gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Simplified implementation of bucket heaps (#50)
0 1 0
default
1 file changed with 51 insertions and 317 deletions:
↑ Collapse diff ↑
Ignore white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BUCKET_HEAP_H
20 20
#define LEMON_BUCKET_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Bucket Heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32
  namespace _bucket_heap_bits {
33

	
34
    template <bool minimize>
35
    struct DirectionTraits {
36
      static bool less(int left, int right) {
37
        return left < right;
38
      }
39
      static void increase(int& value) {
40
        ++value;
41
      }
42
    };
43

	
44
    template <>
45
    struct DirectionTraits<false> {
46
      static bool less(int left, int right) {
47
        return left > right;
48
      }
49
      static void increase(int& value) {
50
        --value;
51
      }
52
    };
53

	
54
  }
55

	
32 56
  /// \ingroup auxdat
33 57
  ///
34 58
  /// \brief A Bucket Heap implementation.
35 59
  ///
36 60
  /// This class implements the \e bucket \e heap data structure. A \e heap
37 61
  /// is a data structure for storing items with specified values called \e
38 62
  /// priorities in such a way that finding the item with minimum priority is
39 63
  /// efficient. The bucket heap is very simple implementation, it can store
40 64
  /// only integer priorities and it stores for each priority in the
41 65
  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
42 66
  /// the priorities are small. It is not intended to use as dijkstra heap.
43 67
  ///
44 68
  /// \param _ItemIntMap A read and writable Item int map, used internally
45 69
  /// to handle the cross references.
46 70
  /// \param minimize If the given parameter is true then the heap gives back
47 71
  /// the lowest priority.
48
  template <typename _ItemIntMap, bool minimize = true >
72
  template <typename _ItemIntMap, bool minimize = true>
49 73
  class BucketHeap {
50 74

	
51 75
  public:
52 76
    /// \e
53 77
    typedef typename _ItemIntMap::Key Item;
54 78
    /// \e
55 79
    typedef int Prio;
56 80
    /// \e
57 81
    typedef std::pair<Item, Prio> Pair;
58 82
    /// \e
59 83
    typedef _ItemIntMap ItemIntMap;
60 84

	
85
  private:
86

	
87
    typedef _bucket_heap_bits::DirectionTraits<minimize> Direction;
88

	
89
  public:
90

	
61 91
    /// \brief Type to represent the items states.
62 92
    ///
63 93
    /// Each Item element have a state associated to it. It may be "in heap",
64 94
    /// "pre heap" or "post heap". The latter two are indifferent from the
65 95
    /// heap's point of view, but may be useful to the user.
66 96
    ///
67 97
    /// The ItemIntMap \e should be initialized in such way that it maps
68 98
    /// PRE_HEAP (-1) to any element to be put in the heap...
69 99
    enum State {
70 100
      IN_HEAP = 0,
71 101
      PRE_HEAP = -1,
72 102
      POST_HEAP = -2
73 103
    };
74 104

	
75 105
  public:
76 106
    /// \brief The constructor.
77 107
    ///
78 108
    /// The constructor.
79 109
    /// \param _index should be given to the constructor, since it is used
80 110
    /// internally to handle the cross references. The value of the map
81 111
    /// should be PRE_HEAP (-1) for each element.
82 112
    explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
83 113

	
84 114
    /// The number of items stored in the heap.
85 115
    ///
86 116
    /// \brief Returns the number of items stored in the heap.
87 117
    int size() const { return data.size(); }
88 118

	
89 119
    /// \brief Checks if the heap stores no items.
90 120
    ///
91 121
    /// Returns \c true if and only if the heap stores no items.
92 122
    bool empty() const { return data.empty(); }
93 123

	
94 124
    /// \brief Make empty this heap.
95 125
    ///
96 126
    /// Make empty this heap. It does not change the cross reference
97 127
    /// map.  If you want to reuse a heap what is not surely empty you
98 128
    /// should first clear the heap and after that you should set the
99 129
    /// cross reference map for each item to \c PRE_HEAP.
100 130
    void clear() {
101 131
      data.clear(); first.clear(); minimal = 0;
102 132
    }
103 133

