 285 |
/// Comparison operator |
| 287 | 286 |
bool operator!=(const RevArcIt&) const {return true;}
|
| 288 | 287 |
/// Comparison operator |
| 289 | 288 |
bool operator<(const RevArcIt&) const {return false;}
|
| 290 | 289 |
|
| 291 | 290 |
}; |
| 292 | 291 |
|
| 293 | 292 |
template <typename _Path> |
| 294 | 293 |
struct Constraints {
|
| 295 | 294 |
void constraints() {
|
| 296 | 295 |
function_requires<_path_bits:: |
| 297 | 296 |
PathDumperConstraints<Digraph, _Path> >(); |
| 298 | 297 |
} |
| 299 | 298 |
}; |
| 300 | 299 |
|
| 301 | 300 |
}; |
| 302 | 301 |
|
| 303 | 302 |
|
| 304 | 303 |
///@} |
| 305 | 304 |
} |
| 306 | 305 |
|
| 307 | 306 |
} // namespace lemon |
| 308 | 307 |
|
| 309 | 308 |
#endif // LEMON_CONCEPT_PATH_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CORE_H |
| 20 | 20 |
#define LEMON_CORE_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/bits/enable_if.h> |
| 26 | 26 |
#include <lemon/bits/traits.h> |
| 27 | 27 |
|
| 28 | 28 |
///\file |
| 29 | 29 |
///\brief LEMON core utilities. |
| 30 | 30 |
/// |
| 31 | 31 |
///This header file contains core utilities for LEMON. |
| 32 | 32 |
///It is automatically included by all graph types, therefore it usually |
| 33 | 33 |
///do not have to be included directly. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Dummy type to make it easier to create invalid iterators. |
| 38 | 38 |
/// |
| 39 | 39 |
/// Dummy type to make it easier to create invalid iterators. |
| 40 | 40 |
/// See \ref INVALID for the usage. |
| 41 | 41 |
struct Invalid {
|
| 42 | 42 |
public: |
| 43 | 43 |
bool operator==(Invalid) { return true; }
|
| 44 | 44 |
bool operator!=(Invalid) { return false; }
|
| 45 | 45 |
bool operator< (Invalid) { return false; }
|
| 46 | 46 |
}; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief Invalid iterators. |
| 49 | 49 |
/// |
| 50 | 50 |
/// \ref Invalid is a global type that converts to each iterator |
| 51 | 51 |
/// in such a way that the value of the target iterator will be invalid. |
| 52 | 52 |
#ifdef LEMON_ONLY_TEMPLATES |
| 53 | 53 |
const Invalid INVALID = Invalid(); |
| 54 | 54 |
#else |
| 55 | 55 |
extern const Invalid INVALID; |
| 56 | 56 |
#endif |
| 57 | 57 |
|
| 58 | 58 |
/// \addtogroup gutils |
| 59 | 59 |
/// @{
|
| 60 | 60 |
|
| 61 |
/// |
|
| 61 |
///Create convenient typedefs for the digraph types and iterators |
|
| 62 | 62 |
|
| 63 |
///This \c \#define creates convenience typedefs for the following types |
|
| 64 |
///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
|
| 63 |
///This \c \#define creates convenient type definitions for the following |
|
| 64 |
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
|
| 65 | 65 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
| 66 | 66 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
| 67 | 67 |
/// |
| 68 | 68 |
///\note If the graph type is a dependent type, ie. the graph type depend |
| 69 | 69 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
| 70 | 70 |
///macro. |
| 71 | 71 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
| 72 | 72 |
typedef Digraph::Node Node; \ |
| 73 | 73 |
typedef Digraph::NodeIt NodeIt; \ |
| 74 | 74 |
typedef Digraph::Arc Arc; \ |
| 75 | 75 |
typedef Digraph::ArcIt ArcIt; \ |
| 76 | 76 |
typedef Digraph::InArcIt InArcIt; \ |
| 77 | 77 |
typedef Digraph::OutArcIt OutArcIt; \ |
| 78 | 78 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
| 79 | 79 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
| 80 | 80 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
| 81 | 81 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
| 82 | 82 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
| 83 |
typedef Digraph::ArcMap<double> DoubleArcMap |
|
| 83 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
|
| 84 | 84 |
|
| 85 |
/// |
|
| 85 |
///Create convenient typedefs for the digraph types and iterators |
|
| 86 | 86 |
|
| 87 | 87 |
///\see DIGRAPH_TYPEDEFS |
| 88 | 88 |
/// |
| 89 | 89 |
///\note Use this macro, if the graph type is a dependent type, |
| 90 | 90 |
///ie. the graph type depend on a template parameter. |
| 91 | 91 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
| 92 | 92 |
typedef typename Digraph::Node Node; \ |
| 93 | 93 |
typedef typename Digraph::NodeIt NodeIt; \ |
| 94 | 94 |
typedef typename Digraph::Arc Arc; \ |
| 95 | 95 |
typedef typename Digraph::ArcIt ArcIt; \ |
| 96 | 96 |
typedef typename Digraph::InArcIt InArcIt; \ |
| 97 | 97 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
| 98 | 98 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
| 99 | 99 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
| 100 | 100 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
| 101 | 101 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
| 102 | 102 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
| 103 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
|
| 103 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap; |
|
| 104 | 104 |
|
| 105 |
/// |
|
| 105 |
///Create convenient typedefs for the graph types and iterators |
|
| 106 | 106 |
|
| 107 |
///This \c \#define creates the same |
|
| 107 |
///This \c \#define creates the same convenient type definitions as defined |
|
| 108 | 108 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
| 109 | 109 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
| 110 | 110 |
///\c DoubleEdgeMap. |
| 111 | 111 |
/// |
| 112 | 112 |
///\note If the graph type is a dependent type, ie. the graph type depend |
| 113 |
///on a template parameter, then use \c |
|
| 113 |
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
|
| 114 | 114 |
///macro. |
| 115 | 115 |
#define GRAPH_TYPEDEFS(Graph) \ |
| 116 | 116 |
DIGRAPH_TYPEDEFS(Graph); \ |
| 117 | 117 |
typedef Graph::Edge Edge; \ |
| 118 | 118 |
typedef Graph::EdgeIt EdgeIt; \ |
| 119 | 119 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
| 120 | 120 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
| 121 | 121 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
| 122 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
|
| 122 |
typedef Graph::EdgeMap<double> DoubleEdgeMap; |
|
| 123 | 123 |
|
| 124 |
/// |
|
| 124 |
///Create convenient typedefs for the graph types and iterators |
|
| 125 | 125 |
|
| 126 | 126 |
///\see GRAPH_TYPEDEFS |
| 127 | 127 |
/// |
| 128 | 128 |
///\note Use this macro, if the graph type is a dependent type, |
| 129 | 129 |
///ie. the graph type depend on a template parameter. |
| 130 | 130 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
| 131 | 131 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
| 132 | 132 |
typedef typename Graph::Edge Edge; \ |
| 133 | 133 |
typedef typename Graph::EdgeIt EdgeIt; \ |
| 134 | 134 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
| 135 | 135 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
| 136 | 136 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
| 137 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
|
| 137 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap; |
|
| 138 | 138 |
|
| 139 |
/// \brief Function to count the items in |
|
| 139 |
/// \brief Function to count the items in a graph. |
|
| 140 | 140 |
/// |
| 141 |
/// This function counts the items (nodes, arcs etc) in the graph. |
|
| 142 |
/// The complexity of the function is O(n) because |
|
| 141 |
/// This function counts the items (nodes, arcs etc.) in a graph. |
|
| 142 |
/// The complexity of the function is linear because |
|
| 143 | 143 |
/// it iterates on all of the items. |
| 144 | 144 |
template <typename Graph, typename Item> |
| 145 | 145 |
inline int countItems(const Graph& g) {
|
| 146 | 146 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
| 147 | 147 |
int num = 0; |
| 148 | 148 |
for (ItemIt it(g); it != INVALID; ++it) {
|
| 149 | 149 |
++num; |
| 150 | 150 |
} |
| 151 | 151 |
return num; |
| 152 | 152 |
} |
| 153 | 153 |
|
| 154 | 154 |
// Node counting: |
| 155 | 155 |
|
| 156 | 156 |
namespace _core_bits {
|
| 157 | 157 |
|
| 158 | 158 |
template <typename Graph, typename Enable = void> |
| 159 | 159 |
struct CountNodesSelector {
|
| 160 | 160 |
static int count(const Graph &g) {
|
| 161 | 161 |
return countItems<Graph, typename Graph::Node>(g); |
| 162 | 162 |
} |
| 163 | 163 |
}; |
| 164 | 164 |
|
| 165 | 165 |
template <typename Graph> |
| 166 | 166 |
struct CountNodesSelector< |
| 167 | 167 |
Graph, typename |
| 168 | 168 |
enable_if<typename Graph::NodeNumTag, void>::type> |
| 169 | 169 |
{
|
| 170 | 170 |
static int count(const Graph &g) {
|
| 171 | 171 |
return g.nodeNum(); |
| 172 | 172 |
} |
| 173 | 173 |
}; |
| 174 | 174 |
} |
| 175 | 175 |
|
| 176 | 176 |
/// \brief Function to count the nodes in the graph. |
| 177 | 177 |
/// |
| 178 | 178 |
/// This function counts the nodes in the graph. |
| 179 |
/// The complexity of the function is O(n) but for some |
|
| 180 |
/// graph structures it is specialized to run in O(1). |
|
| 179 |
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
|
| 180 |
/// graph structures it is specialized to run in <em>O</em>(1). |
|
| 181 | 181 |
/// |
| 182 |
/// If the graph contains a \e nodeNum() member function and a |
|
| 183 |
/// \e NodeNumTag tag then this function calls directly the member |
|
| 182 |
/// \note If the graph contains a \c nodeNum() member function and a |
|
| 183 |
/// \c NodeNumTag tag then this function calls directly the member |
|
| 184 | 184 |
/// function to query the cardinality of the node set. |
| 185 | 185 |
template <typename Graph> |
| 186 | 186 |
inline int countNodes(const Graph& g) {
|
| 187 | 187 |
return _core_bits::CountNodesSelector<Graph>::count(g); |
| 188 | 188 |
} |
| 189 | 189 |
|
| 190 | 190 |
// Arc counting: |
| 191 | 191 |
|
| 192 | 192 |
namespace _core_bits {
|
| 193 | 193 |
|
| 194 | 194 |
template <typename Graph, typename Enable = void> |
| 195 | 195 |
struct CountArcsSelector {
|
| 196 | 196 |
static int count(const Graph &g) {
|
| 197 | 197 |
return countItems<Graph, typename Graph::Arc>(g); |
| 198 | 198 |
} |
| 199 | 199 |
}; |
| 200 | 200 |
|
| 201 | 201 |
template <typename Graph> |
| 202 | 202 |
struct CountArcsSelector< |
| 203 | 203 |
Graph, |
| 204 | 204 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
| 205 | 205 |
{
|
| 206 | 206 |
static int count(const Graph &g) {
|
| 207 | 207 |
return g.arcNum(); |
| 208 | 208 |
} |
| 209 | 209 |
}; |
| 210 | 210 |
} |
| 211 | 211 |
|
| 212 | 212 |
/// \brief Function to count the arcs in the graph. |
| 213 | 213 |
/// |
| 214 | 214 |
/// This function counts the arcs in the graph. |
| 215 |
/// The complexity of the function is O(e) but for some |
|
| 216 |
/// graph structures it is specialized to run in O(1). |
|
| 215 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
|
| 216 |
/// graph structures it is specialized to run in <em>O</em>(1). |
|
| 217 | 217 |
/// |
| 218 |
/// If the graph contains a \e arcNum() member function and a |
|
| 219 |
/// \e EdgeNumTag tag then this function calls directly the member |
|
| 218 |
/// \note If the graph contains a \c arcNum() member function and a |
|
| 219 |
/// \c ArcNumTag tag then this function calls directly the member |
|
| 220 | 220 |
/// function to query the cardinality of the arc set. |
| 221 | 221 |
template <typename Graph> |
| 222 | 222 |
inline int countArcs(const Graph& g) {
|
| 223 | 223 |
return _core_bits::CountArcsSelector<Graph>::count(g); |
| 224 | 224 |
} |
| 225 | 225 |
|
| 226 | 226 |
// Edge counting: |
| 227 |
|
|
| 227 | 228 |
namespace _core_bits {
|
| 228 | 229 |
|
| 229 | 230 |
template <typename Graph, typename Enable = void> |
| 230 | 231 |
struct CountEdgesSelector {
|
| 231 | 232 |
static int count(const Graph &g) {
|
| 232 | 233 |
return countItems<Graph, typename Graph::Edge>(g); |
| 233 | 234 |
} |
| 234 | 235 |
}; |
| 235 | 236 |
|
| 236 | 237 |
template <typename Graph> |
| 237 | 238 |
struct CountEdgesSelector< |
| 238 | 239 |
Graph, |
| 239 | 240 |
typename enable_if<typename Graph::EdgeNumTag, void>::type> |
| 240 | 241 |
{
|
| 241 | 242 |
static int count(const Graph &g) {
|
| 242 | 243 |
return g.edgeNum(); |
| 243 | 244 |
} |
| 244 | 245 |
}; |
| 245 | 246 |
} |
| 246 | 247 |
|
| 247 | 248 |
/// \brief Function to count the edges in the graph. |
| 248 | 249 |
/// |
| 249 | 250 |
/// This function counts the edges in the graph. |
| 250 |
/// The complexity of the function is O(m) but for some |
|
| 251 |
/// graph structures it is specialized to run in O(1). |
|
| 251 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
|
| 252 |
/// graph structures it is specialized to run in <em>O</em>(1). |
|
| 252 | 253 |
/// |
| 253 |
/// If the graph contains a \e edgeNum() member function and a |
|
| 254 |
/// \e EdgeNumTag tag then this function calls directly the member |
|
| 254 |
/// \note If the graph contains a \c edgeNum() member function and a |
|
| 255 |
/// \c EdgeNumTag tag then this function calls directly the member |
|
| 255 | 256 |
/// function to query the cardinality of the edge set. |
| 256 | 257 |
template <typename Graph> |
| 257 | 258 |
inline int countEdges(const Graph& g) {
|
| 258 | 259 |
return _core_bits::CountEdgesSelector<Graph>::count(g); |
| 259 | 260 |
|
| 260 | 261 |
} |
| 261 | 262 |
|
| 262 | 263 |
|
| 263 | 264 |
template <typename Graph, typename DegIt> |
| 264 | 265 |
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
|
| 265 | 266 |
int num = 0; |
| 266 | 267 |
for (DegIt it(_g, _n); it != INVALID; ++it) {
|
| 267 | 268 |
++num; |
| 268 | 269 |
} |
| 269 | 270 |
return num; |
| 270 | 271 |
} |
| 271 | 272 |
|
| 272 | 273 |
/// \brief Function to count the number of the out-arcs from node \c n. |
| 273 | 274 |
/// |
| 274 | 275 |
/// This function counts the number of the out-arcs from node \c n |
| 275 |
/// in the graph. |
|
| 276 |
/// in the graph \c g. |
|
| 276 | 277 |
template <typename Graph> |
| 277 |
inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) {
|
|
| 278 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n); |
|
| 278 |
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
|
|
| 279 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n); |
|
| 279 | 280 |
} |
| 280 | 281 |
|
| 281 | 282 |
/// \brief Function to count the number of the in-arcs to node \c n. |
| 282 | 283 |
/// |
| 283 | 284 |
/// This function counts the number of the in-arcs to node \c n |
| 284 |
/// in the graph. |
|
| 285 |
/// in the graph \c g. |
|
| 285 | 286 |
template <typename Graph> |
| 286 |
inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) {
|
|
| 287 |
return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n); |
|
| 287 |
inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
|
|
| 288 |
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n); |
|
| 288 | 289 |
} |
| 289 | 290 |
|
| 290 | 291 |
/// \brief Function to count the number of the inc-edges to node \c n. |
| 291 | 292 |
/// |
| 292 | 293 |
/// This function counts the number of the inc-edges to node \c n |
| 293 |
/// in the graph. |
|
| 294 |
/// in the undirected graph \c g. |
|
| 294 | 295 |
template <typename Graph> |
| 295 |
inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) {
|
|
| 296 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n); |
|
| 296 |
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
|
|
| 297 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n); |
|
| 297 | 298 |
} |
| 298 | 299 |
|
| 299 | 300 |
namespace _core_bits {
|
| 300 | 301 |
|
| 301 | 302 |
template <typename Digraph, typename Item, typename RefMap> |
| 302 | 303 |
class MapCopyBase {
|
| 303 | 304 |
public: |
| 304 | 305 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
| 305 | 306 |
|
| 306 | 307 |
virtual ~MapCopyBase() {}
|
| 307 | 308 |
}; |
| 308 | 309 |
|
| 309 | 310 |
template <typename Digraph, typename Item, typename RefMap, |
| 310 |
typename |
|
| 311 |
typename FromMap, typename ToMap> |
|
| 311 | 312 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 312 | 313 |
public: |
| 313 | 314 |
|
| 314 |
MapCopy(ToMap& tmap, const FromMap& map) |
|
| 315 |
: _tmap(tmap), _map(map) {}
|
|
| 315 |
MapCopy(const FromMap& map, ToMap& tmap) |
|
| 316 |
: _map(map), _tmap(tmap) {}
|
|
| 316 | 317 |
|
| 317 | 318 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
| 318 | 319 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
| 319 | 320 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
| 320 | 321 |
_tmap.set(refMap[it], _map[it]); |
| 321 | 322 |
} |
| 322 | 323 |
} |
| 323 | 324 |
|
| 324 | 325 |
private: |
| 326 |
const FromMap& _map; |
|
| 325 | 327 |
ToMap& _tmap; |
| 326 |
const FromMap& _map; |
|
| 327 | 328 |
}; |
| 328 | 329 |
|
| 329 | 330 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
| 330 | 331 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 331 | 332 |
public: |
| 332 | 333 |
|
| 333 |
ItemCopy( |
|
| 334 |
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
|
|
| 334 | 335 |
|
| 335 | 336 |
virtual void copy(const Digraph&, const RefMap& refMap) {
|
| 336 | 337 |
_it = refMap[_item]; |
| 337 | 338 |
} |
| 338 | 339 |
|
| 339 | 340 |
private: |
| 341 |
Item _item; |
|
| 340 | 342 |
It& _it; |
| 341 |
Item _item; |
|
| 342 | 343 |
}; |
| 343 | 344 |
|
| 344 | 345 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
| 345 | 346 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 346 | 347 |
public: |
| 347 | 348 |
|
| 348 | 349 |
RefCopy(Ref& map) : _map(map) {}
|
| 349 | 350 |
|
| 350 | 351 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
| 351 | 352 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
| 352 | 353 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
| 353 | 354 |
_map.set(it, refMap[it]); |
| 354 | 355 |
} |
| 355 | 356 |
} |
| 356 | 357 |
|
| 357 | 358 |
private: |
| 358 | 359 |
Ref& _map; |
| 359 | 360 |
}; |
| 360 | 361 |
|
| 361 | 362 |
template <typename Digraph, typename Item, typename RefMap, |
| 362 | 363 |
typename CrossRef> |
| 363 | 364 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
|
| 364 | 365 |
public: |
| 365 | 366 |
|
| 366 | 367 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
|
| 367 | 368 |
|
| 368 | 369 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
|
| 369 | 370 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
| 370 | 371 |
for (ItemIt it(digraph); it != INVALID; ++it) {
|
| 371 | 372 |
_cmap.set(refMap[it], it); |
| 372 | 373 |
} |
| 373 | 374 |
} |
| 374 | 375 |
|
| 375 | 376 |
private: |
| 376 | 377 |
CrossRef& _cmap; |
| 377 | 378 |
}; |
| 378 | 379 |
|
| 379 | 380 |
template <typename Digraph, typename Enable = void> |
| 380 | 381 |
struct DigraphCopySelector {
|
| 381 | 382 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
| 382 |
static void copy( |
|
| 383 |
static void copy(const From& from, Digraph &to, |
|
| 383 | 384 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
|
| 384 | 385 |
for (typename From::NodeIt it(from); it != INVALID; ++it) {
|
| 385 | 386 |
nodeRefMap[it] = to.addNode(); |
| 386 | 387 |
} |
| 387 | 388 |
for (typename From::ArcIt it(from); it != INVALID; ++it) {
|
| 388 | 389 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
| 389 | 390 |
nodeRefMap[from.target(it)]); |
| 390 | 391 |
} |
| 391 | 392 |
} |
| 392 | 393 |
}; |
| 393 | 394 |
|
| 394 | 395 |
template <typename Digraph> |
| 395 | 396 |
struct DigraphCopySelector< |
| 396 | 397 |
Digraph, |
| 397 | 398 |
typename enable_if<typename Digraph::BuildTag, void>::type> |
| 398 | 399 |
{
|
| 399 | 400 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
| 400 |
static void copy( |
|
| 401 |
static void copy(const From& from, Digraph &to, |
|
| 401 | 402 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
|
| 402 | 403 |
to.build(from, nodeRefMap, arcRefMap); |
| 403 | 404 |
} |
| 404 | 405 |
}; |
| 405 | 406 |
|
| 406 | 407 |
template <typename Graph, typename Enable = void> |
| 407 | 408 |
struct GraphCopySelector {
|
| 408 | 409 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
| 409 |
static void copy( |
|
| 410 |
static void copy(const From& from, Graph &to, |
|
| 410 | 411 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
|
| 411 | 412 |
for (typename From::NodeIt it(from); it != INVALID; ++it) {
|
| 412 | 413 |
nodeRefMap[it] = to.addNode(); |
| 413 | 414 |
} |
