0
2
0
298
22
36
12
... | ... |
@@ -77,26 +77,26 @@ |
77 | 77 |
/// Returns a \ref NullMap class |
78 | 78 |
|
79 | 79 |
/// This function just returns a \ref NullMap class. |
80 | 80 |
/// \relates NullMap |
81 | 81 |
template <typename K, typename V> |
82 | 82 |
NullMap<K, V> nullMap() { |
83 | 83 |
return NullMap<K, V>(); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
|
87 | 87 |
/// Constant map. |
88 | 88 |
|
89 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
|
90 |
/// specified value to each key. |
|
89 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
|
90 |
/// value to each key. |
|
91 | 91 |
/// |
92 | 92 |
/// In other aspects it is equivalent to \ref NullMap. |
93 | 93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
94 | 94 |
/// concept, but it absorbs the data written to it. |
95 | 95 |
/// |
96 | 96 |
/// The simplest way of using this map is through the constMap() |
97 | 97 |
/// function. |
98 | 98 |
/// |
99 | 99 |
/// \sa NullMap |
100 | 100 |
/// \sa IdentityMap |
101 | 101 |
template<typename K, typename V> |
102 | 102 |
class ConstMap : public MapBase<K, V> { |
... | ... |
@@ -140,26 +140,26 @@ |
140 | 140 |
/// \relates ConstMap |
141 | 141 |
template<typename K, typename V> |
142 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
143 | 143 |
return ConstMap<K, V>(v); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
|
147 | 147 |
template<typename T, T v> |
148 | 148 |
struct Const {}; |
149 | 149 |
|
150 | 150 |
/// Constant map with inlined constant value. |
151 | 151 |
|
152 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
|
153 |
/// specified value to each key. |
|
152 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
|
153 |
/// value to each key. |
|
154 | 154 |
/// |
155 | 155 |
/// In other aspects it is equivalent to \ref NullMap. |
156 | 156 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
157 | 157 |
/// concept, but it absorbs the data written to it. |
158 | 158 |
/// |
159 | 159 |
/// The simplest way of using this map is through the constMap() |
160 | 160 |
/// function. |
161 | 161 |
/// |
162 | 162 |
/// \sa NullMap |
163 | 163 |
/// \sa IdentityMap |
164 | 164 |
template<typename K, typename V, V v> |
165 | 165 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
... | ... |
@@ -180,40 +180,40 @@ |
180 | 180 |
|
181 | 181 |
/// Returns a \ref ConstMap class with inlined constant value |
182 | 182 |
|
183 | 183 |
/// This function just returns a \ref ConstMap class with inlined |
184 | 184 |
/// constant value. |
185 | 185 |
/// \relates ConstMap |
186 | 186 |
template<typename K, typename V, V v> |
187 | 187 |
inline ConstMap<K, Const<V, v> > constMap() { |
188 | 188 |
return ConstMap<K, Const<V, v> >(); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
|
192 |
/// \brief Identity map. |
|
193 |
/// |
|
194 |
/// This map gives back the given key as value without any |
|
195 |
/// modification. |
|
192 |
/// Identity map. |
|
193 |
|
|
194 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
|
195 |
/// key as value without any modification. |
|
196 | 196 |
/// |
197 | 197 |
/// \sa ConstMap |
198 | 198 |
template <typename T> |
199 | 199 |
class IdentityMap : public MapBase<T, T> { |
200 | 200 |
public: |
201 | 201 |
typedef MapBase<T, T> Parent; |
202 | 202 |
typedef typename Parent::Key Key; |
203 | 203 |
typedef typename Parent::Value Value; |
204 | 204 |
|
205 | 205 |
/// Gives back the given value without any modification. |
206 |
const T& operator[](const T& t) const { |
|
207 |
return t; |
|
206 |
Value operator[](const Key &k) const { |
|
207 |
return k; |
|
208 | 208 |
} |
209 | 209 |
}; |
210 | 210 |
|
211 | 211 |
/// Returns an \ref IdentityMap class |
212 | 212 |
|
213 | 213 |
/// This function just returns an \ref IdentityMap class. |
214 | 214 |
/// \relates IdentityMap |
215 | 215 |
template<typename T> |
216 | 216 |
inline IdentityMap<T> identityMap() { |
217 | 217 |
return IdentityMap<T>(); |
218 | 218 |
} |
219 | 219 |
|
... | ... |
@@ -455,25 +455,25 @@ |
455 | 455 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
456 | 456 |
{ |
457 | 457 |
return SparseMap<K, V, Compare>(map, value); |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
/// @} |
461 | 461 |
|
462 | 462 |
/// \addtogroup map_adaptors |
463 | 463 |
/// @{ |
464 | 464 |
|
465 | 465 |
/// Composition of two maps |
466 | 466 |
|
467 |
/// This \ref concepts::ReadMap "read |
|
467 |
/// This \ref concepts::ReadMap "read-only map" returns the |
|
468 | 468 |
