1
21
2
87
3
3
7
88
30
33
323
245
3
2
180
105
14
13
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
namespace lemon {
|
|
| 20 |
|
|
| 21 |
/** |
|
| 22 |
\page min_cost_flow Minimum Cost Flow Problem |
|
| 23 |
|
|
| 24 |
\section mcf_def Definition (GEQ form) |
|
| 25 |
|
|
| 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
| 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
| 28 |
in a network with capacity constraints (lower and upper bounds) |
|
| 29 |
and arc costs. |
|
| 30 |
|
|
| 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
|
| 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
|
| 33 |
upper bounds for the flow values on the arcs, for which |
|
| 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
| 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
|
| 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
|
|
| 37 |
signed supply values of the nodes. |
|
| 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
| 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
| 40 |
\f$-sup(u)\f$ demand. |
|
| 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
|
|
| 42 |
of the following optimization problem. |
|
| 43 |
|
|
| 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 46 |
sup(u) \quad \forall u\in V \f] |
|
| 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 48 |
|
|
| 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
|
| 50 |
zero or negative in order to have a feasible solution (since the sum |
|
| 51 |
of the expressions on the left-hand side of the inequalities is zero). |
|
| 52 |
It means that the total demand must be greater or equal to the total |
|
| 53 |
supply and all the supplies have to be carried out from the supply nodes, |
|
| 54 |
but there could be demands that are not satisfied. |
|
| 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
|
| 56 |
constraints have to be satisfied with equality, i.e. all demands |
|
| 57 |
have to be satisfied and all supplies have to be used. |
|
| 58 |
|
|
| 59 |
|
|
| 60 |
\section mcf_algs Algorithms |
|
| 61 |
|
|
| 62 |
LEMON contains several algorithms for solving this problem, for more |
|
| 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
|
| 64 |
|
|
| 65 |
A feasible solution for this problem can be found using \ref Circulation. |
|
| 66 |
|
|
| 67 |
|
|
| 68 |
\section mcf_dual Dual Solution |
|
| 69 |
|
|
| 70 |
The dual solution of the minimum cost flow problem is represented by |
|
| 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
|
|
| 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
|
|
| 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
|
|
| 74 |
the following \e complementary \e slackness optimality conditions hold. |
|
| 75 |
|
|
| 76 |
- For all \f$uv\in A\f$ arcs: |
|
| 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
| 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
| 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
| 80 |
- For all \f$u\in V\f$ nodes: |
|
| 81 |
- \f$\pi(u)<=0\f$; |
|
| 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
|
| 83 |
then \f$\pi(u)=0\f$. |
|
| 84 |
|
|
| 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
| 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
| 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
| 88 |
|
|
| 89 |
All algorithms provide dual solution (node potentials), as well, |
|
| 90 |
if an optimal flow is found. |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
\section mcf_eq Equality Form |
|
| 94 |
|
|
| 95 |
The above \ref mcf_def "definition" is actually more general than the |
|
| 96 |
usual formulation of the minimum cost flow problem, in which strict |
|
| 97 |
equalities are required in the supply/demand contraints. |
|
| 98 |
|
|
| 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
|
| 101 |
sup(u) \quad \forall u\in V \f] |
|
| 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 103 |
|
|
| 104 |
However if the sum of the supply values is zero, then these two problems |
|
| 105 |
are equivalent. |
|
| 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
|
| 107 |
form, so if you need the equality form, you have to ensure this additional |
|
| 108 |
contraint manually. |
|
| 109 |
|
|
| 110 |
|
|
| 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
|
| 112 |
|
|
| 113 |
Another possible definition of the minimum cost flow problem is |
|
| 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
|
| 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
|
| 116 |
|
|
| 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 119 |
sup(u) \quad \forall u\in V \f] |
|
| 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 121 |
|
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 124 |
positive) and all the demands have to be satisfied, but there |
|
| 125 |
could be supplies that are not carried out from the supply |
|
| 126 |
nodes. |
|
| 127 |
The equality form is also a special case of this form, of course. |
|
| 128 |
|
|
| 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
|
| 130 |
of the problem by reversing the direction of the arcs and taking the |
|
| 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
|
| 132 |
\ref NegMap adaptors). |
|
| 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
| 134 |
for the sake of convenience. |
|
| 135 |
|
|
| 136 |
Note that the optimality conditions for this supply constraint type are |
|
| 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
|
| 138 |
namely the potentials have to be non-negative instead of non-positive. |
|
| 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
|
|
| 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
|
|
| 141 |
node potentials the following conditions hold. |
|
| 142 |
|
|
| 143 |
- For all \f$uv\in A\f$ arcs: |
|
| 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
| 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
| 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
| 147 |
- For all \f$u\in V\f$ nodes: |
|
| 148 |
- \f$\pi(u)>=0\f$; |
|
| 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
|
| 150 |
then \f$\pi(u)=0\f$. |
|
| 151 |
|
|
| 152 |
*/ |
|
| 153 |
} |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <lemon/connectivity.h> |
|
| 20 |
#include <lemon/list_graph.h> |
|
| 21 |
#include <lemon/adaptors.h> |
|
| 22 |
|
|
| 23 |
#include "test_tools.h" |
|
| 24 |
|
|
| 25 |
using namespace lemon; |
|
| 26 |
|
|
| 27 |
|
|
| 28 |
int main() |
|
| 29 |
{
|
|
| 30 |
typedef ListDigraph Digraph; |
|
| 31 |
typedef Undirector<Digraph> Graph; |
|
| 32 |
|
|
| 33 |
{
|
|
| 34 |
Digraph d; |
|
| 35 |
Digraph::NodeMap<int> order(d); |
|
| 36 |
Graph g(d); |
|
| 37 |
|
|
| 38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
|
| 39 |
check(countStronglyConnectedComponents(d) == 0, |
|
| 40 |
"The empty digraph has 0 strongly connected component"); |
|
| 41 |
check(connected(g), "The empty graph is connected"); |
|
| 42 |
check(countConnectedComponents(g) == 0, |
|
| 43 |
"The empty graph has 0 connected component"); |
|
| 44 |
|
|
| 45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
|
| 46 |
check(countBiNodeConnectedComponents(g) == 0, |
|
| 47 |
"The empty graph has 0 bi-node-connected component"); |
|
| 48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
|
| 49 |
check(countBiEdgeConnectedComponents(g) == 0, |
|
| 50 |
"The empty graph has 0 bi-edge-connected component"); |
|
| 51 |
|
|
| 52 |
check(dag(d), "The empty digraph is DAG."); |
|
| 53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
|
| 54 |
check(loopFree(d), "The empty digraph is loop-free."); |
|
| 55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
|
| 56 |
check(simpleGraph(d), "The empty digraph is simple."); |
|
| 57 |
|
|
| 58 |
check(acyclic(g), "The empty graph is acyclic."); |
|
| 59 |
check(tree(g), "The empty graph is tree."); |
|
| 60 |
check(bipartite(g), "The empty graph is bipartite."); |
|
| 61 |
check(loopFree(g), "The empty graph is loop-free."); |
|
| 62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
|
| 63 |
check(simpleGraph(g), "The empty graph is simple."); |
|
| 64 |
} |
|
| 65 |
|
|
| 66 |
{
|
|
| 67 |
Digraph d; |
|
| 68 |
Digraph::NodeMap<int> order(d); |
|
| 69 |
Graph g(d); |
|
| 70 |
Digraph::Node n = d.addNode(); |
|
| 71 |
|
|
| 72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
|
| 73 |
check(countStronglyConnectedComponents(d) == 1, |
|
| 74 |
"This digraph has 1 strongly connected component"); |
|
| 75 |
check(connected(g), "This graph is connected"); |
|
| 76 |
check(countConnectedComponents(g) == 1, |
|
| 77 |
"This graph has 1 connected component"); |
|
| 78 |
|
|
| 79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
|
| 80 |
check(countBiNodeConnectedComponents(g) == 0, |
|
| 81 |
"This graph has 0 bi-node-connected component"); |
|
| 82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
|
| 83 |
check(countBiEdgeConnectedComponents(g) == 1, |
|
| 84 |
"This graph has 1 bi-edge-connected component"); |
|
| 85 |
|
|
| 86 |
check(dag(d), "This digraph is DAG."); |
|
| 87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
|
| 88 |
check(loopFree(d), "This digraph is loop-free."); |
|
| 89 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
| 90 |
check(simpleGraph(d), "This digraph is simple."); |
|
| 91 |
|
|
| 92 |
check(acyclic(g), "This graph is acyclic."); |
|
| 93 |
check(tree(g), "This graph is tree."); |
|
| 94 |
check(bipartite(g), "This graph is bipartite."); |
|
| 95 |
check(loopFree(g), "This graph is loop-free."); |
|
| 96 |
check(parallelFree(g), "This graph is parallel-free."); |
|
| 97 |
check(simpleGraph(g), "This graph is simple."); |
|
| 98 |
} |
|
| 99 |
|
|
| 100 |
{
|
|
| 101 |
Digraph d; |
|
| 102 |
Digraph::NodeMap<int> order(d); |
|
| 103 |
Graph g(d); |
|
| 104 |
|
|
| 105 |
Digraph::Node n1 = d.addNode(); |
|
| 106 |
Digraph::Node n2 = d.addNode(); |
|
| 107 |
Digraph::Node n3 = d.addNode(); |
|
| 108 |
Digraph::Node n4 = d.addNode(); |
|
| 109 |
Digraph::Node n5 = d.addNode(); |
|
| 110 |
Digraph::Node n6 = d.addNode(); |
|
| 111 |
|
|
| 112 |
d.addArc(n1, n3); |
|
| 113 |
d.addArc(n3, n2); |
|
| 114 |
d.addArc(n2, n1); |
|
| 115 |
d.addArc(n4, n2); |
|
| 116 |
d.addArc(n4, n3); |
|
| 117 |
d.addArc(n5, n6); |
|
| 118 |
d.addArc(n6, n5); |
|
| 119 |
|
|
| 120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
| 121 |
check(countStronglyConnectedComponents(d) == 3, |
|
| 122 |
"This digraph has 3 strongly connected components"); |
|
| 123 |
check(!connected(g), "This graph is not connected"); |
|
| 124 |
check(countConnectedComponents(g) == 2, |
|
| 125 |
"This graph has 2 connected components"); |
|
| 126 |
|
|
| 127 |
check(!dag(d), "This digraph is not DAG."); |
|
| 128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
|
| 129 |
check(loopFree(d), "This digraph is loop-free."); |
|
| 130 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
| 131 |
check(simpleGraph(d), "This digraph is simple."); |
|
| 132 |
|
|
| 133 |
check(!acyclic(g), "This graph is not acyclic."); |
|
| 134 |
check(!tree(g), "This graph is not tree."); |
|
| 135 |
check(!bipartite(g), "This graph is not bipartite."); |
|
| 136 |
check(loopFree(g), "This graph is loop-free."); |
|
| 137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
|
| 138 |
check(!simpleGraph(g), "This graph is not simple."); |
|
| 139 |
|
|
| 140 |
d.addArc(n3, n3); |
|
| 141 |
|
|
| 142 |
check(!loopFree(d), "This digraph is not loop-free."); |
|
| 143 |
check(!loopFree(g), "This graph is not loop-free."); |
|
| 144 |
check(!simpleGraph(d), "This digraph is not simple."); |
|
| 145 |
|
|
| 146 |
d.addArc(n3, n2); |
|
| 147 |
|
|
| 148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
{
|
|
| 152 |
Digraph d; |
|
| 153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
|
| 154 |
Graph g(d); |
|
| 155 |
|
|
| 156 |
Digraph::Node n1 = d.addNode(); |
|
| 157 |
Digraph::Node n2 = d.addNode(); |
|
| 158 |
Digraph::Node n3 = d.addNode(); |
|
| 159 |
Digraph::Node n4 = d.addNode(); |
|
| 160 |
Digraph::Node n5 = d.addNode(); |
|
| 161 |