| 414 | 415 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
|
| 415 | 416 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
| 416 | 417 |
nodeRefMap[from.v(it)]); |
| 417 | 418 |
} |
| 418 | 419 |
} |
| 419 | 420 |
}; |
| 420 | 421 |
|
| 421 | 422 |
template <typename Graph> |
| 422 | 423 |
struct GraphCopySelector< |
| 423 | 424 |
Graph, |
| 424 | 425 |
typename enable_if<typename Graph::BuildTag, void>::type> |
| 425 | 426 |
{
|
| 426 | 427 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
| 427 |
static void copy( |
|
| 428 |
static void copy(const From& from, Graph &to, |
|
| 428 | 429 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
|
| 429 | 430 |
to.build(from, nodeRefMap, edgeRefMap); |
| 430 | 431 |
} |
| 431 | 432 |
}; |
| 432 | 433 |
|
| 433 | 434 |
} |
| 434 | 435 |
|
| 435 | 436 |
/// \brief Class to copy a digraph. |
| 436 | 437 |
/// |
| 437 | 438 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
| 438 |
/// simplest way of using it is through the \c |
|
| 439 |
/// simplest way of using it is through the \c digraphCopy() function. |
|
| 439 | 440 |
/// |
| 440 |
/// This class not |
|
| 441 |
/// This class not only make a copy of a digraph, but it can create |
|
| 441 | 442 |
/// references and cross references between the nodes and arcs of |
| 442 |
/// the two graphs, it can copy maps for use with the newly created |
|
| 443 |
/// graph and copy nodes and arcs. |
|
| 443 |
/// the two digraphs, and it can copy maps to use with the newly created |
|
| 444 |
/// digraph. |
|
| 444 | 445 |
/// |
| 445 |
/// To make a copy from a graph, first an instance of DigraphCopy |
|
| 446 |
/// should be created, then the data belongs to the graph should |
|
| 446 |
/// To make a copy from a digraph, first an instance of DigraphCopy |
|
| 447 |
/// should be created, then the data belongs to the digraph should |
|
| 447 | 448 |
/// assigned to copy. In the end, the \c run() member should be |
| 448 | 449 |
/// called. |
| 449 | 450 |
/// |
| 450 |
/// The next code copies a |
|
| 451 |
/// The next code copies a digraph with several data: |
|
| 451 | 452 |
///\code |
| 452 |
/// DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph); |
|
| 453 |
/// // create a reference for the nodes |
|
| 453 |
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
|
| 454 |
/// // Create references for the nodes |
|
| 454 | 455 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
| 455 |
/// dc.nodeRef(nr); |
|
| 456 |
/// // create a cross reference (inverse) for the arcs |
|
| 456 |
/// cg.nodeRef(nr); |
|
| 457 |
/// // Create cross references (inverse) for the arcs |
|
| 457 | 458 |
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
| 458 |
/// dc.arcCrossRef(acr); |
|
| 459 |
/// // copy an arc map |
|
| 459 |
/// cg.arcCrossRef(acr); |
|
| 460 |
/// // Copy an arc map |
|
| 460 | 461 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
| 461 | 462 |
/// NewGraph::ArcMap<double> namap(new_graph); |
| 462 |
/// dc.arcMap(namap, oamap); |
|
| 463 |
/// // copy a node |
|
| 463 |
/// cg.arcMap(oamap, namap); |
|
| 464 |
/// // Copy a node |
|
| 464 | 465 |
/// OrigGraph::Node on; |
| 465 | 466 |
/// NewGraph::Node nn; |
| 466 |
/// dc.node(nn, on); |
|
| 467 |
/// // Executions of copy |
|
| 468 |
/// |
|
| 467 |
/// cg.node(on, nn); |
|
| 468 |
/// // Execute copying |
|
| 469 |
/// cg.run(); |
|
| 469 | 470 |
///\endcode |
| 470 |
template <typename |
|
| 471 |
template <typename From, typename To> |
|
| 471 | 472 |
class DigraphCopy {
|
| 472 | 473 |
private: |
| 473 | 474 |
|
| 474 | 475 |
typedef typename From::Node Node; |
| 475 | 476 |
typedef typename From::NodeIt NodeIt; |
| 476 | 477 |
typedef typename From::Arc Arc; |
| 477 | 478 |
typedef typename From::ArcIt ArcIt; |
| 478 | 479 |
|
| 479 | 480 |
typedef typename To::Node TNode; |
| 480 | 481 |
typedef typename To::Arc TArc; |
| 481 | 482 |
|
| 482 | 483 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
| 483 | 484 |
typedef typename From::template ArcMap<TArc> ArcRefMap; |
| 484 | 485 |
|
| 485 |
|
|
| 486 | 486 |
public: |
| 487 | 487 |
|
| 488 |
|
|
| 489 |
/// \brief Constructor for the DigraphCopy. |
|
| 488 |
/// \brief Constructor of DigraphCopy. |
|
| 490 | 489 |
/// |
| 491 |
/// It copies the content of the \c _from digraph into the |
|
| 492 |
/// \c _to digraph. |
|
| 493 |
|
|
| 490 |
/// Constructor of DigraphCopy for copying the content of the |
|
| 491 |
/// \c from digraph into the \c to digraph. |
|
| 492 |
DigraphCopy(const From& from, To& to) |
|
| 494 | 493 |
: _from(from), _to(to) {}
|
| 495 | 494 |
|
| 496 |
/// \brief Destructor of |
|
| 495 |
/// \brief Destructor of DigraphCopy |
|
| 497 | 496 |
/// |
| 498 |
/// Destructor of |
|
| 497 |
/// Destructor of DigraphCopy. |
|
| 499 | 498 |
~DigraphCopy() {
|
| 500 | 499 |
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
| 501 | 500 |
delete _node_maps[i]; |
| 502 | 501 |
} |
| 503 | 502 |
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
| 504 | 503 |
delete _arc_maps[i]; |
| 505 | 504 |
} |
| 506 | 505 |
|
| 507 | 506 |
} |
| 508 | 507 |
|
| 509 |
/// \brief |
|
| 508 |
/// \brief Copy the node references into the given map. |
|
| 510 | 509 |
/// |
| 511 |
/// Copies the node references into the given map. The parameter |
|
| 512 |
/// should be a map, which key type is the Node type of the source |
|
| 513 |
/// graph, while the value type is the Node type of the |
|
| 514 |
/// destination graph. |
|
| 510 |
/// This function copies the node references into the given map. |
|
| 511 |
/// The parameter should be a map, whose key type is the Node type of |
|
| 512 |
/// the source digraph, while the value type is the Node type of the |
|
| 513 |
/// destination digraph. |
|
| 515 | 514 |
template <typename NodeRef> |
| 516 | 515 |
DigraphCopy& nodeRef(NodeRef& map) {
|
| 517 | 516 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
| 518 | 517 |
NodeRefMap, NodeRef>(map)); |
| 519 | 518 |
return *this; |
| 520 | 519 |
} |
| 521 | 520 |
|
| 522 |
/// \brief |
|
| 521 |
/// \brief Copy the node cross references into the given map. |
|
| 523 | 522 |
/// |
| 524 |
/// Copies the node cross references (reverse references) into |
|
| 525 |
/// the given map. The parameter should be a map, which key type |
|
| 526 |
/// is the Node type of the destination graph, while the value type is |
|
| 527 |
/// the Node type of the source graph. |
|
| 523 |
/// This function copies the node cross references (reverse references) |
|
| 524 |
/// into the given map. The parameter should be a map, whose key type |
|
| 525 |
/// is the Node type of the destination digraph, while the value type is |
|
| 526 |
/// the Node type of the source digraph. |
|
| 528 | 527 |
template <typename NodeCrossRef> |
| 529 | 528 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
| 530 | 529 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
| 531 | 530 |
NodeRefMap, NodeCrossRef>(map)); |
| 532 | 531 |
return *this; |
| 533 | 532 |
} |
| 534 | 533 |
|
| 535 |
/// \brief Make copy of the given map. |
|
| 534 |
/// \brief Make a copy of the given node map. |
|
| 536 | 535 |
/// |
| 537 |
/// Makes copy of the given map for the newly created digraph. |
|
| 538 |
/// The new map's key type is the destination graph's node type, |
|
| 539 |
/// and the copied map's key type is the source graph's node type. |
|
| 540 |
template <typename ToMap, typename FromMap> |
|
| 541 |
|
|
| 536 |
/// This function makes a copy of the given node map for the newly |
|
| 537 |
/// created digraph. |
|
| 538 |
/// The key type of the new map \c tmap should be the Node type of the |
|
| 539 |
/// destination digraph, and the key type of the original map \c map |
|
| 540 |
/// should be the Node type of the source digraph. |
|
| 541 |
template <typename FromMap, typename ToMap> |
|
| 542 |
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
|
|
| 542 | 543 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
| 543 |
NodeRefMap, |
|
| 544 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
|
| 544 | 545 |
return *this; |
| 545 | 546 |
} |
| 546 | 547 |
|
| 547 | 548 |
/// \brief Make a copy of the given node. |
| 548 | 549 |
/// |
| 549 |
/// Make a copy of the given node. |
|
| 550 |
DigraphCopy& node(TNode& tnode, const Node& snode) {
|
|
| 550 |
/// This function makes a copy of the given node. |
|
| 551 |
DigraphCopy& node(const Node& node, TNode& tnode) {
|
|
| 551 | 552 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
| 552 |
NodeRefMap, TNode>( |
|
| 553 |
NodeRefMap, TNode>(node, tnode)); |
|
| 553 | 554 |
return *this; |
| 554 | 555 |
} |
| 555 | 556 |
|
| 556 |
/// \brief |
|
| 557 |
/// \brief Copy the arc references into the given map. |
|
| 557 | 558 |
/// |
| 558 |
/// |
|
| 559 |
/// This function copies the arc references into the given map. |
|
| 560 |
/// The parameter should be a map, whose key type is the Arc type of |
|
| 561 |
/// the source digraph, while the value type is the Arc type of the |
|
| 562 |
/// destination digraph. |
|
| 559 | 563 |
template <typename ArcRef> |
| 560 | 564 |
DigraphCopy& arcRef(ArcRef& map) {
|
| 561 | 565 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
| 562 | 566 |
ArcRefMap, ArcRef>(map)); |
| 563 | 567 |
return *this; |
| 564 | 568 |
} |
| 565 | 569 |
|
| 566 |
/// \brief |
|
| 570 |
/// \brief Copy the arc cross references into the given map. |
|
| 567 | 571 |
/// |
| 568 |
/// Copies the arc cross references (reverse references) into |
|
| 569 |
/// the given map. |
|
| 572 |
/// This function copies the arc cross references (reverse references) |
|
| 573 |
/// into the given map. The parameter should be a map, whose key type |
|
| 574 |
/// is the Arc type of the destination digraph, while the value type is |
|
| 575 |
/// the Arc type of the source digraph. |
|
| 570 | 576 |
template <typename ArcCrossRef> |
| 571 | 577 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) {
|
| 572 | 578 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
| 573 | 579 |
ArcRefMap, ArcCrossRef>(map)); |
| 574 | 580 |
return *this; |
| 575 | 581 |
} |
| 576 | 582 |
|
| 577 |
/// \brief Make copy of the given map. |
|
| 583 |
/// \brief Make a copy of the given arc map. |
|
| 578 | 584 |
/// |
| 579 |
/// Makes copy of the given map for the newly created digraph. |
|
| 580 |
/// The new map's key type is the to digraph's arc type, |
|
| 581 |
/// and the copied map's key type is the from digraph's arc |
|
| 582 |
/// type. |
|
| 583 |
template <typename ToMap, typename FromMap> |
|
| 584 |
DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
|
|
| 585 |
/// This function makes a copy of the given arc map for the newly |
|
| 586 |
/// created digraph. |
|
| 587 |
/// The key type of the new map \c tmap should be the Arc type of the |
|
| 588 |
/// destination digraph, and the key type of the original map \c map |
|
| 589 |
/// should be the Arc type of the source digraph. |
|
| 590 |
template <typename FromMap, typename ToMap> |
|
| 591 |
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
|
|
| 585 | 592 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
| 586 |
ArcRefMap, |
|
| 593 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
|
| 587 | 594 |
return *this; |
| 588 | 595 |
} |
| 589 | 596 |
|
| 590 | 597 |
/// \brief Make a copy of the given arc. |
| 591 | 598 |
/// |
| 592 |
/// Make a copy of the given arc. |
|
| 593 |
DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
|
|
| 599 |
/// This function makes a copy of the given arc. |
|
| 600 |
DigraphCopy& arc(const Arc& arc, TArc& tarc) {
|
|
| 594 | 601 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
| 595 |
ArcRefMap, TArc>( |
|
| 602 |
ArcRefMap, TArc>(arc, tarc)); |
|
| 596 | 603 |
return *this; |
| 597 | 604 |
} |
| 598 | 605 |
|
| 599 |
/// \brief |
|
| 606 |
/// \brief Execute copying. |
|
| 600 | 607 |
/// |
| 601 |
/// |
|
| 608 |
/// This function executes the copying of the digraph along with the |
|
| 609 |
/// copying of the assigned data. |
|
| 602 | 610 |
void run() {
|
| 603 | 611 |
NodeRefMap nodeRefMap(_from); |
| 604 | 612 |
ArcRefMap arcRefMap(_from); |
| 605 | 613 |
_core_bits::DigraphCopySelector<To>:: |
| 606 |
copy( |
|
| 614 |
copy(_from, _to, nodeRefMap, arcRefMap); |
|
| 607 | 615 |
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
| 608 | 616 |
_node_maps[i]->copy(_from, nodeRefMap); |
| 609 | 617 |
} |
| 610 | 618 |
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
| 611 | 619 |
_arc_maps[i]->copy(_from, arcRefMap); |
| 612 | 620 |
} |
| 613 | 621 |
} |
| 614 | 622 |
|
| 615 | 623 |
protected: |
| 616 | 624 |
|
| 617 |
|
|
| 618 | 625 |
const From& _from; |
| 619 | 626 |
To& _to; |
| 620 | 627 |
|
| 621 | 628 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
| 622 |
_node_maps; |
|
| 629 |
_node_maps; |
|
| 623 | 630 |
|
| 624 | 631 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
| 625 |
_arc_maps; |
|
| 632 |
_arc_maps; |
|
| 626 | 633 |
|
| 627 | 634 |
}; |
| 628 | 635 |
|
| 629 | 636 |
/// \brief Copy a digraph to another digraph. |
| 630 | 637 |
/// |
| 631 |
/// Copy a digraph to another digraph. The complete usage of the |
|
| 632 |
/// function is detailed in the DigraphCopy class, but a short |
|
| 633 |
/// |
|
| 638 |
/// This function copies a digraph to another digraph. |
|
| 639 |
/// The complete usage of it is detailed in the DigraphCopy class, but |
|
| 640 |
/// a short example shows a basic work: |
|
| 634 | 641 |
///\code |
| 635 |
/// |
|
| 642 |
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run(); |
|
| 636 | 643 |
///\endcode |
| 637 | 644 |
/// |
| 638 | 645 |
/// After the copy the \c nr map will contain the mapping from the |
| 639 | 646 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and |
| 640 |
/// \c |
|
| 647 |
/// \c acr will contain the mapping from the arcs of the \c to digraph |
|
| 641 | 648 |
/// to the arcs of the \c from digraph. |
| 642 | 649 |
/// |
| 643 | 650 |
/// \see DigraphCopy |
| 644 |
template <typename To, typename From> |
|
| 645 |
DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
|
|
| 646 |
|
|
| 651 |
template <typename From, typename To> |
|
| 652 |
DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
|
|
| 653 |
return DigraphCopy<From, To>(from, to); |
|
| 647 | 654 |
} |
| 648 | 655 |
|
| 649 | 656 |
/// \brief Class to copy a graph. |
| 650 | 657 |
/// |
| 651 | 658 |
/// Class to copy a graph to another graph (duplicate a graph). The |
| 652 |
/// simplest way of using it is through the \c |
|
| 659 |
/// simplest way of using it is through the \c graphCopy() function. |
|
| 653 | 660 |
/// |
| 654 |
/// This class not |
|
| 661 |
/// This class not only make a copy of a graph, but it can create |
|
| 655 | 662 |
/// references and cross references between the nodes, edges and arcs of |
| 656 |
/// the two graphs, it can copy maps for use with the newly created |
|
| 657 |
/// graph and copy nodes, edges and arcs. |
|
| 663 |
/// the two graphs, and it can copy maps for using with the newly created |
|
| 664 |
/// graph. |
|
| 658 | 665 |
/// |
| 659 | 666 |
/// To make a copy from a graph, first an instance of GraphCopy |
| 660 | 667 |
/// should be created, then the data belongs to the graph should |
| 661 | 668 |
/// assigned to copy. In the end, the \c run() member should be |
| 662 | 669 |
/// called. |
| 663 | 670 |
/// |
| 664 | 671 |
/// The next code copies a graph with several data: |
| 665 | 672 |
///\code |
| 666 |
/// GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph); |
|
| 667 |
/// // create a reference for the nodes |
|
| 673 |
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
|
| 674 |
/// // Create references for the nodes |
|
| 668 | 675 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
| 669 |
/// dc.nodeRef(nr); |
|
| 670 |
/// // create a cross reference (inverse) for the edges |
|
| 671 |
/// NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph); |
|
| 672 |
/// dc.edgeCrossRef(ecr); |
|
| 673 |
/// // copy an arc map |
|
| 674 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
|
| 675 |
/// NewGraph::ArcMap<double> namap(new_graph); |
|
| 676 |
/// dc.arcMap(namap, oamap); |
|
| 677 |
/// |
|
| 676 |
/// cg.nodeRef(nr); |
|
| 677 |
/// // Create cross references (inverse) for the edges |
|
| 678 |
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph); |
|
| 679 |
/// cg.edgeCrossRef(ecr); |
|
| 680 |
/// // Copy an edge map |
|
| 681 |
/// OrigGraph::EdgeMap<double> oemap(orig_graph); |
|
| 682 |
/// NewGraph::EdgeMap<double> nemap(new_graph); |
|
| 683 |
/// cg.edgeMap(oemap, nemap); |
|
| 684 |
/// // Copy a node |
|
| 678 | 685 |
/// OrigGraph::Node on; |
| 679 | 686 |
/// NewGraph::Node nn; |
| 680 |
/// dc.node(nn, on); |
|
| 681 |
/// // Executions of copy |
|
| 682 |
/// |
|
| 687 |
/// cg.node(on, nn); |
|
| 688 |
/// // Execute copying |
|
| 689 |
/// cg.run(); |
|
| 683 | 690 |
///\endcode |
| 684 |
template <typename |
|
| 691 |
template <typename From, typename To> |
|
| 685 | 692 |
class GraphCopy {
|
| 686 | 693 |
private: |
| 687 | 694 |
|
| 688 | 695 |
typedef typename From::Node Node; |
| 689 | 696 |
typedef typename From::NodeIt NodeIt; |
| 690 | 697 |
typedef typename From::Arc Arc; |
| 691 | 698 |
typedef typename From::ArcIt ArcIt; |
| 692 | 699 |
typedef typename From::Edge Edge; |
| 693 | 700 |
typedef typename From::EdgeIt EdgeIt; |
| 694 | 701 |
|
| 695 | 702 |
typedef typename To::Node TNode; |
| 696 | 703 |
typedef typename To::Arc TArc; |
| 697 | 704 |
typedef typename To::Edge TEdge; |
| 698 | 705 |
|
| 699 | 706 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
| 700 | 707 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
| 701 | 708 |
|
| 702 | 709 |
struct ArcRefMap {
|
| 703 |
ArcRefMap(const To& to, |
|
| 710 |
ArcRefMap(const From& from, const To& to, |
|
| 704 | 711 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
| 705 |
: _to(to), |
|
| 712 |
: _from(from), _to(to), |
|
| 706 | 713 |
_edge_ref(edge_ref), _node_ref(node_ref) {}
|
| 707 | 714 |
|
| 708 | 715 |
typedef typename From::Arc Key; |
| 709 | 716 |
typedef typename To::Arc Value; |
| 710 | 717 |
|
| 711 | 718 |
Value operator[](const Key& key) const {
|
| 712 | 719 |
bool forward = _from.u(key) != _from.v(key) ? |
| 713 | 720 |
_node_ref[_from.source(key)] == |
| 714 | 721 |
_to.source(_to.direct(_edge_ref[key], true)) : |
| 715 | 722 |
_from.direction(key); |
| 716 | 723 |
return _to.direct(_edge_ref[key], forward); |
| 717 | 724 |
} |
| 718 | 725 |
|
| 726 |
const From& _from; |
|
| 719 | 727 |
const To& _to; |
| 720 |
const From& _from; |
|
| 721 | 728 |
const EdgeRefMap& _edge_ref; |
| 722 | 729 |
const NodeRefMap& _node_ref; |
| 723 | 730 |
}; |
| 724 | 731 |
|
| 725 |
|
|
| 726 | 732 |
public: |
| 727 | 733 |
|
| 728 |
|
|
| 729 |
/// \brief Constructor for the GraphCopy. |
|
| 734 |
/// \brief Constructor of GraphCopy. |
|
| 730 | 735 |
/// |
| 731 |
/// It copies the content of the \c _from graph into the |
|
| 732 |
/// \c _to graph. |
|
| 733 |
|
|
| 736 |
/// Constructor of GraphCopy for copying the content of the |
|
| 737 |
/// \c from graph into the \c to graph. |
|
| 738 |
GraphCopy(const From& from, To& to) |
|
| 734 | 739 |
: _from(from), _to(to) {}
|
| 735 | 740 |
|
| 736 |
/// \brief Destructor of |
|
| 741 |
/// \brief Destructor of GraphCopy |
|
| 737 | 742 |
/// |
| 738 |
/// Destructor of |
|
| 743 |
/// Destructor of GraphCopy. |
|
| 739 | 744 |
~GraphCopy() {
|
| 740 | 745 |
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
| 741 | 746 |
delete _node_maps[i]; |
| 742 | 747 |
} |
| 743 | 748 |
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
| 744 | 749 |
delete _arc_maps[i]; |
| 745 | 750 |
} |
| 746 | 751 |
for (int i = 0; i < int(_edge_maps.size()); ++i) {
|
| 747 | 752 |
delete _edge_maps[i]; |
| 748 | 753 |
} |
| 749 |
|
|
| 750 | 754 |
} |
| 751 | 755 |
|
| 752 |
/// \brief |
|
| 756 |
/// \brief Copy the node references into the given map. |
|
| 753 | 757 |
/// |
| 754 |
/// |
|
| 758 |
/// This function copies the node references into the given map. |
|
| 759 |
/// The parameter should be a map, whose key type is the Node type of |
|
| 760 |
/// the source graph, while the value type is the Node type of the |
|
| 761 |
/// destination graph. |
