1
21
2
87
3
3
7
88
30
33
323
245
3
2
180
105
14
13
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
namespace lemon { |
|
20 |
|
|
21 |
/** |
|
22 |
\page min_cost_flow Minimum Cost Flow Problem |
|
23 |
|
|
24 |
\section mcf_def Definition (GEQ form) |
|
25 |
|
|
26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
28 |
in a network with capacity constraints (lower and upper bounds) |
|
29 |
and arc costs. |
|
30 |
|
|
31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
|
32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
|
33 |
upper bounds for the flow values on the arcs, for which |
|
34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
|
36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
|
37 |
signed supply values of the nodes. |
|
38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
40 |
\f$-sup(u)\f$ demand. |
|
41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution |
|
42 |
of the following optimization problem. |
|
43 |
|
|
44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
46 |
sup(u) \quad \forall u\in V \f] |
|
47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
48 |
|
|
49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
50 |
zero or negative in order to have a feasible solution (since the sum |
|
51 |
of the expressions on the left-hand side of the inequalities is zero). |
|
52 |
It means that the total demand must be greater or equal to the total |
|
53 |
supply and all the supplies have to be carried out from the supply nodes, |
|
54 |
but there could be demands that are not satisfied. |
|
55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
56 |
constraints have to be satisfied with equality, i.e. all demands |
|
57 |
have to be satisfied and all supplies have to be used. |
|
58 |
|
|
59 |
|
|
60 |
\section mcf_algs Algorithms |
|
61 |
|
|
62 |
LEMON contains several algorithms for solving this problem, for more |
|
63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
|
64 |
|
|
65 |
A feasible solution for this problem can be found using \ref Circulation. |
|
66 |
|
|
67 |
|
|
68 |
\section mcf_dual Dual Solution |
|
69 |
|
|
70 |
The dual solution of the minimum cost flow problem is represented by |
|
71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
|
72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
|
73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
|
74 |
the following \e complementary \e slackness optimality conditions hold. |
|
75 |
|
|
76 |
- For all \f$uv\in A\f$ arcs: |
|
77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
80 |
- For all \f$u\in V\f$ nodes: |
|
81 |
- \f$\pi(u)<=0\f$; |
|
82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
83 |
then \f$\pi(u)=0\f$. |
|
84 |
|
|
85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
88 |
|
|
89 |
All algorithms provide dual solution (node potentials), as well, |
|
90 |
if an optimal flow is found. |
|
91 |
|
|
92 |
|
|
93 |
\section mcf_eq Equality Form |
|
94 |
|
|
95 |
The above \ref mcf_def "definition" is actually more general than the |
|
96 |
usual formulation of the minimum cost flow problem, in which strict |
|
97 |
equalities are required in the supply/demand contraints. |
|
98 |
|
|
99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
101 |
sup(u) \quad \forall u\in V \f] |
|
102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
103 |
|
|
104 |
However if the sum of the supply values is zero, then these two problems |
|
105 |
are equivalent. |
|
106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
|
107 |
form, so if you need the equality form, you have to ensure this additional |
|
108 |
contraint manually. |
|
109 |
|
|
110 |
|
|
111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
|
112 |
|
|
113 |
Another possible definition of the minimum cost flow problem is |
|
114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
|
115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
|
116 |
|
|
117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
119 |
sup(u) \quad \forall u\in V \f] |
|
120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
121 |
|
|
122 |
It means that the total demand must be less or equal to the |
|
123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
124 |
positive) and all the demands have to be satisfied, but there |
|
125 |
could be supplies that are not carried out from the supply |
|
126 |
nodes. |
|
127 |
The equality form is also a special case of this form, of course. |
|
128 |
|
|
129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
|
130 |
of the problem by reversing the direction of the arcs and taking the |
|
131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
|
132 |
\ref NegMap adaptors). |
|
133 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
134 |
for the sake of convenience. |
|
135 |
|
|
136 |
Note that the optimality conditions for this supply constraint type are |
|
137 |
slightly differ from the conditions that are discussed for the GEQ form, |
|
138 |
namely the potentials have to be non-negative instead of non-positive. |
|
139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
|
140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
|
141 |
node potentials the following conditions hold. |
|
142 |
|
|
143 |
- For all \f$uv\in A\f$ arcs: |
|
144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
147 |
- For all \f$u\in V\f$ nodes: |
|
148 |
- \f$\pi(u)>=0\f$; |
|
149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
150 |
then \f$\pi(u)=0\f$. |
|
151 |
|
|
152 |
*/ |
|
153 |
} |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/connectivity.h> |
|
20 |
#include <lemon/list_graph.h> |
|
21 |
#include <lemon/adaptors.h> |
|
22 |
|
|
23 |
#include "test_tools.h" |
|
24 |
|
|
25 |
using namespace lemon; |
|
26 |
|
|
27 |
|
|
28 |
int main() |
|
29 |
{ |
|
30 |
typedef ListDigraph Digraph; |
|
31 |
typedef Undirector<Digraph> Graph; |
|
32 |
|
|
33 |
{ |
|
34 |
Digraph d; |
|
35 |
Digraph::NodeMap<int> order(d); |
|
36 |
Graph g(d); |
|
37 |
|
|
38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
|
39 |
check(countStronglyConnectedComponents(d) == 0, |
|
40 |
"The empty digraph has 0 strongly connected component"); |
|
41 |
check(connected(g), "The empty graph is connected"); |
|
42 |
check(countConnectedComponents(g) == 0, |
|
43 |
"The empty graph has 0 connected component"); |
|
44 |
|
|
45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
|
46 |
check(countBiNodeConnectedComponents(g) == 0, |
|
47 |
"The empty graph has 0 bi-node-connected component"); |
|
48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
|
49 |
check(countBiEdgeConnectedComponents(g) == 0, |
|
50 |
"The empty graph has 0 bi-edge-connected component"); |
|
51 |
|
|
52 |
check(dag(d), "The empty digraph is DAG."); |
|
53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
|
54 |
check(loopFree(d), "The empty digraph is loop-free."); |
|
55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
|
56 |
check(simpleGraph(d), "The empty digraph is simple."); |
|
57 |
|
|
58 |
check(acyclic(g), "The empty graph is acyclic."); |
|
59 |
check(tree(g), "The empty graph is tree."); |
|
60 |
check(bipartite(g), "The empty graph is bipartite."); |
|
61 |
check(loopFree(g), "The empty graph is loop-free."); |
|
62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
|
63 |
check(simpleGraph(g), "The empty graph is simple."); |
|
64 |
} |
|
65 |
|
|
66 |
{ |
|
67 |
Digraph d; |
|
68 |
Digraph::NodeMap<int> order(d); |
|
69 |
Graph g(d); |
|
70 |
Digraph::Node n = d.addNode(); |
|
71 |
|
|
72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
|
73 |
check(countStronglyConnectedComponents(d) == 1, |
|
74 |
"This digraph has 1 strongly connected component"); |
|
75 |
check(connected(g), "This graph is connected"); |
|
76 |
check(countConnectedComponents(g) == 1, |
|
77 |
"This graph has 1 connected component"); |
|
78 |
|
|
79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
|
80 |
check(countBiNodeConnectedComponents(g) == 0, |
|
81 |
"This graph has 0 bi-node-connected component"); |
|
82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
|
83 |
check(countBiEdgeConnectedComponents(g) == 1, |
|
84 |
"This graph has 1 bi-edge-connected component"); |
|
85 |
|
|
86 |
check(dag(d), "This digraph is DAG."); |
|
87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
|
88 |
check(loopFree(d), "This digraph is loop-free."); |
|
89 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
90 |
check(simpleGraph(d), "This digraph is simple."); |
|
91 |
|
|
92 |
check(acyclic(g), "This graph is acyclic."); |
|
93 |
check(tree(g), "This graph is tree."); |
|
94 |
check(bipartite(g), "This graph is bipartite."); |
|
95 |
check(loopFree(g), "This graph is loop-free."); |
|
96 |
check(parallelFree(g), "This graph is parallel-free."); |
|
97 |
check(simpleGraph(g), "This graph is simple."); |
|
98 |
} |
|
99 |
|
|
100 |
{ |
|
101 |
Digraph d; |
|
102 |
Digraph::NodeMap<int> order(d); |
|
103 |
Graph g(d); |
|
104 |
|
|
105 |
Digraph::Node n1 = d.addNode(); |
|
106 |
Digraph::Node n2 = d.addNode(); |
|
107 |
Digraph::Node n3 = d.addNode(); |
|
108 |
Digraph::Node n4 = d.addNode(); |
|
109 |
Digraph::Node n5 = d.addNode(); |
|
110 |
Digraph::Node n6 = d.addNode(); |
|
111 |
|
|
112 |
d.addArc(n1, n3); |
|
113 |
d.addArc(n3, n2); |
|
114 |
d.addArc(n2, n1); |
|
115 |
d.addArc(n4, n2); |
|
116 |
d.addArc(n4, n3); |
|
117 |
d.addArc(n5, n6); |
|
118 |
d.addArc(n6, n5); |
|
119 |
|
|
120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
121 |
check(countStronglyConnectedComponents(d) == 3, |
|
122 |
"This digraph has 3 strongly connected components"); |
|
123 |
check(!connected(g), "This graph is not connected"); |
|
124 |
check(countConnectedComponents(g) == 2, |
|
125 |
"This graph has 2 connected components"); |
|
126 |
|
|
127 |
check(!dag(d), "This digraph is not DAG."); |
|
128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
|
129 |
check(loopFree(d), "This digraph is loop-free."); |
|
130 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
131 |
check(simpleGraph(d), "This digraph is simple."); |
|
132 |
|
|
133 |
check(!acyclic(g), "This graph is not acyclic."); |
|
134 |
check(!tree(g), "This graph is not tree."); |
|
135 |
check(!bipartite(g), "This graph is not bipartite."); |
|
136 |
check(loopFree(g), "This graph is loop-free."); |
|
137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
|
138 |
check(!simpleGraph(g), "This graph is not simple."); |
|
139 |
|
|
140 |
d.addArc(n3, n3); |
|
141 |
|
|
142 |
check(!loopFree(d), "This digraph is not loop-free."); |
|
143 |
check(!loopFree(g), "This graph is not loop-free."); |
|
144 |
check(!simpleGraph(d), "This digraph is not simple."); |
|
145 |
|
|
146 |
d.addArc(n3, n2); |
|
147 |
|
|
148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
|
149 |
} |
|
150 |
|
|
151 |
{ |
|
152 |
Digraph d; |
|
153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
|
154 |
Graph g(d); |
|
155 |
|
|
156 |
Digraph::Node n1 = d.addNode(); |
|
157 |
Digraph::Node n2 = d.addNode(); |
|
158 |
Digraph::Node n3 = d.addNode(); |
|
159 |
Digraph::Node n4 = d.addNode(); |
|
160 |
Digraph::Node n5 = d.addNode(); |
|
161 |
Digraph::Node n6 = d.addNode(); |
|
162 |
Digraph::Node n7 = d.addNode(); |
|
163 |
Digraph::Node n8 = d.addNode(); |
|
164 |
|
|
165 |
d.addArc(n1, n2); |
|
166 |
d.addArc(n5, n1); |
|
167 |
d.addArc(n2, n8); |
|
168 |
d.addArc(n8, n5); |
|
169 |
d.addArc(n6, n4); |
|
170 |
d.addArc(n4, n6); |
|
171 |
d.addArc(n2, n5); |
|
172 |
d.addArc(n1, n8); |
|
173 |
d.addArc(n6, n7); |
|
174 |
d.addArc(n7, n6); |
|
175 |
|
|
176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
177 |
check(countStronglyConnectedComponents(d) == 3, |
|
178 |
"This digraph has 3 strongly connected components"); |
|
179 |
Digraph::NodeMap<int> scomp1(d); |
|
180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
|
181 |
"This digraph has 3 strongly connected components"); |
|
182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
|
183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
|
184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
|
185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
|
186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
|
187 |
"Wrong stronglyConnectedComponents()"); |
|
188 |
Digraph::ArcMap<bool> scut1(d, false); |
|
189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
|
190 |
"This digraph has 0 strongly connected cut arc."); |
|
191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
|
193 |
} |
|
194 |
|
|
195 |
check(!connected(g), "This graph is not connected"); |
|
196 |
check(countConnectedComponents(g) == 3, |
|
197 |
"This graph has 3 connected components"); |
|
198 |
Graph::NodeMap<int> comp(g); |
|
199 |
check(connectedComponents(g, comp) == 3, |
|
200 |
"This graph has 3 connected components"); |
|
201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
|
202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
|
203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
|
204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
|
205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
|
206 |
"Wrong connectedComponents()"); |
|
207 |
|
|
208 |
cutarcs[d.addArc(n3, n1)] = true; |
|
209 |
cutarcs[d.addArc(n3, n5)] = true; |
|
210 |
cutarcs[d.addArc(n3, n8)] = true; |
|
211 |
cutarcs[d.addArc(n8, n6)] = true; |
|
212 |
cutarcs[d.addArc(n8, n7)] = true; |
|
213 |
|
|
214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
215 |
check(countStronglyConnectedComponents(d) == 3, |
|
216 |
"This digraph has 3 strongly connected components"); |
|
217 |
Digraph::NodeMap<int> scomp2(d); |
|
218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
|
219 |
"This digraph has 3 strongly connected components"); |
|
220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
|
221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
|
222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
|
223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
|
224 |
"Wrong stronglyConnectedComponents()"); |
|
225 |
Digraph::ArcMap<bool> scut2(d, false); |
|
226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
|
227 |
"This digraph has 5 strongly connected cut arcs."); |
|
228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
|
230 |
} |
|
231 |
} |
|
232 |
|
|
233 |
{ |
|
234 |
// DAG example for topological sort from the book New Algorithms |
|
235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
|
236 |
Digraph d; |
|
237 |
Digraph::NodeMap<int> order(d); |
|
238 |
|
|
239 |
Digraph::Node belt = d.addNode(); |
|
240 |
Digraph::Node trousers = d.addNode(); |
|
241 |
Digraph::Node necktie = d.addNode(); |
|
242 |
Digraph::Node coat = d.addNode(); |
|
243 |
Digraph::Node socks = d.addNode(); |
|
244 |
Digraph::Node shirt = d.addNode(); |
|
245 |
Digraph::Node shoe = d.addNode(); |
|
246 |
Digraph::Node watch = d.addNode(); |
|
247 |
Digraph::Node pants = d.addNode(); |
|
248 |
|
|
249 |
d.addArc(socks, shoe); |
|
250 |
d.addArc(pants, shoe); |
|
251 |
d.addArc(pants, trousers); |
|
252 |
d.addArc(trousers, shoe); |
|
253 |
d.addArc(trousers, belt); |
|
254 |
d.addArc(belt, coat); |
|
255 |
d.addArc(shirt, belt); |
|
256 |
d.addArc(shirt, necktie); |
|
257 |
d.addArc(necktie, coat); |
|
258 |
|
|
259 |
check(dag(d), "This digraph is DAG."); |
|
260 |
topologicalSort(d, order); |
|
261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
262 |
check(order[d.source(a)] < order[d.target(a)], |
|
263 |
"Wrong topologicalSort()"); |
|
264 |
} |
|
265 |
} |
|
266 |
|
|
267 |
{ |
|
268 |
ListGraph g; |
|
269 |
ListGraph::NodeMap<bool> map(g); |
|
270 |
|
|
271 |
ListGraph::Node n1 = g.addNode(); |
|
272 |
ListGraph::Node n2 = g.addNode(); |
|
273 |
ListGraph::Node n3 = g.addNode(); |
|
274 |
ListGraph::Node n4 = g.addNode(); |
|
275 |
ListGraph::Node n5 = g.addNode(); |
|
276 |
ListGraph::Node n6 = g.addNode(); |
|
277 |
ListGraph::Node n7 = g.addNode(); |
|
278 |
|
|
279 |
g.addEdge(n1, n3); |
|
280 |
g.addEdge(n1, n4); |
|
281 |
g.addEdge(n2, n5); |
|
282 |
g.addEdge(n3, n6); |
|
283 |
g.addEdge(n4, n6); |
|
284 |
g.addEdge(n4, n7); |
|
285 |
g.addEdge(n5, n7); |
|
286 |
|
|
287 |
check(bipartite(g), "This graph is bipartite"); |
|
288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
|
289 |
|
|
290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
|
291 |
"Wrong bipartitePartitions()"); |
|
292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
|
293 |
"Wrong bipartitePartitions()"); |
|
294 |
} |
|
295 |
|
|
296 |
return 0; |
|
297 |
} |
1 | 1 |
CMAKE_MINIMUM_REQUIRED(VERSION 2.6) |
2 | 2 |
|
3 | 3 |
IF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
4 | 4 |
INCLUDE(${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
5 | 5 |
ELSE(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
6 | 6 |
SET(PROJECT_NAME "LEMON") |
7 | 7 |
SET(PROJECT_VERSION "hg-tip" CACHE STRING "LEMON version string.") |
8 | 8 |
ENDIF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
9 | 9 |
|
10 | 10 |
PROJECT(${PROJECT_NAME}) |
11 | 11 |
|
12 | 12 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) |
13 | 13 |
|
14 | 14 |
INCLUDE(FindDoxygen) |
15 | 15 |
INCLUDE(FindGhostscript) |
16 | 16 |
FIND_PACKAGE(GLPK 4.33) |
17 | 17 |
FIND_PACKAGE(CPLEX) |
18 | 18 |
FIND_PACKAGE(COIN) |
19 | 19 |
|
20 | 20 |
IF(MSVC) |
21 | 21 |
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996") |
22 | 22 |
# Suppressed warnings: |
23 | 23 |
# C4250: 'class1' : inherits 'class2::member' via dominance |
24 | 24 |
# C4355: 'this' : used in base member initializer list |
25 | 25 |
# C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
26 | 26 |
# C4996: 'function': was declared deprecated |
27 | 27 |
ENDIF(MSVC) |
28 | 28 |
|
29 | 29 |
INCLUDE(CheckTypeSize) |
30 | 30 |
CHECK_TYPE_SIZE("long long" LEMON_LONG_LONG) |
31 | 31 |
|
32 | 32 |
ENABLE_TESTING() |
33 | 33 |
|
34 | 34 |
ADD_SUBDIRECTORY(lemon) |
35 | 35 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
36 | 36 |
ADD_SUBDIRECTORY(demo) |
37 | 37 |
ADD_SUBDIRECTORY(tools) |
38 | 38 |
ADD_SUBDIRECTORY(doc) |
39 | 39 |
ADD_SUBDIRECTORY(test) |
40 | 40 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
41 | 41 |
|
42 | 42 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
43 | 43 |
IF(WIN32) |
44 | 44 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME}) |
45 | 45 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
46 | 46 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
47 |
"LEMON - Library |
|
47 |
"LEMON - Library for Efficient Modeling and Optimization in Networks") |
|
48 | 48 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE") |
49 | 49 |
|
50 | 50 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION}) |
51 | 51 |
|
52 | 52 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
53 | 53 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
54 | 54 |
SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY |
55 | 55 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
56 | 56 |
|
57 | 57 |
SET(CPACK_COMPONENTS_ALL headers library html_documentation bin) |
58 | 58 |
|
59 | 59 |
SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers") |
60 | 60 |
SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library") |
61 | 61 |
SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities") |
62 | 62 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation") |
63 | 63 |
|
64 | 64 |
SET(CPACK_COMPONENT_HEADERS_DESCRIPTION |
65 | 65 |
"C++ header files") |
66 | 66 |
SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION |
67 | 67 |
"DLL and import library") |
68 | 68 |
SET(CPACK_COMPONENT_BIN_DESCRIPTION |
69 | 69 |
"Command line utilities") |
70 | 70 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION |
71 | 71 |
"Doxygen generated documentation") |
72 | 72 |
|
73 | 73 |
SET(CPACK_COMPONENT_HEADERS_DEPENDS library) |
74 | 74 |
|
75 | 75 |
SET(CPACK_COMPONENT_HEADERS_GROUP "Development") |
76 | 76 |
SET(CPACK_COMPONENT_LIBRARY_GROUP "Development") |
77 | 77 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation") |
78 | 78 |
|
79 | 79 |
SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION |
80 | 80 |
"Components needed to develop software using LEMON") |
81 | 81 |
SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION |
82 | 82 |
"Documentation of LEMON") |
83 | 83 |
|
84 | 84 |
SET(CPACK_ALL_INSTALL_TYPES Full Developer) |
85 | 85 |
|
86 | 86 |
SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full) |
87 | 87 |
SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full) |
88 | 88 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full) |
89 | 89 |
|
90 | 90 |
SET(CPACK_GENERATOR "NSIS") |
91 | 91 |
SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico") |
92 | 92 |
SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico") |
93 | 93 |
#SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp") |
94 | 94 |
SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico") |
95 | 95 |
SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}") |
1 |
2009-05-13 Version 1.1 released |
|
2 |
|
|
3 |
This is the second stable release of the 1.x series. It |
|
4 |
features a better coverage of the tools available in the 0.x |
|
5 |
series, a thoroughly reworked LP/MIP interface plus various |
|
6 |
improvements in the existing tools. |
|
7 |
|
|
8 |
* Much improved M$ Windows support |
|
9 |
* Various improvements in the CMAKE build system |
|
10 |
* Compilation warnings are fixed/suppressed |
|
11 |
* Support IBM xlC compiler |
|
12 |
* New algorithms |
|
13 |
* Connectivity related algorithms (#61) |
|
14 |
* Euler walks (#65) |
|
15 |
* Preflow push-relabel max. flow algorithm (#176) |
|
16 |
* Circulation algorithm (push-relabel based) (#175) |
|
17 |
* Suurballe algorithm (#47) |
|
18 |
* Gomory-Hu algorithm (#66) |
|
19 |
* Hao-Orlin algorithm (#58) |
|
20 |
* Edmond's maximum cardinality and weighted matching algorithms |
|
21 |
in general graphs (#48,#265) |
|
22 |
* Minimum cost arborescence/branching (#60) |
|
23 |
* Network Simplex min. cost flow algorithm (#234) |
|
24 |
* New data structures |
|
25 |
* Full graph structure (#57) |
|
26 |
* Grid graph structure (#57) |
|
27 |
* Hypercube graph structure (#57) |
|
28 |
* Graph adaptors (#67) |
|
29 |
* ArcSet and EdgeSet classes (#67) |
|
30 |
* Elevator class (#174) |
|
31 |
* Other new tools |
|
32 |
* LP/MIP interface (#44) |
|
33 |
* Support for GLPK, CPLEX, Soplex, COIN-OR CLP and CBC |
|
34 |
* Reader for the Nauty file format (#55) |
|
35 |
* DIMACS readers (#167) |
|
36 |
* Radix sort algorithms (#72) |
|
37 |
* RangeIdMap and CrossRefMap (#160) |
|
38 |
* New command line tools |
|
39 |
* DIMACS to LGF converter (#182) |
|
40 |
* lgf-gen - a graph generator (#45) |
|
41 |
* DIMACS solver utility (#226) |
|
42 |
* Other code improvements |
|
43 |
* Lognormal distribution added to Random (#102) |
|
44 |
* Better (i.e. O(1) time) item counting in SmartGraph (#3) |
|
45 |
* The standard maps of graphs are guaranteed to be |
|
46 |
reference maps (#190) |
|
47 |
* Miscellaneous |
|
48 |
* Various doc improvements |
|
49 |
* Improved 0.x -> 1.x converter script |
|
50 |
|
|
51 |
* Several bugfixes (compared to release 1.0): |
|
52 |
#170: Bugfix SmartDigraph::split() |
|
53 |
#171: Bugfix in SmartGraph::restoreSnapshot() |
|
54 |
#172: Extended test cases for graphs and digraphs |
|
55 |
#173: Bugfix in Random |
|
56 |
* operator()s always return a double now |
|
57 |
* the faulty real<Num>(Num) and real<Num>(Num,Num) |
|
58 |
have been removed |
|
59 |
#187: Remove DijkstraWidestPathOperationTraits |
|
60 |
#61: Bugfix in DfsVisit |
|
61 |
#193: Bugfix in GraphReader::skipSection() |
|
62 |
#195: Bugfix in ConEdgeIt() |
|
63 |
#197: Bugfix in heap unionfind |
|
64 |
* This bug affects Edmond's general matching algorithms |
|
65 |
#207: Fix 'make install' without 'make html' using CMAKE |
|
66 |
#208: Suppress or fix VS2008 compilation warnings |
|
67 |
----: Update the LEMON icon |
|
68 |
----: Enable the component-based installer |
|
69 |
(in installers made by CPACK) |
|
70 |
----: Set the proper version for CMAKE in the tarballs |
|
71 |
(made by autotools) |
|
72 |
----: Minor clarification in the LICENSE file |
|
73 |
----: Add missing unistd.h include to time_measure.h |
|
74 |
#204: Compilation bug fixed in graph_to_eps.h with VS2005 |
|
75 |
#214,#215: windows.h should never be included by lemon headers |
|
76 |
#230: Build systems check the availability of 'long long' type |
|
77 |
#229: Default implementation of Tolerance<> is used for integer types |
|
78 |
#211,#212: Various fixes for compiling on AIX |
|
79 |
----: Improvements in CMAKE config |
|
80 |
- docs is installed in share/doc/ |
|
81 |
- detects newer versions of Ghostscript |
|
82 |
#239: Fix missing 'inline' specifier in time_measure.h |
|
83 |
#274,#280: Install lemon/config.h |
|
84 |
#275: Prefix macro names with LEMON_ in lemon/config.h |
|
85 |
----: Small script for making the release tarballs added |
|
86 |
----: Minor improvement in unify-sources.sh (a76f55d7d397) |
|
87 |
|
|
1 | 88 |
2009-03-27 LEMON joins to the COIN-OR initiative |
2 | 89 |
|
3 | 90 |
COIN-OR (Computational Infrastructure for Operations Research, |
4 | 91 |
http://www.coin-or.org) project is an initiative to spur the |
5 | 92 |
development of open-source software for the operations research |
6 | 93 |
community. |
7 | 94 |
|
8 | 95 |
2008-10-13 Version 1.0 released |
9 | 96 |
|
10 | 97 |
This is the first stable release of LEMON. Compared to the 0.x |
11 | 98 |
release series, it features a considerably smaller but more |
12 | 99 |
matured set of tools. The API has also completely revised and |
13 | 100 |
changed in several places. |
14 | 101 |
|
15 | 102 |
* The major name changes compared to the 0.x series (see the |
16 | 103 |
Migration Guide in the doc for more details) |
17 | 104 |
* Graph -> Digraph, UGraph -> Graph |
18 | 105 |
* Edge -> Arc, UEdge -> Edge |
19 | 106 |
* source(UEdge)/target(UEdge) -> u(Edge)/v(Edge) |
20 | 107 |
* Other improvements |
21 | 108 |
* Better documentation |
22 | 109 |
* Reviewed and cleaned up codebase |
23 | 110 |
* CMake based build system (along with the autotools based one) |
24 | 111 |
* Contents of the library (ported from 0.x) |
25 | 112 |
* Algorithms |
26 | 113 |
* breadth-first search (bfs.h) |
27 | 114 |
* depth-first search (dfs.h) |
28 | 115 |
* Dijkstra's algorithm (dijkstra.h) |
29 | 116 |
* Kruskal's algorithm (kruskal.h) |
30 | 117 |
* Data structures |
31 | 118 |
* graph data structures (list_graph.h, smart_graph.h) |
32 | 119 |
* path data structures (path.h) |
33 | 120 |
* binary heap data structure (bin_heap.h) |
34 | 121 |
* union-find data structures (unionfind.h) |
35 | 122 |
* miscellaneous property maps (maps.h) |
36 | 123 |
* two dimensional vector and bounding box (dim2.h) |
37 | 124 |
* Concepts |
38 | 125 |
* graph structure concepts (concepts/digraph.h, concepts/graph.h, |
39 | 126 |
concepts/graph_components.h) |
40 | 127 |
* concepts for other structures (concepts/heap.h, concepts/maps.h, |
41 | 128 |
concepts/path.h) |
42 | 129 |
* Tools |
43 | 130 |
* Mersenne twister random number generator (random.h) |
44 | 131 |
* tools for measuring cpu and wall clock time (time_measure.h) |
45 | 132 |
* tools for counting steps and events (counter.h) |
46 | 133 |
* tool for parsing command line arguments (arg_parser.h) |
47 | 134 |
* tool for visualizing graphs (graph_to_eps.h) |
48 | 135 |
* tools for reading and writing data in LEMON Graph Format |
1 |
================================================================== |
|
2 |
LEMON - a Library of Efficient Models and Optimization in Networks |
|
3 |
================================================================== |
|
1 |
===================================================================== |
|
2 |
LEMON - a Library for Efficient Modeling and Optimization in Networks |
|
3 |
===================================================================== |
|
4 | 4 |
|
5 | 5 |
LEMON is an open source library written in C++. It provides |
6 | 6 |
easy-to-use implementations of common data structures and algorithms |
7 | 7 |
in the area of optimization and helps implementing new ones. The main |
8 | 8 |
focus is on graphs and graph algorithms, thus it is especially |
9 | 9 |
suitable for solving design and optimization problems of |
10 | 10 |
telecommunication networks. To achieve wide usability its data |
11 | 11 |
structures and algorithms provide generic interfaces. |
12 | 12 |
|
13 | 13 |
Contents |
14 | 14 |
======== |
15 | 15 |
|
16 | 16 |
LICENSE |
17 | 17 |
|
18 | 18 |
Copying, distribution and modification conditions and terms. |
19 | 19 |
|
20 | 20 |
INSTALL |
21 | 21 |
|
22 | 22 |
General building and installation instructions. |
23 | 23 |
|
24 | 24 |
lemon/ |
25 | 25 |
|
26 | 26 |
Source code of LEMON library. |
27 | 27 |
|
28 | 28 |
doc/ |
29 | 29 |
|
30 | 30 |
Documentation of LEMON. The starting page is doc/html/index.html. |
31 | 31 |
|
32 | 32 |
demo/ |
33 | 33 |
|
34 | 34 |
Some example programs to make you easier to get familiar with LEMON. |
35 | 35 |
|
36 | 36 |
test/ |
37 | 37 |
|
38 | 38 |
Programs to check the integrity and correctness of LEMON. |
39 | 39 |
|
40 | 40 |
tools/ |
41 | 41 |
|
42 | 42 |
Various utilities related to LEMON. |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
doc/Doxyfile.in \ |
3 | 3 |
doc/DoxygenLayout.xml \ |
4 | 4 |
doc/coding_style.dox \ |
5 | 5 |
doc/dirs.dox \ |
6 | 6 |
doc/groups.dox \ |
7 | 7 |
doc/lgf.dox \ |
8 | 8 |
doc/license.dox \ |
9 | 9 |
doc/mainpage.dox \ |
10 | 10 |
doc/migration.dox \ |
11 |
doc/min_cost_flow.dox \ |
|
11 | 12 |
doc/named-param.dox \ |
12 | 13 |
doc/namespaces.dox \ |
13 | 14 |
doc/html \ |
14 | 15 |
doc/CMakeLists.txt |
15 | 16 |
|
16 | 17 |
DOC_EPS_IMAGES18 = \ |
17 | 18 |
grid_graph.eps \ |
18 | 19 |
nodeshape_0.eps \ |
19 | 20 |
nodeshape_1.eps \ |
20 | 21 |
nodeshape_2.eps \ |
21 | 22 |
nodeshape_3.eps \ |
22 | 23 |
nodeshape_4.eps |
23 | 24 |
|
24 | 25 |
DOC_EPS_IMAGES27 = \ |
25 | 26 |
bipartite_matching.eps \ |
26 | 27 |
bipartite_partitions.eps \ |
27 | 28 |
connected_components.eps \ |
28 | 29 |
edge_biconnected_components.eps \ |
29 | 30 |
node_biconnected_components.eps \ |