Digraph::Node n6 = d.addNode(); |
|
| 162 |
Digraph::Node n7 = d.addNode(); |
|
| 163 |
Digraph::Node n8 = d.addNode(); |
|
| 164 |
|
|
| 165 |
d.addArc(n1, n2); |
|
| 166 |
d.addArc(n5, n1); |
|
| 167 |
d.addArc(n2, n8); |
|
| 168 |
d.addArc(n8, n5); |
|
| 169 |
d.addArc(n6, n4); |
|
| 170 |
d.addArc(n4, n6); |
|
| 171 |
d.addArc(n2, n5); |
|
| 172 |
d.addArc(n1, n8); |
|
| 173 |
d.addArc(n6, n7); |
|
| 174 |
d.addArc(n7, n6); |
|
| 175 |
|
|
| 176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
| 177 |
check(countStronglyConnectedComponents(d) == 3, |
|
| 178 |
"This digraph has 3 strongly connected components"); |
|
| 179 |
Digraph::NodeMap<int> scomp1(d); |
|
| 180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
|
| 181 |
"This digraph has 3 strongly connected components"); |
|
| 182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
|
| 183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
|
| 184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
|
| 185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
|
| 186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
|
| 187 |
"Wrong stronglyConnectedComponents()"); |
|
| 188 |
Digraph::ArcMap<bool> scut1(d, false); |
|
| 189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
|
| 190 |
"This digraph has 0 strongly connected cut arc."); |
|
| 191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
| 192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
|
| 193 |
} |
|
| 194 |
|
|
| 195 |
check(!connected(g), "This graph is not connected"); |
|
| 196 |
check(countConnectedComponents(g) == 3, |
|
| 197 |
"This graph has 3 connected components"); |
|
| 198 |
Graph::NodeMap<int> comp(g); |
|
| 199 |
check(connectedComponents(g, comp) == 3, |
|
| 200 |
"This graph has 3 connected components"); |
|
| 201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
|
| 202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
|
| 203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
|
| 204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
|
| 205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
|
| 206 |
"Wrong connectedComponents()"); |
|
| 207 |
|
|
| 208 |
cutarcs[d.addArc(n3, n1)] = true; |
|
| 209 |
cutarcs[d.addArc(n3, n5)] = true; |
|
| 210 |
cutarcs[d.addArc(n3, n8)] = true; |
|
| 211 |
cutarcs[d.addArc(n8, n6)] = true; |
|
| 212 |
cutarcs[d.addArc(n8, n7)] = true; |
|
| 213 |
|
|
| 214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
| 215 |
check(countStronglyConnectedComponents(d) == 3, |
|
| 216 |
"This digraph has 3 strongly connected components"); |
|
| 217 |
Digraph::NodeMap<int> scomp2(d); |
|
| 218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
|
| 219 |
"This digraph has 3 strongly connected components"); |
|
| 220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
|
| 221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
|
| 222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
|
| 223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
|
| 224 |
"Wrong stronglyConnectedComponents()"); |
|
| 225 |
Digraph::ArcMap<bool> scut2(d, false); |
|
| 226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
|
| 227 |
"This digraph has 5 strongly connected cut arcs."); |
|
| 228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
| 229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
|
| 230 |
} |
|
| 231 |
} |
|
| 232 |
|
|
| 233 |
{
|
|
| 234 |
// DAG example for topological sort from the book New Algorithms |
|
| 235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
|
| 236 |
Digraph d; |
|
| 237 |
Digraph::NodeMap<int> order(d); |
|
| 238 |
|
|
| 239 |
Digraph::Node belt = d.addNode(); |
|
| 240 |
Digraph::Node trousers = d.addNode(); |
|
| 241 |
Digraph::Node necktie = d.addNode(); |
|
| 242 |
Digraph::Node coat = d.addNode(); |
|
| 243 |
Digraph::Node socks = d.addNode(); |
|
| 244 |
Digraph::Node shirt = d.addNode(); |
|
| 245 |
Digraph::Node shoe = d.addNode(); |
|
| 246 |
Digraph::Node watch = d.addNode(); |
|
| 247 |
Digraph::Node pants = d.addNode(); |
|
| 248 |
|
|
| 249 |
d.addArc(socks, shoe); |
|
| 250 |
d.addArc(pants, shoe); |
|
| 251 |
d.addArc(pants, trousers); |
|
| 252 |
d.addArc(trousers, shoe); |
|
| 253 |
d.addArc(trousers, belt); |
|
| 254 |
d.addArc(belt, coat); |
|
| 255 |
d.addArc(shirt, belt); |
|
| 256 |
d.addArc(shirt, necktie); |
|
| 257 |
d.addArc(necktie, coat); |
|
| 258 |
|
|
| 259 |
check(dag(d), "This digraph is DAG."); |
|
| 260 |
topologicalSort(d, order); |
|
| 261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
| 262 |
check(order[d.source(a)] < order[d.target(a)], |
|
| 263 |
"Wrong topologicalSort()"); |
|
| 264 |
} |
|
| 265 |
} |
|
| 266 |
|
|
| 267 |
{
|
|
| 268 |
ListGraph g; |
|
| 269 |
ListGraph::NodeMap<bool> map(g); |
|
| 270 |
|
|
| 271 |
ListGraph::Node n1 = g.addNode(); |
|
| 272 |
ListGraph::Node n2 = g.addNode(); |
|
| 273 |
ListGraph::Node n3 = g.addNode(); |
|
| 274 |
ListGraph::Node n4 = g.addNode(); |
|
| 275 |
ListGraph::Node n5 = g.addNode(); |
|
| 276 |
ListGraph::Node n6 = g.addNode(); |
|
| 277 |
ListGraph::Node n7 = g.addNode(); |
|
| 278 |
|
|
| 279 |
g.addEdge(n1, n3); |
|
| 280 |
g.addEdge(n1, n4); |
|
| 281 |
g.addEdge(n2, n5); |
|
| 282 |
g.addEdge(n3, n6); |
|
| 283 |
g.addEdge(n4, n6); |
|
| 284 |
g.addEdge(n4, n7); |
|
| 285 |
g.addEdge(n5, n7); |
|
| 286 |
|
|
| 287 |
check(bipartite(g), "This graph is bipartite"); |
|
| 288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
|
| 289 |
|
|
| 290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
|
| 291 |
"Wrong bipartitePartitions()"); |
|
| 292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
|
| 293 |
"Wrong bipartitePartitions()"); |
|
| 294 |
} |
|
| 295 |
|
|
| 296 |
return 0; |
|
| 297 |
} |
| ... | ... |
@@ -41,13 +41,13 @@ |
| 41 | 41 |
|
| 42 | 42 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 43 | 43 |
IF(WIN32) |
| 44 | 44 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME})
|
| 45 | 45 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
| 46 | 46 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
| 47 |
"LEMON - Library |
|
| 47 |
"LEMON - Library for Efficient Modeling and Optimization in Networks") |
|
| 48 | 48 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE")
|
| 49 | 49 |
|
| 50 | 50 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
|
| 51 | 51 |
|
| 52 | 52 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
| 53 | 53 |
"${PROJECT_NAME} ${PROJECT_VERSION}")
|
| 1 |
2009-05-13 Version 1.1 released |
|
| 2 |
|
|
| 3 |
This is the second stable release of the 1.x series. It |
|
| 4 |
features a better coverage of the tools available in the 0.x |
|
| 5 |
series, a thoroughly reworked LP/MIP interface plus various |
|
| 6 |
improvements in the existing tools. |
|
| 7 |
|
|
| 8 |
* Much improved M$ Windows support |
|
| 9 |
* Various improvements in the CMAKE build system |
|
| 10 |
* Compilation warnings are fixed/suppressed |
|
| 11 |
* Support IBM xlC compiler |
|
| 12 |
* New algorithms |
|
| 13 |
* Connectivity related algorithms (#61) |
|
| 14 |
* Euler walks (#65) |
|
| 15 |
* Preflow push-relabel max. flow algorithm (#176) |
|
| 16 |
* Circulation algorithm (push-relabel based) (#175) |
|
| 17 |
* Suurballe algorithm (#47) |
|
| 18 |
* Gomory-Hu algorithm (#66) |
|
| 19 |
* Hao-Orlin algorithm (#58) |
|
| 20 |
* Edmond's maximum cardinality and weighted matching algorithms |
|
| 21 |
in general graphs (#48,#265) |
|
| 22 |
* Minimum cost arborescence/branching (#60) |
|
| 23 |
* Network Simplex min. cost flow algorithm (#234) |
|
| 24 |
* New data structures |
|
| 25 |
* Full graph structure (#57) |
|
| 26 |
* Grid graph structure (#57) |
|
| 27 |
* Hypercube graph structure (#57) |
|
| 28 |
* Graph adaptors (#67) |
|
| 29 |
* ArcSet and EdgeSet classes (#67) |
|
| 30 |
* Elevator class (#174) |
|
| 31 |
* Other new tools |
|
| 32 |
* LP/MIP interface (#44) |
|
| 33 |
* Support for GLPK, CPLEX, Soplex, COIN-OR CLP and CBC |
|
| 34 |
* Reader for the Nauty file format (#55) |
|
| 35 |
* DIMACS readers (#167) |
|
| 36 |
* Radix sort algorithms (#72) |
|
| 37 |
* RangeIdMap and CrossRefMap (#160) |
|
| 38 |
* New command line tools |
|
| 39 |
* DIMACS to LGF converter (#182) |
|
| 40 |
* lgf-gen - a graph generator (#45) |
|
| 41 |
* DIMACS solver utility (#226) |
|
| 42 |
* Other code improvements |
|
| 43 |
* Lognormal distribution added to Random (#102) |
|
| 44 |
* Better (i.e. O(1) time) item counting in SmartGraph (#3) |
|
| 45 |
* The standard maps of graphs are guaranteed to be |
|
| 46 |
reference maps (#190) |
|
| 47 |
* Miscellaneous |
|
| 48 |
* Various doc improvements |
|
| 49 |
* Improved 0.x -> 1.x converter script |
|
| 50 |
|
|
| 51 |
* Several bugfixes (compared to release 1.0): |
|
| 52 |
#170: Bugfix SmartDigraph::split() |
|
| 53 |
#171: Bugfix in SmartGraph::restoreSnapshot() |
|
| 54 |
#172: Extended test cases for graphs and digraphs |
|
| 55 |
#173: Bugfix in Random |
|
| 56 |
* operator()s always return a double now |
|
| 57 |
* the faulty real<Num>(Num) and real<Num>(Num,Num) |
|
| 58 |
have been removed |
|
| 59 |
#187: Remove DijkstraWidestPathOperationTraits |
|
| 60 |
#61: Bugfix in DfsVisit |
|
| 61 |
#193: Bugfix in GraphReader::skipSection() |
|
| 62 |
#195: Bugfix in ConEdgeIt() |
|
| 63 |
#197: Bugfix in heap unionfind |
|
| 64 |
* This bug affects Edmond's general matching algorithms |
|
| 65 |
#207: Fix 'make install' without 'make html' using CMAKE |
|
| 66 |
#208: Suppress or fix VS2008 compilation warnings |
|
| 67 |
----: Update the LEMON icon |
|
| 68 |
----: Enable the component-based installer |
|
| 69 |
(in installers made by CPACK) |
|
| 70 |
----: Set the proper version for CMAKE in the tarballs |
|
| 71 |
(made by autotools) |
|
| 72 |
----: Minor clarification in the LICENSE file |
|
| 73 |
----: Add missing unistd.h include to time_measure.h |
|
| 74 |
#204: Compilation bug fixed in graph_to_eps.h with VS2005 |
|
| 75 |
#214,#215: windows.h should never be included by lemon headers |
|
| 76 |
#230: Build systems check the availability of 'long long' type |
|
| 77 |
#229: Default implementation of Tolerance<> is used for integer types |
|
| 78 |
#211,#212: Various fixes for compiling on AIX |
|
| 79 |
----: Improvements in CMAKE config |
|
| 80 |
- docs is installed in share/doc/ |
|
| 81 |
- detects newer versions of Ghostscript |
|
| 82 |
#239: Fix missing 'inline' specifier in time_measure.h |
|
| 83 |
#274,#280: Install lemon/config.h |
|
| 84 |
#275: Prefix macro names with LEMON_ in lemon/config.h |
|
| 85 |
----: Small script for making the release tarballs added |
|
| 86 |
----: Minor improvement in unify-sources.sh (a76f55d7d397) |
|
| 87 |
|
|
| 1 | 88 |
2009-03-27 LEMON joins to the COIN-OR initiative |
| 2 | 89 |
|
| 3 | 90 |
COIN-OR (Computational Infrastructure for Operations Research, |
| 4 | 91 |
http://www.coin-or.org) project is an initiative to spur the |
| 5 | 92 |
development of open-source software for the operations research |
| 6 | 93 |
community. |
| 1 |
================================================================== |
|
| 2 |
LEMON - a Library of Efficient Models and Optimization in Networks |
|
| 3 |
================================================================== |
|
| 1 |
===================================================================== |
|
| 2 |
LEMON - a Library for Efficient Modeling and Optimization in Networks |
|
| 3 |
===================================================================== |
|
| 4 | 4 |
|
| 5 | 5 |
LEMON is an open source library written in C++. It provides |
| 6 | 6 |
easy-to-use implementations of common data structures and algorithms |
| 7 | 7 |
in the area of optimization and helps implementing new ones. The main |
| 8 | 8 |
focus is on graphs and graph algorithms, thus it is especially |
| 9 | 9 |
suitable for solving design and optimization problems of |
| ... | ... |
@@ -5,12 +5,13 @@ |
| 5 | 5 |
doc/dirs.dox \ |
| 6 | 6 |
doc/groups.dox \ |
| 7 | 7 |
doc/lgf.dox \ |
| 8 | 8 |
doc/license.dox \ |
| 9 | 9 |
doc/mainpage.dox \ |