|
| 755 | 762 |
template <typename NodeRef> |
| 756 | 763 |
GraphCopy& nodeRef(NodeRef& map) {
|
| 757 | 764 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
| 758 | 765 |
NodeRefMap, NodeRef>(map)); |
| 759 | 766 |
return *this; |
| 760 | 767 |
} |
| 761 | 768 |
|
| 762 |
/// \brief |
|
| 769 |
/// \brief Copy the node cross references into the given map. |
|
| 763 | 770 |
/// |
| 764 |
/// Copies the node cross references (reverse references) into |
|
| 765 |
/// the given map. |
|
| 771 |
/// This function copies the node cross references (reverse references) |
|
| 772 |
/// into the given map. The parameter should be a map, whose key type |
|
| 773 |
/// is the Node type of the destination graph, while the value type is |
|
| 774 |
/// the Node type of the source graph. |
|
| 766 | 775 |
template <typename NodeCrossRef> |
| 767 | 776 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) {
|
| 768 | 777 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
| 769 | 778 |
NodeRefMap, NodeCrossRef>(map)); |
| 770 | 779 |
return *this; |
| 771 | 780 |
} |
| 772 | 781 |
|
| 773 |
/// \brief Make copy of the given map. |
|
| 782 |
/// \brief Make a copy of the given node map. |
|
| 774 | 783 |
/// |
| 775 |
/// Makes copy of the given map for the newly created graph. |
|
| 776 |
/// The new map's key type is the to graph's node type, |
|
| 777 |
/// and the copied map's key type is the from graph's node |
|
| 778 |
/// type. |
|
| 779 |
template <typename ToMap, typename FromMap> |
|
| 780 |
GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
|
|
| 784 |
/// This function makes a copy of the given node map for the newly |
|
| 785 |
/// created graph. |
|
| 786 |
/// The key type of the new map \c tmap should be the Node type of the |
|
| 787 |
/// destination graph, and the key type of the original map \c map |
|
| 788 |
/// should be the Node type of the source graph. |
|
| 789 |
template <typename FromMap, typename ToMap> |
|
| 790 |
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
|
|
| 781 | 791 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
| 782 |
NodeRefMap, |
|
| 792 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
|
| 783 | 793 |
return *this; |
| 784 | 794 |
} |
| 785 | 795 |
|
| 786 | 796 |
/// \brief Make a copy of the given node. |
| 787 | 797 |
/// |
| 788 |
/// Make a copy of the given node. |
|
| 789 |
GraphCopy& node(TNode& tnode, const Node& snode) {
|
|
| 798 |
/// This function makes a copy of the given node. |
|
| 799 |
GraphCopy& node(const Node& node, TNode& tnode) {
|
|
| 790 | 800 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
| 791 |
NodeRefMap, TNode>( |
|
| 801 |
NodeRefMap, TNode>(node, tnode)); |
|
| 792 | 802 |
return *this; |
| 793 | 803 |
} |
| 794 | 804 |
|
| 795 |
/// \brief |
|
| 805 |
/// \brief Copy the arc references into the given map. |
|
| 796 | 806 |
/// |
| 797 |
/// |
|
| 807 |
/// This function copies the arc references into the given map. |
|
| 808 |
/// The parameter should be a map, whose key type is the Arc type of |
|
| 809 |
/// the source graph, while the value type is the Arc type of the |
|
| 810 |
/// destination graph. |
|
| 798 | 811 |
template <typename ArcRef> |
| 799 | 812 |
GraphCopy& arcRef(ArcRef& map) {
|
| 800 | 813 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
| 801 | 814 |
ArcRefMap, ArcRef>(map)); |
| 802 | 815 |
return *this; |
| 803 | 816 |
} |
| 804 | 817 |
|
| 805 |
/// \brief |
|
| 818 |
/// \brief Copy the arc cross references into the given map. |
|
| 806 | 819 |
/// |
| 807 |
/// Copies the arc cross references (reverse references) into |
|
| 808 |
/// the given map. |
|
| 820 |
/// This function copies the arc cross references (reverse references) |
|
| 821 |
/// into the given map. The parameter should be a map, whose key type |
|
| 822 |
/// is the Arc type of the destination graph, while the value type is |
|
| 823 |
/// the Arc type of the source graph. |
|
| 809 | 824 |
template <typename ArcCrossRef> |
| 810 | 825 |
GraphCopy& arcCrossRef(ArcCrossRef& map) {
|
| 811 | 826 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
| 812 | 827 |
ArcRefMap, ArcCrossRef>(map)); |
| 813 | 828 |
return *this; |
| 814 | 829 |
} |
| 815 | 830 |
|
| 816 |
/// \brief Make copy of the given map. |
|
| 831 |
/// \brief Make a copy of the given arc map. |
|
| 817 | 832 |
/// |
| 818 |
/// Makes copy of the given map for the newly created graph. |
|
| 819 |
/// The new map's key type is the to graph's arc type, |
|
| 820 |
/// and the copied map's key type is the from graph's arc |
|
| 821 |
/// type. |
|
| 822 |
template <typename ToMap, typename FromMap> |
|
| 823 |
GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
|
|
| 833 |
/// This function makes a copy of the given arc map for the newly |
|
| 834 |
/// created graph. |
|
| 835 |
/// The key type of the new map \c tmap should be the Arc type of the |
|
| 836 |
/// destination graph, and the key type of the original map \c map |
|
| 837 |
/// should be the Arc type of the source graph. |
|
| 838 |
template <typename FromMap, typename ToMap> |
|
| 839 |
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
|
|
| 824 | 840 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
| 825 |
ArcRefMap, |
|
| 841 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
|
| 826 | 842 |
return *this; |
| 827 | 843 |
} |
| 828 | 844 |
|
| 829 | 845 |
/// \brief Make a copy of the given arc. |
| 830 | 846 |
/// |
| 831 |
/// Make a copy of the given arc. |
|
| 832 |
GraphCopy& arc(TArc& tarc, const Arc& sarc) {
|
|
| 847 |
/// This function makes a copy of the given arc. |
|
| 848 |
GraphCopy& arc(const Arc& arc, TArc& tarc) {
|
|
| 833 | 849 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
| 834 |
ArcRefMap, TArc>( |
|
| 850 |
ArcRefMap, TArc>(arc, tarc)); |
|
| 835 | 851 |
return *this; |
| 836 | 852 |
} |
| 837 | 853 |
|
| 838 |
/// \brief |
|
| 854 |
/// \brief Copy the edge references into the given map. |
|
| 839 | 855 |
/// |
| 840 |
/// |
|
| 856 |
/// This function copies the edge references into the given map. |
|
| 857 |
/// The parameter should be a map, whose key type is the Edge type of |
|
| 858 |
/// the source graph, while the value type is the Edge type of the |
|
| 859 |
/// destination graph. |
|
| 841 | 860 |
template <typename EdgeRef> |
| 842 | 861 |
GraphCopy& edgeRef(EdgeRef& map) {
|
| 843 | 862 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
| 844 | 863 |
EdgeRefMap, EdgeRef>(map)); |
| 845 | 864 |
return *this; |
| 846 | 865 |
} |
| 847 | 866 |
|
| 848 |
/// \brief |
|
| 867 |
/// \brief Copy the edge cross references into the given map. |
|
| 849 | 868 |
/// |
| 850 |
/// Copies the edge cross references (reverse |
|
| 851 |
/// references) into the given map. |
|
| 869 |
/// This function copies the edge cross references (reverse references) |
|
| 870 |
/// into the given map. The parameter should be a map, whose key type |
|
| 871 |
/// is the Edge type of the destination graph, while the value type is |
|
| 872 |
/// the Edge type of the source graph. |
|
| 852 | 873 |
template <typename EdgeCrossRef> |
| 853 | 874 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
|
| 854 | 875 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
| 855 | 876 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
| 856 | 877 |
return *this; |
| 857 | 878 |
} |
| 858 | 879 |
|
| 859 |
/// \brief Make copy of the given map. |
|
| 880 |
/// \brief Make a copy of the given edge map. |
|
| 860 | 881 |
/// |
| 861 |
/// Makes copy of the given map for the newly created graph. |
|
| 862 |
/// The new map's key type is the to graph's edge type, |
|
| 863 |
/// and the copied map's key type is the from graph's edge |
|
| 864 |
/// type. |
|
| 865 |
template <typename ToMap, typename FromMap> |
|
| 866 |
GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
|
|
| 882 |
/// This function makes a copy of the given edge map for the newly |
|
| 883 |
/// created graph. |
|
| 884 |
/// The key type of the new map \c tmap should be the Edge type of the |
|
| 885 |
/// destination graph, and the key type of the original map \c map |
|
| 886 |
/// should be the Edge type of the source graph. |
|
| 887 |
template <typename FromMap, typename ToMap> |
|
| 888 |
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
|
|
| 867 | 889 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
| 868 |
EdgeRefMap, |
|
| 890 |
EdgeRefMap, FromMap, ToMap>(map, tmap)); |
|
| 869 | 891 |
return *this; |
| 870 | 892 |
} |
| 871 | 893 |
|
| 872 | 894 |
/// \brief Make a copy of the given edge. |
| 873 | 895 |
/// |
| 874 |
/// Make a copy of the given edge. |
|
| 875 |
GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
|
|
| 896 |
/// This function makes a copy of the given edge. |
|
| 897 |
GraphCopy& edge(const Edge& edge, TEdge& tedge) {
|
|
| 876 | 898 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
| 877 |
EdgeRefMap, TEdge>( |
|
| 899 |
EdgeRefMap, TEdge>(edge, tedge)); |
|
| 878 | 900 |
return *this; |
| 879 | 901 |
} |
| 880 | 902 |
|
| 881 |
/// \brief |
|
| 903 |
/// \brief Execute copying. |
|
| 882 | 904 |
/// |
| 883 |
/// |
|
| 905 |
/// This function executes the copying of the graph along with the |
|
| 906 |
/// copying of the assigned data. |
|
| 884 | 907 |
void run() {
|
| 885 | 908 |
NodeRefMap nodeRefMap(_from); |
| 886 | 909 |
EdgeRefMap edgeRefMap(_from); |
| 887 |
ArcRefMap arcRefMap( |
|
| 910 |
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
|
| 888 | 911 |
_core_bits::GraphCopySelector<To>:: |
| 889 |
copy( |
|
| 912 |
copy(_from, _to, nodeRefMap, edgeRefMap); |
|
| 890 | 913 |
for (int i = 0; i < int(_node_maps.size()); ++i) {
|
| 891 | 914 |
_node_maps[i]->copy(_from, nodeRefMap); |
| 892 | 915 |
} |
| 893 | 916 |
for (int i = 0; i < int(_edge_maps.size()); ++i) {
|
| 894 | 917 |
_edge_maps[i]->copy(_from, edgeRefMap); |
| 895 | 918 |
} |
| 896 | 919 |
for (int i = 0; i < int(_arc_maps.size()); ++i) {
|
| 897 | 920 |
_arc_maps[i]->copy(_from, arcRefMap); |
| 898 | 921 |
} |
| 899 | 922 |
} |
| 900 | 923 |
|
| 901 | 924 |
private: |
| 902 | 925 |
|
| 903 | 926 |
const From& _from; |
| 904 | 927 |
To& _to; |
| 905 | 928 |
|
| 906 | 929 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
| 907 |
_node_maps; |
|
| 930 |
_node_maps; |
|
| 908 | 931 |
|
| 909 | 932 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
| 910 |
_arc_maps; |
|
| 933 |
_arc_maps; |
|
| 911 | 934 |
|
| 912 | 935 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
| 913 |
_edge_maps; |
|
| 936 |
_edge_maps; |
|
| 914 | 937 |
|
| 915 | 938 |
}; |
| 916 | 939 |
|
| 917 | 940 |
/// \brief Copy a graph to another graph. |
| 918 | 941 |
/// |
| 919 |
/// Copy a graph to another graph. The complete usage of the |
|
| 920 |
/// function is detailed in the GraphCopy class, but a short |
|
| 921 |
/// |
|
| 942 |
/// This function copies a graph to another graph. |
|
| 943 |
/// The complete usage of it is detailed in the GraphCopy class, |
|
| 944 |
/// but a short example shows a basic work: |
|
| 922 | 945 |
///\code |
| 923 |
/// |
|
| 946 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
|
| 924 | 947 |
///\endcode |
| 925 | 948 |
/// |
| 926 | 949 |
/// After the copy the \c nr map will contain the mapping from the |
| 927 | 950 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
| 928 |
/// \c ecr will contain the mapping from the arcs of the \c to graph |
|
| 929 |
/// to the arcs of the \c from graph. |
|
| 951 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
|
| 952 |
/// to the edges of the \c from graph. |
|
| 930 | 953 |
/// |
| 931 | 954 |
/// \see GraphCopy |
| 932 |
template <typename To, typename From> |
|
| 933 |
GraphCopy<To, From> |
|
| 934 |
copyGraph(To& to, const From& from) {
|
|
| 935 |
return GraphCopy<To, From>(to, from); |
|
| 955 |
template <typename From, typename To> |
|
| 956 |
GraphCopy<From, To> |
|
| 957 |
graphCopy(const From& from, To& to) {
|
|
| 958 |
return GraphCopy<From, To>(from, to); |
|
| 936 | 959 |
} |
| 937 | 960 |
|
| 938 | 961 |
namespace _core_bits {
|
| 939 | 962 |
|
| 940 | 963 |
template <typename Graph, typename Enable = void> |
| 941 | 964 |
struct FindArcSelector {
|
| 942 | 965 |
typedef typename Graph::Node Node; |
| 943 | 966 |
typedef typename Graph::Arc Arc; |
| 944 | 967 |
static Arc find(const Graph &g, Node u, Node v, Arc e) {
|
| 945 | 968 |
if (e == INVALID) {
|
| 946 | 969 |
g.firstOut(e, u); |
| 947 | 970 |
} else {
|
| 948 | 971 |
g.nextOut(e); |
| 949 | 972 |
} |
| 950 | 973 |
while (e != INVALID && g.target(e) != v) {
|
| 951 | 974 |
g.nextOut(e); |
| 952 | 975 |
} |
| 953 | 976 |
return e; |
| 954 | 977 |
} |
| 955 | 978 |
}; |
| 956 | 979 |
|
| 957 | 980 |
template <typename Graph> |
| 958 | 981 |
struct FindArcSelector< |
| 959 | 982 |
Graph, |
| 960 |
typename enable_if<typename Graph:: |
|
| 983 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
|
| 961 | 984 |
{
|
| 962 | 985 |
typedef typename Graph::Node Node; |
| 963 | 986 |
typedef typename Graph::Arc Arc; |
| 964 | 987 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) {
|
| 965 | 988 |
return g.findArc(u, v, prev); |
| 966 | 989 |
} |
| 967 | 990 |
}; |
| 968 | 991 |
} |
| 969 | 992 |
|
| 970 |
/// \brief |
|
| 993 |
/// \brief Find an arc between two nodes of a digraph. |
|
| 971 | 994 |
/// |
| 972 |
/// |
|
| 995 |
/// This function finds an arc from node \c u to node \c v in the |
|
| 996 |
/// digraph \c g. |
|
| 973 | 997 |
/// |
| 974 | 998 |
/// If \c prev is \ref INVALID (this is the default value), then |
| 975 | 999 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
| 976 | 1000 |
/// the next arc from \c u to \c v after \c prev. |
| 977 | 1001 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
| 978 | 1002 |
/// |
| 979 | 1003 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
| 980 | 1004 |
///\code |
| 981 |
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
|
|
| 1005 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
|
|
| 982 | 1006 |
/// ... |
| 983 | 1007 |
/// } |
| 984 | 1008 |
///\endcode |
| 985 | 1009 |
/// |
| 986 |
///\sa ArcLookUp |
|
| 987 |
///\sa AllArcLookUp |
|
| 988 |
///\ |
|
| 1010 |
/// \note \ref ConArcIt provides iterator interface for the same |
|
| 1011 |
/// functionality. |
|
| 1012 |
/// |
|
| 989 | 1013 |
///\sa ConArcIt |
| 1014 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
|
| 990 | 1015 |
template <typename Graph> |
| 991 | 1016 |
inline typename Graph::Arc |
| 992 | 1017 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
| 993 | 1018 |
typename Graph::Arc prev = INVALID) {
|
| 994 | 1019 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
| 995 | 1020 |
} |
| 996 | 1021 |
|
| 997 |
/// \brief Iterator for iterating on arcs |
|
| 1022 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
|
| 998 | 1023 |
/// |
| 999 |
/// Iterator for iterating on arcs connected the same nodes. It is |
|
| 1000 |
/// higher level interface for the findArc() function. You can |
|
| 1024 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
|
| 1025 |
/// a higher level interface for the \ref findArc() function. You can |
|
| 1001 | 1026 |
/// use it the following way: |
| 1002 | 1027 |
///\code |
| 1003 | 1028 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
|
| 1004 | 1029 |
/// ... |
| 1005 | 1030 |
/// } |
| 1006 | 1031 |
///\endcode |
| 1007 | 1032 |
/// |
| 1008 | 1033 |
///\sa findArc() |
| 1009 |
///\sa ArcLookUp |
|
| 1010 |
///\sa AllArcLookUp |
|
| 1011 |
///\sa DynArcLookUp |
|
| 1034 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
|
| 1012 | 1035 |
template <typename _Graph> |
| 1013 | 1036 |
class ConArcIt : public _Graph::Arc {
|
| 1014 | 1037 |
public: |
| 1015 | 1038 |
|
| 1016 | 1039 |
typedef _Graph Graph; |
| 1017 | 1040 |
typedef typename Graph::Arc Parent; |
| 1018 | 1041 |
|
| 1019 | 1042 |
typedef typename Graph::Arc Arc; |
| 1020 | 1043 |
typedef typename Graph::Node Node; |
| 1021 | 1044 |
|
| 1022 | 1045 |
/// \brief Constructor. |
| 1023 | 1046 |
/// |
| 1024 |
/// Construct a new ConArcIt iterating on the arcs which |
|
| 1025 |
/// connects the \c u and \c v node. |
|
| 1047 |
/// Construct a new ConArcIt iterating on the arcs that |
|
| 1048 |
/// connects nodes \c u and \c v. |
|
| 1026 | 1049 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
|
| 1027 | 1050 |
Parent::operator=(findArc(_graph, u, v)); |
| 1028 | 1051 |
} |
| 1029 | 1052 |
|
| 1030 | 1053 |
/// \brief Constructor. |
| 1031 | 1054 |
/// |
| 1032 |
/// Construct a new ConArcIt which continues the iterating from |
|
| 1033 |
/// the \c e arc. |
|
| 1055 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
|
| 1034 | 1056 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
|
| 1035 | 1057 |
|
| 1036 | 1058 |
/// \brief Increment operator. |
| 1037 | 1059 |
/// |
| 1038 | 1060 |
/// It increments the iterator and gives back the next arc. |
| 1039 | 1061 |
ConArcIt& operator++() {
|
| 1040 | 1062 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
| 1041 | 1063 |
_graph.target(*this), *this)); |
| 1042 | 1064 |
return *this; |
| 1043 | 1065 |
} |
| 1044 | 1066 |
private: |
| 1045 | 1067 |
const Graph& _graph; |
| 1046 | 1068 |
}; |
| 1047 | 1069 |
|
| 1048 | 1070 |
namespace _core_bits {
|
| 1049 | 1071 |
|
| 1050 | 1072 |
template <typename Graph, typename Enable = void> |
| 1051 | 1073 |
struct FindEdgeSelector {
|
| 1052 | 1074 |
typedef typename Graph::Node Node; |
| 1053 | 1075 |
typedef typename Graph::Edge Edge; |
| 1054 | 1076 |
static Edge find(const Graph &g, Node u, Node v, Edge e) {
|
| 1055 | 1077 |
bool b; |
| 1056 | 1078 |
if (u != v) {
|
| 1057 | 1079 |
if (e == INVALID) {
|
| 1058 | 1080 |
g.firstInc(e, b, u); |
| 1059 | 1081 |
} else {
|
| 1060 | 1082 |
b = g.u(e) == u; |
| 1061 | 1083 |
g.nextInc(e, b); |
| 1062 | 1084 |
} |
| 1063 | 1085 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
|
| 1064 | 1086 |
g.nextInc(e, b); |
| 1065 | 1087 |
} |
| 1066 | 1088 |
} else {
|
| 1067 | 1089 |
if (e == INVALID) {
|
| 1068 | 1090 |
g.firstInc(e, b, u); |
| 1069 | 1091 |
} else {
|
| 1070 | 1092 |
b = true; |
| 1071 | 1093 |
g.nextInc(e, b); |
| 1072 | 1094 |
} |
| 1073 | 1095 |
while (e != INVALID && (!b || g.v(e) != v)) {
|
| 1074 | 1096 |
g.nextInc(e, b); |
| 1075 | 1097 |
} |
| 1076 | 1098 |
} |
| 1077 | 1099 |
return e; |
| 1078 | 1100 |
} |
| 1079 | 1101 |
}; |
| 1080 | 1102 |
|
| 1081 | 1103 |
template <typename Graph> |
| 1082 | 1104 |
struct FindEdgeSelector< |
| 1083 | 1105 |
Graph, |
| 1084 | 1106 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
| 1085 | 1107 |
{
|
| 1086 | 1108 |
typedef typename Graph::Node Node; |
| 1087 | 1109 |
typedef typename Graph::Edge Edge; |
| 1088 | 1110 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) {
|
| 1089 | 1111 |
return g.findEdge(u, v, prev); |
| 1090 | 1112 |
} |
| 1091 | 1113 |
}; |
| 1092 | 1114 |
} |
| 1093 | 1115 |
|
| 1094 |
/// \brief |
|
| 1116 |
/// \brief Find an edge between two nodes of a graph. |
|
| 1095 | 1117 |
/// |
| 1096 |
/// Finds an edge from node \c u to node \c v in graph \c g. |
|
| 1097 |
/// If the node \c u and node \c v is equal then each loop edge |
|
| 1118 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
|
| 1119 |
/// If node \c u and node \c v is equal then each loop edge |
|
| 1098 | 1120 |
/// will be enumerated once. |
| 1099 | 1121 |
/// |
| 1100 | 1122 |
/// If \c prev is \ref INVALID (this is the default value), then |
| 1101 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
|
| 1102 |
/// the next arc from \c u to \c v after \c prev. |
|
| 1103 |
/// |
|
| 1123 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
|
| 1124 |
/// the next edge from \c u to \c v after \c prev. |
|
| 1125 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
|
| 1104 | 1126 |
/// |
| 1105 |
/// Thus you can iterate through each |
|
| 1127 |
/// Thus you can iterate through each edge between \c u and \c v |
|
| 1128 |
/// as it follows. |
|
| 1106 | 1129 |
///\code |
| 1107 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; |
|
| 1108 |
/// e = findEdge(g,u,v,e)) {
|
|
| 1130 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
|
|
| 1109 | 1131 |
/// ... |
| 1110 | 1132 |
/// } |
| 1111 | 1133 |
///\endcode |
