0
2
0
38
39
| ... | ... |
@@ -1067,1717 +1067,1716 @@ |
| 1067 | 1067 |
} |
| 1068 | 1068 |
|
| 1069 | 1069 |
/// Returns a \c ShiftWriteMap class |
| 1070 | 1070 |
|
| 1071 | 1071 |
/// This function just returns a \c ShiftWriteMap class. |
| 1072 | 1072 |
/// |
| 1073 | 1073 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1074 | 1074 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
| 1075 | 1075 |
/// <tt>m[x]+v</tt>. |
| 1076 | 1076 |
/// Moreover it makes also possible to write the map. |
| 1077 | 1077 |
/// |
| 1078 | 1078 |
/// \relates ShiftWriteMap |
| 1079 | 1079 |
template<typename M, typename C> |
| 1080 | 1080 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
| 1081 | 1081 |
return ShiftWriteMap<M, C>(m,v); |
| 1082 | 1082 |
} |
| 1083 | 1083 |
|
| 1084 | 1084 |
|
| 1085 | 1085 |
/// Scales a map with a constant. |
| 1086 | 1086 |
|
| 1087 | 1087 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
| 1088 | 1088 |
/// the given map multiplied from the left side with a constant value. |
| 1089 | 1089 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1090 | 1090 |
/// |
| 1091 | 1091 |
/// Actually, |
| 1092 | 1092 |
/// \code |
| 1093 | 1093 |
/// ScaleMap<M> sc(m,v); |
| 1094 | 1094 |
/// \endcode |
| 1095 | 1095 |
/// is equivalent to |
| 1096 | 1096 |
/// \code |
| 1097 | 1097 |
/// ConstMap<M::Key, M::Value> cm(v); |
| 1098 | 1098 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
| 1099 | 1099 |
/// \endcode |
| 1100 | 1100 |
/// |
| 1101 | 1101 |
/// The simplest way of using this map is through the scaleMap() |
| 1102 | 1102 |
/// function. |
| 1103 | 1103 |
/// |
| 1104 | 1104 |
/// \sa ScaleWriteMap |
| 1105 | 1105 |
template<typename M, typename C = typename M::Value> |
| 1106 | 1106 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1107 | 1107 |
const M &_m; |
| 1108 | 1108 |
C _v; |
| 1109 | 1109 |
public: |
| 1110 | 1110 |
///\e |
| 1111 | 1111 |
typedef typename M::Key Key; |
| 1112 | 1112 |
///\e |
| 1113 | 1113 |
typedef typename M::Value Value; |
| 1114 | 1114 |
|
| 1115 | 1115 |
/// Constructor |
| 1116 | 1116 |
|
| 1117 | 1117 |
/// Constructor. |
| 1118 | 1118 |
/// \param m The undelying map. |
| 1119 | 1119 |
/// \param v The constant value. |
| 1120 | 1120 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1121 | 1121 |
///\e |
| 1122 | 1122 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1123 | 1123 |
}; |
| 1124 | 1124 |
|
| 1125 | 1125 |
/// Scales a map with a constant (read-write version). |
| 1126 | 1126 |
|
| 1127 | 1127 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
| 1128 | 1128 |
/// the given map multiplied from the left side with a constant value. |
| 1129 | 1129 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1130 | 1130 |
/// It can also be used as write map if the \c / operator is defined |
| 1131 | 1131 |
/// between \c Value and \c C and the given multiplier is not zero. |
| 1132 | 1132 |
/// |
| 1133 | 1133 |
/// The simplest way of using this map is through the scaleWriteMap() |
| 1134 | 1134 |
/// function. |
| 1135 | 1135 |
/// |
| 1136 | 1136 |
/// \sa ScaleMap |
| 1137 | 1137 |
template<typename M, typename C = typename M::Value> |
| 1138 | 1138 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1139 | 1139 |
M &_m; |
| 1140 | 1140 |
C _v; |
| 1141 | 1141 |
public: |
| 1142 | 1142 |
///\e |
| 1143 | 1143 |
typedef typename M::Key Key; |
| 1144 | 1144 |
///\e |
| 1145 | 1145 |
typedef typename M::Value Value; |
| 1146 | 1146 |
|
| 1147 | 1147 |
/// Constructor |
| 1148 | 1148 |
|
| 1149 | 1149 |
/// Constructor. |
| 1150 | 1150 |
/// \param m The undelying map. |
| 1151 | 1151 |
/// \param v The constant value. |
| 1152 | 1152 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1153 | 1153 |
///\e |
| 1154 | 1154 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1155 | 1155 |
///\e |
| 1156 | 1156 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
| 1157 | 1157 |
}; |
| 1158 | 1158 |
|
| 1159 | 1159 |
/// Returns a \c ScaleMap class |
| 1160 | 1160 |
|
| 1161 | 1161 |
/// This function just returns a \c ScaleMap class. |
| 1162 | 1162 |
/// |
| 1163 | 1163 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1164 | 1164 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
| 1165 | 1165 |
/// <tt>v*m[x]</tt>. |
| 1166 | 1166 |
/// |
| 1167 | 1167 |
/// \relates ScaleMap |
| 1168 | 1168 |
template<typename M, typename C> |
| 1169 | 1169 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
| 1170 | 1170 |
return ScaleMap<M, C>(m,v); |
| 1171 | 1171 |
} |
| 1172 | 1172 |
|
| 1173 | 1173 |
/// Returns a \c ScaleWriteMap class |
| 1174 | 1174 |
|
| 1175 | 1175 |
/// This function just returns a \c ScaleWriteMap class. |
| 1176 | 1176 |
/// |
| 1177 | 1177 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1178 | 1178 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
| 1179 | 1179 |
/// <tt>v*m[x]</tt>. |
| 1180 | 1180 |
/// Moreover it makes also possible to write the map. |
| 1181 | 1181 |
/// |
| 1182 | 1182 |
/// \relates ScaleWriteMap |
| 1183 | 1183 |
template<typename M, typename C> |
| 1184 | 1184 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
| 1185 | 1185 |
return ScaleWriteMap<M, C>(m,v); |
| 1186 | 1186 |
} |
| 1187 | 1187 |
|
| 1188 | 1188 |
|
| 1189 | 1189 |
/// Negative of a map |
| 1190 | 1190 |
|
| 1191 | 1191 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
| 1192 | 1192 |
/// of the values of the given map (using the unary \c - operator). |
| 1193 | 1193 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1194 | 1194 |
/// |
| 1195 | 1195 |
/// If M::Value is \c int, \c double etc., then |
| 1196 | 1196 |
/// \code |
| 1197 | 1197 |
/// NegMap<M> neg(m); |
| 1198 | 1198 |
/// \endcode |
| 1199 | 1199 |
/// is equivalent to |
| 1200 | 1200 |
/// \code |
| 1201 | 1201 |
/// ScaleMap<M> neg(m,-1); |
| 1202 | 1202 |
/// \endcode |
| 1203 | 1203 |
/// |
| 1204 | 1204 |
/// The simplest way of using this map is through the negMap() |
| 1205 | 1205 |
/// function. |
| 1206 | 1206 |
/// |
| 1207 | 1207 |
/// \sa NegWriteMap |
| 1208 | 1208 |
template<typename M> |
| 1209 | 1209 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1210 | 1210 |
const M& _m; |
| 1211 | 1211 |
public: |
| 1212 | 1212 |
///\e |
| 1213 | 1213 |
typedef typename M::Key Key; |
| 1214 | 1214 |
///\e |
| 1215 | 1215 |
typedef typename M::Value Value; |
| 1216 | 1216 |
|
| 1217 | 1217 |
/// Constructor |
| 1218 | 1218 |
NegMap(const M &m) : _m(m) {}
|
| 1219 | 1219 |
///\e |
| 1220 | 1220 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1221 | 1221 |
}; |
| 1222 | 1222 |
|
| 1223 | 1223 |
/// Negative of a map (read-write version) |
| 1224 | 1224 |
|
| 1225 | 1225 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
| 1226 | 1226 |
/// negative of the values of the given map (using the unary \c - |
| 1227 | 1227 |
/// operator). |
| 1228 | 1228 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1229 | 1229 |
/// It makes also possible to write the map. |
| 1230 | 1230 |
/// |
| 1231 | 1231 |
/// If M::Value is \c int, \c double etc., then |
| 1232 | 1232 |
/// \code |
| 1233 | 1233 |
/// NegWriteMap<M> neg(m); |
| 1234 | 1234 |
/// \endcode |
| 1235 | 1235 |
/// is equivalent to |
| 1236 | 1236 |
/// \code |
| 1237 | 1237 |
/// ScaleWriteMap<M> neg(m,-1); |
| 1238 | 1238 |
/// \endcode |
| 1239 | 1239 |
/// |
| 1240 | 1240 |
/// The simplest way of using this map is through the negWriteMap() |
| 1241 | 1241 |
/// function. |
| 1242 | 1242 |
/// |
| 1243 | 1243 |
/// \sa NegMap |
| 1244 | 1244 |
template<typename M> |
| 1245 | 1245 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1246 | 1246 |
M &_m; |
| 1247 | 1247 |
public: |
| 1248 | 1248 |
///\e |
| 1249 | 1249 |
typedef typename M::Key Key; |
| 1250 | 1250 |
///\e |
| 1251 | 1251 |
typedef typename M::Value Value; |
| 1252 | 1252 |
|
| 1253 | 1253 |
/// Constructor |
| 1254 | 1254 |
NegWriteMap(M &m) : _m(m) {}
|
| 1255 | 1255 |
///\e |
| 1256 | 1256 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1257 | 1257 |
///\e |
| 1258 | 1258 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
| 1259 | 1259 |
}; |
| 1260 | 1260 |
|
| 1261 | 1261 |
/// Returns a \c NegMap class |
| 1262 | 1262 |
|
| 1263 | 1263 |
/// This function just returns a \c NegMap class. |
| 1264 | 1264 |
/// |
| 1265 | 1265 |
/// For example, if \c m is a map with \c double values, then |
| 1266 | 1266 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
| 1267 | 1267 |
/// |
| 1268 | 1268 |
/// \relates NegMap |
| 1269 | 1269 |
template <typename M> |
| 1270 | 1270 |
inline NegMap<M> negMap(const M &m) {
|
| 1271 | 1271 |
return NegMap<M>(m); |
| 1272 | 1272 |
} |
| 1273 | 1273 |
|
| 1274 | 1274 |
/// Returns a \c NegWriteMap class |
| 1275 | 1275 |
|
| 1276 | 1276 |
/// This function just returns a \c NegWriteMap class. |
| 1277 | 1277 |
/// |
| 1278 | 1278 |
/// For example, if \c m is a map with \c double values, then |
| 1279 | 1279 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
| 1280 | 1280 |
/// Moreover it makes also possible to write the map. |
| 1281 | 1281 |
/// |
| 1282 | 1282 |
/// \relates NegWriteMap |
| 1283 | 1283 |
template <typename M> |
| 1284 | 1284 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
| 1285 | 1285 |
return NegWriteMap<M>(m); |
| 1286 | 1286 |
} |
| 1287 | 1287 |
|
| 1288 | 1288 |
|
| 1289 | 1289 |
/// Absolute value of a map |
| 1290 | 1290 |
|
| 1291 | 1291 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
| 1292 | 1292 |
/// value of the values of the given map. |
| 1293 | 1293 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1294 | 1294 |
/// \c Value must be comparable to \c 0 and the unary \c - |
| 1295 | 1295 |
/// operator must be defined for it, of course. |
| 1296 | 1296 |
/// |
| 1297 | 1297 |
/// The simplest way of using this map is through the absMap() |
| 1298 | 1298 |
/// function. |
| 1299 | 1299 |
template<typename M> |
| 1300 | 1300 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1301 | 1301 |
const M &_m; |
| 1302 | 1302 |
public: |
| 1303 | 1303 |
///\e |
| 1304 | 1304 |
typedef typename M::Key Key; |
| 1305 | 1305 |
///\e |
| 1306 | 1306 |
typedef typename M::Value Value; |
| 1307 | 1307 |
|
| 1308 | 1308 |
/// Constructor |
