gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Add basic logical maps and doc improvements - Add the following new logical maps and map adaptors: * TrueMap, FalseMap * AndMap, OrMap * EqualMap, LessMap - Improve the documentation for other classes.
0 2 0
default
2 files changed with 325 insertions and 25 deletions:
↑ Collapse diff ↑
Show white space 2 line context
... ...
@@ -88,4 +88,4 @@
88 88

	
89
  /// This is a \ref concepts::ReadMap "readable" map which assigns a
90
  /// specified value to each key.
89
  /// This \ref concepts::ReadMap "readable map" assigns a specified
90
  /// value to each key.
91 91
  ///
... ...
@@ -151,4 +151,4 @@
151 151

	
152
  /// This is a \ref concepts::ReadMap "readable" map which assigns a
153
  /// specified value to each key.
152
  /// This \ref concepts::ReadMap "readable map" assigns a specified
153
  /// value to each key.
154 154
  ///
... ...
@@ -191,6 +191,6 @@
191 191

	
192
  /// \brief Identity map.
193
  ///
194
  /// This map gives back the given key as value without any
195
  /// modification.
192
  /// Identity map.
193

	
194
  /// This \ref concepts::ReadMap "read-only map" gives back the given
195
  /// key as value without any modification.
196 196
  ///
... ...
@@ -205,4 +205,4 @@
205 205
    /// Gives back the given value without any modification.
206
    const T& operator[](const T& t) const {
207
      return t;
206
    Value operator[](const Key &k) const {
207
      return k;
208 208
    }
... ...
@@ -466,3 +466,3 @@
466 466

	
467
  /// This \ref concepts::ReadMap "read only map" returns the
467
  /// This \ref concepts::ReadMap "read-only map" returns the
468 468
  /// composition of two given maps. That is to say, if \c m1 is of
... ...
@@ -518,3 +518,3 @@
518 518

	
519
  /// This \ref concepts::ReadMap "read only map" takes two maps and a
519
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
520 520
  /// binary functor and returns the combination of the two given maps
... ...
@@ -597,3 +597,3 @@
597 597

	
598
  /// This \ref concepts::ReadMap "read only map" returns the value
598
  /// This \ref concepts::ReadMap "read-only map" returns the value
599 599
  /// of a given functor. Actually, it just wraps the functor and
... ...
@@ -777,3 +777,3 @@
777 777

	
778
  /// This \ref concepts::ReadMap "read only map" returns the sum
778
  /// This \ref concepts::ReadMap "read-only map" returns the sum
779 779
  /// of the values of the two given maps.
... ...
@@ -826,3 +826,3 @@
826 826

	
827
  /// This \ref concepts::ReadMap "read only map" returns the difference
827
  /// This \ref concepts::ReadMap "read-only map" returns the difference
828 828
  /// of the values of the two given maps.
... ...
@@ -874,3 +874,3 @@
874 874

	
875
  /// This \ref concepts::ReadMap "read only map" returns the product
875
  /// This \ref concepts::ReadMap "read-only map" returns the product
876 876
  /// of the values of the two given maps.
... ...
@@ -923,3 +923,3 @@
923 923

	
924
  /// This \ref concepts::ReadMap "read only map" returns the quotient
924
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
925 925
  /// of the values of the two given maps.
... ...
@@ -971,3 +971,3 @@
971 971

	
972
  /// This \ref concepts::ReadMap "read only map" returns the sum of
972
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
973 973
  /// the given map and a constant value (i.e. it shifts the map with
... ...
@@ -1072,3 +1072,3 @@
1072 1072

	
1073
  /// This \ref concepts::ReadMap "read only map" returns the value of
1073
  /// This \ref concepts::ReadMap "read-only map" returns the value of
1074 1074
  /// the given map multiplied from the left side with a constant value.
... ...
@@ -1174,3 +1174,3 @@
1174 1174

	
1175
  /// This \ref concepts::ReadMap "read only map" returns the negative
1175
  /// This \ref concepts::ReadMap "read-only map" returns the negative
1176 1176
  /// of the values of the given map (using the unary \c - operator).
... ...
@@ -1272,3 +1272,3 @@
1272 1272

	
1273
  /// This \ref concepts::ReadMap "read only map" returns the absolute
1273
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
1274 1274
  /// value of the values of the given map.
... ...
@@ -1313,2 +1313,182 @@
1313 1313

	
1314
  /// @}
1315
  
1316
  // Logical maps and map adaptors:
1317

	
1318
  /// \addtogroup maps
1319
  /// @{
1320

	
1321
  /// Constant \c true map.
1322

	
1323
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1324
  /// each key.
1325
  ///
1326
  /// Note that
1327
  /// \code
1328
  ///   TrueMap<K> tm;
1329
  /// \endcode
1330
  /// is equivalent to
1331
  /// \code
1332
  ///   ConstMap<K,bool> tm(true);
1333
  /// \endcode
1334
  ///
1335
  /// \sa FalseMap
1336
  /// \sa ConstMap
1337
  template <typename K>
1338
  class TrueMap : public MapBase<K, bool> {
1339
  public:
1340
    typedef MapBase<K, bool> Parent;
1341
    typedef typename Parent::Key Key;
1342
    typedef typename Parent::Value Value;
1343