	
104 134
  private:
105 135

	
106 136
    void relocate_last(int idx) {
107 137
      if (idx + 1 < int(data.size())) {
108 138
        data[idx] = data.back();
... ...
@@ -116,716 +146,420 @@
116 146
        }
117 147
        index[data[idx].item] = idx;
118 148
      }
119 149
      data.pop_back();
120 150
    }
121 151

	
122 152
    void unlace(int idx) {
123 153
      if (data[idx].prev != -1) {
124 154
        data[data[idx].prev].next = data[idx].next;
125 155
      } else {
126 156
        first[data[idx].value] = data[idx].next;
127 157
      }
128 158
      if (data[idx].next != -1) {
129 159
        data[data[idx].next].prev = data[idx].prev;
130 160
      }
131 161
    }
132 162

	
133 163
    void lace(int idx) {
134 164
      if (int(first.size()) <= data[idx].value) {
135 165
        first.resize(data[idx].value + 1, -1);
136 166
      }
137 167
      data[idx].next = first[data[idx].value];
138 168
      if (data[idx].next != -1) {
139 169
        data[data[idx].next].prev = idx;
140 170
      }
141 171
      first[data[idx].value] = idx;
142 172
      data[idx].prev = -1;
143 173
    }
144 174

	
145 175
  public:
146 176
    /// \brief Insert a pair of item and priority into the heap.
147 177
    ///
148 178
    /// Adds \c p.first to the heap with priority \c p.second.
149 179
    /// \param p The pair to insert.
150 180
    void push(const Pair& p) {
151 181
      push(p.first, p.second);
152 182
    }
153 183

	
154 184
    /// \brief Insert an item into the heap with the given priority.
155 185
    ///
156 186
    /// Adds \c i to the heap with priority \c p.
157 187
    /// \param i The item to insert.
158 188
    /// \param p The priority of the item.
159 189
    void push(const Item &i, const Prio &p) {
160 190
      int idx = data.size();
161 191
      index[i] = idx;
162 192
      data.push_back(BucketItem(i, p));
163 193
      lace(idx);
164
      if (p < minimal) {
194
      if (Direction::less(p, minimal)) {
165 195
        minimal = p;
166 196
      }
167 197
    }
168 198

	
169 199
    /// \brief Returns the item with minimum priority.
170 200
    ///
171 201
    /// This method returns the item with minimum priority.
172 202
    /// \pre The heap must be nonempty.
173 203
    Item top() const {
174 204
      while (first[minimal] == -1) {
175
        ++minimal;
205
        Direction::increase(minimal);
176 206
      }
177 207
      return data[first[minimal]].item;
178 208
    }
179 209

	
180 210
    /// \brief Returns the minimum priority.
181 211
    ///
182 212
    /// It returns the minimum priority.
183 213
    /// \pre The heap must be nonempty.
184 214
    Prio prio() const {
185 215
      while (first[minimal] == -1) {
186
        ++minimal;
216
        Direction::increase(minimal);
187 217
      }
188 218
      return minimal;
189 219
    }
190 220

	
191 221
    /// \brief Deletes the item with minimum priority.
192 222
    ///
193 223
    /// This method deletes the item with minimum priority from the heap.
194 224
    /// \pre The heap must be non-empty.
195 225
    void pop() {
196 226
      while (first[minimal] == -1) {
197
        ++minimal;
227
        Direction::increase(minimal);
198 228
      }
199 229
      int idx = first[minimal];
200 230
      index[data[idx].item] = -2;
201 231
      unlace(idx);
202 232
      relocate_last(idx);
203 233
    }
204 234

	
205 235
    /// \brief Deletes \c i from the heap.
206 236
    ///
207 237
    /// This method deletes item \c i from the heap, if \c i was
208 238
    /// already stored in the heap.
209 239
    /// \param i The item to erase.
210 240
    void erase(const Item &i) {
211 241
      int idx = index[i];
212 242
      index[data[idx].item] = -2;
213 243
      unlace(idx);
214 244
      relocate_last(idx);
215 245
    }
216 246