| 1309 | 1309 |
AbsMap(const M &m) : _m(m) {}
|
| 1310 | 1310 |
///\e |
| 1311 | 1311 |
Value operator[](const Key &k) const {
|
| 1312 | 1312 |
Value tmp = _m[k]; |
| 1313 | 1313 |
return tmp >= 0 ? tmp : -tmp; |
| 1314 | 1314 |
} |
| 1315 | 1315 |
|
| 1316 | 1316 |
}; |
| 1317 | 1317 |
|
| 1318 | 1318 |
/// Returns an \c AbsMap class |
| 1319 | 1319 |
|
| 1320 | 1320 |
/// This function just returns an \c AbsMap class. |
| 1321 | 1321 |
/// |
| 1322 | 1322 |
/// For example, if \c m is a map with \c double values, then |
| 1323 | 1323 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
| 1324 | 1324 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
| 1325 | 1325 |
/// negative. |
| 1326 | 1326 |
/// |
| 1327 | 1327 |
/// \relates AbsMap |
| 1328 | 1328 |
template<typename M> |
| 1329 | 1329 |
inline AbsMap<M> absMap(const M &m) {
|
| 1330 | 1330 |
return AbsMap<M>(m); |
| 1331 | 1331 |
} |
| 1332 | 1332 |
|
| 1333 | 1333 |
/// @} |
| 1334 | 1334 |
|
| 1335 | 1335 |
// Logical maps and map adaptors: |
| 1336 | 1336 |
|
| 1337 | 1337 |
/// \addtogroup maps |
| 1338 | 1338 |
/// @{
|
| 1339 | 1339 |
|
| 1340 | 1340 |
/// Constant \c true map. |
| 1341 | 1341 |
|
| 1342 | 1342 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1343 | 1343 |
/// each key. |
| 1344 | 1344 |
/// |
| 1345 | 1345 |
/// Note that |
| 1346 | 1346 |
/// \code |
| 1347 | 1347 |
/// TrueMap<K> tm; |
| 1348 | 1348 |
/// \endcode |
| 1349 | 1349 |
/// is equivalent to |
| 1350 | 1350 |
/// \code |
| 1351 | 1351 |
/// ConstMap<K,bool> tm(true); |
| 1352 | 1352 |
/// \endcode |
| 1353 | 1353 |
/// |
| 1354 | 1354 |
/// \sa FalseMap |
| 1355 | 1355 |
/// \sa ConstMap |
| 1356 | 1356 |
template <typename K> |
| 1357 | 1357 |
class TrueMap : public MapBase<K, bool> {
|
| 1358 | 1358 |
public: |
| 1359 | 1359 |
///\e |
| 1360 | 1360 |
typedef K Key; |
| 1361 | 1361 |
///\e |
| 1362 | 1362 |
typedef bool Value; |
| 1363 | 1363 |
|
| 1364 | 1364 |
/// Gives back \c true. |
| 1365 | 1365 |
Value operator[](const Key&) const { return true; }
|
| 1366 | 1366 |
}; |
| 1367 | 1367 |
|
| 1368 | 1368 |
/// Returns a \c TrueMap class |
| 1369 | 1369 |
|
| 1370 | 1370 |
/// This function just returns a \c TrueMap class. |
| 1371 | 1371 |
/// \relates TrueMap |
| 1372 | 1372 |
template<typename K> |
| 1373 | 1373 |
inline TrueMap<K> trueMap() {
|
| 1374 | 1374 |
return TrueMap<K>(); |
| 1375 | 1375 |
} |
| 1376 | 1376 |
|
| 1377 | 1377 |
|
| 1378 | 1378 |
/// Constant \c false map. |
| 1379 | 1379 |
|
| 1380 | 1380 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
| 1381 | 1381 |
/// each key. |
| 1382 | 1382 |
/// |
| 1383 | 1383 |
/// Note that |
| 1384 | 1384 |
/// \code |
| 1385 | 1385 |
/// FalseMap<K> fm; |
| 1386 | 1386 |
/// \endcode |
| 1387 | 1387 |
/// is equivalent to |
| 1388 | 1388 |
/// \code |
| 1389 | 1389 |
/// ConstMap<K,bool> fm(false); |
| 1390 | 1390 |
/// \endcode |
| 1391 | 1391 |
/// |
| 1392 | 1392 |
/// \sa TrueMap |
| 1393 | 1393 |
/// \sa ConstMap |
| 1394 | 1394 |
template <typename K> |
| 1395 | 1395 |
class FalseMap : public MapBase<K, bool> {
|
| 1396 | 1396 |
public: |
| 1397 | 1397 |
///\e |
| 1398 | 1398 |
typedef K Key; |
| 1399 | 1399 |
///\e |
| 1400 | 1400 |
typedef bool Value; |
| 1401 | 1401 |
|
| 1402 | 1402 |
/// Gives back \c false. |
| 1403 | 1403 |
Value operator[](const Key&) const { return false; }
|
| 1404 | 1404 |
}; |
| 1405 | 1405 |
|
| 1406 | 1406 |
/// Returns a \c FalseMap class |
| 1407 | 1407 |
|
| 1408 | 1408 |
/// This function just returns a \c FalseMap class. |
| 1409 | 1409 |
/// \relates FalseMap |
| 1410 | 1410 |
template<typename K> |
| 1411 | 1411 |
inline FalseMap<K> falseMap() {
|
| 1412 | 1412 |
return FalseMap<K>(); |
| 1413 | 1413 |
} |
| 1414 | 1414 |
|
| 1415 | 1415 |
/// @} |
| 1416 | 1416 |
|
| 1417 | 1417 |
/// \addtogroup map_adaptors |
| 1418 | 1418 |
/// @{
|
| 1419 | 1419 |
|
| 1420 | 1420 |
/// Logical 'and' of two maps |
| 1421 | 1421 |
|
| 1422 | 1422 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1423 | 1423 |
/// 'and' of the values of the two given maps. |
| 1424 | 1424 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1425 | 1425 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1426 | 1426 |
/// |
| 1427 | 1427 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1428 | 1428 |
/// \code |
| 1429 | 1429 |
/// AndMap<M1,M2> am(m1,m2); |
| 1430 | 1430 |
/// \endcode |
| 1431 | 1431 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
| 1432 | 1432 |
/// |
| 1433 | 1433 |
/// The simplest way of using this map is through the andMap() |
| 1434 | 1434 |
/// function. |
| 1435 | 1435 |
/// |
| 1436 | 1436 |
/// \sa OrMap |
| 1437 | 1437 |
/// \sa NotMap, NotWriteMap |
| 1438 | 1438 |
template<typename M1, typename M2> |
| 1439 | 1439 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
| 1440 | 1440 |
const M1 &_m1; |
| 1441 | 1441 |
const M2 &_m2; |
| 1442 | 1442 |
public: |
| 1443 | 1443 |
///\e |
| 1444 | 1444 |
typedef typename M1::Key Key; |
| 1445 | 1445 |
///\e |
| 1446 | 1446 |
typedef bool Value; |
| 1447 | 1447 |
|
| 1448 | 1448 |
/// Constructor |
| 1449 | 1449 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1450 | 1450 |
///\e |
| 1451 | 1451 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
| 1452 | 1452 |
}; |
| 1453 | 1453 |
|
| 1454 | 1454 |
/// Returns an \c AndMap class |
| 1455 | 1455 |
|
| 1456 | 1456 |
/// This function just returns an \c AndMap class. |
| 1457 | 1457 |
/// |
| 1458 | 1458 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
| 1459 | 1459 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
| 1460 | 1460 |
/// <tt>m1[x]&&m2[x]</tt>. |
| 1461 | 1461 |
/// |
| 1462 | 1462 |
/// \relates AndMap |
| 1463 | 1463 |
template<typename M1, typename M2> |
| 1464 | 1464 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
| 1465 | 1465 |
return AndMap<M1, M2>(m1,m2); |
| 1466 | 1466 |
} |
| 1467 | 1467 |
|
| 1468 | 1468 |
|
| 1469 | 1469 |
/// Logical 'or' of two maps |
| 1470 | 1470 |
|
| 1471 | 1471 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1472 | 1472 |
/// 'or' of the values of the two given maps. |
| 1473 | 1473 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1474 | 1474 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1475 | 1475 |
/// |
| 1476 | 1476 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1477 | 1477 |
/// \code |
| 1478 | 1478 |
/// OrMap<M1,M2> om(m1,m2); |
| 1479 | 1479 |
/// \endcode |
| 1480 | 1480 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
| 1481 | 1481 |
/// |
| 1482 | 1482 |
/// The simplest way of using this map is through the orMap() |
| 1483 | 1483 |
/// function. |
| 1484 | 1484 |
/// |
| 1485 | 1485 |
/// \sa AndMap |
| 1486 | 1486 |
/// \sa NotMap, NotWriteMap |
| 1487 | 1487 |
template<typename M1, typename M2> |
| 1488 | 1488 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
| 1489 | 1489 |
const M1 &_m1; |
| 1490 | 1490 |
const M2 &_m2; |
| 1491 | 1491 |
public: |
| 1492 | 1492 |
///\e |
| 1493 | 1493 |
typedef typename M1::Key Key; |
| 1494 | 1494 |
///\e |
| 1495 | 1495 |
typedef bool Value; |
| 1496 | 1496 |
|
| 1497 | 1497 |
/// Constructor |
| 1498 | 1498 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1499 | 1499 |
///\e |
| 1500 | 1500 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
| 1501 | 1501 |
}; |
| 1502 | 1502 |
|
| 1503 | 1503 |
/// Returns an \c OrMap class |
| 1504 | 1504 |
|
| 1505 | 1505 |
/// This function just returns an \c OrMap class. |
| 1506 | 1506 |
/// |
| 1507 | 1507 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
| 1508 | 1508 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
| 1509 | 1509 |
/// <tt>m1[x]||m2[x]</tt>. |
| 1510 | 1510 |
/// |
| 1511 | 1511 |
/// \relates OrMap |
| 1512 | 1512 |
template<typename M1, typename M2> |
| 1513 | 1513 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
| 1514 | 1514 |
return OrMap<M1, M2>(m1,m2); |
| 1515 | 1515 |
} |
| 1516 | 1516 |
|
| 1517 | 1517 |
|
| 1518 | 1518 |
/// Logical 'not' of a map |
| 1519 | 1519 |
|
| 1520 | 1520 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1521 | 1521 |
/// negation of the values of the given map. |
| 1522 | 1522 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
| 1523 | 1523 |
/// |
| 1524 | 1524 |
/// The simplest way of using this map is through the notMap() |
| 1525 | 1525 |
/// function. |
| 1526 | 1526 |
/// |
| 1527 | 1527 |
/// \sa NotWriteMap |
| 1528 | 1528 |
template <typename M> |
| 1529 | 1529 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1530 | 1530 |
const M &_m; |
| 1531 | 1531 |
public: |
| 1532 | 1532 |
///\e |
| 1533 | 1533 |
typedef typename M::Key Key; |
| 1534 | 1534 |
///\e |
| 1535 | 1535 |
typedef bool Value; |
| 1536 | 1536 |
|
| 1537 | 1537 |
/// Constructor |
| 1538 | 1538 |
NotMap(const M &m) : _m(m) {}
|
| 1539 | 1539 |
///\e |
| 1540 | 1540 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1541 | 1541 |
}; |
| 1542 | 1542 |
|
| 1543 | 1543 |
/// Logical 'not' of a map (read-write version) |
| 1544 | 1544 |
|
| 1545 | 1545 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
| 1546 | 1546 |
/// logical negation of the values of the given map. |
| 1547 | 1547 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
| 1548 | 1548 |
/// It makes also possible to write the map. When a value is set, |
| 1549 | 1549 |
/// the opposite value is set to the original map. |
| 1550 | 1550 |
/// |
| 1551 | 1551 |
/// The simplest way of using this map is through the notWriteMap() |
| 1552 | 1552 |
/// function. |
| 1553 | 1553 |
/// |
| 1554 | 1554 |
/// \sa NotMap |
| 1555 | 1555 |
template <typename M> |
| 1556 | 1556 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1557 | 1557 |
M &_m; |
| 1558 | 1558 |
public: |
| 1559 | 1559 |
///\e |
| 1560 | 1560 |
typedef typename M::Key Key; |
| 1561 | 1561 |
///\e |
| 1562 | 1562 |
typedef bool Value; |
| 1563 | 1563 |
|
| 1564 | 1564 |
/// Constructor |
| 1565 | 1565 |
NotWriteMap(M &m) : _m(m) {}
|
| 1566 | 1566 |
///\e |
| 1567 | 1567 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1568 | 1568 |
///\e |
| 1569 | 1569 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
| 1570 | 1570 |
}; |
| 1571 | 1571 |
|
| 1572 | 1572 |
/// Returns a \c NotMap class |