| 10 | 10 |
doc/migration.dox \ |
| 11 |
doc/min_cost_flow.dox \ |
|
| 11 | 12 |
doc/named-param.dox \ |
| 12 | 13 |
doc/namespaces.dox \ |
| 13 | 14 |
doc/html \ |
| 14 | 15 |
doc/CMakeLists.txt |
| 15 | 16 |
|
| 16 | 17 |
DOC_EPS_IMAGES18 = \ |
| ... | ... |
@@ -135,22 +135,12 @@ |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
|
| 142 |
@ingroup graphs |
|
| 143 |
\brief Graph types between real graphs and graph adaptors. |
|
| 144 |
|
|
| 145 |
This group contains some graph types between real graphs and graph adaptors. |
|
| 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
|
| 147 |
On the other hand they are not light-weight structures as the adaptors. |
|
| 148 |
*/ |
|
| 149 |
|
|
| 150 |
/** |
|
| 151 | 141 |
@defgroup maps Maps |
| 152 | 142 |
@ingroup datas |
| 153 | 143 |
\brief Map structures implemented in LEMON. |
| 154 | 144 |
|
| 155 | 145 |
This group contains the map structures implemented in LEMON. |
| 156 | 146 |
|
| ... | ... |
@@ -312,99 +302,28 @@ |
| 312 | 302 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 313 | 303 |
|
| 314 | 304 |
\ref Preflow implements the preflow push-relabel algorithm of Goldberg and |
| 315 | 305 |
Tarjan for solving this problem. It also provides functions to query the |
| 316 | 306 |
minimum cut, which is the dual problem of maximum flow. |
| 317 | 307 |
|
| 308 |
|
|
| 318 | 309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 319 | 310 |
for finding feasible circulations, which is a somewhat different problem, |
| 320 | 311 |
but it is strongly related to maximum flow. |
| 321 | 312 |
For more information, see \ref Circulation. |
| 322 | 313 |
*/ |
| 323 | 314 |
|
| 324 | 315 |
/** |
| 325 |
@defgroup |
|
| 316 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
|
| 326 | 317 |
@ingroup algs |
| 327 | 318 |
|
| 328 | 319 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 329 | 320 |
|
| 330 | 321 |
This group contains the algorithms for finding minimum cost flows and |
| 331 |
circulations. |
|
| 332 |
|
|
| 333 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
| 334 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
| 335 |
in a network with capacity constraints (lower and upper bounds) |
|
| 336 |
and arc costs. |
|
| 337 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
|
|
| 338 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
|
|
| 339 |
upper bounds for the flow values on the arcs, for which |
|
| 340 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
| 341 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
|
|
| 342 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
|
|
| 343 |
signed supply values of the nodes. |
|
| 344 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
| 345 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
| 346 |
\f$-sup(u)\f$ demand. |
|
| 347 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
|
|
| 348 |
of the following optimization problem. |
|
| 349 |
|
|
| 350 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 351 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 352 |
sup(u) \quad \forall u\in V \f] |
|
| 353 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 354 |
|
|
| 355 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
|
| 356 |
zero or negative in order to have a feasible solution (since the sum |
|
| 357 |
of the expressions on the left-hand side of the inequalities is zero). |
|
| 358 |
It means that the total demand must be greater or equal to the total |
|
| 359 |
supply and all the supplies have to be carried out from the supply nodes, |
|
| 360 |
but there could be demands that are not satisfied. |
|
| 361 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
|
| 362 |
constraints have to be satisfied with equality, i.e. all demands |
|
| 363 |
have to be satisfied and all supplies have to be used. |
|
| 364 |
|
|
| 365 |
If you need the opposite inequalities in the supply/demand constraints |
|
| 366 |
(i.e. the total demand is less than the total supply and all the demands |
|
| 367 |
have to be satisfied while there could be supplies that are not used), |
|
| 368 |
then you could easily transform the problem to the above form by reversing |
|
| 369 |
the direction of the arcs and taking the negative of the supply values |
|
| 370 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
| 371 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
| 372 |
for the sake of convenience. |
|
| 373 |
|
|
| 374 |
A feasible solution for this problem can be found using \ref Circulation. |
|
| 375 |
|
|
| 376 |
Note that the above formulation is actually more general than the usual |
|
| 377 |
definition of the minimum cost flow problem, in which strict equalities |
|
| 378 |
are required in the supply/demand contraints, i.e. |
|
| 379 |
|
|
| 380 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
|
| 381 |
sup(u) \quad \forall u\in V. \f] |
|
| 382 |
|
|
| 383 |
However if the sum of the supply values is zero, then these two problems |
|
| 384 |
are equivalent. So if you need the equality form, you have to ensure this |
|
| 385 |
additional contraint for the algorithms. |
|
| 386 |
|
|
| 387 |
The dual solution of the minimum cost flow problem is represented by node |
|
| 388 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
|
|
| 389 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
|
|
| 390 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
|
|
| 391 |
node potentials the following \e complementary \e slackness optimality |
|
| 392 |
conditions hold. |
|
| 393 |
|
|
| 394 |
- For all \f$uv\in A\f$ arcs: |
|
| 395 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
| 396 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
| 397 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
| 398 |
- For all \f$u\in V\f$ nodes: |
|
| 399 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
|
| 400 |
then \f$\pi(u)=0\f$. |
|
| 401 |
|
|
| 402 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
| 403 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
| 404 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
| 322 |
circulations. For more information about this problem and its dual |
|
| 323 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
| 405 | 324 |
|
| 406 | 325 |
\ref NetworkSimplex is an efficient implementation of the primal Network |
| 407 | 326 |
Simplex algorithm for finding minimum cost flows. It also provides dual |
| 408 | 327 |
solution (node potentials), if an optimal flow is found. |
| 409 | 328 |
*/ |
| 410 | 329 |
|
| ... | ... |
@@ -476,16 +395,16 @@ |
| 476 | 395 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 477 | 396 |
*/ |
| 478 | 397 |
|
| 479 | 398 |
/** |
| 480 | 399 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 481 | 400 |
@ingroup algs |
| 482 |
\brief Algorithms for finding |
|
| 401 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
| 483 | 402 |
|
| 484 |
This group contains the algorithms for finding a minimum cost spanning |
|
| 485 |
tree in a graph. |
|
| 403 |
This group contains the algorithms for finding minimum cost spanning |
|
| 404 |
trees and arborescences. |
|
| 486 | 405 |
*/ |
| 487 | 406 |
|
| 488 | 407 |
/** |
| 489 | 408 |
@defgroup auxalg Auxiliary Algorithms |
| 490 | 409 |
@ingroup algs |
| 491 | 410 |
\brief Auxiliary algorithms implemented in LEMON. |
| ... | ... |
@@ -20,14 +20,13 @@ |
| 20 | 20 |
\mainpage LEMON Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 | 24 |
\subsection whatis What is LEMON |
| 25 | 25 |
|
| 26 |
LEMON stands for |
|
| 27 |
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels |
|
| 26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 28 | 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
| 29 | 28 |
It is a C++ template |
| 30 | 29 |
library aimed at combinatorial optimization tasks which |
| 31 | 30 |
often involve in working |
| 32 | 31 |
with graphs. |
| 33 | 32 |
|
| ... | ... |
@@ -38,19 +37,15 @@ |
| 38 | 37 |
non-commercial applications under very permissive |
| 39 | 38 |
\ref license "license terms". |
| 40 | 39 |
</b> |
| 41 | 40 |
|
| 42 | 41 |
\subsection howtoread How to read the documentation |
| 43 | 42 |
|
| 44 |
If you want to get a quick start and see the most important features then |
|
| 45 |
take a look at our \ref quicktour |
|
| 46 |
"Quick Tour to LEMON" which will guide you along. |
|
| 47 |
|
|
| 48 |
If you |
|
| 43 |
If you would like to get to know the library, see |
|
| 49 | 44 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
| 50 | 45 |
|
| 51 |
If you know what you are looking for then try to find it under the |
|
| 46 |
If you know what you are looking for, then try to find it under the |
|
| 52 | 47 |
<a class="el" href="modules.html">Modules</a> section. |
| 53 | 48 |
|
| 54 | 49 |
If you are a user of the old (0.x) series of LEMON, please check out the |
| 55 | 50 |
\ref migration "Migration Guide" for the backward incompatibilities. |
| 56 | 51 |
*/ |
| ... | ... |
@@ -108,13 +108,12 @@ |
| 108 | 108 |
lemon/unionfind.h \ |
| 109 | 109 |
lemon/bits/windows.h |
| 110 | 110 |
|
| 111 | 111 |
bits_HEADERS += \ |
| 112 | 112 |
lemon/bits/alteration_notifier.h \ |
| 113 | 113 |
lemon/bits/array_map.h \ |
| 114 |
lemon/bits/base_extender.h \ |
|
| 115 | 114 |
lemon/bits/bezier.h \ |
| 116 | 115 |
lemon/bits/default_map.h \ |
| 117 | 116 |
lemon/bits/edge_set_extender.h \ |
| 118 | 117 |
lemon/bits/enable_if.h \ |
| 119 | 118 |
lemon/bits/graph_adaptor_extender.h \ |
| 120 | 119 |
lemon/bits/graph_extender.h \ |
| ... | ... |
@@ -1836,58 +1836,58 @@ |
| 1836 | 1836 |
|
| 1837 | 1837 |
typedef True UndirectedTag; |
| 1838 | 1838 |
|
| 1839 | 1839 |
typedef typename Digraph::Arc Edge; |
| 1840 | 1840 |
typedef typename Digraph::Node Node; |
| 1841 | 1841 |
|
| 1842 |
class Arc |
|
| 1842 |
class Arc {
|
|
| 1843 | 1843 |
friend class UndirectorBase; |
| 1844 | 1844 |
protected: |
| 1845 |
Edge _edge; |
|
| 1845 | 1846 |
bool _forward; |
| 1846 | 1847 |
|
| 1847 |
Arc(const Edge& edge, bool forward) : |
|
| 1848 |
Edge(edge), _forward(forward) {}
|
|
| 1848 |
Arc(const Edge& edge, bool forward) |
|
| 1849 |
: _edge(edge), _forward(forward) {}
|
|
| 1849 | 1850 |
|
| 1850 | 1851 |
public: |
| 1851 | 1852 |
Arc() {}
|
| 1852 | 1853 |
|
| 1853 |
Arc(Invalid) : |
|
| 1854 |
Arc(Invalid) : _edge(INVALID), _forward(true) {}
|
|
| 1855 |
|
|
| 1856 |
operator const Edge&() const { return _edge; }
|
|
| 1854 | 1857 |
|
| 1855 | 1858 |
bool operator==(const Arc &other) const {
|
| 1856 |
return _forward == other._forward && |
|
| 1857 |
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other); |
|
| 1859 |
return _forward == other._forward && _edge == other._edge; |
|
| 1858 | 1860 |
} |
| 1859 | 1861 |
bool operator!=(const Arc &other) const {
|
| 1860 |
return _forward != other._forward || |
|
| 1861 |
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other); |
|
| 1862 |
return _forward != other._forward || _edge != other._edge; |
|
| 1862 | 1863 |
} |
| 1863 | 1864 |
bool operator<(const Arc &other) const {
|
| 1864 | 1865 |
return _forward < other._forward || |
| 1865 |
(_forward == other._forward && |
|
| 1866 |
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other)); |
|
| 1866 |
(_forward == other._forward && _edge < other._edge); |
|
| 1867 | 1867 |
} |
| 1868 | 1868 |
}; |
| 1869 | 1869 |
|
| 1870 | 1870 |
void first(Node& n) const {
|
| 1871 | 1871 |
_digraph->first(n); |
| 1872 | 1872 |
} |
| 1873 | 1873 |
|
| 1874 | 1874 |
void next(Node& n) const {
|
| 1875 | 1875 |
_digraph->next(n); |
| 1876 | 1876 |
} |
| 1877 | 1877 |
|
| 1878 | 1878 |
void first(Arc& a) const {
|
| 1879 |
_digraph->first(a); |
|
| 1879 |
_digraph->first(a._edge); |
|
| 1880 | 1880 |
a._forward = true; |
| 1881 | 1881 |
} |
| 1882 | 1882 |
|
| 1883 | 1883 |
void next(Arc& a) const {
|
| 1884 | 1884 |
if (a._forward) {
|
| 1885 | 1885 |
a._forward = false; |
| 1886 | 1886 |
} else {
|
| 1887 |
_digraph->next(a); |
|
| 1887 |
_digraph->next(a._edge); |
|
| 1888 | 1888 |
a._forward = true; |
| 1889 | 1889 |