30 | 31 |
strongly_connected_components.eps |
31 | 32 |
|
32 | 33 |
DOC_EPS_IMAGES = \ |
33 | 34 |
$(DOC_EPS_IMAGES18) \ |
34 | 35 |
$(DOC_EPS_IMAGES27) |
35 | 36 |
|
36 | 37 |
DOC_PNG_IMAGES = \ |
37 | 38 |
$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png) |
38 | 39 |
|
39 | 40 |
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%) |
40 | 41 |
|
41 | 42 |
doc/html: |
42 | 43 |
$(MAKE) $(AM_MAKEFLAGS) html |
43 | 44 |
|
44 | 45 |
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 |
45 | 46 |
|
46 | 47 |
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
47 | 48 |
-mkdir doc/gen-images |
48 | 49 |
if test ${gs_found} = yes; then \ |
49 | 50 |
$(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \ |
50 | 51 |
else \ |
51 | 52 |
echo; \ |
52 | 53 |
echo "Ghostscript not found."; \ |
53 | 54 |
echo; \ |
54 | 55 |
exit 1; \ |
55 | 56 |
fi |
56 | 57 |
|
57 | 58 |
$(DOC_EPS_IMAGES27:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
58 | 59 |
-mkdir doc/gen-images |
... | ... |
@@ -93,106 +93,96 @@ |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
|
142 |
@ingroup graphs |
|
143 |
\brief Graph types between real graphs and graph adaptors. |
|
144 |
|
|
145 |
This group contains some graph types between real graphs and graph adaptors. |
|
146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
|
147 |
On the other hand they are not light-weight structures as the adaptors. |
|
148 |
*/ |
|
149 |
|
|
150 |
/** |
|
151 | 141 |
@defgroup maps Maps |
152 | 142 |
@ingroup datas |
153 | 143 |
\brief Map structures implemented in LEMON. |
154 | 144 |
|
155 | 145 |
This group contains the map structures implemented in LEMON. |
156 | 146 |
|
157 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 148 |
new maps from existing ones. |
159 | 149 |
|
160 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 151 |
*/ |
162 | 152 |
|
163 | 153 |
/** |
164 | 154 |
@defgroup graph_maps Graph Maps |
165 | 155 |
@ingroup maps |
166 | 156 |
\brief Special graph-related maps. |
167 | 157 |
|
168 | 158 |
This group contains maps that are specifically designed to assign |
169 | 159 |
values to the nodes and arcs/edges of graphs. |
170 | 160 |
|
171 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 163 |
*/ |
174 | 164 |
|
175 | 165 |
/** |
176 | 166 |
\defgroup map_adaptors Map Adaptors |
177 | 167 |
\ingroup maps |
178 | 168 |
\brief Tools to create new maps from existing ones |
179 | 169 |
|
180 | 170 |
This group contains map adaptors that are used to create "implicit" |
181 | 171 |
maps from other maps. |
182 | 172 |
|
183 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 174 |
They can make arithmetic and logical operations between one or two maps |
185 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 177 |
|
188 | 178 |
The typical usage of this classes is passing implicit maps to |
189 | 179 |
algorithms. If a function type algorithm is called then the function |
190 | 180 |
type map adaptors can be used comfortable. For example let's see the |
191 | 181 |
usage of map adaptors with the \c graphToEps() function. |
192 | 182 |
\code |
193 | 183 |
Color nodeColor(int deg) { |
194 | 184 |
if (deg >= 2) { |
195 | 185 |
return Color(0.5, 0.0, 0.5); |
196 | 186 |
} else if (deg == 1) { |
197 | 187 |
return Color(1.0, 0.5, 1.0); |
198 | 188 |
} else { |
... | ... |
@@ -270,264 +260,193 @@ |
270 | 260 |
*/ |
271 | 261 |
|
272 | 262 |
/** |
273 | 263 |
@defgroup search Graph Search |
274 | 264 |
@ingroup algs |
275 | 265 |
\brief Common graph search algorithms. |
276 | 266 |
|
277 | 267 |
This group contains the common graph search algorithms, namely |
278 | 268 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
279 | 269 |
*/ |
280 | 270 |
|
281 | 271 |
/** |
282 | 272 |
@defgroup shortest_path Shortest Path Algorithms |
283 | 273 |
@ingroup algs |
284 | 274 |
\brief Algorithms for finding shortest paths. |
285 | 275 |
|
286 | 276 |
This group contains the algorithms for finding shortest paths in digraphs. |
287 | 277 |
|
288 | 278 |
- \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a |
289 | 279 |
source node when all arc lengths are non-negative. |
290 | 280 |
- \ref Suurballe A successive shortest path algorithm for finding |
291 | 281 |
arc-disjoint paths between two nodes having minimum total length. |
292 | 282 |
*/ |
293 | 283 |
|
294 | 284 |
/** |
295 | 285 |
@defgroup max_flow Maximum Flow Algorithms |
296 | 286 |
@ingroup algs |
297 | 287 |
\brief Algorithms for finding maximum flows. |
298 | 288 |
|
299 | 289 |
This group contains the algorithms for finding maximum flows and |
300 | 290 |
feasible circulations. |
301 | 291 |
|
302 | 292 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
303 | 293 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
304 | 294 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
305 | 295 |
\f$s, t \in V\f$ source and target nodes. |
306 | 296 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
307 | 297 |
following optimization problem. |
308 | 298 |
|
309 | 299 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
310 | 300 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
311 | 301 |
\quad \forall u\in V\setminus\{s,t\} \f] |
312 | 302 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
313 | 303 |
|
314 | 304 |
\ref Preflow implements the preflow push-relabel algorithm of Goldberg and |
315 | 305 |
Tarjan for solving this problem. It also provides functions to query the |
316 | 306 |
minimum cut, which is the dual problem of maximum flow. |
317 | 307 |
|
308 |
|
|
318 | 309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
319 | 310 |
for finding feasible circulations, which is a somewhat different problem, |
320 | 311 |
but it is strongly related to maximum flow. |
321 | 312 |
For more information, see \ref Circulation. |
322 | 313 |
*/ |
323 | 314 |
|
324 | 315 |
/** |
325 |
@defgroup |
|
316 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
|
326 | 317 |
@ingroup algs |
327 | 318 |
|
328 | 319 |
\brief Algorithms for finding minimum cost flows and circulations. |
329 | 320 |
|
330 | 321 |
This group contains the algorithms for finding minimum cost flows and |
331 |
circulations. |
|
332 |
|
|
333 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
334 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
335 |
in a network with capacity constraints (lower and upper bounds) |
|
336 |
and arc costs. |
|
337 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
338 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
339 |
upper bounds for the flow values on the arcs, for which |
|
340 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
341 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
342 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
343 |
signed supply values of the nodes. |
|
344 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
345 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
346 |
\f$-sup(u)\f$ demand. |
|
347 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
348 |
of the following optimization problem. |
|
349 |
|
|
350 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
351 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
352 |
sup(u) \quad \forall u\in V \f] |
|
353 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
354 |
|
|
355 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
356 |
zero or negative in order to have a feasible solution (since the sum |
|
357 |
of the expressions on the left-hand side of the inequalities is zero). |
|
358 |
It means that the total demand must be greater or equal to the total |
|
359 |
supply and all the supplies have to be carried out from the supply nodes, |
|
360 |
but there could be demands that are not satisfied. |
|
361 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
362 |
constraints have to be satisfied with equality, i.e. all demands |
|
363 |
have to be satisfied and all supplies have to be used. |
|
364 |
|
|
365 |
If you need the opposite inequalities in the supply/demand constraints |
|
366 |
(i.e. the total demand is less than the total supply and all the demands |
|
367 |
have to be satisfied while there could be supplies that are not used), |
|
368 |
then you could easily transform the problem to the above form by reversing |
|
369 |
the direction of the arcs and taking the negative of the supply values |
|
370 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
371 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
372 |
for the sake of convenience. |
|
373 |
|
|
374 |
A feasible solution for this problem can be found using \ref Circulation. |
|
375 |
|
|
376 |
Note that the above formulation is actually more general than the usual |
|
377 |
definition of the minimum cost flow problem, in which strict equalities |
|
378 |
are required in the supply/demand contraints, i.e. |
|
379 |
|
|
380 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
381 |
sup(u) \quad \forall u\in V. \f] |
|
382 |
|
|
383 |
However if the sum of the supply values is zero, then these two problems |
|
384 |
are equivalent. So if you need the equality form, you have to ensure this |
|
385 |
additional contraint for the algorithms. |
|
386 |
|
|
387 |
The dual solution of the minimum cost flow problem is represented by node |
|
388 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
389 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
390 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
391 |
node potentials the following \e complementary \e slackness optimality |
|
392 |
conditions hold. |
|
393 |
|
|
394 |
- For all \f$uv\in A\f$ arcs: |
|
395 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
396 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
397 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
398 |
- For all \f$u\in V\f$ nodes: |
|
399 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
400 |
then \f$\pi(u)=0\f$. |
|
401 |
|
|
402 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
403 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
404 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
322 |
circulations. For more information about this problem and its dual |
|
323 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
405 | 324 |
|
406 | 325 |
\ref NetworkSimplex is an efficient implementation of the primal Network |
407 | 326 |
Simplex algorithm for finding minimum cost flows. It also provides dual |
408 | 327 |
solution (node potentials), if an optimal flow is found. |
409 | 328 |
*/ |
410 | 329 |
|
411 | 330 |
/** |
412 | 331 |
@defgroup min_cut Minimum Cut Algorithms |
413 | 332 |
@ingroup algs |
414 | 333 |
|
415 | 334 |
\brief Algorithms for finding minimum cut in graphs. |
416 | 335 |
|
417 | 336 |
This group contains the algorithms for finding minimum cut in graphs. |
418 | 337 |
|
419 | 338 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
420 | 339 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
421 | 340 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
422 | 341 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
423 | 342 |
cut is the \f$X\f$ solution of the next optimization problem: |
424 | 343 |
|
425 | 344 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
426 | 345 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
427 | 346 |
|
428 | 347 |
LEMON contains several algorithms related to minimum cut problems: |
429 | 348 |
|
430 | 349 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
431 | 350 |
in directed graphs. |
432 | 351 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
433 | 352 |
all-pairs minimum cut in undirected graphs. |
434 | 353 |
|
435 | 354 |
If you want to find minimum cut just between two distinict nodes, |
436 | 355 |
see the \ref max_flow "maximum flow problem". |
437 | 356 |
*/ |
438 | 357 |
|
439 | 358 |
/** |
440 | 359 |
@defgroup graph_properties Connectivity and Other Graph Properties |
441 | 360 |
@ingroup algs |
442 | 361 |
\brief Algorithms for discovering the graph properties |
443 | 362 |
|
444 | 363 |
This group contains the algorithms for discovering the graph properties |
445 | 364 |
like connectivity, bipartiteness, euler property, simplicity etc. |
446 | 365 |
|
447 | 366 |
\image html edge_biconnected_components.png |
448 | 367 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
449 | 368 |
*/ |
450 | 369 |
|
451 | 370 |
/** |
452 | 371 |
@defgroup matching Matching Algorithms |
453 | 372 |
@ingroup algs |
454 | 373 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
455 | 374 |
|
456 | 375 |
This group contains the algorithms for calculating matchings in graphs. |
457 | 376 |
The general matching problem is finding a subset of the edges for which |
458 | 377 |
each node has at most one incident edge. |
459 | 378 |
|
460 | 379 |
There are several different algorithms for calculate matchings in |
461 | 380 |
graphs. The goal of the matching optimization |
462 | 381 |
can be finding maximum cardinality, maximum weight or minimum cost |
463 | 382 |
matching. The search can be constrained to find perfect or |
464 | 383 |
maximum cardinality matching. |
465 | 384 |
|
466 | 385 |
The matching algorithms implemented in LEMON: |
467 | 386 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
468 | 387 |
maximum cardinality matching in general graphs. |
469 | 388 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
470 | 389 |
maximum weighted matching in general graphs. |
471 | 390 |
- \ref MaxWeightedPerfectMatching |
472 | 391 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
473 | 392 |
perfect matching in general graphs. |
474 | 393 |
|
475 | 394 |
\image html bipartite_matching.png |
476 | 395 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
477 | 396 |
*/ |
478 | 397 |
|
479 | 398 |
/** |
480 | 399 |
@defgroup spantree Minimum Spanning Tree Algorithms |
481 | 400 |
@ingroup algs |
482 |
\brief Algorithms for finding |
|
401 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
483 | 402 |
|
484 |
This group contains the algorithms for finding a minimum cost spanning |
|
485 |
tree in a graph. |
|
403 |
This group contains the algorithms for finding minimum cost spanning |
|
404 |
trees and arborescences. |
|
486 | 405 |
*/ |
487 | 406 |
|
488 | 407 |
/** |
489 | 408 |
@defgroup auxalg Auxiliary Algorithms |
490 | 409 |
@ingroup algs |
491 | 410 |
\brief Auxiliary algorithms implemented in LEMON. |
492 | 411 |
|
493 | 412 |
This group contains some algorithms implemented in LEMON |
494 | 413 |
in order to make it easier to implement complex algorithms. |
495 | 414 |
*/ |
496 | 415 |
|
497 | 416 |
/** |
498 | 417 |
@defgroup gen_opt_group General Optimization Tools |
499 | 418 |
\brief This group contains some general optimization frameworks |
500 | 419 |
implemented in LEMON. |
501 | 420 |
|
502 | 421 |
This group contains some general optimization frameworks |
503 | 422 |
implemented in LEMON. |
504 | 423 |
*/ |
505 | 424 |
|
506 | 425 |
/** |
507 | 426 |
@defgroup lp_group Lp and Mip Solvers |
508 | 427 |
@ingroup gen_opt_group |
509 | 428 |
\brief Lp and Mip solver interfaces for LEMON. |
510 | 429 |
|
511 | 430 |
This group contains Lp and Mip solver interfaces for LEMON. The |
512 | 431 |
various LP solvers could be used in the same manner with this |
513 | 432 |
interface. |
514 | 433 |
*/ |
515 | 434 |
|
516 | 435 |
/** |
517 | 436 |
@defgroup utils Tools and Utilities |
518 | 437 |
\brief Tools and utilities for programming in LEMON |
519 | 438 |
|
520 | 439 |
Tools and utilities for programming in LEMON. |
521 | 440 |
*/ |
522 | 441 |
|
523 | 442 |
/** |
524 | 443 |
@defgroup gutils Basic Graph Utilities |
525 | 444 |
@ingroup utils |
526 | 445 |
\brief Simple basic graph utilities. |
527 | 446 |
|
528 | 447 |
This group contains some simple basic graph utilities. |
529 | 448 |
*/ |
530 | 449 |
|
531 | 450 |
/** |
532 | 451 |
@defgroup misc Miscellaneous Tools |
533 | 452 |
@ingroup utils |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 | 24 |
\subsection whatis What is LEMON |
25 | 25 |
|
26 |
LEMON stands for |
|
27 |
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels |
|
26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
28 | 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
29 | 28 |
It is a C++ template |
30 | 29 |
library aimed at combinatorial optimization tasks which |
31 | 30 |
often involve in working |
32 | 31 |
with graphs. |
33 | 32 |
|
34 | 33 |
<b> |
35 | 34 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
36 | 35 |
project. |
37 | 36 |
You are free to use it in your commercial or |
38 | 37 |
non-commercial applications under very permissive |
39 | 38 |
\ref license "license terms". |
40 | 39 |
</b> |
41 | 40 |
|
42 | 41 |
\subsection howtoread How to read the documentation |
43 | 42 |
|
44 |
If you want to get a quick start and see the most important features then |
|
45 |
take a look at our \ref quicktour |
|
46 |
"Quick Tour to LEMON" which will guide you along. |
|
47 |
|
|
48 |
If you |
|
43 |
If you would like to get to know the library, see |
|
49 | 44 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
50 | 45 |
|
51 |
If you know what you are looking for then try to find it under the |
|
46 |
If you know what you are looking for, then try to find it under the |
|
52 | 47 |
<a class="el" href="modules.html">Modules</a> section. |
53 | 48 |
|
54 | 49 |
If you are a user of the old (0.x) series of LEMON, please check out the |
55 | 50 |
\ref migration "Migration Guide" for the backward incompatibilities. |
56 | 51 |
*/ |
... | ... |
@@ -66,69 +66,68 @@ |
66 | 66 |
lemon/connectivity.h \ |
67 | 67 |
lemon/counter.h \ |
68 | 68 |
lemon/core.h \ |
69 | 69 |
lemon/cplex.h \ |
70 | 70 |
lemon/dfs.h \ |
71 | 71 |
lemon/dijkstra.h \ |
72 | 72 |
lemon/dim2.h \ |
73 | 73 |
lemon/dimacs.h \ |
74 | 74 |
lemon/edge_set.h \ |
75 | 75 |
lemon/elevator.h \ |
76 | 76 |
lemon/error.h \ |
77 | 77 |
lemon/euler.h \ |
78 | 78 |
lemon/full_graph.h \ |
79 | 79 |
lemon/glpk.h \ |
80 | 80 |
lemon/gomory_hu.h \ |
81 | 81 |
lemon/graph_to_eps.h \ |
82 | 82 |
lemon/grid_graph.h \ |
83 | 83 |
lemon/hypercube_graph.h \ |
84 | 84 |
lemon/kruskal.h \ |
85 | 85 |
lemon/hao_orlin.h \ |
86 | 86 |
lemon/lgf_reader.h \ |
87 | 87 |
lemon/lgf_writer.h \ |
88 | 88 |
lemon/list_graph.h \ |
89 | 89 |
lemon/lp.h \ |
90 | 90 |
lemon/lp_base.h \ |
91 | 91 |
lemon/lp_skeleton.h \ |
92 | 92 |
lemon/list_graph.h \ |
93 | 93 |
lemon/maps.h \ |
94 | 94 |
lemon/matching.h \ |
95 | 95 |
lemon/math.h \ |
96 | 96 |
lemon/min_cost_arborescence.h \ |
97 | 97 |
lemon/nauty_reader.h \ |
98 | 98 |
lemon/network_simplex.h \ |
99 | 99 |
lemon/path.h \ |
100 | 100 |
lemon/preflow.h \ |
101 | 101 |
lemon/radix_sort.h \ |
102 | 102 |
lemon/random.h \ |
103 | 103 |
lemon/smart_graph.h \ |
104 | 104 |
lemon/soplex.h \ |
105 | 105 |
lemon/suurballe.h \ |
106 | 106 |
lemon/time_measure.h \ |
107 | 107 |
lemon/tolerance.h \ |
108 | 108 |
lemon/unionfind.h \ |
109 | 109 |
lemon/bits/windows.h |
110 | 110 |
|
111 | 111 |
bits_HEADERS += \ |
112 | 112 |
lemon/bits/alteration_notifier.h \ |
113 | 113 |
lemon/bits/array_map.h \ |
114 |
lemon/bits/base_extender.h \ |
|
115 | 114 |
lemon/bits/bezier.h \ |
116 | 115 |
lemon/bits/default_map.h \ |
117 | 116 |
lemon/bits/edge_set_extender.h \ |
118 | 117 |
lemon/bits/enable_if.h \ |
119 | 118 |
lemon/bits/graph_adaptor_extender.h \ |
120 | 119 |
lemon/bits/graph_extender.h \ |
121 | 120 |
lemon/bits/map_extender.h \ |
122 | 121 |
lemon/bits/path_dump.h \ |
123 | 122 |
lemon/bits/solver_bits.h \ |
124 | 123 |
lemon/bits/traits.h \ |
125 | 124 |
lemon/bits/variant.h \ |
126 | 125 |
lemon/bits/vector_map.h |
127 | 126 |
|
128 | 127 |
concept_HEADERS += \ |
129 | 128 |
lemon/concepts/digraph.h \ |
130 | 129 |
lemon/concepts/graph.h \ |
131 | 130 |
lemon/concepts/graph_components.h \ |
132 | 131 |
lemon/concepts/heap.h \ |
133 | 132 |
lemon/concepts/maps.h \ |
134 | 133 |
lemon/concepts/path.h |
... | ... |
@@ -1794,242 +1794,239 @@ |
1794 | 1794 |
/// This function returns the status of the given edge. |
1795 | 1795 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1796 | 1796 |
bool status(const Edge& e) const { return Parent::status(e); } |
1797 | 1797 |
|
1798 | 1798 |
/// \brief Disables the given edge |
1799 | 1799 |
/// |
1800 | 1800 |
/// This function disables the given edge in the subgraph, |
1801 | 1801 |
/// so the iteration jumps over it. |
1802 | 1802 |
/// It is the same as \ref status() "status(e, false)". |
1803 | 1803 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1804 | 1804 |
|
1805 | 1805 |
/// \brief Enables the given edge |
1806 | 1806 |
/// |
1807 | 1807 |
/// This function enables the given edge in the subgraph. |
1808 | 1808 |
/// It is the same as \ref status() "status(e, true)". |
1809 | 1809 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1810 | 1810 |
|
1811 | 1811 |
}; |
1812 | 1812 |
|
1813 | 1813 |
/// \brief Returns a read-only FilterEdges adaptor |
1814 | 1814 |
/// |
1815 | 1815 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
1816 | 1816 |
/// \ingroup graph_adaptors |
1817 | 1817 |
/// \relates FilterEdges |
1818 | 1818 |
template<typename GR, typename EF> |
1819 | 1819 |
FilterEdges<const GR, EF> |
1820 | 1820 |
filterEdges(const GR& graph, EF& edge_filter) { |
1821 | 1821 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
1822 | 1822 |
} |
1823 | 1823 |
|
1824 | 1824 |
template<typename GR, typename EF> |
1825 | 1825 |
FilterEdges<const GR, const EF> |
1826 | 1826 |
filterEdges(const GR& graph, const EF& edge_filter) { |
1827 | 1827 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
1828 | 1828 |
} |
1829 | 1829 |
|
1830 | 1830 |
|
1831 | 1831 |
template <typename DGR> |
1832 | 1832 |
class UndirectorBase { |
1833 | 1833 |
public: |
1834 | 1834 |
typedef DGR Digraph; |
1835 | 1835 |
typedef UndirectorBase Adaptor; |
1836 | 1836 |
|
1837 | 1837 |
typedef True UndirectedTag; |
1838 | 1838 |
|
1839 | 1839 |
typedef typename Digraph::Arc Edge; |
1840 | 1840 |
typedef typename Digraph::Node Node; |
1841 | 1841 |
|
1842 |
class Arc |
|
1842 |
class Arc { |
|
1843 | 1843 |
friend class UndirectorBase; |
1844 | 1844 |
protected: |
1845 |
Edge _edge; |
|
1845 | 1846 |
bool _forward; |
1846 | 1847 |
|
1847 |
Arc(const Edge& edge, bool forward) : |
|
1848 |
Edge(edge), _forward(forward) {} |
|
1848 |
Arc(const Edge& edge, bool forward) |
|
1849 |
: _edge(edge), _forward(forward) {} |
|
1849 | 1850 |
|
1850 | 1851 |
public: |
1851 | 1852 |
Arc() {} |
1852 | 1853 |
|
1853 |
Arc(Invalid) : |
|
1854 |
Arc(Invalid) : _edge(INVALID), _forward(true) {} |
|
1855 |
|
|
1856 |
operator const Edge&() const { return _edge; } |
|
1854 | 1857 |
|
1855 | 1858 |
bool operator==(const Arc &other) const { |
1856 |
return _forward == other._forward && |
|
1857 |
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other); |
|
1859 |
return _forward == other._forward && _edge == other._edge; |
|
1858 | 1860 |
} |
1859 | 1861 |
bool operator!=(const Arc &other) const { |
1860 |
return _forward != other._forward || |
|
1861 |
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other); |
|
1862 |
return _forward != other._forward || _edge != other._edge; |
|
1862 | 1863 |
} |
1863 | 1864 |
bool operator<(const Arc &other) const { |
1864 | 1865 |
return _forward < other._forward || |
1865 |
(_forward == other._forward && |
|
1866 |
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other)); |
|
1866 |
(_forward == other._forward && _edge < other._edge); |
|
1867 | 1867 |
} |
1868 | 1868 |
}; |
1869 | 1869 |
|
1870 | 1870 |
void first(Node& n) const { |
1871 | 1871 |
_digraph->first(n); |
1872 | 1872 |
} |
1873 | 1873 |
|
1874 | 1874 |
void next(Node& n) const { |
1875 | 1875 |
_digraph->next(n); |
1876 | 1876 |
} |
1877 | 1877 |
|
1878 | 1878 |
void first(Arc& a) const { |
1879 |
_digraph->first(a); |
|
1879 |
_digraph->first(a._edge); |
|
1880 | 1880 |
a._forward = true; |
1881 | 1881 |
} |
1882 | 1882 |
|
1883 | 1883 |
void next(Arc& a) const { |
1884 | 1884 |
if (a._forward) { |
1885 | 1885 |
a._forward = false; |
1886 | 1886 |
} else { |
1887 |
_digraph->next(a); |
|
1887 |
_digraph->next(a._edge); |
|
1888 | 1888 |
a._forward = true; |
1889 | 1889 |
} |
1890 | 1890 |
} |
1891 | 1891 |
|
1892 | 1892 |
void first(Edge& e) const { |
1893 | 1893 |
_digraph->first(e); |
1894 | 1894 |
} |
1895 | 1895 |
|
1896 | 1896 |
void next(Edge& e) const { |
1897 | 1897 |
_digraph->next(e); |
1898 | 1898 |
} |
1899 | 1899 |
|
1900 | 1900 |
void firstOut(Arc& a, const Node& n) const { |
1901 |
_digraph->firstIn(a, n); |
|
1902 |
if( static_cast<const Edge&>(a) != INVALID ) { |
|
1901 |
_digraph->firstIn(a._edge, n); |
|
1902 |
if (a._edge != INVALID ) { |
|
1903 | 1903 |
a._forward = false; |
1904 | 1904 |
} else { |
1905 |
_digraph->firstOut(a, n); |
|
1905 |
_digraph->firstOut(a._edge, n); |
|
1906 | 1906 |
a._forward = true; |
1907 | 1907 |
} |
1908 | 1908 |
} |
1909 | 1909 |
void nextOut(Arc &a) const { |
1910 | 1910 |
if (!a._forward) { |
1911 |
Node n = _digraph->target(a); |
|
1912 |
_digraph->nextIn(a); |
|
1913 |
if (static_cast<const Edge&>(a) == INVALID ) { |
|
1914 |
_digraph->firstOut(a, n); |
|
1911 |
Node n = _digraph->target(a._edge); |
|
1912 |
_digraph->nextIn(a._edge); |
|
1913 |
if (a._edge == INVALID) { |
|
1914 |
_digraph->firstOut(a._edge, n); |
|
1915 | 1915 |
a._forward = true; |
1916 | 1916 |
} |
1917 | 1917 |
} |
1918 | 1918 |
else { |
1919 |
_digraph->nextOut(a); |
|
1919 |
_digraph->nextOut(a._edge); |
|
1920 | 1920 |
} |
1921 | 1921 |
} |
1922 | 1922 |
|
1923 | 1923 |
void firstIn(Arc &a, const Node &n) const { |
1924 |
_digraph->firstOut(a, n); |
|
1925 |
if (static_cast<const Edge&>(a) != INVALID ) { |
|
1924 |
_digraph->firstOut(a._edge, n); |
|
1925 |
if (a._edge != INVALID ) { |
|
1926 | 1926 |
a._forward = false; |
1927 | 1927 |
} else { |
1928 |
_digraph->firstIn(a, n); |
|
1928 |
_digraph->firstIn(a._edge, n); |
|
1929 | 1929 |
a._forward = true; |
1930 | 1930 |
} |
1931 | 1931 |
} |
1932 | 1932 |
void nextIn(Arc &a) const { |
1933 | 1933 |
if (!a._forward) { |
1934 |
Node n = _digraph->source(a); |
|
1935 |
_digraph->nextOut(a); |
|
1936 |
if( static_cast<const Edge&>(a) == INVALID ) { |
|
1937 |
_digraph->firstIn(a, n); |
|
1934 |
Node n = _digraph->source(a._edge); |
|
1935 |
_digraph->nextOut(a._edge); |
|
1936 |
if (a._edge == INVALID ) { |
|
1937 |
_digraph->firstIn(a._edge, n); |
|
1938 | 1938 |
a._forward = true; |
1939 | 1939 |
} |
1940 | 1940 |
} |
1941 | 1941 |
else { |
1942 |
_digraph->nextIn(a); |
|
1942 |
_digraph->nextIn(a._edge); |
|
1943 | 1943 |
} |
1944 | 1944 |
} |
1945 | 1945 |
|
1946 | 1946 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
1947 | 1947 |
d = true; |
1948 | 1948 |
_digraph->firstOut(e, n); |
1949 | 1949 |
if (e != INVALID) return; |
1950 | 1950 |
d = false; |
1951 | 1951 |
_digraph->firstIn(e, n); |
1952 | 1952 |
} |
1953 | 1953 |
|
1954 | 1954 |
void nextInc(Edge &e, bool &d) const { |
1955 | 1955 |
if (d) { |
1956 | 1956 |
Node s = _digraph->source(e); |
1957 | 1957 |
_digraph->nextOut(e); |
1958 | 1958 |
if (e != INVALID) return; |
1959 | 1959 |
d = false; |
1960 | 1960 |
_digraph->firstIn(e, s); |
1961 | 1961 |
} else { |
1962 | 1962 |
_digraph->nextIn(e); |
1963 | 1963 |
} |
1964 | 1964 |
} |
1965 | 1965 |
|
1966 | 1966 |
Node u(const Edge& e) const { |
1967 | 1967 |
return _digraph->source(e); |
1968 | 1968 |
} |
1969 | 1969 |
|
1970 | 1970 |
Node v(const Edge& e) const { |
1971 | 1971 |
return _digraph->target(e); |
1972 | 1972 |
} |
1973 | 1973 |
|
1974 | 1974 |
Node source(const Arc &a) const { |
1975 |
return a._forward ? _digraph->source(a) : _digraph->target(a); |
|
1975 |
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge); |
|
1976 | 1976 |
} |
1977 | 1977 |
|
1978 | 1978 |
Node target(const Arc &a) const { |
1979 |
return a._forward ? _digraph->target(a) : _digraph->source(a); |
|
1979 |
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge); |
|
1980 | 1980 |
} |
1981 | 1981 |
|
1982 | 1982 |
static Arc direct(const Edge &e, bool d) { |
1983 | 1983 |
return Arc(e, d); |
1984 | 1984 |
} |
1985 |
Arc direct(const Edge &e, const Node& n) const { |
|
1986 |
return Arc(e, _digraph->source(e) == n); |
|
1987 |
} |
|
1988 | 1985 |
|
1989 | 1986 |
static bool direction(const Arc &a) { return a._forward; } |
1990 | 1987 |
|
1991 | 1988 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
1992 | 1989 |
Arc arcFromId(int ix) const { |
1993 | 1990 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
1994 | 1991 |
} |
1995 | 1992 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } |
1996 | 1993 |
|
1997 | 1994 |
int id(const Node &n) const { return _digraph->id(n); } |
1998 | 1995 |
int id(const Arc &a) const { |
1999 | 1996 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
2000 | 1997 |
} |
2001 | 1998 |
int id(const Edge &e) const { return _digraph->id(e); } |
2002 | 1999 |
|
2003 | 2000 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
2004 | 2001 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } |
2005 | 2002 |
int maxEdgeId() const { return _digraph->maxArcId(); } |
2006 | 2003 |
|
2007 | 2004 |
Node addNode() { return _digraph->addNode(); } |
2008 | 2005 |
Edge addEdge(const Node& u, const Node& v) { |
2009 | 2006 |
return _digraph->addArc(u, v); |
2010 | 2007 |
} |
2011 | 2008 |
|
2012 | 2009 |
void erase(const Node& i) { _digraph->erase(i); } |
2013 | 2010 |
void erase(const Edge& i) { _digraph->erase(i); } |
2014 | 2011 |
|
2015 | 2012 |
void clear() { _digraph->clear(); } |
2016 | 2013 |
|
2017 | 2014 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
2018 | 2015 |
int nodeNum() const { return _digraph->nodeNum(); } |
2019 | 2016 |
|
2020 | 2017 |
typedef ArcNumTagIndicator<Digraph> ArcNumTag; |
2021 | 2018 |
int arcNum() const { return 2 * _digraph->arcNum(); } |
2022 | 2019 |
|
2023 | 2020 |
typedef ArcNumTag EdgeNumTag; |
2024 | 2021 |
int edgeNum() const { return _digraph->arcNum(); } |
2025 | 2022 |
|
2026 | 2023 |
typedef FindArcTagIndicator<Digraph> FindArcTag; |
2027 | 2024 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
2028 | 2025 |
if (p == INVALID) { |
2029 | 2026 |
Edge arc = _digraph->findArc(s, t); |
2030 | 2027 |
if (arc != INVALID) return direct(arc, true); |