| 1573 | 1573 |
|
| 1574 | 1574 |
/// This function just returns a \c NotMap class. |
| 1575 | 1575 |
/// |
| 1576 | 1576 |
/// For example, if \c m is a map with \c bool values, then |
| 1577 | 1577 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
| 1578 | 1578 |
/// |
| 1579 | 1579 |
/// \relates NotMap |
| 1580 | 1580 |
template <typename M> |
| 1581 | 1581 |
inline NotMap<M> notMap(const M &m) {
|
| 1582 | 1582 |
return NotMap<M>(m); |
| 1583 | 1583 |
} |
| 1584 | 1584 |
|
| 1585 | 1585 |
/// Returns a \c NotWriteMap class |
| 1586 | 1586 |
|
| 1587 | 1587 |
/// This function just returns a \c NotWriteMap class. |
| 1588 | 1588 |
/// |
| 1589 | 1589 |
/// For example, if \c m is a map with \c bool values, then |
| 1590 | 1590 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
| 1591 | 1591 |
/// Moreover it makes also possible to write the map. |
| 1592 | 1592 |
/// |
| 1593 | 1593 |
/// \relates NotWriteMap |
| 1594 | 1594 |
template <typename M> |
| 1595 | 1595 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
| 1596 | 1596 |
return NotWriteMap<M>(m); |
| 1597 | 1597 |
} |
| 1598 | 1598 |
|
| 1599 | 1599 |
|
| 1600 | 1600 |
/// Combination of two maps using the \c == operator |
| 1601 | 1601 |
|
| 1602 | 1602 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1603 | 1603 |
/// the keys for which the corresponding values of the two maps are |
| 1604 | 1604 |
/// equal. |
| 1605 | 1605 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1606 | 1606 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1607 | 1607 |
/// |
| 1608 | 1608 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1609 | 1609 |
/// \code |
| 1610 | 1610 |
/// EqualMap<M1,M2> em(m1,m2); |
| 1611 | 1611 |
/// \endcode |
| 1612 | 1612 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
| 1613 | 1613 |
/// |
| 1614 | 1614 |
/// The simplest way of using this map is through the equalMap() |
| 1615 | 1615 |
/// function. |
| 1616 | 1616 |
/// |
| 1617 | 1617 |
/// \sa LessMap |
| 1618 | 1618 |
template<typename M1, typename M2> |
| 1619 | 1619 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
| 1620 | 1620 |
const M1 &_m1; |
| 1621 | 1621 |
const M2 &_m2; |
| 1622 | 1622 |
public: |
| 1623 | 1623 |
///\e |
| 1624 | 1624 |
typedef typename M1::Key Key; |
| 1625 | 1625 |
///\e |
| 1626 | 1626 |
typedef bool Value; |
| 1627 | 1627 |
|
| 1628 | 1628 |
/// Constructor |
| 1629 | 1629 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1630 | 1630 |
///\e |
| 1631 | 1631 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
| 1632 | 1632 |
}; |
| 1633 | 1633 |
|
| 1634 | 1634 |
/// Returns an \c EqualMap class |
| 1635 | 1635 |
|
| 1636 | 1636 |
/// This function just returns an \c EqualMap class. |
| 1637 | 1637 |
/// |
| 1638 | 1638 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
| 1639 | 1639 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
| 1640 | 1640 |
/// <tt>m1[x]==m2[x]</tt>. |
| 1641 | 1641 |
/// |
| 1642 | 1642 |
/// \relates EqualMap |
| 1643 | 1643 |
template<typename M1, typename M2> |
| 1644 | 1644 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
| 1645 | 1645 |
return EqualMap<M1, M2>(m1,m2); |
| 1646 | 1646 |
} |
| 1647 | 1647 |
|
| 1648 | 1648 |
|
| 1649 | 1649 |
/// Combination of two maps using the \c < operator |
| 1650 | 1650 |
|
| 1651 | 1651 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1652 | 1652 |
/// the keys for which the corresponding value of the first map is |
| 1653 | 1653 |
/// less then the value of the second map. |
| 1654 | 1654 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1655 | 1655 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1656 | 1656 |
/// |
| 1657 | 1657 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1658 | 1658 |
/// \code |
| 1659 | 1659 |
/// LessMap<M1,M2> lm(m1,m2); |
| 1660 | 1660 |
/// \endcode |
| 1661 | 1661 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
| 1662 | 1662 |
/// |
| 1663 | 1663 |
/// The simplest way of using this map is through the lessMap() |
| 1664 | 1664 |
/// function. |
| 1665 | 1665 |
/// |
| 1666 | 1666 |
/// \sa EqualMap |
| 1667 | 1667 |
template<typename M1, typename M2> |
| 1668 | 1668 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
| 1669 | 1669 |
const M1 &_m1; |
| 1670 | 1670 |
const M2 &_m2; |
| 1671 | 1671 |
public: |
| 1672 | 1672 |
///\e |
| 1673 | 1673 |
typedef typename M1::Key Key; |
| 1674 | 1674 |
///\e |
| 1675 | 1675 |
typedef bool Value; |
| 1676 | 1676 |
|
| 1677 | 1677 |
/// Constructor |
| 1678 | 1678 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1679 | 1679 |
///\e |
| 1680 | 1680 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
| 1681 | 1681 |
}; |
| 1682 | 1682 |
|
| 1683 | 1683 |
/// Returns an \c LessMap class |
| 1684 | 1684 |
|
| 1685 | 1685 |
/// This function just returns an \c LessMap class. |
| 1686 | 1686 |
/// |
| 1687 | 1687 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
| 1688 | 1688 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
| 1689 | 1689 |
/// <tt>m1[x]<m2[x]</tt>. |
| 1690 | 1690 |
/// |
| 1691 | 1691 |
/// \relates LessMap |
| 1692 | 1692 |
template<typename M1, typename M2> |
| 1693 | 1693 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
| 1694 | 1694 |
return LessMap<M1, M2>(m1,m2); |
| 1695 | 1695 |
} |
| 1696 | 1696 |
|
| 1697 | 1697 |
namespace _maps_bits {
|
| 1698 | 1698 |
|
| 1699 | 1699 |
template <typename _Iterator, typename Enable = void> |
| 1700 | 1700 |
struct IteratorTraits {
|
| 1701 | 1701 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
| 1702 | 1702 |
}; |
| 1703 | 1703 |
|
| 1704 | 1704 |
template <typename _Iterator> |
| 1705 | 1705 |
struct IteratorTraits<_Iterator, |
| 1706 | 1706 |
typename exists<typename _Iterator::container_type>::type> |
| 1707 | 1707 |
{
|
| 1708 | 1708 |
typedef typename _Iterator::container_type::value_type Value; |
| 1709 | 1709 |
}; |
| 1710 | 1710 |
|
| 1711 | 1711 |
} |
| 1712 | 1712 |
|
| 1713 | 1713 |
/// @} |
| 1714 | 1714 |
|
| 1715 | 1715 |
/// \addtogroup maps |
| 1716 | 1716 |
/// @{
|
| 1717 | 1717 |
|
| 1718 | 1718 |
/// \brief Writable bool map for logging each \c true assigned element |
| 1719 | 1719 |
/// |
| 1720 | 1720 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
| 1721 | 1721 |
/// each \c true assigned element, i.e it copies subsequently each |
| 1722 | 1722 |
/// keys set to \c true to the given iterator. |
| 1723 | 1723 |
/// The most important usage of it is storing certain nodes or arcs |
| 1724 | 1724 |
/// that were marked \c true by an algorithm. |
| 1725 | 1725 |
/// |
| 1726 | 1726 |
/// There are several algorithms that provide solutions through bool |
| 1727 | 1727 |
/// maps and most of them assign \c true at most once for each key. |
| 1728 | 1728 |
/// In these cases it is a natural request to store each \c true |
| 1729 | 1729 |
/// assigned elements (in order of the assignment), which can be |
| 1730 | 1730 |
/// easily done with LoggerBoolMap. |
| 1731 | 1731 |
/// |
| 1732 | 1732 |
/// The simplest way of using this map is through the loggerBoolMap() |
| 1733 | 1733 |
/// function. |
| 1734 | 1734 |
/// |
| 1735 | 1735 |
/// \tparam IT The type of the iterator. |
| 1736 | 1736 |
/// \tparam KEY The key type of the map. The default value set |
| 1737 | 1737 |
/// according to the iterator type should work in most cases. |
| 1738 | 1738 |
/// |
| 1739 | 1739 |
/// \note The container of the iterator must contain enough space |
| 1740 | 1740 |
/// for the elements or the iterator should be an inserter iterator. |
| 1741 | 1741 |
#ifdef DOXYGEN |
| 1742 | 1742 |
template <typename IT, typename KEY> |
| 1743 | 1743 |
#else |
| 1744 | 1744 |
template <typename IT, |
| 1745 | 1745 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
| 1746 | 1746 |
#endif |
| 1747 | 1747 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
| 1748 | 1748 |
public: |
| 1749 | 1749 |
|
| 1750 | 1750 |
///\e |
| 1751 | 1751 |
typedef KEY Key; |
| 1752 | 1752 |
///\e |
| 1753 | 1753 |
typedef bool Value; |
| 1754 | 1754 |
///\e |
| 1755 | 1755 |
typedef IT Iterator; |
| 1756 | 1756 |
|
| 1757 | 1757 |
/// Constructor |
| 1758 | 1758 |
LoggerBoolMap(Iterator it) |
| 1759 | 1759 |
: _begin(it), _end(it) {}
|
| 1760 | 1760 |
|
| 1761 | 1761 |
/// Gives back the given iterator set for the first key |
| 1762 | 1762 |
Iterator begin() const {
|
| 1763 | 1763 |
return _begin; |
| 1764 | 1764 |
} |
| 1765 | 1765 |
|
| 1766 | 1766 |
/// Gives back the the 'after the last' iterator |
| 1767 | 1767 |
Iterator end() const {
|
| 1768 | 1768 |
return _end; |
| 1769 | 1769 |
} |
| 1770 | 1770 |
|
| 1771 | 1771 |
/// The set function of the map |
| 1772 | 1772 |
void set(const Key& key, Value value) {
|
| 1773 | 1773 |
if (value) {
|
| 1774 | 1774 |
*_end++ = key; |
| 1775 | 1775 |
} |
| 1776 | 1776 |
} |
| 1777 | 1777 |
|
| 1778 | 1778 |
private: |
| 1779 | 1779 |
Iterator _begin; |
| 1780 | 1780 |
Iterator _end; |
| 1781 | 1781 |
}; |
| 1782 | 1782 |
|
| 1783 | 1783 |
/// Returns a \c LoggerBoolMap class |
| 1784 | 1784 |
|
| 1785 | 1785 |
/// This function just returns a \c LoggerBoolMap class. |
| 1786 | 1786 |
/// |
| 1787 | 1787 |
/// The most important usage of it is storing certain nodes or arcs |
| 1788 | 1788 |
/// that were marked \c true by an algorithm. |
| 1789 | 1789 |
/// For example it makes easier to store the nodes in the processing |
| 1790 | 1790 |
/// order of Dfs algorithm, as the following examples show. |
| 1791 | 1791 |
/// \code |
| 1792 | 1792 |
/// std::vector<Node> v; |
| 1793 | 1793 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
| 1794 | 1794 |
/// \endcode |
| 1795 | 1795 |
/// \code |
| 1796 | 1796 |
/// std::vector<Node> v(countNodes(g)); |
| 1797 | 1797 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
| 1798 | 1798 |
/// \endcode |
| 1799 | 1799 |
/// |
| 1800 | 1800 |
/// \note The container of the iterator must contain enough space |
| 1801 | 1801 |
/// for the elements or the iterator should be an inserter iterator. |
| 1802 | 1802 |
/// |
| 1803 | 1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
| 1804 | 1804 |
/// it cannot be used when a readable map is needed, for example as |
| 1805 | 1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