	
217 247

	
218 248
    /// \brief Returns the priority of \c i.
219 249
    ///
220 250
    /// This function returns the priority of item \c i.
221 251
    /// \pre \c i must be in the heap.
222 252
    /// \param i The item.
223 253
    Prio operator[](const Item &i) const {
224 254
      int idx = index[i];
225 255
      return data[idx].value;
226 256
    }
227 257

	
228 258
    /// \brief \c i gets to the heap with priority \c p independently
229 259
    /// if \c i was already there.
230 260
    ///
231 261
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
232 262
    /// in the heap and sets the priority of \c i to \c p otherwise.
233 263
    /// \param i The item.
234 264
    /// \param p The priority.
235 265
    void set(const Item &i, const Prio &p) {
236 266
      int idx = index[i];
237 267
      if (idx < 0) {
238
        push(i,p);
239
      } else if (p > data[idx].value) {
268
        push(i, p);
269
      } else if (Direction::less(p, data[idx].value)) {
270
        decrease(i, p);
271
      } else {
240 272
        increase(i, p);
241
      } else {
242
        decrease(i, p);
243 273
      }
244 274
    }
245 275

	
246 276
    /// \brief Decreases the priority of \c i to \c p.
247 277
    ///
248 278
    /// This method decreases the priority of item \c i to \c p.
249 279
    /// \pre \c i must be stored in the heap with priority at least \c
250 280
    /// p relative to \c Compare.
251 281
    /// \param i The item.
252 282
    /// \param p The priority.
253 283
    void decrease(const Item &i, const Prio &p) {
254 284
      int idx = index[i];
255 285
      unlace(idx);
256 286
      data[idx].value = p;
257
      if (p < minimal) {
287
      if (Direction::less(p, minimal)) {
258 288
        minimal = p;
259 289
      }
260 290
      lace(idx);
261 291
    }
262 292

	
263 293
    /// \brief Increases the priority of \c i to \c p.
264 294
    ///
265 295
    /// This method sets the priority of item \c i to \c p.
266 296
    /// \pre \c i must be stored in the heap with priority at most \c
267 297
    /// p relative to \c Compare.
268 298
    /// \param i The item.
269 299
    /// \param p The priority.
270 300
    void increase(const Item &i, const Prio &p) {
271 301
      int idx = index[i];
272 302
      unlace(idx);
273 303
      data[idx].value = p;
274 304
      lace(idx);
275 305
    }
276 306

	
277 307
    /// \brief Returns if \c item is in, has already been in, or has
278 308
    /// never been in the heap.
279 309
    ///
280 310
    /// This method returns PRE_HEAP if \c item has never been in the
281 311
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
282 312
    /// otherwise. In the latter case it is possible that \c item will
283 313
    /// get back to the heap again.
284 314
    /// \param i The item.
285 315
    State state(const Item &i) const {
286 316
      int idx = index[i];
287 317
      if (idx >= 0) idx = 0;
288 318
      return State(idx);
289 319
    }
290 320

	
291 321
    /// \brief Sets the state of the \c item in the heap.
292 322
    ///
293 323
    /// Sets the state of the \c item in the heap. It can be used to
294 324
    /// manually clear the heap when it is important to achive the
295 325
    /// better time complexity.
296 326
    /// \param i The item.
297 327
    /// \param st The state. It should not be \c IN_HEAP.
298 328
    void state(const Item& i, State st) {
299 329
      switch (st) {
300 330
      case POST_HEAP:
301 331
      case PRE_HEAP:
302 332
        if (state(i) == IN_HEAP) {
303 333
          erase(i);
304 334
        }
305 335
        index[i] = st;
306 336
        break;
307 337
      case IN_HEAP:
308 338
        break;
309 339
      }
310 340
    }
311 341

	
312 342
  private:
313 343

	
314 344
    struct BucketItem {
315 345
      BucketItem(const Item& _item, int _value)
316 346
        : item(_item), value(_value) {}
317 347

	
318 348
      Item item;
319 349
      int value;
320 350

	
321 351
      int prev, next;
322 352
    };
323 353

	
324 354
    ItemIntMap& index;
325 355
    std::vector<int> first;
326 356
    std::vector<BucketItem> data;
327 357
    mutable int minimal;
328 358