2031 | 2028 |
arc = _digraph->findArc(t, s); |
2032 | 2029 |
if (arc != INVALID) return direct(arc, false); |
2033 | 2030 |
} else if (direction(p)) { |
2034 | 2031 |
Edge arc = _digraph->findArc(s, t, p); |
2035 | 2032 |
if (arc != INVALID) return direct(arc, true); |
... | ... |
@@ -265,135 +265,137 @@ |
265 | 265 |
/// |
266 | 266 |
/// Its usage is quite simple, for example you can compute the |
267 | 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
268 | 268 |
/// in graph \c g of type \c Graph as follows. |
269 | 269 |
/// |
270 | 270 |
///\code |
271 | 271 |
/// int count=0; |
272 | 272 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
273 | 273 |
///\endcode |
274 | 274 |
class IncEdgeIt : public Edge { |
275 | 275 |
public: |
276 | 276 |
/// Default constructor |
277 | 277 |
|
278 | 278 |
/// @warning The default constructor sets the iterator |
279 | 279 |
/// to an undefined value. |
280 | 280 |
IncEdgeIt() { } |
281 | 281 |
/// Copy constructor. |
282 | 282 |
|
283 | 283 |
/// Copy constructor. |
284 | 284 |
/// |
285 | 285 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } |
286 | 286 |
/// Initialize the iterator to be invalid. |
287 | 287 |
|
288 | 288 |
/// Initialize the iterator to be invalid. |
289 | 289 |
/// |
290 | 290 |
IncEdgeIt(Invalid) { } |
291 | 291 |
/// This constructor sets the iterator to first incident arc. |
292 | 292 |
|
293 | 293 |
/// This constructor set the iterator to the first incident arc of |
294 | 294 |
/// the node. |
295 | 295 |
IncEdgeIt(const Graph&, const Node&) { } |
296 | 296 |
/// Edge -> IncEdgeIt conversion |
297 | 297 |
|
298 | 298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
299 | 299 |
/// This feature necessitates that each time we |
300 | 300 |
/// iterate the arc-set, the iteration order is the same. |
301 | 301 |
IncEdgeIt(const Graph&, const Edge&) { } |
302 | 302 |
/// Next incident arc |
303 | 303 |
|
304 | 304 |
/// Assign the iterator to the next incident arc |
305 | 305 |
/// of the corresponding node. |
306 | 306 |
IncEdgeIt& operator++() { return *this; } |
307 | 307 |
}; |
308 | 308 |
|
309 | 309 |
/// The directed arc type. |
310 | 310 |
|
311 | 311 |
/// The directed arc type. It can be converted to the |
312 | 312 |
/// edge or it should be inherited from the undirected |
313 |
/// arc. |
|
314 |
class Arc : public Edge { |
|
313 |
/// edge. |
|
314 |
class Arc { |
|
315 | 315 |
public: |
316 | 316 |
/// Default constructor |
317 | 317 |
|
318 | 318 |
/// @warning The default constructor sets the iterator |
319 | 319 |
/// to an undefined value. |
320 | 320 |
Arc() { } |
321 | 321 |
/// Copy constructor. |
322 | 322 |
|
323 | 323 |
/// Copy constructor. |
324 | 324 |
/// |
325 |
Arc(const Arc& |
|
325 |
Arc(const Arc&) { } |
|
326 | 326 |
/// Initialize the iterator to be invalid. |
327 | 327 |
|
328 | 328 |
/// Initialize the iterator to be invalid. |
329 | 329 |
/// |
330 | 330 |
Arc(Invalid) { } |
331 | 331 |
/// Equality operator |
332 | 332 |
|
333 | 333 |
/// Two iterators are equal if and only if they point to the |
334 | 334 |
/// same object or both are invalid. |
335 | 335 |
bool operator==(Arc) const { return true; } |
336 | 336 |
/// Inequality operator |
337 | 337 |
|
338 | 338 |
/// \sa operator==(Arc n) |
339 | 339 |
/// |
340 | 340 |
bool operator!=(Arc) const { return true; } |
341 | 341 |
|
342 | 342 |
/// Artificial ordering operator. |
343 | 343 |
|
344 | 344 |
/// To allow the use of graph descriptors as key type in std::map or |
345 | 345 |
/// similar associative container we require this. |
346 | 346 |
/// |
347 | 347 |
/// \note This operator only have to define some strict ordering of |
348 | 348 |
/// the items; this order has nothing to do with the iteration |
349 | 349 |
/// ordering of the items. |
350 | 350 |
bool operator<(Arc) const { return false; } |
351 | 351 |
|
352 |
/// Converison to Edge |
|
353 |
operator Edge() const { return Edge(); } |
|
352 | 354 |
}; |
353 | 355 |
/// This iterator goes through each directed arc. |
354 | 356 |
|
355 | 357 |
/// This iterator goes through each arc of a graph. |
356 | 358 |
/// Its usage is quite simple, for example you can count the number |
357 | 359 |
/// of arcs in a graph \c g of type \c Graph as follows: |
358 | 360 |
///\code |
359 | 361 |
/// int count=0; |
360 | 362 |
/// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count; |
361 | 363 |
///\endcode |
362 | 364 |
class ArcIt : public Arc { |
363 | 365 |
public: |
364 | 366 |
/// Default constructor |
365 | 367 |
|
366 | 368 |
/// @warning The default constructor sets the iterator |
367 | 369 |
/// to an undefined value. |
368 | 370 |
ArcIt() { } |
369 | 371 |
/// Copy constructor. |
370 | 372 |
|
371 | 373 |
/// Copy constructor. |
372 | 374 |
/// |
373 | 375 |
ArcIt(const ArcIt& e) : Arc(e) { } |
374 | 376 |
/// Initialize the iterator to be invalid. |
375 | 377 |
|
376 | 378 |
/// Initialize the iterator to be invalid. |
377 | 379 |
/// |
378 | 380 |
ArcIt(Invalid) { } |
379 | 381 |
/// This constructor sets the iterator to the first arc. |
380 | 382 |
|
381 | 383 |
/// This constructor sets the iterator to the first arc of \c g. |
382 | 384 |
///@param g the graph |
383 | 385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } |
384 | 386 |
/// Arc -> ArcIt conversion |
385 | 387 |
|
386 | 388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
387 | 389 |
/// This feature necessitates that each time we |
388 | 390 |
/// iterate the arc-set, the iteration order is the same. |
389 | 391 |
ArcIt(const Graph&, const Arc&) { } |
390 | 392 |
///Next arc |
391 | 393 |
|
392 | 394 |
/// Assign the iterator to the next arc. |
393 | 395 |
ArcIt& operator++() { return *this; } |
394 | 396 |
}; |
395 | 397 |
|
396 | 398 |
/// This iterator goes trough the outgoing directed arcs of a node. |
397 | 399 |
|
398 | 400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
399 | 401 |
/// of a graph. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
20 | 20 |
#define LEMON_CONNECTIVITY_H |
21 | 21 |
|
22 | 22 |
#include <lemon/dfs.h> |
23 | 23 |
#include <lemon/bfs.h> |
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
#include <lemon/adaptors.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concepts/digraph.h> |
29 | 29 |
#include <lemon/concepts/graph.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
#include <stack> |
33 | 33 |
#include <functional> |
34 | 34 |
|
35 | 35 |
/// \ingroup graph_properties |
36 | 36 |
/// \file |
37 | 37 |
/// \brief Connectivity algorithms |
38 | 38 |
/// |
39 | 39 |
/// Connectivity algorithms |
40 | 40 |
|
41 | 41 |
namespace lemon { |
42 | 42 |
|
43 | 43 |
/// \ingroup graph_properties |
44 | 44 |
/// |
45 |
/// \brief Check whether |
|
45 |
/// \brief Check whether an undirected graph is connected. |
|
46 | 46 |
/// |
47 |
/// Check whether the given undirected graph is connected. |
|
48 |
/// \param graph The undirected graph. |
|
49 |
/// |
|
47 |
/// This function checks whether the given undirected graph is connected, |
|
48 |
/// i.e. there is a path between any two nodes in the graph. |
|
49 |
/// |
|
50 |
/// \return \c true if the graph is connected. |
|
50 | 51 |
/// \note By definition, the empty graph is connected. |
52 |
/// |
|
53 |
/// \see countConnectedComponents(), connectedComponents() |
|
54 |
/// \see stronglyConnected() |
|
51 | 55 |
template <typename Graph> |
52 | 56 |
bool connected(const Graph& graph) { |
53 | 57 |
checkConcept<concepts::Graph, Graph>(); |
54 | 58 |
typedef typename Graph::NodeIt NodeIt; |
55 | 59 |
if (NodeIt(graph) == INVALID) return true; |
56 | 60 |
Dfs<Graph> dfs(graph); |
57 | 61 |
dfs.run(NodeIt(graph)); |
58 | 62 |
for (NodeIt it(graph); it != INVALID; ++it) { |
59 | 63 |
if (!dfs.reached(it)) { |
60 | 64 |
return false; |
61 | 65 |
} |
62 | 66 |
} |
63 | 67 |
return true; |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \ingroup graph_properties |
67 | 71 |
/// |
68 | 72 |
/// \brief Count the number of connected components of an undirected graph |
69 | 73 |
/// |
70 |
/// |
|
74 |
/// This function counts the number of connected components of the given |
|
75 |
/// undirected graph. |
|
71 | 76 |
/// |
72 |
/// \param graph The graph. It must be undirected. |
|
73 |
/// \return The number of components |
|
77 |
/// The connected components are the classes of an equivalence relation |
|
78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
79 |
/// if they are connected with a path. |
|
80 |
/// |
|
81 |
/// \return The number of connected components. |
|
74 | 82 |
/// \note By definition, the empty graph consists |
75 | 83 |
/// of zero connected components. |
84 |
/// |
|
85 |
/// \see connected(), connectedComponents() |
|
76 | 86 |
template <typename Graph> |
77 | 87 |
int countConnectedComponents(const Graph &graph) { |
78 | 88 |
checkConcept<concepts::Graph, Graph>(); |
79 | 89 |
typedef typename Graph::Node Node; |
80 | 90 |
typedef typename Graph::Arc Arc; |
81 | 91 |
|
82 | 92 |
typedef NullMap<Node, Arc> PredMap; |
83 | 93 |
typedef NullMap<Node, int> DistMap; |
84 | 94 |
|
85 | 95 |
int compNum = 0; |
86 | 96 |
typename Bfs<Graph>:: |
87 | 97 |
template SetPredMap<PredMap>:: |
88 | 98 |
template SetDistMap<DistMap>:: |
89 | 99 |
Create bfs(graph); |
90 | 100 |
|
91 | 101 |
PredMap predMap; |
92 | 102 |
bfs.predMap(predMap); |
93 | 103 |
|
94 | 104 |
DistMap distMap; |
95 | 105 |
bfs.distMap(distMap); |
96 | 106 |
|
97 | 107 |
bfs.init(); |
98 | 108 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
99 | 109 |
if (!bfs.reached(n)) { |
100 | 110 |
bfs.addSource(n); |
101 | 111 |
bfs.start(); |
102 | 112 |
++compNum; |
103 | 113 |
} |
104 | 114 |
} |
105 | 115 |
return compNum; |
106 | 116 |
} |
107 | 117 |
|
108 | 118 |
/// \ingroup graph_properties |
109 | 119 |
/// |
110 | 120 |
/// \brief Find the connected components of an undirected graph |
111 | 121 |
/// |
112 |
/// |
|
122 |
/// This function finds the connected components of the given undirected |
|
123 |
/// graph. |
|
124 |
/// |
|
125 |
/// The connected components are the classes of an equivalence relation |
|
126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
127 |
/// if they are connected with a path. |
|
113 | 128 |
/// |
114 | 129 |
/// \image html connected_components.png |
115 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
116 | 131 |
/// |
117 |
/// \param graph The |
|
132 |
/// \param graph The undirected graph. |
|
118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
119 |
/// the number of the connected components minus one. Each values of the map |
|
120 |
/// will be set exactly once, the values of a certain component will be |
|
134 |
/// the number of the connected components minus one. Each value of the map |
|
135 |
/// will be set exactly once, and the values of a certain component will be |
|
121 | 136 |
/// set continuously. |
122 |
/// \return The number of components |
|
137 |
/// \return The number of connected components. |
|
138 |
/// \note By definition, the empty graph consists |
|
139 |
/// of zero connected components. |
|
140 |
/// |
|
141 |
/// \see connected(), countConnectedComponents() |
|
123 | 142 |
template <class Graph, class NodeMap> |
124 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) { |
125 | 144 |
checkConcept<concepts::Graph, Graph>(); |
126 | 145 |
typedef typename Graph::Node Node; |
127 | 146 |
typedef typename Graph::Arc Arc; |
128 | 147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
129 | 148 |
|
130 | 149 |
typedef NullMap<Node, Arc> PredMap; |
131 | 150 |
typedef NullMap<Node, int> DistMap; |
132 | 151 |
|
133 | 152 |
int compNum = 0; |
134 | 153 |
typename Bfs<Graph>:: |
135 | 154 |
template SetPredMap<PredMap>:: |
136 | 155 |
template SetDistMap<DistMap>:: |
137 | 156 |
Create bfs(graph); |
138 | 157 |
|
139 | 158 |
PredMap predMap; |
140 | 159 |
bfs.predMap(predMap); |
141 | 160 |
|
142 | 161 |
DistMap distMap; |
143 | 162 |
bfs.distMap(distMap); |
144 | 163 |
|
145 | 164 |
bfs.init(); |
146 | 165 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
147 | 166 |
if(!bfs.reached(n)) { |
148 | 167 |
bfs.addSource(n); |
149 | 168 |
while (!bfs.emptyQueue()) { |
150 | 169 |
compMap.set(bfs.nextNode(), compNum); |
151 | 170 |
bfs.processNextNode(); |
152 | 171 |
} |
153 | 172 |
++compNum; |
154 | 173 |
} |
155 | 174 |
} |
156 | 175 |
return compNum; |
157 | 176 |
} |
158 | 177 |
|
159 | 178 |
namespace _connectivity_bits { |
160 | 179 |
|
161 | 180 |
template <typename Digraph, typename Iterator > |
162 | 181 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
163 | 182 |
public: |
164 | 183 |
typedef typename Digraph::Node Node; |
165 | 184 |
LeaveOrderVisitor(Iterator it) : _it(it) {} |
166 | 185 |
|
167 | 186 |
void leave(const Node& node) { |
168 | 187 |
*(_it++) = node; |
169 | 188 |
} |
170 | 189 |
|
... | ... |
@@ -186,337 +205,354 @@ |
186 | 205 |
} |
187 | 206 |
private: |
188 | 207 |
Map& _map; |
189 | 208 |
Value& _value; |
190 | 209 |
}; |
191 | 210 |
|
192 | 211 |
template <typename Digraph, typename ArcMap> |
193 | 212 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> { |
194 | 213 |
public: |
195 | 214 |
typedef typename Digraph::Node Node; |
196 | 215 |
typedef typename Digraph::Arc Arc; |
197 | 216 |
|
198 | 217 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
199 | 218 |
ArcMap& cutMap, |
200 | 219 |
int& cutNum) |
201 | 220 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
202 | 221 |
_compMap(digraph, -1), _num(-1) { |
203 | 222 |
} |
204 | 223 |
|
205 | 224 |
void start(const Node&) { |
206 | 225 |
++_num; |
207 | 226 |
} |
208 | 227 |
|
209 | 228 |
void reach(const Node& node) { |
210 | 229 |
_compMap.set(node, _num); |
211 | 230 |
} |
212 | 231 |
|
213 | 232 |
void examine(const Arc& arc) { |
214 | 233 |
if (_compMap[_digraph.source(arc)] != |
215 | 234 |
_compMap[_digraph.target(arc)]) { |
216 | 235 |
_cutMap.set(arc, true); |
217 | 236 |
++_cutNum; |
218 | 237 |
} |
219 | 238 |
} |
220 | 239 |
private: |
221 | 240 |
const Digraph& _digraph; |
222 | 241 |
ArcMap& _cutMap; |
223 | 242 |
int& _cutNum; |
224 | 243 |
|
225 | 244 |
typename Digraph::template NodeMap<int> _compMap; |
226 | 245 |
int _num; |
227 | 246 |
}; |
228 | 247 |
|
229 | 248 |
} |
230 | 249 |
|
231 | 250 |
|
232 | 251 |
/// \ingroup graph_properties |
233 | 252 |
/// |
234 |
/// \brief Check whether |
|
253 |
/// \brief Check whether a directed graph is strongly connected. |
|
235 | 254 |
/// |
236 |
/// Check whether the given directed graph is strongly connected. The |
|
237 |
/// graph is strongly connected when any two nodes of the graph are |
|
255 |
/// This function checks whether the given directed graph is strongly |
|
256 |
/// connected, i.e. any two nodes of the digraph are |
|
238 | 257 |
/// connected with directed paths in both direction. |
239 |
/// \return \c false when the graph is not strongly connected. |
|
240 |
/// \see connected |
|
241 | 258 |
/// |
242 |
/// \ |
|
259 |
/// \return \c true if the digraph is strongly connected. |
|
260 |
/// \note By definition, the empty digraph is strongly connected. |
|
261 |
/// |
|
262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
263 |
/// \see connected() |
|
243 | 264 |
template <typename Digraph> |
244 | 265 |
bool stronglyConnected(const Digraph& digraph) { |
245 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
246 | 267 |
|
247 | 268 |
typedef typename Digraph::Node Node; |
248 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
249 | 270 |
|
250 | 271 |
typename Digraph::Node source = NodeIt(digraph); |
251 | 272 |
if (source == INVALID) return true; |
252 | 273 |
|
253 | 274 |
using namespace _connectivity_bits; |
254 | 275 |
|
255 | 276 |
typedef DfsVisitor<Digraph> Visitor; |
256 | 277 |
Visitor visitor; |
257 | 278 |
|
258 | 279 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
259 | 280 |
dfs.init(); |
260 | 281 |
dfs.addSource(source); |
261 | 282 |
dfs.start(); |
262 | 283 |
|
263 | 284 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
264 | 285 |
if (!dfs.reached(it)) { |
265 | 286 |
return false; |
266 | 287 |
} |
267 | 288 |
} |
268 | 289 |
|
269 | 290 |
typedef ReverseDigraph<const Digraph> RDigraph; |
270 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
271 | 292 |
RDigraph rdigraph(digraph); |
272 | 293 |
|
273 |
typedef DfsVisitor< |
|
294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
274 | 295 |
RVisitor rvisitor; |
275 | 296 |
|
276 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
277 | 298 |
rdfs.init(); |
278 | 299 |
rdfs.addSource(source); |
279 | 300 |
rdfs.start(); |
280 | 301 |
|
281 | 302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
282 | 303 |
if (!rdfs.reached(it)) { |
283 | 304 |
return false; |
284 | 305 |
} |
285 | 306 |
} |
286 | 307 |
|
287 | 308 |
return true; |
288 | 309 |
} |
289 | 310 |
|
290 | 311 |
/// \ingroup graph_properties |
291 | 312 |
/// |
292 |
/// \brief Count the strongly connected components of a |
|
313 |
/// \brief Count the number of strongly connected components of a |
|
314 |
/// directed graph |
|
293 | 315 |
/// |
294 |
/// |
|
316 |
/// This function counts the number of strongly connected components of |
|
317 |
/// the given directed graph. |
|
318 |
/// |
|
295 | 319 |
/// The strongly connected components are the classes of an |
296 |
/// equivalence relation on the nodes of |
|
320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
297 | 321 |
/// the same class if they are connected with directed paths in both |
298 | 322 |
/// direction. |
299 | 323 |
/// |
300 |
/// \param digraph The graph. |
|
301 |
/// \return The number of components |
|
302 |
/// \ |
|
324 |
/// \return The number of strongly connected components. |
|
325 |
/// \note By definition, the empty digraph has zero |
|
303 | 326 |
/// strongly connected components. |
327 |
/// |
|
328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
304 | 329 |
template <typename Digraph> |
305 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
306 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
307 | 332 |
|
308 | 333 |
using namespace _connectivity_bits; |
309 | 334 |
|
310 | 335 |
typedef typename Digraph::Node Node; |
311 | 336 |
typedef typename Digraph::Arc Arc; |
312 | 337 |
typedef typename Digraph::NodeIt NodeIt; |
313 | 338 |
typedef typename Digraph::ArcIt ArcIt; |
314 | 339 |
|
315 | 340 |
typedef std::vector<Node> Container; |
316 | 341 |
typedef typename Container::iterator Iterator; |
317 | 342 |
|
318 | 343 |
Container nodes(countNodes(digraph)); |
319 | 344 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
320 | 345 |
Visitor visitor(nodes.begin()); |
321 | 346 |
|
322 | 347 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
323 | 348 |
dfs.init(); |
324 | 349 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
325 | 350 |
if (!dfs.reached(it)) { |
326 | 351 |
dfs.addSource(it); |
327 | 352 |
dfs.start(); |
328 | 353 |
} |
329 | 354 |
} |
330 | 355 |
|
331 | 356 |
typedef typename Container::reverse_iterator RIterator; |
332 | 357 |
typedef ReverseDigraph<const Digraph> RDigraph; |
333 | 358 |
|
334 | 359 |
RDigraph rdigraph(digraph); |
335 | 360 |
|
336 | 361 |
typedef DfsVisitor<Digraph> RVisitor; |
337 | 362 |
RVisitor rvisitor; |
338 | 363 |
|
339 | 364 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
340 | 365 |
|
341 | 366 |
int compNum = 0; |
342 | 367 |
|
343 | 368 |
rdfs.init(); |
344 | 369 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
345 | 370 |
if (!rdfs.reached(*it)) { |
346 | 371 |
rdfs.addSource(*it); |
347 | 372 |
rdfs.start(); |
348 | 373 |
++compNum; |
349 | 374 |
} |
350 | 375 |
} |
351 | 376 |
return compNum; |
352 | 377 |
} |
353 | 378 |
|
354 | 379 |
/// \ingroup graph_properties |
355 | 380 |
/// |
356 | 381 |
/// \brief Find the strongly connected components of a directed graph |
357 | 382 |
/// |
358 |
/// Find the strongly connected components of a directed graph. The |
|
359 |
/// strongly connected components are the classes of an equivalence |
|
360 |
/// relation on the nodes of the graph. Two nodes are in |
|
361 |
/// relationship when there are directed paths between them in both |
|
362 |
/// direction. In addition, the numbering of components will satisfy |
|
363 |
/// that there is no arc going from a higher numbered component to |
|
364 |
/// |
|
383 |
/// This function finds the strongly connected components of the given |
|
384 |
/// directed graph. In addition, the numbering of the components will |
|
385 |
/// satisfy that there is no arc going from a higher numbered component |
|
386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
387 |
/// |
|
388 |
/// The strongly connected components are the classes of an |
|
389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
390 |
/// the same class if they are connected with directed paths in both |
|
391 |
/// direction. |
|
365 | 392 |
/// |
366 | 393 |
/// \image html strongly_connected_components.png |
367 | 394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
368 | 395 |
/// |
369 | 396 |
/// \param digraph The digraph. |
370 | 397 |
/// \retval compMap A writable node map. The values will be set from 0 to |
371 | 398 |
/// the number of the strongly connected components minus one. Each value |
372 |
/// of the map will be set exactly once, the values of a certain component |
|
373 |
/// will be set continuously. |
|
374 |
/// |
|
399 |
/// of the map will be set exactly once, and the values of a certain |
|
400 |
/// component will be set continuously. |
|
401 |
/// \return The number of strongly connected components. |
|
402 |
/// \note By definition, the empty digraph has zero |
|
403 |
/// strongly connected components. |
|
404 |
/// |
|
405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
375 | 406 |
template <typename Digraph, typename NodeMap> |
376 | 407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { |
377 | 408 |
checkConcept<concepts::Digraph, Digraph>(); |
378 | 409 |
typedef typename Digraph::Node Node; |
379 | 410 |
typedef typename Digraph::NodeIt NodeIt; |
380 | 411 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
381 | 412 |
|
382 | 413 |
using namespace _connectivity_bits; |
383 | 414 |
|
384 | 415 |
typedef std::vector<Node> Container; |
385 | 416 |
typedef typename Container::iterator Iterator; |
386 | 417 |
|
387 | 418 |
Container nodes(countNodes(digraph)); |
388 | 419 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
389 | 420 |
Visitor visitor(nodes.begin()); |
390 | 421 |
|
391 | 422 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
392 | 423 |
dfs.init(); |
393 | 424 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
394 | 425 |
if (!dfs.reached(it)) { |
395 | 426 |
dfs.addSource(it); |
396 | 427 |
dfs.start(); |
397 | 428 |
} |
398 | 429 |
} |
399 | 430 |
|
400 | 431 |
typedef typename Container::reverse_iterator RIterator; |
401 | 432 |
typedef ReverseDigraph<const Digraph> RDigraph; |
402 | 433 |
|
403 | 434 |
RDigraph rdigraph(digraph); |
404 | 435 |
|
405 | 436 |
int compNum = 0; |
406 | 437 |
|
407 | 438 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
408 | 439 |
RVisitor rvisitor(compMap, compNum); |
409 | 440 |
|
410 | 441 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
411 | 442 |
|
412 | 443 |
rdfs.init(); |
413 | 444 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
414 | 445 |
if (!rdfs.reached(*it)) { |
415 | 446 |
rdfs.addSource(*it); |
416 | 447 |
rdfs.start(); |
417 | 448 |
++compNum; |
418 | 449 |
} |
419 | 450 |
} |
420 | 451 |
return compNum; |
421 | 452 |
} |
422 | 453 |
|
423 | 454 |
/// \ingroup graph_properties |
424 | 455 |
/// |
425 | 456 |
/// \brief Find the cut arcs of the strongly connected components. |
426 | 457 |
/// |
427 |
/// Find the cut arcs of the strongly connected components. |
|
428 |
/// The strongly connected components are the classes of an equivalence |
|
429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
430 |
/// when there are directed paths between them in both direction. |
|
458 |
/// This function finds the cut arcs of the strongly connected components |
|
459 |
/// of the given digraph. |
|
460 |
/// |
|
461 |
/// The strongly connected components are the classes of an |
|
462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
463 |
/// the same class if they are connected with directed paths in both |
|
464 |
/// direction. |
|
431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
432 | 466 |
/// |
433 |
/// \param graph The graph. |
|
434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
435 |
/// |
|
467 |
/// \param digraph The digraph. |
|
468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
470 |
/// changed for other arcs. |
|
471 |
/// \return The number of cut arcs. |
|
436 | 472 |
/// |
437 |
/// \ |
|
473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
438 | 474 |
template <typename Digraph, typename ArcMap> |
439 |
int stronglyConnectedCutArcs(const Digraph& |
|
475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) { |
|
440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
441 | 477 |
typedef typename Digraph::Node Node; |
442 | 478 |
typedef typename Digraph::Arc Arc; |
443 | 479 |
typedef typename Digraph::NodeIt NodeIt; |
444 | 480 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
445 | 481 |
|
446 | 482 |
using namespace _connectivity_bits; |
447 | 483 |
|
448 | 484 |
typedef std::vector<Node> Container; |
449 | 485 |
typedef typename Container::iterator Iterator; |
450 | 486 |
|
451 |
Container nodes(countNodes( |
|
487 |
Container nodes(countNodes(digraph)); |
|
452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
453 | 489 |
Visitor visitor(nodes.begin()); |
454 | 490 |
|
455 |
DfsVisit<Digraph, Visitor> dfs( |
|
491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
456 | 492 |
dfs.init(); |
457 |
for (NodeIt it( |
|
493 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
458 | 494 |
if (!dfs.reached(it)) { |
459 | 495 |
dfs.addSource(it); |
460 | 496 |
dfs.start(); |
461 | 497 |
} |
462 | 498 |
} |
463 | 499 |
|
464 | 500 |
typedef typename Container::reverse_iterator RIterator; |
465 | 501 |
typedef ReverseDigraph<const Digraph> RDigraph; |
466 | 502 |
|
467 |
RDigraph |
|
503 |
RDigraph rdigraph(digraph); |
|
468 | 504 |
|
469 | 505 |
int cutNum = 0; |
470 | 506 |
|
471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
472 |
RVisitor rvisitor( |
|
508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
473 | 509 |
|
474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
475 | 511 |
|
476 | 512 |
rdfs.init(); |
477 | 513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
478 | 514 |
if (!rdfs.reached(*it)) { |
479 | 515 |
rdfs.addSource(*it); |
480 | 516 |
rdfs.start(); |
481 | 517 |
} |
482 | 518 |
} |
483 | 519 |
return cutNum; |
484 | 520 |
} |
485 | 521 |
|
486 | 522 |
namespace _connectivity_bits { |
487 | 523 |
|
488 | 524 |
template <typename Digraph> |
489 | 525 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
490 | 526 |
public: |
491 | 527 |
typedef typename Digraph::Node Node; |
492 | 528 |
typedef typename Digraph::Arc Arc; |
493 | 529 |
typedef typename Digraph::Edge Edge; |
494 | 530 |
|
495 | 531 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
496 | 532 |
: _graph(graph), _compNum(compNum), |
497 | 533 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
498 | 534 |
|
499 | 535 |
void start(const Node& node) { |
500 | 536 |
_predMap.set(node, INVALID); |
501 | 537 |
} |
502 | 538 |
|
503 | 539 |
void reach(const Node& node) { |
504 | 540 |
_numMap.set(node, _num); |
505 | 541 |
_retMap.set(node, _num); |
506 | 542 |
++_num; |
507 | 543 |
} |
508 | 544 |
|
509 | 545 |
void discover(const Arc& edge) { |
510 | 546 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
511 | 547 |
} |
512 | 548 |
|
513 | 549 |
void examine(const Arc& edge) { |
514 | 550 |
if (_graph.source(edge) == _graph.target(edge) && |
515 | 551 |
_graph.direction(edge)) { |
516 | 552 |
++_compNum; |
517 | 553 |
return; |
518 | 554 |
} |
519 | 555 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
520 | 556 |
return; |
521 | 557 |
} |
522 | 558 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
... | ... |
@@ -661,203 +697,219 @@ |
661 | 697 |
} |
662 | 698 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
663 | 699 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
664 | 700 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
665 | 701 |
} |
666 | 702 |
} |
667 | 703 |
|
668 | 704 |
void backtrack(const Arc& edge) { |
669 | 705 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
670 | 706 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
671 | 707 |
} |
672 | 708 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
673 | 709 |
if (_predMap[_graph.source(edge)] != INVALID) { |
674 | 710 |
if (!_cutMap[_graph.source(edge)]) { |
675 | 711 |
_cutMap.set(_graph.source(edge), true); |
676 | 712 |
++_cutNum; |
677 | 713 |
} |
678 | 714 |
} else if (rootCut) { |
679 | 715 |
if (!_cutMap[_graph.source(edge)]) { |
680 | 716 |
_cutMap.set(_graph.source(edge), true); |
681 | 717 |
++_cutNum; |
682 | 718 |
} |
683 | 719 |
} else { |
684 | 720 |
rootCut = true; |
685 | 721 |
} |
686 | 722 |
} |
687 | 723 |
} |
688 | 724 |
|
689 | 725 |
private: |
690 | 726 |
const Digraph& _graph; |
691 | 727 |
NodeMap& _cutMap; |
692 | 728 |
int& _cutNum; |
693 | 729 |
|
694 | 730 |
typename Digraph::template NodeMap<int> _numMap; |
695 | 731 |
typename Digraph::template NodeMap<int> _retMap; |
696 | 732 |
typename Digraph::template NodeMap<Node> _predMap; |
697 | 733 |
std::stack<Edge> _edgeStack; |
698 | 734 |
int _num; |
699 | 735 |
bool rootCut; |
700 | 736 |
}; |
701 | 737 |
|
702 | 738 |
} |
703 | 739 |
|
704 | 740 |
template <typename Graph> |
705 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
706 | 742 |
|
707 | 743 |
/// \ingroup graph_properties |
708 | 744 |
/// |
709 |
/// \brief |
|
745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
710 | 746 |
/// |
711 |
/// This function checks that the undirected graph is bi-node-connected |
|
712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
713 |
/// |
|
747 |
/// This function checks whether the given undirected graph is |