| 1806 | 1806 |
/// |
| 1807 | 1807 |
/// \relates LoggerBoolMap |
| 1808 | 1808 |
template<typename Iterator> |
| 1809 | 1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1810 | 1810 |
return LoggerBoolMap<Iterator>(it); |
| 1811 | 1811 |
} |
| 1812 | 1812 |
|
| 1813 | 1813 |
/// @} |
| 1814 | 1814 |
|
| 1815 | 1815 |
/// \addtogroup graph_maps |
| 1816 | 1816 |
/// @{
|
| 1817 | 1817 |
|
| 1818 | 1818 |
/// \brief Provides an immutable and unique id for each item in a graph. |
| 1819 | 1819 |
/// |
| 1820 | 1820 |
/// IdMap provides a unique and immutable id for each item of the |
| 1821 | 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
| 1822 | 1822 |
/// - \b unique: different items get different ids, |
| 1823 | 1823 |
/// - \b immutable: the id of an item does not change (even if you |
| 1824 | 1824 |
/// delete other nodes). |
| 1825 | 1825 |
/// |
| 1826 | 1826 |
/// Using this map you get access (i.e. can read) the inner id values of |
| 1827 | 1827 |
/// the items stored in the graph, which is returned by the \c id() |
| 1828 | 1828 |
/// function of the graph. This map can be inverted with its member |
| 1829 | 1829 |
/// class \c InverseMap or with the \c operator() member. |
| 1830 | 1830 |
/// |
| 1831 | 1831 |
/// \tparam GR The graph type. |
| 1832 | 1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1833 | 1833 |
/// \c GR::Edge). |
| 1834 | 1834 |
/// |
| 1835 |
/// \see |
|
| 1835 |
/// \see RangeIdMap |
|
| 1836 | 1836 |
template <typename GR, typename K> |
| 1837 | 1837 |
class IdMap : public MapBase<K, int> {
|
| 1838 | 1838 |
public: |
| 1839 | 1839 |
/// The graph type of IdMap. |
| 1840 | 1840 |
typedef GR Graph; |
| 1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1842 | 1842 |
typedef K Item; |
| 1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1844 | 1844 |
typedef K Key; |
| 1845 | 1845 |
/// The value type of IdMap. |
| 1846 | 1846 |
typedef int Value; |
| 1847 | 1847 |
|
| 1848 | 1848 |
/// \brief Constructor. |
| 1849 | 1849 |
/// |
| 1850 | 1850 |
/// Constructor of the map. |
| 1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1852 | 1852 |
|
| 1853 | 1853 |
/// \brief Gives back the \e id of the item. |
| 1854 | 1854 |
/// |
| 1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
| 1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1857 | 1857 |
|
| 1858 | 1858 |
/// \brief Gives back the \e item by its id. |
| 1859 | 1859 |
/// |
| 1860 | 1860 |
/// Gives back the \e item by its id. |
| 1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1862 | 1862 |
|
| 1863 | 1863 |
private: |
| 1864 | 1864 |
const Graph* _graph; |
| 1865 | 1865 |
|
| 1866 | 1866 |
public: |
| 1867 | 1867 |
|
| 1868 | 1868 |
/// \brief This class represents the inverse of its owner (IdMap). |
| 1869 | 1869 |
/// |
| 1870 | 1870 |
/// This class represents the inverse of its owner (IdMap). |
| 1871 | 1871 |
/// \see inverse() |
| 1872 | 1872 |
class InverseMap {
|
| 1873 | 1873 |
public: |
| 1874 | 1874 |
|
| 1875 | 1875 |
/// \brief Constructor. |
| 1876 | 1876 |
/// |
| 1877 | 1877 |
/// Constructor for creating an id-to-item map. |
| 1878 | 1878 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1879 | 1879 |
|
| 1880 | 1880 |
/// \brief Constructor. |
| 1881 | 1881 |
/// |
| 1882 | 1882 |
/// Constructor for creating an id-to-item map. |
| 1883 | 1883 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1884 | 1884 |
|
| 1885 | 1885 |
/// \brief Gives back the given item from its id. |
| 1886 | 1886 |
/// |
| 1887 | 1887 |
/// Gives back the given item from its id. |
| 1888 | 1888 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1889 | 1889 |
|
| 1890 | 1890 |
private: |
| 1891 | 1891 |
const Graph* _graph; |
| 1892 | 1892 |
}; |
| 1893 | 1893 |
|
| 1894 | 1894 |
/// \brief Gives back the inverse of the map. |
| 1895 | 1895 |
/// |
| 1896 | 1896 |
/// Gives back the inverse of the IdMap. |
| 1897 | 1897 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1898 | 1898 |
}; |
| 1899 | 1899 |
|
| 1900 | 1900 |
|
| 1901 |
/// \brief General |
|
| 1901 |
/// \brief General cross reference graph map type. |
|
| 1902 | 1902 |
|
| 1903 | 1903 |
/// This class provides simple invertable graph maps. |
| 1904 | 1904 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
| 1905 | 1905 |
/// and if a key is set to a new value then store it |
| 1906 | 1906 |
/// in the inverse map. |
| 1907 | 1907 |
/// |
| 1908 | 1908 |
/// The values of the map can be accessed |
| 1909 | 1909 |
/// with stl compatible forward iterator. |
| 1910 | 1910 |
/// |
| 1911 | 1911 |
/// \tparam GR The graph type. |
| 1912 | 1912 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1913 | 1913 |
/// \c GR::Edge). |
| 1914 | 1914 |
/// \tparam V The value type of the map. |
| 1915 | 1915 |
/// |
| 1916 | 1916 |
/// \see IterableValueMap |
| 1917 | 1917 |
template <typename GR, typename K, typename V> |
| 1918 |
class |
|
| 1918 |
class CrossRefMap |
|
| 1919 | 1919 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
| 1920 | 1920 |
private: |
| 1921 | 1921 |
|
| 1922 | 1922 |
typedef typename ItemSetTraits<GR, K>:: |
| 1923 | 1923 |
template Map<V>::Type Map; |
| 1924 | 1924 |
|
| 1925 | 1925 |
typedef std::map<V, K> Container; |
| 1926 | 1926 |
Container _inv_map; |
| 1927 | 1927 |
|
| 1928 | 1928 |
public: |
| 1929 | 1929 |
|
| 1930 |
/// The graph type of |
|
| 1930 |
/// The graph type of CrossRefMap. |
|
| 1931 | 1931 |
typedef GR Graph; |
| 1932 |
/// The key type of |
|
| 1932 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|
| 1933 | 1933 |
typedef K Item; |
| 1934 |
/// The key type of |
|
| 1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
|
| 1935 | 1935 |
typedef K Key; |
| 1936 |
/// The value type of |
|
| 1936 |
/// The value type of CrossRefMap. |
|
| 1937 | 1937 |
typedef V Value; |
| 1938 | 1938 |
|
| 1939 | 1939 |
/// \brief Constructor. |
| 1940 | 1940 |
/// |
| 1941 |
/// Construct a new InvertableMap for the given graph. |
|
| 1942 |
explicit InvertableMap(const Graph& graph) : Map(graph) {}
|
|
| 1941 |
/// Construct a new CrossRefMap for the given graph. |
|
| 1942 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
|
| 1943 | 1943 |
|
| 1944 | 1944 |
/// \brief Forward iterator for values. |
| 1945 | 1945 |
/// |
| 1946 | 1946 |
/// This iterator is an stl compatible forward |
| 1947 | 1947 |
/// iterator on the values of the map. The values can |
| 1948 | 1948 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 1949 | 1949 |
class ValueIterator |
| 1950 | 1950 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1951 |
friend class |
|
| 1951 |
friend class CrossRefMap; |
|
| 1952 | 1952 |
private: |
| 1953 | 1953 |
ValueIterator(typename Container::const_iterator _it) |
| 1954 | 1954 |
: it(_it) {}
|
| 1955 | 1955 |
public: |
| 1956 | 1956 |
|
| 1957 | 1957 |
ValueIterator() {}
|
| 1958 | 1958 |
|
| 1959 | 1959 |
ValueIterator& operator++() { ++it; return *this; }
|
| 1960 | 1960 |
ValueIterator operator++(int) {
|
| 1961 | 1961 |
ValueIterator tmp(*this); |
| 1962 | 1962 |
operator++(); |
| 1963 | 1963 |
return tmp; |
| 1964 | 1964 |
} |
| 1965 | 1965 |
|
| 1966 | 1966 |
const Value& operator*() const { return it->first; }
|
| 1967 | 1967 |
const Value* operator->() const { return &(it->first); }
|
| 1968 | 1968 |
|
| 1969 | 1969 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
| 1970 | 1970 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
| 1971 | 1971 |
|
| 1972 | 1972 |
private: |
| 1973 | 1973 |
typename Container::const_iterator it; |
| 1974 | 1974 |
}; |
| 1975 | 1975 |
|
| 1976 | 1976 |
/// \brief Returns an iterator to the first value. |
| 1977 | 1977 |
/// |
| 1978 | 1978 |
/// Returns an stl compatible iterator to the |
| 1979 | 1979 |
/// first value of the map. The values of the |
| 1980 | 1980 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1981 | 1981 |
/// range. |
| 1982 | 1982 |
ValueIterator beginValue() const {
|
| 1983 | 1983 |
return ValueIterator(_inv_map.begin()); |
| 1984 | 1984 |
} |
| 1985 | 1985 |
|
| 1986 | 1986 |
/// \brief Returns an iterator after the last value. |
| 1987 | 1987 |
/// |
| 1988 | 1988 |
/// Returns an stl compatible iterator after the |
| 1989 | 1989 |
/// last value of the map. The values of the |
| 1990 | 1990 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1991 | 1991 |
/// range. |
| 1992 | 1992 |
ValueIterator endValue() const {
|
| 1993 | 1993 |
return ValueIterator(_inv_map.end()); |
| 1994 | 1994 |
} |
| 1995 | 1995 |
|
| 1996 | 1996 |
/// \brief Sets the value associated with the given key. |
| 1997 | 1997 |
/// |
| 1998 | 1998 |
/// Sets the value associated with the given key. |
| 1999 | 1999 |
void set(const Key& key, const Value& val) {
|
| 2000 | 2000 |
Value oldval = Map::operator[](key); |
| 2001 | 2001 |
typename Container::iterator it = _inv_map.find(oldval); |
| 2002 | 2002 |
if (it != _inv_map.end() && it->second == key) {
|
| 2003 | 2003 |
_inv_map.erase(it); |
| 2004 | 2004 |
} |
| 2005 | 2005 |
_inv_map.insert(make_pair(val, key)); |
| 2006 | 2006 |
Map::set(key, val); |
| 2007 | 2007 |
} |
| 2008 | 2008 |
|
| 2009 | 2009 |
/// \brief Returns the value associated with the given key. |
| 2010 | 2010 |
/// |
| 2011 | 2011 |
/// Returns the value associated with the given key. |
| 2012 | 2012 |
typename MapTraits<Map>::ConstReturnValue |
| 2013 | 2013 |
operator[](const Key& key) const {
|
| 2014 | 2014 |
return Map::operator[](key); |
| 2015 | 2015 |
} |
| 2016 | 2016 |
|
| 2017 | 2017 |
/// \brief Gives back the item by its value. |
| 2018 | 2018 |
/// |
| 2019 | 2019 |
/// Gives back the item by its value. |
| 2020 | 2020 |
Key operator()(const Value& key) const {
|
| 2021 | 2021 |
typename Container::const_iterator it = _inv_map.find(key); |
| 2022 | 2022 |
return it != _inv_map.end() ? it->second : INVALID; |
| 2023 | 2023 |
} |
| 2024 | 2024 |
|
| 2025 | 2025 |
protected: |
| 2026 | 2026 |
|
| 2027 | 2027 |
/// \brief Erase the key from the map and the inverse map. |
| 2028 | 2028 |
/// |
| 2029 | 2029 |
/// Erase the key from the map and the inverse map. It is called by the |
| 2030 | 2030 |
/// \c AlterationNotifier. |
| 2031 | 2031 |
virtual void erase(const Key& key) {
|
| 2032 | 2032 |