} |
| 1890 | 1890 |
} |
| 1891 | 1891 |
|
| 1892 | 1892 |
void first(Edge& e) const {
|
| 1893 | 1893 |
_digraph->first(e); |
| ... | ... |
@@ -1895,54 +1895,54 @@ |
| 1895 | 1895 |
|
| 1896 | 1896 |
void next(Edge& e) const {
|
| 1897 | 1897 |
_digraph->next(e); |
| 1898 | 1898 |
} |
| 1899 | 1899 |
|
| 1900 | 1900 |
void firstOut(Arc& a, const Node& n) const {
|
| 1901 |
_digraph->firstIn(a, n); |
|
| 1902 |
if( static_cast<const Edge&>(a) != INVALID ) {
|
|
| 1901 |
_digraph->firstIn(a._edge, n); |
|
| 1902 |
if (a._edge != INVALID ) {
|
|
| 1903 | 1903 |
a._forward = false; |
| 1904 | 1904 |
} else {
|
| 1905 |
_digraph->firstOut(a, n); |
|
| 1905 |
_digraph->firstOut(a._edge, n); |
|
| 1906 | 1906 |
a._forward = true; |
| 1907 | 1907 |
} |
| 1908 | 1908 |
} |
| 1909 | 1909 |
void nextOut(Arc &a) const {
|
| 1910 | 1910 |
if (!a._forward) {
|
| 1911 |
Node n = _digraph->target(a); |
|
| 1912 |
_digraph->nextIn(a); |
|
| 1913 |
if (static_cast<const Edge&>(a) == INVALID ) {
|
|
| 1914 |
_digraph->firstOut(a, n); |
|
| 1911 |
Node n = _digraph->target(a._edge); |
|
| 1912 |
_digraph->nextIn(a._edge); |
|
| 1913 |
if (a._edge == INVALID) {
|
|
| 1914 |
_digraph->firstOut(a._edge, n); |
|
| 1915 | 1915 |
a._forward = true; |
| 1916 | 1916 |
} |
| 1917 | 1917 |
} |
| 1918 | 1918 |
else {
|
| 1919 |
_digraph->nextOut(a); |
|
| 1919 |
_digraph->nextOut(a._edge); |
|
| 1920 | 1920 |
} |
| 1921 | 1921 |
} |
| 1922 | 1922 |
|
| 1923 | 1923 |
void firstIn(Arc &a, const Node &n) const {
|
| 1924 |
_digraph->firstOut(a, n); |
|
| 1925 |
if (static_cast<const Edge&>(a) != INVALID ) {
|
|
| 1924 |
_digraph->firstOut(a._edge, n); |
|
| 1925 |
if (a._edge != INVALID ) {
|
|
| 1926 | 1926 |
a._forward = false; |
| 1927 | 1927 |
} else {
|
| 1928 |
_digraph->firstIn(a, n); |
|
| 1928 |
_digraph->firstIn(a._edge, n); |
|
| 1929 | 1929 |
a._forward = true; |
| 1930 | 1930 |
} |
| 1931 | 1931 |
} |
| 1932 | 1932 |
void nextIn(Arc &a) const {
|
| 1933 | 1933 |
if (!a._forward) {
|
| 1934 |
Node n = _digraph->source(a); |
|
| 1935 |
_digraph->nextOut(a); |
|
| 1936 |
if( static_cast<const Edge&>(a) == INVALID ) {
|
|
| 1937 |
_digraph->firstIn(a, n); |
|
| 1934 |
Node n = _digraph->source(a._edge); |
|
| 1935 |
_digraph->nextOut(a._edge); |
|
| 1936 |
if (a._edge == INVALID ) {
|
|
| 1937 |
_digraph->firstIn(a._edge, n); |
|
| 1938 | 1938 |
a._forward = true; |
| 1939 | 1939 |
} |
| 1940 | 1940 |
} |
| 1941 | 1941 |
else {
|
| 1942 |
_digraph->nextIn(a); |
|
| 1942 |
_digraph->nextIn(a._edge); |
|
| 1943 | 1943 |
} |
| 1944 | 1944 |
} |
| 1945 | 1945 |
|
| 1946 | 1946 |
void firstInc(Edge &e, bool &d, const Node &n) const {
|
| 1947 | 1947 |
d = true; |
| 1948 | 1948 |
_digraph->firstOut(e, n); |
| ... | ... |
@@ -1969,25 +1969,22 @@ |
| 1969 | 1969 |
|
| 1970 | 1970 |
Node v(const Edge& e) const {
|
| 1971 | 1971 |
return _digraph->target(e); |
| 1972 | 1972 |
} |
| 1973 | 1973 |
|
| 1974 | 1974 |
Node source(const Arc &a) const {
|
| 1975 |
return a._forward ? _digraph->source(a) : _digraph->target(a); |
|
| 1975 |
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge); |
|
| 1976 | 1976 |
} |
| 1977 | 1977 |
|
| 1978 | 1978 |
Node target(const Arc &a) const {
|
| 1979 |
return a._forward ? _digraph->target(a) : _digraph->source(a); |
|
| 1979 |
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge); |
|
| 1980 | 1980 |
} |
| 1981 | 1981 |
|
| 1982 | 1982 |
static Arc direct(const Edge &e, bool d) {
|
| 1983 | 1983 |
return Arc(e, d); |
| 1984 | 1984 |
} |
| 1985 |
Arc direct(const Edge &e, const Node& n) const {
|
|
| 1986 |
return Arc(e, _digraph->source(e) == n); |
|
| 1987 |
} |
|
| 1988 | 1985 |
|
| 1989 | 1986 |
static bool direction(const Arc &a) { return a._forward; }
|
| 1990 | 1987 |
|
| 1991 | 1988 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
|
| 1992 | 1989 |
Arc arcFromId(int ix) const {
|
| 1993 | 1990 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
| ... | ... |
@@ -307,25 +307,25 @@ |
| 307 | 307 |
}; |
| 308 | 308 |
|
| 309 | 309 |
/// The directed arc type. |
| 310 | 310 |
|
| 311 | 311 |
/// The directed arc type. It can be converted to the |
| 312 | 312 |
/// edge or it should be inherited from the undirected |
| 313 |
/// arc. |
|
| 314 |
class Arc : public Edge {
|
|
| 313 |
/// edge. |
|
| 314 |
class Arc {
|
|
| 315 | 315 |
public: |
| 316 | 316 |
/// Default constructor |
| 317 | 317 |
|
| 318 | 318 |
/// @warning The default constructor sets the iterator |
| 319 | 319 |
/// to an undefined value. |
| 320 | 320 |
Arc() { }
|
| 321 | 321 |
/// Copy constructor. |
| 322 | 322 |
|
| 323 | 323 |
/// Copy constructor. |
| 324 | 324 |
/// |
| 325 |
Arc(const Arc& |
|
| 325 |
Arc(const Arc&) { }
|
|
| 326 | 326 |
/// Initialize the iterator to be invalid. |
| 327 | 327 |
|
| 328 | 328 |
/// Initialize the iterator to be invalid. |
| 329 | 329 |
/// |
| 330 | 330 |
Arc(Invalid) { }
|
| 331 | 331 |
/// Equality operator |
| ... | ... |
@@ -346,12 +346,14 @@ |
| 346 | 346 |
/// |
| 347 | 347 |
/// \note This operator only have to define some strict ordering of |
| 348 | 348 |
/// the items; this order has nothing to do with the iteration |
| 349 | 349 |
/// ordering of the items. |
| 350 | 350 |
bool operator<(Arc) const { return false; }
|
| 351 | 351 |
|
| 352 |
/// Converison to Edge |
|
| 353 |
operator Edge() const { return Edge(); }
|
|
| 352 | 354 |
}; |
| 353 | 355 |
/// This iterator goes through each directed arc. |
| 354 | 356 |
|
| 355 | 357 |
/// This iterator goes through each arc of a graph. |
| 356 | 358 |
/// Its usage is quite simple, for example you can count the number |
| 357 | 359 |
/// of arcs in a graph \c g of type \c Graph as follows: |
| ... | ... |
@@ -39,18 +39,22 @@ |
| 39 | 39 |
/// Connectivity algorithms |
| 40 | 40 |
|
| 41 | 41 |
namespace lemon {
|
| 42 | 42 |
|
| 43 | 43 |
/// \ingroup graph_properties |
| 44 | 44 |
/// |
| 45 |
/// \brief Check whether |
|
| 45 |
/// \brief Check whether an undirected graph is connected. |
|
| 46 | 46 |
/// |
| 47 |
/// Check whether the given undirected graph is connected. |
|
| 48 |
/// \param graph The undirected graph. |
|
| 49 |
/// |
|
| 47 |
/// This function checks whether the given undirected graph is connected, |
|
| 48 |
/// i.e. there is a path between any two nodes in the graph. |
|
| 49 |
/// |
|
| 50 |
/// \return \c true if the graph is connected. |
|
| 50 | 51 |
/// \note By definition, the empty graph is connected. |
| 52 |
/// |
|
| 53 |
/// \see countConnectedComponents(), connectedComponents() |
|
| 54 |
/// \see stronglyConnected() |
|
| 51 | 55 |
template <typename Graph> |
| 52 | 56 |
bool connected(const Graph& graph) {
|
| 53 | 57 |
checkConcept<concepts::Graph, Graph>(); |
| 54 | 58 |
typedef typename Graph::NodeIt NodeIt; |
| 55 | 59 |
if (NodeIt(graph) == INVALID) return true; |
| 56 | 60 |
Dfs<Graph> dfs(graph); |
| ... | ... |
@@ -64,18 +68,24 @@ |
| 64 | 68 |
} |
| 65 | 69 |
|
| 66 | 70 |
/// \ingroup graph_properties |
| 67 | 71 |
/// |
| 68 | 72 |
/// \brief Count the number of connected components of an undirected graph |
| 69 | 73 |
/// |
| 70 |
/// |
|
| 74 |
/// This function counts the number of connected components of the given |
|
| 75 |
/// undirected graph. |
|
| 71 | 76 |
/// |
| 72 |
/// \param graph The graph. It must be undirected. |
|
| 73 |
/// \return The number of components |
|
| 77 |
/// The connected components are the classes of an equivalence relation |
|
| 78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
| 79 |
/// if they are connected with a path. |
|
| 80 |
/// |
|
| 81 |
/// \return The number of connected components. |
|
| 74 | 82 |
/// \note By definition, the empty graph consists |
| 75 | 83 |
/// of zero connected components. |
| 84 |
/// |
|
| 85 |
/// \see connected(), connectedComponents() |
|
| 76 | 86 |
template <typename Graph> |
| 77 | 87 |
int countConnectedComponents(const Graph &graph) {
|
| 78 | 88 |
checkConcept<concepts::Graph, Graph>(); |
| 79 | 89 |
typedef typename Graph::Node Node; |
| 80 | 90 |
typedef typename Graph::Arc Arc; |
| 81 | 91 |
|
| ... | ... |
@@ -106,23 +116,32 @@ |
| 106 | 116 |
} |
| 107 | 117 |
|
| 108 | 118 |
/// \ingroup graph_properties |
| 109 | 119 |
/// |
| 110 | 120 |
/// \brief Find the connected components of an undirected graph |
| 111 | 121 |
/// |
| 112 |
/// |
|
| 122 |
/// This function finds the connected components of the given undirected |
|
| 123 |
/// graph. |
|
| 124 |
/// |
|
| 125 |
/// The connected components are the classes of an equivalence relation |
|
| 126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
| 127 |
/// if they are connected with a path. |
|
| 113 | 128 |
/// |
| 114 | 129 |
/// \image html connected_components.png |
| 115 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
| 116 | 131 |
/// |
| 117 |
/// \param graph The |
|
| 132 |
/// \param graph The undirected graph. |
|
| 118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 119 |
/// the number of the connected components minus one. Each values of the map |
|
| 120 |
/// will be set exactly once, the values of a certain component will be |
|
| 134 |
/// the number of the connected components minus one. Each value of the map |
|
| 135 |
/// will be set exactly once, and the values of a certain component will be |
|
| 121 | 136 |
/// set continuously. |
| 122 |
/// \return The number of components |
|
| 137 |
/// \return The number of connected components. |
|
| 138 |
/// \note By definition, the empty graph consists |
|
| 139 |
/// of zero connected components. |
|
| 140 |
/// |
|
| 141 |
/// \see connected(), countConnectedComponents() |
|
| 123 | 142 |
template <class Graph, class NodeMap> |
| 124 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 125 | 144 |
checkConcept<concepts::Graph, Graph>(); |
| 126 | 145 |
typedef typename Graph::Node Node; |
| 127 | 146 |
typedef typename Graph::Arc Arc; |
| 128 | 147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| ... | ... |
@@ -228,21 +247,23 @@ |
| 228 | 247 |
|
| 229 | 248 |
} |
| 230 | 249 |
|
| 231 | 250 |
|
| 232 | 251 |
/// \ingroup graph_properties |
| 233 | 252 |
/// |
| 234 |
/// \brief Check whether |
|
| 253 |
/// \brief Check whether a directed graph is strongly connected. |
|
| 235 | 254 |
/// |
| 236 |
/// Check whether the given directed graph is strongly connected. The |
|
| 237 |
/// graph is strongly connected when any two nodes of the graph are |
|
| 255 |
/// This function checks whether the given directed graph is strongly |
|
| 256 |
/// connected, i.e. any two nodes of the digraph are |
|
| 238 | 257 |
/// connected with directed paths in both direction. |
| 239 |
/// \return \c false when the graph is not strongly connected. |
|
| 240 |
/// \see connected |
|
| 241 | 258 |
/// |
| 242 |
/// \ |
|
| 259 |
/// \return \c true if the digraph is strongly connected. |
|
| 260 |
/// \note By definition, the empty digraph is strongly connected. |
|
| 261 |
/// |
|
| 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
| 263 |
/// \see connected() |
|
| 243 | 264 |
template <typename Digraph> |
| 244 | 265 |
bool stronglyConnected(const Digraph& digraph) {
|
| 245 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
| 246 | 267 |
|
| 247 | 268 |
typedef typename Digraph::Node Node; |
| 248 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
| ... | ... |
@@ -267,13 +288,13 @@ |
| 267 | 288 |
} |
| 268 | 289 |
|
| 269 | 290 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 270 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 271 | 292 |
RDigraph rdigraph(digraph); |
| 272 | 293 |
|
| 273 |
typedef DfsVisitor< |
|
| 294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
| 274 | 295 |
RVisitor rvisitor; |
| 275 | 296 |
|
| 276 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 277 | 298 |
rdfs.init(); |
| 278 | 299 |
rdfs.addSource(source); |
| 279 | 300 |
rdfs.start(); |
| ... | ... |
@@ -286,24 +307,28 @@ |
| 286 | 307 |
|
| 287 | 308 |
return true; |
| 288 | 309 |
} |
| 289 | 310 |
|
| 290 | 311 |
/// \ingroup graph_properties |