/// composition of two given maps. That is to say, if \c m1 is of |
469 | 469 |
/// type \c M1 and \c m2 is of \c M2, then for |
470 | 470 |
/// \code |
471 | 471 |
/// ComposeMap<M1, M2> cm(m1,m2); |
472 | 472 |
/// \endcode |
473 | 473 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
474 | 474 |
/// |
475 | 475 |
/// The \c Key type of the map is inherited from \c M2 and the |
476 | 476 |
/// \c Value type is from \c M1. |
477 | 477 |
/// \c M2::Value must be convertible to \c M1::Key. |
478 | 478 |
/// |
479 | 479 |
/// The simplest way of using this map is through the composeMap() |
... | ... |
@@ -507,25 +507,25 @@ |
507 | 507 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
508 | 508 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
509 | 509 |
/// |
510 | 510 |
/// \relates ComposeMap |
511 | 511 |
template <typename M1, typename M2> |
512 | 512 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
513 | 513 |
return ComposeMap<M1, M2>(m1, m2); |
514 | 514 |
} |
515 | 515 |
|
516 | 516 |
|
517 | 517 |
/// Combination of two maps using an STL (binary) functor. |
518 | 518 |
|
519 |
/// This \ref concepts::ReadMap "read |
|
519 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
|
520 | 520 |
/// binary functor and returns the combination of the two given maps |
521 | 521 |
/// using the functor. |
522 | 522 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
523 | 523 |
/// and \c f is of \c F, then for |
524 | 524 |
/// \code |
525 | 525 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
526 | 526 |
/// \endcode |
527 | 527 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
528 | 528 |
/// |
529 | 529 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
530 | 530 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
531 | 531 |
/// \c M2::Value and \c M1::Value must be convertible to the |
... | ... |
@@ -586,25 +586,25 @@ |
586 | 586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
587 | 587 |
} |
588 | 588 |
|
589 | 589 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
590 | 590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
591 | 591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
592 | 592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
|
596 | 596 |
/// Converts an STL style (unary) functor to a map |
597 | 597 |
|
598 |
/// This \ref concepts::ReadMap "read |
|
598 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
|
599 | 599 |
/// of a given functor. Actually, it just wraps the functor and |
600 | 600 |
/// provides the \c Key and \c Value typedefs. |
601 | 601 |
/// |
602 | 602 |
/// Template parameters \c K and \c V will become its \c Key and |
603 | 603 |
/// \c Value. In most cases they have to be given explicitly because |
604 | 604 |
/// a functor typically does not provide \c argument_type and |
605 | 605 |
/// \c result_type typedefs. |
606 | 606 |
/// Parameter \c F is the type of the used functor. |
607 | 607 |
/// |
608 | 608 |
/// The simplest way of using this map is through the functorToMap() |
609 | 609 |
/// function. |
610 | 610 |
/// |
... | ... |
@@ -766,25 +766,25 @@ |
766 | 766 |
/// Returns a \ref ForkMap class |
767 | 767 |
|
768 | 768 |
/// This function just returns a \ref ForkMap class. |
769 | 769 |
/// \relates ForkMap |
770 | 770 |
template <typename M1, typename M2> |
771 | 771 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
772 | 772 |
return ForkMap<M1,M2>(m1,m2); |
773 | 773 |
} |
774 | 774 |
|
775 | 775 |
|
776 | 776 |
/// Sum of two maps |
777 | 777 |
|
778 |
/// This \ref concepts::ReadMap "read |
|
778 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
|
779 | 779 |
/// of the values of the two given maps. |
780 | 780 |
/// Its \c Key and \c Value types are inherited from \c M1. |
781 | 781 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
782 | 782 |
/// \c M1. |
783 | 783 |
/// |
784 | 784 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
785 | 785 |
/// \code |
786 | 786 |
/// AddMap<M1,M2> am(m1,m2); |
787 | 787 |
/// \endcode |
788 | 788 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
789 | 789 |
/// |
790 | 790 |
/// The simplest way of using this map is through the addMap() |
... | ... |
@@ -815,25 +815,25 @@ |
815 | 815 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
816 | 816 |
/// <tt>m1[x]+m2[x]</tt>. |
817 | 817 |
/// |
818 | 818 |
/// \relates AddMap |
819 | 819 |
template<typename M1, typename M2> |
820 | 820 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
821 | 821 |