Value val = Map::operator[](key); |
| 2033 | 2033 |
typename Container::iterator it = _inv_map.find(val); |
| 2034 | 2034 |
if (it != _inv_map.end() && it->second == key) {
|
| 2035 | 2035 |
_inv_map.erase(it); |
| 2036 | 2036 |
} |
| 2037 | 2037 |
Map::erase(key); |
| 2038 | 2038 |
} |
| 2039 | 2039 |
|
| 2040 | 2040 |
/// \brief Erase more keys from the map and the inverse map. |
| 2041 | 2041 |
/// |
| 2042 | 2042 |
/// Erase more keys from the map and the inverse map. It is called by the |
| 2043 | 2043 |
/// \c AlterationNotifier. |
| 2044 | 2044 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2045 | 2045 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2046 | 2046 |
Value val = Map::operator[](keys[i]); |
| 2047 | 2047 |
typename Container::iterator it = _inv_map.find(val); |
| 2048 | 2048 |
if (it != _inv_map.end() && it->second == keys[i]) {
|
| 2049 | 2049 |
_inv_map.erase(it); |
| 2050 | 2050 |
} |
| 2051 | 2051 |
} |
| 2052 | 2052 |
Map::erase(keys); |
| 2053 | 2053 |
} |
| 2054 | 2054 |
|
| 2055 | 2055 |
/// \brief Clear the keys from the map and the inverse map. |
| 2056 | 2056 |
/// |
| 2057 | 2057 |
/// Clear the keys from the map and the inverse map. It is called by the |
| 2058 | 2058 |
/// \c AlterationNotifier. |
| 2059 | 2059 |
virtual void clear() {
|
| 2060 | 2060 |
_inv_map.clear(); |
| 2061 | 2061 |
Map::clear(); |
| 2062 | 2062 |
} |
| 2063 | 2063 |
|
| 2064 | 2064 |
public: |
| 2065 | 2065 |
|
| 2066 | 2066 |
/// \brief The inverse map type. |
| 2067 | 2067 |
/// |
| 2068 | 2068 |
/// The inverse of this map. The subscript operator of the map |
| 2069 | 2069 |
/// gives back the item that was last assigned to the value. |
| 2070 | 2070 |
class InverseMap {
|
| 2071 | 2071 |
public: |
| 2072 | 2072 |
/// \brief Constructor |
| 2073 | 2073 |
/// |
| 2074 | 2074 |
/// Constructor of the InverseMap. |
| 2075 |
explicit InverseMap(const |
|
| 2075 |
explicit InverseMap(const CrossRefMap& inverted) |
|
| 2076 | 2076 |
: _inverted(inverted) {}
|
| 2077 | 2077 |
|
| 2078 | 2078 |
/// The value type of the InverseMap. |
| 2079 |
typedef typename |
|
| 2079 |
typedef typename CrossRefMap::Key Value; |
|
| 2080 | 2080 |
/// The key type of the InverseMap. |
| 2081 |
typedef typename |
|
| 2081 |
typedef typename CrossRefMap::Value Key; |
|
| 2082 | 2082 |
|
| 2083 | 2083 |
/// \brief Subscript operator. |
| 2084 | 2084 |
/// |
| 2085 | 2085 |
/// Subscript operator. It gives back the item |
| 2086 | 2086 |
/// that was last assigned to the given value. |
| 2087 | 2087 |
Value operator[](const Key& key) const {
|
| 2088 | 2088 |
return _inverted(key); |
| 2089 | 2089 |
} |
| 2090 | 2090 |
|
| 2091 | 2091 |
private: |
| 2092 |
const |
|
| 2092 |
const CrossRefMap& _inverted; |
|
| 2093 | 2093 |
}; |
| 2094 | 2094 |
|
| 2095 | 2095 |
/// \brief It gives back the read-only inverse map. |
| 2096 | 2096 |
/// |
| 2097 | 2097 |
/// It gives back the read-only inverse map. |
| 2098 | 2098 |
InverseMap inverse() const {
|
| 2099 | 2099 |
return InverseMap(*this); |
| 2100 | 2100 |
} |
| 2101 | 2101 |
|
| 2102 | 2102 |
}; |
| 2103 | 2103 |
|
| 2104 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
|
| 2105 |
/// item in a graph. |
|
| 2104 |
/// \brief Provides continuous and unique ID for the |
|
| 2105 |
/// items of a graph. |
|
| 2106 | 2106 |
/// |
| 2107 |
/// DescriptorMap provides a unique and continuous (but mutable) |
|
| 2108 |
/// descriptor (id) for each item of the same type (\c Node, \c Arc or |
|
| 2107 |
/// RangeIdMap provides a unique and continuous |
|
| 2108 |
/// ID for each item of a given type (\c Node, \c Arc or |
|
| 2109 | 2109 |
/// \c Edge) in a graph. This id is |
| 2110 | 2110 |
/// - \b unique: different items get different ids, |
| 2111 | 2111 |
/// - \b continuous: the range of the ids is the set of integers |
| 2112 | 2112 |
/// between 0 and \c n-1, where \c n is the number of the items of |
| 2113 |
/// this type (\c Node, \c Arc or \c Edge). So the id of an item can |
|
| 2114 |
/// change if you delete an other item of the same type, i.e. this |
|
| 2115 |
/// |
|
| 2113 |
/// this type (\c Node, \c Arc or \c Edge). |
|
| 2114 |
/// - So, the ids can change when deleting an item of the same type. |
|
| 2116 | 2115 |
/// |
| 2117 | 2116 |
/// Thus this id is not (necessarily) the same as what can get using |
| 2118 | 2117 |
/// the \c id() function of the graph or \ref IdMap. |
| 2119 | 2118 |
/// This map can be inverted with its member class \c InverseMap, |
| 2120 | 2119 |
/// or with the \c operator() member. |
| 2121 | 2120 |
/// |
| 2122 | 2121 |
/// \tparam GR The graph type. |
| 2123 | 2122 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2124 | 2123 |
/// \c GR::Edge). |
| 2125 | 2124 |
/// |
| 2126 | 2125 |
/// \see IdMap |
| 2127 | 2126 |
template <typename GR, typename K> |
| 2128 |
class |
|
| 2127 |
class RangeIdMap |
|
| 2129 | 2128 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2130 | 2129 |
|
| 2131 | 2130 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
| 2132 | 2131 |
|
| 2133 | 2132 |
public: |
| 2134 |
/// The graph type of |
|
| 2133 |
/// The graph type of RangeIdMap. |
|
| 2135 | 2134 |
typedef GR Graph; |
| 2136 |
/// The key type of |
|
| 2135 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|
| 2137 | 2136 |
typedef K Item; |
| 2138 |
/// The key type of |
|
| 2137 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
|
| 2139 | 2138 |
typedef K Key; |
| 2140 |
/// The value type of |
|
| 2139 |
/// The value type of RangeIdMap. |
|
| 2141 | 2140 |
typedef int Value; |
| 2142 | 2141 |
|
| 2143 | 2142 |
/// \brief Constructor. |
| 2144 | 2143 |
/// |
| 2145 |
/// Constructor for descriptor map. |
|
| 2146 |
explicit DescriptorMap(const Graph& gr) : Map(gr) {
|
|
| 2144 |
/// Constructor. |
|
| 2145 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
|
| 2147 | 2146 |
Item it; |
| 2148 | 2147 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2149 | 2148 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2150 | 2149 |
Map::set(it, _inv_map.size()); |
| 2151 | 2150 |
_inv_map.push_back(it); |
| 2152 | 2151 |
} |
| 2153 | 2152 |
} |
| 2154 | 2153 |
|
| 2155 | 2154 |
protected: |
| 2156 | 2155 |
|
| 2157 | 2156 |
/// \brief Adds a new key to the map. |
| 2158 | 2157 |
/// |
| 2159 | 2158 |
/// Add a new key to the map. It is called by the |
| 2160 | 2159 |
/// \c AlterationNotifier. |
| 2161 | 2160 |
virtual void add(const Item& item) {
|
| 2162 | 2161 |
Map::add(item); |
| 2163 | 2162 |
Map::set(item, _inv_map.size()); |
| 2164 | 2163 |
_inv_map.push_back(item); |
| 2165 | 2164 |
} |
| 2166 | 2165 |
|
| 2167 | 2166 |
/// \brief Add more new keys to the map. |
| 2168 | 2167 |
/// |
| 2169 | 2168 |
/// Add more new keys to the map. It is called by the |
| 2170 | 2169 |
/// \c AlterationNotifier. |
| 2171 | 2170 |
virtual void add(const std::vector<Item>& items) {
|
| 2172 | 2171 |
Map::add(items); |
| 2173 | 2172 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2174 | 2173 |
Map::set(items[i], _inv_map.size()); |
| 2175 | 2174 |
_inv_map.push_back(items[i]); |
| 2176 | 2175 |
} |
| 2177 | 2176 |
} |
| 2178 | 2177 |
|
| 2179 | 2178 |
/// \brief Erase the key from the map. |
| 2180 | 2179 |
/// |
| 2181 | 2180 |
/// Erase the key from the map. It is called by the |
| 2182 | 2181 |
/// \c AlterationNotifier. |
| 2183 | 2182 |
virtual void erase(const Item& item) {
|
| 2184 | 2183 |
Map::set(_inv_map.back(), Map::operator[](item)); |
| 2185 | 2184 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
| 2186 | 2185 |
_inv_map.pop_back(); |
| 2187 | 2186 |
Map::erase(item); |
| 2188 | 2187 |
} |
| 2189 | 2188 |
|
| 2190 | 2189 |
/// \brief Erase more keys from the map. |
| 2191 | 2190 |
/// |
| 2192 | 2191 |
/// Erase more keys from the map. It is called by the |
| 2193 | 2192 |
/// \c AlterationNotifier. |
| 2194 | 2193 |
virtual void erase(const std::vector<Item>& items) {
|
| 2195 | 2194 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2196 | 2195 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
| 2197 | 2196 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
| 2198 | 2197 |
_inv_map.pop_back(); |
| 2199 | 2198 |
} |
| 2200 | 2199 |
Map::erase(items); |
| 2201 | 2200 |
} |
| 2202 | 2201 |
|
| 2203 | 2202 |
/// \brief Build the unique map. |
| 2204 | 2203 |
/// |
| 2205 | 2204 |
/// Build the unique map. It is called by the |
| 2206 | 2205 |
/// \c AlterationNotifier. |
| 2207 | 2206 |
virtual void build() {
|
| 2208 | 2207 |
Map::build(); |
| 2209 | 2208 |
Item it; |
| 2210 | 2209 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2211 | 2210 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2212 | 2211 |
Map::set(it, _inv_map.size()); |
| 2213 | 2212 |
_inv_map.push_back(it); |
| 2214 | 2213 |
} |
| 2215 | 2214 |
} |
| 2216 | 2215 |
|
| 2217 | 2216 |
/// \brief Clear the keys from the map. |
| 2218 | 2217 |
/// |
| 2219 | 2218 |
/// Clear the keys from the map. It is called by the |
| 2220 | 2219 |
/// \c AlterationNotifier. |
| 2221 | 2220 |
virtual void clear() {
|
| 2222 | 2221 |
_inv_map.clear(); |
| 2223 | 2222 |
Map::clear(); |
| 2224 | 2223 |
} |
| 2225 | 2224 |
|
| 2226 | 2225 |
public: |
| 2227 | 2226 |
|
| 2228 | 2227 |
/// \brief Returns the maximal value plus one. |
| 2229 | 2228 |
/// |
| 2230 | 2229 |
/// Returns the maximal value plus one in the map. |
| 2231 | 2230 |
unsigned int size() const {
|
| 2232 | 2231 |
return _inv_map.size(); |
| 2233 | 2232 |
} |
| 2234 | 2233 |
|
| 2235 | 2234 |
/// \brief Swaps the position of the two items in the map. |
| 2236 | 2235 |
/// |
| 2237 | 2236 |
/// Swaps the position of the two items in the map. |
| 2238 | 2237 |
void swap(const Item& p, const Item& q) {
|
| 2239 | 2238 |
int pi = Map::operator[](p); |
| 2240 | 2239 |
int qi = Map::operator[](q); |
| 2241 | 2240 |
Map::set(p, qi); |
| 2242 | 2241 |
_inv_map[qi] = p; |
| 2243 | 2242 |
Map::set(q, pi); |
| 2244 | 2243 |
_inv_map[pi] = q; |
| 2245 | 2244 |
} |
| 2246 | 2245 |
|
| 2247 |
/// \brief Gives back the \e |
|
| 2246 |
/// \brief Gives back the \e RangeId of the item |
|
| 2248 | 2247 |
/// |
| 2249 |
/// Gives back the |
|
| 2248 |
/// Gives back the \e RangeId of the item. |
|
| 2250 | 2249 |
int operator[](const Item& item) const {