| 1112 | 1134 |
/// |
| 1135 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
|
| 1136 |
/// functionality. |
|
| 1137 |
/// |
|
| 1113 | 1138 |
///\sa ConEdgeIt |
| 1114 |
|
|
| 1115 | 1139 |
template <typename Graph> |
| 1116 | 1140 |
inline typename Graph::Edge |
| 1117 | 1141 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
| 1118 | 1142 |
typename Graph::Edge p = INVALID) {
|
| 1119 | 1143 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
| 1120 | 1144 |
} |
| 1121 | 1145 |
|
| 1122 |
/// \brief Iterator for iterating on edges |
|
| 1146 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
|
| 1123 | 1147 |
/// |
| 1124 |
/// Iterator for iterating on edges connected the same nodes. It is |
|
| 1125 |
/// higher level interface for the findEdge() function. You can |
|
| 1148 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
|
| 1149 |
/// It is a higher level interface for the findEdge() function. You can |
|
| 1126 | 1150 |
/// use it the following way: |
| 1127 | 1151 |
///\code |
| 1128 |
/// for (ConEdgeIt<Graph> it(g, |
|
| 1152 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
|
|
| 1129 | 1153 |
/// ... |
| 1130 | 1154 |
/// } |
| 1131 | 1155 |
///\endcode |
| 1132 | 1156 |
/// |
| 1133 | 1157 |
///\sa findEdge() |
| 1134 | 1158 |
template <typename _Graph> |
| 1135 | 1159 |
class ConEdgeIt : public _Graph::Edge {
|
| 1136 | 1160 |
public: |
| 1137 | 1161 |
|
| 1138 | 1162 |
typedef _Graph Graph; |
| 1139 | 1163 |
typedef typename Graph::Edge Parent; |
| 1140 | 1164 |
|
| 1141 | 1165 |
typedef typename Graph::Edge Edge; |
| 1142 | 1166 |
typedef typename Graph::Node Node; |
| 1143 | 1167 |
|
| 1144 | 1168 |
/// \brief Constructor. |
| 1145 | 1169 |
/// |
| 1146 |
/// Construct a new ConEdgeIt iterating on the edges which |
|
| 1147 |
/// connects the \c u and \c v node. |
|
| 1170 |
/// Construct a new ConEdgeIt iterating on the edges that |
|
| 1171 |
/// connects nodes \c u and \c v. |
|
| 1148 | 1172 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
|
| 1149 | 1173 |
Parent::operator=(findEdge(_graph, u, v)); |
| 1150 | 1174 |
} |
| 1151 | 1175 |
|
| 1152 | 1176 |
/// \brief Constructor. |
| 1153 | 1177 |
/// |
| 1154 |
/// Construct a new ConEdgeIt which continues the iterating from |
|
| 1155 |
/// the \c e edge. |
|
| 1178 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
|
| 1156 | 1179 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
|
| 1157 | 1180 |
|
| 1158 | 1181 |
/// \brief Increment operator. |
| 1159 | 1182 |
/// |
| 1160 | 1183 |
/// It increments the iterator and gives back the next edge. |
| 1161 | 1184 |
ConEdgeIt& operator++() {
|
| 1162 | 1185 |
Parent::operator=(findEdge(_graph, _graph.u(*this), |
| 1163 | 1186 |
_graph.v(*this), *this)); |
| 1164 | 1187 |
return *this; |
| 1165 | 1188 |
} |
| 1166 | 1189 |
private: |
| 1167 | 1190 |
const Graph& _graph; |
| 1168 | 1191 |
}; |
| 1169 | 1192 |
|
| 1170 | 1193 |
|
| 1171 |
///Dynamic arc look |
|
| 1194 |
///Dynamic arc look-up between given endpoints. |
|
| 1172 | 1195 |
|
| 1173 | 1196 |
///Using this class, you can find an arc in a digraph from a given |
| 1174 |
///source to a given target in amortized time <em>O |
|
| 1197 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
|
| 1175 | 1198 |
///where <em>d</em> is the out-degree of the source node. |
| 1176 | 1199 |
/// |
| 1177 | 1200 |
///It is possible to find \e all parallel arcs between two nodes with |
| 1178 | 1201 |
///the \c operator() member. |
| 1179 | 1202 |
/// |
| 1180 |
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your |
|
| 1181 |
///digraph is not changed so frequently. |
|
| 1203 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
|
| 1204 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
|
| 1182 | 1205 |
/// |
| 1183 |
///This class uses a self-adjusting binary search tree, Sleator's |
|
| 1184 |
///and Tarjan's Splay tree for guarantee the logarithmic amortized |
|
| 1185 |
/// |
|
| 1206 |
///This class uses a self-adjusting binary search tree, the Splay tree |
|
| 1207 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
|
| 1208 |
///time bound for arc look-ups. This class also guarantees the |
|
| 1186 | 1209 |
///optimal time bound in a constant factor for any distribution of |
| 1187 | 1210 |
///queries. |
| 1188 | 1211 |
/// |
| 1189 | 1212 |
///\tparam G The type of the underlying digraph. |
| 1190 | 1213 |
/// |
| 1191 | 1214 |
///\sa ArcLookUp |
| 1192 | 1215 |
///\sa AllArcLookUp |
| 1193 | 1216 |
template<class G> |
| 1194 | 1217 |
class DynArcLookUp |
| 1195 | 1218 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
| 1196 | 1219 |
{
|
| 1197 | 1220 |
public: |
| 1198 | 1221 |
typedef typename ItemSetTraits<G, typename G::Arc> |
| 1199 | 1222 |
::ItemNotifier::ObserverBase Parent; |
| 1200 | 1223 |
|
| 1201 | 1224 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
| 1202 | 1225 |
typedef G Digraph; |
| 1203 | 1226 |
|
| 1204 | 1227 |
protected: |
| 1205 | 1228 |
|
| 1206 | 1229 |
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
|
| 1207 | 1230 |
public: |
| 1208 | 1231 |
|
| 1209 | 1232 |
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent; |
| 1210 | 1233 |
|
| 1211 | 1234 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
|
| 1212 | 1235 |
|
| 1213 | 1236 |
virtual void add(const Node& node) {
|
| 1214 | 1237 |
Parent::add(node); |
| 1215 | 1238 |
Parent::set(node, INVALID); |
| 1216 | 1239 |
} |
| 1217 | 1240 |
|
| 1218 | 1241 |
virtual void add(const std::vector<Node>& nodes) {
|
| 1219 | 1242 |
Parent::add(nodes); |
| 1220 | 1243 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 1221 | 1244 |
Parent::set(nodes[i], INVALID); |
| 1222 | 1245 |
} |
| 1223 | 1246 |
} |
| 1224 | 1247 |
|
| 1225 | 1248 |
virtual void build() {
|
| 1226 | 1249 |
Parent::build(); |
| 1227 | 1250 |
Node it; |
| 1228 | 1251 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 1229 | 1252 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 1230 | 1253 |
Parent::set(it, INVALID); |
| 1231 | 1254 |
} |
| 1232 | 1255 |
} |
| 1233 | 1256 |
}; |
| 1234 | 1257 |
|
| 1235 | 1258 |
const Digraph &_g; |
| 1236 | 1259 |
AutoNodeMap _head; |
| 1237 | 1260 |
typename Digraph::template ArcMap<Arc> _parent; |
| 1238 | 1261 |
typename Digraph::template ArcMap<Arc> _left; |
| 1239 | 1262 |
typename Digraph::template ArcMap<Arc> _right; |
| 1240 | 1263 |
|
| 1241 | 1264 |
class ArcLess {
|
| 1242 | 1265 |
const Digraph &g; |
| 1243 | 1266 |
public: |
| 1244 | 1267 |
ArcLess(const Digraph &_g) : g(_g) {}
|
| 1245 | 1268 |
bool operator()(Arc a,Arc b) const |
| 1246 | 1269 |
{
|
| 1247 | 1270 |
return g.target(a)<g.target(b); |
| 1248 | 1271 |
} |
| 1249 | 1272 |
}; |
| 1250 | 1273 |
|
| 1251 | 1274 |
public: |
| 1252 | 1275 |
|
| 1253 | 1276 |
///Constructor |
| 1254 | 1277 |
|
| 1255 | 1278 |
///Constructor. |
| 1256 | 1279 |
/// |
| 1257 | 1280 |
///It builds up the search database. |
| 1258 | 1281 |
DynArcLookUp(const Digraph &g) |
| 1259 | 1282 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
| 1260 | 1283 |
{
|
| 1261 | 1284 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
| 1262 | 1285 |
refresh(); |
| 1263 | 1286 |
} |
| 1264 | 1287 |
|
| 1265 | 1288 |
protected: |
| 1266 | 1289 |
|
| 1267 | 1290 |
virtual void add(const Arc& arc) {
|
| 1268 | 1291 |
insert(arc); |
| 1269 | 1292 |
} |
| 1270 | 1293 |
|
| 1271 | 1294 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 1272 | 1295 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 1273 | 1296 |
insert(arcs[i]); |
| 1274 | 1297 |
} |
| 1275 | 1298 |
} |
| 1276 | 1299 |
|
| 1277 | 1300 |
virtual void erase(const Arc& arc) {
|
| 1278 | 1301 |
remove(arc); |
| 1279 | 1302 |
} |
| 1280 | 1303 |
|
| 1281 | 1304 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 1282 | 1305 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 1283 | 1306 |
remove(arcs[i]); |
| 1284 | 1307 |
} |
| 1285 | 1308 |
} |
| 1286 | 1309 |
|
| 1287 | 1310 |
virtual void build() {
|
| 1288 | 1311 |
refresh(); |
| 1289 | 1312 |
} |
| 1290 | 1313 |
|
| 1291 | 1314 |
virtual void clear() {
|
| 1292 | 1315 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 1293 | 1316 |
_head.set(n, INVALID); |
| 1294 | 1317 |
} |
| 1295 | 1318 |
} |
| 1296 | 1319 |
|
| 1297 | 1320 |
void insert(Arc arc) {
|
| 1298 | 1321 |
Node s = _g.source(arc); |
| 1299 | 1322 |
Node t = _g.target(arc); |
| 1300 | 1323 |
_left.set(arc, INVALID); |
| 1301 | 1324 |
_right.set(arc, INVALID); |
| 1302 | 1325 |
|
| 1303 | 1326 |
Arc e = _head[s]; |
| 1304 | 1327 |
if (e == INVALID) {
|
| 1305 | 1328 |
_head.set(s, arc); |
| 1306 | 1329 |
_parent.set(arc, INVALID); |
| 1307 | 1330 |
return; |
| 1308 | 1331 |
} |
| 1309 | 1332 |
while (true) {
|
| 1310 | 1333 |
if (t < _g.target(e)) {
|
| 1311 | 1334 |
if (_left[e] == INVALID) {
|
| 1312 | 1335 |
_left.set(e, arc); |
| 1313 | 1336 |
_parent.set(arc, e); |
| 1314 | 1337 |
splay(arc); |
| 1315 | 1338 |
return; |
| 1316 | 1339 |
} else {
|
| 1317 | 1340 |
e = _left[e]; |
| 1318 | 1341 |
} |
| 1319 | 1342 |
} else {
|
| 1320 | 1343 |
if (_right[e] == INVALID) {
|
| 1321 | 1344 |
_right.set(e, arc); |
| 1322 | 1345 |
_parent.set(arc, e); |
| 1323 | 1346 |
splay(arc); |
| 1324 | 1347 |
return; |
| 1325 | 1348 |
} else {
|
| 1326 | 1349 |
e = _right[e]; |
| 1327 | 1350 |
} |
| 1328 | 1351 |
} |
| 1329 | 1352 |
} |
| 1330 | 1353 |
} |
| 1331 | 1354 |
|
| 1332 | 1355 |
void remove(Arc arc) {
|
| 1333 | 1356 |
if (_left[arc] == INVALID) {
|
| 1334 | 1357 |
if (_right[arc] != INVALID) {
|
| 1335 | 1358 |
_parent.set(_right[arc], _parent[arc]); |
| 1336 | 1359 |
} |
| 1337 | 1360 |
if (_parent[arc] != INVALID) {
|
| 1338 | 1361 |
if (_left[_parent[arc]] == arc) {
|
| 1339 | 1362 |
_left.set(_parent[arc], _right[arc]); |
| 1340 | 1363 |
} else {
|
| 1341 | 1364 |
_right.set(_parent[arc], _right[arc]); |
| 1342 | 1365 |
} |
| 1343 | 1366 |
} else {
|
| 1344 | 1367 |
_head.set(_g.source(arc), _right[arc]); |
| 1345 | 1368 |
} |
| 1346 | 1369 |
} else if (_right[arc] == INVALID) {
|
| 1347 | 1370 |
_parent.set(_left[arc], _parent[arc]); |
| 1348 | 1371 |
if (_parent[arc] != INVALID) {
|
| 1349 | 1372 |
if (_left[_parent[arc]] == arc) {
|
| 1350 | 1373 |
_left.set(_parent[arc], _left[arc]); |
| 1351 | 1374 |
} else {
|
| 1352 | 1375 |
_right.set(_parent[arc], _left[arc]); |
| 1353 | 1376 |
} |
| 1354 | 1377 |
} else {
|
| 1355 | 1378 |
_head.set(_g.source(arc), _left[arc]); |
| 1356 | 1379 |
} |
| 1357 | 1380 |
} else {
|
| 1358 | 1381 |
Arc e = _left[arc]; |
| 1359 | 1382 |
if (_right[e] != INVALID) {
|
| 1360 | 1383 |
e = _right[e]; |
| 1361 | 1384 |
while (_right[e] != INVALID) {
|
| 1362 | 1385 |
e = _right[e]; |
| 1363 | 1386 |
} |
| 1364 | 1387 |
Arc s = _parent[e]; |
| 1365 | 1388 |
_right.set(_parent[e], _left[e]); |
| 1366 | 1389 |
if (_left[e] != INVALID) {
|
| 1367 | 1390 |
_parent.set(_left[e], _parent[e]); |
| 1368 | 1391 |
} |
| 1369 | 1392 |
|
| 1370 | 1393 |
_left.set(e, _left[arc]); |
| 1371 | 1394 |
_parent.set(_left[arc], e); |
| 1372 | 1395 |
_right.set(e, _right[arc]); |
| 1373 | 1396 |
_parent.set(_right[arc], e); |
| 1374 | 1397 |
|
| 1375 | 1398 |
_parent.set(e, _parent[arc]); |
| 1376 | 1399 |
if (_parent[arc] != INVALID) {
|
| 1377 | 1400 |
if (_left[_parent[arc]] == arc) {
|
| 1378 | 1401 |
_left.set(_parent[arc], e); |
| 1379 | 1402 |
} else {
|
| 1380 | 1403 |
_right.set(_parent[arc], e); |
| 1381 | 1404 |
} |
| 1382 | 1405 |
} |
| 1383 | 1406 |
splay(s); |
| 1384 | 1407 |
} else {
|
| 1385 | 1408 |
_right.set(e, _right[arc]); |
| 1386 | 1409 |
_parent.set(_right[arc], e); |
| 1387 | 1410 |
_parent.set(e, _parent[arc]); |
| 1388 | 1411 |
|
| 1389 | 1412 |
if (_parent[arc] != INVALID) {
|
| 1390 | 1413 |
if (_left[_parent[arc]] == arc) {
|
| 1391 | 1414 |
_left.set(_parent[arc], e); |
| 1392 | 1415 |
} else {
|
| 1393 | 1416 |
_right.set(_parent[arc], e); |
| 1394 | 1417 |
} |
| 1395 | 1418 |
} else {
|
| 1396 | 1419 |
_head.set(_g.source(arc), e); |
| 1397 | 1420 |
} |
| 1398 | 1421 |
} |
| 1399 | 1422 |
} |
| 1400 | 1423 |
} |
| 1401 | 1424 |
|
| 1402 | 1425 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
| 1403 | 1426 |
{
|
| 1404 | 1427 |
int m=(a+b)/2; |
| 1405 | 1428 |
Arc me=v[m]; |
| 1406 | 1429 |
if (a < m) {
|
| 1407 | 1430 |
Arc left = refreshRec(v,a,m-1); |
| 1408 | 1431 |
_left.set(me, left); |
| 1409 | 1432 |
_parent.set(left, me); |
| 1410 | 1433 |
} else {
|
| 1411 | 1434 |
_left.set(me, INVALID); |
| 1412 | 1435 |
} |
| 1413 | 1436 |
if (m < b) {
|
| 1414 | 1437 |
Arc right = refreshRec(v,m+1,b); |
| 1415 | 1438 |
_right.set(me, right); |
| 1416 | 1439 |
_parent.set(right, me); |
| 1417 | 1440 |
} else {
|
| 1418 | 1441 |
_right.set(me, INVALID); |
| 1419 | 1442 |
} |
| 1420 | 1443 |
return me; |
| 1421 | 1444 |
} |
| 1422 | 1445 |
|
| 1423 | 1446 |
void refresh() {
|
| 1424 | 1447 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 1425 | 1448 |
std::vector<Arc> v; |
| 1426 | 1449 |
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
| 1427 | 1450 |
if (!v.empty()) {
|
| 1428 | 1451 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
| 1429 | 1452 |
Arc head = refreshRec(v,0,v.size()-1); |
| 1430 | 1453 |
_head.set(n, head); |
| 1431 | 1454 |
_parent.set(head, INVALID); |
| 1432 | 1455 |
} |
| 1433 | 1456 |
else _head.set(n, INVALID); |
| 1434 | 1457 |
} |
| 1435 | 1458 |
} |
| 1436 | 1459 |
|
| 1437 | 1460 |
void zig(Arc v) {
|
| 1438 | 1461 |
Arc w = _parent[v]; |
| 1439 | 1462 |
_parent.set(v, _parent[w]); |
| 1440 | 1463 |
_parent.set(w, v); |
| 1441 | 1464 |
_left.set(w, _right[v]); |
| 1442 | 1465 |
_right.set(v, w); |
| 1443 | 1466 |
if (_parent[v] != INVALID) {
|
| 1444 | 1467 |
if (_right[_parent[v]] == w) {
|
| 1445 | 1468 |
_right.set(_parent[v], v); |
| 1446 | 1469 |
} else {
|
| 1447 | 1470 |
_left.set(_parent[v], v); |
| 1448 | 1471 |
} |
| 1449 | 1472 |
} |
| 1450 | 1473 |
if (_left[w] != INVALID){
|
| 1451 | 1474 |
_parent.set(_left[w], w); |
| 1452 | 1475 |
} |
| 1453 | 1476 |
} |
| 1454 | 1477 |
|
| 1455 | 1478 |
void zag(Arc v) {
|
| 1456 | 1479 |
Arc w = _parent[v]; |
| 1457 | 1480 |
_parent.set(v, _parent[w]); |
| 1458 | 1481 |
_parent.set(w, v); |
| 1459 | 1482 |
_right.set(w, _left[v]); |
| 1460 | 1483 |
_left.set(v, w); |
| 1461 | 1484 |
if (_parent[v] != INVALID){
|
| 1462 | 1485 |
if (_left[_parent[v]] == w) {
|
| 1463 | 1486 |
_left.set(_parent[v], v); |
| 1464 | 1487 |
} else {
|
| 1465 | 1488 |
_right.set(_parent[v], v); |
| 1466 | 1489 |
} |
| 1467 | 1490 |
} |
| 1468 | 1491 |
if (_right[w] != INVALID){
|
| 1469 | 1492 |
_parent.set(_right[w], w); |
| 1470 | 1493 |
} |
| 1471 | 1494 |
} |
| 1472 | 1495 |
|
| 1473 | 1496 |
void splay(Arc v) {
|
| 1474 | 1497 |
while (_parent[v] != INVALID) {
|
| 1475 | 1498 |
if (v == _left[_parent[v]]) {
|
| 1476 | 1499 |
if (_parent[_parent[v]] == INVALID) {
|
| 1477 | 1500 |
zig(v); |
| 1478 | 1501 |
} else {
|
| 1479 | 1502 |
if (_parent[v] == _left[_parent[_parent[v]]]) {
|
| 1480 | 1503 |
zig(_parent[v]); |
| 1481 | 1504 |
zig(v); |
| 1482 | 1505 |
} else {
|
| 1483 | 1506 |
zig(v); |
| 1484 | 1507 |
zag(v); |
| 1485 | 1508 |
} |
| 1486 | 1509 |
} |
| 1487 | 1510 |
} else {
|
| 1488 | 1511 |
if (_parent[_parent[v]] == INVALID) {
|
| 1489 | 1512 |
zag(v); |
| 1490 | 1513 |
} else {
|
| 1491 | 1514 |
if (_parent[v] == _left[_parent[_parent[v]]]) {
|
| 1492 | 1515 |
zag(v); |
| 1493 | 1516 |
zig(v); |
| 1494 | 1517 |
} else {
|
| 1495 | 1518 |
zag(_parent[v]); |
| 1496 | 1519 |
zag(v); |
| 1497 | 1520 |
} |
| 1498 | 1521 |
} |
| 1499 | 1522 |
} |
| 1500 | 1523 |
} |
| 1501 | 1524 |
_head[_g.source(v)] = v; |
| 1502 | 1525 |
} |
| 1503 | 1526 |
|
| 1504 | 1527 |
|
| 1505 | 1528 |
public: |
| 1506 | 1529 |
|
| 1507 | 1530 |
///Find an arc between two nodes. |
| 1508 | 1531 |
|
| 1509 | 1532 |
///Find an arc between two nodes. |
| 1510 |
///\param s The source node |
|
| 1511 |
///\param t The target node |
|
| 1533 |
///\param s The source node. |
|
| 1534 |
///\param t The target node. |
|
| 1512 | 1535 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
| 1513 | 1536 |
///not given, the operator finds the first appropriate arc. |
| 1514 | 1537 |
///\return An arc from \c s to \c t after \c p or |
| 1515 | 1538 |
///\ref INVALID if there is no more. |
| 1516 | 1539 |
/// |
| 1517 | 1540 |
///For example, you can count the number of arcs from \c u to \c v in the |
| 1518 | 1541 |
///following way. |
| 1519 | 1542 |
///\code |
| 1520 | 1543 |
///DynArcLookUp<ListDigraph> ae(g); |
| 1521 | 1544 |
///... |
| 1522 |
///int n=0; |
|
| 1523 |
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; |
|
| 1545 |
///int n = 0; |
|
| 1546 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
|
| 1524 | 1547 |
///\endcode |
| 1525 | 1548 |
/// |
| 1526 |
///Finding the arcs take at most <em>O |
|
| 1549 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
|
| 1527 | 1550 |
///amortized time, specifically, the time complexity of the lookups |
| 1528 | 1551 |
///is equal to the optimal search tree implementation for the |
| 1529 | 1552 |
///current query distribution in a constant factor. |
| 1530 | 1553 |
/// |
| 1531 | 1554 |
///\note This is a dynamic data structure, therefore the data |
| 1532 |
///structure is updated after each graph alteration. However, |
|
| 1533 |
///theoretically this data structure is faster than \c ArcLookUp |
|
| 1534 |
/// |
|
| 1555 |
///structure is updated after each graph alteration. Thus although |
|
| 1556 |
///this data structure is theoretically faster than \ref ArcLookUp |
|
| 1557 |
///and \ref AllArcLookup, it often provides worse performance than |
|
| 1535 | 1558 |
///them. |
| 1536 |
/// |
|
| 1537 | 1559 |
Arc operator()(Node s, Node t, Arc p = INVALID) const {
|
| 1538 | 1560 |
if (p == INVALID) {
|
| 1539 | 1561 |
Arc a = _head[s]; |
| 1540 | 1562 |
if (a == INVALID) return INVALID; |
| 1541 | 1563 |
Arc r = INVALID; |
| 1542 | 1564 |
while (true) {
|
| 1543 | 1565 |
if (_g.target(a) < t) {
|
| 1544 | 1566 |
if (_right[a] == INVALID) {
|
| 1545 | 1567 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 1546 | 1568 |
return r; |
| 1547 | 1569 |
} else {
|
| 1548 | 1570 |
a = _right[a]; |
| 1549 | 1571 |
} |
| 1550 | 1572 |
} else {
|
| 1551 | 1573 |
if (_g.target(a) == t) {
|
| 1552 | 1574 |
r = a; |
| 1553 | 1575 |
} |
| 1554 | 1576 |
if (_left[a] == INVALID) {
|
| 1555 | 1577 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 1556 | 1578 |
return r; |
| 1557 | 1579 |
} else {
|
| 1558 | 1580 |
a = _left[a]; |
| 1559 | 1581 |
} |
| 1560 | 1582 |
} |
| 1561 | 1583 |
} |
| 1562 | 1584 |
} else {
|
| 1563 | 1585 |
Arc a = p; |
| 1564 | 1586 |
if (_right[a] != INVALID) {
|
| 1565 | 1587 |
a = _right[a]; |
| 1566 | 1588 |
while (_left[a] != INVALID) {
|
| 1567 | 1589 |
a = _left[a]; |
| 1568 | 1590 |
} |
| 1569 | 1591 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 1570 | 1592 |
} else {
|
| 1571 | 1593 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) {
|
| 1572 | 1594 |
a = _parent[a]; |
| 1573 | 1595 |
} |
| 1574 | 1596 |
if (_parent[a] == INVALID) {
|
| 1575 | 1597 |
return INVALID; |
| 1576 | 1598 |
} else {
|
| 1577 | 1599 |
a = _parent[a]; |
| 1578 | 1600 |
const_cast<DynArcLookUp&>(*this).splay(a); |
| 1579 | 1601 |
} |
| 1580 | 1602 |
} |
| 1581 | 1603 |
if (_g.target(a) == t) return a; |
| 1582 | 1604 |
else return INVALID; |
| 1583 | 1605 |
} |
| 1584 | 1606 |
} |
| 1585 | 1607 |
|
| 1586 | 1608 |
}; |
| 1587 | 1609 |
|
| 1588 |
///Fast arc look |
|
| 1610 |
///Fast arc look-up between given endpoints. |
|
| 1589 | 1611 |
|
| 1590 | 1612 |
///Using this class, you can find an arc in a digraph from a given |
| 1591 |
///source to a given target in time <em>O(log |
|
| 1613 |
///source to a given target in time <em>O</em>(log<em>d</em>), |
|
| 1592 | 1614 |
///where <em>d</em> is the out-degree of the source node. |
| 1593 | 1615 |
/// |
| 1594 | 1616 |
///It is not possible to find \e all parallel arcs between two nodes. |
| 1595 | 1617 |
///Use \ref AllArcLookUp for this purpose. |
| 1596 | 1618 |
/// |
| 1597 |
///\warning This class is static, so you should refresh() (or at least |
|
| 1598 |
///refresh(Node)) this data structure |
|
| 1599 |
///whenever the digraph changes. This is a time consuming (superlinearly |
|
| 1600 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