return AddMap<M1, M2>(m1,m2); |
822 | 822 |
} |
823 | 823 |
|
824 | 824 |
|
825 | 825 |
/// Difference of two maps |
826 | 826 |
|
827 |
/// This \ref concepts::ReadMap "read |
|
827 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
|
828 | 828 |
/// of the values of the two given maps. |
829 | 829 |
/// Its \c Key and \c Value types are inherited from \c M1. |
830 | 830 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
831 | 831 |
/// \c M1. |
832 | 832 |
/// |
833 | 833 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
834 | 834 |
/// \code |
835 | 835 |
/// SubMap<M1,M2> sm(m1,m2); |
836 | 836 |
/// \endcode |
837 | 837 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
838 | 838 |
/// |
839 | 839 |
/// The simplest way of using this map is through the subMap() |
... | ... |
@@ -863,25 +863,25 @@ |
863 | 863 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
864 | 864 |
/// <tt>m1[x]-m2[x]</tt>. |
865 | 865 |
/// |
866 | 866 |
/// \relates SubMap |
867 | 867 |
template<typename M1, typename M2> |
868 | 868 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
869 | 869 |
return SubMap<M1, M2>(m1,m2); |
870 | 870 |
} |
871 | 871 |
|
872 | 872 |
|
873 | 873 |
/// Product of two maps |
874 | 874 |
|
875 |
/// This \ref concepts::ReadMap "read |
|
875 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
|
876 | 876 |
/// of the values of the two given maps. |
877 | 877 |
/// Its \c Key and \c Value types are inherited from \c M1. |
878 | 878 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
879 | 879 |
/// \c M1. |
880 | 880 |
/// |
881 | 881 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
882 | 882 |
/// \code |
883 | 883 |
/// MulMap<M1,M2> mm(m1,m2); |
884 | 884 |
/// \endcode |
885 | 885 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
886 | 886 |
/// |
887 | 887 |
/// The simplest way of using this map is through the mulMap() |
... | ... |
@@ -912,25 +912,25 @@ |
912 | 912 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
913 | 913 |
/// <tt>m1[x]*m2[x]</tt>. |
914 | 914 |
/// |
915 | 915 |
/// \relates MulMap |
916 | 916 |
template<typename M1, typename M2> |
917 | 917 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
918 | 918 |
return MulMap<M1, M2>(m1,m2); |
919 | 919 |
} |
920 | 920 |
|
921 | 921 |
|
922 | 922 |
/// Quotient of two maps |
923 | 923 |
|
924 |
/// This \ref concepts::ReadMap "read |
|
924 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
|
925 | 925 |
/// of the values of the two given maps. |
926 | 926 |
/// Its \c Key and \c Value types are inherited from \c M1. |
927 | 927 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
928 | 928 |
/// \c M1. |
929 | 929 |
/// |
930 | 930 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
931 | 931 |
/// \code |
932 | 932 |
/// DivMap<M1,M2> dm(m1,m2); |
933 | 933 |
/// \endcode |
934 | 934 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
935 | 935 |
/// |
936 | 936 |
/// The simplest way of using this map is through the divMap() |
... | ... |
@@ -960,25 +960,25 @@ |
960 | 960 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
961 | 961 |
/// <tt>m1[x]/m2[x]</tt>. |
962 | 962 |
/// |
963 | 963 |
/// \relates DivMap |
964 | 964 |
template<typename M1, typename M2> |
965 | 965 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
966 | 966 |
return DivMap<M1, M2>(m1,m2); |
967 | 967 |
} |
968 | 968 |
|
969 | 969 |
|
970 | 970 |
/// Shifts a map with a constant. |
971 | 971 |
|
972 |
/// This \ref concepts::ReadMap "read |
|
972 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
|
973 | 973 |
/// the given map and a constant value (i.e. it shifts the map with |
974 | 974 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
975 | 975 |
/// |
976 | 976 |
/// Actually, |
977 | 977 |
/// \code |
978 | 978 |
/// ShiftMap<M> sh(m,v); |
979 | 979 |
/// \endcode |
980 | 980 |
/// is equivalent to |
981 | 981 |
/// \code |
982 | 982 |
/// ConstMap<M::Key, M::Value> cm(v); |
983 | 983 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
984 | 984 |
/// \endcode |
... | ... |
@@ -1061,25 +1061,25 @@ |
1061 | 1061 |
/// <tt>m[x]+v</tt>. |
1062 | 1062 |
/// Moreover it makes also possible to write the map. |
1063 | 1063 |
/// |
1064 | 1064 |
/// \relates ShiftWriteMap |
1065 | 1065 |
template<typename M, typename C> |
1066 | 1066 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
1067 | 1067 |
return ShiftWriteMap<M, C>(m,v); |
1068 | 1068 |
} |
1069 | 1069 |
|
1070 | 1070 |
|
1071 | 1071 |
/// Scales a map with a constant. |