|
| 2251 | 2250 |
return Map::operator[](item); |
| 2252 | 2251 |
} |
| 2253 | 2252 |
|
| 2254 |
/// \brief Gives back the item by its descriptor. |
|
| 2255 |
/// |
|
| 2256 |
/// Gives back |
|
| 2253 |
/// \brief Gives back the item belonging to a \e RangeId |
|
| 2254 |
/// |
|
| 2255 |
/// Gives back the item belonging to a \e RangeId. |
|
| 2257 | 2256 |
Item operator()(int id) const {
|
| 2258 | 2257 |
return _inv_map[id]; |
| 2259 | 2258 |
} |
| 2260 | 2259 |
|
| 2261 | 2260 |
private: |
| 2262 | 2261 |
|
| 2263 | 2262 |
typedef std::vector<Item> Container; |
| 2264 | 2263 |
Container _inv_map; |
| 2265 | 2264 |
|
| 2266 | 2265 |
public: |
| 2267 | 2266 |
|
| 2268 |
/// \brief The inverse map type of |
|
| 2267 |
/// \brief The inverse map type of RangeIdMap. |
|
| 2269 | 2268 |
/// |
| 2270 |
/// The inverse map type of |
|
| 2269 |
/// The inverse map type of RangeIdMap. |
|
| 2271 | 2270 |
class InverseMap {
|
| 2272 | 2271 |
public: |
| 2273 | 2272 |
/// \brief Constructor |
| 2274 | 2273 |
/// |
| 2275 | 2274 |
/// Constructor of the InverseMap. |
| 2276 |
explicit InverseMap(const |
|
| 2275 |
explicit InverseMap(const RangeIdMap& inverted) |
|
| 2277 | 2276 |
: _inverted(inverted) {}
|
| 2278 | 2277 |
|
| 2279 | 2278 |
|
| 2280 | 2279 |
/// The value type of the InverseMap. |
| 2281 |
typedef typename |
|
| 2280 |
typedef typename RangeIdMap::Key Value; |
|
| 2282 | 2281 |
/// The key type of the InverseMap. |
| 2283 |
typedef typename |
|
| 2282 |
typedef typename RangeIdMap::Value Key; |
|
| 2284 | 2283 |
|
| 2285 | 2284 |
/// \brief Subscript operator. |
| 2286 | 2285 |
/// |
| 2287 | 2286 |
/// Subscript operator. It gives back the item |
| 2288 | 2287 |
/// that the descriptor currently belongs to. |
| 2289 | 2288 |
Value operator[](const Key& key) const {
|
| 2290 | 2289 |
return _inverted(key); |
| 2291 | 2290 |
} |
| 2292 | 2291 |
|
| 2293 | 2292 |
/// \brief Size of the map. |
| 2294 | 2293 |
/// |
| 2295 | 2294 |
/// Returns the size of the map. |
| 2296 | 2295 |
unsigned int size() const {
|
| 2297 | 2296 |
return _inverted.size(); |
| 2298 | 2297 |
} |
| 2299 | 2298 |
|
| 2300 | 2299 |
private: |
| 2301 |
const |
|
| 2300 |
const RangeIdMap& _inverted; |
|
| 2302 | 2301 |
}; |
| 2303 | 2302 |
|
| 2304 | 2303 |
/// \brief Gives back the inverse of the map. |
| 2305 | 2304 |
/// |
| 2306 | 2305 |
/// Gives back the inverse of the map. |
| 2307 | 2306 |
const InverseMap inverse() const {
|
| 2308 | 2307 |
return InverseMap(*this); |
| 2309 | 2308 |
} |
| 2310 | 2309 |
}; |
| 2311 | 2310 |
|
| 2312 | 2311 |
/// \brief Map of the source nodes of arcs in a digraph. |
| 2313 | 2312 |
/// |
| 2314 | 2313 |
/// SourceMap provides access for the source node of each arc in a digraph, |
| 2315 | 2314 |
/// which is returned by the \c source() function of the digraph. |
| 2316 | 2315 |
/// \tparam GR The digraph type. |
| 2317 | 2316 |
/// \see TargetMap |
| 2318 | 2317 |
template <typename GR> |
| 2319 | 2318 |
class SourceMap {
|
| 2320 | 2319 |
public: |
| 2321 | 2320 |
|
| 2322 | 2321 |
///\e |
| 2323 | 2322 |
typedef typename GR::Arc Key; |
| 2324 | 2323 |
///\e |
| 2325 | 2324 |
typedef typename GR::Node Value; |
| 2326 | 2325 |
|
| 2327 | 2326 |
/// \brief Constructor |
| 2328 | 2327 |
/// |
| 2329 | 2328 |
/// Constructor. |
| 2330 | 2329 |
/// \param digraph The digraph that the map belongs to. |
| 2331 | 2330 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
| 2332 | 2331 |
|
| 2333 | 2332 |
/// \brief Returns the source node of the given arc. |
| 2334 | 2333 |
/// |
| 2335 | 2334 |
/// Returns the source node of the given arc. |
| 2336 | 2335 |
Value operator[](const Key& arc) const {
|
| 2337 | 2336 |
return _graph.source(arc); |
| 2338 | 2337 |
} |
| 2339 | 2338 |
|
| 2340 | 2339 |
private: |
| 2341 | 2340 |
const GR& _graph; |
| 2342 | 2341 |
}; |
| 2343 | 2342 |
|
| 2344 | 2343 |
/// \brief Returns a \c SourceMap class. |
| 2345 | 2344 |
/// |
| 2346 | 2345 |
/// This function just returns an \c SourceMap class. |
| 2347 | 2346 |
/// \relates SourceMap |
| 2348 | 2347 |
template <typename GR> |
| 2349 | 2348 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
| 2350 | 2349 |
return SourceMap<GR>(graph); |
| 2351 | 2350 |
} |
| 2352 | 2351 |
|
| 2353 | 2352 |
/// \brief Map of the target nodes of arcs in a digraph. |
| 2354 | 2353 |
/// |
| 2355 | 2354 |
/// TargetMap provides access for the target node of each arc in a digraph, |
| 2356 | 2355 |
/// which is returned by the \c target() function of the digraph. |
| 2357 | 2356 |
/// \tparam GR The digraph type. |
| 2358 | 2357 |
/// \see SourceMap |
| 2359 | 2358 |
template <typename GR> |
| 2360 | 2359 |
class TargetMap {
|
| 2361 | 2360 |
public: |
| 2362 | 2361 |
|
| 2363 | 2362 |
///\e |
| 2364 | 2363 |
typedef typename GR::Arc Key; |
| 2365 | 2364 |
///\e |
| 2366 | 2365 |
typedef typename GR::Node Value; |
| 2367 | 2366 |
|
| 2368 | 2367 |
/// \brief Constructor |
| 2369 | 2368 |
/// |
| 2370 | 2369 |
/// Constructor. |
| 2371 | 2370 |
/// \param digraph The digraph that the map belongs to. |
| 2372 | 2371 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
| 2373 | 2372 |
|
| 2374 | 2373 |
/// \brief Returns the target node of the given arc. |
| 2375 | 2374 |
/// |
| 2376 | 2375 |
/// Returns the target node of the given arc. |
| 2377 | 2376 |
Value operator[](const Key& e) const {
|
| 2378 | 2377 |
return _graph.target(e); |
| 2379 | 2378 |
} |
| 2380 | 2379 |
|
| 2381 | 2380 |
private: |
| 2382 | 2381 |
const GR& _graph; |
| 2383 | 2382 |
}; |
| 2384 | 2383 |
|
| 2385 | 2384 |
/// \brief Returns a \c TargetMap class. |
| 2386 | 2385 |
/// |
| 2387 | 2386 |
/// This function just returns a \c TargetMap class. |
| 2388 | 2387 |
/// \relates TargetMap |
| 2389 | 2388 |
template <typename GR> |
| 2390 | 2389 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
| 2391 | 2390 |
return TargetMap<GR>(graph); |
| 2392 | 2391 |
} |
| 2393 | 2392 |
|
| 2394 | 2393 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
| 2395 | 2394 |
/// |
| 2396 | 2395 |
/// ForwardMap provides access for the "forward" directed arc view of |
| 2397 | 2396 |
/// each edge in a graph, which is returned by the \c direct() function |
| 2398 | 2397 |
/// of the graph with \c true parameter. |
| 2399 | 2398 |
/// \tparam GR The graph type. |
| 2400 | 2399 |
/// \see BackwardMap |
| 2401 | 2400 |
template <typename GR> |
| 2402 | 2401 |
class ForwardMap {
|
| 2403 | 2402 |
public: |
| 2404 | 2403 |
|
| 2405 | 2404 |
typedef typename GR::Arc Value; |
| 2406 | 2405 |
typedef typename GR::Edge Key; |
| 2407 | 2406 |
|
| 2408 | 2407 |
/// \brief Constructor |
| 2409 | 2408 |
/// |
| 2410 | 2409 |
/// Constructor. |
| 2411 | 2410 |
/// \param graph The graph that the map belongs to. |
| 2412 | 2411 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| 2413 | 2412 |
|
| 2414 | 2413 |
/// \brief Returns the "forward" directed arc view of the given edge. |
| 2415 | 2414 |
/// |
| 2416 | 2415 |
/// Returns the "forward" directed arc view of the given edge. |
| 2417 | 2416 |
Value operator[](const Key& key) const {
|
| 2418 | 2417 |
return _graph.direct(key, true); |
| 2419 | 2418 |
} |
| 2420 | 2419 |
|
| 2421 | 2420 |
private: |
| 2422 | 2421 |
const GR& _graph; |
| 2423 | 2422 |
}; |
| 2424 | 2423 |
|
| 2425 | 2424 |
/// \brief Returns a \c ForwardMap class. |
| 2426 | 2425 |
/// |
| 2427 | 2426 |
/// This function just returns an \c ForwardMap class. |
| 2428 | 2427 |
/// \relates ForwardMap |
| 2429 | 2428 |
template <typename GR> |
| 2430 | 2429 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
| 2431 | 2430 |
return ForwardMap<GR>(graph); |
| 2432 | 2431 |
} |
| 2433 | 2432 |
|
| 2434 | 2433 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
| 2435 | 2434 |
/// |
| 2436 | 2435 |
/// BackwardMap provides access for the "backward" directed arc view of |
| 2437 | 2436 |
/// each edge in a graph, which is returned by the \c direct() function |
| 2438 | 2437 |
/// of the graph with \c false parameter. |
| 2439 | 2438 |
/// \tparam GR The graph type. |
| 2440 | 2439 |
/// \see ForwardMap |
| 2441 | 2440 |
template <typename GR> |
| 2442 | 2441 |
class BackwardMap {
|
| 2443 | 2442 |
public: |
| 2444 | 2443 |
|
| 2445 | 2444 |
typedef typename GR::Arc Value; |
| 2446 | 2445 |
typedef typename GR::Edge Key; |
| 2447 | 2446 |
|
| 2448 | 2447 |
/// \brief Constructor |
| 2449 | 2448 |
/// |
| 2450 | 2449 |
/// Constructor. |
| 2451 | 2450 |
/// \param graph The graph that the map belongs to. |
| 2452 | 2451 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| 2453 | 2452 |
|
| 2454 | 2453 |
/// \brief Returns the "backward" directed arc view of the given edge. |
| 2455 | 2454 |
/// |
| 2456 | 2455 |
/// Returns the "backward" directed arc view of the given edge. |
| 2457 | 2456 |
Value operator[](const Key& key) const {
|
| 2458 | 2457 |
return _graph.direct(key, false); |
| 2459 | 2458 |
} |
| 2460 | 2459 |
|
| 2461 | 2460 |
private: |
| 2462 | 2461 |
const GR& _graph; |
| 2463 | 2462 |
}; |
| 2464 | 2463 |
|
| 2465 | 2464 |
/// \brief Returns a \c BackwardMap class |
| 2466 | 2465 |
|
| 2467 | 2466 |
/// This function just returns a \c BackwardMap class. |
| 2468 | 2467 |
/// \relates BackwardMap |
| 2469 | 2468 |
template <typename GR> |
| 2470 | 2469 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
| 2471 | 2470 |
return BackwardMap<GR>(graph); |
| 2472 | 2471 |
} |
| 2473 | 2472 |
|
| 2474 | 2473 |
/// \brief Map of the in-degrees of nodes in a digraph. |
| 2475 | 2474 |
/// |
| 2476 | 2475 |
/// This map returns the in-degree of a node. Once it is constructed, |
| 2477 | 2476 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2478 | 2477 |
/// in constant time. On the other hand, the values are updated automatically |
| 2479 | 2478 |
/// whenever the digraph changes. |
| 2480 | 2479 |
/// |
| 2481 | 2480 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
| 2482 | 2481 |
/// may provide alternative ways to modify the digraph. |
| 2483 | 2482 |
/// The correct behavior of InDegMap is not guarantied if these additional |
| 2484 | 2483 |
/// features are used. For example the functions |