|
748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
714 | 749 |
/// |
715 |
/// \param graph The graph. |
|
716 |
/// \return \c true when the graph bi-node-connected. |
|
750 |
/// \return \c true if the graph bi-node-connected. |
|
751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
752 |
/// |
|
753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
717 | 754 |
template <typename Graph> |
718 | 755 |
bool biNodeConnected(const Graph& graph) { |
719 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
720 | 757 |
} |
721 | 758 |
|
722 | 759 |
/// \ingroup graph_properties |
723 | 760 |
/// |
724 |
/// \brief Count the |
|
761 |
/// \brief Count the number of bi-node-connected components of an |
|
762 |
/// undirected graph. |
|
725 | 763 |
/// |
726 |
/// This function finds the bi-node-connected components in an undirected |
|
727 |
/// graph. The biconnected components are the classes of an equivalence |
|
728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
729 |
/// when they are on same circle. |
|
764 |
/// This function counts the number of bi-node-connected components of |
|
765 |
/// the given undirected graph. |
|
730 | 766 |
/// |
731 |
/// \param graph The graph. |
|
732 |
/// \return The number of components. |
|
767 |
/// The bi-node-connected components are the classes of an equivalence |
|
768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
769 |
/// same class if they are on same circle. |
|
770 |
/// |
|
771 |
/// \return The number of bi-node-connected components. |
|
772 |
/// |
|
773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
733 | 774 |
template <typename Graph> |
734 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) { |
735 | 776 |
checkConcept<concepts::Graph, Graph>(); |
736 | 777 |
typedef typename Graph::NodeIt NodeIt; |
737 | 778 |
|
738 | 779 |
using namespace _connectivity_bits; |
739 | 780 |
|
740 | 781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
741 | 782 |
|
742 | 783 |
int compNum = 0; |
743 | 784 |
Visitor visitor(graph, compNum); |
744 | 785 |
|
745 | 786 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
746 | 787 |
dfs.init(); |
747 | 788 |
|
748 | 789 |
for (NodeIt it(graph); it != INVALID; ++it) { |
749 | 790 |
if (!dfs.reached(it)) { |
750 | 791 |
dfs.addSource(it); |
751 | 792 |
dfs.start(); |
752 | 793 |
} |
753 | 794 |
} |
754 | 795 |
return compNum; |
755 | 796 |
} |
756 | 797 |
|
757 | 798 |
/// \ingroup graph_properties |
758 | 799 |
/// |
759 |
/// \brief Find the bi-node-connected components. |
|
800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
760 | 801 |
/// |
761 |
/// This function finds the bi-node-connected components in an undirected |
|
762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
764 |
/// when they are on same circle. |
|
802 |
/// This function finds the bi-node-connected components of the given |
|
803 |
/// undirected graph. |
|
804 |
/// |
|
805 |
/// The bi-node-connected components are the classes of an equivalence |
|
806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
807 |
/// same class if they are on same circle. |
|
765 | 808 |
/// |
766 | 809 |
/// \image html node_biconnected_components.png |
767 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
768 | 811 |
/// |
769 |
/// \param graph The graph. |
|
770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
771 |
/// to the number of the biconnected components minus one. Each values |
|
772 |
/// of the map will be set exactly once, the values of a certain component |
|
773 |
/// will be set continuously. |
|
774 |
/// \return The number of components. |
|
812 |
/// \param graph The undirected graph. |
|
813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
814 |
/// to the number of the bi-node-connected components minus one. Each |
|
815 |
/// value of the map will be set exactly once, and the values of a |
|
816 |
/// certain component will be set continuously. |
|
817 |
/// \return The number of bi-node-connected components. |
|
818 |
/// |
|
819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
775 | 820 |
template <typename Graph, typename EdgeMap> |
776 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
777 | 822 |
EdgeMap& compMap) { |
778 | 823 |
checkConcept<concepts::Graph, Graph>(); |
779 | 824 |
typedef typename Graph::NodeIt NodeIt; |
780 | 825 |
typedef typename Graph::Edge Edge; |
781 | 826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
782 | 827 |
|
783 | 828 |
using namespace _connectivity_bits; |
784 | 829 |
|
785 | 830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
786 | 831 |
|
787 | 832 |
int compNum = 0; |
788 | 833 |
Visitor visitor(graph, compMap, compNum); |
789 | 834 |
|
790 | 835 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
791 | 836 |
dfs.init(); |
792 | 837 |
|
793 | 838 |
for (NodeIt it(graph); it != INVALID; ++it) { |
794 | 839 |
if (!dfs.reached(it)) { |
795 | 840 |
dfs.addSource(it); |
796 | 841 |
dfs.start(); |
797 | 842 |
} |
798 | 843 |
} |
799 | 844 |
return compNum; |
800 | 845 |
} |
801 | 846 |
|
802 | 847 |
/// \ingroup graph_properties |
803 | 848 |
/// |
804 |
/// \brief Find the bi-node-connected cut nodes. |
|
849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
805 | 850 |
/// |
806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
808 |
/// relation on the undirected edges. Two undirected edges are in |
|
809 |
/// relationship when they are on same circle. The biconnected components |
|
810 |
/// |
|
851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
852 |
/// undirected graph. |
|
811 | 853 |
/// |
812 |
/// \param graph The graph. |
|
813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
814 |
/// |
|
854 |
/// The bi-node-connected components are the classes of an equivalence |
|
855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
856 |
/// same class if they are on same circle. |
|
857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
858 |
/// the components. |
|
859 |
/// |
|
860 |
/// \param graph The undirected graph. |
|
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
862 |
/// \c true for the nodes that separate two or more components |
|
863 |
/// (exactly once for each cut node), and will not be changed for |
|
864 |
/// other nodes. |
|
815 | 865 |
/// \return The number of the cut nodes. |
866 |
/// |
|
867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
816 | 868 |
template <typename Graph, typename NodeMap> |
817 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
818 | 870 |
checkConcept<concepts::Graph, Graph>(); |
819 | 871 |
typedef typename Graph::Node Node; |
820 | 872 |
typedef typename Graph::NodeIt NodeIt; |
821 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
822 | 874 |
|
823 | 875 |
using namespace _connectivity_bits; |
824 | 876 |
|
825 | 877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
826 | 878 |
|
827 | 879 |
int cutNum = 0; |
828 | 880 |
Visitor visitor(graph, cutMap, cutNum); |
829 | 881 |
|
830 | 882 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
831 | 883 |
dfs.init(); |
832 | 884 |
|
833 | 885 |
for (NodeIt it(graph); it != INVALID; ++it) { |
834 | 886 |
if (!dfs.reached(it)) { |
835 | 887 |
dfs.addSource(it); |
836 | 888 |
dfs.start(); |
837 | 889 |
} |
838 | 890 |
} |
839 | 891 |
return cutNum; |
840 | 892 |
} |
841 | 893 |
|
842 | 894 |
namespace _connectivity_bits { |
843 | 895 |
|
844 | 896 |
template <typename Digraph> |
845 | 897 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> { |
846 | 898 |
public: |
847 | 899 |
typedef typename Digraph::Node Node; |
848 | 900 |
typedef typename Digraph::Arc Arc; |
849 | 901 |
typedef typename Digraph::Edge Edge; |
850 | 902 |
|
851 | 903 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
852 | 904 |
: _graph(graph), _compNum(compNum), |
853 | 905 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
854 | 906 |
|
855 | 907 |
void start(const Node& node) { |
856 | 908 |
_predMap.set(node, INVALID); |
857 | 909 |
} |
858 | 910 |
|
859 | 911 |
void reach(const Node& node) { |
860 | 912 |
_numMap.set(node, _num); |
861 | 913 |
_retMap.set(node, _num); |
862 | 914 |
++_num; |
863 | 915 |
} |
... | ... |
@@ -986,602 +1038,628 @@ |
986 | 1038 |
++_num; |
987 | 1039 |
} |
988 | 1040 |
|
989 | 1041 |
void leave(const Node& node) { |
990 | 1042 |
if (_numMap[node] <= _retMap[node]) { |
991 | 1043 |
if (_predMap[node] != INVALID) { |
992 | 1044 |
_cutMap.set(_predMap[node], true); |
993 | 1045 |
++_cutNum; |
994 | 1046 |
} |
995 | 1047 |
} |
996 | 1048 |
} |
997 | 1049 |
|
998 | 1050 |
void discover(const Arc& edge) { |
999 | 1051 |
_predMap.set(_graph.target(edge), edge); |
1000 | 1052 |
} |
1001 | 1053 |
|
1002 | 1054 |
void examine(const Arc& edge) { |
1003 | 1055 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { |
1004 | 1056 |
return; |
1005 | 1057 |
} |
1006 | 1058 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1007 | 1059 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1008 | 1060 |
} |
1009 | 1061 |
} |
1010 | 1062 |
|
1011 | 1063 |
void backtrack(const Arc& edge) { |
1012 | 1064 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1013 | 1065 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1014 | 1066 |
} |
1015 | 1067 |
} |
1016 | 1068 |
|
1017 | 1069 |
private: |
1018 | 1070 |
const Digraph& _graph; |
1019 | 1071 |
ArcMap& _cutMap; |
1020 | 1072 |
int& _cutNum; |
1021 | 1073 |
|
1022 | 1074 |
typename Digraph::template NodeMap<int> _numMap; |
1023 | 1075 |
typename Digraph::template NodeMap<int> _retMap; |
1024 | 1076 |
typename Digraph::template NodeMap<Arc> _predMap; |
1025 | 1077 |
int _num; |
1026 | 1078 |
}; |
1027 | 1079 |
} |
1028 | 1080 |
|
1029 | 1081 |
template <typename Graph> |
1030 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
1031 | 1083 |
|
1032 | 1084 |
/// \ingroup graph_properties |
1033 | 1085 |
/// |
1034 |
/// \brief |
|
1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
1035 | 1087 |
/// |
1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
1038 |
/// |
|
1088 |
/// This function checks whether the given undirected graph is |
|
1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
1090 |
/// two edge-disjoint paths. |
|
1039 | 1091 |
/// |
1040 |
/// \param graph The undirected graph. |
|
1041 |
/// \return The number of components. |
|
1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
1094 |
/// |
|
1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
1042 | 1096 |
template <typename Graph> |
1043 | 1097 |
bool biEdgeConnected(const Graph& graph) { |
1044 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
1045 | 1099 |
} |
1046 | 1100 |
|
1047 | 1101 |
/// \ingroup graph_properties |
1048 | 1102 |
/// |
1049 |
/// \brief Count the bi-edge-connected components |
|
1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
1104 |
/// undirected graph. |
|
1050 | 1105 |
/// |
1051 |
/// This function count the bi-edge-connected components in an undirected |
|
1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1054 |
/// connected with at least two edge-disjoint paths. |
|
1106 |
/// This function counts the number of bi-edge-connected components of |
|
1107 |
/// the given undirected graph. |
|
1055 | 1108 |
/// |
1056 |
/// \param graph The undirected graph. |
|
1057 |
/// \return The number of components. |
|
1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1111 |
/// same class if they are connected with at least two edge-disjoint |
|
1112 |
/// paths. |
|
1113 |
/// |
|
1114 |
/// \return The number of bi-edge-connected components. |
|
1115 |
/// |
|
1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1058 | 1117 |
template <typename Graph> |
1059 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) { |
1060 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
1061 | 1120 |
typedef typename Graph::NodeIt NodeIt; |
1062 | 1121 |
|
1063 | 1122 |
using namespace _connectivity_bits; |
1064 | 1123 |
|
1065 | 1124 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
1066 | 1125 |
|
1067 | 1126 |
int compNum = 0; |
1068 | 1127 |
Visitor visitor(graph, compNum); |
1069 | 1128 |
|
1070 | 1129 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1071 | 1130 |
dfs.init(); |
1072 | 1131 |
|
1073 | 1132 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1074 | 1133 |
if (!dfs.reached(it)) { |
1075 | 1134 |
dfs.addSource(it); |
1076 | 1135 |
dfs.start(); |
1077 | 1136 |
} |
1078 | 1137 |
} |
1079 | 1138 |
return compNum; |
1080 | 1139 |
} |
1081 | 1140 |
|
1082 | 1141 |
/// \ingroup graph_properties |
1083 | 1142 |
/// |
1084 |
/// \brief Find the bi-edge-connected components. |
|
1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
1085 | 1144 |
/// |
1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1089 |
/// connected at least two edge-disjoint paths. |
|
1145 |
/// This function finds the bi-edge-connected components of the given |
|
1146 |
/// undirected graph. |
|
1147 |
/// |
|
1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1150 |
/// same class if they are connected with at least two edge-disjoint |
|
1151 |
/// paths. |
|
1090 | 1152 |
/// |
1091 | 1153 |
/// \image html edge_biconnected_components.png |
1092 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
1093 | 1155 |
/// |
1094 |
/// \param graph The graph. |
|
1156 |
/// \param graph The undirected graph. |
|
1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
1096 |
/// the number of the biconnected components minus one. Each values |
|
1097 |
/// of the map will be set exactly once, the values of a certain component |
|
1098 |
/// will be set continuously. |
|
1099 |
/// \return The number of components. |
|
1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
1159 |
/// of the map will be set exactly once, and the values of a certain |
|
1160 |
/// component will be set continuously. |
|
1161 |
/// \return The number of bi-edge-connected components. |
|
1162 |
/// |
|
1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
1100 | 1164 |
template <typename Graph, typename NodeMap> |
1101 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
1102 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
1103 | 1167 |
typedef typename Graph::NodeIt NodeIt; |
1104 | 1168 |
typedef typename Graph::Node Node; |
1105 | 1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
1106 | 1170 |
|
1107 | 1171 |
using namespace _connectivity_bits; |
1108 | 1172 |
|
1109 | 1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
1110 | 1174 |
|
1111 | 1175 |
int compNum = 0; |
1112 | 1176 |
Visitor visitor(graph, compMap, compNum); |
1113 | 1177 |
|
1114 | 1178 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1115 | 1179 |
dfs.init(); |
1116 | 1180 |
|
1117 | 1181 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1118 | 1182 |
if (!dfs.reached(it)) { |
1119 | 1183 |
dfs.addSource(it); |
1120 | 1184 |
dfs.start(); |
1121 | 1185 |
} |
1122 | 1186 |
} |
1123 | 1187 |
return compNum; |
1124 | 1188 |
} |
1125 | 1189 |
|
1126 | 1190 |
/// \ingroup graph_properties |
1127 | 1191 |
/// |
1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
1129 | 1193 |
/// |
1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
1134 |
/// components are separted by edges which are the cut edges of the |
|
1135 |
/// components. |
|
1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
1195 |
/// undirected graph. |
|
1136 | 1196 |
/// |
1137 |
/// \param graph The graph. |
|
1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
1139 |
/// edge |
|
1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
1199 |
/// same class if they are connected with at least two edge-disjoint |
|
1200 |
/// paths. |
|
1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
1202 |
/// the components. |
|
1203 |
/// |
|
1204 |
/// \param graph The undirected graph. |
|
1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
1207 |
/// changed for other edges. |
|
1140 | 1208 |
/// \return The number of cut edges. |
1209 |
/// |
|
1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
1141 | 1211 |
template <typename Graph, typename EdgeMap> |
1142 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
1143 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
1144 | 1214 |
typedef typename Graph::NodeIt NodeIt; |
1145 | 1215 |
typedef typename Graph::Edge Edge; |
1146 | 1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
1147 | 1217 |
|
1148 | 1218 |
using namespace _connectivity_bits; |
1149 | 1219 |
|
1150 | 1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
1151 | 1221 |
|
1152 | 1222 |
int cutNum = 0; |
1153 | 1223 |
Visitor visitor(graph, cutMap, cutNum); |
1154 | 1224 |
|
1155 | 1225 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1156 | 1226 |
dfs.init(); |
1157 | 1227 |
|
1158 | 1228 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1159 | 1229 |
if (!dfs.reached(it)) { |
1160 | 1230 |
dfs.addSource(it); |
1161 | 1231 |
dfs.start(); |
1162 | 1232 |
} |
1163 | 1233 |
} |
1164 | 1234 |
return cutNum; |
1165 | 1235 |
} |
1166 | 1236 |
|
1167 | 1237 |
|
1168 | 1238 |
namespace _connectivity_bits { |
1169 | 1239 |
|
1170 | 1240 |
template <typename Digraph, typename IntNodeMap> |
1171 | 1241 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> { |
1172 | 1242 |
public: |
1173 | 1243 |
typedef typename Digraph::Node Node; |
1174 | 1244 |
typedef typename Digraph::Arc edge; |
1175 | 1245 |
|
1176 | 1246 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
1177 | 1247 |
: _order(order), _num(num) {} |
1178 | 1248 |
|
1179 | 1249 |
void leave(const Node& node) { |
1180 | 1250 |
_order.set(node, --_num); |
1181 | 1251 |
} |
1182 | 1252 |
|
1183 | 1253 |
private: |
1184 | 1254 |
IntNodeMap& _order; |
1185 | 1255 |
int _num; |
1186 | 1256 |
}; |
1187 | 1257 |
|
1188 | 1258 |
} |
1189 | 1259 |
|
1190 | 1260 |
/// \ingroup graph_properties |
1191 | 1261 |
/// |
1262 |
/// \brief Check whether a digraph is DAG. |
|
1263 |
/// |
|
1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
1265 |
/// \e Directed \e Acyclic \e Graph. |
|
1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
1267 |
/// \see acyclic() |
|
1268 |
template <typename Digraph> |
|
1269 |
bool dag(const Digraph& digraph) { |
|
1270 |
|
|
1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1272 |
|
|
1273 |
typedef typename Digraph::Node Node; |
|
1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
1275 |
typedef typename Digraph::Arc Arc; |
|
1276 |
|
|
1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1278 |
|
|
1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1280 |
Create dfs(digraph); |
|
1281 |
|
|
1282 |
ProcessedMap processed(digraph); |
|
1283 |
dfs.processedMap(processed); |
|
1284 |
|
|
1285 |
dfs.init(); |
|
1286 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1287 |
if (!dfs.reached(it)) { |
|
1288 |
dfs.addSource(it); |
|
1289 |
while (!dfs.emptyQueue()) { |
|
1290 |
Arc arc = dfs.nextArc(); |
|
1291 |
Node target = digraph.target(arc); |
|
1292 |
if (dfs.reached(target) && !processed[target]) { |
|
1293 |
return false; |
|
1294 |
} |
|
1295 |
dfs.processNextArc(); |
|
1296 |
} |
|
1297 |
} |
|
1298 |
} |
|
1299 |
return true; |
|
1300 |
} |
|
1301 |
|
|
1302 |
/// \ingroup graph_properties |
|
1303 |
/// |
|
1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1193 | 1305 |
/// |
1194 |
/// |
|
1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1307 |
/// into topolgical order. |
|
1195 | 1308 |
/// |
1196 |
/// \param |
|
1309 |
/// \param digraph The digraph, which must be DAG. |
|
1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
1199 |
/// will be set exactly once, the values will be set descending order. |
|
1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
1312 |
/// map will be set exactly once, and the values will be set descending |
|
1313 |
/// order. |
|
1200 | 1314 |
/// |
1201 |
/// \see checkedTopologicalSort |
|
1202 |
/// \see dag |
|
1315 |
/// \see dag(), checkedTopologicalSort() |
|
1203 | 1316 |
template <typename Digraph, typename NodeMap> |
1204 |
void topologicalSort(const Digraph& |
|
1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) { |
|
1205 | 1318 |
using namespace _connectivity_bits; |
1206 | 1319 |
|
1207 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
1208 | 1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
1209 | 1322 |
|
1210 | 1323 |
typedef typename Digraph::Node Node; |
1211 | 1324 |
typedef typename Digraph::NodeIt NodeIt; |
1212 | 1325 |
typedef typename Digraph::Arc Arc; |
1213 | 1326 |
|
1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
1215 |
visitor(order, countNodes( |
|
1328 |
visitor(order, countNodes(digraph)); |
|
1216 | 1329 |
|
1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1218 |
dfs( |
|
1331 |
dfs(digraph, visitor); |
|
1219 | 1332 |
|
1220 | 1333 |
dfs.init(); |
1221 |
for (NodeIt it( |
|
1334 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1222 | 1335 |
if (!dfs.reached(it)) { |
1223 | 1336 |
dfs.addSource(it); |
1224 | 1337 |
dfs.start(); |
1225 | 1338 |
} |
1226 | 1339 |
} |
1227 | 1340 |
} |
1228 | 1341 |
|
1229 | 1342 |
/// \ingroup graph_properties |
1230 | 1343 |
/// |
1231 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1232 | 1345 |
/// |
1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
1234 |
/// that the given graph is DAG. |
|
1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
1347 |
/// into topolgical order and also checks whether the given digraph |
|
1348 |
/// is DAG. |
|
1235 | 1349 |
/// |
1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
1237 |
/// \retval order A readable - writable node map. The values will be set |
|
1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
1239 |
/// of the map will be set exactly once, the values will be set descending |
|
1240 |
/// order. |
|
1241 |
/// \return \c false when the graph is not DAG. |
|
1350 |
/// \param digraph The digraph. |
|
1351 |
/// \retval order A readable and writable node map. The values will be |
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1353 |
/// Each value of the map will be set exactly once, and the values will |
|
1354 |
/// be set descending order. |
|
1355 |
/// \return \c false if the digraph is not DAG. |
|
1242 | 1356 |
/// |
1243 |
/// \see topologicalSort |
|
1244 |
/// \see dag |
|
1357 |
/// \see dag(), topologicalSort() |
|
1245 | 1358 |
template <typename Digraph, typename NodeMap> |
1246 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
1247 | 1360 |
using namespace _connectivity_bits; |
1248 | 1361 |
|
1249 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
1250 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
1251 | 1364 |
NodeMap>(); |
1252 | 1365 |
|
1253 | 1366 |
typedef typename Digraph::Node Node; |
1254 | 1367 |
typedef typename Digraph::NodeIt NodeIt; |
1255 | 1368 |
typedef typename Digraph::Arc Arc; |
1256 | 1369 |
|
1257 | 1370 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1258 | 1371 |
order.set(it, -1); |
1259 | 1372 |
} |
1260 | 1373 |
|
1261 | 1374 |
TopologicalSortVisitor<Digraph, NodeMap> |
1262 | 1375 |
visitor(order, countNodes(digraph)); |
1263 | 1376 |
|
1264 | 1377 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1265 | 1378 |
dfs(digraph, visitor); |
1266 | 1379 |
|
1267 | 1380 |
dfs.init(); |
1268 | 1381 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1269 | 1382 |
if (!dfs.reached(it)) { |
1270 | 1383 |
dfs.addSource(it); |
1271 | 1384 |
while (!dfs.emptyQueue()) { |
1272 | 1385 |
Arc arc = dfs.nextArc(); |
1273 | 1386 |
Node target = digraph.target(arc); |
1274 | 1387 |
if (dfs.reached(target) && order[target] == -1) { |
1275 | 1388 |
return false; |
1276 | 1389 |
} |
1277 | 1390 |
dfs.processNextArc(); |
1278 | 1391 |
} |
1279 | 1392 |
} |
1280 | 1393 |
} |
1281 | 1394 |
return true; |
1282 | 1395 |
} |
1283 | 1396 |
|
1284 | 1397 |
/// \ingroup graph_properties |
1285 | 1398 |
/// |
1286 |
/// \brief Check |
|
1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
1287 | 1400 |
/// |
1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
1289 |
/// an Directed Acyclic Digraph. |
|
1290 |
/// \return \c false when the graph is not DAG. |
|
1291 |
/// \see acyclic |
|
1292 |
template <typename Digraph> |
|
1293 |
bool dag(const Digraph& digraph) { |
|
1294 |
|
|
1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
1296 |
|
|
1297 |
typedef typename Digraph::Node Node; |
|
1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
1299 |
typedef typename Digraph::Arc Arc; |
|
1300 |
|
|
1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
1302 |
|
|
1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
1304 |
Create dfs(digraph); |
|
1305 |
|
|
1306 |
ProcessedMap processed(digraph); |
|
1307 |
dfs.processedMap(processed); |
|
1308 |
|
|
1309 |
dfs.init(); |
|
1310 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1311 |
if (!dfs.reached(it)) { |
|
1312 |
dfs.addSource(it); |
|
1313 |
while (!dfs.emptyQueue()) { |
|
1314 |
Arc edge = dfs.nextArc(); |
|
1315 |
Node target = digraph.target(edge); |
|
1316 |
if (dfs.reached(target) && !processed[target]) { |
|
1317 |
return false; |
|
1318 |
} |
|
1319 |
dfs.processNextArc(); |
|
1320 |
} |
|
1321 |
} |
|
1322 |
} |
|
1323 |
return true; |
|
1324 |
} |
|
1325 |
|
|
1326 |
/// \ingroup graph_properties |
|
1327 |
/// |
|
1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
1329 |
/// |
|
1330 |
/// Check that the given undirected graph acyclic. |
|
1331 |
/// \param graph The undirected graph. |
|
1332 |
/// \return \c true when there is no circle in the graph. |
|
1333 |
/// \see dag |
|
1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
1402 |
/// \return \c true if there is no cycle in the graph. |
|
1403 |
/// \see dag() |
|
1334 | 1404 |
template <typename Graph> |
1335 | 1405 |
bool acyclic(const Graph& graph) { |
1336 | 1406 |
checkConcept<concepts::Graph, Graph>(); |
1337 | 1407 |
typedef typename Graph::Node Node; |
1338 | 1408 |
typedef typename Graph::NodeIt NodeIt; |
1339 | 1409 |
typedef typename Graph::Arc Arc; |
1340 | 1410 |
Dfs<Graph> dfs(graph); |
1341 | 1411 |
dfs.init(); |
1342 | 1412 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1343 | 1413 |
if (!dfs.reached(it)) { |
1344 | 1414 |
dfs.addSource(it); |
1345 | 1415 |
while (!dfs.emptyQueue()) { |
1346 |
Arc edge = dfs.nextArc(); |
|
1347 |
Node source = graph.source(edge); |
|
1348 |
|
|
1416 |
Arc arc = dfs.nextArc(); |
|
1417 |
Node source = graph.source(arc); |
|
1418 |
Node target = graph.target(arc); |
|
1349 | 1419 |
if (dfs.reached(target) && |
1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1351 | 1421 |
return false; |
1352 | 1422 |
} |
1353 | 1423 |
dfs.processNextArc(); |
1354 | 1424 |
} |
1355 | 1425 |
} |
1356 | 1426 |
} |
1357 | 1427 |
return true; |
1358 | 1428 |
} |
1359 | 1429 |
|
1360 | 1430 |
/// \ingroup graph_properties |
1361 | 1431 |
/// |
1362 |
/// \brief Check |
|
1432 |
/// \brief Check whether an undirected graph is tree. |
|
1363 | 1433 |
/// |
1364 |
/// Check that the given undirected graph is tree. |
|
1365 |
/// \param graph The undirected graph. |
|
1366 |
/// |
|
1434 |
/// This function checks whether the given undirected graph is tree. |
|
1435 |
/// \return \c true if the graph is acyclic and connected. |
|
1436 |
/// \see acyclic(), connected() |
|
1367 | 1437 |
template <typename Graph> |
1368 | 1438 |
bool tree(const Graph& graph) { |
1369 | 1439 |
checkConcept<concepts::Graph, Graph>(); |
1370 | 1440 |
typedef typename Graph::Node Node; |
1371 | 1441 |
typedef typename Graph::NodeIt NodeIt; |
1372 | 1442 |
typedef typename Graph::Arc Arc; |
1443 |
if (NodeIt(graph) == INVALID) return true; |
|
1373 | 1444 |
Dfs<Graph> dfs(graph); |
1374 | 1445 |
dfs.init(); |
1375 | 1446 |
dfs.addSource(NodeIt(graph)); |
1376 | 1447 |
while (!dfs.emptyQueue()) { |
1377 |
Arc edge = dfs.nextArc(); |
|
1378 |
Node source = graph.source(edge); |
|
1379 |
|
|
1448 |
Arc arc = dfs.nextArc(); |
|
1449 |
Node source = graph.source(arc); |
|
1450 |
Node target = graph.target(arc); |
|
1380 | 1451 |
if (dfs.reached(target) && |
1381 |
dfs.predArc(source) != graph.oppositeArc( |
|
1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) { |
|
1382 | 1453 |
return false; |
1383 | 1454 |
} |
1384 | 1455 |
dfs.processNextArc(); |
1385 | 1456 |
} |
1386 | 1457 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1387 | 1458 |
if (!dfs.reached(it)) { |
1388 | 1459 |
return false; |
1389 | 1460 |
} |
1390 | 1461 |
} |
1391 | 1462 |
return true; |
1392 | 1463 |
} |
1393 | 1464 |
|
1394 | 1465 |
namespace _connectivity_bits { |
1395 | 1466 |
|
1396 | 1467 |
template <typename Digraph> |
1397 | 1468 |
class BipartiteVisitor : public BfsVisitor<Digraph> { |
1398 | 1469 |
public: |
1399 | 1470 |
typedef typename Digraph::Arc Arc; |
1400 | 1471 |
typedef typename Digraph::Node Node; |
1401 | 1472 |
|
1402 | 1473 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
1403 | 1474 |
: _graph(graph), _part(graph), _bipartite(bipartite) {} |
1404 | 1475 |
|
1405 | 1476 |
void start(const Node& node) { |
1406 | 1477 |
_part[node] = true; |
1407 | 1478 |
} |
1408 | 1479 |
void discover(const Arc& edge) { |
1409 | 1480 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
1410 | 1481 |
} |
1411 | 1482 |
void examine(const Arc& edge) { |
1412 | 1483 |
_bipartite = _bipartite && |
1413 | 1484 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
1414 | 1485 |
} |
1415 | 1486 |
|
1416 | 1487 |
private: |
1417 | 1488 |
|
1418 | 1489 |
const Digraph& _graph; |
1419 | 1490 |
typename Digraph::template NodeMap<bool> _part; |
1420 | 1491 |
bool& _bipartite; |
1421 | 1492 |
}; |
1422 | 1493 |
|
1423 | 1494 |
template <typename Digraph, typename PartMap> |
1424 | 1495 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> { |
1425 | 1496 |
public: |
1426 | 1497 |
typedef typename Digraph::Arc Arc; |
1427 | 1498 |
typedef typename Digraph::Node Node; |
1428 | 1499 |
|
1429 | 1500 |
BipartitePartitionsVisitor(const Digraph& graph, |
1430 | 1501 |
PartMap& part, bool& bipartite) |
1431 | 1502 |
: _graph(graph), _part(part), _bipartite(bipartite) {} |
1432 | 1503 |
|
1433 | 1504 |
void start(const Node& node) { |
1434 | 1505 |
_part.set(node, true); |
1435 | 1506 |
} |
1436 | 1507 |
void discover(const Arc& edge) { |