| 291 | 312 |
/// |
| 292 |
/// \brief Count the strongly connected components of a |
|
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 314 |
/// directed graph |
|
| 293 | 315 |
/// |
| 294 |
/// |
|
| 316 |
/// This function counts the number of strongly connected components of |
|
| 317 |
/// the given directed graph. |
|
| 318 |
/// |
|
| 295 | 319 |
/// The strongly connected components are the classes of an |
| 296 |
/// equivalence relation on the nodes of |
|
| 320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 297 | 321 |
/// the same class if they are connected with directed paths in both |
| 298 | 322 |
/// direction. |
| 299 | 323 |
/// |
| 300 |
/// \param digraph The graph. |
|
| 301 |
/// \return The number of components |
|
| 302 |
/// \ |
|
| 324 |
/// \return The number of strongly connected components. |
|
| 325 |
/// \note By definition, the empty digraph has zero |
|
| 303 | 326 |
/// strongly connected components. |
| 327 |
/// |
|
| 328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
| 304 | 329 |
template <typename Digraph> |
| 305 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 306 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
| 307 | 332 |
|
| 308 | 333 |
using namespace _connectivity_bits; |
| 309 | 334 |
|
| ... | ... |
@@ -352,29 +377,35 @@ |
| 352 | 377 |
} |
| 353 | 378 |
|
| 354 | 379 |
/// \ingroup graph_properties |
| 355 | 380 |
/// |
| 356 | 381 |
/// \brief Find the strongly connected components of a directed graph |
| 357 | 382 |
/// |
| 358 |
/// Find the strongly connected components of a directed graph. The |
|
| 359 |
/// strongly connected components are the classes of an equivalence |
|
| 360 |
/// relation on the nodes of the graph. Two nodes are in |
|
| 361 |
/// relationship when there are directed paths between them in both |
|
| 362 |
/// direction. In addition, the numbering of components will satisfy |
|
| 363 |
/// that there is no arc going from a higher numbered component to |
|
| 364 |
/// |
|
| 383 |
/// This function finds the strongly connected components of the given |
|
| 384 |
/// directed graph. In addition, the numbering of the components will |
|
| 385 |
/// satisfy that there is no arc going from a higher numbered component |
|
| 386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
| 387 |
/// |
|
| 388 |
/// The strongly connected components are the classes of an |
|
| 389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 390 |
/// the same class if they are connected with directed paths in both |
|
| 391 |
/// direction. |
|
| 365 | 392 |
/// |
| 366 | 393 |
/// \image html strongly_connected_components.png |
| 367 | 394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
| 368 | 395 |
/// |
| 369 | 396 |
/// \param digraph The digraph. |
| 370 | 397 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 371 | 398 |
/// the number of the strongly connected components minus one. Each value |
| 372 |
/// of the map will be set exactly once, the values of a certain component |
|
| 373 |
/// will be set continuously. |
|
| 374 |
/// |
|
| 399 |
/// of the map will be set exactly once, and the values of a certain |
|
| 400 |
/// component will be set continuously. |
|
| 401 |
/// \return The number of strongly connected components. |
|
| 402 |
/// \note By definition, the empty digraph has zero |
|
| 403 |
/// strongly connected components. |
|
| 404 |
/// |
|
| 405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
| 375 | 406 |
template <typename Digraph, typename NodeMap> |
| 376 | 407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 377 | 408 |
checkConcept<concepts::Digraph, Digraph>(); |
| 378 | 409 |
typedef typename Digraph::Node Node; |
| 379 | 410 |
typedef typename Digraph::NodeIt NodeIt; |
| 380 | 411 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| ... | ... |
@@ -421,60 +452,65 @@ |
| 421 | 452 |
} |
| 422 | 453 |
|
| 423 | 454 |
/// \ingroup graph_properties |
| 424 | 455 |
/// |
| 425 | 456 |
/// \brief Find the cut arcs of the strongly connected components. |
| 426 | 457 |
/// |
| 427 |
/// Find the cut arcs of the strongly connected components. |
|
| 428 |
/// The strongly connected components are the classes of an equivalence |
|
| 429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
| 430 |
/// when there are directed paths between them in both direction. |
|
| 458 |
/// This function finds the cut arcs of the strongly connected components |
|
| 459 |
/// of the given digraph. |
|
| 460 |
/// |
|
| 461 |
/// The strongly connected components are the classes of an |
|
| 462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 463 |
/// the same class if they are connected with directed paths in both |
|
| 464 |
/// direction. |
|
| 431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
| 432 | 466 |
/// |
| 433 |
/// \param graph The graph. |
|
| 434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 435 |
/// |
|
| 467 |
/// \param digraph The digraph. |
|
| 468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
| 469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
| 470 |
/// changed for other arcs. |
|
| 471 |
/// \return The number of cut arcs. |
|
| 436 | 472 |
/// |
| 437 |
/// \ |
|
| 473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
| 438 | 474 |
template <typename Digraph, typename ArcMap> |
| 439 |
int stronglyConnectedCutArcs(const Digraph& |
|
| 475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
|
|
| 440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
| 441 | 477 |
typedef typename Digraph::Node Node; |
| 442 | 478 |
typedef typename Digraph::Arc Arc; |
| 443 | 479 |
typedef typename Digraph::NodeIt NodeIt; |
| 444 | 480 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
| 445 | 481 |
|
| 446 | 482 |
using namespace _connectivity_bits; |
| 447 | 483 |
|
| 448 | 484 |
typedef std::vector<Node> Container; |
| 449 | 485 |
typedef typename Container::iterator Iterator; |
| 450 | 486 |
|
| 451 |
Container nodes(countNodes( |
|
| 487 |
Container nodes(countNodes(digraph)); |
|
| 452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 453 | 489 |
Visitor visitor(nodes.begin()); |
| 454 | 490 |
|
| 455 |
DfsVisit<Digraph, Visitor> dfs( |
|
| 491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
| 456 | 492 |
dfs.init(); |
| 457 |
for (NodeIt it( |
|
| 493 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 458 | 494 |
if (!dfs.reached(it)) {
|
| 459 | 495 |
dfs.addSource(it); |
| 460 | 496 |
dfs.start(); |
| 461 | 497 |
} |
| 462 | 498 |
} |
| 463 | 499 |
|
| 464 | 500 |
typedef typename Container::reverse_iterator RIterator; |
| 465 | 501 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 466 | 502 |
|
| 467 |
RDigraph |
|
| 503 |
RDigraph rdigraph(digraph); |
|
| 468 | 504 |
|
| 469 | 505 |
int cutNum = 0; |
| 470 | 506 |
|
| 471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
| 472 |
RVisitor rvisitor( |
|
| 508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
| 473 | 509 |
|
| 474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
| 510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
| 475 | 511 |
|
| 476 | 512 |
rdfs.init(); |
| 477 | 513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 478 | 514 |
if (!rdfs.reached(*it)) {
|
| 479 | 515 |
rdfs.addSource(*it); |
| 480 | 516 |
rdfs.start(); |
| ... | ... |
@@ -703,36 +739,41 @@ |
| 703 | 739 |
|
| 704 | 740 |
template <typename Graph> |
| 705 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
| 706 | 742 |
|
| 707 | 743 |
/// \ingroup graph_properties |
| 708 | 744 |
/// |
| 709 |
/// \brief |
|
| 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
| 710 | 746 |
/// |
| 711 |
/// This function checks that the undirected graph is bi-node-connected |
|
| 712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
| 713 |
/// |
|
| 747 |
/// This function checks whether the given undirected graph is |
|
| 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
| 714 | 749 |
/// |
| 715 |
/// \param graph The graph. |
|
| 716 |
/// \return \c true when the graph bi-node-connected. |
|
| 750 |
/// \return \c true if the graph bi-node-connected. |
|
| 751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
| 752 |
/// |
|
| 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
| 717 | 754 |
template <typename Graph> |
| 718 | 755 |
bool biNodeConnected(const Graph& graph) {
|
| 719 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
| 720 | 757 |
} |
| 721 | 758 |
|
| 722 | 759 |
/// \ingroup graph_properties |
| 723 | 760 |
/// |
| 724 |
/// \brief Count the |
|
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 762 |
/// undirected graph. |
|
| 725 | 763 |
/// |
| 726 |
/// This function finds the bi-node-connected components in an undirected |
|
| 727 |
/// graph. The biconnected components are the classes of an equivalence |
|
| 728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
| 729 |
/// when they are on same circle. |
|
| 764 |
/// This function counts the number of bi-node-connected components of |
|
| 765 |
/// the given undirected graph. |
|
| 730 | 766 |
/// |
| 731 |
/// \param graph The graph. |
|
| 732 |
/// \return The number of components. |
|
| 767 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 769 |
/// same class if they are on same circle. |
|
| 770 |
/// |
|
| 771 |
/// \return The number of bi-node-connected components. |
|
| 772 |
/// |
|
| 773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
| 733 | 774 |
template <typename Graph> |
| 734 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 735 | 776 |
checkConcept<concepts::Graph, Graph>(); |
| 736 | 777 |
typedef typename Graph::NodeIt NodeIt; |
| 737 | 778 |
|
| 738 | 779 |
using namespace _connectivity_bits; |
| ... | ... |
@@ -753,28 +794,32 @@ |
| 753 | 794 |
} |
| 754 | 795 |
return compNum; |
| 755 | 796 |
} |
| 756 | 797 |
|
| 757 | 798 |
/// \ingroup graph_properties |
| 758 | 799 |
/// |
| 759 |
/// \brief Find the bi-node-connected components. |
|
| 800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
| 760 | 801 |
/// |
| 761 |
/// This function finds the bi-node-connected components in an undirected |
|
| 762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
| 764 |
/// when they are on same circle. |
|
| 802 |
/// This function finds the bi-node-connected components of the given |
|
| 803 |
/// undirected graph. |
|
| 804 |
/// |
|
| 805 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 807 |
/// same class if they are on same circle. |
|
| 765 | 808 |
/// |
| 766 | 809 |
/// \image html node_biconnected_components.png |
| 767 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
| 768 | 811 |
/// |
| 769 |
/// \param graph The graph. |
|
| 770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
| 771 |
/// to the number of the biconnected components minus one. Each values |
|
| 772 |
/// of the map will be set exactly once, the values of a certain component |
|
| 773 |
/// will be set continuously. |
|
| 774 |
/// \return The number of components. |
|
| 812 |
/// \param graph The undirected graph. |
|
| 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
| 814 |
/// to the number of the bi-node-connected components minus one. Each |
|
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 816 |
/// certain component will be set continuously. |
|
| 817 |
/// \return The number of bi-node-connected components. |
|
| 818 |
/// |
|
| 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
| 775 | 820 |
template <typename Graph, typename EdgeMap> |
| 776 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
| 777 | 822 |
EdgeMap& compMap) {
|
| 778 | 823 |
checkConcept<concepts::Graph, Graph>(); |
| 779 | 824 |
typedef typename Graph::NodeIt NodeIt; |
| 780 | 825 |
typedef typename Graph::Edge Edge; |
| ... | ... |
@@ -798,24 +843,31 @@ |
| 798 | 843 |
} |
| 799 | 844 |
return compNum; |
| 800 | 845 |
} |
| 801 | 846 |
|
| 802 | 847 |
/// \ingroup graph_properties |
| 803 | 848 |
/// |
| 804 |
/// \brief Find the bi-node-connected cut nodes. |
|