| 2485 | 2484 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2486 | 2485 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2487 | 2486 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2488 | 2487 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2489 | 2488 |
/// |
| 2490 | 2489 |
/// \sa OutDegMap |
| 2491 | 2490 |
template <typename GR> |
| 2492 | 2491 |
class InDegMap |
| 2493 | 2492 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2494 | 2493 |
::ItemNotifier::ObserverBase {
|
| 2495 | 2494 |
|
| 2496 | 2495 |
public: |
| 2497 | 2496 |
|
| 2498 | 2497 |
/// The digraph type |
| 2499 | 2498 |
typedef GR Digraph; |
| 2500 | 2499 |
/// The key type |
| 2501 | 2500 |
typedef typename Digraph::Node Key; |
| 2502 | 2501 |
/// The value type |
| 2503 | 2502 |
typedef int Value; |
| 2504 | 2503 |
|
| 2505 | 2504 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
| 2506 | 2505 |
::ItemNotifier::ObserverBase Parent; |
| 2507 | 2506 |
|
| 2508 | 2507 |
private: |
| 2509 | 2508 |
|
| 2510 | 2509 |
class AutoNodeMap |
| 2511 | 2510 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2512 | 2511 |
public: |
| 2513 | 2512 |
|
| 2514 | 2513 |
typedef typename ItemSetTraits<Digraph, Key>:: |
| 2515 | 2514 |
template Map<int>::Type Parent; |
| 2516 | 2515 |
|
| 2517 | 2516 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2518 | 2517 |
|
| 2519 | 2518 |
virtual void add(const Key& key) {
|
| 2520 | 2519 |
Parent::add(key); |
| 2521 | 2520 |
Parent::set(key, 0); |
| 2522 | 2521 |
} |
| 2523 | 2522 |
|
| 2524 | 2523 |
virtual void add(const std::vector<Key>& keys) {
|
| 2525 | 2524 |
Parent::add(keys); |
| 2526 | 2525 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2527 | 2526 |
Parent::set(keys[i], 0); |
| 2528 | 2527 |
} |
| 2529 | 2528 |
} |
| 2530 | 2529 |
|
| 2531 | 2530 |
virtual void build() {
|
| 2532 | 2531 |
Parent::build(); |
| 2533 | 2532 |
Key it; |
| 2534 | 2533 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2535 | 2534 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2536 | 2535 |
Parent::set(it, 0); |
| 2537 | 2536 |
} |
| 2538 | 2537 |
} |
| 2539 | 2538 |
}; |
| 2540 | 2539 |
|
| 2541 | 2540 |
public: |
| 2542 | 2541 |
|
| 2543 | 2542 |
/// \brief Constructor. |
| 2544 | 2543 |
/// |
| 2545 | 2544 |
/// Constructor for creating an in-degree map. |
| 2546 | 2545 |
explicit InDegMap(const Digraph& graph) |
| 2547 | 2546 |
: _digraph(graph), _deg(graph) {
|
| 2548 | 2547 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2549 | 2548 |
|
| 2550 | 2549 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2551 | 2550 |
_deg[it] = countInArcs(_digraph, it); |
| 2552 | 2551 |
} |
| 2553 | 2552 |
} |
| 2554 | 2553 |
|
| 2555 | 2554 |
/// \brief Gives back the in-degree of a Node. |
| 2556 | 2555 |
/// |
| 2557 | 2556 |
/// Gives back the in-degree of a Node. |
| 2558 | 2557 |
int operator[](const Key& key) const {
|
| 2559 | 2558 |
return _deg[key]; |
| 2560 | 2559 |
} |
| 2561 | 2560 |
|
| 2562 | 2561 |
protected: |
| 2563 | 2562 |
|
| 2564 | 2563 |
typedef typename Digraph::Arc Arc; |
| 2565 | 2564 |
|
| 2566 | 2565 |
virtual void add(const Arc& arc) {
|
| 2567 | 2566 |
++_deg[_digraph.target(arc)]; |
| 2568 | 2567 |
} |
| 2569 | 2568 |
|
| 2570 | 2569 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2571 | 2570 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2572 | 2571 |
++_deg[_digraph.target(arcs[i])]; |
| 2573 | 2572 |
} |
| 2574 | 2573 |
} |
| 2575 | 2574 |
|
| 2576 | 2575 |
virtual void erase(const Arc& arc) {
|
| 2577 | 2576 |
--_deg[_digraph.target(arc)]; |
| 2578 | 2577 |
} |
| 2579 | 2578 |
|
| 2580 | 2579 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2581 | 2580 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2582 | 2581 |
--_deg[_digraph.target(arcs[i])]; |
| 2583 | 2582 |
} |
| 2584 | 2583 |
} |
| 2585 | 2584 |
|
| 2586 | 2585 |
virtual void build() {
|
| 2587 | 2586 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2588 | 2587 |
_deg[it] = countInArcs(_digraph, it); |
| 2589 | 2588 |
} |
| 2590 | 2589 |
} |
| 2591 | 2590 |
|
| 2592 | 2591 |
virtual void clear() {
|
| 2593 | 2592 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2594 | 2593 |
_deg[it] = 0; |
| 2595 | 2594 |
} |
| 2596 | 2595 |
} |
| 2597 | 2596 |
private: |
| 2598 | 2597 |
|
| 2599 | 2598 |
const Digraph& _digraph; |
| 2600 | 2599 |
AutoNodeMap _deg; |
| 2601 | 2600 |
}; |
| 2602 | 2601 |
|
| 2603 | 2602 |
/// \brief Map of the out-degrees of nodes in a digraph. |
| 2604 | 2603 |
/// |
| 2605 | 2604 |
/// This map returns the out-degree of a node. Once it is constructed, |
| 2606 | 2605 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2607 | 2606 |
/// in constant time. On the other hand, the values are updated automatically |
| 2608 | 2607 |
/// whenever the digraph changes. |
| 2609 | 2608 |
/// |
| 2610 | 2609 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
| 2611 | 2610 |
/// may provide alternative ways to modify the digraph. |
| 2612 | 2611 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
| 2613 | 2612 |
/// features are used. For example the functions |
| 2614 | 2613 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2615 | 2614 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2616 | 2615 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2617 | 2616 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2618 | 2617 |
/// |
| 2619 | 2618 |
/// \sa InDegMap |
| 2620 | 2619 |
template <typename GR> |
| 2621 | 2620 |
class OutDegMap |
| 2622 | 2621 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2623 | 2622 |
::ItemNotifier::ObserverBase {
|
| 2624 | 2623 |
|
| 2625 | 2624 |
public: |
| 2626 | 2625 |
|
| 2627 | 2626 |
/// The digraph type |
| 2628 | 2627 |
typedef GR Digraph; |
| 2629 | 2628 |
/// The key type |
| 2630 | 2629 |
typedef typename Digraph::Node Key; |
| 2631 | 2630 |
/// The value type |
| 2632 | 2631 |
typedef int Value; |
| 2633 | 2632 |
|
| 2634 | 2633 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
| 2635 | 2634 |
::ItemNotifier::ObserverBase Parent; |
| 2636 | 2635 |
|
| 2637 | 2636 |
private: |
| 2638 | 2637 |
|
| 2639 | 2638 |
class AutoNodeMap |
| 2640 | 2639 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2641 | 2640 |
public: |
| 2642 | 2641 |
|
| 2643 | 2642 |
typedef typename ItemSetTraits<Digraph, Key>:: |
| 2644 | 2643 |
template Map<int>::Type Parent; |
| 2645 | 2644 |
|
| 2646 | 2645 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2647 | 2646 |
|
| 2648 | 2647 |
virtual void add(const Key& key) {
|
| 2649 | 2648 |
Parent::add(key); |
| 2650 | 2649 |
Parent::set(key, 0); |
| 2651 | 2650 |
} |
| 2652 | 2651 |
virtual void add(const std::vector<Key>& keys) {
|
| 2653 | 2652 |
Parent::add(keys); |
| 2654 | 2653 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2655 | 2654 |
Parent::set(keys[i], 0); |
| 2656 | 2655 |
} |
| 2657 | 2656 |
} |
| 2658 | 2657 |
virtual void build() {
|
| 2659 | 2658 |
Parent::build(); |
| 2660 | 2659 |
Key it; |
| 2661 | 2660 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2662 | 2661 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2663 | 2662 |
Parent::set(it, 0); |
| 2664 | 2663 |
} |
| 2665 | 2664 |
} |
| 2666 | 2665 |
}; |
| 2667 | 2666 |
|
| 2668 | 2667 |
public: |
| 2669 | 2668 |
|
| 2670 | 2669 |
/// \brief Constructor. |
| 2671 | 2670 |
/// |
| 2672 | 2671 |
/// Constructor for creating an out-degree map. |
| 2673 | 2672 |
explicit OutDegMap(const Digraph& graph) |
| 2674 | 2673 |
: _digraph(graph), _deg(graph) {
|
| 2675 | 2674 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2676 | 2675 |
|
| 2677 | 2676 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2678 | 2677 |
_deg[it] = countOutArcs(_digraph, it); |
| 2679 | 2678 |
} |
| 2680 | 2679 |
} |
| 2681 | 2680 |
|
| 2682 | 2681 |
/// \brief Gives back the out-degree of a Node. |
| 2683 | 2682 |
/// |
| 2684 | 2683 |
/// Gives back the out-degree of a Node. |
| 2685 | 2684 |
int operator[](const Key& key) const {
|
| 2686 | 2685 |
return _deg[key]; |
| 2687 | 2686 |
} |
| 2688 | 2687 |
|
| 2689 | 2688 |
protected: |
| 2690 | 2689 |
|
| 2691 | 2690 |
typedef typename Digraph::Arc Arc; |
| 2692 | 2691 |
|
| 2693 | 2692 |
virtual void add(const Arc& arc) {
|
| 2694 | 2693 |
++_deg[_digraph.source(arc)]; |
| 2695 | 2694 |
} |
| 2696 | 2695 |
|
| 2697 | 2696 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2698 | 2697 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2699 | 2698 |
++_deg[_digraph.source(arcs[i])]; |
| 2700 | 2699 |
} |
| 2701 | 2700 |
} |
| 2702 | 2701 |
|
| 2703 | 2702 |
virtual void erase(const Arc& arc) {
|
| 2704 | 2703 |
--_deg[_digraph.source(arc)]; |
| 2705 | 2704 |
} |
| 2706 | 2705 |
|
| 2707 | 2706 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2708 | 2707 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2709 | 2708 |
--_deg[_digraph.source(arcs[i])]; |
| 2710 | 2709 |
} |
| 2711 | 2710 |
} |
| 2712 | 2711 |
|
| 2713 | 2712 |
virtual void build() {
|
| 2714 | 2713 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2715 | 2714 |
_deg[it] = countOutArcs(_digraph, it); |
| 2716 | 2715 |
} |
| 2717 | 2716 |
} |
| 2718 | 2717 |
|
| 2719 | 2718 |
virtual void clear() {
|
| 2720 | 2719 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2721 | 2720 |
_deg[it] = 0; |
| 2722 | 2721 |
} |
| 2723 | 2722 |
} |
| 2724 | 2723 |
private: |
| 2725 | 2724 |
|
| 2726 | 2725 |
const Digraph& _digraph; |
| 2727 | 2726 |
AutoNodeMap _deg; |
| 2728 | 2727 |
}; |
| 2729 | 2728 |
|
| 2730 | 2729 |
/// \brief Potential difference map |
| 2731 | 2730 |
/// |
| 2732 | 2731 |
/// PotentialMap returns the difference between the potentials of the |
| 2733 | 2732 |
/// source and target nodes of each arc in a digraph, i.e. it returns |
| 2734 | 2733 |
/// \code |
| 2735 | 2734 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
| 2736 | 2735 |
/// \endcode |
| 2737 | 2736 |
/// \tparam GR The digraph type. |
| 2738 | 2737 |
/// \tparam POT A node map storing the potentials. |
| 2739 | 2738 |
template <typename GR, typename POT> |
| 2740 | 2739 |
class PotentialDifferenceMap {
|
| 2741 | 2740 |
public: |
| 2742 | 2741 |
/// Key type |
| 2743 | 2742 |
typedef typename GR::Arc Key; |
| 2744 | 2743 |
/// Value type |
| 2745 | 2744 |
typedef typename POT::Value Value; |
| 2746 | 2745 |
|
| 2747 | 2746 |