|
| 1619 |
///\warning This class is static, so you should call refresh() (or at |
|
| 1620 |
///least refresh(Node)) to refresh this data structure whenever the |
|
| 1621 |
///digraph changes. This is a time consuming (superlinearly proportional |
|
| 1622 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
|
| 1601 | 1623 |
/// |
| 1602 | 1624 |
///\tparam G The type of the underlying digraph. |
| 1603 | 1625 |
/// |
| 1604 | 1626 |
///\sa DynArcLookUp |
| 1605 | 1627 |
///\sa AllArcLookUp |
| 1606 | 1628 |
template<class G> |
| 1607 | 1629 |
class ArcLookUp |
| 1608 | 1630 |
{
|
| 1609 | 1631 |
public: |
| 1610 | 1632 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
| 1611 | 1633 |
typedef G Digraph; |
| 1612 | 1634 |
|
| 1613 | 1635 |
protected: |
| 1614 | 1636 |
const Digraph &_g; |
| 1615 | 1637 |
typename Digraph::template NodeMap<Arc> _head; |
| 1616 | 1638 |
typename Digraph::template ArcMap<Arc> _left; |
| 1617 | 1639 |
typename Digraph::template ArcMap<Arc> _right; |
| 1618 | 1640 |
|
| 1619 | 1641 |
class ArcLess {
|
| 1620 | 1642 |
const Digraph &g; |
| 1621 | 1643 |
public: |
| 1622 | 1644 |
ArcLess(const Digraph &_g) : g(_g) {}
|
| 1623 | 1645 |
bool operator()(Arc a,Arc b) const |
| 1624 | 1646 |
{
|
| 1625 | 1647 |
return g.target(a)<g.target(b); |
| 1626 | 1648 |
} |
| 1627 | 1649 |
}; |
| 1628 | 1650 |
|
| 1629 | 1651 |
public: |
| 1630 | 1652 |
|
| 1631 | 1653 |
///Constructor |
| 1632 | 1654 |
|
| 1633 | 1655 |
///Constructor. |
| 1634 | 1656 |
/// |
| 1635 | 1657 |
///It builds up the search database, which remains valid until the digraph |
| 1636 | 1658 |
///changes. |
| 1637 | 1659 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
|
| 1638 | 1660 |
|
| 1639 | 1661 |
private: |
| 1640 | 1662 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
| 1641 | 1663 |
{
|
| 1642 | 1664 |
int m=(a+b)/2; |
| 1643 | 1665 |
Arc me=v[m]; |
| 1644 | 1666 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
| 1645 | 1667 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
| 1646 | 1668 |
return me; |
| 1647 | 1669 |
} |
| 1648 | 1670 |
public: |
| 1649 |
///Refresh the data structure at a node. |
|
| 1671 |
///Refresh the search data structure at a node. |
|
| 1650 | 1672 |
|
| 1651 | 1673 |
///Build up the search database of node \c n. |
| 1652 | 1674 |
/// |
| 1653 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
|
| 1654 |
///the number of the outgoing arcs of \c n. |
|
| 1675 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
|
| 1676 |
///is the number of the outgoing arcs of \c n. |
|
| 1655 | 1677 |
void refresh(Node n) |
| 1656 | 1678 |
{
|
| 1657 | 1679 |
std::vector<Arc> v; |
| 1658 | 1680 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
| 1659 | 1681 |
if(v.size()) {
|
| 1660 | 1682 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
| 1661 | 1683 |
_head[n]=refreshRec(v,0,v.size()-1); |
| 1662 | 1684 |
} |
| 1663 | 1685 |
else _head[n]=INVALID; |
| 1664 | 1686 |
} |
| 1665 | 1687 |
///Refresh the full data structure. |
| 1666 | 1688 |
|
| 1667 | 1689 |
///Build up the full search database. In fact, it simply calls |
| 1668 | 1690 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
| 1669 | 1691 |
/// |
| 1670 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
|
| 1671 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
|
| 1692 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
|
| 1693 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
|
| 1672 | 1694 |
///out-degree of the digraph. |
| 1673 |
|
|
| 1674 | 1695 |
void refresh() |
| 1675 | 1696 |
{
|
| 1676 | 1697 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
| 1677 | 1698 |
} |
| 1678 | 1699 |
|
| 1679 | 1700 |
///Find an arc between two nodes. |
| 1680 | 1701 |
|
| 1681 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
|
| 1682 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
|
| 1683 |
///\param s The source node |
|
| 1684 |
///\param t The target node |
|
| 1702 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), where |
|
| 1703 |
///<em>d</em> is the number of outgoing arcs of \c s. |
|
| 1704 |
///\param s The source node. |
|
| 1705 |
///\param t The target node. |
|
| 1685 | 1706 |
///\return An arc from \c s to \c t if there exists, |
| 1686 | 1707 |
///\ref INVALID otherwise. |
| 1687 | 1708 |
/// |
| 1688 | 1709 |
///\warning If you change the digraph, refresh() must be called before using |
| 1689 | 1710 |
///this operator. If you change the outgoing arcs of |
| 1690 |
///a single node \c n, then |
|
| 1691 |
///\ref refresh(Node) "refresh(n)" is enough. |
|
| 1692 |
/// |
|
| 1711 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
|
| 1693 | 1712 |
Arc operator()(Node s, Node t) const |
| 1694 | 1713 |
{
|
| 1695 | 1714 |
Arc e; |
| 1696 | 1715 |
for(e=_head[s]; |
| 1697 | 1716 |
e!=INVALID&&_g.target(e)!=t; |
| 1698 | 1717 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
| 1699 | 1718 |
return e; |
| 1700 | 1719 |
} |
| 1701 | 1720 |
|
| 1702 | 1721 |
}; |
| 1703 | 1722 |
|
| 1704 |
///Fast look |
|
| 1723 |
///Fast look-up of all arcs between given endpoints. |
|
| 1705 | 1724 |
|
| 1706 | 1725 |
///This class is the same as \ref ArcLookUp, with the addition |
| 1707 |
///that it makes it possible to find all arcs between given |
|
| 1726 |
///that it makes it possible to find all parallel arcs between given |
|
| 1727 |
///endpoints. |
|
| 1708 | 1728 |
/// |
| 1709 |
///\warning This class is static, so you should refresh() (or at least |
|
| 1710 |
///refresh(Node)) this data structure |
|
| 1711 |
///whenever the digraph changes. This is a time consuming (superlinearly |
|
| 1712 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
|
| 1729 |
///\warning This class is static, so you should call refresh() (or at |
|
| 1730 |
///least refresh(Node)) to refresh this data structure whenever the |
|
| 1731 |
///digraph changes. This is a time consuming (superlinearly proportional |
|
| 1732 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
|
| 1713 | 1733 |
/// |
| 1714 | 1734 |
///\tparam G The type of the underlying digraph. |
| 1715 | 1735 |
/// |
| 1716 | 1736 |
///\sa DynArcLookUp |
| 1717 | 1737 |
///\sa ArcLookUp |
| 1718 | 1738 |
template<class G> |
| 1719 | 1739 |
class AllArcLookUp : public ArcLookUp<G> |
| 1720 | 1740 |
{
|
| 1721 | 1741 |
using ArcLookUp<G>::_g; |
| 1722 | 1742 |
using ArcLookUp<G>::_right; |
| 1723 | 1743 |
using ArcLookUp<G>::_left; |
| 1724 | 1744 |
using ArcLookUp<G>::_head; |
| 1725 | 1745 |
|
| 1726 | 1746 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
| 1727 | 1747 |
typedef G Digraph; |
| 1728 | 1748 |
|
| 1729 | 1749 |
typename Digraph::template ArcMap<Arc> _next; |
| 1730 | 1750 |
|
| 1731 | 1751 |
Arc refreshNext(Arc head,Arc next=INVALID) |
| 1732 | 1752 |
{
|
| 1733 | 1753 |
if(head==INVALID) return next; |
| 1734 | 1754 |
else {
|
| 1735 | 1755 |
next=refreshNext(_right[head],next); |
| 1736 |
// _next[head]=next; |
|
| 1737 | 1756 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
| 1738 | 1757 |
? next : INVALID; |
| 1739 | 1758 |
return refreshNext(_left[head],head); |
| 1740 | 1759 |
} |
| 1741 | 1760 |
} |
| 1742 | 1761 |
|
| 1743 | 1762 |
void refreshNext() |
| 1744 | 1763 |
{
|
| 1745 | 1764 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
| 1746 | 1765 |
} |
| 1747 | 1766 |
|
| 1748 | 1767 |
public: |
| 1749 | 1768 |
///Constructor |
| 1750 | 1769 |
|
| 1751 | 1770 |
///Constructor. |
| 1752 | 1771 |
/// |
| 1753 | 1772 |
///It builds up the search database, which remains valid until the digraph |
| 1754 | 1773 |
///changes. |
| 1755 | 1774 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
|
| 1756 | 1775 |
|
| 1757 | 1776 |
///Refresh the data structure at a node. |
| 1758 | 1777 |
|
| 1759 | 1778 |
///Build up the search database of node \c n. |
| 1760 | 1779 |
/// |
| 1761 |
///It runs in time <em>O(d</em>log<em>d |
|
| 1780 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
|
| 1762 | 1781 |
///the number of the outgoing arcs of \c n. |
| 1763 |
|
|
| 1764 | 1782 |
void refresh(Node n) |
| 1765 | 1783 |
{
|
| 1766 | 1784 |
ArcLookUp<G>::refresh(n); |
| 1767 | 1785 |
refreshNext(_head[n]); |
| 1768 | 1786 |
} |
| 1769 | 1787 |
|
| 1770 | 1788 |
///Refresh the full data structure. |
| 1771 | 1789 |
|
| 1772 | 1790 |
///Build up the full search database. In fact, it simply calls |
| 1773 | 1791 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
| 1774 | 1792 |
/// |
| 1775 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
|
| 1776 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
|
| 1793 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
|
| 1794 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
|
| 1777 | 1795 |
///out-degree of the digraph. |
| 1778 |
|
|
| 1779 | 1796 |
void refresh() |
| 1780 | 1797 |
{
|
| 1781 | 1798 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
| 1782 | 1799 |
} |
| 1783 | 1800 |
|
| 1784 | 1801 |
///Find an arc between two nodes. |
| 1785 | 1802 |
|
| 1786 | 1803 |
///Find an arc between two nodes. |
| 1787 |
///\param s The source node |
|
| 1788 |
///\param t The target node |
|
| 1804 |
///\param s The source node. |
|
| 1805 |
///\param t The target node. |
|
| 1789 | 1806 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
| 1790 | 1807 |
///not given, the operator finds the first appropriate arc. |
| 1791 | 1808 |
///\return An arc from \c s to \c t after \c prev or |
| 1792 | 1809 |
///\ref INVALID if there is no more. |
| 1793 | 1810 |
/// |
| 1794 | 1811 |
///For example, you can count the number of arcs from \c u to \c v in the |
| 1795 | 1812 |
///following way. |
| 1796 | 1813 |
///\code |
| 1797 | 1814 |
///AllArcLookUp<ListDigraph> ae(g); |
| 1798 | 1815 |
///... |
| 1799 |
///int n=0; |
|
| 1800 |
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; |
|
| 1816 |
///int n = 0; |
|
| 1817 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
|
| 1801 | 1818 |
///\endcode |
| 1802 | 1819 |
/// |
| 1803 |
///Finding the first arc take <em>O(</em>log<em>d)</em> time, where |
|
| 1804 |
/// <em>d</em> is the number of outgoing arcs of \c s. Then, the |
|
| 1820 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, where |
|
| 1821 |
///<em>d</em> is the number of outgoing arcs of \c s. Then, the |
|
| 1805 | 1822 |
///consecutive arcs are found in constant time. |
| 1806 | 1823 |
/// |
| 1807 | 1824 |
///\warning If you change the digraph, refresh() must be called before using |
| 1808 | 1825 |
///this operator. If you change the outgoing arcs of |
| 1809 |
///a single node \c n, then |
|
| 1810 |
///\ref refresh(Node) "refresh(n)" is enough. |
|
| 1826 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
|
| 1811 | 1827 |
/// |
| 1812 | 1828 |
#ifdef DOXYGEN |
| 1813 | 1829 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
|
| 1814 | 1830 |
#else |
| 1815 | 1831 |
using ArcLookUp<G>::operator() ; |
| 1816 | 1832 |
Arc operator()(Node s, Node t, Arc prev) const |
| 1817 | 1833 |
{
|
| 1818 | 1834 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
| 1819 | 1835 |
} |
| 1820 | 1836 |
#endif |
| 1821 | 1837 |
|
| 1822 | 1838 |
}; |
| 1823 | 1839 |
|
| 1824 | 1840 |
/// @} |
| 1825 | 1841 |
|
| 1826 | 1842 |
} //namespace lemon |
| 1827 | 1843 |
|
| 1828 | 1844 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/assert.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
#include <lemon/path.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
///Default traits class of Dfs class. |
| 37 | 37 |
|
| 38 | 38 |
///Default traits class of Dfs class. |
| 39 | 39 |
///\tparam GR Digraph type. |
| 40 | 40 |
template<class GR> |
| 41 | 41 |
struct DfsDefaultTraits |
| 42 | 42 |
{
|
| 43 | 43 |
///The type of the digraph the algorithm runs on. |
| 44 | 44 |
typedef GR Digraph; |
| 45 | 45 |
|
| 46 | 46 |
///\brief The type of the map that stores the predecessor |
| 47 | 47 |
///arcs of the %DFS paths. |
| 48 | 48 |
/// |
| 49 | 49 |
///The type of the map that stores the predecessor |
| 50 | 50 |
///arcs of the %DFS paths. |
| 51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 52 | 52 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 53 | 53 |
///Instantiates a \ref PredMap. |
| 54 | 54 |
|
| 55 | 55 |
///This function instantiates a \ref PredMap. |
| 56 | 56 |
///\param g is the digraph, to which we would like to define the |
| 57 | 57 |
///\ref PredMap. |
| 58 |
///\todo The digraph alone may be insufficient to initialize |
|
| 59 | 58 |
static PredMap *createPredMap(const Digraph &g) |
| 60 | 59 |
{
|
| 61 | 60 |
return new PredMap(g); |
| 62 | 61 |
} |
| 63 | 62 |
|
| 64 | 63 |
///The type of the map that indicates which nodes are processed. |
| 65 | 64 |
|
| 66 | 65 |
///The type of the map that indicates which nodes are processed. |
| 67 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 68 |
///By default it is a NullMap. |
|
| 69 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 70 | 68 |
///Instantiates a \ref ProcessedMap. |
| 71 | 69 |
|
| 72 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 73 | 71 |
///\param g is the digraph, to which |
| 74 | 72 |
///we would like to define the \ref ProcessedMap |
| 75 | 73 |
#ifdef DOXYGEN |
| 76 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 77 | 75 |
#else |
| 78 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 79 | 77 |
#endif |
| 80 | 78 |
{
|
| 81 | 79 |
return new ProcessedMap(); |
| 82 | 80 |
} |
| 83 | 81 |
|
| 84 | 82 |
///The type of the map that indicates which nodes are reached. |
| 85 | 83 |
|
| 86 | 84 |
///The type of the map that indicates which nodes are reached. |
| 87 | 85 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 88 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 89 | 87 |
///Instantiates a \ref ReachedMap. |
| 90 | 88 |
|
| 91 | 89 |
///This function instantiates a \ref ReachedMap. |
| 92 | 90 |
///\param g is the digraph, to which |
| 93 | 91 |
///we would like to define the \ref ReachedMap. |
| 94 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 95 | 93 |
{
|
| 96 | 94 |
return new ReachedMap(g); |
| 97 | 95 |
} |
| 98 | 96 |
|
| 99 | 97 |
///The type of the map that stores the distances of the nodes. |
| 100 | 98 |
|
| 101 | 99 |
///The type of the map that stores the distances of the nodes. |
| 102 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 103 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 104 | 102 |
///Instantiates a \ref DistMap. |
| 105 | 103 |
|
| 106 | 104 |
///This function instantiates a \ref DistMap. |
| 107 | 105 |
///\param g is the digraph, to which we would like to define the |
| 108 | 106 |
///\ref DistMap. |
| 109 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 110 | 108 |
{
|
| 111 | 109 |
return new DistMap(g); |
| 112 | 110 |
} |
| 113 | 111 |
}; |
| 114 | 112 |
|
| 115 | 113 |
///%DFS algorithm class. |
| 116 | 114 |
|
| 117 | 115 |
///\ingroup search |
| 118 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 119 | 117 |
/// |
| 120 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 121 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 122 | 120 |
///used easier. |
| 123 | 121 |
/// |
| 124 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 125 | 123 |
///The default value is \ref ListDigraph. The value of GR is not used |
| 126 | 124 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
| 127 | 125 |
///\tparam TR Traits class to set various data types used by the algorithm. |
| 128 | 126 |
///The default traits class is |
| 129 | 127 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
| 130 | 128 |
///See \ref DfsDefaultTraits for the documentation of |
| 131 | 129 |
///a Dfs traits class. |
| 132 | 130 |
#ifdef DOXYGEN |
| 133 | 131 |
template <typename GR, |
| 134 | 132 |
typename TR> |
| 135 | 133 |
#else |
| 136 | 134 |
template <typename GR=ListDigraph, |
| 137 | 135 |
typename TR=DfsDefaultTraits<GR> > |
| 138 | 136 |
#endif |
| 139 | 137 |
class Dfs {
|
| 140 | 138 |
public: |
| 141 | 139 |
///\ref Exception for uninitialized parameters. |
| 142 | 140 |
|
| 143 | 141 |
///This error represents problems in the initialization of the |
| 144 | 142 |
///parameters of the algorithm. |
| 145 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 146 | 144 |
public: |
| 147 | 145 |
virtual const char* what() const throw() {
|
| 148 | 146 |
return "lemon::Dfs::UninitializedParameter"; |
| 149 | 147 |
} |
| 150 | 148 |
}; |
| 151 | 149 |
|
| 152 | 150 |
///The type of the digraph the algorithm runs on. |
| 153 | 151 |
typedef typename TR::Digraph Digraph; |
| 154 | 152 |
|
| 155 | 153 |
///\brief The type of the map that stores the predecessor arcs of the |
| 156 | 154 |
///DFS paths. |
| 157 | 155 |
typedef typename TR::PredMap PredMap; |
| 158 | 156 |
///The type of the map that stores the distances of the nodes. |
| 159 | 157 |
typedef typename TR::DistMap DistMap; |
| 160 | 158 |
///The type of the map that indicates which nodes are reached. |
| 161 | 159 |
typedef typename TR::ReachedMap ReachedMap; |
| 162 | 160 |
///The type of the map that indicates which nodes are processed. |
| 163 | 161 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 164 | 162 |
///The type of the paths. |
| 165 | 163 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 166 | 164 |
|
| 167 | 165 |
///The traits class. |
| 168 | 166 |
typedef TR Traits; |
| 169 | 167 |
|
| 170 | 168 |
private: |
| 171 | 169 |
|
| 172 | 170 |
typedef typename Digraph::Node Node; |
| 173 | 171 |
typedef typename Digraph::NodeIt NodeIt; |
| 174 | 172 |
typedef typename Digraph::Arc Arc; |
| 175 | 173 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 176 | 174 |
|
| 177 | 175 |
//Pointer to the underlying digraph. |
| 178 | 176 |
const Digraph *G; |
| 179 | 177 |
//Pointer to the map of predecessor arcs. |
| 180 | 178 |
PredMap *_pred; |
| 181 | 179 |
//Indicates if _pred is locally allocated (true) or not. |
| 182 | 180 |
bool local_pred; |
| 183 | 181 |
//Pointer to the map of distances. |
| 184 | 182 |
DistMap *_dist; |
| 185 | 183 |
//Indicates if _dist is locally allocated (true) or not. |
| 186 | 184 |
bool local_dist; |
| 187 | 185 |
//Pointer to the map of reached status of the nodes. |
| 188 | 186 |
ReachedMap *_reached; |
| 189 | 187 |
//Indicates if _reached is locally allocated (true) or not. |
| 190 | 188 |
bool local_reached; |
| 191 | 189 |
//Pointer to the map of processed status of the nodes. |
| 192 | 190 |
ProcessedMap *_processed; |
| 193 | 191 |
//Indicates if _processed is locally allocated (true) or not. |
| 194 | 192 |
bool local_processed; |
| 195 | 193 |
|
| 196 | 194 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 197 | 195 |
int _stack_head; |
| 198 | 196 |
|
| 199 |
///Creates the maps if necessary. |
|
| 200 |
///\todo Better memory allocation (instead of new). |
|
| 197 |
//Creates the maps if necessary. |
|
| 201 | 198 |
void create_maps() |
| 202 | 199 |
{
|
| 203 | 200 |
if(!_pred) {
|
| 204 | 201 |
local_pred = true; |
| 205 | 202 |
_pred = Traits::createPredMap(*G); |
| 206 | 203 |
} |
| 207 | 204 |
if(!_dist) {
|
| 208 | 205 |
local_dist = true; |
| 209 | 206 |
_dist = Traits::createDistMap(*G); |
| 210 | 207 |
} |
| 211 | 208 |
if(!_reached) {
|
| 212 | 209 |
local_reached = true; |
| 213 | 210 |
_reached = Traits::createReachedMap(*G); |
| 214 | 211 |
} |
| 215 | 212 |
if(!_processed) {
|
| 216 | 213 |
local_processed = true; |
| 217 | 214 |
_processed = Traits::createProcessedMap(*G); |
| 218 | 215 |
} |
| 219 | 216 |
} |
| 220 | 217 |
|
| 221 | 218 |
protected: |
| 222 | 219 |
|
| 223 | 220 |
Dfs() {}
|
| 224 | 221 |
|
| 225 | 222 |
public: |
| 226 | 223 |
|
| 227 | 224 |
typedef Dfs Create; |
| 228 | 225 |
|
| 229 | 226 |
///\name Named template parameters |
| 230 | 227 |
|
| 231 | 228 |
///@{
|
| 232 | 229 |
|
| 233 | 230 |
template <class T> |
| 234 | 231 |
struct SetPredMapTraits : public Traits {
|
| 235 | 232 |
typedef T PredMap; |
| 236 | 233 |
static PredMap *createPredMap(const Digraph &) |
| 237 | 234 |
{
|
| 238 | 235 |
throw UninitializedParameter(); |
| 239 | 236 |
} |
| 240 | 237 |
}; |
| 241 | 238 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 242 | 239 |
///\ref PredMap type. |
| 243 | 240 |
/// |
| 244 | 241 |
///\ref named-templ-param "Named parameter" for setting |