| 849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
| 805 | 850 |
/// |
| 806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
| 807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 808 |
/// relation on the undirected edges. Two undirected edges are in |
|
| 809 |
/// relationship when they are on same circle. The biconnected components |
|
| 810 |
/// |
|
| 851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
| 852 |
/// undirected graph. |
|
| 811 | 853 |
/// |
| 812 |
/// \param graph The graph. |
|
| 813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
| 814 |
/// |
|
| 854 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 856 |
/// same class if they are on same circle. |
|
| 857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
| 858 |
/// the components. |
|
| 859 |
/// |
|
| 860 |
/// \param graph The undirected graph. |
|
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 862 |
/// \c true for the nodes that separate two or more components |
|
| 863 |
/// (exactly once for each cut node), and will not be changed for |
|
| 864 |
/// other nodes. |
|
| 815 | 865 |
/// \return The number of the cut nodes. |
| 866 |
/// |
|
| 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
| 816 | 868 |
template <typename Graph, typename NodeMap> |
| 817 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 818 | 870 |
checkConcept<concepts::Graph, Graph>(); |
| 819 | 871 |
typedef typename Graph::Node Node; |
| 820 | 872 |
typedef typename Graph::NodeIt NodeIt; |
| 821 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
| ... | ... |
@@ -1028,36 +1080,43 @@ |
| 1028 | 1080 |
|
| 1029 | 1081 |
template <typename Graph> |
| 1030 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
| 1031 | 1083 |
|
| 1032 | 1084 |
/// \ingroup graph_properties |
| 1033 | 1085 |
/// |
| 1034 |
/// \brief |
|
| 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
| 1035 | 1087 |
/// |
| 1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
| 1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
| 1038 |
/// |
|
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
| 1090 |
/// two edge-disjoint paths. |
|
| 1039 | 1091 |
/// |
| 1040 |
/// \param graph The undirected graph. |
|
| 1041 |
/// \return The number of components. |
|
| 1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
| 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
| 1094 |
/// |
|
| 1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
| 1042 | 1096 |
template <typename Graph> |
| 1043 | 1097 |
bool biEdgeConnected(const Graph& graph) {
|
| 1044 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
| 1045 | 1099 |
} |
| 1046 | 1100 |
|
| 1047 | 1101 |
/// \ingroup graph_properties |
| 1048 | 1102 |
/// |
| 1049 |
/// \brief Count the bi-edge-connected components |
|
| 1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
| 1104 |
/// undirected graph. |
|
| 1050 | 1105 |
/// |
| 1051 |
/// This function count the bi-edge-connected components in an undirected |
|
| 1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1054 |
/// connected with at least two edge-disjoint paths. |
|
| 1106 |
/// This function counts the number of bi-edge-connected components of |
|
| 1107 |
/// the given undirected graph. |
|
| 1055 | 1108 |
/// |
| 1056 |
/// \param graph The undirected graph. |
|
| 1057 |
/// \return The number of components. |
|
| 1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1111 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1112 |
/// paths. |
|
| 1113 |
/// |
|
| 1114 |
/// \return The number of bi-edge-connected components. |
|
| 1115 |
/// |
|
| 1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
| 1058 | 1117 |
template <typename Graph> |
| 1059 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1060 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
| 1061 | 1120 |
typedef typename Graph::NodeIt NodeIt; |
| 1062 | 1121 |
|
| 1063 | 1122 |
using namespace _connectivity_bits; |
| ... | ... |
@@ -1078,28 +1137,33 @@ |
| 1078 | 1137 |
} |
| 1079 | 1138 |
return compNum; |
| 1080 | 1139 |
} |
| 1081 | 1140 |
|
| 1082 | 1141 |
/// \ingroup graph_properties |
| 1083 | 1142 |
/// |
| 1084 |
/// \brief Find the bi-edge-connected components. |
|
| 1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
| 1085 | 1144 |
/// |
| 1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1089 |
/// connected at least two edge-disjoint paths. |
|
| 1145 |
/// This function finds the bi-edge-connected components of the given |
|
| 1146 |
/// undirected graph. |
|
| 1147 |
/// |
|
| 1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1150 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1151 |
/// paths. |
|
| 1090 | 1152 |
/// |
| 1091 | 1153 |
/// \image html edge_biconnected_components.png |
| 1092 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 1093 | 1155 |
/// |
| 1094 |
/// \param graph The graph. |
|
| 1156 |
/// \param graph The undirected graph. |
|
| 1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 1096 |
/// the number of the biconnected components minus one. Each values |
|
| 1097 |
/// of the map will be set exactly once, the values of a certain component |
|
| 1098 |
/// will be set continuously. |
|
| 1099 |
/// \return The number of components. |
|
| 1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
| 1159 |
/// of the map will be set exactly once, and the values of a certain |
|
| 1160 |
/// component will be set continuously. |
|
| 1161 |
/// \return The number of bi-edge-connected components. |
|
| 1162 |
/// |
|
| 1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
| 1100 | 1164 |
template <typename Graph, typename NodeMap> |
| 1101 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1102 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
| 1103 | 1167 |
typedef typename Graph::NodeIt NodeIt; |
| 1104 | 1168 |
typedef typename Graph::Node Node; |
| 1105 | 1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| ... | ... |
@@ -1122,25 +1186,31 @@ |
| 1122 | 1186 |
} |
| 1123 | 1187 |
return compNum; |
| 1124 | 1188 |
} |
| 1125 | 1189 |
|
| 1126 | 1190 |
/// \ingroup graph_properties |
| 1127 | 1191 |
/// |
| 1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
| 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
| 1129 | 1193 |
/// |
| 1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
| 1134 |
/// components are separted by edges which are the cut edges of the |
|
| 1135 |
/// components. |
|
| 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
| 1195 |
/// undirected graph. |
|
| 1136 | 1196 |
/// |
| 1137 |
/// \param graph The graph. |
|
| 1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 1139 |
/// edge |
|
| 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1199 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1200 |
/// paths. |
|
| 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
| 1202 |
/// the components. |
|
| 1203 |
/// |
|
| 1204 |
/// \param graph The undirected graph. |
|
| 1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
| 1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
| 1207 |
/// changed for other edges. |
|
| 1140 | 1208 |
/// \return The number of cut edges. |
| 1209 |
/// |
|
| 1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
| 1141 | 1211 |
template <typename Graph, typename EdgeMap> |
| 1142 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1143 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
| 1144 | 1214 |
typedef typename Graph::NodeIt NodeIt; |
| 1145 | 1215 |
typedef typename Graph::Edge Edge; |
| 1146 | 1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| ... | ... |
@@ -1186,65 +1256,108 @@ |
| 1186 | 1256 |
}; |
| 1187 | 1257 |
|
| 1188 | 1258 |
} |
| 1189 | 1259 |
|
| 1190 | 1260 |
/// \ingroup graph_properties |
| 1191 | 1261 |
/// |
| 1262 |
/// \brief Check whether a digraph is DAG. |
|
| 1263 |
/// |
|
| 1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
| 1265 |
/// \e Directed \e Acyclic \e Graph. |
|
| 1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
| 1267 |
/// \see acyclic() |
|
| 1268 |
template <typename Digraph> |
|
| 1269 |
bool dag(const Digraph& digraph) {
|
|
| 1270 |
|
|
| 1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1272 |
|
|
| 1273 |
typedef typename Digraph::Node Node; |
|
| 1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1275 |
typedef typename Digraph::Arc Arc; |
|
| 1276 |
|
|
| 1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1278 |
|
|
| 1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1280 |
Create dfs(digraph); |
|
| 1281 |
|
|
| 1282 |
ProcessedMap processed(digraph); |
|
| 1283 |
dfs.processedMap(processed); |
|
| 1284 |
|
|
| 1285 |
dfs.init(); |
|
| 1286 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1287 |
if (!dfs.reached(it)) {
|
|
| 1288 |
dfs.addSource(it); |
|
| 1289 |
while (!dfs.emptyQueue()) {
|
|
| 1290 |
Arc arc = dfs.nextArc(); |
|
| 1291 |
Node target = digraph.target(arc); |
|
| 1292 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1293 |
return false; |
|
| 1294 |
} |
|
| 1295 |
dfs.processNextArc(); |
|
| 1296 |
} |
|
| 1297 |
} |
|
| 1298 |
} |
|
| 1299 |
return true; |
|
| 1300 |
} |
|
| 1301 |
|
|
| 1302 |
/// \ingroup graph_properties |
|
| 1303 |
/// |
|
| 1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1193 | 1305 |
/// |
| 1194 |
/// |
|
| 1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
| 1307 |
/// into topolgical order. |
|
| 1195 | 1308 |
/// |
| 1196 |
/// \param |
|
| 1309 |
/// \param digraph The digraph, which must be DAG. |
|
| 1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
| 1199 |
/// will be set exactly once, the values will be set descending order. |
|
| 1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
| 1312 |
/// map will be set exactly once, and the values will be set descending |
|
| 1313 |
/// order. |
|
| 1200 | 1314 |
/// |
| 1201 |
/// \see checkedTopologicalSort |
|
| 1202 |
/// \see dag |
|
| 1315 |
/// \see dag(), checkedTopologicalSort() |
|
| 1203 | 1316 |
template <typename Digraph, typename NodeMap> |
| 1204 |
void topologicalSort(const Digraph& |
|
| 1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) {
|
|
| 1205 | 1318 |
using namespace _connectivity_bits; |
| 1206 | 1319 |
|
| 1207 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1208 | 1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1209 | 1322 |
|
| 1210 | 1323 |
typedef typename Digraph::Node Node; |
| 1211 | 1324 |
typedef typename Digraph::NodeIt NodeIt; |
| 1212 | 1325 |
typedef typename Digraph::Arc Arc; |
| 1213 | 1326 |
|
| 1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1215 |
visitor(order, countNodes( |
|
| 1328 |
visitor(order, countNodes(digraph)); |
|
| 1216 | 1329 |
|
| 1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1218 |
dfs( |
|
| 1331 |
dfs(digraph, visitor); |
|
| 1219 | 1332 |
|
| 1220 | 1333 |
dfs.init(); |
| 1221 |
for (NodeIt it( |
|
| 1334 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1222 | 1335 |
if (!dfs.reached(it)) {
|
| 1223 | 1336 |
dfs.addSource(it); |
| 1224 | 1337 |
dfs.start(); |
| 1225 | 1338 |
} |
| 1226 | 1339 |
} |
| 1227 | 1340 |
} |
| 1228 | 1341 |
|
| 1229 | 1342 |
/// \ingroup graph_properties |
| 1230 | 1343 |
/// |
| 1231 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1232 | 1345 |
/// |
| 1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
| 1234 |
/// that the given graph is DAG. |
|
| 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
| 1347 |
/// into topolgical order and also checks whether the given digraph |
|
| 1348 |
/// is DAG. |
|
| 1235 | 1349 |
/// |
| 1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
| 1237 |
/// \retval order A readable - writable node map. The values will be set |
|
| 1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
| 1239 |
/// of the map will be set exactly once, the values will be set descending |
|
| 1240 |
/// order. |
|
| 1241 |
/// \return \c false when the graph is not DAG. |
|
| 1350 |
/// \param digraph The digraph. |
|
| 1351 |