	
1344
    /// Gives back \c true.
1345
    Value operator[](const Key&) const { return true; }
1346
  };
1347

	
1348
  /// Returns a \ref TrueMap class
1349

	
1350
  /// This function just returns a \ref TrueMap class.
1351
  /// \relates TrueMap
1352
  template<typename K>
1353
  inline TrueMap<K> trueMap() {
1354
    return TrueMap<K>();
1355
  }
1356

	
1357

	
1358
  /// Constant \c false map.
1359

	
1360
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1361
  /// each key.
1362
  ///
1363
  /// Note that
1364
  /// \code
1365
  ///   FalseMap<K> fm;
1366
  /// \endcode
1367
  /// is equivalent to
1368
  /// \code
1369
  ///   ConstMap<K,bool> fm(false);
1370
  /// \endcode
1371
  ///
1372
  /// \sa TrueMap
1373
  /// \sa ConstMap
1374
  template <typename K>
1375
  class FalseMap : public MapBase<K, bool> {
1376
  public:
1377
    typedef MapBase<K, bool> Parent;
1378
    typedef typename Parent::Key Key;
1379
    typedef typename Parent::Value Value;
1380

	
1381
    /// Gives back \c false.
1382
    Value operator[](const Key&) const { return false; }
1383
  };
1384

	
1385
  /// Returns a \ref FalseMap class
1386

	
1387
  /// This function just returns a \ref FalseMap class.
1388
  /// \relates FalseMap
1389
  template<typename K>
1390
  inline FalseMap<K> falseMap() {
1391
    return FalseMap<K>();
1392
  }
1393

	
1394
  /// @}
1395

	
1396
  /// \addtogroup map_adaptors
1397
  /// @{
1398

	
1399
  /// Logical 'and' of two maps
1400

	
1401
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1402
  /// 'and' of the values of the two given maps.
1403
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1404
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1405
  ///
1406
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1407
  /// \code
1408
  ///   AndMap<M1,M2> am(m1,m2);
1409
  /// \endcode
1410
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1411
  ///
1412
  /// The simplest way of using this map is through the andMap()
1413
  /// function.
1414
  ///
1415
  /// \sa OrMap
1416
  /// \sa NotMap, NotWriteMap
1417
  template<typename M1, typename M2>
1418
  class AndMap : public MapBase<typename M1::Key, bool> {
1419
    const M1 &_m1;
1420
    const M2 &_m2;
1421
  public:
1422
    typedef MapBase<typename M1::Key, bool> Parent;
1423
    typedef typename Parent::Key Key;
1424
    typedef typename Parent::Value Value;
1425

	
1426
    /// Constructor
1427
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1428
    /// \e
1429
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1430
  };
1431

	
1432
  /// Returns an \ref AndMap class
1433

	
1434
  /// This function just returns an \ref AndMap class.
1435
  ///
1436
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1437
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1438
  /// <tt>m1[x]&&m2[x]</tt>.
1439
  ///
1440
  /// \relates AndMap
1441
  template<typename M1, typename M2>
1442
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1443
    return AndMap<M1, M2>(m1,m2);
1444
  }
1445

	
1446

	
1447
  /// Logical 'or' of two maps
1448

	
1449
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1450
  /// 'or' of the values of the two given maps.
1451
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1452
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1453
  ///
1454
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1455
  /// \code
1456
  ///   OrMap<M1,M2> om(m1,m2);
1457
  /// \endcode
1458
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1459
  ///
1460
  /// The simplest way of using this map is through the orMap()
1461
  /// function.
1462
  ///
1463
  /// \sa AndMap
1464
  /// \sa NotMap, NotWriteMap
1465
  template<typename M1, typename M2>
1466
  class OrMap : public MapBase<typename M1::Key, bool> {
1467
    const M1 &_m1;
1468
    const M2 &_m2;
1469
  public:
1470
    typedef MapBase<typename M1::Key, bool> Parent;
1471
    typedef typename Parent::Key Key;
1472
    typedef typename Parent::Value Value;
1473

	
1474
    /// Constructor
1475
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1476
    /// \e
1477
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1478
  };
1479

	
1480
  /// Returns an \ref OrMap class
1481

	
1482
  /// This function just returns an \ref OrMap class.
1483
  ///
1484
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1485
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1486
  /// <tt>m1[x]||m2[x]</tt>.
1487
  ///
1488
  /// \relates OrMap
1489
  template<typename M1, typename M2>
1490
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1491
    return OrMap<M1, M2>(m1,m2);
1492
  }
1493

