... | ... |
@@ -152,26 +152,24 @@ |
152 | 152 |
|
153 | 153 |
/// The Altering Candidate List pivot rule. |
154 | 154 |
/// It is a modified version of the Candidate List method. |
155 | 155 |
/// It keeps only the several best eligible arcs from the former |
156 | 156 |
/// candidate list and extends this list in every iteration. |
157 | 157 |
ALTERING_LIST |
158 | 158 |
}; |
159 | 159 |
|
160 | 160 |
private: |
161 | 161 |
|
162 | 162 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
163 | 163 |
|
164 |
typedef std::vector<Arc> ArcVector; |
|
165 |
typedef std::vector<Node> NodeVector; |
|
166 | 164 |
typedef std::vector<int> IntVector; |
167 | 165 |
typedef std::vector<bool> BoolVector; |
168 | 166 |
typedef std::vector<Value> ValueVector; |
169 | 167 |
typedef std::vector<Cost> CostVector; |
170 | 168 |
|
171 | 169 |
// State constants for arcs |
172 | 170 |
enum ArcStateEnum { |
173 | 171 |
STATE_UPPER = -1, |
174 | 172 |
STATE_TREE = 0, |
175 | 173 |
STATE_LOWER = 1 |
176 | 174 |
}; |
177 | 175 |
|
... | ... |
@@ -676,35 +674,26 @@ |
676 | 674 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
677 | 675 |
_node_id[n] = i; |
678 | 676 |
} |
679 | 677 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
680 | 678 |
i = 0; |
681 | 679 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
682 | 680 |
_arc_id[a] = i; |
683 | 681 |
_source[i] = _node_id[_graph.source(a)]; |
684 | 682 |
_target[i] = _node_id[_graph.target(a)]; |
685 | 683 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
686 | 684 |
} |
687 | 685 |
|
688 |
// Initialize maps |
|
689 |
for (int i = 0; i != _node_num; ++i) { |
|
690 |
_supply[i] = 0; |
|
691 |
} |
|
692 |
for (int i = 0; i != _arc_num; ++i) { |
|
693 |
_lower[i] = 0; |
|
694 |
_upper[i] = INF; |
|
695 |
_cost[i] = 1; |
|
696 |
} |
|
697 |
_have_lower = false; |
|
698 |
|
|
686 |
// Reset parameters |
|
687 |
reset(); |
|
699 | 688 |
} |
700 | 689 |
|
701 | 690 |
/// \name Parameters |
702 | 691 |
/// The parameters of the algorithm can be specified using these |
703 | 692 |
/// functions. |
704 | 693 |
|
705 | 694 |
/// @{ |
706 | 695 |
|
707 | 696 |
/// \brief Set the lower bounds on the arcs. |
708 | 697 |
/// |
709 | 698 |
/// This function sets the lower bounds on the arcs. |
710 | 699 |
/// If it is not used before calling \ref run(), the lower bounds |
... | ... |
@@ -759,46 +748,44 @@ |
759 | 748 |
NetworkSimplex& costMap(const CostMap& map) { |
760 | 749 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
761 | 750 |
_cost[_arc_id[a]] = map[a]; |
762 | 751 |
} |
763 | 752 |
return *this; |
764 | 753 |
} |
765 | 754 |
|
766 | 755 |
/// \brief Set the supply values of the nodes. |
767 | 756 |
/// |
768 | 757 |
/// This function sets the supply values of the nodes. |
769 | 758 |
/// If neither this function nor \ref stSupply() is used before |
770 | 759 |
/// calling \ref run(), the supply of each node will be set to zero. |
771 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
772 | 760 |
/// |
773 | 761 |
/// \param map A node map storing the supply values. |
774 | 762 |
/// Its \c Value type must be convertible to the \c Value type |
775 | 763 |
/// of the algorithm. |
776 | 764 |
/// |
777 | 765 |
/// \return <tt>(*this)</tt> |
778 | 766 |
template<typename SupplyMap> |
779 | 767 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
780 | 768 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
781 | 769 |
_supply[_node_id[n]] = map[n]; |
782 | 770 |
} |
783 | 771 |
return *this; |
784 | 772 |
} |
785 | 773 |
|
786 | 774 |
/// \brief Set single source and target nodes and a supply value. |
787 | 775 |
/// |
788 | 776 |
/// This function sets a single source node and a single target node |
789 | 777 |
/// and the required flow value. |
790 | 778 |
/// If neither this function nor \ref supplyMap() is used before |
791 | 779 |
/// calling \ref run(), the supply of each node will be set to zero. |
792 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
793 | 780 |
/// |
794 | 781 |
/// Using this function has the same effect as using \ref supplyMap() |
795 | 782 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
796 | 783 |
/// assigned to \c t and all other nodes have zero supply value. |
797 | 784 |
/// |
798 | 785 |
/// \param s The source node. |
799 | 786 |
/// \param t The target node. |
800 | 787 |
/// \param k The required amount of flow from node \c s to node \c t |
801 | 788 |
/// (i.e. the supply of \c s and the demand of \c t). |
802 | 789 |
/// |
803 | 790 |
/// \return <tt>(*this)</tt> |
804 | 791 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
0 comments (0 inline)