/// \retval order A readable and writable node map. The values will be |
|
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1353 |
/// Each value of the map will be set exactly once, and the values will |
|
| 1354 |
/// be set descending order. |
|
| 1355 |
/// \return \c false if the digraph is not DAG. |
|
| 1242 | 1356 |
/// |
| 1243 |
/// \see topologicalSort |
|
| 1244 |
/// \see dag |
|
| 1357 |
/// \see dag(), topologicalSort() |
|
| 1245 | 1358 |
template <typename Digraph, typename NodeMap> |
| 1246 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1247 | 1360 |
using namespace _connectivity_bits; |
| 1248 | 1361 |
|
| 1249 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1250 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| ... | ... |
@@ -1280,108 +1393,66 @@ |
| 1280 | 1393 |
} |
| 1281 | 1394 |
return true; |
| 1282 | 1395 |
} |
| 1283 | 1396 |
|
| 1284 | 1397 |
/// \ingroup graph_properties |
| 1285 | 1398 |
/// |
| 1286 |
/// \brief Check |
|
| 1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
| 1287 | 1400 |
/// |
| 1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
| 1289 |
/// an Directed Acyclic Digraph. |
|
| 1290 |
/// \return \c false when the graph is not DAG. |
|
| 1291 |
/// \see acyclic |
|
| 1292 |
template <typename Digraph> |
|
| 1293 |
bool dag(const Digraph& digraph) {
|
|
| 1294 |
|
|
| 1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1296 |
|
|
| 1297 |
typedef typename Digraph::Node Node; |
|
| 1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1299 |
typedef typename Digraph::Arc Arc; |
|
| 1300 |
|
|
| 1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1302 |
|
|
| 1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1304 |
Create dfs(digraph); |
|
| 1305 |
|
|
| 1306 |
ProcessedMap processed(digraph); |
|
| 1307 |
dfs.processedMap(processed); |
|
| 1308 |
|
|
| 1309 |
dfs.init(); |
|
| 1310 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1311 |
if (!dfs.reached(it)) {
|
|
| 1312 |
dfs.addSource(it); |
|
| 1313 |
while (!dfs.emptyQueue()) {
|
|
| 1314 |
Arc edge = dfs.nextArc(); |
|
| 1315 |
Node target = digraph.target(edge); |
|
| 1316 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1317 |
return false; |
|
| 1318 |
} |
|
| 1319 |
dfs.processNextArc(); |
|
| 1320 |
} |
|
| 1321 |
} |
|
| 1322 |
} |
|
| 1323 |
return true; |
|
| 1324 |
} |
|
| 1325 |
|
|
| 1326 |
/// \ingroup graph_properties |
|
| 1327 |
/// |
|
| 1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
| 1329 |
/// |
|
| 1330 |
/// Check that the given undirected graph acyclic. |
|
| 1331 |
/// \param graph The undirected graph. |
|
| 1332 |
/// \return \c true when there is no circle in the graph. |
|
| 1333 |
/// \see dag |
|
| 1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
| 1402 |
/// \return \c true if there is no cycle in the graph. |
|
| 1403 |
/// \see dag() |
|
| 1334 | 1404 |
template <typename Graph> |
| 1335 | 1405 |
bool acyclic(const Graph& graph) {
|
| 1336 | 1406 |
checkConcept<concepts::Graph, Graph>(); |
| 1337 | 1407 |
typedef typename Graph::Node Node; |
| 1338 | 1408 |
typedef typename Graph::NodeIt NodeIt; |
| 1339 | 1409 |
typedef typename Graph::Arc Arc; |
| 1340 | 1410 |
Dfs<Graph> dfs(graph); |
| 1341 | 1411 |
dfs.init(); |
| 1342 | 1412 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1343 | 1413 |
if (!dfs.reached(it)) {
|
| 1344 | 1414 |
dfs.addSource(it); |
| 1345 | 1415 |
while (!dfs.emptyQueue()) {
|
| 1346 |
Arc edge = dfs.nextArc(); |
|
| 1347 |
Node source = graph.source(edge); |
|
| 1348 |
|
|
| 1416 |
Arc arc = dfs.nextArc(); |
|
| 1417 |
Node source = graph.source(arc); |
|
| 1418 |
Node target = graph.target(arc); |
|
| 1349 | 1419 |
if (dfs.reached(target) && |
| 1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
| 1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
|
| 1351 | 1421 |
return false; |
| 1352 | 1422 |
} |
| 1353 | 1423 |
dfs.processNextArc(); |
| 1354 | 1424 |
} |
| 1355 | 1425 |
} |
| 1356 | 1426 |
} |
| 1357 | 1427 |
return true; |
| 1358 | 1428 |
} |
| 1359 | 1429 |
|
| 1360 | 1430 |
/// \ingroup graph_properties |
| 1361 | 1431 |
/// |
| 1362 |
/// \brief Check |
|
| 1432 |
/// \brief Check whether an undirected graph is tree. |
|
| 1363 | 1433 |
/// |
| 1364 |
/// Check that the given undirected graph is tree. |
|
| 1365 |
/// \param graph The undirected graph. |
|
| 1366 |
/// |
|
| 1434 |
/// This function checks whether the given undirected graph is tree. |
|
| 1435 |
/// \return \c true if the graph is acyclic and connected. |
|
| 1436 |
/// \see acyclic(), connected() |
|
| 1367 | 1437 |
template <typename Graph> |
| 1368 | 1438 |
bool tree(const Graph& graph) {
|
| 1369 | 1439 |
checkConcept<concepts::Graph, Graph>(); |
| 1370 | 1440 |
typedef typename Graph::Node Node; |
| 1371 | 1441 |
typedef typename Graph::NodeIt NodeIt; |
| 1372 | 1442 |
typedef typename Graph::Arc Arc; |
| 1443 |
if (NodeIt(graph) == INVALID) return true; |
|
| 1373 | 1444 |
Dfs<Graph> dfs(graph); |
| 1374 | 1445 |
dfs.init(); |
| 1375 | 1446 |
dfs.addSource(NodeIt(graph)); |
| 1376 | 1447 |
while (!dfs.emptyQueue()) {
|
| 1377 |
Arc edge = dfs.nextArc(); |
|
| 1378 |
Node source = graph.source(edge); |
|
| 1379 |
|
|
| 1448 |
Arc arc = dfs.nextArc(); |
|
| 1449 |
Node source = graph.source(arc); |
|
| 1450 |
Node target = graph.target(arc); |
|
| 1380 | 1451 |
if (dfs.reached(target) && |
| 1381 |
dfs.predArc(source) != graph.oppositeArc( |
|
| 1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
|
| 1382 | 1453 |
return false; |
| 1383 | 1454 |
} |
| 1384 | 1455 |
dfs.processNextArc(); |
| 1385 | 1456 |
} |
| 1386 | 1457 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1387 | 1458 |
if (!dfs.reached(it)) {
|
| ... | ... |
@@ -1448,21 +1519,20 @@ |
| 1448 | 1519 |
bool& _bipartite; |
| 1449 | 1520 |
}; |
| 1450 | 1521 |
} |
| 1451 | 1522 |
|
| 1452 | 1523 |
/// \ingroup graph_properties |
| 1453 | 1524 |
/// |
| 1454 |
/// \brief Check |
|
| 1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
| 1455 | 1526 |
/// |
| 1456 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
| 1457 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1458 |
/// \param graph The undirected graph. |
|
| 1459 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
| 1460 |
/// |
|
| 1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
| 1528 |
/// \return \c true if the graph is bipartite. |
|
| 1529 |
/// |
|
| 1530 |
/// \see bipartitePartitions() |
|
| 1461 | 1531 |
template<typename Graph> |
| 1462 |
|
|
| 1532 |
bool bipartite(const Graph &graph){
|
|
| 1463 | 1533 |
using namespace _connectivity_bits; |
| 1464 | 1534 |
|
| 1465 | 1535 |
checkConcept<concepts::Graph, Graph>(); |
| 1466 | 1536 |
|
| 1467 | 1537 |
typedef typename Graph::NodeIt NodeIt; |
| 1468 | 1538 |
typedef typename Graph::ArcIt ArcIt; |
| ... | ... |
@@ -1485,31 +1555,33 @@ |
| 1485 | 1555 |
} |
| 1486 | 1556 |
return true; |
| 1487 | 1557 |
} |
| 1488 | 1558 |
|
| 1489 | 1559 |
/// \ingroup graph_properties |
| 1490 | 1560 |
/// |
| 1491 |
/// \brief |
|
| 1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
| 1492 | 1562 |
/// |
| 1493 |
/// The function checks if the given undirected graph is bipartite |
|
| 1494 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1495 |
/// During the execution, the \c partMap will be set as the two |
|
| 1496 |
/// partitions of the graph. |
|
| 1563 |
/// This function checks whether the given undirected graph is bipartite |
|
| 1564 |
/// and gives back the bipartite partitions. |
|
| 1497 | 1565 |
/// |
| 1498 | 1566 |
/// \image html bipartite_partitions.png |
| 1499 | 1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
| 1500 | 1568 |
/// |
| 1501 | 1569 |
/// \param graph The undirected graph. |
| 1502 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
| 1503 |
/// two partitions of the graph. |
|
| 1504 |
/// \ |
|
| 1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
| 1571 |
/// type. The values will be set to \c true for one component and |
|
| 1572 |
/// \c false for the other one. |
|
| 1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
| 1574 |
/// |
|
| 1575 |
/// \see bipartite() |
|
| 1505 | 1576 |
template<typename Graph, typename NodeMap> |
| 1506 |
|
|
| 1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
|
| 1507 | 1578 |
using namespace _connectivity_bits; |
| 1508 | 1579 |
|
| 1509 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
| 1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
| 1510 | 1582 |
|
| 1511 | 1583 |
typedef typename Graph::Node Node; |
| 1512 | 1584 |
typedef typename Graph::NodeIt NodeIt; |
| 1513 | 1585 |
typedef typename Graph::ArcIt ArcIt; |
| 1514 | 1586 |
|
| 1515 | 1587 |
bool bipartite = true; |
| ... | ... |
@@ -1528,59 +1600,65 @@ |
| 1528 | 1600 |
} |
| 1529 | 1601 |
} |
| 1530 | 1602 |
} |
| 1531 | 1603 |
return true; |
| 1532 | 1604 |
} |
| 1533 | 1605 |
|
| 1534 |
/// \ |
|
| 1606 |
/// \ingroup graph_properties |
|
| 1535 | 1607 |
/// |
| 1536 |
/// Returns true when there are not loop edges in the graph. |
|
| 1537 |
template <typename Digraph> |
|
| 1538 |
bool loopFree(const Digraph& digraph) {
|
|
| 1539 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
|
| 1540 |
|
|
| 1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
| 1609 |
/// |
|
| 1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
| 1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
| 1612 |
template <typename Graph> |
|
| 1613 |
bool loopFree(const Graph& graph) {
|
|
| 1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
|
|
| 1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
| 1541 | 1616 |
} |
| 1542 | 1617 |
return true; |
| 1543 | 1618 |
} |
| 1544 | 1619 |
|
| 1545 |
/// \ |
|
| 1620 |
/// \ingroup graph_properties |
|
| 1546 | 1621 |
/// |
| 1547 |
/// Returns true when there are not parallel edges in the graph. |
|
| 1548 |
template <typename Digraph> |
|
| 1549 |
bool parallelFree(const Digraph& digraph) {
|
|
| 1550 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
|
| 1551 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
|
| 1552 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
| 1553 |
if (reached[digraph.target(a)]) return false; |
|
| 1554 |
reached.set(digraph.target(a), true); |
|
| 1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
| 1623 |
/// |
|
| 1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
| 1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
| 1626 |
template <typename Graph> |
|
| 1627 |
bool parallelFree(const Graph& graph) {
|
|
| 1628 |
typename Graph::template NodeMap<int> reached(graph, 0); |
|
| 1629 |
int cnt = 1; |
|
| 1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 1632 |
if (reached[graph.target(a)] == cnt) return false; |
|
| 1633 |
reached[graph.target(a)] = cnt; |
|
| 1555 | 1634 |
} |
| 1556 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
| 1557 |
reached.set(digraph.target(a), false); |
|
| 1558 |
|
|
| 1635 |
++cnt; |
|
| 1559 | 1636 |
} |
| 1560 | 1637 |
return true; |
| 1561 | 1638 |
} |
| 1562 | 1639 |
|
| 1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
| 1564 |
/// edges in the graph. |
|
| 1640 |
/// \ingroup graph_properties |
|
| 1565 | 1641 |
/// |
| 1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
| 1567 |
/// the graph. |
|
| 1568 |
template <typename Digraph> |
|
| 1569 |
bool simpleDigraph(const Digraph& digraph) {
|
|
| 1570 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
|
| 1571 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
|
| 1572 |
reached.set(n, true); |
|
| 1573 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
| 1574 |
if (reached[digraph.target(a)]) return false; |
|
| 1575 |
reached.set(digraph.target(a), true); |
|
| 1642 |
/// \brief Check whether the given graph is simple. |
|
| 1643 |
/// |
|
| 1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
| 1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
| 1646 |
/// The function works for both directed and undirected graphs. |
|
| 1647 |
/// \see loopFree(), parallelFree() |