1437 | 1508 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
1438 | 1509 |
} |
1439 | 1510 |
void examine(const Arc& edge) { |
1440 | 1511 |
_bipartite = _bipartite && |
1441 | 1512 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
1442 | 1513 |
} |
1443 | 1514 |
|
1444 | 1515 |
private: |
1445 | 1516 |
|
1446 | 1517 |
const Digraph& _graph; |
1447 | 1518 |
PartMap& _part; |
1448 | 1519 |
bool& _bipartite; |
1449 | 1520 |
}; |
1450 | 1521 |
} |
1451 | 1522 |
|
1452 | 1523 |
/// \ingroup graph_properties |
1453 | 1524 |
/// |
1454 |
/// \brief Check |
|
1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
1455 | 1526 |
/// |
1456 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
1457 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1458 |
/// \param graph The undirected graph. |
|
1459 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
1460 |
/// |
|
1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
1528 |
/// \return \c true if the graph is bipartite. |
|
1529 |
/// |
|
1530 |
/// \see bipartitePartitions() |
|
1461 | 1531 |
template<typename Graph> |
1462 |
|
|
1532 |
bool bipartite(const Graph &graph){ |
|
1463 | 1533 |
using namespace _connectivity_bits; |
1464 | 1534 |
|
1465 | 1535 |
checkConcept<concepts::Graph, Graph>(); |
1466 | 1536 |
|
1467 | 1537 |
typedef typename Graph::NodeIt NodeIt; |
1468 | 1538 |
typedef typename Graph::ArcIt ArcIt; |
1469 | 1539 |
|
1470 | 1540 |
bool bipartite = true; |
1471 | 1541 |
|
1472 | 1542 |
BipartiteVisitor<Graph> |
1473 | 1543 |
visitor(graph, bipartite); |
1474 | 1544 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
1475 | 1545 |
bfs(graph, visitor); |
1476 | 1546 |
bfs.init(); |
1477 | 1547 |
for(NodeIt it(graph); it != INVALID; ++it) { |
1478 | 1548 |
if(!bfs.reached(it)){ |
1479 | 1549 |
bfs.addSource(it); |
1480 | 1550 |
while (!bfs.emptyQueue()) { |
1481 | 1551 |
bfs.processNextNode(); |
1482 | 1552 |
if (!bipartite) return false; |
1483 | 1553 |
} |
1484 | 1554 |
} |
1485 | 1555 |
} |
1486 | 1556 |
return true; |
1487 | 1557 |
} |
1488 | 1558 |
|
1489 | 1559 |
/// \ingroup graph_properties |
1490 | 1560 |
/// |
1491 |
/// \brief |
|
1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
1492 | 1562 |
/// |
1493 |
/// The function checks if the given undirected graph is bipartite |
|
1494 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
1495 |
/// During the execution, the \c partMap will be set as the two |
|
1496 |
/// partitions of the graph. |
|
1563 |
/// This function checks whether the given undirected graph is bipartite |
|
1564 |
/// and gives back the bipartite partitions. |
|
1497 | 1565 |
/// |
1498 | 1566 |
/// \image html bipartite_partitions.png |
1499 | 1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
1500 | 1568 |
/// |
1501 | 1569 |
/// \param graph The undirected graph. |
1502 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
1503 |
/// two partitions of the graph. |
|
1504 |
/// \ |
|
1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
1571 |
/// type. The values will be set to \c true for one component and |
|
1572 |
/// \c false for the other one. |
|
1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
1574 |
/// |
|
1575 |
/// \see bipartite() |
|
1505 | 1576 |
template<typename Graph, typename NodeMap> |
1506 |
|
|
1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ |
|
1507 | 1578 |
using namespace _connectivity_bits; |
1508 | 1579 |
|
1509 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
1510 | 1582 |
|
1511 | 1583 |
typedef typename Graph::Node Node; |
1512 | 1584 |
typedef typename Graph::NodeIt NodeIt; |
1513 | 1585 |
typedef typename Graph::ArcIt ArcIt; |
1514 | 1586 |
|
1515 | 1587 |
bool bipartite = true; |
1516 | 1588 |
|
1517 | 1589 |
BipartitePartitionsVisitor<Graph, NodeMap> |
1518 | 1590 |
visitor(graph, partMap, bipartite); |
1519 | 1591 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
1520 | 1592 |
bfs(graph, visitor); |
1521 | 1593 |
bfs.init(); |
1522 | 1594 |
for(NodeIt it(graph); it != INVALID; ++it) { |
1523 | 1595 |
if(!bfs.reached(it)){ |
1524 | 1596 |
bfs.addSource(it); |
1525 | 1597 |
while (!bfs.emptyQueue()) { |
1526 | 1598 |
bfs.processNextNode(); |
1527 | 1599 |
if (!bipartite) return false; |
1528 | 1600 |
} |
1529 | 1601 |
} |
1530 | 1602 |
} |
1531 | 1603 |
return true; |
1532 | 1604 |
} |
1533 | 1605 |
|
1534 |
/// \ |
|
1606 |
/// \ingroup graph_properties |
|
1535 | 1607 |
/// |
1536 |
/// Returns true when there are not loop edges in the graph. |
|
1537 |
template <typename Digraph> |
|
1538 |
bool loopFree(const Digraph& digraph) { |
|
1539 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) { |
|
1540 |
|
|
1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
1609 |
/// |
|
1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
1612 |
template <typename Graph> |
|
1613 |
bool loopFree(const Graph& graph) { |
|
1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) { |
|
1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
1541 | 1616 |
} |
1542 | 1617 |
return true; |
1543 | 1618 |
} |
1544 | 1619 |
|
1545 |
/// \ |
|
1620 |
/// \ingroup graph_properties |
|
1546 | 1621 |
/// |
1547 |
/// Returns true when there are not parallel edges in the graph. |
|
1548 |
template <typename Digraph> |
|
1549 |
bool parallelFree(const Digraph& digraph) { |
|
1550 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
|
1551 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
1552 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1553 |
if (reached[digraph.target(a)]) return false; |
|
1554 |
reached.set(digraph.target(a), true); |
|
1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
1623 |
/// |
|
1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
1626 |
template <typename Graph> |
|
1627 |
bool parallelFree(const Graph& graph) { |
|
1628 |
typename Graph::template NodeMap<int> reached(graph, 0); |
|
1629 |
int cnt = 1; |
|
1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
|
1632 |
if (reached[graph.target(a)] == cnt) return false; |
|
1633 |
reached[graph.target(a)] = cnt; |
|
1555 | 1634 |
} |
1556 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1557 |
reached.set(digraph.target(a), false); |
|
1558 |
|
|
1635 |
++cnt; |
|
1559 | 1636 |
} |
1560 | 1637 |
return true; |
1561 | 1638 |
} |
1562 | 1639 |
|
1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
1564 |
/// edges in the graph. |
|
1640 |
/// \ingroup graph_properties |
|
1565 | 1641 |
/// |
1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
1567 |
/// the graph. |
|
1568 |
template <typename Digraph> |
|
1569 |
bool simpleDigraph(const Digraph& digraph) { |
|
1570 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
|
1571 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
1572 |
reached.set(n, true); |
|
1573 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1574 |
if (reached[digraph.target(a)]) return false; |
|
1575 |
reached.set(digraph.target(a), true); |
|
1642 |
/// \brief Check whether the given graph is simple. |
|
1643 |
/// |
|
1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
1646 |
/// The function works for both directed and undirected graphs. |
|
1647 |
/// \see loopFree(), parallelFree() |
|
1648 |
template <typename Graph> |
|
1649 |
bool simpleGraph(const Graph& graph) { |
|
1650 |
typename Graph::template NodeMap<int> reached(graph, 0); |
|
1651 |
int cnt = 1; |
|
1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1653 |
reached[n] = cnt; |
|
1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { |
|
1655 |
if (reached[graph.target(a)] == cnt) return false; |
|
1656 |
reached[graph.target(a)] = cnt; |
|
1576 | 1657 |
} |
1577 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) { |
|
1578 |
reached.set(digraph.target(a), false); |
|
1579 |
} |
|
1580 |
reached.set(n, false); |
|
1658 |
++cnt; |
|
1581 | 1659 |
} |
1582 | 1660 |
return true; |
1583 | 1661 |
} |
1584 | 1662 |
|
1585 | 1663 |
} //namespace lemon |
1586 | 1664 |
|
1587 | 1665 |
#endif //LEMON_CONNECTIVITY_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EDGE_SET_H |
20 | 20 |
#define LEMON_EDGE_SET_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
24 | 24 |
|
25 |
/// \ingroup |
|
25 |
/// \ingroup graphs |
|
26 | 26 |
/// \file |
27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
28 | 28 |
/// |
29 | 29 |
/// Graphs which use another graph's node-set as own. |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
template <typename GR> |
33 | 33 |
class ListArcSetBase { |
34 | 34 |
public: |
35 | 35 |
|
36 | 36 |
typedef typename GR::Node Node; |
37 | 37 |
typedef typename GR::NodeIt NodeIt; |
38 | 38 |
|
39 | 39 |
protected: |
40 | 40 |
|
41 | 41 |
struct NodeT { |
42 | 42 |
int first_out, first_in; |
43 | 43 |
NodeT() : first_out(-1), first_in(-1) {} |
44 | 44 |
}; |
45 | 45 |
|
46 | 46 |
typedef typename ItemSetTraits<GR, Node>:: |
47 | 47 |
template Map<NodeT>::Type NodesImplBase; |
48 | 48 |
|
49 | 49 |
NodesImplBase* _nodes; |
50 | 50 |
|
51 | 51 |
struct ArcT { |
52 | 52 |
Node source, target; |
53 | 53 |
int next_out, next_in; |
54 | 54 |
int prev_out, prev_in; |
55 | 55 |
ArcT() : prev_out(-1), prev_in(-1) {} |
56 | 56 |
}; |
57 | 57 |
|
58 | 58 |
std::vector<ArcT> arcs; |
59 | 59 |
|
60 | 60 |
int first_arc; |
61 | 61 |
int first_free_arc; |
62 | 62 |
|
63 | 63 |
const GR* _graph; |
64 | 64 |
|
65 | 65 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
66 | 66 |
_graph = &graph; |
67 | 67 |
_nodes = &nodes; |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
|
72 | 72 |
class Arc { |
73 | 73 |
friend class ListArcSetBase<GR>; |
... | ... |
@@ -185,97 +185,97 @@ |
185 | 185 |
|
186 | 186 |
void nextIn(Arc& arc) const { |
187 | 187 |
arc.id = arcs[arc.id].next_in; |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
int id(const Node& node) const { return _graph->id(node); } |
191 | 191 |
int id(const Arc& arc) const { return arc.id; } |
192 | 192 |
|
193 | 193 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
194 | 194 |
Arc arcFromId(int ix) const { return Arc(ix); } |
195 | 195 |
|
196 | 196 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
197 | 197 |
int maxArcId() const { return arcs.size() - 1; } |
198 | 198 |
|
199 | 199 |
Node source(const Arc& arc) const { return arcs[arc.id].source;} |
200 | 200 |
Node target(const Arc& arc) const { return arcs[arc.id].target;} |
201 | 201 |
|
202 | 202 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
203 | 203 |
|
204 | 204 |
NodeNotifier& notifier(Node) const { |
205 | 205 |
return _graph->notifier(Node()); |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
template <typename V> |
209 | 209 |
class NodeMap : public GR::template NodeMap<V> { |
210 | 210 |
typedef typename GR::template NodeMap<V> Parent; |
211 | 211 |
|
212 | 212 |
public: |
213 | 213 |
|
214 | 214 |
explicit NodeMap(const ListArcSetBase<GR>& arcset) |
215 | 215 |
: Parent(*arcset._graph) {} |
216 | 216 |
|
217 | 217 |
NodeMap(const ListArcSetBase<GR>& arcset, const V& value) |
218 | 218 |
: Parent(*arcset._graph, value) {} |
219 | 219 |
|
220 | 220 |
NodeMap& operator=(const NodeMap& cmap) { |
221 | 221 |
return operator=<NodeMap>(cmap); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
template <typename CMap> |
225 | 225 |
NodeMap& operator=(const CMap& cmap) { |
226 | 226 |
Parent::operator=(cmap); |
227 | 227 |
return *this; |
228 | 228 |
} |
229 | 229 |
}; |
230 | 230 |
|
231 | 231 |
}; |
232 | 232 |
|
233 |
/// \ingroup |
|
233 |
/// \ingroup graphs |
|
234 | 234 |
/// |
235 | 235 |
/// \brief Digraph using a node set of another digraph or graph and |
236 | 236 |
/// an own arc set. |
237 | 237 |
/// |
238 | 238 |
/// This structure can be used to establish another directed graph |
239 | 239 |
/// over a node set of an existing one. This class uses the same |
240 | 240 |
/// Node type as the underlying graph, and each valid node of the |
241 | 241 |
/// original graph is valid in this arc set, therefore the node |
242 | 242 |
/// objects of the original graph can be used directly with this |
243 | 243 |
/// class. The node handling functions (id handling, observing, and |
244 | 244 |
/// iterators) works equivalently as in the original graph. |
245 | 245 |
/// |
246 | 246 |
/// This implementation is based on doubly-linked lists, from each |
247 | 247 |
/// node the outgoing and the incoming arcs make up lists, therefore |
248 | 248 |
/// one arc can be erased in constant time. It also makes possible, |
249 | 249 |
/// that node can be removed from the underlying graph, in this case |
250 | 250 |
/// all arcs incident to the given node is erased from the arc set. |
251 | 251 |
/// |
252 | 252 |
/// \param GR The type of the graph which shares its node set with |
253 | 253 |
/// this class. Its interface must conform to the |
254 | 254 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
255 | 255 |
/// concept. |
256 | 256 |
/// |
257 | 257 |
/// This class fully conforms to the \ref concepts::Digraph |
258 | 258 |
/// "Digraph" concept. |
259 | 259 |
template <typename GR> |
260 | 260 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > { |
261 | 261 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
262 | 262 |
|
263 | 263 |
public: |
264 | 264 |
|
265 | 265 |
typedef typename Parent::Node Node; |
266 | 266 |
typedef typename Parent::Arc Arc; |
267 | 267 |
|
268 | 268 |
typedef typename Parent::NodesImplBase NodesImplBase; |
269 | 269 |
|
270 | 270 |
void eraseNode(const Node& node) { |
271 | 271 |
Arc arc; |
272 | 272 |
Parent::firstOut(arc, node); |
273 | 273 |
while (arc != INVALID ) { |
274 | 274 |
erase(arc); |
275 | 275 |
Parent::firstOut(arc, node); |
276 | 276 |
} |
277 | 277 |
|
278 | 278 |
Parent::firstIn(arc, node); |
279 | 279 |
while (arc != INVALID ) { |
280 | 280 |
erase(arc); |
281 | 281 |
Parent::firstIn(arc, node); |
... | ... |
@@ -609,97 +609,97 @@ |
609 | 609 |
static int id(Arc e) { return e.id; } |
610 | 610 |
static int id(Edge e) { return e.id; } |
611 | 611 |
|
612 | 612 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); } |
613 | 613 |
static Arc arcFromId(int id) { return Arc(id);} |
614 | 614 |
static Edge edgeFromId(int id) { return Edge(id);} |
615 | 615 |
|
616 | 616 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
617 | 617 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
618 | 618 |
int maxArcId() const { return arcs.size()-1; } |
619 | 619 |
|
620 | 620 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; } |
621 | 621 |
Node target(Arc e) const { return arcs[e.id].target; } |
622 | 622 |
|
623 | 623 |
Node u(Edge e) const { return arcs[2 * e.id].target; } |
624 | 624 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; } |
625 | 625 |
|
626 | 626 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
627 | 627 |
|
628 | 628 |
NodeNotifier& notifier(Node) const { |
629 | 629 |
return _graph->notifier(Node()); |
630 | 630 |
} |
631 | 631 |
|
632 | 632 |
template <typename V> |
633 | 633 |
class NodeMap : public GR::template NodeMap<V> { |
634 | 634 |
typedef typename GR::template NodeMap<V> Parent; |
635 | 635 |
|
636 | 636 |
public: |
637 | 637 |
|
638 | 638 |
explicit NodeMap(const ListEdgeSetBase<GR>& arcset) |
639 | 639 |
: Parent(*arcset._graph) {} |
640 | 640 |
|
641 | 641 |
NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value) |
642 | 642 |
: Parent(*arcset._graph, value) {} |
643 | 643 |
|
644 | 644 |
NodeMap& operator=(const NodeMap& cmap) { |
645 | 645 |
return operator=<NodeMap>(cmap); |
646 | 646 |
} |
647 | 647 |
|
648 | 648 |
template <typename CMap> |
649 | 649 |
NodeMap& operator=(const CMap& cmap) { |
650 | 650 |
Parent::operator=(cmap); |
651 | 651 |
return *this; |
652 | 652 |
} |
653 | 653 |
}; |
654 | 654 |
|
655 | 655 |
}; |
656 | 656 |
|
657 |
/// \ingroup |
|
657 |
/// \ingroup graphs |
|
658 | 658 |
/// |
659 | 659 |
/// \brief Graph using a node set of another digraph or graph and an |
660 | 660 |
/// own edge set. |
661 | 661 |
/// |
662 | 662 |
/// This structure can be used to establish another graph over a |
663 | 663 |
/// node set of an existing one. This class uses the same Node type |
664 | 664 |
/// as the underlying graph, and each valid node of the original |
665 | 665 |
/// graph is valid in this arc set, therefore the node objects of |
666 | 666 |
/// the original graph can be used directly with this class. The |
667 | 667 |
/// node handling functions (id handling, observing, and iterators) |
668 | 668 |
/// works equivalently as in the original graph. |
669 | 669 |
/// |
670 | 670 |
/// This implementation is based on doubly-linked lists, from each |
671 | 671 |
/// node the incident edges make up lists, therefore one edge can be |
672 | 672 |
/// erased in constant time. It also makes possible, that node can |
673 | 673 |
/// be removed from the underlying graph, in this case all edges |
674 | 674 |
/// incident to the given node is erased from the arc set. |
675 | 675 |
/// |
676 | 676 |
/// \param GR The type of the graph which shares its node set |
677 | 677 |
/// with this class. Its interface must conform to the |
678 | 678 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
679 | 679 |
/// concept. |
680 | 680 |
/// |
681 | 681 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
682 | 682 |
/// concept. |
683 | 683 |
template <typename GR> |
684 | 684 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > { |
685 | 685 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
686 | 686 |
|
687 | 687 |
public: |
688 | 688 |
|
689 | 689 |
typedef typename Parent::Node Node; |
690 | 690 |
typedef typename Parent::Arc Arc; |
691 | 691 |
typedef typename Parent::Edge Edge; |
692 | 692 |
|
693 | 693 |
typedef typename Parent::NodesImplBase NodesImplBase; |
694 | 694 |
|
695 | 695 |
void eraseNode(const Node& node) { |
696 | 696 |
Arc arc; |
697 | 697 |
Parent::firstOut(arc, node); |
698 | 698 |
while (arc != INVALID ) { |
699 | 699 |
erase(arc); |
700 | 700 |
Parent::firstOut(arc, node); |
701 | 701 |
} |
702 | 702 |
|
703 | 703 |
} |
704 | 704 |
|
705 | 705 |
void clearNodes() { |
... | ... |
@@ -868,97 +868,97 @@ |
868 | 868 |
void nextIn(Arc& arc) const { |
869 | 869 |
arc.id = arcs[arc.id].next_in; |
870 | 870 |
} |
871 | 871 |
|
872 | 872 |
int id(const Node& node) const { return _graph->id(node); } |
873 | 873 |
int id(const Arc& arc) const { return arc.id; } |
874 | 874 |
|
875 | 875 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
876 | 876 |
Arc arcFromId(int ix) const { return Arc(ix); } |
877 | 877 |
|
878 | 878 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
879 | 879 |
int maxArcId() const { return arcs.size() - 1; } |
880 | 880 |
|
881 | 881 |
Node source(const Arc& arc) const { return arcs[arc.id].source;} |
882 | 882 |
Node target(const Arc& arc) const { return arcs[arc.id].target;} |
883 | 883 |
|
884 | 884 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
885 | 885 |
|
886 | 886 |
NodeNotifier& notifier(Node) const { |
887 | 887 |
return _graph->notifier(Node()); |
888 | 888 |
} |
889 | 889 |
|
890 | 890 |
template <typename V> |
891 | 891 |
class NodeMap : public GR::template NodeMap<V> { |
892 | 892 |
typedef typename GR::template NodeMap<V> Parent; |
893 | 893 |
|
894 | 894 |
public: |
895 | 895 |
|
896 | 896 |
explicit NodeMap(const SmartArcSetBase<GR>& arcset) |
897 | 897 |
: Parent(*arcset._graph) { } |
898 | 898 |
|
899 | 899 |
NodeMap(const SmartArcSetBase<GR>& arcset, const V& value) |
900 | 900 |
: Parent(*arcset._graph, value) { } |
901 | 901 |
|
902 | 902 |
NodeMap& operator=(const NodeMap& cmap) { |
903 | 903 |
return operator=<NodeMap>(cmap); |
904 | 904 |
} |
905 | 905 |
|
906 | 906 |
template <typename CMap> |
907 | 907 |
NodeMap& operator=(const CMap& cmap) { |
908 | 908 |
Parent::operator=(cmap); |
909 | 909 |
return *this; |
910 | 910 |
} |
911 | 911 |
}; |
912 | 912 |
|
913 | 913 |
}; |
914 | 914 |
|
915 | 915 |
|
916 |
/// \ingroup |
|
916 |
/// \ingroup graphs |
|
917 | 917 |
/// |
918 | 918 |
/// \brief Digraph using a node set of another digraph or graph and |
919 | 919 |
/// an own arc set. |
920 | 920 |
/// |
921 | 921 |
/// This structure can be used to establish another directed graph |
922 | 922 |
/// over a node set of an existing one. This class uses the same |
923 | 923 |
/// Node type as the underlying graph, and each valid node of the |
924 | 924 |
/// original graph is valid in this arc set, therefore the node |
925 | 925 |
/// objects of the original graph can be used directly with this |
926 | 926 |
/// class. The node handling functions (id handling, observing, and |
927 | 927 |
/// iterators) works equivalently as in the original graph. |
928 | 928 |
/// |
929 | 929 |
/// \param GR The type of the graph which shares its node set with |
930 | 930 |
/// this class. Its interface must conform to the |
931 | 931 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
932 | 932 |
/// concept. |
933 | 933 |
/// |
934 | 934 |
/// This implementation is slightly faster than the \c ListArcSet, |
935 | 935 |
/// because it uses continuous storage for arcs and it uses just |
936 | 936 |
/// single-linked lists for enumerate outgoing and incoming |
937 | 937 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
938 | 938 |
/// |
939 | 939 |
/// \warning If a node is erased from the underlying graph and this |
940 | 940 |
/// node is the source or target of one arc in the arc set, then |
941 | 941 |
/// the arc set is invalidated, and it cannot be used anymore. The |
942 | 942 |
/// validity can be checked with the \c valid() member function. |
943 | 943 |
/// |
944 | 944 |
/// This class fully conforms to the \ref concepts::Digraph |
945 | 945 |
/// "Digraph" concept. |
946 | 946 |
template <typename GR> |
947 | 947 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > { |
948 | 948 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
949 | 949 |
|
950 | 950 |
public: |
951 | 951 |
|
952 | 952 |
typedef typename Parent::Node Node; |
953 | 953 |
typedef typename Parent::Arc Arc; |
954 | 954 |
|
955 | 955 |
protected: |
956 | 956 |
|
957 | 957 |
typedef typename Parent::NodesImplBase NodesImplBase; |
958 | 958 |
|
959 | 959 |
void eraseNode(const Node& node) { |
960 | 960 |
if (typename Parent::InArcIt(*this, node) == INVALID && |
961 | 961 |
typename Parent::OutArcIt(*this, node) == INVALID) { |
962 | 962 |
return; |
963 | 963 |
} |
964 | 964 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
... | ... |
@@ -1212,97 +1212,97 @@ |
1212 | 1212 |
static int id(Arc arc) { return arc.id; } |
1213 | 1213 |
static int id(Edge arc) { return arc.id; } |
1214 | 1214 |
|
1215 | 1215 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); } |
1216 | 1216 |
static Arc arcFromId(int id) { return Arc(id); } |
1217 | 1217 |
static Edge edgeFromId(int id) { return Edge(id);} |
1218 | 1218 |
|
1219 | 1219 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
1220 | 1220 |
int maxArcId() const { return arcs.size() - 1; } |
1221 | 1221 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
1222 | 1222 |
|
1223 | 1223 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; } |
1224 | 1224 |
Node target(Arc e) const { return arcs[e.id].target; } |
1225 | 1225 |
|
1226 | 1226 |
Node u(Edge e) const { return arcs[2 * e.id].target; } |
1227 | 1227 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; } |
1228 | 1228 |
|
1229 | 1229 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
1230 | 1230 |
|
1231 | 1231 |
NodeNotifier& notifier(Node) const { |
1232 | 1232 |
return _graph->notifier(Node()); |
1233 | 1233 |
} |
1234 | 1234 |
|
1235 | 1235 |
template <typename V> |
1236 | 1236 |
class NodeMap : public GR::template NodeMap<V> { |
1237 | 1237 |
typedef typename GR::template NodeMap<V> Parent; |
1238 | 1238 |
|
1239 | 1239 |
public: |
1240 | 1240 |
|
1241 | 1241 |
explicit NodeMap(const SmartEdgeSetBase<GR>& arcset) |
1242 | 1242 |
: Parent(*arcset._graph) { } |
1243 | 1243 |
|
1244 | 1244 |
NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value) |
1245 | 1245 |
: Parent(*arcset._graph, value) { } |
1246 | 1246 |
|
1247 | 1247 |
NodeMap& operator=(const NodeMap& cmap) { |
1248 | 1248 |
return operator=<NodeMap>(cmap); |
1249 | 1249 |
} |
1250 | 1250 |
|
1251 | 1251 |
template <typename CMap> |
1252 | 1252 |
NodeMap& operator=(const CMap& cmap) { |
1253 | 1253 |
Parent::operator=(cmap); |
1254 | 1254 |
return *this; |
1255 | 1255 |
} |
1256 | 1256 |
}; |
1257 | 1257 |
|
1258 | 1258 |
}; |
1259 | 1259 |
|
1260 |
/// \ingroup |
|
1260 |
/// \ingroup graphs |
|
1261 | 1261 |
/// |
1262 | 1262 |
/// \brief Graph using a node set of another digraph or graph and an |
1263 | 1263 |
/// own edge set. |
1264 | 1264 |
/// |
1265 | 1265 |
/// This structure can be used to establish another graph over a |
1266 | 1266 |
/// node set of an existing one. This class uses the same Node type |
1267 | 1267 |
/// as the underlying graph, and each valid node of the original |
1268 | 1268 |
/// graph is valid in this arc set, therefore the node objects of |
1269 | 1269 |
/// the original graph can be used directly with this class. The |
1270 | 1270 |
/// node handling functions (id handling, observing, and iterators) |
1271 | 1271 |
/// works equivalently as in the original graph. |
1272 | 1272 |
/// |
1273 | 1273 |
/// \param GR The type of the graph which shares its node set |
1274 | 1274 |
/// with this class. Its interface must conform to the |
1275 | 1275 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
1276 | 1276 |
/// concept. |
1277 | 1277 |
/// |
1278 | 1278 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
1279 | 1279 |
/// because it uses continuous storage for edges and it uses just |
1280 | 1280 |
/// single-linked lists for enumerate incident edges. Therefore the |
1281 | 1281 |
/// edges cannot be erased from the edge sets. |
1282 | 1282 |
/// |
1283 | 1283 |
/// \warning If a node is erased from the underlying graph and this |
1284 | 1284 |
/// node is incident to one edge in the edge set, then the edge set |
1285 | 1285 |
/// is invalidated, and it cannot be used anymore. The validity can |
1286 | 1286 |
/// be checked with the \c valid() member function. |
1287 | 1287 |
/// |
1288 | 1288 |
/// This class fully conforms to the \ref concepts::Graph |
1289 | 1289 |
/// "Graph" concept. |
1290 | 1290 |
template <typename GR> |
1291 | 1291 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > { |
1292 | 1292 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
1293 | 1293 |
|
1294 | 1294 |
public: |
1295 | 1295 |
|
1296 | 1296 |
typedef typename Parent::Node Node; |
1297 | 1297 |
typedef typename Parent::Arc Arc; |
1298 | 1298 |
typedef typename Parent::Edge Edge; |
1299 | 1299 |
|
1300 | 1300 |
protected: |
1301 | 1301 |
|
1302 | 1302 |
typedef typename Parent::NodesImplBase NodesImplBase; |
1303 | 1303 |
|
1304 | 1304 |
void eraseNode(const Node& node) { |
1305 | 1305 |
if (typename Parent::IncEdgeIt(*this, node) == INVALID) { |
1306 | 1306 |
return; |
1307 | 1307 |
} |
1308 | 1308 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
... | ... |
@@ -199,89 +199,89 @@ |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
///Arc conversion |
202 | 202 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
203 | 203 |
///Edge conversion |
204 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
205 | 205 |
///Compare with \c INVALID |
206 | 206 |
bool operator==(Invalid) const { return euler.empty(); } |
207 | 207 |
///Compare with \c INVALID |
208 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); } |
209 | 209 |
|
210 | 210 |
///Next arc of the tour |
211 | 211 |
|
212 | 212 |
///Next arc of the tour |
213 | 213 |
/// |
214 | 214 |
EulerIt &operator++() { |
215 | 215 |
Node s=g.target(euler.front()); |
216 | 216 |
euler.pop_front(); |
217 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
218 | 218 |
while(narc[s]!=INVALID) { |
219 | 219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
220 | 220 |
if(narc[s]==INVALID) break; |
221 | 221 |
else { |
222 | 222 |
euler.insert(next,narc[s]); |
223 | 223 |
visited[narc[s]]=true; |
224 | 224 |
Node n=g.target(narc[s]); |
225 | 225 |
++narc[s]; |
226 | 226 |
s=n; |
227 | 227 |
} |
228 | 228 |
} |
229 | 229 |
return *this; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
///Postfix incrementation |
233 | 233 |
|
234 | 234 |
/// Postfix incrementation. |
235 | 235 |
/// |
236 | 236 |
///\warning This incrementation returns an \c Arc (which converts to |
237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
238 | 238 |
Arc operator++(int) |
239 | 239 |
{ |
240 | 240 |
Arc e=*this; |
241 | 241 |
++(*this); |
242 | 242 |
return e; |
243 | 243 |
} |
244 | 244 |
}; |
245 | 245 |
|
246 | 246 |
|
247 |
///Check if the given graph is |
|
247 |
///Check if the given graph is Eulerian |
|
248 | 248 |
|
249 | 249 |
/// \ingroup graph_properties |
250 |
///This function checks if the given graph is |
|
250 |
///This function checks if the given graph is Eulerian. |
|
251 | 251 |
///It works for both directed and undirected graphs. |
252 | 252 |
/// |
253 | 253 |
///By definition, a digraph is called \e Eulerian if |
254 | 254 |
///and only if it is connected and the number of incoming and outgoing |
255 | 255 |
///arcs are the same for each node. |
256 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
257 | 257 |
///and only if it is connected and the number of incident edges is even |
258 | 258 |
///for each node. |
259 | 259 |
/// |
260 | 260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
261 | 261 |
/// Euler tour, since they may contain isolated nodes. |
262 | 262 |
/// |
263 | 263 |
///\sa DiEulerIt, EulerIt |
264 | 264 |
template<typename GR> |
265 | 265 |
#ifdef DOXYGEN |
266 | 266 |
bool |
267 | 267 |
#else |
268 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
269 | 269 |
eulerian(const GR &g) |
270 | 270 |
{ |
271 | 271 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
272 | 272 |
if(countIncEdges(g,n)%2) return false; |
273 | 273 |
return connected(g); |
274 | 274 |
} |
275 | 275 |
template<class GR> |
276 | 276 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
277 | 277 |
#endif |
278 | 278 |
eulerian(const GR &g) |
279 | 279 |
{ |
280 | 280 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