| 245 | 242 |
///\ref PredMap type. |
| 246 | 243 |
template <class T> |
| 247 | 244 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 248 | 245 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 249 | 246 |
}; |
| 250 | 247 |
|
| 251 | 248 |
template <class T> |
| 252 | 249 |
struct SetDistMapTraits : public Traits {
|
| 253 | 250 |
typedef T DistMap; |
| 254 | 251 |
static DistMap *createDistMap(const Digraph &) |
| 255 | 252 |
{
|
| 256 | 253 |
throw UninitializedParameter(); |
| 257 | 254 |
} |
| 258 | 255 |
}; |
| 259 | 256 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 260 | 257 |
///\ref DistMap type. |
| 261 | 258 |
/// |
| 262 | 259 |
///\ref named-templ-param "Named parameter" for setting |
| 263 | 260 |
///\ref DistMap type. |
| 264 | 261 |
template <class T> |
| 265 | 262 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 266 | 263 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 267 | 264 |
}; |
| 268 | 265 |
|
| 269 | 266 |
template <class T> |
| 270 | 267 |
struct SetReachedMapTraits : public Traits {
|
| 271 | 268 |
typedef T ReachedMap; |
| 272 | 269 |
static ReachedMap *createReachedMap(const Digraph &) |
| 273 | 270 |
{
|
| 274 | 271 |
throw UninitializedParameter(); |
| 275 | 272 |
} |
| 276 | 273 |
}; |
| 277 | 274 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 278 | 275 |
///\ref ReachedMap type. |
| 279 | 276 |
/// |
| 280 | 277 |
///\ref named-templ-param "Named parameter" for setting |
| 281 | 278 |
///\ref ReachedMap type. |
| 282 | 279 |
template <class T> |
| 283 | 280 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 284 | 281 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 285 | 282 |
}; |
| 286 | 283 |
|
| 287 | 284 |
template <class T> |
| 288 | 285 |
struct SetProcessedMapTraits : public Traits {
|
| 289 | 286 |
typedef T ProcessedMap; |
| 290 | 287 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 291 | 288 |
{
|
| 292 | 289 |
throw UninitializedParameter(); |
| 293 | 290 |
} |
| 294 | 291 |
}; |
| 295 | 292 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 296 | 293 |
///\ref ProcessedMap type. |
| 297 | 294 |
/// |
| 298 | 295 |
///\ref named-templ-param "Named parameter" for setting |
| 299 | 296 |
///\ref ProcessedMap type. |
| 300 | 297 |
template <class T> |
| 301 | 298 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 302 | 299 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 303 | 300 |
}; |
| 304 | 301 |
|
| 305 | 302 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 306 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 307 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 308 | 305 |
{
|
| 309 | 306 |
return new ProcessedMap(g); |
| 310 | 307 |
} |
| 311 | 308 |
}; |
| 312 | 309 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 313 | 310 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 314 | 311 |
/// |
| 315 | 312 |
///\ref named-templ-param "Named parameter" for setting |
| 316 | 313 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 317 | 314 |
///If you don't set it explicitly, it will be automatically allocated. |
| 318 | 315 |
struct SetStandardProcessedMap : |
| 319 | 316 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 320 | 317 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 321 | 318 |
}; |
| 322 | 319 |
|
| 323 | 320 |
///@} |
| 324 | 321 |
|
| 325 | 322 |
public: |
| 326 | 323 |
|
| 327 | 324 |
///Constructor. |
| 328 | 325 |
|
| 329 | 326 |
///Constructor. |
| 330 | 327 |
///\param g The digraph the algorithm runs on. |
| 331 | 328 |
Dfs(const Digraph &g) : |
| 332 | 329 |
G(&g), |
| 333 | 330 |
_pred(NULL), local_pred(false), |
| 334 | 331 |
_dist(NULL), local_dist(false), |
| 335 | 332 |
_reached(NULL), local_reached(false), |
| 336 | 333 |
_processed(NULL), local_processed(false) |
| 337 | 334 |
{ }
|
| 338 | 335 |
|
| 339 | 336 |
///Destructor. |
| 340 | 337 |
~Dfs() |
| 341 | 338 |
{
|
| 342 | 339 |
if(local_pred) delete _pred; |
| 343 | 340 |
if(local_dist) delete _dist; |
| 344 | 341 |
if(local_reached) delete _reached; |
| 345 | 342 |
if(local_processed) delete _processed; |
| 346 | 343 |
} |
| 347 | 344 |
|
| 348 | 345 |
///Sets the map that stores the predecessor arcs. |
| 349 | 346 |
|
| 350 | 347 |
///Sets the map that stores the predecessor arcs. |
| 351 | 348 |
///If you don't use this function before calling \ref run(), |
| 352 | 349 |
///it will allocate one. The destructor deallocates this |
| 353 | 350 |
///automatically allocated map, of course. |
| 354 | 351 |
///\return <tt> (*this) </tt> |
| 355 | 352 |
Dfs &predMap(PredMap &m) |
| 356 | 353 |
{
|
| 357 | 354 |
if(local_pred) {
|
| 358 | 355 |
delete _pred; |
| 359 | 356 |
local_pred=false; |
| 360 | 357 |
} |
| 361 | 358 |
_pred = &m; |
| 362 | 359 |
return *this; |
| 363 | 360 |
} |
| 364 | 361 |
|
| 365 | 362 |
///Sets the map that indicates which nodes are reached. |
| 366 | 363 |
|
| 367 | 364 |
///Sets the map that indicates which nodes are reached. |
| 368 | 365 |
///If you don't use this function before calling \ref run(), |
| 369 | 366 |
///it will allocate one. The destructor deallocates this |
| 370 | 367 |
///automatically allocated map, of course. |
| 371 | 368 |
///\return <tt> (*this) </tt> |
| 372 | 369 |
Dfs &reachedMap(ReachedMap &m) |
| 373 | 370 |
{
|
| 374 | 371 |
if(local_reached) {
|
| 375 | 372 |
delete _reached; |
| 376 | 373 |
local_reached=false; |
| 377 | 374 |
} |
| 378 | 375 |
_reached = &m; |
| 379 | 376 |
return *this; |
| 380 | 377 |
} |
| 381 | 378 |
|
| 382 | 379 |
///Sets the map that indicates which nodes are processed. |
| 383 | 380 |
|
| 384 | 381 |
///Sets the map that indicates which nodes are processed. |
| 385 | 382 |
///If you don't use this function before calling \ref run(), |
| 386 | 383 |
///it will allocate one. The destructor deallocates this |
| 387 | 384 |
///automatically allocated map, of course. |
| 388 | 385 |
///\return <tt> (*this) </tt> |
| 389 | 386 |
Dfs &processedMap(ProcessedMap &m) |
| 390 | 387 |
{
|
| 391 | 388 |
if(local_processed) {
|
| 392 | 389 |
delete _processed; |
| 393 | 390 |
local_processed=false; |
| 394 | 391 |
} |
| 395 | 392 |
_processed = &m; |
| 396 | 393 |
return *this; |
| 397 | 394 |
} |
| 398 | 395 |
|
| 399 | 396 |
///Sets the map that stores the distances of the nodes. |
| 400 | 397 |
|
| 401 | 398 |
///Sets the map that stores the distances of the nodes calculated by |
| 402 | 399 |
///the algorithm. |
| 403 | 400 |
///If you don't use this function before calling \ref run(), |
| 404 | 401 |
///it will allocate one. The destructor deallocates this |
| 405 | 402 |
///automatically allocated map, of course. |
| 406 | 403 |
///\return <tt> (*this) </tt> |
| 407 | 404 |
Dfs &distMap(DistMap &m) |
| 408 | 405 |
{
|
| 409 | 406 |
if(local_dist) {
|
| 410 | 407 |
delete _dist; |
| 411 | 408 |
local_dist=false; |
| 412 | 409 |
} |
| 413 | 410 |
_dist = &m; |
| 414 | 411 |
return *this; |
| 415 | 412 |
} |
| 416 | 413 |
|
| 417 | 414 |
public: |
| 418 | 415 |
|
| 419 | 416 |
///\name Execution control |
| 420 | 417 |
///The simplest way to execute the algorithm is to use |
| 421 | 418 |
///one of the member functions called \ref lemon::Dfs::run() "run()". |
| 422 | 419 |
///\n |
| 423 | 420 |
///If you need more control on the execution, first you must call |
| 424 | 421 |
///\ref lemon::Dfs::init() "init()", then you can add a source node |
| 425 | 422 |
///with \ref lemon::Dfs::addSource() "addSource()". |
| 426 | 423 |
///Finally \ref lemon::Dfs::start() "start()" will perform the |
| 427 | 424 |
///actual path computation. |
| 428 | 425 |
|
| 429 | 426 |
///@{
|
| 430 | 427 |
|
| 431 | 428 |
///Initializes the internal data structures. |
| 432 | 429 |
|
| 433 | 430 |
///Initializes the internal data structures. |
| 434 | 431 |
/// |
| 435 | 432 |
void init() |
| 436 | 433 |
{
|
| 437 | 434 |
create_maps(); |
| 438 | 435 |
_stack.resize(countNodes(*G)); |
| 439 | 436 |
_stack_head=-1; |
| 440 | 437 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 441 | 438 |
_pred->set(u,INVALID); |
| 442 | 439 |
_reached->set(u,false); |
| 443 | 440 |
_processed->set(u,false); |
| 444 | 441 |
} |
| 445 | 442 |
} |
| 446 | 443 |
|
| 447 | 444 |
///Adds a new source node. |
| 448 | 445 |
|
| 449 | 446 |
///Adds a new source node to the set of nodes to be processed. |
| 450 | 447 |
/// |
| 451 | 448 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
| 452 | 449 |
///false results.) |
| 453 | 450 |
/// |
| 454 | 451 |
///\warning Distances will be wrong (or at least strange) in case of |
| 455 | 452 |
///multiple sources. |
| 456 | 453 |
void addSource(Node s) |
| 457 | 454 |
{
|
| 458 | 455 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 459 | 456 |
if(!(*_reached)[s]) |
| 460 | 457 |
{
|
| 461 | 458 |
_reached->set(s,true); |
| 462 | 459 |
_pred->set(s,INVALID); |
| 463 | 460 |
OutArcIt e(*G,s); |
| 464 | 461 |
if(e!=INVALID) {
|
| 465 | 462 |
_stack[++_stack_head]=e; |
| 466 | 463 |
_dist->set(s,_stack_head); |
| 467 | 464 |
} |
| 468 | 465 |
else {
|
| 469 | 466 |
_processed->set(s,true); |
| 470 | 467 |
_dist->set(s,0); |
| 471 | 468 |
} |
| 472 | 469 |
} |
| 473 | 470 |
} |
| 474 | 471 |
|
| 475 | 472 |
///Processes the next arc. |
| 476 | 473 |
|
| 477 | 474 |
///Processes the next arc. |
| 478 | 475 |
/// |
| 479 | 476 |
///\return The processed arc. |
| 480 | 477 |
/// |
| 481 | 478 |
///\pre The stack must not be empty. |
| 482 | 479 |
Arc processNextArc() |
| 483 | 480 |
{
|
| 484 | 481 |
Node m; |
| 485 | 482 |
Arc e=_stack[_stack_head]; |
| 486 | 483 |
if(!(*_reached)[m=G->target(e)]) {
|
| 487 | 484 |
_pred->set(m,e); |
| 488 | 485 |
_reached->set(m,true); |
| 489 | 486 |
++_stack_head; |
| 490 | 487 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 491 | 488 |
_dist->set(m,_stack_head); |
| 492 | 489 |
} |
| 493 | 490 |
else {
|
| 494 | 491 |
m=G->source(e); |
| 495 | 492 |
++_stack[_stack_head]; |
| 496 | 493 |
} |
| 497 | 494 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 498 | 495 |
_processed->set(m,true); |
| 499 | 496 |
--_stack_head; |
| 500 | 497 |
if(_stack_head>=0) {
|
| 501 | 498 |
m=G->source(_stack[_stack_head]); |
| 502 | 499 |
++_stack[_stack_head]; |
| 503 | 500 |
} |
| 504 | 501 |
} |
| 505 | 502 |
return e; |
| 506 | 503 |
} |
| 507 | 504 |
|
| 508 | 505 |
///Next arc to be processed. |
| 509 | 506 |
|
| 510 | 507 |
///Next arc to be processed. |
| 511 | 508 |
/// |
| 512 | 509 |
///\return The next arc to be processed or \c INVALID if the stack |
| 513 | 510 |
///is empty. |
| 514 | 511 |
OutArcIt nextArc() const |
| 515 | 512 |
{
|
| 516 | 513 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 517 | 514 |
} |
| 518 | 515 |
|
| 519 | 516 |
///\brief Returns \c false if there are nodes |
| 520 | 517 |
///to be processed. |
| 521 | 518 |
/// |
| 522 | 519 |
///Returns \c false if there are nodes |
| 523 | 520 |
///to be processed in the queue (stack). |
| 524 | 521 |
bool emptyQueue() const { return _stack_head<0; }
|
| 525 | 522 |
|
| 526 | 523 |
///Returns the number of the nodes to be processed. |
| 527 | 524 |
|
| 528 | 525 |
///Returns the number of the nodes to be processed in the queue (stack). |
| 529 | 526 |
int queueSize() const { return _stack_head+1; }
|
| 530 | 527 |
|
| 531 | 528 |
///Executes the algorithm. |
| 532 | 529 |
|
| 533 | 530 |
///Executes the algorithm. |
| 534 | 531 |
/// |
| 535 | 532 |
///This method runs the %DFS algorithm from the root node |
| 536 | 533 |
///in order to compute the DFS path to each node. |
| 537 | 534 |
/// |
| 538 | 535 |
/// The algorithm computes |
| 539 | 536 |
///- the %DFS tree, |
| 540 | 537 |
///- the distance of each node from the root in the %DFS tree. |
| 541 | 538 |
/// |
| 542 | 539 |
///\pre init() must be called and a root node should be |
| 543 | 540 |
///added with addSource() before using this function. |
| 544 | 541 |
/// |
| 545 | 542 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 546 | 543 |
///\code |
| 547 | 544 |
/// while ( !d.emptyQueue() ) {
|
| 548 | 545 |
/// d.processNextArc(); |
| 549 | 546 |
/// } |
| 550 | 547 |
///\endcode |
| 551 | 548 |
void start() |
| 552 | 549 |
{
|
| 553 | 550 |
while ( !emptyQueue() ) processNextArc(); |
| 554 | 551 |
} |
| 555 | 552 |
|
| 556 | 553 |
///Executes the algorithm until the given target node is reached. |
| 557 | 554 |
|
| 558 | 555 |
///Executes the algorithm until the given target node is reached. |
| 559 | 556 |
/// |
| 560 | 557 |
///This method runs the %DFS algorithm from the root node |
| 561 | 558 |
///in order to compute the DFS path to \c t. |
| 562 | 559 |
/// |
| 563 | 560 |
///The algorithm computes |
| 564 | 561 |
///- the %DFS path to \c t, |
| 565 | 562 |
///- the distance of \c t from the root in the %DFS tree. |
| 566 | 563 |
/// |
| 567 | 564 |
///\pre init() must be called and a root node should be |
| 568 | 565 |
///added with addSource() before using this function. |
| 569 | 566 |
void start(Node t) |
| 570 | 567 |
{
|
| 571 | 568 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
| 572 | 569 |
processNextArc(); |
| 573 | 570 |
} |
| 574 | 571 |
|
| 575 | 572 |
///Executes the algorithm until a condition is met. |
| 576 | 573 |
|
| 577 | 574 |
///Executes the algorithm until a condition is met. |
| 578 | 575 |
/// |
| 579 | 576 |
///This method runs the %DFS algorithm from the root node |
| 580 | 577 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 581 | 578 |
/// |
| 582 | 579 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 583 | 580 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 584 | 581 |
/// |
| 585 | 582 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 586 | 583 |
///\c INVALID if no such arc was found. |
| 587 | 584 |
/// |
| 588 | 585 |
///\pre init() must be called and a root node should be |
| 589 | 586 |
///added with addSource() before using this function. |
| 590 | 587 |
/// |
| 591 | 588 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 592 | 589 |
///not a node map. |
| 593 | 590 |
template<class ArcBoolMap> |
| 594 | 591 |
Arc start(const ArcBoolMap &am) |
| 595 | 592 |
{
|
| 596 | 593 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 597 | 594 |
processNextArc(); |
| 598 | 595 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 599 | 596 |
} |
| 600 | 597 |
|
| 601 | 598 |
///Runs the algorithm from the given source node. |
| 602 | 599 |
|
| 603 | 600 |
///This method runs the %DFS algorithm from node \c s |
| 604 | 601 |
///in order to compute the DFS path to each node. |
| 605 | 602 |
/// |
| 606 | 603 |
///The algorithm computes |
| 607 | 604 |
///- the %DFS tree, |
| 608 | 605 |
///- the distance of each node from the root in the %DFS tree. |
| 609 | 606 |
/// |
| 610 | 607 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 611 | 608 |
///\code |
| 612 | 609 |
/// d.init(); |
| 613 | 610 |
/// d.addSource(s); |
| 614 | 611 |
/// d.start(); |
| 615 | 612 |
///\endcode |
| 616 | 613 |
void run(Node s) {
|
| 617 | 614 |
init(); |
| 618 | 615 |
addSource(s); |
| 619 | 616 |
start(); |
| 620 | 617 |
} |
| 621 | 618 |
|
| 622 | 619 |
///Finds the %DFS path between \c s and \c t. |
| 623 | 620 |
|
| 624 | 621 |
///This method runs the %DFS algorithm from node \c s |
| 625 | 622 |
///in order to compute the DFS path to node \c t |
| 626 | 623 |
///(it stops searching when \c t is processed) |
| 627 | 624 |
/// |
| 628 | 625 |
///\return \c true if \c t is reachable form \c s. |
| 629 | 626 |
/// |
| 630 | 627 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 631 | 628 |
///just a shortcut of the following code. |
| 632 | 629 |
///\code |
| 633 | 630 |
/// d.init(); |
| 634 | 631 |
/// d.addSource(s); |
| 635 | 632 |
/// d.start(t); |
| 636 | 633 |
///\endcode |
| 637 | 634 |
bool run(Node s,Node t) {
|
| 638 | 635 |
init(); |
| 639 | 636 |
addSource(s); |
| 640 | 637 |
start(t); |
| 641 | 638 |
return reached(t); |
| 642 | 639 |
} |
| 643 | 640 |
|
| 644 | 641 |
///Runs the algorithm to visit all nodes in the digraph. |
| 645 | 642 |
|
| 646 | 643 |
///This method runs the %DFS algorithm in order to compute the |
| 647 | 644 |
///%DFS path to each node. |
| 648 | 645 |
/// |
| 649 | 646 |
///The algorithm computes |
| 650 | 647 |
///- the %DFS tree, |
| 651 | 648 |
///- the distance of each node from the root in the %DFS tree. |
| 652 | 649 |
/// |
| 653 | 650 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 654 | 651 |
///\code |
| 655 | 652 |
/// d.init(); |
| 656 | 653 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 657 | 654 |
/// if (!d.reached(n)) {
|
| 658 | 655 |
/// d.addSource(n); |
| 659 | 656 |
/// d.start(); |
| 660 | 657 |
/// } |
| 661 | 658 |
/// } |
| 662 | 659 |
///\endcode |
| 663 | 660 |
void run() {
|
| 664 | 661 |
init(); |
| 665 | 662 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 666 | 663 |
if (!reached(it)) {
|
| 667 | 664 |
addSource(it); |
| 668 | 665 |
start(); |
| 669 | 666 |
} |
| 670 | 667 |
} |
| 671 | 668 |
} |
| 672 | 669 |
|
| 673 | 670 |
///@} |
| 674 | 671 |
|
| 675 | 672 |
///\name Query Functions |
| 676 | 673 |
///The result of the %DFS algorithm can be obtained using these |
| 677 | 674 |
///functions.\n |
| 678 | 675 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
| 679 | 676 |
///"start()" must be called before using them. |
| 680 | 677 |
|
| 681 | 678 |
///@{
|
| 682 | 679 |
|
| 683 | 680 |
///The DFS path to a node. |
| 684 | 681 |
|
| 685 | 682 |
///Returns the DFS path to a node. |
| 686 | 683 |
/// |
| 687 | 684 |
///\warning \c t should be reachable from the root. |
| 688 | 685 |
/// |
| 689 | 686 |
///\pre Either \ref run() or \ref start() must be called before |
| 690 | 687 |
///using this function. |
| 691 | 688 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 692 | 689 |
|
| 693 | 690 |
///The distance of a node from the root. |
| 694 | 691 |
|
| 695 | 692 |
///Returns the distance of a node from the root. |
| 696 | 693 |
/// |
| 697 | 694 |
///\warning If node \c v is not reachable from the root, then |
| 698 | 695 |
///the return value of this function is undefined. |
| 699 | 696 |
/// |
| 700 | 697 |
///\pre Either \ref run() or \ref start() must be called before |
| 701 | 698 |
///using this function. |
| 702 | 699 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 703 | 700 |
|
| 704 | 701 |
///Returns the 'previous arc' of the %DFS tree for a node. |
| 705 | 702 |
|
| 706 | 703 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 707 | 704 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
| 708 | 705 |
///root to \c v. It is \c INVALID |
| 709 | 706 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 710 | 707 |
/// |
| 711 | 708 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 712 | 709 |
///\ref predNode(). |
| 713 | 710 |
/// |
| 714 | 711 |
///\pre Either \ref run() or \ref start() must be called before using |
| 715 | 712 |
///this function. |
| 716 | 713 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 717 | 714 |
|
| 718 | 715 |
///Returns the 'previous node' of the %DFS tree. |
| 719 | 716 |
|
| 720 | 717 |
///This function returns the 'previous node' of the %DFS |
| 721 | 718 |
///tree for the node \c v, i.e. it returns the last but one node |
| 722 | 719 |
///from a %DFS path from the root to \c v. It is \c INVALID |
| 723 | 720 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 724 | 721 |
/// |
| 725 | 722 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 726 | 723 |
///\ref predArc(). |
| 727 | 724 |
/// |
| 728 | 725 |
///\pre Either \ref run() or \ref start() must be called before |
| 729 | 726 |
///using this function. |
| 730 | 727 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 731 | 728 |
G->source((*_pred)[v]); } |
| 732 | 729 |
|
| 733 | 730 |
///\brief Returns a const reference to the node map that stores the |
| 734 | 731 |
///distances of the nodes. |
| 735 | 732 |
/// |
| 736 | 733 |
///Returns a const reference to the node map that stores the |
| 737 | 734 |
///distances of the nodes calculated by the algorithm. |
| 738 | 735 |
/// |
| 739 | 736 |
///\pre Either \ref run() or \ref init() |
| 740 | 737 |
///must be called before using this function. |
| 741 | 738 |
const DistMap &distMap() const { return *_dist;}
|
| 742 | 739 |
|
| 743 | 740 |
///\brief Returns a const reference to the node map that stores the |