/// \brief Constructor |
| 2748 | 2747 |
/// |
| 2749 | 2748 |
/// Contructor of the map. |
| 2750 | 2749 |
explicit PotentialDifferenceMap(const GR& gr, |
| 2751 | 2750 |
const POT& potential) |
| 2752 | 2751 |
: _digraph(gr), _potential(potential) {}
|
| 2753 | 2752 |
|
| 2754 | 2753 |
/// \brief Returns the potential difference for the given arc. |
| 2755 | 2754 |
/// |
| 2756 | 2755 |
/// Returns the potential difference for the given arc, i.e. |
| 2757 | 2756 |
/// \code |
| 2758 | 2757 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
| 2759 | 2758 |
/// \endcode |
| 2760 | 2759 |
Value operator[](const Key& arc) const {
|
| 2761 | 2760 |
return _potential[_digraph.target(arc)] - |
| 2762 | 2761 |
_potential[_digraph.source(arc)]; |
| 2763 | 2762 |
} |
| 2764 | 2763 |
|
| 2765 | 2764 |
private: |
| 2766 | 2765 |
const GR& _digraph; |
| 2767 | 2766 |
const POT& _potential; |
| 2768 | 2767 |
}; |
| 2769 | 2768 |
|
| 2770 | 2769 |
/// \brief Returns a PotentialDifferenceMap. |
| 2771 | 2770 |
/// |
| 2772 | 2771 |
/// This function just returns a PotentialDifferenceMap. |
| 2773 | 2772 |
/// \relates PotentialDifferenceMap |
| 2774 | 2773 |
template <typename GR, typename POT> |
| 2775 | 2774 |
PotentialDifferenceMap<GR, POT> |
| 2776 | 2775 |
potentialDifferenceMap(const GR& gr, const POT& potential) {
|
| 2777 | 2776 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
| 2778 | 2777 |
} |
| 2779 | 2778 |
|
| 2780 | 2779 |
/// @} |
| 2781 | 2780 |
} |
| 2782 | 2781 |
|
| 2783 | 2782 |
#endif // LEMON_MAPS_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <cstdlib> |
| 20 | 20 |
#include <ctime> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/random.h> |
| 23 | 23 |
#include <lemon/list_graph.h> |
| 24 | 24 |
#include <lemon/smart_graph.h> |
| 25 | 25 |
#include <lemon/maps.h> |
| 26 | 26 |
|
| 27 | 27 |
#include "graph_test.h" |
| 28 | 28 |
#include "test_tools.h" |
| 29 | 29 |
|
| 30 | 30 |
using namespace lemon; |
| 31 | 31 |
|
| 32 | 32 |
template <typename Digraph> |
| 33 | 33 |
void checkFindArcs() {
|
| 34 | 34 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 35 | 35 |
|
| 36 | 36 |
{
|
| 37 | 37 |
Digraph digraph; |
| 38 | 38 |
for (int i = 0; i < 10; ++i) {
|
| 39 | 39 |
digraph.addNode(); |
| 40 | 40 |
} |
| 41 |
DescriptorMap<Digraph, Node> nodes(digraph); |
|
| 42 |
typename DescriptorMap<Digraph, Node>::InverseMap invNodes(nodes); |
|
| 41 |
RangeIdMap<Digraph, Node> nodes(digraph); |
|
| 42 |
typename RangeIdMap<Digraph, Node>::InverseMap invNodes(nodes); |
|
| 43 | 43 |
for (int i = 0; i < 100; ++i) {
|
| 44 | 44 |
int src = rnd[invNodes.size()]; |
| 45 | 45 |
int trg = rnd[invNodes.size()]; |
| 46 | 46 |
digraph.addArc(invNodes[src], invNodes[trg]); |
| 47 | 47 |
} |
| 48 | 48 |
typename Digraph::template ArcMap<bool> found(digraph, false); |
| 49 |
|
|
| 49 |
RangeIdMap<Digraph, Arc> arcs(digraph); |
|
| 50 | 50 |
for (NodeIt src(digraph); src != INVALID; ++src) {
|
| 51 | 51 |
for (NodeIt trg(digraph); trg != INVALID; ++trg) {
|
| 52 | 52 |
for (ConArcIt<Digraph> con(digraph, src, trg); con != INVALID; ++con) {
|
| 53 | 53 |
check(digraph.source(con) == src, "Wrong source."); |
| 54 | 54 |
check(digraph.target(con) == trg, "Wrong target."); |
| 55 | 55 |
check(found[con] == false, "The arc found already."); |
| 56 | 56 |
found[con] = true; |
| 57 | 57 |
} |
| 58 | 58 |
} |
| 59 | 59 |
} |
| 60 | 60 |
for (ArcIt it(digraph); it != INVALID; ++it) {
|
| 61 | 61 |
check(found[it] == true, "The arc is not found."); |
| 62 | 62 |
} |
| 63 | 63 |
} |
| 64 | 64 |
|
| 65 | 65 |
{
|
| 66 | 66 |
int num = 5; |
| 67 | 67 |
Digraph fg; |
| 68 | 68 |
std::vector<Node> nodes; |
| 69 | 69 |
for (int i = 0; i < num; ++i) {
|
| 70 | 70 |
nodes.push_back(fg.addNode()); |
| 71 | 71 |
} |
| 72 | 72 |
for (int i = 0; i < num * num; ++i) {
|
| 73 | 73 |
fg.addArc(nodes[i / num], nodes[i % num]); |
| 74 | 74 |
} |
| 75 | 75 |
check(countNodes(fg) == num, "Wrong node number."); |
| 76 | 76 |
check(countArcs(fg) == num*num, "Wrong arc number."); |
| 77 | 77 |
for (NodeIt src(fg); src != INVALID; ++src) {
|
| 78 | 78 |
for (NodeIt trg(fg); trg != INVALID; ++trg) {
|
| 79 | 79 |
ConArcIt<Digraph> con(fg, src, trg); |
| 80 | 80 |
check(con != INVALID, "There is no connecting arc."); |
| 81 | 81 |
check(fg.source(con) == src, "Wrong source."); |
| 82 | 82 |
check(fg.target(con) == trg, "Wrong target."); |
| 83 | 83 |
check(++con == INVALID, "There is more connecting arc."); |
| 84 | 84 |
} |
| 85 | 85 |
} |
| 86 | 86 |
ArcLookUp<Digraph> al1(fg); |
| 87 | 87 |
DynArcLookUp<Digraph> al2(fg); |
| 88 | 88 |
AllArcLookUp<Digraph> al3(fg); |
| 89 | 89 |
for (NodeIt src(fg); src != INVALID; ++src) {
|
| 90 | 90 |
for (NodeIt trg(fg); trg != INVALID; ++trg) {
|
| 91 | 91 |
Arc con1 = al1(src, trg); |
| 92 | 92 |
Arc con2 = al2(src, trg); |
| 93 | 93 |
Arc con3 = al3(src, trg); |
| 94 | 94 |
Arc con4 = findArc(fg, src, trg); |
| 95 | 95 |
check(con1 == con2 && con2 == con3 && con3 == con4, |
| 96 | 96 |
"Different results.") |
| 97 | 97 |
check(con1 != INVALID, "There is no connecting arc."); |
| 98 | 98 |
check(fg.source(con1) == src, "Wrong source."); |
| 99 | 99 |
check(fg.target(con1) == trg, "Wrong target."); |
| 100 | 100 |
check(al3(src, trg, con3) == INVALID, |
| 101 | 101 |
"There is more connecting arc."); |
| 102 | 102 |
check(findArc(fg, src, trg, con4) == INVALID, |
| 103 | 103 |
"There is more connecting arc."); |
| 104 | 104 |
} |
| 105 | 105 |
} |
| 106 | 106 |
} |
| 107 | 107 |
} |
| 108 | 108 |
|
| 109 | 109 |
template <typename Graph> |
| 110 | 110 |
void checkFindEdges() {
|
| 111 | 111 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 112 | 112 |
Graph graph; |
| 113 | 113 |
for (int i = 0; i < 10; ++i) {
|
| 114 | 114 |
graph.addNode(); |
| 115 | 115 |
} |
| 116 |
DescriptorMap<Graph, Node> nodes(graph); |
|
| 117 |
typename DescriptorMap<Graph, Node>::InverseMap invNodes(nodes); |
|
| 116 |
RangeIdMap<Graph, Node> nodes(graph); |
|
| 117 |
typename RangeIdMap<Graph, Node>::InverseMap invNodes(nodes); |
|
| 118 | 118 |
for (int i = 0; i < 100; ++i) {
|
| 119 | 119 |
int src = rnd[invNodes.size()]; |
| 120 | 120 |
int trg = rnd[invNodes.size()]; |
| 121 | 121 |
graph.addEdge(invNodes[src], invNodes[trg]); |
| 122 | 122 |
} |
| 123 | 123 |
typename Graph::template EdgeMap<int> found(graph, 0); |
| 124 |
|
|
| 124 |
RangeIdMap<Graph, Edge> edges(graph); |
|
| 125 | 125 |
for (NodeIt src(graph); src != INVALID; ++src) {
|
| 126 | 126 |
for (NodeIt trg(graph); trg != INVALID; ++trg) {
|
| 127 | 127 |
for (ConEdgeIt<Graph> con(graph, src, trg); con != INVALID; ++con) {
|
| 128 | 128 |
check( (graph.u(con) == src && graph.v(con) == trg) || |
| 129 | 129 |
(graph.v(con) == src && graph.u(con) == trg), |
| 130 | 130 |
"Wrong end nodes."); |
| 131 | 131 |
++found[con]; |
| 132 | 132 |
check(found[con] <= 2, "The edge found more than twice."); |
| 133 | 133 |
} |
| 134 | 134 |
} |
| 135 | 135 |
} |
| 136 | 136 |
for (EdgeIt it(graph); it != INVALID; ++it) {
|
| 137 | 137 |
check( (graph.u(it) != graph.v(it) && found[it] == 2) || |
| 138 | 138 |
(graph.u(it) == graph.v(it) && found[it] == 1), |
| 139 | 139 |
"The edge is not found correctly."); |
| 140 | 140 |
} |
| 141 | 141 |
} |
| 142 | 142 |
|
| 143 | 143 |
template <class Digraph> |
| 144 | 144 |
void checkDeg() |
| 145 | 145 |
{
|
| 146 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 147 | 147 |
|
| 148 | 148 |
const int nodeNum = 10; |
| 149 | 149 |
const int arcNum = 100; |
| 150 | 150 |
Digraph digraph; |
| 151 | 151 |
InDegMap<Digraph> inDeg(digraph); |
| 152 | 152 |
OutDegMap<Digraph> outDeg(digraph); |
| 153 | 153 |
std::vector<Node> nodes(nodeNum); |
| 154 | 154 |
for (int i = 0; i < nodeNum; ++i) {
|
| 155 | 155 |
nodes[i] = digraph.addNode(); |
| 156 | 156 |
} |
| 157 | 157 |
std::vector<Arc> arcs(arcNum); |
| 158 | 158 |
for (int i = 0; i < arcNum; ++i) {
|
| 159 | 159 |
arcs[i] = digraph.addArc(nodes[rnd[nodeNum]], nodes[rnd[nodeNum]]); |
| 160 | 160 |
} |
| 161 | 161 |
for (int i = 0; i < nodeNum; ++i) {
|
| 162 | 162 |
check(inDeg[nodes[i]] == countInArcs(digraph, nodes[i]), |
| 163 | 163 |
"Wrong in degree map"); |
| 164 | 164 |
} |
| 165 | 165 |
for (int i = 0; i < nodeNum; ++i) {
|
| 166 | 166 |
check(outDeg[nodes[i]] == countOutArcs(digraph, nodes[i]), |
| 167 | 167 |
"Wrong out degree map"); |
| 168 | 168 |
} |
| 169 | 169 |
} |
| 170 | 170 |
|
| 171 | 171 |
template <class Digraph> |
| 172 | 172 |
void checkSnapDeg() |
| 173 | 173 |
{
|
| 174 | 174 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 175 | 175 |
|
| 176 | 176 |
Digraph g; |
| 177 | 177 |
Node n1=g.addNode(); |
| 178 | 178 |
Node n2=g.addNode(); |
| 179 | 179 |
|
| 180 | 180 |
InDegMap<Digraph> ind(g); |
| 181 | 181 |
|
| 182 | 182 |
g.addArc(n1,n2); |
| 183 | 183 |
|
| 184 | 184 |
typename Digraph::Snapshot snap(g); |
| 185 | 185 |
|
| 186 | 186 |
OutDegMap<Digraph> outd(g); |
| 187 | 187 |
|
| 188 | 188 |
check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value."); |
| 189 | 189 |
check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value."); |
| 190 | 190 |
|
| 191 | 191 |
g.addArc(n1,n2); |
| 192 | 192 |
g.addArc(n2,n1); |
| 193 | 193 |
|
| 194 | 194 |
check(ind[n1]==1 && ind[n2]==2, "Wrong InDegMap value."); |
| 195 | 195 |
check(outd[n1]==2 && outd[n2]==1, "Wrong OutDegMap value."); |
| 196 | 196 |
|
| 197 | 197 |
snap.restore(); |
| 198 | 198 |
|
| 199 | 199 |
check(ind[n1]==0 && ind[n2]==1, "Wrong InDegMap value."); |
| 200 | 200 |
check(outd[n1]==1 && outd[n2]==0, "Wrong OutDegMap value."); |
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
int main() {
|
| 204 | 204 |
// Checking ConArcIt, ConEdgeIt, ArcLookUp, AllArcLookUp, and DynArcLookUp |
| 205 | 205 |
checkFindArcs<ListDigraph>(); |
| 206 | 206 |
checkFindArcs<SmartDigraph>(); |
| 207 | 207 |
checkFindEdges<ListGraph>(); |
| 208 | 208 |
checkFindEdges<SmartGraph>(); |
| 209 | 209 |
|
| 210 | 210 |
// Checking In/OutDegMap (and Snapshot feature) |
| 211 | 211 |
checkDeg<ListDigraph>(); |
| 212 | 212 |
checkDeg<SmartDigraph>(); |
| 213 | 213 |
checkSnapDeg<ListDigraph>(); |
| 214 | 214 |
checkSnapDeg<SmartDigraph>(); |
| 215 | 215 |
|
| 216 | 216 |
return 0; |
| 217 | 217 |
} |
0 comments (0 inline)