1072 | 1072 |
|
1073 |
/// This \ref concepts::ReadMap "read |
|
1073 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
|
1074 | 1074 |
/// the given map multiplied from the left side with a constant value. |
1075 | 1075 |
/// Its \c Key and \c Value are inherited from \c M. |
1076 | 1076 |
/// |
1077 | 1077 |
/// Actually, |
1078 | 1078 |
/// \code |
1079 | 1079 |
/// ScaleMap<M> sc(m,v); |
1080 | 1080 |
/// \endcode |
1081 | 1081 |
/// is equivalent to |
1082 | 1082 |
/// \code |
1083 | 1083 |
/// ConstMap<M::Key, M::Value> cm(v); |
1084 | 1084 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
1085 | 1085 |
/// \endcode |
... | ... |
@@ -1163,25 +1163,25 @@ |
1163 | 1163 |
/// <tt>v*m[x]</tt>. |
1164 | 1164 |
/// Moreover it makes also possible to write the map. |
1165 | 1165 |
/// |
1166 | 1166 |
/// \relates ScaleWriteMap |
1167 | 1167 |
template<typename M, typename C> |
1168 | 1168 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
1169 | 1169 |
return ScaleWriteMap<M, C>(m,v); |
1170 | 1170 |
} |
1171 | 1171 |
|
1172 | 1172 |
|
1173 | 1173 |
/// Negative of a map |
1174 | 1174 |
|
1175 |
/// This \ref concepts::ReadMap "read |
|
1175 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
|
1176 | 1176 |
/// of the values of the given map (using the unary \c - operator). |
1177 | 1177 |
/// Its \c Key and \c Value are inherited from \c M. |
1178 | 1178 |
/// |
1179 | 1179 |
/// If M::Value is \c int, \c double etc., then |
1180 | 1180 |
/// \code |
1181 | 1181 |
/// NegMap<M> neg(m); |
1182 | 1182 |
/// \endcode |
1183 | 1183 |
/// is equivalent to |
1184 | 1184 |
/// \code |
1185 | 1185 |
/// ScaleMap<M> neg(m,-1); |
1186 | 1186 |
/// \endcode |
1187 | 1187 |
/// |
... | ... |
@@ -1261,25 +1261,25 @@ |
1261 | 1261 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1262 | 1262 |
/// Moreover it makes also possible to write the map. |
1263 | 1263 |
/// |
1264 | 1264 |
/// \relates NegWriteMap |
1265 | 1265 |
template <typename M> |
1266 | 1266 |
inline NegWriteMap<M> negWriteMap(M &m) { |
1267 | 1267 |
return NegWriteMap<M>(m); |
1268 | 1268 |
} |
1269 | 1269 |
|
1270 | 1270 |
|
1271 | 1271 |
/// Absolute value of a map |
1272 | 1272 |
|
1273 |
/// This \ref concepts::ReadMap "read |
|
1273 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
|
1274 | 1274 |
/// value of the values of the given map. |
1275 | 1275 |
/// Its \c Key and \c Value are inherited from \c M. |
1276 | 1276 |
/// \c Value must be comparable to \c 0 and the unary \c - |
1277 | 1277 |
/// operator must be defined for it, of course. |
1278 | 1278 |
/// |
1279 | 1279 |
/// The simplest way of using this map is through the absMap() |
1280 | 1280 |
/// function. |
1281 | 1281 |
template<typename M> |
1282 | 1282 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1283 | 1283 |
const M &_m; |
1284 | 1284 |
public: |
1285 | 1285 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
... | ... |
@@ -1302,28 +1302,208 @@ |
1302 | 1302 |
/// |
1303 | 1303 |
/// For example, if \c m is a map with \c double values, then |
1304 | 1304 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
1305 | 1305 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
1306 | 1306 |
/// negative. |
1307 | 1307 |
/// |
1308 | 1308 |
/// \relates AbsMap |
1309 | 1309 |
template<typename M> |
1310 | 1310 |
inline AbsMap<M> absMap(const M &m) { |
1311 | 1311 |
return AbsMap<M>(m); |
1312 | 1312 |
} |
1313 | 1313 |
|
1314 |
/// @} |
|
1315 |
|
|
1316 |
// Logical maps and map adaptors: |
|
1317 |
|
|
1318 |
/// \addtogroup maps |
|
1319 |
/// @{ |
|
1320 |
|
|
1321 |
/// Constant \c true map. |
|
1322 |
|
|
1323 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|
1324 |
/// each key. |
|
1325 |
/// |
|
1326 |
/// Note that |
|
1327 |
/// \code |
|
1328 |
/// TrueMap<K> tm; |
|
1329 |
/// \endcode |
|
1330 |
/// is equivalent to |
|
1331 |
/// \code |
|
1332 |
/// ConstMap<K,bool> tm(true); |
|
1333 |
/// \endcode |
|
1334 |
/// |
|
1335 |
/// \sa FalseMap |
|
1336 |
/// \sa ConstMap |
|
1337 |
template <typename K> |
|
1338 |
class TrueMap : public MapBase<K, bool> { |
|
1339 |
public: |
|
1340 |
typedef MapBase<K, bool> Parent; |
|
1341 |
typedef typename Parent::Key Key; |
|
1342 |
typedef typename Parent::Value Value; |
|
1343 |
|
|
1344 |
/// Gives back \c true. |
|
1345 |
Value operator[](const Key&) const { return true; } |
|
1346 |
}; |
|
1347 |
|
|
1348 |
/// Returns a \ref TrueMap class |
|
1349 |
|
|
1350 |
/// This function just returns a \ref TrueMap class. |