| 744 | 741 |
///predecessor arcs. |
| 745 | 742 |
/// |
| 746 | 743 |
///Returns a const reference to the node map that stores the predecessor |
| 747 | 744 |
///arcs, which form the DFS tree. |
| 748 | 745 |
/// |
| 749 | 746 |
///\pre Either \ref run() or \ref init() |
| 750 | 747 |
///must be called before using this function. |
| 751 | 748 |
const PredMap &predMap() const { return *_pred;}
|
| 752 | 749 |
|
| 753 | 750 |
///Checks if a node is reachable from the root(s). |
| 754 | 751 |
|
| 755 | 752 |
///Returns \c true if \c v is reachable from the root(s). |
| 756 | 753 |
///\pre Either \ref run() or \ref start() |
| 757 | 754 |
///must be called before using this function. |
| 758 | 755 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 759 | 756 |
|
| 760 | 757 |
///@} |
| 761 | 758 |
}; |
| 762 | 759 |
|
| 763 | 760 |
///Default traits class of dfs() function. |
| 764 | 761 |
|
| 765 | 762 |
///Default traits class of dfs() function. |
| 766 | 763 |
///\tparam GR Digraph type. |
| 767 | 764 |
template<class GR> |
| 768 | 765 |
struct DfsWizardDefaultTraits |
| 769 | 766 |
{
|
| 770 | 767 |
///The type of the digraph the algorithm runs on. |
| 771 | 768 |
typedef GR Digraph; |
| 772 | 769 |
|
| 773 | 770 |
///\brief The type of the map that stores the predecessor |
| 774 | 771 |
///arcs of the %DFS paths. |
| 775 | 772 |
/// |
| 776 | 773 |
///The type of the map that stores the predecessor |
| 777 | 774 |
///arcs of the %DFS paths. |
| 778 | 775 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 779 | 776 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 780 | 777 |
///Instantiates a \ref PredMap. |
| 781 | 778 |
|
| 782 | 779 |
///This function instantiates a \ref PredMap. |
| 783 | 780 |
///\param g is the digraph, to which we would like to define the |
| 784 | 781 |
///\ref PredMap. |
| 785 |
///\todo The digraph alone may be insufficient to initialize |
|
| 786 | 782 |
static PredMap *createPredMap(const Digraph &g) |
| 787 | 783 |
{
|
| 788 | 784 |
return new PredMap(g); |
| 789 | 785 |
} |
| 790 | 786 |
|
| 791 | 787 |
///The type of the map that indicates which nodes are processed. |
| 792 | 788 |
|
| 793 | 789 |
///The type of the map that indicates which nodes are processed. |
| 794 | 790 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 795 | 791 |
///By default it is a NullMap. |
| 796 | 792 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 797 | 793 |
///Instantiates a \ref ProcessedMap. |
| 798 | 794 |
|
| 799 | 795 |
///This function instantiates a \ref ProcessedMap. |
| 800 | 796 |
///\param g is the digraph, to which |
| 801 | 797 |
///we would like to define the \ref ProcessedMap. |
| 802 | 798 |
#ifdef DOXYGEN |
| 803 | 799 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 804 | 800 |
#else |
| 805 | 801 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 806 | 802 |
#endif |
| 807 | 803 |
{
|
| 808 | 804 |
return new ProcessedMap(); |
| 809 | 805 |
} |
| 810 | 806 |
|
| 811 | 807 |
///The type of the map that indicates which nodes are reached. |
| 812 | 808 |
|
| 813 | 809 |
///The type of the map that indicates which nodes are reached. |
| 814 | 810 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 815 | 811 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 816 | 812 |
///Instantiates a \ref ReachedMap. |
| 817 | 813 |
|
| 818 | 814 |
///This function instantiates a \ref ReachedMap. |
| 819 | 815 |
///\param g is the digraph, to which |
| 820 | 816 |
///we would like to define the \ref ReachedMap. |
| 821 | 817 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 822 | 818 |
{
|
| 823 | 819 |
return new ReachedMap(g); |
| 824 | 820 |
} |
| 825 | 821 |
|
| 826 | 822 |
///The type of the map that stores the distances of the nodes. |
| 827 | 823 |
|
| 828 | 824 |
///The type of the map that stores the distances of the nodes. |
| 829 | 825 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 830 | 826 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 831 | 827 |
///Instantiates a \ref DistMap. |
| 832 | 828 |
|
| 833 | 829 |
///This function instantiates a \ref DistMap. |
| 834 | 830 |
///\param g is the digraph, to which we would like to define |
| 835 | 831 |
///the \ref DistMap |
| 836 | 832 |
static DistMap *createDistMap(const Digraph &g) |
| 837 | 833 |
{
|
| 838 | 834 |
return new DistMap(g); |
| 839 | 835 |
} |
| 840 | 836 |
|
| 841 | 837 |
///The type of the DFS paths. |
| 842 | 838 |
|
| 843 | 839 |
///The type of the DFS paths. |
| 844 | 840 |
///It must meet the \ref concepts::Path "Path" concept. |
| 845 | 841 |
typedef lemon::Path<Digraph> Path; |
| 846 | 842 |
}; |
| 847 | 843 |
|
| 848 | 844 |
/// Default traits class used by \ref DfsWizard |
| 849 | 845 |
|
| 850 | 846 |
/// To make it easier to use Dfs algorithm |
| 851 | 847 |
/// we have created a wizard class. |
| 852 | 848 |
/// This \ref DfsWizard class needs default traits, |
| 853 | 849 |
/// as well as the \ref Dfs class. |
| 854 | 850 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
| 855 | 851 |
/// \ref DfsWizard class. |
| 856 | 852 |
template<class GR> |
| 857 | 853 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 858 | 854 |
{
|
| 859 | 855 |
|
| 860 | 856 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 861 | 857 |
protected: |
| 862 | 858 |
//The type of the nodes in the digraph. |
| 863 | 859 |
typedef typename Base::Digraph::Node Node; |
| 864 | 860 |
|
| 865 | 861 |
//Pointer to the digraph the algorithm runs on. |
| 866 | 862 |
void *_g; |
| 867 | 863 |
//Pointer to the map of reached nodes. |
| 868 | 864 |
void *_reached; |
| 869 | 865 |
//Pointer to the map of processed nodes. |
| 870 | 866 |
void *_processed; |
| 871 | 867 |
//Pointer to the map of predecessors arcs. |
| 872 | 868 |
void *_pred; |
| 873 | 869 |
//Pointer to the map of distances. |
| 874 | 870 |
void *_dist; |
| 875 | 871 |
//Pointer to the DFS path to the target node. |
| 876 | 872 |
void *_path; |
| 877 | 873 |
//Pointer to the distance of the target node. |
| 878 | 874 |
int *_di; |
| 879 | 875 |
|
| 880 | 876 |
public: |
| 881 | 877 |
/// Constructor. |
| 882 | 878 |
|
| 883 | 879 |
/// This constructor does not require parameters, therefore it initiates |
| 884 | 880 |
/// all of the attributes to \c 0. |
| 885 | 881 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 886 | 882 |
_dist(0), _path(0), _di(0) {}
|
| 887 | 883 |
|
| 888 | 884 |
/// Constructor. |
| 889 | 885 |
|
| 890 | 886 |
/// This constructor requires one parameter, |
| 891 | 887 |
/// others are initiated to \c 0. |
| 892 | 888 |
/// \param g The digraph the algorithm runs on. |
| 893 | 889 |
DfsWizardBase(const GR &g) : |
| 894 | 890 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 895 | 891 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 896 | 892 |
|
| 897 | 893 |
}; |
| 898 | 894 |
|
| 899 | 895 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 900 | 896 |
|
| 901 | 897 |
/// This auxiliary class is created to implement the |
| 902 | 898 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 903 | 899 |
/// It does not have own \ref run() method, it uses the functions |
| 904 | 900 |
/// and features of the plain \ref Dfs. |
| 905 | 901 |
/// |
| 906 | 902 |
/// This class should only be used through the \ref dfs() function, |
| 907 | 903 |
/// which makes it easier to use the algorithm. |
| 908 | 904 |
template<class TR> |
| 909 | 905 |
class DfsWizard : public TR |
| 910 | 906 |
{
|
| 911 | 907 |
typedef TR Base; |
| 912 | 908 |
|
| 913 | 909 |
///The type of the digraph the algorithm runs on. |
| 914 | 910 |
typedef typename TR::Digraph Digraph; |
| 915 | 911 |
|
| 916 | 912 |
typedef typename Digraph::Node Node; |
| 917 | 913 |
typedef typename Digraph::NodeIt NodeIt; |
| 918 | 914 |
typedef typename Digraph::Arc Arc; |
| 919 | 915 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 920 | 916 |
|
| 921 | 917 |
///\brief The type of the map that stores the predecessor |
| 922 | 918 |
///arcs of the DFS paths. |
| 923 | 919 |
typedef typename TR::PredMap PredMap; |
| 924 | 920 |
///\brief The type of the map that stores the distances of the nodes. |
| 925 | 921 |
typedef typename TR::DistMap DistMap; |
| 926 | 922 |
///\brief The type of the map that indicates which nodes are reached. |
| 927 | 923 |
typedef typename TR::ReachedMap ReachedMap; |
| 928 | 924 |
///\brief The type of the map that indicates which nodes are processed. |
| 929 | 925 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 930 | 926 |
///The type of the DFS paths |
| 931 | 927 |
typedef typename TR::Path Path; |
| 932 | 928 |
|
| 933 | 929 |
public: |
| 934 | 930 |
|
| 935 | 931 |
/// Constructor. |
| 936 | 932 |
DfsWizard() : TR() {}
|
| 937 | 933 |
|
| 938 | 934 |
/// Constructor that requires parameters. |
| 939 | 935 |
|
| 940 | 936 |
/// Constructor that requires parameters. |
| 941 | 937 |
/// These parameters will be the default values for the traits class. |
| 942 | 938 |
/// \param g The digraph the algorithm runs on. |
| 943 | 939 |
DfsWizard(const Digraph &g) : |
| 944 | 940 |
TR(g) {}
|
| 945 | 941 |
|
| 946 | 942 |
///Copy constructor |
| 947 | 943 |
DfsWizard(const TR &b) : TR(b) {}
|
| 948 | 944 |
|
| 949 | 945 |
~DfsWizard() {}
|
| 950 | 946 |
|
| 951 | 947 |
///Runs DFS algorithm from the given source node. |
| 952 | 948 |
|
| 953 | 949 |
///This method runs DFS algorithm from node \c s |
| 954 | 950 |
///in order to compute the DFS path to each node. |
| 955 | 951 |
void run(Node s) |
| 956 | 952 |
{
|
| 957 | 953 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 958 | 954 |
if (Base::_pred) |
| 959 | 955 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 960 | 956 |
if (Base::_dist) |
| 961 | 957 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 962 | 958 |
if (Base::_reached) |
| 963 | 959 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 964 | 960 |
if (Base::_processed) |
| 965 | 961 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 966 | 962 |
if (s!=INVALID) |
| 967 | 963 |
alg.run(s); |
| 968 | 964 |
else |
| 969 | 965 |
alg.run(); |
| 970 | 966 |
} |
| 971 | 967 |
|
| 972 | 968 |
///Finds the DFS path between \c s and \c t. |
| 973 | 969 |
|
| 974 | 970 |
///This method runs DFS algorithm from node \c s |
| 975 | 971 |
///in order to compute the DFS path to node \c t |
| 976 | 972 |
///(it stops searching when \c t is processed). |
| 977 | 973 |
/// |
| 978 | 974 |
///\return \c true if \c t is reachable form \c s. |
| 979 | 975 |
bool run(Node s, Node t) |
| 980 | 976 |
{
|
| 981 | 977 |
if (s==INVALID || t==INVALID) throw UninitializedParameter(); |
| 982 | 978 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 983 | 979 |
if (Base::_pred) |
| 984 | 980 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 985 | 981 |
if (Base::_dist) |
| 986 | 982 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 987 | 983 |
if (Base::_reached) |
| 988 | 984 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 989 | 985 |
if (Base::_processed) |
| 990 | 986 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 991 | 987 |
alg.run(s,t); |
| 992 | 988 |
if (Base::_path) |
| 993 | 989 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 994 | 990 |
if (Base::_di) |
| 995 | 991 |
*Base::_di = alg.dist(t); |
| 996 | 992 |
return alg.reached(t); |
| 997 | 993 |
} |
| 998 | 994 |
|
| 999 | 995 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 1000 | 996 |
|
| 1001 | 997 |
///This method runs DFS algorithm in order to compute |
| 1002 | 998 |
///the DFS path to each node. |
| 1003 | 999 |
void run() |
| 1004 | 1000 |
{
|
| 1005 | 1001 |
run(INVALID); |
| 1006 | 1002 |
} |
| 1007 | 1003 |
|
| 1008 | 1004 |
template<class T> |
| 1009 | 1005 |
struct SetPredMapBase : public Base {
|
| 1010 | 1006 |
typedef T PredMap; |
| 1011 | 1007 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1012 | 1008 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1013 | 1009 |
}; |
| 1014 | 1010 |
///\brief \ref named-func-param "Named parameter" |
| 1015 | 1011 |
///for setting \ref PredMap object. |
| 1016 | 1012 |
/// |
| 1017 | 1013 |
///\ref named-func-param "Named parameter" |
| 1018 | 1014 |
///for setting \ref PredMap object. |
| 1019 | 1015 |
template<class T> |
| 1020 | 1016 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1021 | 1017 |
{
|
| 1022 | 1018 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1023 | 1019 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1024 | 1020 |
} |
| 1025 | 1021 |
|
| 1026 | 1022 |
template<class T> |
| 1027 | 1023 |
struct SetReachedMapBase : public Base {
|
| 1028 | 1024 |
typedef T ReachedMap; |
| 1029 | 1025 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1030 | 1026 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1031 | 1027 |
}; |
| 1032 | 1028 |
///\brief \ref named-func-param "Named parameter" |
| 1033 | 1029 |
///for setting \ref ReachedMap object. |
| 1034 | 1030 |
/// |
| 1035 | 1031 |
/// \ref named-func-param "Named parameter" |
| 1036 | 1032 |
///for setting \ref ReachedMap object. |
| 1037 | 1033 |
template<class T> |
| 1038 | 1034 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1039 | 1035 |
{
|
| 1040 | 1036 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1041 | 1037 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1042 | 1038 |
} |
| 1043 | 1039 |
|
| 1044 | 1040 |
template<class T> |
| 1045 | 1041 |
struct SetDistMapBase : public Base {
|
| 1046 | 1042 |
typedef T DistMap; |
| 1047 | 1043 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1048 | 1044 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1049 | 1045 |
}; |
| 1050 | 1046 |
///\brief \ref named-func-param "Named parameter" |
| 1051 | 1047 |
///for setting \ref DistMap object. |
| 1052 | 1048 |
/// |
| 1053 | 1049 |
/// \ref named-func-param "Named parameter" |
| 1054 | 1050 |
///for setting \ref DistMap object. |
| 1055 | 1051 |
template<class T> |
| 1056 | 1052 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1057 | 1053 |
{
|
| 1058 | 1054 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1059 | 1055 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1060 | 1056 |
} |
| 1061 | 1057 |
|
| 1062 | 1058 |
template<class T> |
| 1063 | 1059 |
struct SetProcessedMapBase : public Base {
|
| 1064 | 1060 |
typedef T ProcessedMap; |
| 1065 | 1061 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1066 | 1062 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1067 | 1063 |
}; |
| 1068 | 1064 |
///\brief \ref named-func-param "Named parameter" |
| 1069 | 1065 |
///for setting \ref ProcessedMap object. |
| 1070 | 1066 |
/// |
| 1071 | 1067 |
/// \ref named-func-param "Named parameter" |
| 1072 | 1068 |
///for setting \ref ProcessedMap object. |
| 1073 | 1069 |
template<class T> |
| 1074 | 1070 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1075 | 1071 |
{
|
| 1076 | 1072 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1077 | 1073 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1078 | 1074 |
} |
| 1079 | 1075 |
|
| 1080 | 1076 |
template<class T> |
| 1081 | 1077 |
struct SetPathBase : public Base {
|
| 1082 | 1078 |
typedef T Path; |
| 1083 | 1079 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1084 | 1080 |
}; |
| 1085 | 1081 |
///\brief \ref named-func-param "Named parameter" |
| 1086 | 1082 |
///for getting the DFS path to the target node. |
| 1087 | 1083 |
/// |
| 1088 | 1084 |
///\ref named-func-param "Named parameter" |
| 1089 | 1085 |
///for getting the DFS path to the target node. |
| 1090 | 1086 |
template<class T> |
| 1091 | 1087 |
DfsWizard<SetPathBase<T> > path(const T &t) |
| 1092 | 1088 |
{
|
| 1093 | 1089 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1094 | 1090 |
return DfsWizard<SetPathBase<T> >(*this); |
| 1095 | 1091 |
} |
| 1096 | 1092 |
|
| 1097 | 1093 |
///\brief \ref named-func-param "Named parameter" |
| 1098 | 1094 |
///for getting the distance of the target node. |
| 1099 | 1095 |
/// |
| 1100 | 1096 |
///\ref named-func-param "Named parameter" |
| 1101 | 1097 |
///for getting the distance of the target node. |
| 1102 | 1098 |
DfsWizard dist(const int &d) |
| 1103 | 1099 |
{
|
| 1104 | 1100 |
Base::_di=const_cast<int*>(&d); |
| 1105 | 1101 |
return *this; |
| 1106 | 1102 |
} |
| 1107 | 1103 |
|
| 1108 | 1104 |
}; |
| 1109 | 1105 |
|
| 1110 | 1106 |
///Function-type interface for DFS algorithm. |
| 1111 | 1107 |
|
| 1112 | 1108 |
///\ingroup search |
| 1113 | 1109 |
///Function-type interface for DFS algorithm. |
| 1114 | 1110 |
/// |
| 1115 | 1111 |
///This function also has several \ref named-func-param "named parameters", |
| 1116 | 1112 |
///they are declared as the members of class \ref DfsWizard. |
| 1117 | 1113 |
///The following examples show how to use these parameters. |
| 1118 | 1114 |
///\code |
| 1119 | 1115 |
/// // Compute the DFS tree |
| 1120 | 1116 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
| 1121 | 1117 |
/// |
| 1122 | 1118 |
/// // Compute the DFS path from s to t |
| 1123 | 1119 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
| 1124 | 1120 |
///\endcode |
| 1125 | 1121 |
|
| 1126 | 1122 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
| 1127 | 1123 |
///to the end of the parameter list. |
| 1128 | 1124 |
///\sa DfsWizard |
| 1129 | 1125 |
///\sa Dfs |
| 1130 | 1126 |
template<class GR> |
| 1131 | 1127 |
DfsWizard<DfsWizardBase<GR> > |
| 1132 | 1128 |
dfs(const GR &digraph) |
| 1133 | 1129 |
{
|
| 1134 | 1130 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
| 1135 | 1131 |
} |
| 1136 | 1132 |
|
| 1137 | 1133 |
#ifdef DOXYGEN |
| 1138 | 1134 |
/// \brief Visitor class for DFS. |
| 1139 | 1135 |
/// |
| 1140 | 1136 |
/// This class defines the interface of the DfsVisit events, and |
| 1141 | 1137 |
/// it could be the base of a real visitor class. |
| 1142 | 1138 |
template <typename _Digraph> |
| 1143 | 1139 |
struct DfsVisitor {
|
| 1144 | 1140 |
typedef _Digraph Digraph; |
| 1145 | 1141 |
typedef typename Digraph::Arc Arc; |
| 1146 | 1142 |
typedef typename Digraph::Node Node; |
| 1147 | 1143 |
/// \brief Called for the source node of the DFS. |
| 1148 | 1144 |
/// |
| 1149 | 1145 |
/// This function is called for the source node of the DFS. |
| 1150 | 1146 |
void start(const Node& node) {}
|
| 1151 | 1147 |
/// \brief Called when the source node is leaved. |
| 1152 | 1148 |
/// |
| 1153 | 1149 |
/// This function is called when the source node is leaved. |
| 1154 | 1150 |
void stop(const Node& node) {}
|
| 1155 | 1151 |
/// \brief Called when a node is reached first time. |
| 1156 | 1152 |
/// |
| 1157 | 1153 |
/// This function is called when a node is reached first time. |
| 1158 | 1154 |
void reach(const Node& node) {}
|
| 1159 | 1155 |
/// \brief Called when an arc reaches a new node. |
| 1160 | 1156 |
/// |
| 1161 | 1157 |
/// This function is called when the DFS finds an arc whose target node |
| 1162 | 1158 |
/// is not reached yet. |
| 1163 | 1159 |
void discover(const Arc& arc) {}
|
| 1164 | 1160 |
/// \brief Called when an arc is examined but its target node is |
| 1165 | 1161 |
/// already discovered. |
| 1166 | 1162 |
/// |
| 1167 | 1163 |
/// This function is called when an arc is examined but its target node is |
| 1168 | 1164 |
/// already discovered. |
| 1169 | 1165 |
void examine(const Arc& arc) {}
|
| 1170 | 1166 |
/// \brief Called when the DFS steps back from a node. |
| 1171 | 1167 |
/// |
| 1172 | 1168 |
/// This function is called when the DFS steps back from a node. |
| 1173 | 1169 |
void leave(const Node& node) {}
|
| 1174 | 1170 |
/// \brief Called when the DFS steps back on an arc. |
| 1175 | 1171 |
/// |
| 1176 | 1172 |
/// This function is called when the DFS steps back on an arc. |
| 1177 | 1173 |
void backtrack(const Arc& arc) {}
|
| 1178 | 1174 |
}; |
| 1179 | 1175 |
#else |
| 1180 | 1176 |
template <typename _Digraph> |
| 1181 | 1177 |
struct DfsVisitor {
|
| 1182 | 1178 |
typedef _Digraph Digraph; |
| 1183 | 1179 |
typedef typename Digraph::Arc Arc; |
| 1184 | 1180 |
typedef typename Digraph::Node Node; |
| 1185 | 1181 |
void start(const Node&) {}
|
| 1186 | 1182 |
void stop(const Node&) {}
|
| 1187 | 1183 |
void reach(const Node&) {}
|
| 1188 | 1184 |
void discover(const Arc&) {}
|
| 1189 | 1185 |
void examine(const Arc&) {}
|
| 1190 | 1186 |
void leave(const Node&) {}