	
329 359
  }; // class BucketHeap
330 360

	
331

	
332
  template <typename _ItemIntMap>
333
  class BucketHeap<_ItemIntMap, false> {
334

	
335
  public:
336
    typedef typename _ItemIntMap::Key Item;
337
    typedef int Prio;
338
    typedef std::pair<Item, Prio> Pair;
339
    typedef _ItemIntMap ItemIntMap;
340

	
341
    enum State {
342
      IN_HEAP = 0,
343
      PRE_HEAP = -1,
344
      POST_HEAP = -2
345
    };
346

	
347
  public:
348

	
349
    explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
350

	
351
    int size() const { return data.size(); }
352
    bool empty() const { return data.empty(); }
353

	
354
    void clear() {
355
      data.clear(); first.clear(); maximal = -1;
356
    }
357

	
358
  private:
359

	
360
    void relocate_last(int idx) {
361
      if (idx + 1 != int(data.size())) {
362
        data[idx] = data.back();
363
        if (data[idx].prev != -1) {
364
          data[data[idx].prev].next = idx;
365
        } else {
366
          first[data[idx].value] = idx;
367
        }
368
        if (data[idx].next != -1) {
369
          data[data[idx].next].prev = idx;
370
        }
371
        index[data[idx].item] = idx;
372
      }
373
      data.pop_back();
374
    }
375

	
376
    void unlace(int idx) {
377
      if (data[idx].prev != -1) {
378
        data[data[idx].prev].next = data[idx].next;
379
      } else {
380
        first[data[idx].value] = data[idx].next;
381
      }
382
      if (data[idx].next != -1) {
383
        data[data[idx].next].prev = data[idx].prev;
384
      }
385
    }
386

	
387
    void lace(int idx) {
388
      if (int(first.size()) <= data[idx].value) {
389
        first.resize(data[idx].value + 1, -1);
390
      }
391
      data[idx].next = first[data[idx].value];
392
      if (data[idx].next != -1) {
393
        data[data[idx].next].prev = idx;
394
      }
395
      first[data[idx].value] = idx;
396
      data[idx].prev = -1;
397
    }
398

	
399
  public:
400

	
401
    void push(const Pair& p) {
402
      push(p.first, p.second);
403
    }
404

	
405
    void push(const Item &i, const Prio &p) {
406
      int idx = data.size();
407
      index[i] = idx;
408
      data.push_back(BucketItem(i, p));
409
      lace(idx);
410
      if (data[idx].value > maximal) {
411
        maximal = data[idx].value;
412
      }
413
    }
414

	
415
    Item top() const {
416
      while (first[maximal] == -1) {
417
        --maximal;
418
      }
419
      return data[first[maximal]].item;
420
    }
421

	
422
    Prio prio() const {
423
      while (first[maximal] == -1) {
424
        --maximal;
425
      }
426
      return maximal;
427
    }
428

	
429
    void pop() {
430
      while (first[maximal] == -1) {
431
        --maximal;
432
      }
433
      int idx = first[maximal];
434
      index[data[idx].item] = -2;
435
      unlace(idx);
436
      relocate_last(idx);
437
    }
438

	
439
    void erase(const Item &i) {
440
      int idx = index[i];
441
      index[data[idx].item] = -2;
442
      unlace(idx);
443
      relocate_last(idx);
444
    }
445

	
446
    Prio operator[](const Item &i) const {
447
      int idx = index[i];
448
      return data[idx].value;
449
    }
450

	
451
    void set(const Item &i, const Prio &p) {
452
      int idx = index[i];
453
      if (idx < 0) {
454
        push(i,p);
455
      } else if (p > data[idx].value) {
456
        decrease(i, p);
457
      } else {
458
        increase(i, p);
459
      }
460
    }
461

	
462
    void decrease(const Item &i, const Prio &p) {
463
      int idx = index[i];
464
      unlace(idx);
465
      data[idx].value = p;
466
      if (p > maximal) {
467
        maximal = p;
468
      }
469
      lace(idx);
470
    }
471