|
1351 |
/// \relates TrueMap |
|
1352 |
template<typename K> |
|
1353 |
inline TrueMap<K> trueMap() { |
|
1354 |
return TrueMap<K>(); |
|
1355 |
} |
|
1356 |
|
|
1357 |
|
|
1358 |
/// Constant \c false map. |
|
1359 |
|
|
1360 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
|
1361 |
/// each key. |
|
1362 |
/// |
|
1363 |
/// Note that |
|
1364 |
/// \code |
|
1365 |
/// FalseMap<K> fm; |
|
1366 |
/// \endcode |
|
1367 |
/// is equivalent to |
|
1368 |
/// \code |
|
1369 |
/// ConstMap<K,bool> fm(false); |
|
1370 |
/// \endcode |
|
1371 |
/// |
|
1372 |
/// \sa TrueMap |
|
1373 |
/// \sa ConstMap |
|
1374 |
template <typename K> |
|
1375 |
class FalseMap : public MapBase<K, bool> { |
|
1376 |
public: |
|
1377 |
typedef MapBase<K, bool> Parent; |
|
1378 |
typedef typename Parent::Key Key; |
|
1379 |
typedef typename Parent::Value Value; |
|
1380 |
|
|
1381 |
/// Gives back \c false. |
|
1382 |
Value operator[](const Key&) const { return false; } |
|
1383 |
}; |
|
1384 |
|
|
1385 |
/// Returns a \ref FalseMap class |
|
1386 |
|
|
1387 |
/// This function just returns a \ref FalseMap class. |
|
1388 |
/// \relates FalseMap |
|
1389 |
template<typename K> |
|
1390 |
inline FalseMap<K> falseMap() { |
|
1391 |
return FalseMap<K>(); |
|
1392 |
} |
|
1393 |
|
|
1394 |
/// @} |
|
1395 |
|
|
1396 |
/// \addtogroup map_adaptors |
|
1397 |
/// @{ |
|
1398 |
|
|
1399 |
/// Logical 'and' of two maps |
|
1400 |
|
|
1401 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
|
1402 |
/// 'and' of the values of the two given maps. |
|
1403 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
|
1404 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|
1405 |
/// |
|
1406 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
1407 |
/// \code |
|
1408 |
/// AndMap<M1,M2> am(m1,m2); |
|
1409 |
/// \endcode |
|
1410 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
|
1411 |
/// |
|
1412 |
/// The simplest way of using this map is through the andMap() |
|
1413 |
/// function. |
|
1414 |
/// |
|
1415 |
/// \sa OrMap |
|
1416 |
/// \sa NotMap, NotWriteMap |
|
1417 |
template<typename M1, typename M2> |
|
1418 |
class AndMap : public MapBase<typename M1::Key, bool> { |
|
1419 |
const M1 &_m1; |
|
1420 |
const M2 &_m2; |
|
1421 |
public: |
|
1422 |
typedef MapBase<typename M1::Key, bool> Parent; |
|
1423 |
typedef typename Parent::Key Key; |
|
1424 |
typedef typename Parent::Value Value; |
|
1425 |
|
|
1426 |
/// Constructor |
|
1427 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
1428 |
/// \e |
|
1429 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
|
1430 |
}; |
|
1431 |
|
|
1432 |
/// Returns an \ref AndMap class |
|
1433 |
|
|
1434 |
/// This function just returns an \ref AndMap class. |
|
1435 |
/// |
|
1436 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|
1437 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
|
1438 |
/// <tt>m1[x]&&m2[x]</tt>. |
|
1439 |
/// |
|
1440 |
/// \relates AndMap |
|
1441 |
template<typename M1, typename M2> |
|
1442 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
|
1443 |
return AndMap<M1, M2>(m1,m2); |
|
1444 |
} |
|
1445 |
|
|
1446 |
|
|
1447 |
/// Logical 'or' of two maps |
|
1448 |
|
|
1449 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
|
1450 |
/// 'or' of the values of the two given maps. |
|
1451 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
|
1452 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|
1453 |
/// |
|
1454 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
1455 |
/// \code |
|
1456 |
/// OrMap<M1,M2> om(m1,m2); |
|
1457 |
/// \endcode |
|
1458 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
|
1459 |
/// |
|
1460 |
/// The simplest way of using this map is through the orMap() |
|
1461 |
/// function. |
|
1462 |
/// |
|
1463 |
/// \sa AndMap |
|
1464 |
/// \sa NotMap, NotWriteMap |
|
1465 |
template<typename M1, typename M2> |
|
1466 |
class OrMap : public MapBase<typename M1::Key, bool> { |
|
1467 |
const M1 &_m1; |
|
1468 |
const M2 &_m2; |
|
1469 |
public: |
|
1470 |
typedef MapBase<typename M1::Key, bool> Parent; |
|
1471 |
typedef typename Parent::Key Key; |
|
1472 |
typedef typename Parent::Value Value; |
|
1473 |
|
|
1474 |
/// Constructor |
|
1475 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
1476 |
/// \e |
|
1477 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
|
1478 |
}; |
|
1479 |
|
|
1480 |
/// Returns an \ref OrMap class |
|
1481 |
|
|
1482 |
/// This function just returns an \ref OrMap class. |
|
1483 |