281 | 281 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
282 | 282 |
return connected(undirector(g)); |
283 | 283 |
} |
284 | 284 |
|
285 | 285 |
} |
286 | 286 |
|
287 | 287 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GLPK_H |
20 | 20 |
#define LEMON_GLPK_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
24 | 24 |
///\ingroup lp_group |
25 | 25 |
|
26 | 26 |
#include <lemon/lp_base.h> |
27 | 27 |
|
28 | 28 |
// forward declaration |
29 |
# |
|
29 |
#if !defined _GLP_PROB && !defined GLP_PROB |
|
30 | 30 |
#define _GLP_PROB |
31 |
|
|
31 |
#define GLP_PROB |
|
32 |
typedef struct { double _opaque_prob; } glp_prob; |
|
32 | 33 |
/* LP/MIP problem object */ |
33 | 34 |
#endif |
34 | 35 |
|
35 | 36 |
namespace lemon { |
36 | 37 |
|
37 | 38 |
|
38 | 39 |
/// \brief Base interface for the GLPK LP and MIP solver |
39 | 40 |
/// |
40 | 41 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
41 | 42 |
/// \ingroup lp_group |
42 | 43 |
class GlpkBase : virtual public LpBase { |
43 | 44 |
protected: |
44 | 45 |
|
45 | 46 |
typedef glp_prob LPX; |
46 | 47 |
glp_prob* lp; |
47 | 48 |
|
48 | 49 |
GlpkBase(); |
49 | 50 |
GlpkBase(const GlpkBase&); |
50 | 51 |
virtual ~GlpkBase(); |
51 | 52 |
|
52 | 53 |
protected: |
53 | 54 |
|
54 | 55 |
virtual int _addCol(); |
55 | 56 |
virtual int _addRow(); |
56 | 57 |
|
57 | 58 |
virtual void _eraseCol(int i); |
58 | 59 |
virtual void _eraseRow(int i); |
59 | 60 |
|
60 | 61 |
virtual void _eraseColId(int i); |
61 | 62 |
virtual void _eraseRowId(int i); |
62 | 63 |
|
63 | 64 |
virtual void _getColName(int col, std::string& name) const; |
64 | 65 |
virtual void _setColName(int col, const std::string& name); |
65 | 66 |
virtual int _colByName(const std::string& name) const; |
66 | 67 |
|
67 | 68 |
virtual void _getRowName(int row, std::string& name) const; |
68 | 69 |
virtual void _setRowName(int row, const std::string& name); |
69 | 70 |
virtual int _rowByName(const std::string& name) const; |
70 | 71 |
|
71 | 72 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
72 | 73 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
73 | 74 |
|
74 | 75 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
75 | 76 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
76 | 77 |
|
77 | 78 |
virtual void _setCoeff(int row, int col, Value value); |
78 | 79 |
virtual Value _getCoeff(int row, int col) const; |
79 | 80 |
1 | 1 |
prefix=@prefix@ |
2 | 2 |
exec_prefix=@exec_prefix@ |
3 | 3 |
libdir=@libdir@ |
4 | 4 |
includedir=@includedir@ |
5 | 5 |
|
6 | 6 |
Name: @PACKAGE_NAME@ |
7 |
Description: Library |
|
7 |
Description: Library for Efficient Modeling and Optimization in Networks |
|
8 | 8 |
Version: @PACKAGE_VERSION@ |
9 | 9 |
Libs: -L${libdir} -lemon @GLPK_LIBS@ @CPLEX_LIBS@ @SOPLEX_LIBS@ @CLP_LIBS@ @CBC_LIBS@ |
10 | 10 |
Cflags: -I${includedir} |
... | ... |
@@ -454,116 +454,116 @@ |
454 | 454 |
if ((*_matching)[v] == INVALID && v != n) { |
455 | 455 |
(*_matching)[n] = a; |
456 | 456 |
(*_status)[n] = MATCHED; |
457 | 457 |
(*_matching)[v] = _graph.oppositeArc(a); |
458 | 458 |
(*_status)[v] = MATCHED; |
459 | 459 |
break; |
460 | 460 |
} |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
} |
465 | 465 |
|
466 | 466 |
|
467 | 467 |
/// \brief Initialize the matching from a map. |
468 | 468 |
/// |
469 | 469 |
/// This function initializes the matching from a \c bool valued edge |
470 | 470 |
/// map. This map should have the property that there are no two incident |
471 | 471 |
/// edges with \c true value, i.e. it really contains a matching. |
472 | 472 |
/// \return \c true if the map contains a matching. |
473 | 473 |
template <typename MatchingMap> |
474 | 474 |
bool matchingInit(const MatchingMap& matching) { |
475 | 475 |
createStructures(); |
476 | 476 |
|
477 | 477 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
478 | 478 |
(*_matching)[n] = INVALID; |
479 | 479 |
(*_status)[n] = UNMATCHED; |
480 | 480 |
} |
481 | 481 |
for(EdgeIt e(_graph); e!=INVALID; ++e) { |
482 | 482 |
if (matching[e]) { |
483 | 483 |
|
484 | 484 |
Node u = _graph.u(e); |
485 | 485 |
if ((*_matching)[u] != INVALID) return false; |
486 | 486 |
(*_matching)[u] = _graph.direct(e, true); |
487 | 487 |
(*_status)[u] = MATCHED; |
488 | 488 |
|
489 | 489 |
Node v = _graph.v(e); |
490 | 490 |
if ((*_matching)[v] != INVALID) return false; |
491 | 491 |
(*_matching)[v] = _graph.direct(e, false); |
492 | 492 |
(*_status)[v] = MATCHED; |
493 | 493 |
} |
494 | 494 |
} |
495 | 495 |
return true; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
/// \brief Start Edmonds' algorithm |
499 | 499 |
/// |
500 | 500 |
/// This function runs the original Edmonds' algorithm. |
501 | 501 |
/// |
502 |
/// \pre \ref |
|
502 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
|
503 | 503 |
/// called before using this function. |
504 | 504 |
void startSparse() { |
505 | 505 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
506 | 506 |
if ((*_status)[n] == UNMATCHED) { |
507 | 507 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
508 | 508 |
_tree_set->insert(n); |
509 | 509 |
(*_status)[n] = EVEN; |
510 | 510 |
processSparse(n); |
511 | 511 |
} |
512 | 512 |
} |
513 | 513 |
} |
514 | 514 |
|
515 | 515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
516 | 516 |
/// for dense graphs |
517 | 517 |
/// |
518 | 518 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
519 | 519 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
520 | 520 |
/// |
521 |
/// \pre \ref |
|
521 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
|
522 | 522 |
/// called before using this function. |
523 | 523 |
void startDense() { |
524 | 524 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
525 | 525 |
if ((*_status)[n] == UNMATCHED) { |
526 | 526 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
527 | 527 |
_tree_set->insert(n); |
528 | 528 |
(*_status)[n] = EVEN; |
529 | 529 |
processDense(n); |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
|
534 | 534 |
|
535 | 535 |
/// \brief Run Edmonds' algorithm |
536 | 536 |
/// |
537 | 537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
538 | 538 |
/// postponing shrinks is used for relatively dense graphs |
539 | 539 |
/// (for which <tt>m>=2*n</tt> holds). |
540 | 540 |
void run() { |
541 | 541 |
if (countEdges(_graph) < 2 * countNodes(_graph)) { |
542 | 542 |
greedyInit(); |
543 | 543 |
startSparse(); |
544 | 544 |
} else { |
545 | 545 |
init(); |
546 | 546 |
startDense(); |
547 | 547 |
} |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
/// @} |
551 | 551 |
|
552 | 552 |
/// \name Primal Solution |
553 | 553 |
/// Functions to get the primal solution, i.e. the maximum matching. |
554 | 554 |
|
555 | 555 |
/// @{ |
556 | 556 |
|
557 | 557 |
/// \brief Return the size (cardinality) of the matching. |
558 | 558 |
/// |
559 | 559 |
/// This function returns the size (cardinality) of the current matching. |
560 | 560 |
/// After run() it returns the size of the maximum matching in the graph. |
561 | 561 |
int matchingSize() const { |
562 | 562 |
int size = 0; |
563 | 563 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
564 | 564 |
if ((*_matching)[n] != INVALID) { |
565 | 565 |
++size; |
566 | 566 |
} |
567 | 567 |
} |
568 | 568 |
return size / 2; |
569 | 569 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 |
/// \ingroup |
|
22 |
/// \ingroup min_cost_flow_algs |
|
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 |
/// \addtogroup |
|
36 |
/// \addtogroup min_cost_flow_algs |
|
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// This algorithm is a specialized version of the linear programming |
45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
46 | 46 |
/// It is one of the most efficient solution methods. |
47 | 47 |
/// |
48 | 48 |
/// In general this class is the fastest implementation available |
49 | 49 |
/// in LEMON for the minimum cost flow problem. |
50 | 50 |
/// Moreover it supports both directions of the supply/demand inequality |
51 | 51 |
/// constraints. For more information see \ref SupplyType. |
52 | 52 |
/// |
53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
54 | 54 |
/// can be given using separate functions, and the algorithm can be |
55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
56 | 56 |
/// specified, then default values will be used. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
59 | 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
62 | 62 |
/// algorithm. By default it is the same as \c V. |
63 | 63 |
/// |
64 | 64 |
/// \warning Both value types must be signed and all input data must |
65 | 65 |
/// be integer. |
66 | 66 |
/// |
67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 68 |
/// implementations, from which the most efficient one is used |
69 | 69 |
/// by default. For more information see \ref PivotRule. |
70 | 70 |
template <typename GR, typename V = int, typename C = V> |
71 | 71 |
class NetworkSimplex |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
|
75 | 75 |
/// The type of the flow amounts, capacity bounds and supply values |
76 | 76 |
typedef V Value; |
77 | 77 |
/// The type of the arc costs |
78 | 78 |
typedef C Cost; |
79 | 79 |
|
80 | 80 |
public: |
81 | 81 |
|
82 | 82 |
/// \brief Problem type constants for the \c run() function. |
83 | 83 |
/// |
84 | 84 |
/// Enum type containing the problem type constants that can be |
85 | 85 |
/// returned by the \ref run() function of the algorithm. |
86 | 86 |
enum ProblemType { |
87 | 87 |
/// The problem has no feasible solution (flow). |
88 | 88 |
INFEASIBLE, |
89 | 89 |
/// The problem has optimal solution (i.e. it is feasible and |
90 | 90 |
/// bounded), and the algorithm has found optimal flow and node |
91 | 91 |
/// potentials (primal and dual solutions). |
92 | 92 |
OPTIMAL, |
93 | 93 |
/// The objective function of the problem is unbounded, i.e. |
94 | 94 |
/// there is a directed cycle having negative total cost and |
95 | 95 |
/// infinite upper bound. |
96 | 96 |
UNBOUNDED |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
/// \brief Constants for selecting the type of the supply constraints. |
100 | 100 |
/// |
101 | 101 |
/// Enum type containing constants for selecting the supply type, |
102 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
103 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
104 | 104 |
/// |
105 |
/// The default supply type is \c GEQ, since this form is supported |
|
106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
107 |
/// algorithm, as well. |
|
108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
109 |
/// function. |
|
110 |
/// |
|
111 |
/// |
|
105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
|
106 |
/// selected using \ref supplyType(). |
|
107 |
/// The equality form is a special case of both supply types. |
|
112 | 108 |
enum SupplyType { |
113 |
|
|
114 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
116 |
/// formulation of the problem is the following. |
|
117 |
/** |
|
118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
120 |
sup(u) \quad \forall u\in V \f] |
|
121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
122 |
*/ |
|
123 |
/// It means that the total demand must be greater or equal to the |
|
124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
125 |
/// negative) and all the supplies have to be carried out from |
|
126 |
/// the supply nodes, but there could be demands that are not |
|
127 |
/// |
|
110 |
/// supply/demand constraints in the definition of the problem. |
|
128 | 111 |
GEQ, |
129 |
/// It is just an alias for the \c GEQ option. |
|
130 |
CARRY_SUPPLIES = GEQ, |
|
131 |
|
|
132 | 112 |
/// This option means that there are <em>"less or equal"</em> |
133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
134 |
/// formulation of the problem is the following. |
|
135 |
/** |
|
136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
138 |
sup(u) \quad \forall u\in V \f] |
|
139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
140 |
*/ |
|
141 |
/// It means that the total demand must be less or equal to the |
|
142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
143 |
/// positive) and all the demands have to be satisfied, but there |
|
144 |
/// could be supplies that are not carried out from the supply |
|
145 |
/// nodes. |
|
146 |
LEQ, |
|
147 |
/// It is just an alias for the \c LEQ option. |
|
148 |
SATISFY_DEMANDS = LEQ |
|
113 |
/// supply/demand constraints in the definition of the problem. |
|
114 |
LEQ |
|
149 | 115 |
}; |
150 | 116 |
|
151 | 117 |
/// \brief Constants for selecting the pivot rule. |
152 | 118 |
/// |
153 | 119 |
/// Enum type containing constants for selecting the pivot rule for |
154 | 120 |
/// the \ref run() function. |
155 | 121 |
/// |
156 | 122 |
/// \ref NetworkSimplex provides five different pivot rule |
157 | 123 |
/// implementations that significantly affect the running time |
158 | 124 |
/// of the algorithm. |
159 | 125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
160 | 126 |
/// proved to be the most efficient and the most robust on various |
161 | 127 |
/// test inputs according to our benchmark tests. |
162 | 128 |
/// However another pivot rule can be selected using the \ref run() |
163 | 129 |
/// function with the proper parameter. |
164 | 130 |
enum PivotRule { |
165 | 131 |
|
166 | 132 |
/// The First Eligible pivot rule. |
167 | 133 |
/// The next eligible arc is selected in a wraparound fashion |
168 | 134 |
/// in every iteration. |
169 | 135 |
FIRST_ELIGIBLE, |
170 | 136 |
|
171 | 137 |
/// The Best Eligible pivot rule. |
172 | 138 |
/// The best eligible arc is selected in every iteration. |
173 | 139 |
BEST_ELIGIBLE, |
174 | 140 |
|
175 | 141 |
/// The Block Search pivot rule. |
176 | 142 |
/// A specified number of arcs are examined in every iteration |
177 | 143 |
/// in a wraparound fashion and the best eligible arc is selected |
178 | 144 |
/// from this block. |
179 | 145 |
BLOCK_SEARCH, |
180 | 146 |
|
181 | 147 |
/// The Candidate List pivot rule. |
182 | 148 |
/// In a major iteration a candidate list is built from eligible arcs |
183 | 149 |
/// in a wraparound fashion and in the following minor iterations |
184 | 150 |
/// the best eligible arc is selected from this list. |
185 | 151 |
CANDIDATE_LIST, |
186 | 152 |
|
187 | 153 |
/// The Altering Candidate List pivot rule. |
188 | 154 |
/// It is a modified version of the Candidate List method. |
189 | 155 |
/// It keeps only the several best eligible arcs from the former |
190 | 156 |
/// candidate list and extends this list in every iteration. |
191 | 157 |
ALTERING_LIST |
192 | 158 |
}; |
193 | 159 |
|
194 | 160 |
private: |
195 | 161 |
|
196 | 162 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
197 | 163 |
|
198 | 164 |
typedef std::vector<Arc> ArcVector; |
199 | 165 |
typedef std::vector<Node> NodeVector; |
200 | 166 |
typedef std::vector<int> IntVector; |
201 | 167 |
typedef std::vector<bool> BoolVector; |
202 | 168 |
typedef std::vector<Value> ValueVector; |
203 | 169 |
typedef std::vector<Cost> CostVector; |
204 | 170 |
|
205 | 171 |
// State constants for arcs |
206 | 172 |
enum ArcStateEnum { |
207 | 173 |
STATE_UPPER = -1, |
208 | 174 |
STATE_TREE = 0, |
209 | 175 |
STATE_LOWER = 1 |
210 | 176 |
}; |
211 | 177 |
|
212 | 178 |
private: |
213 | 179 |
|
214 | 180 |
// Data related to the underlying digraph |
215 | 181 |
const GR &_graph; |
216 | 182 |
int _node_num; |
217 | 183 |
int _arc_num; |
184 |
int _all_arc_num; |
|
185 |
int _search_arc_num; |
|
218 | 186 |
|
219 | 187 |
// Parameters of the problem |
220 | 188 |
bool _have_lower; |
221 | 189 |
SupplyType _stype; |
222 | 190 |
Value _sum_supply; |
223 | 191 |
|
224 | 192 |
// Data structures for storing the digraph |
225 | 193 |
IntNodeMap _node_id; |
226 | 194 |
IntArcMap _arc_id; |
227 | 195 |
IntVector _source; |
228 | 196 |
IntVector _target; |
229 | 197 |
|
230 | 198 |
// Node and arc data |
231 | 199 |
ValueVector _lower; |
232 | 200 |
ValueVector _upper; |
233 | 201 |
ValueVector _cap; |
234 | 202 |
CostVector _cost; |
235 | 203 |
ValueVector _supply; |
236 | 204 |
ValueVector _flow; |
237 | 205 |
CostVector _pi; |
238 | 206 |
|
239 | 207 |
// Data for storing the spanning tree structure |
240 | 208 |
IntVector _parent; |
241 | 209 |
IntVector _pred; |
242 | 210 |
IntVector _thread; |
243 | 211 |
IntVector _rev_thread; |
244 | 212 |
IntVector _succ_num; |
245 | 213 |
IntVector _last_succ; |
246 | 214 |
IntVector _dirty_revs; |
247 | 215 |
BoolVector _forward; |
248 | 216 |
IntVector _state; |
249 | 217 |
int _root; |
250 | 218 |
|
251 | 219 |
// Temporary data used in the current pivot iteration |
252 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
253 | 221 |
int first, second, right, last; |
254 | 222 |
int stem, par_stem, new_stem; |
255 | 223 |
Value delta; |
256 | 224 |
|
257 | 225 |
public: |
258 | 226 |
|
259 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
260 | 228 |
/// |
261 | 229 |
/// Constant for infinite upper bounds (capacities). |
262 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
263 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
264 | 232 |
const Value INF; |
265 | 233 |
|
266 | 234 |
private: |
267 | 235 |
|
268 | 236 |
// Implementation of the First Eligible pivot rule |
269 | 237 |
class FirstEligiblePivotRule |
270 | 238 |
{ |
271 | 239 |
private: |
272 | 240 |
|
273 | 241 |
// References to the NetworkSimplex class |
274 | 242 |
const IntVector &_source; |
275 | 243 |
const IntVector &_target; |
276 | 244 |
const CostVector &_cost; |
277 | 245 |
const IntVector &_state; |
278 | 246 |
const CostVector &_pi; |
279 | 247 |
int &_in_arc; |
280 |
int |
|
248 |
int _search_arc_num; |
|
281 | 249 |
|
282 | 250 |
// Pivot rule data |
283 | 251 |
int _next_arc; |
284 | 252 |
|
285 | 253 |
public: |
286 | 254 |
|
287 | 255 |
// Constructor |
288 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
289 | 257 |
_source(ns._source), _target(ns._target), |
290 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
291 |
_in_arc(ns.in_arc), |
|
259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
260 |
_next_arc(0) |
|
292 | 261 |
{} |
293 | 262 |
|
294 | 263 |
// Find next entering arc |
295 | 264 |
bool findEnteringArc() { |
296 | 265 |
Cost c; |
297 |
for (int e = _next_arc; e < |
|
266 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
|
298 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
299 | 268 |
if (c < 0) { |
300 | 269 |
_in_arc = e; |
301 | 270 |
_next_arc = e + 1; |
302 | 271 |
return true; |
303 | 272 |
} |
304 | 273 |
} |
305 | 274 |
for (int e = 0; e < _next_arc; ++e) { |
306 | 275 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
307 | 276 |
if (c < 0) { |
308 | 277 |
_in_arc = e; |
309 | 278 |
_next_arc = e + 1; |
310 | 279 |
return true; |
311 | 280 |
} |
312 | 281 |
} |
313 | 282 |
return false; |
314 | 283 |
} |
315 | 284 |
|
316 | 285 |
}; //class FirstEligiblePivotRule |
317 | 286 |
|
318 | 287 |
|
319 | 288 |
// Implementation of the Best Eligible pivot rule |
320 | 289 |
class BestEligiblePivotRule |
321 | 290 |
{ |
322 | 291 |
private: |
323 | 292 |
|
324 | 293 |
// References to the NetworkSimplex class |
325 | 294 |
const IntVector &_source; |
326 | 295 |
const IntVector &_target; |
327 | 296 |
const CostVector &_cost; |
328 | 297 |
const IntVector &_state; |
329 | 298 |
const CostVector &_pi; |
330 | 299 |
int &_in_arc; |
331 |
int |
|
300 |
int _search_arc_num; |
|
332 | 301 |
|
333 | 302 |
public: |
334 | 303 |
|
335 | 304 |
// Constructor |
336 | 305 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
337 | 306 |
_source(ns._source), _target(ns._target), |
338 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
339 |
_in_arc(ns.in_arc), |
|
308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
|
340 | 309 |
{} |
341 | 310 |
|
342 | 311 |
// Find next entering arc |
343 | 312 |
bool findEnteringArc() { |
344 | 313 |
Cost c, min = 0; |
345 |
for (int e = 0; e < |
|
314 |
for (int e = 0; e < _search_arc_num; ++e) { |
|
346 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
347 | 316 |
if (c < min) { |
348 | 317 |
min = c; |
349 | 318 |
_in_arc = e; |
350 | 319 |
} |
351 | 320 |
} |
352 | 321 |
return min < 0; |
353 | 322 |
} |
354 | 323 |
|
355 | 324 |
}; //class BestEligiblePivotRule |
356 | 325 |
|
357 | 326 |
|
358 | 327 |
// Implementation of the Block Search pivot rule |
359 | 328 |
class BlockSearchPivotRule |
360 | 329 |
{ |
361 | 330 |
private: |
362 | 331 |
|
363 | 332 |
// References to the NetworkSimplex class |
364 | 333 |
const IntVector &_source; |
365 | 334 |
const IntVector &_target; |
366 | 335 |
const CostVector &_cost; |
367 | 336 |
const IntVector &_state; |
368 | 337 |
const CostVector &_pi; |
369 | 338 |
int &_in_arc; |
370 |
int |
|
339 |
int _search_arc_num; |
|
371 | 340 |
|
372 | 341 |
// Pivot rule data |
373 | 342 |
int _block_size; |
374 | 343 |
int _next_arc; |
375 | 344 |
|
376 | 345 |
public: |
377 | 346 |
|
378 | 347 |
// Constructor |
379 | 348 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
380 | 349 |
_source(ns._source), _target(ns._target), |
381 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
382 |
_in_arc(ns.in_arc), |
|
351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
352 |
_next_arc(0) |
|
383 | 353 |
{ |
384 | 354 |
// The main parameters of the pivot rule |
385 |
const double BLOCK_SIZE_FACTOR = |
|
355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
|
386 | 356 |
const int MIN_BLOCK_SIZE = 10; |
387 | 357 |
|
388 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
389 |
std::sqrt(double( |
|
359 |
std::sqrt(double(_search_arc_num))), |
|
390 | 360 |
MIN_BLOCK_SIZE ); |
391 | 361 |
} |
392 | 362 |
|
393 | 363 |
// Find next entering arc |
394 | 364 |
bool findEnteringArc() { |
395 | 365 |
Cost c, min = 0; |
396 | 366 |
int cnt = _block_size; |
397 | 367 |
int e, min_arc = _next_arc; |
398 |
for (e = _next_arc; e < |
|
368 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
399 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
400 | 370 |
if (c < min) { |
401 | 371 |
min = c; |
402 | 372 |
min_arc = e; |
403 | 373 |
} |
404 | 374 |
if (--cnt == 0) { |
405 | 375 |
if (min < 0) break; |
406 | 376 |
cnt = _block_size; |
407 | 377 |
} |
408 | 378 |
} |
409 | 379 |
if (min == 0 || cnt > 0) { |
410 | 380 |
for (e = 0; e < _next_arc; ++e) { |
411 | 381 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
412 | 382 |
if (c < min) { |
413 | 383 |
min = c; |
414 | 384 |
min_arc = e; |
415 | 385 |
} |
416 | 386 |
if (--cnt == 0) { |
417 | 387 |
if (min < 0) break; |
418 | 388 |
cnt = _block_size; |
419 | 389 |
} |
420 | 390 |
} |
421 | 391 |
} |
422 | 392 |
if (min >= 0) return false; |
423 | 393 |
_in_arc = min_arc; |
424 | 394 |
_next_arc = e; |
425 | 395 |
return true; |
426 | 396 |
} |
427 | 397 |
|
428 | 398 |
}; //class BlockSearchPivotRule |
429 | 399 |
|
430 | 400 |
|
431 | 401 |
// Implementation of the Candidate List pivot rule |
432 | 402 |
class CandidateListPivotRule |
433 | 403 |
{ |
434 | 404 |
private: |
435 | 405 |
|
436 | 406 |
// References to the NetworkSimplex class |
437 | 407 |
const IntVector &_source; |
438 | 408 |
const IntVector &_target; |
439 | 409 |
const CostVector &_cost; |
440 | 410 |
const IntVector &_state; |
441 | 411 |
const CostVector &_pi; |
442 | 412 |
int &_in_arc; |
443 |
int |
|
413 |
int _search_arc_num; |
|
444 | 414 |
|
445 | 415 |
// Pivot rule data |
446 | 416 |
IntVector _candidates; |
447 | 417 |
int _list_length, _minor_limit; |
448 | 418 |
int _curr_length, _minor_count; |
449 | 419 |
int _next_arc; |
450 | 420 |
|
451 | 421 |
public: |
452 | 422 |
|
453 | 423 |
/// Constructor |
454 | 424 |
CandidateListPivotRule(NetworkSimplex &ns) : |
455 | 425 |
_source(ns._source), _target(ns._target), |
456 | 426 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
457 |
_in_arc(ns.in_arc), |
|
427 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
428 |
_next_arc(0) |
|
458 | 429 |
{ |
459 | 430 |
// The main parameters of the pivot rule |
460 | 431 |
const double LIST_LENGTH_FACTOR = 1.0; |
461 | 432 |
const int MIN_LIST_LENGTH = 10; |
462 | 433 |
const double MINOR_LIMIT_FACTOR = 0.1; |
463 | 434 |
const int MIN_MINOR_LIMIT = 3; |
464 | 435 |
|
465 | 436 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
466 |
std::sqrt(double( |
|
437 |
std::sqrt(double(_search_arc_num))), |
|
467 | 438 |
MIN_LIST_LENGTH ); |
468 | 439 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
469 | 440 |
MIN_MINOR_LIMIT ); |
470 | 441 |
_curr_length = _minor_count = 0; |
471 | 442 |
_candidates.resize(_list_length); |
472 | 443 |
} |
473 | 444 |
|
474 | 445 |
/// Find next entering arc |
475 | 446 |
bool findEnteringArc() { |
476 | 447 |
Cost min, c; |
477 | 448 |
int e, min_arc = _next_arc; |
478 | 449 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
479 | 450 |
// Minor iteration: select the best eligible arc from the |
480 | 451 |
// current candidate list |
481 | 452 |
++_minor_count; |
482 | 453 |
min = 0; |
483 | 454 |
for (int i = 0; i < _curr_length; ++i) { |
484 | 455 |
e = _candidates[i]; |
485 | 456 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
486 | 457 |
if (c < min) { |
487 | 458 |
min = c; |
488 | 459 |
min_arc = e; |
489 | 460 |
} |
490 | 461 |
if (c >= 0) { |
491 | 462 |
_candidates[i--] = _candidates[--_curr_length]; |
492 | 463 |
} |
493 | 464 |
} |
494 | 465 |
if (min < 0) { |
495 | 466 |
_in_arc = min_arc; |
496 | 467 |
return true; |
497 | 468 |
} |
498 | 469 |
} |
499 | 470 |
|
500 | 471 |
// Major iteration: build a new candidate list |
501 | 472 |
min = 0; |
502 | 473 |
_curr_length = 0; |
503 |
for (e = _next_arc; e < |
|
474 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
504 | 475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
505 | 476 |
if (c < 0) { |
506 | 477 |
_candidates[_curr_length++] = e; |
507 | 478 |
if (c < min) { |
508 | 479 |
min = c; |
509 | 480 |
min_arc = e; |
510 | 481 |
} |
511 | 482 |
if (_curr_length == _list_length) break; |
512 | 483 |
} |
513 | 484 |
} |
514 | 485 |
if (_curr_length < _list_length) { |
515 | 486 |
for (e = 0; e < _next_arc; ++e) { |
516 | 487 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
517 | 488 |
if (c < 0) { |
518 | 489 |
_candidates[_curr_length++] = e; |
519 | 490 |
if (c < min) { |
520 | 491 |
min = c; |
521 | 492 |
min_arc = e; |
522 | 493 |
} |
523 | 494 |
if (_curr_length == _list_length) break; |
524 | 495 |
} |
525 | 496 |
} |
526 | 497 |
} |
527 | 498 |
if (_curr_length == 0) return false; |
528 | 499 |
_minor_count = 1; |
529 | 500 |
_in_arc = min_arc; |
530 | 501 |
_next_arc = e; |
531 | 502 |
return true; |
532 | 503 |
} |
533 | 504 |
|
534 | 505 |
}; //class CandidateListPivotRule |
535 | 506 |
|
536 | 507 |
|
537 | 508 |
// Implementation of the Altering Candidate List pivot rule |
538 | 509 |
class AlteringListPivotRule |
539 | 510 |
{ |
540 | 511 |
private: |
541 | 512 |
|
542 | 513 |
// References to the NetworkSimplex class |
543 | 514 |
const IntVector &_source; |
544 | 515 |
const IntVector &_target; |
545 | 516 |
const CostVector &_cost; |
546 | 517 |
const IntVector &_state; |
547 | 518 |
const CostVector &_pi; |
548 | 519 |
int &_in_arc; |
549 |
int |
|
520 |
int _search_arc_num; |
|
550 | 521 |
|
551 | 522 |
// Pivot rule data |
552 | 523 |
int _block_size, _head_length, _curr_length; |
553 | 524 |
int _next_arc; |
554 | 525 |
IntVector _candidates; |
555 | 526 |
CostVector _cand_cost; |
556 | 527 |
|
557 | 528 |
// Functor class to compare arcs during sort of the candidate list |
558 | 529 |
class SortFunc |
559 | 530 |
{ |
560 | 531 |
private: |
561 | 532 |
const CostVector &_map; |
562 | 533 |
public: |
563 | 534 |
SortFunc(const CostVector &map) : _map(map) {} |
564 | 535 |
bool operator()(int left, int right) { |
565 | 536 |
return _map[left] > _map[right]; |
566 | 537 |
} |
567 | 538 |
}; |
568 | 539 |
|
569 | 540 |
SortFunc _sort_func; |
570 | 541 |
|
571 | 542 |
public: |
572 | 543 |
|
573 | 544 |
// Constructor |
574 | 545 |
AlteringListPivotRule(NetworkSimplex &ns) : |
575 | 546 |
_source(ns._source), _target(ns._target), |
576 | 547 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
577 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
|
578 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
548 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
549 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
|
579 | 550 |
{ |
580 | 551 |
// The main parameters of the pivot rule |
581 | 552 |
const double BLOCK_SIZE_FACTOR = 1.5; |
582 | 553 |
const int MIN_BLOCK_SIZE = 10; |
583 | 554 |
const double HEAD_LENGTH_FACTOR = 0.1; |
584 | 555 |
const int MIN_HEAD_LENGTH = 3; |
585 | 556 |
|
586 | 557 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
587 |
std::sqrt(double( |
|
558 |
std::sqrt(double(_search_arc_num))), |
|
588 | 559 |
MIN_BLOCK_SIZE ); |
589 | 560 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
590 | 561 |
MIN_HEAD_LENGTH ); |
591 | 562 |
_candidates.resize(_head_length + _block_size); |
592 | 563 |
_curr_length = 0; |
593 | 564 |
} |
594 | 565 |
|
595 | 566 |
// Find next entering arc |
596 | 567 |
bool findEnteringArc() { |
597 | 568 |
// Check the current candidate list |
598 | 569 |
int e; |
599 | 570 |
for (int i = 0; i < _curr_length; ++i) { |
600 | 571 |
e = _candidates[i]; |
601 | 572 |
_cand_cost[e] = _state[e] * |
602 | 573 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
603 | 574 |
if (_cand_cost[e] >= 0) { |
604 | 575 |
_candidates[i--] = _candidates[--_curr_length]; |
605 | 576 |
} |
606 | 577 |
} |
607 | 578 |
|
608 | 579 |
// Extend the list |
609 | 580 |
int cnt = _block_size; |
610 | 581 |
int last_arc = 0; |
611 | 582 |
int limit = _head_length; |
612 | 583 |
|
613 |
for (int e = _next_arc; e < |
|
584 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
|
614 | 585 |
_cand_cost[e] = _state[e] * |
615 | 586 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
616 | 587 |
if (_cand_cost[e] < 0) { |
617 | 588 |
_candidates[_curr_length++] = e; |
618 | 589 |
last_arc = e; |
619 | 590 |
} |
620 | 591 |
if (--cnt == 0) { |
621 | 592 |
if (_curr_length > limit) break; |
622 | 593 |
limit = 0; |
623 | 594 |