	
472
    void increase(const Item &i, const Prio &p) {
473
      int idx = index[i];
474
      unlace(idx);
475
      data[idx].value = p;
476
      lace(idx);
477
    }
478

	
479
    State state(const Item &i) const {
480
      int idx = index[i];
481
      if (idx >= 0) idx = 0;
482
      return State(idx);
483
    }
484

	
485
    void state(const Item& i, State st) {
486
      switch (st) {
487
      case POST_HEAP:
488
      case PRE_HEAP:
489
        if (state(i) == IN_HEAP) {
490
          erase(i);
491
        }
492
        index[i] = st;
493
        break;
494
      case IN_HEAP:
495
        break;
496
      }
497
    }
498

	
499
  private:
500

	
501
    struct BucketItem {
502
      BucketItem(const Item& _item, int _value)
503
        : item(_item), value(_value) {}
504

	
505
      Item item;
506
      int value;
507

	
508
      int prev, next;
509
    };
510

	
511
    ItemIntMap& index;
512
    std::vector<int> first;
513
    std::vector<BucketItem> data;
514
    mutable int maximal;
515

	
516
  }; // class BucketHeap
517

	
518 361
  /// \ingroup auxdat
519 362
  ///
520 363
  /// \brief A Simplified Bucket Heap implementation.
521 364
  ///
522 365
  /// This class implements a simplified \e bucket \e heap data
523 366
  /// structure.  It does not provide some functionality but it faster
524 367
  /// and simplier data structure than the BucketHeap. The main
525 368
  /// difference is that the BucketHeap stores for every key a double
526 369
  /// linked list while this class stores just simple lists. In the
527
  /// other way it does not supports erasing each elements just the
370
  /// other way it does not support erasing each elements just the
528 371
  /// minimal and it does not supports key increasing, decreasing.
529 372
  ///
530 373
  /// \param _ItemIntMap A read and writable Item int map, used internally
531 374
  /// to handle the cross references.
532 375
  /// \param minimize If the given parameter is true then the heap gives back
533 376
  /// the lowest priority.
534 377
  ///
535 378
  /// \sa BucketHeap
536 379
  template <typename _ItemIntMap, bool minimize = true >
537 380
  class SimpleBucketHeap {
538 381

	
539 382
  public:
540 383
    typedef typename _ItemIntMap::Key Item;
541 384
    typedef int Prio;
542 385
    typedef std::pair<Item, Prio> Pair;
543 386
    typedef _ItemIntMap ItemIntMap;
544 387

	
388
  private:
389

	
390
    typedef _bucket_heap_bits::DirectionTraits<minimize> Direction;
391

	
392
  public:
393

	
545 394
    /// \brief Type to represent the items states.
546 395
    ///
547 396
    /// Each Item element have a state associated to it. It may be "in heap",
548 397
    /// "pre heap" or "post heap". The latter two are indifferent from the
549 398
    /// heap's point of view, but may be useful to the user.
550 399
    ///
551 400
    /// The ItemIntMap \e should be initialized in such way that it maps
552 401
    /// PRE_HEAP (-1) to any element to be put in the heap...
553 402
    enum State {
554 403
      IN_HEAP = 0,
555 404
      PRE_HEAP = -1,
556 405
      POST_HEAP = -2
557 406
    };
558 407

	
559 408
  public:
560 409

	
561 410
    /// \brief The constructor.
562 411
    ///
563 412
    /// The constructor.
564 413
    /// \param _index should be given to the constructor, since it is used
565 414
    /// internally to handle the cross references. The value of the map
566 415
    /// should be PRE_HEAP (-1) for each element.
567 416
    explicit SimpleBucketHeap(ItemIntMap &_index)
568 417
      : index(_index), free(-1), num(0), minimal(0) {}
569 418

	
570 419
    /// \brief Returns the number of items stored in the heap.
571 420
    ///
572 421
    /// The number of items stored in the heap.
573 422
    int size() const { return num; }
574 423

	
575 424
    /// \brief Checks if the heap stores no items.
576 425
    ///
577 426
    /// Returns \c true if and only if the heap stores no items.
578 427
    bool empty() const { return num == 0; }
579 428