/// |
|
1484 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
|
1485 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
|
1486 |
/// <tt>m1[x]||m2[x]</tt>. |
|
1487 |
/// |
|
1488 |
/// \relates OrMap |
|
1489 |
template<typename M1, typename M2> |
|
1490 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
|
1491 |
return OrMap<M1, M2>(m1,m2); |
|
1492 |
} |
|
1493 |
|
|
1314 | 1494 |
|
1315 | 1495 |
/// Logical 'not' of a map |
1316 | 1496 |
|
1317 |
/// This \ref concepts::ReadMap "read |
|
1497 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
|
1318 | 1498 |
/// negation of the values of the given map. |
1319 | 1499 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1320 | 1500 |
/// |
1321 | 1501 |
/// The simplest way of using this map is through the notMap() |
1322 | 1502 |
/// function. |
1323 | 1503 |
/// |
1324 | 1504 |
/// \sa NotWriteMap |
1325 | 1505 |
template <typename M> |
1326 | 1506 |
class NotMap : public MapBase<typename M::Key, bool> { |
1327 | 1507 |
const M &_m; |
1328 | 1508 |
public: |
1329 | 1509 |
typedef MapBase<typename M::Key, bool> Parent; |
... | ... |
@@ -1382,16 +1562,112 @@ |
1382 | 1562 |
/// This function just returns a \ref NotWriteMap class. |
1383 | 1563 |
/// |
1384 | 1564 |
/// For example, if \c m is a map with \c bool values, then |
1385 | 1565 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1386 | 1566 |
/// Moreover it makes also possible to write the map. |
1387 | 1567 |
/// |
1388 | 1568 |
/// \relates NotWriteMap |
1389 | 1569 |
template <typename M> |
1390 | 1570 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1391 | 1571 |
return NotWriteMap<M>(m); |
1392 | 1572 |
} |
1393 | 1573 |
|
1574 |
|
|
1575 |
/// Combination of two maps using the \c == operator |
|
1576 |
|
|
1577 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|
1578 |
/// the keys for which the corresponding values of the two maps are |
|
1579 |
/// equal. |
|
1580 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
|
1581 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|
1582 |
/// |
|
1583 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
1584 |
/// \code |
|
1585 |
/// EqualMap<M1,M2> em(m1,m2); |
|
1586 |
/// \endcode |
|
1587 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
|
1588 |
/// |
|
1589 |
/// The simplest way of using this map is through the equalMap() |
|
1590 |
/// function. |
|
1591 |
/// |
|
1592 |
/// \sa LessMap |
|
1593 |
template<typename M1, typename M2> |
|
1594 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
|
1595 |
const M1 &_m1; |
|
1596 |
const M2 &_m2; |
|
1597 |
public: |
|
1598 |
typedef MapBase<typename M1::Key, bool> Parent; |
|
1599 |
typedef typename Parent::Key Key; |
|
1600 |
typedef typename Parent::Value Value; |
|
1601 |
|
|
1602 |
/// Constructor |
|
1603 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
1604 |
/// \e |
|
1605 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
|
1606 |
}; |
|
1607 |
|
|
1608 |
/// Returns an \ref EqualMap class |
|
1609 |
|
|
1610 |
/// This function just returns an \ref EqualMap class. |
|
1611 |
/// |
|
1612 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
|
1613 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
|
1614 |
/// <tt>m1[x]==m2[x]</tt>. |
|
1615 |
/// |
|
1616 |
/// \relates EqualMap |
|
1617 |
template<typename M1, typename M2> |
|
1618 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
|
1619 |
return EqualMap<M1, M2>(m1,m2); |
|
1620 |
} |
|
1621 |
|
|
1622 |
|
|
1623 |
/// Combination of two maps using the \c < operator |
|
1624 |
|
|
1625 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
|
1626 |
/// the keys for which the corresponding value of the first map is |
|
1627 |
/// less then the value of the second map. |
|
1628 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
|
1629 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
|
1630 |
/// |
|
1631 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
1632 |
/// \code |
|
1633 |
/// LessMap<M1,M2> lm(m1,m2); |
|
1634 |
/// \endcode |
|
1635 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
|
1636 |
/// |
|
1637 |
/// The simplest way of using this map is through the lessMap() |
|
1638 |
/// function. |
|
1639 |
/// |
|
1640 |
/// \sa EqualMap |
|
1641 |
template<typename M1, typename M2> |
|
1642 |
class LessMap : public MapBase<typename M1::Key, bool> { |
|
1643 |
const M1 &_m1; |
|
1644 |
const M2 &_m2; |
|
1645 |
public: |
|
1646 |
typedef MapBase<typename M1::Key, bool> Parent; |
|