cnt = _block_size; |
624 | 595 |
} |
625 | 596 |
} |
626 | 597 |
if (_curr_length <= limit) { |
627 | 598 |
for (int e = 0; e < _next_arc; ++e) { |
628 | 599 |
_cand_cost[e] = _state[e] * |
629 | 600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
630 | 601 |
if (_cand_cost[e] < 0) { |
631 | 602 |
_candidates[_curr_length++] = e; |
632 | 603 |
last_arc = e; |
633 | 604 |
} |
634 | 605 |
if (--cnt == 0) { |
635 | 606 |
if (_curr_length > limit) break; |
636 | 607 |
limit = 0; |
637 | 608 |
cnt = _block_size; |
638 | 609 |
} |
639 | 610 |
} |
640 | 611 |
} |
641 | 612 |
if (_curr_length == 0) return false; |
642 | 613 |
_next_arc = last_arc + 1; |
643 | 614 |
|
644 | 615 |
// Make heap of the candidate list (approximating a partial sort) |
645 | 616 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
646 | 617 |
_sort_func ); |
647 | 618 |
|
648 | 619 |
// Pop the first element of the heap |
649 | 620 |
_in_arc = _candidates[0]; |
650 | 621 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
651 | 622 |
_sort_func ); |
652 | 623 |
_curr_length = std::min(_head_length, _curr_length - 1); |
653 | 624 |
return true; |
654 | 625 |
} |
655 | 626 |
|
656 | 627 |
}; //class AlteringListPivotRule |
657 | 628 |
|
658 | 629 |
public: |
659 | 630 |
|
660 | 631 |
/// \brief Constructor. |
661 | 632 |
/// |
662 | 633 |
/// The constructor of the class. |
663 | 634 |
/// |
664 | 635 |
/// \param graph The digraph the algorithm runs on. |
665 | 636 |
NetworkSimplex(const GR& graph) : |
666 | 637 |
_graph(graph), _node_id(graph), _arc_id(graph), |
667 | 638 |
INF(std::numeric_limits<Value>::has_infinity ? |
668 | 639 |
std::numeric_limits<Value>::infinity() : |
669 | 640 |
std::numeric_limits<Value>::max()) |
670 | 641 |
{ |
671 | 642 |
// Check the value types |
672 | 643 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
673 | 644 |
"The flow type of NetworkSimplex must be signed"); |
674 | 645 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
675 | 646 |
"The cost type of NetworkSimplex must be signed"); |
676 | 647 |
|
677 | 648 |
// Resize vectors |
678 | 649 |
_node_num = countNodes(_graph); |
679 | 650 |
_arc_num = countArcs(_graph); |
680 | 651 |
int all_node_num = _node_num + 1; |
681 |
int |
|
652 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
682 | 653 |
|
683 |
_source.resize(all_arc_num); |
|
684 |
_target.resize(all_arc_num); |
|
654 |
_source.resize(max_arc_num); |
|
655 |
_target.resize(max_arc_num); |
|
685 | 656 |
|
686 |
_lower.resize(all_arc_num); |
|
687 |
_upper.resize(all_arc_num); |
|
688 |
_cap.resize(all_arc_num); |
|
689 |
_cost.resize(all_arc_num); |
|
657 |
_lower.resize(_arc_num); |
|
658 |
_upper.resize(_arc_num); |
|
659 |
_cap.resize(max_arc_num); |
|
660 |
_cost.resize(max_arc_num); |
|
690 | 661 |
_supply.resize(all_node_num); |
691 |
_flow.resize( |
|
662 |
_flow.resize(max_arc_num); |
|
692 | 663 |
_pi.resize(all_node_num); |
693 | 664 |
|
694 | 665 |
_parent.resize(all_node_num); |
695 | 666 |
_pred.resize(all_node_num); |
696 | 667 |
_forward.resize(all_node_num); |
697 | 668 |
_thread.resize(all_node_num); |
698 | 669 |
_rev_thread.resize(all_node_num); |
699 | 670 |
_succ_num.resize(all_node_num); |
700 | 671 |
_last_succ.resize(all_node_num); |
701 |
_state.resize( |
|
672 |
_state.resize(max_arc_num); |
|
702 | 673 |
|
703 | 674 |
// Copy the graph (store the arcs in a mixed order) |
704 | 675 |
int i = 0; |
705 | 676 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
706 | 677 |
_node_id[n] = i; |
707 | 678 |
} |
708 | 679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
709 | 680 |
i = 0; |
710 | 681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
711 | 682 |
_arc_id[a] = i; |
712 | 683 |
_source[i] = _node_id[_graph.source(a)]; |
713 | 684 |
_target[i] = _node_id[_graph.target(a)]; |
714 | 685 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
715 | 686 |
} |
716 | 687 |
|
717 | 688 |
// Initialize maps |
718 | 689 |
for (int i = 0; i != _node_num; ++i) { |
719 | 690 |
_supply[i] = 0; |
720 | 691 |
} |
721 | 692 |
for (int i = 0; i != _arc_num; ++i) { |
722 | 693 |
_lower[i] = 0; |
723 | 694 |
_upper[i] = INF; |
724 | 695 |
_cost[i] = 1; |
725 | 696 |
} |
726 | 697 |
_have_lower = false; |
727 | 698 |
_stype = GEQ; |
728 | 699 |
} |
729 | 700 |
|
730 | 701 |
/// \name Parameters |
731 | 702 |
/// The parameters of the algorithm can be specified using these |
732 | 703 |
/// functions. |
733 | 704 |
|
734 | 705 |
/// @{ |
735 | 706 |
|
736 | 707 |
/// \brief Set the lower bounds on the arcs. |
737 | 708 |
/// |
738 | 709 |
/// This function sets the lower bounds on the arcs. |
739 | 710 |
/// If it is not used before calling \ref run(), the lower bounds |
740 | 711 |
/// will be set to zero on all arcs. |
741 | 712 |
/// |
742 | 713 |
/// \param map An arc map storing the lower bounds. |
743 | 714 |
/// Its \c Value type must be convertible to the \c Value type |
744 | 715 |
/// of the algorithm. |
745 | 716 |
/// |
746 | 717 |
/// \return <tt>(*this)</tt> |
747 | 718 |
template <typename LowerMap> |
748 | 719 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
749 | 720 |
_have_lower = true; |
... | ... |
@@ -1024,143 +995,235 @@ |
1024 | 995 |
/// The \c Cost type of the algorithm must be convertible to the |
1025 | 996 |
/// \c Value type of the map. |
1026 | 997 |
/// |
1027 | 998 |
/// \pre \ref run() must be called before using this function. |
1028 | 999 |
template <typename PotentialMap> |
1029 | 1000 |
void potentialMap(PotentialMap &map) const { |
1030 | 1001 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1031 | 1002 |
map.set(n, _pi[_node_id[n]]); |
1032 | 1003 |
} |
1033 | 1004 |
} |
1034 | 1005 |
|
1035 | 1006 |
/// @} |
1036 | 1007 |
|
1037 | 1008 |
private: |
1038 | 1009 |
|
1039 | 1010 |
// Initialize internal data structures |
1040 | 1011 |
bool init() { |
1041 | 1012 |
if (_node_num == 0) return false; |
1042 | 1013 |
|
1043 | 1014 |
// Check the sum of supply values |
1044 | 1015 |
_sum_supply = 0; |
1045 | 1016 |
for (int i = 0; i != _node_num; ++i) { |
1046 | 1017 |
_sum_supply += _supply[i]; |
1047 | 1018 |
} |
1048 | 1019 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1049 | 1020 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1050 | 1021 |
|
1051 | 1022 |
// Remove non-zero lower bounds |
1052 | 1023 |
if (_have_lower) { |
1053 | 1024 |
for (int i = 0; i != _arc_num; ++i) { |
1054 | 1025 |
Value c = _lower[i]; |
1055 | 1026 |
if (c >= 0) { |
1056 | 1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
1057 | 1028 |
} else { |
1058 | 1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
1059 | 1030 |
} |
1060 | 1031 |
_supply[_source[i]] -= c; |
1061 | 1032 |
_supply[_target[i]] += c; |
1062 | 1033 |
} |
1063 | 1034 |
} else { |
1064 | 1035 |
for (int i = 0; i != _arc_num; ++i) { |
1065 | 1036 |
_cap[i] = _upper[i]; |
1066 | 1037 |
} |
1067 | 1038 |
} |
1068 | 1039 |
|
1069 | 1040 |
// Initialize artifical cost |
1070 | 1041 |
Cost ART_COST; |
1071 | 1042 |
if (std::numeric_limits<Cost>::is_exact) { |
1072 |
ART_COST = std::numeric_limits<Cost>::max() / |
|
1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
|
1073 | 1044 |
} else { |
1074 | 1045 |
ART_COST = std::numeric_limits<Cost>::min(); |
1075 | 1046 |
for (int i = 0; i != _arc_num; ++i) { |
1076 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1077 | 1048 |
} |
1078 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
1079 | 1050 |
} |
1080 | 1051 |
|
1081 | 1052 |
// Initialize arc maps |
1082 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1083 | 1054 |
_flow[i] = 0; |
1084 | 1055 |
_state[i] = STATE_LOWER; |
1085 | 1056 |
} |
1086 | 1057 |
|
1087 | 1058 |
// Set data for the artificial root node |
1088 | 1059 |
_root = _node_num; |
1089 | 1060 |
_parent[_root] = -1; |
1090 | 1061 |
_pred[_root] = -1; |
1091 | 1062 |
_thread[_root] = 0; |
1092 | 1063 |
_rev_thread[0] = _root; |
1093 | 1064 |
_succ_num[_root] = _node_num + 1; |
1094 | 1065 |
_last_succ[_root] = _root - 1; |
1095 | 1066 |
_supply[_root] = -_sum_supply; |
1096 |
_pi[_root] = |
|
1067 |
_pi[_root] = 0; |
|
1097 | 1068 |
|
1098 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1100 |
_parent[u] = _root; |
|
1101 |
_pred[u] = e; |
|
1102 |
_thread[u] = u + 1; |
|
1103 |
_rev_thread[u + 1] = u; |
|
1104 |
_succ_num[u] = 1; |
|
1105 |
_last_succ[u] = u; |
|
1106 |
_cost[e] = ART_COST; |
|
1107 |
_cap[e] = INF; |
|
1108 |
_state[e] = STATE_TREE; |
|
1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) { |
|
1110 |
_flow[e] = _supply[u]; |
|
1111 |
_forward[u] = true; |
|
1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
1113 |
} else { |
|
1114 |
_flow[e] = -_supply[u]; |
|
1115 |
_forward[u] = false; |
|
1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
1070 |
if (_sum_supply == 0) { |
|
1071 |
// EQ supply constraints |
|
1072 |
_search_arc_num = _arc_num; |
|
1073 |
_all_arc_num = _arc_num + _node_num; |
|
1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1075 |
_parent[u] = _root; |
|
1076 |
_pred[u] = e; |
|
1077 |
_thread[u] = u + 1; |
|
1078 |
_rev_thread[u + 1] = u; |
|
1079 |
_succ_num[u] = 1; |
|
1080 |
_last_succ[u] = u; |
|
1081 |
_cap[e] = INF; |
|
1082 |
_state[e] = STATE_TREE; |
|
1083 |
if (_supply[u] >= 0) { |
|
1084 |
_forward[u] = true; |
|
1085 |
_pi[u] = 0; |
|
1086 |
_source[e] = u; |
|
1087 |
_target[e] = _root; |
|
1088 |
_flow[e] = _supply[u]; |
|
1089 |
_cost[e] = 0; |
|
1090 |
} else { |
|
1091 |
_forward[u] = false; |
|
1092 |
_pi[u] = ART_COST; |
|
1093 |
_source[e] = _root; |
|
1094 |
_target[e] = u; |
|
1095 |
_flow[e] = -_supply[u]; |
|
1096 |
_cost[e] = ART_COST; |
|
1097 |
} |
|
1117 | 1098 |
} |
1118 | 1099 |
} |
1100 |
else if (_sum_supply > 0) { |
|
1101 |
// LEQ supply constraints |
|
1102 |
_search_arc_num = _arc_num + _node_num; |
|
1103 |
int f = _arc_num + _node_num; |
|
1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1105 |
_parent[u] = _root; |
|
1106 |
_thread[u] = u + 1; |
|
1107 |
_rev_thread[u + 1] = u; |
|
1108 |
_succ_num[u] = 1; |
|
1109 |
_last_succ[u] = u; |
|
1110 |
if (_supply[u] >= 0) { |
|
1111 |
_forward[u] = true; |
|
1112 |
_pi[u] = 0; |
|
1113 |
_pred[u] = e; |
|
1114 |
_source[e] = u; |
|
1115 |
_target[e] = _root; |
|
1116 |
_cap[e] = INF; |
|
1117 |
_flow[e] = _supply[u]; |
|
1118 |
_cost[e] = 0; |
|
1119 |
_state[e] = STATE_TREE; |
|
1120 |
} else { |
|
1121 |
_forward[u] = false; |
|
1122 |
_pi[u] = ART_COST; |
|
1123 |
_pred[u] = f; |
|
1124 |
_source[f] = _root; |
|
1125 |
_target[f] = u; |
|
1126 |
_cap[f] = INF; |
|
1127 |
_flow[f] = -_supply[u]; |
|
1128 |
_cost[f] = ART_COST; |
|
1129 |
_state[f] = STATE_TREE; |
|
1130 |
_source[e] = u; |
|
1131 |
_target[e] = _root; |
|
1132 |
_cap[e] = INF; |
|
1133 |
_flow[e] = 0; |
|
1134 |
_cost[e] = 0; |
|
1135 |
_state[e] = STATE_LOWER; |
|
1136 |
++f; |
|
1137 |
} |
|
1138 |
} |
|
1139 |
_all_arc_num = f; |
|
1140 |
} |
|
1141 |
else { |
|
1142 |
// GEQ supply constraints |
|
1143 |
_search_arc_num = _arc_num + _node_num; |
|
1144 |
int f = _arc_num + _node_num; |
|
1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1146 |
_parent[u] = _root; |
|
1147 |
_thread[u] = u + 1; |
|
1148 |
_rev_thread[u + 1] = u; |
|
1149 |
_succ_num[u] = 1; |
|
1150 |
_last_succ[u] = u; |
|
1151 |
if (_supply[u] <= 0) { |
|
1152 |
_forward[u] = false; |
|
1153 |
_pi[u] = 0; |
|
1154 |
_pred[u] = e; |
|
1155 |
_source[e] = _root; |
|
1156 |
_target[e] = u; |
|
1157 |
_cap[e] = INF; |
|
1158 |
_flow[e] = -_supply[u]; |
|
1159 |
_cost[e] = 0; |
|
1160 |
_state[e] = STATE_TREE; |
|
1161 |
} else { |
|
1162 |
_forward[u] = true; |
|
1163 |
_pi[u] = -ART_COST; |
|
1164 |
_pred[u] = f; |
|
1165 |
_source[f] = u; |
|
1166 |
_target[f] = _root; |
|
1167 |
_cap[f] = INF; |
|
1168 |
_flow[f] = _supply[u]; |
|
1169 |
_state[f] = STATE_TREE; |
|
1170 |
_cost[f] = ART_COST; |
|
1171 |
_source[e] = _root; |
|
1172 |
_target[e] = u; |
|
1173 |
_cap[e] = INF; |
|
1174 |
_flow[e] = 0; |
|
1175 |
_cost[e] = 0; |
|
1176 |
_state[e] = STATE_LOWER; |
|
1177 |
++f; |
|
1178 |
} |
|
1179 |
} |
|
1180 |
_all_arc_num = f; |
|
1181 |
} |
|
1119 | 1182 |
|
1120 | 1183 |
return true; |
1121 | 1184 |
} |
1122 | 1185 |
|
1123 | 1186 |
// Find the join node |
1124 | 1187 |
void findJoinNode() { |
1125 | 1188 |
int u = _source[in_arc]; |
1126 | 1189 |
int v = _target[in_arc]; |
1127 | 1190 |
while (u != v) { |
1128 | 1191 |
if (_succ_num[u] < _succ_num[v]) { |
1129 | 1192 |
u = _parent[u]; |
1130 | 1193 |
} else { |
1131 | 1194 |
v = _parent[v]; |
1132 | 1195 |
} |
1133 | 1196 |
} |
1134 | 1197 |
join = u; |
1135 | 1198 |
} |
1136 | 1199 |
|
1137 | 1200 |
// Find the leaving arc of the cycle and returns true if the |
1138 | 1201 |
// leaving arc is not the same as the entering arc |
1139 | 1202 |
bool findLeavingArc() { |
1140 | 1203 |
// Initialize first and second nodes according to the direction |
1141 | 1204 |
// of the cycle |
1142 | 1205 |
if (_state[in_arc] == STATE_LOWER) { |
1143 | 1206 |
first = _source[in_arc]; |
1144 | 1207 |
second = _target[in_arc]; |
1145 | 1208 |
} else { |
1146 | 1209 |
first = _target[in_arc]; |
1147 | 1210 |
second = _source[in_arc]; |
1148 | 1211 |
} |
1149 | 1212 |
delta = _cap[in_arc]; |
1150 | 1213 |
int result = 0; |
1151 | 1214 |
Value d; |
1152 | 1215 |
int e; |
1153 | 1216 |
|
1154 | 1217 |
// Search the cycle along the path form the first node to the root |
1155 | 1218 |
for (int u = first; u != join; u = _parent[u]) { |
1156 | 1219 |
e = _pred[u]; |
1157 | 1220 |
d = _forward[u] ? |
1158 | 1221 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
1159 | 1222 |
if (d < delta) { |
1160 | 1223 |
delta = d; |
1161 | 1224 |
u_out = u; |
1162 | 1225 |
result = 1; |
1163 | 1226 |
} |
1164 | 1227 |
} |
1165 | 1228 |
// Search the cycle along the path form the second node to the root |
1166 | 1229 |
for (int u = second; u != join; u = _parent[u]) { |
... | ... |
@@ -1329,86 +1392,98 @@ |
1329 | 1392 |
|
1330 | 1393 |
// Update potentials |
1331 | 1394 |
void updatePotential() { |
1332 | 1395 |
Cost sigma = _forward[u_in] ? |
1333 | 1396 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1334 | 1397 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1335 | 1398 |
// Update potentials in the subtree, which has been moved |
1336 | 1399 |
int end = _thread[_last_succ[u_in]]; |
1337 | 1400 |
for (int u = u_in; u != end; u = _thread[u]) { |
1338 | 1401 |
_pi[u] += sigma; |
1339 | 1402 |
} |
1340 | 1403 |
} |
1341 | 1404 |
|
1342 | 1405 |
// Execute the algorithm |
1343 | 1406 |
ProblemType start(PivotRule pivot_rule) { |
1344 | 1407 |
// Select the pivot rule implementation |
1345 | 1408 |
switch (pivot_rule) { |
1346 | 1409 |
case FIRST_ELIGIBLE: |
1347 | 1410 |
return start<FirstEligiblePivotRule>(); |
1348 | 1411 |
case BEST_ELIGIBLE: |
1349 | 1412 |
return start<BestEligiblePivotRule>(); |
1350 | 1413 |
case BLOCK_SEARCH: |
1351 | 1414 |
return start<BlockSearchPivotRule>(); |
1352 | 1415 |
case CANDIDATE_LIST: |
1353 | 1416 |
return start<CandidateListPivotRule>(); |
1354 | 1417 |
case ALTERING_LIST: |
1355 | 1418 |
return start<AlteringListPivotRule>(); |
1356 | 1419 |
} |
1357 | 1420 |
return INFEASIBLE; // avoid warning |
1358 | 1421 |
} |
1359 | 1422 |
|
1360 | 1423 |
template <typename PivotRuleImpl> |
1361 | 1424 |
ProblemType start() { |
1362 | 1425 |
PivotRuleImpl pivot(*this); |
1363 | 1426 |
|
1364 | 1427 |
// Execute the Network Simplex algorithm |
1365 | 1428 |
while (pivot.findEnteringArc()) { |
1366 | 1429 |
findJoinNode(); |
1367 | 1430 |
bool change = findLeavingArc(); |
1368 | 1431 |
if (delta >= INF) return UNBOUNDED; |
1369 | 1432 |
changeFlow(change); |
1370 | 1433 |
if (change) { |
1371 | 1434 |
updateTreeStructure(); |
1372 | 1435 |
updatePotential(); |
1373 | 1436 |
} |
1374 | 1437 |
} |
1375 | 1438 |
|
1376 | 1439 |
// Check feasibility |
1377 |
if (_sum_supply < 0) { |
|
1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1380 |
} |
|
1381 |
} |
|
1382 |
else if (_sum_supply > 0) { |
|
1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1385 |
} |
|
1386 |
} |
|
1387 |
else { |
|
1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1390 |
} |
|
1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
|
1441 |
if (_flow[e] != 0) return INFEASIBLE; |
|
1391 | 1442 |
} |
1392 | 1443 |
|
1393 | 1444 |
// Transform the solution and the supply map to the original form |
1394 | 1445 |
if (_have_lower) { |
1395 | 1446 |
for (int i = 0; i != _arc_num; ++i) { |
1396 | 1447 |
Value c = _lower[i]; |
1397 | 1448 |
if (c != 0) { |
1398 | 1449 |
_flow[i] += c; |
1399 | 1450 |
_supply[_source[i]] += c; |
1400 | 1451 |
_supply[_target[i]] -= c; |
1401 | 1452 |
} |
1402 | 1453 |
} |
1403 | 1454 |
} |
1455 |
|
|
1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
|
1457 |
// optimality conditions |
|
1458 |
if (_sum_supply == 0) { |
|
1459 |
if (_stype == GEQ) { |
|
1460 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
|
1461 |
for (int i = 0; i != _node_num; ++i) { |
|
1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
|
1463 |
} |
|
1464 |
if (max_pot > 0) { |
|
1465 |
for (int i = 0; i != _node_num; ++i) |
|
1466 |
_pi[i] -= max_pot; |
|
1467 |
} |
|
1468 |
} else { |
|
1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
|
1470 |
for (int i = 0; i != _node_num; ++i) { |
|
1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
|
1472 |
} |
|
1473 |
if (min_pot < 0) { |
|
1474 |
for (int i = 0; i != _node_num; ++i) |
|
1475 |
_pi[i] -= min_pot; |
|
1476 |
} |
|
1477 |
} |
|
1478 |
} |
|
1404 | 1479 |
|
1405 | 1480 |
return OPTIMAL; |
1406 | 1481 |
} |
1407 | 1482 |
|
1408 | 1483 |
}; //class NetworkSimplex |
1409 | 1484 |
|
1410 | 1485 |
///@} |
1411 | 1486 |
|
1412 | 1487 |
} //namespace lemon |
1413 | 1488 |
|
1414 | 1489 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 | 1 |
#!/bin/bash |
2 | 2 |
|
3 | 3 |
YEAR=`date +%Y` |
4 | 4 |
HGROOT=`hg root` |
5 | 5 |
|
6 | 6 |
function hg_year() { |
7 | 7 |
if [ -n "$(hg st $1)" ]; then |
8 | 8 |
echo $YEAR |
9 |
else |
|
10 |
hg log -l 1 --template='{date|isodate}\n' $1 | |
|
11 |
cut -d '-' -f 1 |
|
12 |
fi |
|
9 | 13 |
} |
10 | 14 |
|
11 | 15 |
# file enumaration modes |
12 | 16 |
|
13 | 17 |
function all_files() { |
14 | 18 |
hg status -a -m -c | |
15 | 19 |
cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
16 | 20 |
while read file; do echo $HGROOT/$file; done |
17 | 21 |
} |
18 | 22 |
|
19 | 23 |
function modified_files() { |
20 | 24 |
hg status -a -m | |
21 | 25 |
cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
22 | 26 |
while read file; do echo $HGROOT/$file; done |
23 | 27 |
} |
24 | 28 |
|
25 | 29 |
function changed_files() { |
26 | 30 |
{ |
27 | 31 |
if [ -n "$HG_PARENT1" ] |
28 | 32 |
then |
29 | 33 |
hg status --rev $HG_PARENT1:$HG_NODE -a -m |
30 | 34 |
fi |
31 | 35 |
if [ -n "$HG_PARENT2" ] |
32 | 36 |
then |
33 | 37 |
hg status --rev $HG_PARENT2:$HG_NODE -a -m |
34 | 38 |
fi |
35 | 39 |
} | cut -d ' ' -f 2 | grep -E '(\.(cc|h|dox)$|Makefile\.am$)' | |
36 | 40 |
sort | uniq | |
37 | 41 |
while read file; do echo $HGROOT/$file; done |
38 | 42 |
} |
39 | 43 |
|
40 | 44 |
function given_files() { |
41 | 45 |
for file in $GIVEN_FILES |
42 | 46 |
do |
43 | 47 |
echo $file |
44 | 48 |
done |
45 | 49 |
} |
46 | 50 |
|
47 | 51 |
# actions |
48 | 52 |
|
49 | 53 |
function update_action() { |
50 | 54 |
if ! diff -q $1 $2 >/dev/null |
51 | 55 |
then |
52 | 56 |
echo -n " [$3 updated]" |
53 | 57 |
rm $2 |
54 | 58 |
mv $1 $2 |
55 | 59 |
CHANGED=YES |
56 | 60 |
fi |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
LINK_DIRECTORIES(${PROJECT_BINARY_DIR}/lemon) |
7 | 7 |
|
8 | 8 |
SET(TESTS |
9 | 9 |
adaptors_test |
10 | 10 |
bfs_test |
11 | 11 |
circulation_test |
12 |
connectivity_test |
|
12 | 13 |
counter_test |
13 | 14 |
dfs_test |
14 | 15 |
digraph_test |
15 | 16 |
dijkstra_test |
16 | 17 |
dim_test |
17 | 18 |
edge_set_test |
18 | 19 |
error_test |
19 | 20 |
euler_test |
20 | 21 |
gomory_hu_test |
21 | 22 |
graph_copy_test |
22 | 23 |
graph_test |
23 | 24 |
graph_utils_test |
24 | 25 |
hao_orlin_test |
25 | 26 |
heap_test |
26 | 27 |
kruskal_test |
27 | 28 |
maps_test |
28 | 29 |
matching_test |
29 | 30 |
min_cost_arborescence_test |
30 | 31 |
min_cost_flow_test |
31 | 32 |
path_test |
32 | 33 |
preflow_test |
33 | 34 |
radix_sort_test |
34 | 35 |
random_test |
35 | 36 |
suurballe_test |
36 | 37 |
time_measure_test |
37 | 38 |
unionfind_test) |
38 | 39 |
|
39 | 40 |
IF(LEMON_HAVE_LP) |
40 | 41 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
41 | 42 |
SET(LP_TEST_LIBS lemon) |
42 | 43 |
IF(LEMON_HAVE_GLPK) |
43 | 44 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
44 | 45 |
ENDIF(LEMON_HAVE_GLPK) |
45 | 46 |
IF(LEMON_HAVE_CPLEX) |
46 | 47 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
47 | 48 |
ENDIF(LEMON_HAVE_CPLEX) |
48 | 49 |
IF(LEMON_HAVE_CLP) |
49 | 50 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
50 | 51 |
ENDIF(LEMON_HAVE_CLP) |
51 | 52 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
52 | 53 |
ADD_TEST(lp_test lp_test) |
53 | 54 |
|
54 | 55 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
55 | 56 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
56 | 57 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
57 | 58 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
58 | 59 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
59 | 60 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 | 10 |
test/bfs_test \ |
11 | 11 |
test/circulation_test \ |
12 |
test/connectivity_test \ |
|
12 | 13 |
test/counter_test \ |
13 | 14 |
test/dfs_test \ |
14 | 15 |
test/digraph_test \ |
15 | 16 |
test/dijkstra_test \ |
16 | 17 |
test/dim_test \ |
17 | 18 |
test/edge_set_test \ |
18 | 19 |
test/error_test \ |
19 | 20 |
test/euler_test \ |
20 | 21 |
test/gomory_hu_test \ |
21 | 22 |
test/graph_copy_test \ |
22 | 23 |
test/graph_test \ |
23 | 24 |
test/graph_utils_test \ |
24 | 25 |
test/hao_orlin_test \ |
25 | 26 |
test/heap_test \ |
26 | 27 |
test/kruskal_test \ |
27 | 28 |
test/maps_test \ |
28 | 29 |
test/matching_test \ |
29 | 30 |
test/min_cost_arborescence_test \ |
30 | 31 |
test/min_cost_flow_test \ |
31 | 32 |
test/path_test \ |
32 | 33 |
test/preflow_test \ |
33 | 34 |
test/radix_sort_test \ |
34 | 35 |
test/random_test \ |
35 | 36 |
test/suurballe_test \ |
36 | 37 |
test/test_tools_fail \ |
37 | 38 |
test/test_tools_pass \ |
38 | 39 |
test/time_measure_test \ |
39 | 40 |
test/unionfind_test |
40 | 41 |
|
41 | 42 |
test_test_tools_pass_DEPENDENCIES = demo |
42 | 43 |
|
43 | 44 |
if HAVE_LP |
44 | 45 |
check_PROGRAMS += test/lp_test |
45 | 46 |
endif HAVE_LP |
46 | 47 |
if HAVE_MIP |
47 | 48 |
check_PROGRAMS += test/mip_test |
48 | 49 |
endif HAVE_MIP |
49 | 50 |
|
50 | 51 |
TESTS += $(check_PROGRAMS) |
51 | 52 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
52 | 53 |
|
53 | 54 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
54 | 55 |
test_bfs_test_SOURCES = test/bfs_test.cc |
55 | 56 |
test_circulation_test_SOURCES = test/circulation_test.cc |
56 | 57 |
test_counter_test_SOURCES = test/counter_test.cc |
58 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
|
57 | 59 |
test_dfs_test_SOURCES = test/dfs_test.cc |
58 | 60 |
test_digraph_test_SOURCES = test/digraph_test.cc |
59 | 61 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
60 | 62 |
test_dim_test_SOURCES = test/dim_test.cc |
61 | 63 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
62 | 64 |
test_error_test_SOURCES = test/error_test.cc |
63 | 65 |
test_euler_test_SOURCES = test/euler_test.cc |
64 | 66 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
65 | 67 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
66 | 68 |
test_graph_test_SOURCES = test/graph_test.cc |
67 | 69 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
68 | 70 |
test_heap_test_SOURCES = test/heap_test.cc |
69 | 71 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
70 | 72 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
71 | 73 |
test_lp_test_SOURCES = test/lp_test.cc |
72 | 74 |
test_maps_test_SOURCES = test/maps_test.cc |
73 | 75 |
test_mip_test_SOURCES = test/mip_test.cc |
74 | 76 |
test_matching_test_SOURCES = test/matching_test.cc |
75 | 77 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
76 | 78 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
77 | 79 |
test_path_test_SOURCES = test/path_test.cc |
78 | 80 |
test_preflow_test_SOURCES = test/preflow_test.cc |
79 | 81 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
80 | 82 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
81 | 83 |
test_random_test_SOURCES = test/random_test.cc |
82 | 84 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
83 | 85 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
84 | 86 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
85 | 87 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
... | ... |
@@ -129,262 +129,319 @@ |
129 | 129 |
const Node &n; |
130 | 130 |
const Arc &a; |
131 | 131 |
const Value &k; |
132 | 132 |
FlowMap fm; |
133 | 133 |
PotMap pm; |
134 | 134 |
bool b; |
135 | 135 |
double x; |
136 | 136 |
typename MCF::Value v; |
137 | 137 |
typename MCF::Cost c; |
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
}; |
141 | 141 |
|
142 | 142 |
|
143 | 143 |
// Check the feasibility of the given flow (primal soluiton) |
144 | 144 |
template < typename GR, typename LM, typename UM, |
145 | 145 |
typename SM, typename FM > |
146 | 146 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
147 | 147 |
const SM& supply, const FM& flow, |
148 | 148 |
SupplyType type = EQ ) |
149 | 149 |
{ |
150 | 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
151 | 151 |
|
152 | 152 |
for (ArcIt e(gr); e != INVALID; ++e) { |
153 | 153 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
for (NodeIt n(gr); n != INVALID; ++n) { |
157 | 157 |
typename SM::Value sum = 0; |
158 | 158 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
159 | 159 |
sum += flow[e]; |
160 | 160 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
161 | 161 |
sum -= flow[e]; |
162 | 162 |
bool b = (type == EQ && sum == supply[n]) || |
163 | 163 |
(type == GEQ && sum >= supply[n]) || |
164 | 164 |
(type == LEQ && sum <= supply[n]); |
165 | 165 |
if (!b) return false; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
return true; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
// Check the feasibility of the given potentials (dual soluiton) |
172 | 172 |
// using the "Complementary Slackness" optimality condition |
173 | 173 |
template < typename GR, typename LM, typename UM, |
174 | 174 |
typename CM, typename SM, typename FM, typename PM > |
175 | 175 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
176 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
177 |
const PM& pi ) |
|
177 |
const PM& pi, SupplyType type ) |
|
178 | 178 |
{ |
179 | 179 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
180 | 180 |
|
181 | 181 |
bool opt = true; |
182 | 182 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
183 | 183 |
typename CM::Value red_cost = |
184 | 184 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
185 | 185 |
opt = red_cost == 0 || |
186 | 186 |
(red_cost > 0 && flow[e] == lower[e]) || |
187 | 187 |
(red_cost < 0 && flow[e] == upper[e]); |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
191 | 191 |
typename SM::Value sum = 0; |
192 | 192 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
193 | 193 |
sum += flow[e]; |
194 | 194 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
195 | 195 |
sum -= flow[e]; |
196 |
|
|
196 |
if (type != LEQ) { |
|
197 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
|
198 |
} else { |
|
199 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
|
200 |
} |
|
197 | 201 |
} |
198 | 202 |
|
199 | 203 |
return opt; |
200 | 204 |
} |
201 | 205 |
|
206 |
// Check whether the dual cost is equal to the primal cost |
|
207 |
template < typename GR, typename LM, typename UM, |
|
208 |
typename CM, typename SM, typename PM > |
|
209 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
|
210 |
const CM& cost, const SM& supply, const PM& pi, |
|
211 |
typename CM::Value total ) |
|
212 |
{ |
|
213 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
214 |
|
|
215 |
typename CM::Value dual_cost = 0; |
|
216 |
SM red_supply(gr); |
|
217 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
218 |
red_supply[n] = supply[n]; |
|
219 |
} |
|
220 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
221 |
if (lower[a] != 0) { |
|
222 |
dual_cost += lower[a] * cost[a]; |
|
223 |
red_supply[gr.source(a)] -= lower[a]; |
|
224 |
red_supply[gr.target(a)] += lower[a]; |
|
225 |
} |
|
226 |
} |
|
227 |
|
|
228 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
229 |
dual_cost -= red_supply[n] * pi[n]; |
|
230 |
} |
|
231 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
232 |
typename CM::Value red_cost = |
|
233 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
|
234 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
|
235 |
} |
|
236 |
|
|
237 |
return dual_cost == total; |
|
238 |
} |
|
239 |
|
|
202 | 240 |
// Run a minimum cost flow algorithm and check the results |
203 | 241 |
template < typename MCF, typename GR, |
204 | 242 |
typename LM, typename UM, |
205 | 243 |
typename CM, typename SM, |
206 | 244 |
typename PT > |
207 | 245 |
void checkMcf( const MCF& mcf, PT mcf_result, |
208 | 246 |
const GR& gr, const LM& lower, const UM& upper, |
209 | 247 |
const CM& cost, const SM& supply, |
210 | 248 |
PT result, bool optimal, typename CM::Value total, |
211 | 249 |
const std::string &test_id = "", |
212 | 250 |
SupplyType type = EQ ) |
213 | 251 |
{ |
214 | 252 |
check(mcf_result == result, "Wrong result " + test_id); |
215 | 253 |
if (optimal) { |
216 | 254 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
217 | 255 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
218 | 256 |
mcf.flowMap(flow); |
219 | 257 |
mcf.potentialMap(pi); |
220 | 258 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
221 | 259 |
"The flow is not feasible " + test_id); |
222 | 260 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
261 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), |
|
224 | 262 |
"Wrong potentials " + test_id); |