|
| 1191 | 1187 |
void backtrack(const Arc&) {}
|
| 1192 | 1188 |
|
| 1193 | 1189 |
template <typename _Visitor> |
| 1194 | 1190 |
struct Constraints {
|
| 1195 | 1191 |
void constraints() {
|
| 1196 | 1192 |
Arc arc; |
| 1197 | 1193 |
Node node; |
| 1198 | 1194 |
visitor.start(node); |
| 1199 | 1195 |
visitor.stop(arc); |
| 1200 | 1196 |
visitor.reach(node); |
| 1201 | 1197 |
visitor.discover(arc); |
| 1202 | 1198 |
visitor.examine(arc); |
| 1203 | 1199 |
visitor.leave(node); |
| 1204 | 1200 |
visitor.backtrack(arc); |
| 1205 | 1201 |
} |
| 1206 | 1202 |
_Visitor& visitor; |
| 1207 | 1203 |
}; |
| 1208 | 1204 |
}; |
| 1209 | 1205 |
#endif |
| 1210 | 1206 |
|
| 1211 | 1207 |
/// \brief Default traits class of DfsVisit class. |
| 1212 | 1208 |
/// |
| 1213 | 1209 |
/// Default traits class of DfsVisit class. |
| 1214 | 1210 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1215 | 1211 |
template<class _Digraph> |
| 1216 | 1212 |
struct DfsVisitDefaultTraits {
|
| 1217 | 1213 |
|
| 1218 | 1214 |
/// \brief The type of the digraph the algorithm runs on. |
| 1219 | 1215 |
typedef _Digraph Digraph; |
| 1220 | 1216 |
|
| 1221 | 1217 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1222 | 1218 |
/// |
| 1223 | 1219 |
/// The type of the map that indicates which nodes are reached. |
| 1224 | 1220 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1225 | 1221 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1226 | 1222 |
|
| 1227 | 1223 |
/// \brief Instantiates a \ref ReachedMap. |
| 1228 | 1224 |
/// |
| 1229 | 1225 |
/// This function instantiates a \ref ReachedMap. |
| 1230 | 1226 |
/// \param digraph is the digraph, to which |
| 1231 | 1227 |
/// we would like to define the \ref ReachedMap. |
| 1232 | 1228 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1233 | 1229 |
return new ReachedMap(digraph); |
| 1234 | 1230 |
} |
| 1235 | 1231 |
|
| 1236 | 1232 |
}; |
| 1237 | 1233 |
|
| 1238 | 1234 |
/// \ingroup search |
| 1239 | 1235 |
/// |
| 1240 | 1236 |
/// \brief %DFS algorithm class with visitor interface. |
| 1241 | 1237 |
/// |
| 1242 | 1238 |
/// This class provides an efficient implementation of the %DFS algorithm |
| 1243 | 1239 |
/// with visitor interface. |
| 1244 | 1240 |
/// |
| 1245 | 1241 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
| 1246 | 1242 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1247 | 1243 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1248 | 1244 |
/// |
| 1249 | 1245 |
/// This interface of the DFS algorithm should be used in special cases |
| 1250 | 1246 |
/// when extra actions have to be performed in connection with certain |
| 1251 | 1247 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1252 | 1248 |
/// instead. |
| 1253 | 1249 |
/// |
| 1254 | 1250 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1255 | 1251 |
/// The default value is |
| 1256 | 1252 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
| 1257 | 1253 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
| 1258 | 1254 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
| 1259 | 1255 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
| 1260 | 1256 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1261 | 1257 |
/// events, you should implement your own visitor class. |
| 1262 | 1258 |
/// \tparam _Traits Traits class to set various data types used by the |
| 1263 | 1259 |
/// algorithm. The default traits class is |
| 1264 | 1260 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
| 1265 | 1261 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1266 | 1262 |
/// a DFS visit traits class. |
| 1267 | 1263 |
#ifdef DOXYGEN |
| 1268 | 1264 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
| 1269 | 1265 |
#else |
| 1270 | 1266 |
template <typename _Digraph = ListDigraph, |
| 1271 | 1267 |
typename _Visitor = DfsVisitor<_Digraph>, |
| 1272 | 1268 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
| 1273 | 1269 |
#endif |
| 1274 | 1270 |
class DfsVisit {
|
| 1275 | 1271 |
public: |
| 1276 | 1272 |
|
| 1277 | 1273 |
/// \brief \ref Exception for uninitialized parameters. |
| 1278 | 1274 |
/// |
| 1279 | 1275 |
/// This error represents problems in the initialization |
| 1280 | 1276 |
/// of the parameters of the algorithm. |
| 1281 | 1277 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 1282 | 1278 |
public: |
| 1283 | 1279 |
virtual const char* what() const throw() |
| 1284 | 1280 |
{
|
| 1285 | 1281 |
return "lemon::DfsVisit::UninitializedParameter"; |
| 1286 | 1282 |
} |
| 1287 | 1283 |
}; |
| 1288 | 1284 |
|
| 1289 | 1285 |
///The traits class. |
| 1290 | 1286 |
typedef _Traits Traits; |
| 1291 | 1287 |
|
| 1292 | 1288 |
///The type of the digraph the algorithm runs on. |
| 1293 | 1289 |
typedef typename Traits::Digraph Digraph; |
| 1294 | 1290 |
|
| 1295 | 1291 |
///The visitor type used by the algorithm. |
| 1296 | 1292 |
typedef _Visitor Visitor; |
| 1297 | 1293 |
|
| 1298 | 1294 |
///The type of the map that indicates which nodes are reached. |
| 1299 | 1295 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1300 | 1296 |
|
| 1301 | 1297 |
private: |
| 1302 | 1298 |
|
| 1303 | 1299 |
typedef typename Digraph::Node Node; |
| 1304 | 1300 |
typedef typename Digraph::NodeIt NodeIt; |
| 1305 | 1301 |
typedef typename Digraph::Arc Arc; |
| 1306 | 1302 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1307 | 1303 |
|
| 1308 | 1304 |
//Pointer to the underlying digraph. |
| 1309 | 1305 |
const Digraph *_digraph; |
| 1310 | 1306 |
//Pointer to the visitor object. |
| 1311 | 1307 |
Visitor *_visitor; |
| 1312 | 1308 |
//Pointer to the map of reached status of the nodes. |
| 1313 | 1309 |
ReachedMap *_reached; |
| 1314 | 1310 |
//Indicates if _reached is locally allocated (true) or not. |
| 1315 | 1311 |
bool local_reached; |
| 1316 | 1312 |
|
| 1317 | 1313 |
std::vector<typename Digraph::Arc> _stack; |
| 1318 | 1314 |
int _stack_head; |
| 1319 | 1315 |
|
| 1320 |
///Creates the maps if necessary. |
|
| 1321 |
///\todo Better memory allocation (instead of new). |
|
| 1316 |
//Creates the maps if necessary. |
|
| 1322 | 1317 |
void create_maps() {
|
| 1323 | 1318 |
if(!_reached) {
|
| 1324 | 1319 |
local_reached = true; |
| 1325 | 1320 |
_reached = Traits::createReachedMap(*_digraph); |
| 1326 | 1321 |
} |
| 1327 | 1322 |
} |
| 1328 | 1323 |
|
| 1329 | 1324 |
protected: |
| 1330 | 1325 |
|
| 1331 | 1326 |
DfsVisit() {}
|
| 1332 | 1327 |
|
| 1333 | 1328 |
public: |
| 1334 | 1329 |
|
| 1335 | 1330 |
typedef DfsVisit Create; |
| 1336 | 1331 |
|
| 1337 | 1332 |
/// \name Named template parameters |
| 1338 | 1333 |
|
| 1339 | 1334 |
///@{
|
| 1340 | 1335 |
template <class T> |
| 1341 | 1336 |
struct SetReachedMapTraits : public Traits {
|
| 1342 | 1337 |
typedef T ReachedMap; |
| 1343 | 1338 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1344 | 1339 |
throw UninitializedParameter(); |
| 1345 | 1340 |
} |
| 1346 | 1341 |
}; |
| 1347 | 1342 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1348 | 1343 |
/// ReachedMap type. |
| 1349 | 1344 |
/// |
| 1350 | 1345 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1351 | 1346 |
template <class T> |
| 1352 | 1347 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1353 | 1348 |
SetReachedMapTraits<T> > {
|
| 1354 | 1349 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1355 | 1350 |
}; |
| 1356 | 1351 |
///@} |
| 1357 | 1352 |
|
| 1358 | 1353 |
public: |
| 1359 | 1354 |
|
| 1360 | 1355 |
/// \brief Constructor. |
| 1361 | 1356 |
/// |
| 1362 | 1357 |
/// Constructor. |
| 1363 | 1358 |
/// |
| 1364 | 1359 |
/// \param digraph The digraph the algorithm runs on. |
| 1365 | 1360 |
/// \param visitor The visitor object of the algorithm. |
| 1366 | 1361 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1367 | 1362 |
: _digraph(&digraph), _visitor(&visitor), |
| 1368 | 1363 |
_reached(0), local_reached(false) {}
|
| 1369 | 1364 |
|
| 1370 | 1365 |
/// \brief Destructor. |
| 1371 | 1366 |
~DfsVisit() {
|
| 1372 | 1367 |
if(local_reached) delete _reached; |
| 1373 | 1368 |
} |
| 1374 | 1369 |
|
| 1375 | 1370 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1376 | 1371 |
/// |
| 1377 | 1372 |
/// Sets the map that indicates which nodes are reached. |
| 1378 | 1373 |
/// If you don't use this function before calling \ref run(), |
| 1379 | 1374 |
/// it will allocate one. The destructor deallocates this |
| 1380 | 1375 |
/// automatically allocated map, of course. |
| 1381 | 1376 |
/// \return <tt> (*this) </tt> |
| 1382 | 1377 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1383 | 1378 |
if(local_reached) {
|
| 1384 | 1379 |
delete _reached; |
| 1385 | 1380 |
local_reached=false; |
| 1386 | 1381 |
} |
| 1387 | 1382 |
_reached = &m; |
| 1388 | 1383 |
return *this; |
| 1389 | 1384 |
} |
| 1390 | 1385 |
|
| 1391 | 1386 |
public: |
| 1392 | 1387 |
|
| 1393 | 1388 |
/// \name Execution control |
| 1394 | 1389 |
/// The simplest way to execute the algorithm is to use |
| 1395 | 1390 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
| 1396 | 1391 |
/// "run()". |
| 1397 | 1392 |
/// \n |
| 1398 | 1393 |
/// If you need more control on the execution, first you must call |
| 1399 | 1394 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
| 1400 | 1395 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
| 1401 | 1396 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
| 1402 | 1397 |
/// actual path computation. |
| 1403 | 1398 |
|
| 1404 | 1399 |
/// @{
|
| 1405 | 1400 |
|
| 1406 | 1401 |
/// \brief Initializes the internal data structures. |
| 1407 | 1402 |
/// |
| 1408 | 1403 |
/// Initializes the internal data structures. |
| 1409 | 1404 |
void init() {
|
| 1410 | 1405 |
create_maps(); |
| 1411 | 1406 |
_stack.resize(countNodes(*_digraph)); |
| 1412 | 1407 |
_stack_head = -1; |
| 1413 | 1408 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1414 | 1409 |
_reached->set(u, false); |
| 1415 | 1410 |
} |
| 1416 | 1411 |
} |
| 1417 | 1412 |
|
| 1418 | 1413 |
///Adds a new source node. |
| 1419 | 1414 |
|
| 1420 | 1415 |
///Adds a new source node to the set of nodes to be processed. |
| 1421 | 1416 |
/// |
| 1422 | 1417 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
| 1423 | 1418 |
///false results.) |
| 1424 | 1419 |
/// |
| 1425 | 1420 |
///\warning Distances will be wrong (or at least strange) in case of |
| 1426 | 1421 |
///multiple sources. |
| 1427 | 1422 |
void addSource(Node s) |
| 1428 | 1423 |
{
|
| 1429 | 1424 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1430 | 1425 |
if(!(*_reached)[s]) {
|
| 1431 | 1426 |
_reached->set(s,true); |
| 1432 | 1427 |
_visitor->start(s); |
| 1433 | 1428 |
_visitor->reach(s); |
| 1434 | 1429 |
Arc e; |
| 1435 | 1430 |
_digraph->firstOut(e, s); |
| 1436 | 1431 |
if (e != INVALID) {
|
| 1437 | 1432 |
_stack[++_stack_head] = e; |
| 1438 | 1433 |
} else {
|
| 1439 | 1434 |
_visitor->leave(s); |
| 1440 | 1435 |
} |
| 1441 | 1436 |
} |
| 1442 | 1437 |
} |
| 1443 | 1438 |
|
| 1444 | 1439 |
/// \brief Processes the next arc. |
| 1445 | 1440 |
/// |
| 1446 | 1441 |
/// Processes the next arc. |
| 1447 | 1442 |
/// |
| 1448 | 1443 |
/// \return The processed arc. |
| 1449 | 1444 |
/// |
| 1450 | 1445 |
/// \pre The stack must not be empty. |
| 1451 | 1446 |
Arc processNextArc() {
|
| 1452 | 1447 |
Arc e = _stack[_stack_head]; |
| 1453 | 1448 |
Node m = _digraph->target(e); |
| 1454 | 1449 |
if(!(*_reached)[m]) {
|
| 1455 | 1450 |
_visitor->discover(e); |
| 1456 | 1451 |
_visitor->reach(m); |
| 1457 | 1452 |
_reached->set(m, true); |
| 1458 | 1453 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1459 | 1454 |
} else {
|
| 1460 | 1455 |
_visitor->examine(e); |
| 1461 | 1456 |
m = _digraph->source(e); |
| 1462 | 1457 |
_digraph->nextOut(_stack[_stack_head]); |
| 1463 | 1458 |
} |
| 1464 | 1459 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1465 | 1460 |
_visitor->leave(m); |
| 1466 | 1461 |
--_stack_head; |
| 1467 | 1462 |
if (_stack_head >= 0) {
|
| 1468 | 1463 |
_visitor->backtrack(_stack[_stack_head]); |
| 1469 | 1464 |
m = _digraph->source(_stack[_stack_head]); |
| 1470 | 1465 |
_digraph->nextOut(_stack[_stack_head]); |
| 1471 | 1466 |
} else {
|
| 1472 | 1467 |
_visitor->stop(m); |
| 1473 | 1468 |
} |
| 1474 | 1469 |
} |
| 1475 | 1470 |
return e; |
| 1476 | 1471 |
} |
| 1477 | 1472 |
|
| 1478 | 1473 |
/// \brief Next arc to be processed. |
| 1479 | 1474 |
/// |
| 1480 | 1475 |
/// Next arc to be processed. |
| 1481 | 1476 |
/// |
| 1482 | 1477 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1483 | 1478 |
/// empty. |
| 1484 | 1479 |
Arc nextArc() const {
|
| 1485 | 1480 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1486 | 1481 |
} |
| 1487 | 1482 |
|
| 1488 | 1483 |
/// \brief Returns \c false if there are nodes |
| 1489 | 1484 |
/// to be processed. |
| 1490 | 1485 |
/// |
| 1491 | 1486 |
/// Returns \c false if there are nodes |
| 1492 | 1487 |
/// to be processed in the queue (stack). |
| 1493 | 1488 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1494 | 1489 |
|
| 1495 | 1490 |
/// \brief Returns the number of the nodes to be processed. |
| 1496 | 1491 |
/// |
| 1497 | 1492 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1498 | 1493 |
int queueSize() const { return _stack_head + 1; }
|
| 1499 | 1494 |
|
| 1500 | 1495 |
/// \brief Executes the algorithm. |
| 1501 | 1496 |
/// |
| 1502 | 1497 |
/// Executes the algorithm. |
| 1503 | 1498 |
/// |
| 1504 | 1499 |
/// This method runs the %DFS algorithm from the root node |
| 1505 | 1500 |
/// in order to compute the %DFS path to each node. |
| 1506 | 1501 |
/// |
| 1507 | 1502 |
/// The algorithm computes |
| 1508 | 1503 |
/// - the %DFS tree, |
| 1509 | 1504 |
/// - the distance of each node from the root in the %DFS tree. |
| 1510 | 1505 |
/// |
| 1511 | 1506 |
/// \pre init() must be called and a root node should be |
| 1512 | 1507 |
/// added with addSource() before using this function. |
| 1513 | 1508 |
/// |
| 1514 | 1509 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
| 1515 | 1510 |
/// \code |
| 1516 | 1511 |
/// while ( !d.emptyQueue() ) {
|
| 1517 | 1512 |
/// d.processNextArc(); |
| 1518 | 1513 |
/// } |
| 1519 | 1514 |
/// \endcode |
| 1520 | 1515 |
void start() {
|
| 1521 | 1516 |
while ( !emptyQueue() ) processNextArc(); |
| 1522 | 1517 |
} |
| 1523 | 1518 |
|
| 1524 | 1519 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1525 | 1520 |
/// |
| 1526 | 1521 |
/// Executes the algorithm until the given target node is reached. |
| 1527 | 1522 |
/// |
| 1528 | 1523 |
/// This method runs the %DFS algorithm from the root node |
| 1529 | 1524 |
/// in order to compute the DFS path to \c t. |
| 1530 | 1525 |
/// |
| 1531 | 1526 |
/// The algorithm computes |
| 1532 | 1527 |
/// - the %DFS path to \c t, |
| 1533 | 1528 |
/// - the distance of \c t from the root in the %DFS tree. |
| 1534 | 1529 |
/// |
| 1535 | 1530 |
/// \pre init() must be called and a root node should be added |
| 1536 | 1531 |
/// with addSource() before using this function. |
| 1537 | 1532 |
void start(Node t) {
|
| 1538 | 1533 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
| 1539 | 1534 |
processNextArc(); |
| 1540 | 1535 |
} |
| 1541 | 1536 |
|
| 1542 | 1537 |
/// \brief Executes the algorithm until a condition is met. |
| 1543 | 1538 |
/// |
| 1544 | 1539 |
/// Executes the algorithm until a condition is met. |
| 1545 | 1540 |
/// |
| 1546 | 1541 |
/// This method runs the %DFS algorithm from the root node |
| 1547 | 1542 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
| 1548 | 1543 |
/// |
| 1549 | 1544 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
| 1550 | 1545 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 1551 | 1546 |
/// |
| 1552 | 1547 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
| 1553 | 1548 |
/// \c INVALID if no such arc was found. |
| 1554 | 1549 |
/// |
| 1555 | 1550 |
/// \pre init() must be called and a root node should be added |
| 1556 | 1551 |
/// with addSource() before using this function. |
| 1557 | 1552 |
/// |
| 1558 | 1553 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 1559 | 1554 |
/// not a node map. |
| 1560 | 1555 |
template <typename AM> |
| 1561 | 1556 |
Arc start(const AM &am) {
|
| 1562 | 1557 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 1563 | 1558 |
processNextArc(); |
| 1564 | 1559 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 1565 | 1560 |
} |
| 1566 | 1561 |
|
| 1567 | 1562 |
/// \brief Runs the algorithm from the given source node. |
| 1568 | 1563 |
/// |
| 1569 | 1564 |
/// This method runs the %DFS algorithm from node \c s. |
| 1570 | 1565 |
/// in order to compute the DFS path to each node. |
| 1571 | 1566 |
/// |
| 1572 | 1567 |
/// The algorithm computes |
| 1573 | 1568 |
/// - the %DFS tree, |
| 1574 | 1569 |
/// - the distance of each node from the root in the %DFS tree. |
| 1575 | 1570 |
/// |
| 1576 | 1571 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 1577 | 1572 |
///\code |
| 1578 | 1573 |
/// d.init(); |
| 1579 | 1574 |
/// d.addSource(s); |
| 1580 | 1575 |
/// d.start(); |
| 1581 | 1576 |
///\endcode |
| 1582 | 1577 |
void run(Node s) {
|
| 1583 | 1578 |
init(); |
| 1584 | 1579 |
addSource(s); |
| 1585 | 1580 |
start(); |
| 1586 | 1581 |
} |
| 1587 | 1582 |
|
| 1588 | 1583 |
/// \brief Finds the %DFS path between \c s and \c t. |
| 1589 | 1584 |
|
| 1590 | 1585 |
/// This method runs the %DFS algorithm from node \c s |
| 1591 | 1586 |
/// in order to compute the DFS path to node \c t |
| 1592 | 1587 |
/// (it stops searching when \c t is processed). |
| 1593 | 1588 |
/// |
| 1594 | 1589 |
/// \return \c true if \c t is reachable form \c s. |
| 1595 | 1590 |
/// |
| 1596 | 1591 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 1597 | 1592 |
/// just a shortcut of the following code. |
| 1598 | 1593 |
///\code |
| 1599 | 1594 |
/// d.init(); |
| 1600 | 1595 |
/// d.addSource(s); |
| 1601 | 1596 |
/// d.start(t); |
| 1602 | 1597 |
///\endcode |
| 1603 | 1598 |
bool run(Node s,Node t) {
|
| 1604 | 1599 |
init(); |
| 1605 | 1600 |
addSource(s); |
| 1606 | 1601 |
start(t); |
| 1607 | 1602 |
return reached(t); |
| 1608 | 1603 |
} |
| 1609 | 1604 |
|
| 1610 | 1605 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1611 | 1606 |
|
| 1612 | 1607 |
/// This method runs the %DFS algorithm in order to |
| 1613 | 1608 |
/// compute the %DFS path to each node. |
| 1614 | 1609 |
/// |
| 1615 | 1610 |
/// The algorithm computes |
| 1616 | 1611 |
/// - the %DFS tree, |
| 1617 | 1612 |
/// - the distance of each node from the root in the %DFS tree. |
| 1618 | 1613 |
/// |
| 1619 | 1614 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1620 | 1615 |
///\code |
| 1621 | 1616 |
/// d.init(); |
| 1622 | 1617 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1623 | 1618 |
/// if (!d.reached(n)) {
|
| 1624 | 1619 |
/// d.addSource(n); |
| 1625 | 1620 |
/// d.start(); |
| 1626 | 1621 |
/// } |
| 1627 | 1622 |
/// } |
| 1628 | 1623 |
///\endcode |
| 1629 | 1624 |
void run() {
|
| 1630 | 1625 |
init(); |
| 1631 | 1626 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1632 | 1627 |
if (!reached(it)) {
|
| 1633 | 1628 |
addSource(it); |
| 1634 | 1629 |
start(); |
| 1635 | 1630 |
} |
| 1636 | 1631 |
} |
| 1637 | 1632 |
} |
| 1638 | 1633 |
|
| 1639 | 1634 |
///@} |
| 1640 | 1635 |
|
| 1641 | 1636 |
/// \name Query Functions |
| 1642 | 1637 |
/// The result of the %DFS algorithm can be obtained using these |
| 1643 | 1638 |
/// functions.\n |
| 1644 | 1639 |
/// Either \ref lemon::DfsVisit::run() "run()" or |
| 1645 | 1640 |
/// \ref lemon::DfsVisit::start() "start()" must be called before |
| 1646 | 1641 |
/// using them. |
| 1647 | 1642 |
///@{
|
| 1648 | 1643 |
|
| 1649 | 1644 |
/// \brief Checks if a node is reachable from the root(s). |
| 1650 | 1645 |
/// |
| 1651 | 1646 |
/// Returns \c true if \c v is reachable from the root(s). |
| 1652 | 1647 |
/// \pre Either \ref run() or \ref start() |
| 1653 | 1648 |
/// must be called before using this function. |
| 1654 | 1649 |
bool reached(Node v) { return (*_reached)[v]; }
|
| 1655 | 1650 |
|
| 1656 | 1651 |
///@} |
| 1657 | 1652 |
|
| 1658 | 1653 |
}; |
| 1659 | 1654 |
|
| 1660 | 1655 |
} //END OF NAMESPACE LEMON |
| 1661 | 1656 |
|
| 1662 | 1657 |
#endif |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)