1647 |
typedef typename Parent::Key Key; |
|
1648 |
typedef typename Parent::Value Value; |
|
1649 |
|
|
1650 |
/// Constructor |
|
1651 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|
1652 |
/// \e |
|
1653 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
|
1654 |
}; |
|
1655 |
|
|
1656 |
/// Returns an \ref LessMap class |
|
1657 |
|
|
1658 |
/// This function just returns an \ref LessMap class. |
|
1659 |
/// |
|
1660 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
|
1661 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
|
1662 |
/// <tt>m1[x]<m2[x]</tt>. |
|
1663 |
/// |
|
1664 |
/// \relates LessMap |
|
1665 |
template<typename M1, typename M2> |
|
1666 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
|
1667 |
return LessMap<M1, M2>(m1,m2); |
|
1668 |
} |
|
1669 |
|
|
1394 | 1670 |
/// @} |
1395 | 1671 |
} |
1396 | 1672 |
|
1397 | 1673 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -69,42 +69,42 @@ |
69 | 69 |
NullMap<A,B> map2 = map1; |
70 | 70 |
map1 = nullMap<A,B>(); |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
// ConstMap |
74 | 74 |
{ |
75 | 75 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
76 | 76 |
ConstMap<A,B> map1; |
77 | 77 |
ConstMap<A,B> map2(B()); |
78 | 78 |
ConstMap<A,B> map3 = map1; |
79 | 79 |
map1 = constMap<A>(B()); |
80 | 80 |
map1.setAll(B()); |
81 |
|
|
81 |
|
|
82 | 82 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
83 | 83 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
84 | 84 |
|
85 | 85 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
86 | 86 |
ConstMap<A,Const<int,10> > map4; |
87 | 87 |
ConstMap<A,Const<int,10> > map5 = map4; |
88 | 88 |
map4 = map5; |
89 | 89 |
check(map4[A()] == 10 && map5[A()] == 10, "Something is wrong with ConstMap"); |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
// IdentityMap |
93 | 93 |
{ |
94 | 94 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
95 | 95 |
IdentityMap<A> map1; |
96 | 96 |
IdentityMap<A> map2 = map1; |
97 | 97 |
map1 = identityMap<A>(); |
98 |
|
|
98 |
|
|
99 | 99 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
100 | 100 |
check(identityMap<double>()[1.0] == 1.0 && identityMap<double>()[3.14] == 3.14, |
101 | 101 |
"Something is wrong with IdentityMap"); |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
// RangeMap |
105 | 105 |
{ |
106 | 106 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
107 | 107 |
RangeMap<B> map1; |
108 | 108 |
RangeMap<B> map2(10); |
109 | 109 |
RangeMap<B> map3(10,B()); |
110 | 110 |
RangeMap<B> map4 = map1; |
... | ... |
@@ -142,25 +142,25 @@ |
142 | 142 |
"Something is wrong with SparseMap"); |
143 | 143 |
map5[1.0] = map6[3.14] = 100; |
144 | 144 |
check(map5[1.0] == 100 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 100, |
145 | 145 |
"Something is wrong with SparseMap"); |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
// ComposeMap |
149 | 149 |
{ |
150 | 150 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
151 | 151 |
checkConcept<ReadMap<B,double>, CompMap>(); |
152 | 152 |
CompMap map1(DoubleMap(),ReadMap<B,A>()); |
153 | 153 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
154 |
|
|
154 |
|
|
155 | 155 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
156 | 156 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
157 | 157 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], "Something is wrong with ComposeMap") |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
// CombineMap |
161 | 161 |
{ |
162 | 162 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
163 | 163 |
checkConcept<ReadMap<A,double>, CombMap>(); |
164 | 164 |
CombMap map1(DoubleMap(), DoubleMap()); |
165 | 165 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
166 | 166 |
|
... | ... |
@@ -188,81 +188,105 @@ |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
// ConvertMap |
191 | 191 |
{ |
192 | 192 |
checkConcept<ReadMap<double,double>, ConvertMap<ReadMap<double, int>, double> >(); |
193 | 193 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
194 | 194 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
// ForkMap |
198 | 198 |
{ |
199 | 199 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
200 |
|
|
200 |
|
|
201 | 201 |
typedef RangeMap<double> RM; |
202 | 202 |
typedef SparseMap<int, double> SM; |
203 | 203 |
RM m1(10, -1); |
204 | 204 |
SM m2(-1); |
205 | 205 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
206 | 206 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
207 | 207 |
ForkMap<RM, SM> map1(m1,m2); |