263 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
|
264 |
"Wrong dual cost " + test_id); |
|
225 | 265 |
} |
226 | 266 |
} |
227 | 267 |
|
228 | 268 |
int main() |
229 | 269 |
{ |
230 | 270 |
// Check the interfaces |
231 | 271 |
{ |
232 | 272 |
typedef concepts::Digraph GR; |
233 | 273 |
checkConcept< McfClassConcept<GR, int, int>, |
234 | 274 |
NetworkSimplex<GR> >(); |
235 | 275 |
checkConcept< McfClassConcept<GR, double, double>, |
236 | 276 |
NetworkSimplex<GR, double> >(); |
237 | 277 |
checkConcept< McfClassConcept<GR, int, double>, |
238 | 278 |
NetworkSimplex<GR, int, double> >(); |
239 | 279 |
} |
240 | 280 |
|
241 | 281 |
// Run various MCF tests |
242 | 282 |
typedef ListDigraph Digraph; |
243 | 283 |
DIGRAPH_TYPEDEFS(ListDigraph); |
244 | 284 |
|
245 | 285 |
// Read the test digraph |
246 | 286 |
Digraph gr; |
247 | 287 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
248 | 288 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
249 | 289 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
250 | 290 |
Node v, w; |
251 | 291 |
|
252 | 292 |
std::istringstream input(test_lgf); |
253 | 293 |
DigraphReader<Digraph>(gr, input) |
254 | 294 |
.arcMap("cost", c) |
255 | 295 |
.arcMap("cap", u) |
256 | 296 |
.arcMap("low1", l1) |
257 | 297 |
.arcMap("low2", l2) |
258 | 298 |
.arcMap("low3", l3) |
259 | 299 |
.nodeMap("sup1", s1) |
260 | 300 |
.nodeMap("sup2", s2) |
261 | 301 |
.nodeMap("sup3", s3) |
262 | 302 |
.nodeMap("sup4", s4) |
263 | 303 |
.nodeMap("sup5", s5) |
264 | 304 |
.nodeMap("sup6", s6) |
265 | 305 |
.node("source", v) |
266 | 306 |
.node("target", w) |
267 | 307 |
.run(); |
268 | 308 |
|
269 |
// Build a test digraph for testing negative costs |
|
270 |
Digraph ngr; |
|
271 |
Node n1 = ngr.addNode(); |
|
272 |
Node n2 = ngr.addNode(); |
|
273 |
Node n3 = ngr.addNode(); |
|
274 |
Node n4 = ngr.addNode(); |
|
275 |
Node n5 = ngr.addNode(); |
|
276 |
Node n6 = ngr.addNode(); |
|
277 |
|
|
309 |
// Build test digraphs with negative costs |
|
310 |
Digraph neg_gr; |
|
311 |
Node n1 = neg_gr.addNode(); |
|
312 |
Node n2 = neg_gr.addNode(); |
|
313 |
Node n3 = neg_gr.addNode(); |
|
314 |
Node n4 = neg_gr.addNode(); |
|
315 |
Node n5 = neg_gr.addNode(); |
|
316 |
Node n6 = neg_gr.addNode(); |
|
317 |
Node n7 = neg_gr.addNode(); |
|
278 | 318 |
|
279 |
Arc a1 = ngr.addArc(n1, n2); |
|
280 |
Arc a2 = ngr.addArc(n1, n3); |
|
281 |
Arc a3 = ngr.addArc(n2, n4); |
|
282 |
Arc a4 = ngr.addArc(n3, n4); |
|
283 |
Arc a5 = ngr.addArc(n3, n2); |
|
284 |
Arc a6 = ngr.addArc(n5, n3); |
|
285 |
Arc a7 = ngr.addArc(n5, n6); |
|
286 |
Arc a8 = ngr.addArc(n6, n7); |
|
287 |
Arc |
|
319 |
Arc a1 = neg_gr.addArc(n1, n2); |
|
320 |
Arc a2 = neg_gr.addArc(n1, n3); |
|
321 |
Arc a3 = neg_gr.addArc(n2, n4); |
|
322 |
Arc a4 = neg_gr.addArc(n3, n4); |
|
323 |
Arc a5 = neg_gr.addArc(n3, n2); |
|
324 |
Arc a6 = neg_gr.addArc(n5, n3); |
|
325 |
Arc a7 = neg_gr.addArc(n5, n6); |
|
326 |
Arc a8 = neg_gr.addArc(n6, n7); |
|
327 |
Arc a9 = neg_gr.addArc(n7, n5); |
|
288 | 328 |
|
289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
291 |
Digraph:: |
|
329 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
|
330 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
|
331 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
|
292 | 332 |
|
293 |
nl2[a7] = 1000; |
|
294 |
nl2[a8] = -1000; |
|
333 |
neg_l2[a7] = 1000; |
|
334 |
neg_l2[a8] = -1000; |
|
295 | 335 |
|
296 |
ns[n1] = 100; |
|
297 |
ns[n4] = -100; |
|
336 |
neg_s[n1] = 100; |
|
337 |
neg_s[n4] = -100; |
|
298 | 338 |
|
299 |
nc[a1] = 100; |
|
300 |
nc[a2] = 30; |
|
301 |
nc[a3] = 20; |
|
302 |
nc[a4] = 80; |
|
303 |
nc[a5] = 50; |
|
304 |
nc[a6] = 10; |
|
305 |
nc[a7] = 80; |
|
306 |
nc[a8] = 30; |
|
307 |
|
|
339 |
neg_c[a1] = 100; |
|
340 |
neg_c[a2] = 30; |
|
341 |
neg_c[a3] = 20; |
|
342 |
neg_c[a4] = 80; |
|
343 |
neg_c[a5] = 50; |
|
344 |
neg_c[a6] = 10; |
|
345 |
neg_c[a7] = 80; |
|
346 |
neg_c[a8] = 30; |
|
347 |
neg_c[a9] = -120; |
|
348 |
|
|
349 |
Digraph negs_gr; |
|
350 |
Digraph::NodeMap<int> negs_s(negs_gr); |
|
351 |
Digraph::ArcMap<int> negs_c(negs_gr); |
|
352 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
|
353 |
n1 = negs_gr.addNode(); |
|
354 |
n2 = negs_gr.addNode(); |
|
355 |
negs_s[n1] = 100; |
|
356 |
negs_s[n2] = -300; |
|
357 |
negs_c[negs_gr.addArc(n1, n2)] = -1; |
|
358 |
|
|
308 | 359 |
|
309 | 360 |
// A. Test NetworkSimplex with the default pivot rule |
310 | 361 |
{ |
311 | 362 |
NetworkSimplex<Digraph> mcf(gr); |
312 | 363 |
|
313 | 364 |
// Check the equality form |
314 | 365 |
mcf.upperMap(u).costMap(c); |
315 | 366 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
316 | 367 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
317 | 368 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
318 | 369 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
319 | 370 |
mcf.lowerMap(l2); |
320 | 371 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
321 | 372 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
322 | 373 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
323 | 374 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
324 | 375 |
mcf.reset(); |
325 | 376 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
326 | 377 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
327 | 378 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
328 | 379 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
329 | 380 |
mcf.reset(); |
330 | 381 |
checkMcf(mcf, mcf.run(), |
331 | 382 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
332 | 383 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
333 | 384 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
334 | 385 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
335 | 386 |
checkMcf(mcf, mcf.run(), |
336 | 387 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
337 | 388 |
|
338 | 389 |
// Check the GEQ form |
339 | 390 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
340 | 391 |
checkMcf(mcf, mcf.run(), |
341 | 392 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
342 | 393 |
mcf.supplyType(mcf.GEQ); |
343 | 394 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
344 | 395 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
345 |
mcf. |
|
396 |
mcf.supplyMap(s6); |
|
346 | 397 |
checkMcf(mcf, mcf.run(), |
347 | 398 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
348 | 399 |
|
349 | 400 |
// Check the LEQ form |
350 | 401 |
mcf.reset().supplyType(mcf.LEQ); |
351 | 402 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
352 | 403 |
checkMcf(mcf, mcf.run(), |
353 | 404 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
354 | 405 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
355 | 406 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
356 |
mcf. |
|
407 |
mcf.supplyMap(s5); |
|
357 | 408 |
checkMcf(mcf, mcf.run(), |
358 | 409 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
359 | 410 |
|
360 | 411 |
// Check negative costs |
361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
363 |
checkMcf(nmcf, nmcf.run(), |
|
364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
368 |
checkMcf(nmcf, nmcf.run(), |
|
369 |
|
|
412 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
|
413 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
|
414 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
|
415 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
|
416 |
neg_mcf.upperMap(neg_u2); |
|
417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
|
418 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
|
419 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
|
420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
|
421 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
|
422 |
|
|
423 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
|
424 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
|
425 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
|
426 |
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); |
|
370 | 427 |
} |
371 | 428 |
|
372 | 429 |
// B. Test NetworkSimplex with each pivot rule |
373 | 430 |
{ |
374 | 431 |
NetworkSimplex<Digraph> mcf(gr); |
375 | 432 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
376 | 433 |
|
377 | 434 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
378 | 435 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
379 | 436 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
380 | 437 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
381 | 438 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
382 | 439 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
383 | 440 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
384 | 441 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
385 | 442 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
386 | 443 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
387 | 444 |
} |
388 | 445 |
|
389 | 446 |
return 0; |
390 | 447 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup tools |
20 | 20 |
/// \file |
21 |
/// \brief Special plane |
|
21 |
/// \brief Special plane graph generator. |
|
22 | 22 |
/// |
23 | 23 |
/// Graph generator application for various types of plane graphs. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 | 26 |
/// \code |
27 | 27 |
/// lgf-gen --help |
28 | 28 |
/// \endcode |
29 |
/// for more |
|
29 |
/// for more information on the usage. |
|
30 | 30 |
|
31 | 31 |
#include <algorithm> |
32 | 32 |
#include <set> |
33 | 33 |
#include <ctime> |
34 | 34 |
#include <lemon/list_graph.h> |
35 | 35 |
#include <lemon/random.h> |
36 | 36 |
#include <lemon/dim2.h> |
37 | 37 |
#include <lemon/bfs.h> |
38 | 38 |
#include <lemon/counter.h> |
39 | 39 |
#include <lemon/suurballe.h> |
40 | 40 |
#include <lemon/graph_to_eps.h> |
41 | 41 |
#include <lemon/lgf_writer.h> |
42 | 42 |
#include <lemon/arg_parser.h> |
43 | 43 |
#include <lemon/euler.h> |
44 | 44 |
#include <lemon/math.h> |
45 | 45 |
#include <lemon/kruskal.h> |
46 | 46 |
#include <lemon/time_measure.h> |
47 | 47 |
|
48 | 48 |
using namespace lemon; |
49 | 49 |
|
50 | 50 |
typedef dim2::Point<double> Point; |
51 | 51 |
|
52 | 52 |
GRAPH_TYPEDEFS(ListGraph); |
53 | 53 |
|
54 | 54 |
bool progress=true; |
55 | 55 |
|
56 | 56 |
int N; |
57 | 57 |
// int girth; |
58 | 58 |
|
59 | 59 |
ListGraph g; |
60 | 60 |
|
61 | 61 |
std::vector<Node> nodes; |
62 | 62 |
ListGraph::NodeMap<Point> coords(g); |
63 | 63 |
|
64 | 64 |
|
65 | 65 |
double totalLen(){ |
66 | 66 |
double tlen=0; |
67 | 67 |
for(EdgeIt e(g);e!=INVALID;++e) |
68 | 68 |
tlen+=std::sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare()); |
69 | 69 |
return tlen; |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
int tsp_impr_num=0; |
73 | 73 |
|
74 | 74 |
const double EPSILON=1e-8; |
75 | 75 |
bool tsp_improve(Node u, Node v) |
76 | 76 |
{ |
77 | 77 |
double luv=std::sqrt((coords[v]-coords[u]).normSquare()); |
... | ... |
@@ -641,118 +641,119 @@ |
641 | 641 |
Node n1=g.oppositeNode(n2,e); |
642 | 642 |
Node n3=g.oppositeNode(n2,f); |
643 | 643 |
if(countIncEdges(g,n2)>2) |
644 | 644 |
{ |
645 | 645 |
// std::cout << "Remove an Arc" << std::endl; |
646 | 646 |
Arc ff=enext[f]; |
647 | 647 |
g.erase(e); |
648 | 648 |
g.erase(f); |
649 | 649 |
if(n1!=n3) |
650 | 650 |
{ |
651 | 651 |
Arc ne=g.direct(g.addEdge(n1,n3),n1); |
652 | 652 |
enext[p]=ne; |
653 | 653 |
enext[ne]=ff; |
654 | 654 |
ednum--; |
655 | 655 |
} |
656 | 656 |
else { |
657 | 657 |
enext[p]=ff; |
658 | 658 |
ednum-=2; |
659 | 659 |
} |
660 | 660 |
} |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
std::cout << "Total arc length (tour) : " << totalLen() << std::endl; |
664 | 664 |
|
665 | 665 |
std::cout << "2-opt the tour..." << std::endl; |
666 | 666 |
|
667 | 667 |
tsp_improve(); |
668 | 668 |
|
669 | 669 |
std::cout << "Total arc length (2-opt tour) : " << totalLen() << std::endl; |
670 | 670 |
} |
671 | 671 |
|
672 | 672 |
|
673 | 673 |
int main(int argc,const char **argv) |
674 | 674 |
{ |
675 | 675 |
ArgParser ap(argc,argv); |
676 | 676 |
|
677 | 677 |
// bool eps; |
678 | 678 |
bool disc_d, square_d, gauss_d; |
679 | 679 |
// bool tsp_a,two_a,tree_a; |
680 | 680 |
int num_of_cities=1; |
681 | 681 |
double area=1; |
682 | 682 |
N=100; |
683 | 683 |
// girth=10; |
684 | 684 |
std::string ndist("disc"); |
685 | 685 |
ap.refOption("n", "Number of nodes (default is 100)", N) |
686 | 686 |
.intOption("g", "Girth parameter (default is 10)", 10) |
687 | 687 |
.refOption("cities", "Number of cities (default is 1)", num_of_cities) |
688 | 688 |
.refOption("area", "Full relative area of the cities (default is 1)", area) |
689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)", |
|
689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)", |
|
690 |
disc_d) |
|
690 | 691 |
.optionGroup("dist", "disc") |
691 |
.refOption("square", "Nodes are evenly distributed on a unit square", |
|
692 |
.refOption("square", "Nodes are evenly distributed on a unit square", |
|
693 |
square_d) |
|
692 | 694 |
.optionGroup("dist", "square") |
693 |
.refOption("gauss", |
|
694 |
"Nodes are located according to a two-dim gauss distribution", |
|
695 |
|
|
695 |
.refOption("gauss", "Nodes are located according to a two-dim Gauss " |
|
696 |
"distribution", gauss_d) |
|
696 | 697 |
.optionGroup("dist", "gauss") |
697 |
// .mandatoryGroup("dist") |
|
698 | 698 |
.onlyOneGroup("dist") |
699 |
.boolOption("eps", "Also generate .eps output (prefix.eps)") |
|
700 |
.boolOption("nonodes", "Draw the edges only in the generated .eps") |
|
701 |
.boolOption("dir", "Directed digraph is generated (each arcs are replaced by two directed ones)") |
|
702 |
.boolOption("2con", "Create a two connected planar digraph") |
|
699 |
.boolOption("eps", "Also generate .eps output (<prefix>.eps)") |
|
700 |
.boolOption("nonodes", "Draw only the edges in the generated .eps output") |
|
701 |
.boolOption("dir", "Directed graph is generated (each edge is replaced by " |
|
702 |
"two directed arcs)") |
|
703 |
.boolOption("2con", "Create a two connected planar graph") |
|
703 | 704 |
.optionGroup("alg","2con") |
704 | 705 |
.boolOption("tree", "Create a min. cost spanning tree") |
705 | 706 |
.optionGroup("alg","tree") |
706 | 707 |
.boolOption("tsp", "Create a TSP tour") |
707 | 708 |
.optionGroup("alg","tsp") |
708 | 709 |
.boolOption("tsp2", "Create a TSP tour (tree based)") |
709 | 710 |
.optionGroup("alg","tsp2") |
710 |
.boolOption("dela", "Delaunay triangulation |
|
711 |
.boolOption("dela", "Delaunay triangulation graph") |
|
711 | 712 |
.optionGroup("alg","dela") |
712 | 713 |
.onlyOneGroup("alg") |
713 | 714 |
.boolOption("rand", "Use time seed for random number generator") |
714 | 715 |
.optionGroup("rand", "rand") |
715 | 716 |
.intOption("seed", "Random seed", -1) |
716 | 717 |
.optionGroup("rand", "seed") |
717 | 718 |
.onlyOneGroup("rand") |
718 | 719 |
.other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'") |
719 | 720 |
.run(); |
720 | 721 |
|
721 | 722 |
if (ap["rand"]) { |
722 | 723 |
int seed = int(time(0)); |
723 | 724 |
std::cout << "Random number seed: " << seed << std::endl; |
724 | 725 |
rnd = Random(seed); |
725 | 726 |
} |
726 | 727 |
if (ap.given("seed")) { |
727 | 728 |
int seed = ap["seed"]; |
728 | 729 |
std::cout << "Random number seed: " << seed << std::endl; |
729 | 730 |
rnd = Random(seed); |
730 | 731 |
} |
731 | 732 |
|
732 | 733 |
std::string prefix; |
733 | 734 |
switch(ap.files().size()) |
734 | 735 |
{ |
735 | 736 |
case 0: |
736 | 737 |
prefix="lgf-gen-out"; |
737 | 738 |
break; |
738 | 739 |
case 1: |
739 | 740 |
prefix=ap.files()[0]; |
740 | 741 |
break; |
741 | 742 |
default: |
742 | 743 |
std::cerr << "\nAt most one prefix can be given\n\n"; |
743 | 744 |
exit(1); |
744 | 745 |
} |
745 | 746 |
|
746 | 747 |
double sum_sizes=0; |
747 | 748 |
std::vector<double> sizes; |
748 | 749 |
std::vector<double> cum_sizes; |
749 | 750 |
for(int s=0;s<num_of_cities;s++) |
750 | 751 |
{ |
751 | 752 |
// sum_sizes+=rnd.exponential(); |
752 | 753 |
double d=rnd(); |
753 | 754 |
sum_sizes+=d; |
754 | 755 |
sizes.push_back(d); |
755 | 756 |
cum_sizes.push_back(sum_sizes); |
756 | 757 |
} |
757 | 758 |
int i=0; |
758 | 759 |
for(int s=0;s<num_of_cities;s++) |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
|
20 |
#define LEMON_BITS_BASE_EXTENDER_H |
|
21 |
|
|
22 |
#include <lemon/core.h> |
|
23 |
#include <lemon/error.h> |
|
24 |
|
|
25 |
#include <lemon/bits/map_extender.h> |
|
26 |
#include <lemon/bits/default_map.h> |
|
27 |
|
|
28 |
#include <lemon/concept_check.h> |
|
29 |
#include <lemon/concepts/maps.h> |
|
30 |
|
|
31 |
//\ingroup digraphbits |
|
32 |
//\file |
|
33 |
//\brief Extenders for the graph types |
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
// \ingroup digraphbits |
|
37 |
// |
|
38 |
// \brief BaseDigraph to BaseGraph extender |
|
39 |
template <typename Base> |
|
40 |
class UndirDigraphExtender : public Base { |
|
41 |
typedef Base Parent; |
|
42 |
|
|
43 |
public: |
|
44 |
|
|
45 |
typedef typename Parent::Arc Edge; |
|
46 |
typedef typename Parent::Node Node; |
|
47 |
|
|
48 |
typedef True UndirectedTag; |
|
49 |
|
|
50 |
class Arc : public Edge { |
|
51 |
friend class UndirDigraphExtender; |
|
52 |
|
|
53 |
protected: |
|
54 |
bool forward; |
|
55 |
|
|
56 |
Arc(const Edge &ue, bool _forward) : |
|
57 |
Edge(ue), forward(_forward) {} |
|
58 |
|
|
59 |
public: |
|
60 |
Arc() {} |
|
61 |
|
|
62 |
// Invalid arc constructor |
|
63 |
Arc(Invalid i) : Edge(i), forward(true) {} |
|
64 |
|
|
65 |
bool operator==(const Arc &that) const { |
|
66 |
return forward==that.forward && Edge(*this)==Edge(that); |
|
67 |
} |
|
68 |
bool operator!=(const Arc &that) const { |
|
69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
|
70 |
} |
|
71 |
bool operator<(const Arc &that) const { |
|
72 |
return forward<that.forward || |
|
73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
|
74 |
} |
|
75 |
}; |
|
76 |
|
|
77 |
// First node of the edge |
|
78 |
Node u(const Edge &e) const { |
|
79 |
return Parent::source(e); |
|
80 |
} |
|
81 |
|
|
82 |
// Source of the given arc |
|
83 |
Node source(const Arc &e) const { |
|
84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
|
85 |
} |
|
86 |
|
|
87 |
// Second node of the edge |
|
88 |
Node v(const Edge &e) const { |
|
89 |
return Parent::target(e); |
|
90 |
} |
|
91 |
|
|
92 |
// Target of the given arc |
|
93 |
Node target(const Arc &e) const { |
|
94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
|
95 |
} |
|
96 |
|
|
97 |
// \brief Directed arc from an edge. |
|
98 |
// |
|
99 |
// Returns a directed arc corresponding to the specified edge. |
|
100 |
// If the given bool is true, the first node of the given edge and |
|
101 |
// the source node of the returned arc are the same. |
|
102 |
static Arc direct(const Edge &e, bool d) { |
|
103 |
return Arc(e, d); |
|
104 |
} |
|
105 |
|
|
106 |
// Returns whether the given directed arc has the same orientation |
|
107 |
// as the corresponding edge. |
|
108 |
static bool direction(const Arc &a) { return a.forward; } |
|
109 |
|
|
110 |
using Parent::first; |
|
111 |
using Parent::next; |
|
112 |
|
|
113 |
void first(Arc &e) const { |
|
114 |
Parent::first(e); |
|
115 |
e.forward=true; |
|
116 |
} |
|
117 |
|
|
118 |
void next(Arc &e) const { |
|
119 |
if( e.forward ) { |
|
120 |
e.forward = false; |
|
121 |
} |
|
122 |
else { |
|
123 |
Parent::next(e); |
|
124 |
e.forward = true; |
|
125 |
} |
|
126 |
} |
|
127 |
|
|
128 |
void firstOut(Arc &e, const Node &n) const { |
|
129 |
Parent::firstIn(e,n); |
|
130 |
if( Edge(e) != INVALID ) { |
|
131 |
e.forward = false; |
|
132 |
} |
|
133 |
else { |
|
134 |
Parent::firstOut(e,n); |
|
135 |
e.forward = true; |
|
136 |
} |
|
137 |
} |
|
138 |
void nextOut(Arc &e) const { |
|
139 |
if( ! e.forward ) { |
|
140 |
Node n = Parent::target(e); |
|
141 |
Parent::nextIn(e); |
|
142 |
if( Edge(e) == INVALID ) { |
|
143 |
Parent::firstOut(e, n); |
|
144 |
e.forward = true; |
|
145 |
} |
|
146 |
} |
|
147 |
else { |
|
148 |
Parent::nextOut(e); |
|
149 |
} |
|
150 |
} |
|
151 |
|
|
152 |
void firstIn(Arc &e, const Node &n) const { |
|
153 |
Parent::firstOut(e,n); |
|
154 |
if( Edge(e) != INVALID ) { |
|
155 |
e.forward = false; |
|
156 |
} |
|
157 |
else { |
|
158 |
Parent::firstIn(e,n); |
|
159 |
e.forward = true; |
|
160 |
} |
|
161 |
} |
|
162 |
void nextIn(Arc &e) const { |
|
163 |
if( ! e.forward ) { |
|
164 |
Node n = Parent::source(e); |
|
165 |
Parent::nextOut(e); |
|
166 |
if( Edge(e) == INVALID ) { |
|
167 |
Parent::firstIn(e, n); |
|
168 |
e.forward = true; |
|
169 |
} |
|
170 |
} |
|
171 |
else { |
|
172 |
Parent::nextIn(e); |
|
173 |
} |
|
174 |
} |
|
175 |
|
|
176 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
|
177 |
d = true; |
|
178 |
Parent::firstOut(e, n); |
|
179 |
if (e != INVALID) return; |
|
180 |
d = false; |
|
181 |
Parent::firstIn(e, n); |
|
182 |
} |
|
183 |
|
|
184 |
void nextInc(Edge &e, bool &d) const { |
|
185 |
if (d) { |
|
186 |
Node s = Parent::source(e); |
|
187 |
Parent::nextOut(e); |
|
188 |
if (e != INVALID) return; |
|
189 |
d = false; |
|
190 |
Parent::firstIn(e, s); |
|
191 |
} else { |
|
192 |
Parent::nextIn(e); |
|
193 |
} |
|
194 |
} |
|
195 |
|
|
196 |
Node nodeFromId(int ix) const { |
|
197 |
return Parent::nodeFromId(ix); |
|
198 |
} |
|
199 |
|
|
200 |
Arc arcFromId(int ix) const { |
|
201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
|
202 |
} |
|
203 |
|
|
204 |
Edge edgeFromId(int ix) const { |
|
205 |
return Parent::arcFromId(ix); |
|
206 |
} |
|
207 |
|
|
208 |
int id(const Node &n) const { |
|
209 |
return Parent::id(n); |
|
210 |
} |
|
211 |
|
|
212 |
int id(const Edge &e) const { |
|
213 |
return Parent::id(e); |
|
214 |
} |
|
215 |
|
|
216 |
int id(const Arc &e) const { |
|
217 |
return 2 * Parent::id(e) + int(e.forward); |
|
218 |
} |
|
219 |
|
|
220 |
int maxNodeId() const { |
|
221 |
return Parent::maxNodeId(); |
|
222 |
} |
|
223 |
|
|
224 |
int maxArcId() const { |
|
225 |
return 2 * Parent::maxArcId() + 1; |
|
226 |
} |
|
227 |
|
|
228 |
int maxEdgeId() const { |
|
229 |
return Parent::maxArcId(); |
|
230 |
} |
|
231 |
|
|
232 |
int arcNum() const { |
|
233 |
return 2 * Parent::arcNum(); |
|
234 |
} |
|
235 |
|
|
236 |
int edgeNum() const { |
|
237 |
return Parent::arcNum(); |
|
238 |
} |
|
239 |
|
|
240 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
|
241 |
if (p == INVALID) { |
|
242 |
Edge arc = Parent::findArc(s, t); |
|
243 |
if (arc != INVALID) return direct(arc, true); |
|
244 |
arc = Parent::findArc(t, s); |
|
245 |
if (arc != INVALID) return direct(arc, false); |
|
246 |
} else if (direction(p)) { |
|
247 |
Edge arc = Parent::findArc(s, t, p); |
|
248 |
if (arc != INVALID) return direct(arc, true); |
|
249 |
arc = Parent::findArc(t, s); |
|
250 |
if (arc != INVALID) return direct(arc, false); |
|
251 |
} else { |
|
252 |
Edge arc = Parent::findArc(t, s, p); |
|
253 |
if (arc != INVALID) return direct(arc, false); |
|
254 |
} |
|
255 |
return INVALID; |
|
256 |
} |
|
257 |
|
|
258 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
|
259 |
if (s != t) { |
|
260 |
if (p == INVALID) { |
|
261 |
Edge arc = Parent::findArc(s, t); |
|
262 |
if (arc != INVALID) return arc; |
|
263 |
arc = Parent::findArc(t, s); |
|
264 |
if (arc != INVALID) return arc; |
|
265 |
} else if (Parent::s(p) == s) { |
|
266 |
Edge arc = Parent::findArc(s, t, p); |
|
267 |
if (arc != INVALID) return arc; |
|
268 |
arc = Parent::findArc(t, s); |
|
269 |
if (arc != INVALID) return arc; |
|
270 |
} else { |
|
271 |
Edge arc = Parent::findArc(t, s, p); |
|
272 |
if (arc != INVALID) return arc; |
|
273 |
} |
|
274 |
} else { |
|
275 |
return Parent::findArc(s, t, p); |
|
276 |
} |
|
277 |
return INVALID; |
|
278 |
} |
|
279 |
}; |
|
280 |
|
|
281 |
template <typename Base> |
|
282 |
class BidirBpGraphExtender : public Base { |
|
283 |
typedef Base Parent; |
|
284 |
|
|
285 |
public: |
|
286 |
typedef BidirBpGraphExtender Digraph; |
|
287 |
|
|
288 |
typedef typename Parent::Node Node; |
|
289 |
typedef typename Parent::Edge Edge; |
|
290 |
|
|
291 |
|
|
292 |
using Parent::first; |
|
293 |
using Parent::next; |
|
294 |
|
|
295 |
using Parent::id; |
|
296 |
|
|
297 |
class Red : public Node { |
|
298 |
friend class BidirBpGraphExtender; |
|
299 |
public: |
|
300 |
Red() {} |
|
301 |
Red(const Node& node) : Node(node) { |
|
302 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
|
303 |
typename Parent::NodeSetError()); |
|
304 |
} |
|
305 |
Red& operator=(const Node& node) { |
|
306 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
|
307 |
typename Parent::NodeSetError()); |
|
308 |
Node::operator=(node); |
|
309 |
return *this; |
|
310 |
} |
|
311 |
Red(Invalid) : Node(INVALID) {} |
|
312 |
Red& operator=(Invalid) { |
|
313 |
Node::operator=(INVALID); |
|
314 |
return *this; |
|
315 |
} |
|
316 |
}; |
|
317 |
|
|
318 |
void first(Red& node) const { |
|
319 |
Parent::firstRed(static_cast<Node&>(node)); |
|
320 |
} |
|
321 |
void next(Red& node) const { |
|
322 |
Parent::nextRed(static_cast<Node&>(node)); |
|
323 |
} |
|
324 |
|
|
325 |
int id(const Red& node) const { |
|
326 |
return Parent::redId(node); |
|
327 |
} |
|
328 |
|
|
329 |
class Blue : public Node { |
|
330 |
friend class BidirBpGraphExtender; |
|
331 |
public: |
|
332 |
Blue() {} |
|
333 |
Blue(const Node& node) : Node(node) { |
|
334 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
|
335 |
typename Parent::NodeSetError()); |
|
336 |
} |
|
337 |
Blue& operator=(const Node& node) { |
|
338 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
|
339 |
typename Parent::NodeSetError()); |
|
340 |
Node::operator=(node); |
|
341 |
return *this; |
|
342 |
} |
|
343 |
Blue(Invalid) : Node(INVALID) {} |
|
344 |
Blue& operator=(Invalid) { |
|
345 |
Node::operator=(INVALID); |
|
346 |
return *this; |
|
347 |
} |
|
348 |
}; |
|
349 |
|
|
350 |
void first(Blue& node) const { |
|
351 |
Parent::firstBlue(static_cast<Node&>(node)); |
|
352 |
} |
|
353 |
void next(Blue& node) const { |
|
354 |
Parent::nextBlue(static_cast<Node&>(node)); |
|
355 |
} |
|
356 |
|
|
357 |
int id(const Blue& node) const { |
|
358 |
return Parent::redId(node); |
|
359 |
} |
|
360 |
|
|
361 |
Node source(const Edge& arc) const { |
|
362 |
return red(arc); |
|
363 |
} |
|
364 |
Node target(const Edge& arc) const { |
|
365 |
return blue(arc); |
|
366 |
} |
|
367 |
|
|
368 |
void firstInc(Edge& arc, bool& dir, const Node& node) const { |
|
369 |
if (Parent::red(node)) { |
|
370 |
Parent::firstFromRed(arc, node); |
|
371 |
dir = true; |
|
372 |
} else { |
|
373 |
Parent::firstFromBlue(arc, node); |
|
374 |
dir = static_cast<Edge&>(arc) == INVALID; |
|
375 |
} |
|
376 |
} |
|
377 |
void nextInc(Edge& arc, bool& dir) const { |
|
378 |
if (dir) { |
|
379 |
Parent::nextFromRed(arc); |
|
380 |
} else { |
|
381 |
Parent::nextFromBlue(arc); |
|
382 |
if (arc == INVALID) dir = true; |
|
383 |
} |
|
384 |
} |
|
385 |
|
|
386 |
class Arc : public Edge { |
|
387 |
friend class BidirBpGraphExtender; |
|
388 |
protected: |
|
389 |
bool forward; |
|
390 |
|
|
391 |
Arc(const Edge& arc, bool _forward) |
|
392 |
: Edge(arc), forward(_forward) {} |
|
393 |
|
|
394 |
public: |
|
395 |
Arc() {} |
|
396 |
Arc (Invalid) : Edge(INVALID), forward(true) {} |
|
397 |
bool operator==(const Arc& i) const { |
|
398 |
return Edge::operator==(i) && forward == i.forward; |
|
399 |
} |
|
400 |
bool operator!=(const Arc& i) const { |
|
401 |
return Edge::operator!=(i) || forward != i.forward; |
|
402 |
} |
|
403 |
bool operator<(const Arc& i) const { |
|
404 |
return Edge::operator<(i) || |
|
405 |
(!(i.forward<forward) && Edge(*this)<Edge(i)); |
|
406 |
} |
|
407 |
}; |
|
408 |
|
|
409 |
void first(Arc& arc) const { |
|
410 |
Parent::first(static_cast<Edge&>(arc)); |
|
411 |
arc.forward = true; |
|
412 |
} |
|
413 |
|
|
414 |
void next(Arc& arc) const { |
|
415 |
if (!arc.forward) { |
|
416 |
Parent::next(static_cast<Edge&>(arc)); |
|
417 |
} |
|
418 |
arc.forward = !arc.forward; |
|
419 |
} |
|
420 |
|
|
421 |
void firstOut(Arc& arc, const Node& node) const { |
|
422 |
if (Parent::red(node)) { |
|
423 |
Parent::firstFromRed(arc, node); |
|
424 |
arc.forward = true; |
|
425 |
} else { |
|
426 |
Parent::firstFromBlue(arc, node); |
|
427 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
428 |
} |
|
429 |
} |
|
430 |
void nextOut(Arc& arc) const { |
|
431 |
if (arc.forward) { |
|
432 |
Parent::nextFromRed(arc); |
|
433 |
} else { |
|
434 |
Parent::nextFromBlue(arc); |
|
435 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
436 |
} |
|
437 |
} |
|
438 |
|
|
439 |
void firstIn(Arc& arc, const Node& node) const { |
|
440 |
if (Parent::blue(node)) { |
|
441 |
Parent::firstFromBlue(arc, node); |
|
442 |
arc.forward = true; |
|
443 |
} else { |
|
444 |
Parent::firstFromRed(arc, node); |
|
445 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
446 |
} |
|
447 |
} |
|
448 |
void nextIn(Arc& arc) const { |
|
449 |
if (arc.forward) { |
|
450 |
Parent::nextFromBlue(arc); |
|
451 |
} else { |
|
452 |
Parent::nextFromRed(arc); |
|
453 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
454 |
} |
|
455 |
} |
|
456 |
|
|
457 |
Node source(const Arc& arc) const { |
|
458 |
return arc.forward ? Parent::red(arc) : Parent::blue(arc); |
|
459 |
} |
|
460 |
Node target(const Arc& arc) const { |
|
461 |
return arc.forward ? Parent::blue(arc) : Parent::red(arc); |
|
462 |
} |
|
463 |
|
|
464 |
int id(const Arc& arc) const { |
|
465 |
return (Parent::id(static_cast<const Edge&>(arc)) << 1) + |
|
466 |
(arc.forward ? 0 : 1); |
|
467 |
} |
|
468 |
Arc arcFromId(int ix) const { |
|
469 |
return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0); |
|
470 |
} |
|
471 |
int maxArcId() const { |
|
472 |
return (Parent::maxEdgeId() << 1) + 1; |
|
473 |
} |
|
474 |
|
|
475 |
bool direction(const Arc& arc) const { |
|
476 |
return arc.forward; |
|
477 |
} |
|
478 |
|
|
479 |
Arc direct(const Edge& arc, bool dir) const { |
|
480 |
return Arc(arc, dir); |
|
481 |
} |
|
482 |
|
|
483 |
int arcNum() const { |
|
484 |
return 2 * Parent::edgeNum(); |
|
485 |
} |
|
486 |
|
|
487 |
int edgeNum() const { |
|
488 |
return Parent::edgeNum(); |
|
489 |
} |
|
490 |
|
|
491 |
|
|
492 |
}; |
|
493 |
} |
|
494 |
|
|
495 |
#endif |
0 comments (0 inline)