	
580 429
    /// \brief Make empty this heap.
581 430
    ///
582 431
    /// Make empty this heap. It does not change the cross reference
583 432
    /// map.  If you want to reuse a heap what is not surely empty you
584 433
    /// should first clear the heap and after that you should set the
585 434
    /// cross reference map for each item to \c PRE_HEAP.
586 435
    void clear() {
587 436
      data.clear(); first.clear(); free = -1; num = 0; minimal = 0;
588 437
    }
589 438

	
590 439
    /// \brief Insert a pair of item and priority into the heap.
591 440
    ///
592 441
    /// Adds \c p.first to the heap with priority \c p.second.
593 442
    /// \param p The pair to insert.
594 443
    void push(const Pair& p) {
595 444
      push(p.first, p.second);
596 445
    }
597 446

	
598 447
    /// \brief Insert an item into the heap with the given priority.
599 448
    ///
600 449
    /// Adds \c i to the heap with priority \c p.
601 450
    /// \param i The item to insert.
602 451
    /// \param p The priority of the item.
603 452
    void push(const Item &i, const Prio &p) {
604 453
      int idx;
605 454
      if (free == -1) {
606 455
        idx = data.size();
607 456
        data.push_back(BucketItem(i));
608 457
      } else {
609 458
        idx = free;
610 459
        free = data[idx].next;
611 460
        data[idx].item = i;
612 461
      }
613 462
      index[i] = idx;
614 463
      if (p >= int(first.size())) first.resize(p + 1, -1);
615 464
      data[idx].next = first[p];
616 465
      first[p] = idx;
617
      if (p < minimal) {
466
      if (Direction::less(p, minimal)) {
618 467
        minimal = p;
619 468
      }
620 469
      ++num;
621 470
    }
622 471

	
623 472
    /// \brief Returns the item with minimum priority.
624 473
    ///
625 474
    /// This method returns the item with minimum priority.
626 475
    /// \pre The heap must be nonempty.
627 476
    Item top() const {
628 477
      while (first[minimal] == -1) {
629
        ++minimal;
478
        Direction::increase(minimal);
630 479
      }
631 480
      return data[first[minimal]].item;
632 481
    }
633 482

	
634 483
    /// \brief Returns the minimum priority.
635 484
    ///
636 485
    /// It returns the minimum priority.
637 486
    /// \pre The heap must be nonempty.
638 487
    Prio prio() const {
639 488
      while (first[minimal] == -1) {
640
        ++minimal;
489
        Direction::increase(minimal);
641 490
      }
642 491
      return minimal;
643 492
    }
644 493

	
645 494
    /// \brief Deletes the item with minimum priority.
646 495
    ///
647 496
    /// This method deletes the item with minimum priority from the heap.
648 497
    /// \pre The heap must be non-empty.
649 498
    void pop() {
650 499
      while (first[minimal] == -1) {
651
        ++minimal;
500
        Direction::increase(minimal);
652 501
      }
653 502
      int idx = first[minimal];
654 503
      index[data[idx].item] = -2;
655 504
      first[minimal] = data[idx].next;
656 505
      data[idx].next = free;
657 506
      free = idx;
658 507
      --num;
659 508
    }
660 509

	
661 510
    /// \brief Returns the priority of \c i.
662 511
    ///
663 512
    /// This function returns the priority of item \c i.
664 513
    /// \warning This operator is not a constant time function
665 514
    /// because it scans the whole data structure to find the proper
666 515
    /// value.
667 516
    /// \pre \c i must be in the heap.
668 517
    /// \param i The item.
669 518
    Prio operator[](const Item &i) const {
670 519
      for (int k = 0; k < first.size(); ++k) {
671 520
        int idx = first[k];
672 521
        while (idx != -1) {
673 522
          if (data[idx].item == i) {
674 523
            return k;
675 524
          }
676 525
          idx = data[idx].next;
677 526
        }
678 527
      }
679 528
      return -1;
680 529
    }
681 530