	
1314 1494

	
... ...
@@ -1316,3 +1496,3 @@
1316 1496

	
1317
  /// This \ref concepts::ReadMap "read only map" returns the logical
1497
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1318 1498
  /// negation of the values of the given map.
... ...
@@ -1393,2 +1573,98 @@
1393 1573

	
1574

	
1575
  /// Combination of two maps using the \c == operator
1576

	
1577
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1578
  /// the keys for which the corresponding values of the two maps are
1579
  /// equal.
1580
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1581
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1582
  ///
1583
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1584
  /// \code
1585
  ///   EqualMap<M1,M2> em(m1,m2);
1586
  /// \endcode
1587
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1588
  ///
1589
  /// The simplest way of using this map is through the equalMap()
1590
  /// function.
1591
  ///
1592
  /// \sa LessMap
1593
  template<typename M1, typename M2>
1594
  class EqualMap : public MapBase<typename M1::Key, bool> {
1595
    const M1 &_m1;
1596
    const M2 &_m2;
1597
  public:
1598
    typedef MapBase<typename M1::Key, bool> Parent;
1599
    typedef typename Parent::Key Key;
1600
    typedef typename Parent::Value Value;
1601

	
1602
    /// Constructor
1603
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1604
    /// \e
1605
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1606
  };
1607

	
1608
  /// Returns an \ref EqualMap class
1609

	
1610
  /// This function just returns an \ref EqualMap class.
1611
  ///
1612
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1613
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1614
  /// <tt>m1[x]==m2[x]</tt>.
1615
  ///
1616
  /// \relates EqualMap
1617
  template<typename M1, typename M2>
1618
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1619
    return EqualMap<M1, M2>(m1,m2);
1620
  }
1621

	
1622

	
1623
  /// Combination of two maps using the \c < operator
1624

	
1625
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1626
  /// the keys for which the corresponding value of the first map is
1627
  /// less then the value of the second map.
1628
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1629
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1630
  ///
1631
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1632
  /// \code
1633
  ///   LessMap<M1,M2> lm(m1,m2);
1634
  /// \endcode
1635
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1636
  ///
1637
  /// The simplest way of using this map is through the lessMap()
1638
  /// function.
1639
  ///
1640
  /// \sa EqualMap
1641
  template<typename M1, typename M2>
1642
  class LessMap : public MapBase<typename M1::Key, bool> {
1643
    const M1 &_m1;
1644
    const M2 &_m2;
1645
  public:
1646
    typedef MapBase<typename M1::Key, bool> Parent;
1647
    typedef typename Parent::Key Key;
1648
    typedef typename Parent::Value Value;
1649

	
1650
    /// Constructor
1651
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1652
    /// \e
1653
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1654
  };
1655

	
1656
  /// Returns an \ref LessMap class
1657

	
1658
  /// This function just returns an \ref LessMap class.
1659
  ///
1660
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1661
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1662
  /// <tt>m1[x]<m2[x]</tt>.
1663
  ///
1664
  /// \relates LessMap
1665
  template<typename M1, typename M2>
1666
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1667
    return LessMap<M1, M2>(m1,m2);
1668
  }
1669

	
1394 1670
  /// @}
Show white space 2 line context
... ...
@@ -255,11 +255,35 @@
255 255
  
256
  // Logical maps
256
  // Logical maps:
257
  // - TrueMap, FalseMap
258
  // - AndMap, OrMap
259
  // - NotMap, NotWriteMap
260
  // - EqualMap, LessMap
257 261
  {
262
    checkConcept<BoolMap, TrueMap<A> >();
263
    checkConcept<BoolMap, FalseMap<A> >();
264
    checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >();
265
    checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >();
258 266
    checkConcept<BoolMap, NotMap<BoolMap> >();
259 267
    checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >();
268
    checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >();
269
    checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >();
260 270
    
271
    TrueMap<int> tm;
272
    FalseMap<int> fm;
261 273
    RangeMap<bool> rm(2);
262 274
    rm[0] = true; rm[1] = false;
263
    check(!(notMap(rm)[0]) && notMap(rm)[1], "Something is wrong with NotMap");
264
    check(!(notWriteMap(rm)[0]) && notWriteMap(rm)[1], "Something is wrong with NotWriteMap");
275
    check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && !andMap(fm,rm)[0] && !andMap(fm,rm)[1],
276
          "Something is wrong with AndMap");
277
    check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && orMap(fm,rm)[0] && !orMap(fm,rm)[1],
278
          "Something is wrong with OrMap");
279
    check(!notMap(rm)[0] && notMap(rm)[1], "Something is wrong with NotMap");
280
    check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], "Something is wrong with NotWriteMap");
281

	
282
    ConstMap<int, double> cm(2.0);
283
    IdentityMap<int> im;
284
    ConvertMap<IdentityMap<int>, double> id(im);
285
    check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3],
286
          "Something is wrong with LessMap");
287
    check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3],
288
          "Something is wrong with EqualMap");
265 289
  }
0 comments (0 inline)