208 | 208 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
209 | 209 |
map2.set(5, 10); |
210 | 210 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
211 | 211 |
"Something is wrong with ForkMap"); |
212 | 212 |
} |
213 |
|
|
213 |
|
|
214 | 214 |
// Arithmetic maps: |
215 | 215 |
// - AddMap, SubMap, MulMap, DivMap |
216 | 216 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
217 | 217 |
// - NegMap, NegWriteMap, AbsMap |
218 | 218 |
{ |
219 | 219 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
220 | 220 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
221 | 221 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
222 | 222 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
223 |
|
|
223 |
|
|
224 | 224 |
ConstMap<int, double> c1(1.0), c2(3.14); |
225 | 225 |
IdentityMap<int> im; |
226 | 226 |
ConvertMap<IdentityMap<int>, double> id(im); |
227 | 227 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap"); |
228 | 228 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, "Something is wrong with SubMap"); |
229 | 229 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, "Something is wrong with MulMap"); |
230 | 230 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, "Something is wrong with DivMap"); |
231 |
|
|
231 |
|
|
232 | 232 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
233 | 233 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
234 | 234 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
235 | 235 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
236 | 236 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
237 | 237 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
238 | 238 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
239 | 239 |
|
240 | 240 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
241 | 241 |
"Something is wrong with ShiftMap"); |
242 | 242 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0, |
243 | 243 |
"Something is wrong with ShiftWriteMap"); |
244 | 244 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
245 | 245 |
"Something is wrong with ScaleMap"); |
246 | 246 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0, |
247 | 247 |
"Something is wrong with ScaleWriteMap"); |
248 | 248 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
249 | 249 |
"Something is wrong with NegMap"); |
250 | 250 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
251 | 251 |
"Something is wrong with NegWriteMap"); |
252 | 252 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
253 | 253 |
"Something is wrong with AbsMap"); |
254 | 254 |
} |
255 |
|
|
256 |
// Logical maps |
|
255 |
|
|
256 |
// Logical maps: |
|
257 |
// - TrueMap, FalseMap |
|
258 |
// - AndMap, OrMap |
|
259 |
// - NotMap, NotWriteMap |
|
260 |
// - EqualMap, LessMap |
|
257 | 261 |
{ |
262 |
checkConcept<BoolMap, TrueMap<A> >(); |
|
263 |
checkConcept<BoolMap, FalseMap<A> >(); |
|
264 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
|
265 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
|
258 | 266 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
259 | 267 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
260 |
|
|
268 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
|
269 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
|
270 |
|
|
271 |
TrueMap<int> tm; |
|
272 |
FalseMap<int> fm; |
|
261 | 273 |
RangeMap<bool> rm(2); |
262 | 274 |
rm[0] = true; rm[1] = false; |
263 |
check(!(notMap(rm)[0]) && notMap(rm)[1], "Something is wrong with NotMap"); |
|
264 |
check(!(notWriteMap(rm)[0]) && notWriteMap(rm)[1], "Something is wrong with NotWriteMap"); |
|
275 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && !andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
|
276 |
"Something is wrong with AndMap"); |
|
277 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
|
278 |
"Something is wrong with OrMap"); |
|
279 |
check(!notMap(rm)[0] && notMap(rm)[1], "Something is wrong with NotMap"); |
|
280 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], "Something is wrong with NotWriteMap"); |
|
281 |
|
|
282 |
ConstMap<int, double> cm(2.0); |
|
283 |
IdentityMap<int> im; |
|
284 |
ConvertMap<IdentityMap<int>, double> id(im); |
|
285 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
|
286 |
"Something is wrong with LessMap"); |
|
287 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
|
288 |
"Something is wrong with EqualMap"); |
|
265 | 289 |
} |
266 | 290 |
|
267 | 291 |
return 0; |
268 | 292 |
} |
0 comments (0 inline)