	
682 531
    /// \brief Returns if \c item is in, has already been in, or has
683 532
    /// never been in the heap.
684 533
    ///
685 534
    /// This method returns PRE_HEAP if \c item has never been in the
686 535
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
687 536
    /// otherwise. In the latter case it is possible that \c item will
688 537
    /// get back to the heap again.
689 538
    /// \param i The item.
690 539
    State state(const Item &i) const {
691 540
      int idx = index[i];
692 541
      if (idx >= 0) idx = 0;
693 542
      return State(idx);
694 543
    }
695 544

	
696 545
  private:
697 546

	
698 547
    struct BucketItem {
699 548
      BucketItem(const Item& _item)
700 549
        : item(_item) {}
701 550

	
702 551
      Item item;
703 552
      int next;
704 553
    };
705 554

	
706 555
    ItemIntMap& index;
707 556
    std::vector<int> first;
708 557
    std::vector<BucketItem> data;
709 558
    int free, num;
710 559
    mutable int minimal;
711 560

	
712 561
  }; // class SimpleBucketHeap
713 562

	
714
  template <typename _ItemIntMap>
715
  class SimpleBucketHeap<_ItemIntMap, false> {
716

	
717
  public:
718
    typedef typename _ItemIntMap::Key Item;
719
    typedef int Prio;
720
    typedef std::pair<Item, Prio> Pair;
721
    typedef _ItemIntMap ItemIntMap;
722

	
723
    enum State {
724
      IN_HEAP = 0,
725
      PRE_HEAP = -1,
726
      POST_HEAP = -2
727
    };
728

	
729
  public:
730

	
731
    explicit SimpleBucketHeap(ItemIntMap &_index)
732
      : index(_index), free(-1), num(0), maximal(0) {}
733

	
734
    int size() const { return num; }
735

	
736
    bool empty() const { return num == 0; }
737

	
738
    void clear() {
739
      data.clear(); first.clear(); free = -1; num = 0; maximal = 0;
740
    }
741

	
742
    void push(const Pair& p) {
743
      push(p.first, p.second);
744
    }
745

	
746
    void push(const Item &i, const Prio &p) {
747
      int idx;
748
      if (free == -1) {
749
        idx = data.size();
750
        data.push_back(BucketItem(i));
751
      } else {
752
        idx = free;
753
        free = data[idx].next;
754
        data[idx].item = i;
755
      }
756
      index[i] = idx;
757
      if (p >= int(first.size())) first.resize(p + 1, -1);
758
      data[idx].next = first[p];
759
      first[p] = idx;
760
      if (p > maximal) {
761
        maximal = p;
762
      }
763
      ++num;
764
    }
765

	
766
    Item top() const {
767
      while (first[maximal] == -1) {
768
        --maximal;
769
      }
770
      return data[first[maximal]].item;
771
    }
772

	
773
    Prio prio() const {
774
      while (first[maximal] == -1) {
775
        --maximal;
776
      }
777
      return maximal;
778
    }
779

	
780
    void pop() {
781
      while (first[maximal] == -1) {
782
        --maximal;
783
      }
784
      int idx = first[maximal];
785
      index[data[idx].item] = -2;
786
      first[maximal] = data[idx].next;
787
      data[idx].next = free;
788
      free = idx;
789
      --num;
790
    }
791

	
792
    Prio operator[](const Item &i) const {
793
      for (int k = 0; k < first.size(); ++k) {
794
        int idx = first[k];
795
        while (idx != -1) {
796
          if (data[idx].item == i) {
797
            return k;
798
          }
799
          idx = data[idx].next;
800
        }
801
      }
802
      return -1;
803
    }
804

	
805
    State state(const Item &i) const {
806
      int idx = index[i];
807
      if (idx >= 0) idx = 0;
808
      return State(idx);
809
    }
810

	
811
  private:
812

	
813
    struct BucketItem {
814
      BucketItem(const Item& _item) : item(_item) {}
815

	
816
      Item item;
817

	
818
      int next;
819
    };
820

	
821
    ItemIntMap& index;
822
    std::vector<int> first;
823
    std::vector<BucketItem> data;
824
    int free, num;
825
    mutable int maximal;
826

	
827
  };
828

	
829 563
}
830 564

	
831 565
#endif
0 comments (0 inline)