|
| 1648 |
template <typename Graph> |
|
| 1649 |
bool simpleGraph(const Graph& graph) {
|
|
| 1650 |
typename Graph::template NodeMap<int> reached(graph, 0); |
|
| 1651 |
int cnt = 1; |
|
| 1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1653 |
reached[n] = cnt; |
|
| 1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 1655 |
if (reached[graph.target(a)] == cnt) return false; |
|
| 1656 |
reached[graph.target(a)] = cnt; |
|
| 1576 | 1657 |
} |
| 1577 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
| 1578 |
reached.set(digraph.target(a), false); |
|
| 1579 |
} |
|
| 1580 |
reached.set(n, false); |
|
| 1658 |
++cnt; |
|
| 1581 | 1659 |
} |
| 1582 | 1660 |
return true; |
| 1583 | 1661 |
} |
| 1584 | 1662 |
|
| 1585 | 1663 |
} //namespace lemon |
| 1586 | 1664 |
| ... | ... |
@@ -19,13 +19,13 @@ |
| 19 | 19 |
#ifndef LEMON_EDGE_SET_H |
| 20 | 20 |
#define LEMON_EDGE_SET_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
| 24 | 24 |
|
| 25 |
/// \ingroup |
|
| 25 |
/// \ingroup graphs |
|
| 26 | 26 |
/// \file |
| 27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
| 28 | 28 |
/// |
| 29 | 29 |
/// Graphs which use another graph's node-set as own. |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| ... | ... |
@@ -227,13 +227,13 @@ |
| 227 | 227 |
return *this; |
| 228 | 228 |
} |
| 229 | 229 |
}; |
| 230 | 230 |
|
| 231 | 231 |
}; |
| 232 | 232 |
|
| 233 |
/// \ingroup |
|
| 233 |
/// \ingroup graphs |
|
| 234 | 234 |
/// |
| 235 | 235 |
/// \brief Digraph using a node set of another digraph or graph and |
| 236 | 236 |
/// an own arc set. |
| 237 | 237 |
/// |
| 238 | 238 |
/// This structure can be used to establish another directed graph |
| 239 | 239 |
/// over a node set of an existing one. This class uses the same |
| ... | ... |
@@ -651,13 +651,13 @@ |
| 651 | 651 |
return *this; |
| 652 | 652 |
} |
| 653 | 653 |
}; |
| 654 | 654 |
|
| 655 | 655 |
}; |
| 656 | 656 |
|
| 657 |
/// \ingroup |
|
| 657 |
/// \ingroup graphs |
|
| 658 | 658 |
/// |
| 659 | 659 |
/// \brief Graph using a node set of another digraph or graph and an |
| 660 | 660 |
/// own edge set. |
| 661 | 661 |
/// |
| 662 | 662 |
/// This structure can be used to establish another graph over a |
| 663 | 663 |
/// node set of an existing one. This class uses the same Node type |
| ... | ... |
@@ -910,13 +910,13 @@ |
| 910 | 910 |
} |
| 911 | 911 |
}; |
| 912 | 912 |
|
| 913 | 913 |
}; |
| 914 | 914 |
|
| 915 | 915 |
|
| 916 |
/// \ingroup |
|
| 916 |
/// \ingroup graphs |
|
| 917 | 917 |
/// |
| 918 | 918 |
/// \brief Digraph using a node set of another digraph or graph and |
| 919 | 919 |
/// an own arc set. |
| 920 | 920 |
/// |
| 921 | 921 |
/// This structure can be used to establish another directed graph |
| 922 | 922 |
/// over a node set of an existing one. This class uses the same |
| ... | ... |
@@ -1254,13 +1254,13 @@ |
| 1254 | 1254 |
return *this; |
| 1255 | 1255 |
} |
| 1256 | 1256 |
}; |
| 1257 | 1257 |
|
| 1258 | 1258 |
}; |
| 1259 | 1259 |
|
| 1260 |
/// \ingroup |
|
| 1260 |
/// \ingroup graphs |
|
| 1261 | 1261 |
/// |
| 1262 | 1262 |
/// \brief Graph using a node set of another digraph or graph and an |
| 1263 | 1263 |
/// own edge set. |
| 1264 | 1264 |
/// |
| 1265 | 1265 |
/// This structure can be used to establish another graph over a |
| 1266 | 1266 |
/// node set of an existing one. This class uses the same Node type |
| ... | ... |
@@ -241,16 +241,16 @@ |
| 241 | 241 |
++(*this); |
| 242 | 242 |
return e; |
| 243 | 243 |
} |
| 244 | 244 |
}; |
| 245 | 245 |
|
| 246 | 246 |
|
| 247 |
///Check if the given graph is |
|
| 247 |
///Check if the given graph is Eulerian |
|
| 248 | 248 |
|
| 249 | 249 |
/// \ingroup graph_properties |
| 250 |
///This function checks if the given graph is |
|
| 250 |
///This function checks if the given graph is Eulerian. |
|
| 251 | 251 |
///It works for both directed and undirected graphs. |
| 252 | 252 |
/// |
| 253 | 253 |
///By definition, a digraph is called \e Eulerian if |
| 254 | 254 |
///and only if it is connected and the number of incoming and outgoing |
| 255 | 255 |
///arcs are the same for each node. |
| 256 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
| ... | ... |
@@ -23,15 +23,16 @@ |
| 23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
| 24 | 24 |
///\ingroup lp_group |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/lp_base.h> |
| 27 | 27 |
|
| 28 | 28 |
// forward declaration |
| 29 |
# |
|
| 29 |
#if !defined _GLP_PROB && !defined GLP_PROB |
|
| 30 | 30 |
#define _GLP_PROB |
| 31 |
|
|
| 31 |
#define GLP_PROB |
|
| 32 |
typedef struct { double _opaque_prob; } glp_prob;
|
|
| 32 | 33 |
/* LP/MIP problem object */ |
| 33 | 34 |
#endif |
| 34 | 35 |
|
| 35 | 36 |
namespace lemon {
|
| 36 | 37 |
|
| 37 | 38 |
| 1 | 1 |
prefix=@prefix@ |
| 2 | 2 |
exec_prefix=@exec_prefix@ |
| 3 | 3 |
libdir=@libdir@ |
| 4 | 4 |
includedir=@includedir@ |
| 5 | 5 |
|
| 6 | 6 |
Name: @PACKAGE_NAME@ |
| 7 |
Description: Library |
|
| 7 |
Description: Library for Efficient Modeling and Optimization in Networks |
|
| 8 | 8 |
Version: @PACKAGE_VERSION@ |
| 9 | 9 |
Libs: -L${libdir} -lemon @GLPK_LIBS@ @CPLEX_LIBS@ @SOPLEX_LIBS@ @CLP_LIBS@ @CBC_LIBS@
|
| 10 | 10 |
Cflags: -I${includedir}
|
| ... | ... |
@@ -496,13 +496,13 @@ |
| 496 | 496 |
} |
| 497 | 497 |
|
| 498 | 498 |
/// \brief Start Edmonds' algorithm |
| 499 | 499 |
/// |
| 500 | 500 |
/// This function runs the original Edmonds' algorithm. |
| 501 | 501 |
/// |
| 502 |
/// \pre \ref |
|
| 502 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
|
| 503 | 503 |
/// called before using this function. |
| 504 | 504 |
void startSparse() {
|
| 505 | 505 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 506 | 506 |
if ((*_status)[n] == UNMATCHED) {
|
| 507 | 507 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 508 | 508 |
_tree_set->insert(n); |
| ... | ... |
@@ -515,13 +515,13 @@ |
| 515 | 515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
| 516 | 516 |
/// for dense graphs |
| 517 | 517 |
/// |
| 518 | 518 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
| 519 | 519 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
| 520 | 520 |
/// |
| 521 |
/// \pre \ref |
|
| 521 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
|
| 522 | 522 |
/// called before using this function. |
| 523 | 523 |
void startDense() {
|
| 524 | 524 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 525 | 525 |
if ((*_status)[n] == UNMATCHED) {
|
| 526 | 526 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 527 | 527 |
_tree_set->insert(n); |
| ... | ... |
@@ -16,13 +16,13 @@ |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
| 20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
| 21 | 21 |
|
| 22 |
/// \ingroup |
|
| 22 |
/// \ingroup min_cost_flow_algs |
|
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| ... | ... |
@@ -30,13 +30,13 @@ |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 |
/// \addtogroup |
|
| 36 |
/// \addtogroup min_cost_flow_algs |
|
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| ... | ... |
@@ -99,56 +99,22 @@ |
| 99 | 99 |
/// \brief Constants for selecting the type of the supply constraints. |
| 100 | 100 |
/// |
| 101 | 101 |
/// Enum type containing constants for selecting the supply type, |
| 102 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
| 103 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 104 | 104 |
/// |
| 105 |
/// The default supply type is \c GEQ, since this form is supported |
|
| 106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 107 |
/// algorithm, as well. |
|
| 108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
| 109 |
/// function. |
|
| 110 |
/// |
|
| 111 |
/// |
|
| 105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
|
| 106 |
/// selected using \ref supplyType(). |
|
| 107 |
/// The equality form is a special case of both supply types. |
|
| 112 | 108 |
enum SupplyType {
|
| 113 |
|
|
| 114 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
| 115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 116 |
/// formulation of the problem is the following. |
|
| 117 |
/** |
|
| 118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 120 |
sup(u) \quad \forall u\in V \f] |
|
| 121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 122 |
*/ |
|
| 123 |
/// It means that the total demand must be greater or equal to the |
|
| 124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 125 |
/// negative) and all the supplies have to be carried out from |
|
| 126 |
/// the supply nodes, but there could be demands that are not |
|
| 127 |
/// |
|
| 110 |
/// supply/demand constraints in the definition of the problem. |
|
| 128 | 111 |
GEQ, |
| 129 |
/// It is just an alias for the \c GEQ option. |
|
| 130 |
CARRY_SUPPLIES = GEQ, |
|
| 131 |
|
|
| 132 | 112 |
/// This option means that there are <em>"less or equal"</em> |
| 133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 134 |
/// formulation of the problem is the following. |
|
| 135 |
/** |
|
| 136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 138 |
sup(u) \quad \forall u\in V \f] |
|
| 139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 140 |
*/ |
|
| 141 |
/// It means that the total demand must be less or equal to the |
|
| 142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 143 |
/// positive) and all the demands have to be satisfied, but there |
|
| 144 |
/// could be supplies that are not carried out from the supply |
|
| 145 |
/// nodes. |
|
| 146 |
LEQ, |
|
| 147 |
/// It is just an alias for the \c LEQ option. |
|
| 148 |
SATISFY_DEMANDS = LEQ |
|
| 113 |
/// supply/demand constraints in the definition of the problem. |
|
| 114 |
LEQ |
|
| 149 | 115 |
}; |
| 150 | 116 |
|
| 151 | 117 |
/// \brief Constants for selecting the pivot rule. |
| 152 | 118 |
/// |
| 153 | 119 |
/// Enum type containing constants for selecting the pivot rule for |
| 154 | 120 |
/// the \ref run() function. |
| ... | ... |
@@ -212,12 +178,14 @@ |
| 212 | 178 |
private: |
| 213 | 179 |
|
| 214 | 180 |
// Data related to the underlying digraph |
| 215 | 181 |
const GR &_graph; |
| 216 | 182 |
int _node_num; |
| 217 | 183 |
int _arc_num; |
| 184 |
int _all_arc_num; |
|
| 185 |
int _search_arc_num; |
|
| 218 | 186 |
|
| 219 | 187 |
// Parameters of the problem |
| 220 | 188 |
bool _have_lower; |
| 221 | 189 |
SupplyType _stype; |
| 222 | 190 |
Value _sum_supply; |
| 223 | 191 |
|
| ... | ... |
@@ -274,30 +242,31 @@ |
| 274 | 242 |
const IntVector &_source; |
| 275 | 243 |
const IntVector &_target; |
| 276 | 244 |
const CostVector &_cost; |
| 277 | 245 |
const IntVector &_state; |
| 278 | 246 |
const CostVector &_pi; |
| 279 | 247 |
int &_in_arc; |
| 280 |
int |
|
| 248 |
int _search_arc_num; |
|
| 281 | 249 |
|
| 282 | 250 |
// Pivot rule data |
| 283 | 251 |
int _next_arc; |
| 284 | 252 |
|
| 285 | 253 |
public: |
| 286 | 254 |
|
| 287 | 255 |
// Constructor |
| 288 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 289 | 257 |
_source(ns._source), _target(ns._target), |
| 290 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 291 |
_in_arc(ns.in_arc), |
|
| 259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
| 260 |
_next_arc(0) |
|
| 292 | 261 |
{}
|
| 293 | 262 |
|
| 294 | 263 |
// Find next entering arc |
| 295 | 264 |
bool findEnteringArc() {
|
| 296 | 265 |
Cost c; |
| 297 |
for (int e = _next_arc; e < |
|
| 266 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 298 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 299 | 268 |
if (c < 0) {
|
| 300 | 269 |
_in_arc = e; |
| 301 | 270 |
_next_arc = e + 1; |
| 302 | 271 |
return true; |
| 303 | 272 |
} |
| ... | ... |
@@ -325,27 +294,27 @@ |
| 325 | 294 |
const IntVector &_source; |
| 326 | 295 |
const IntVector &_target; |
| 327 | 296 |
const CostVector &_cost; |
| 328 | 297 |
const IntVector &_state; |
| 329 | 298 |
const CostVector &_pi; |
| 330 | 299 |
int &_in_arc; |
| 331 |
int |
|
| 300 |
int _search_arc_num; |
|
| 332 | 301 |
|
| 333 | 302 |
public: |
| 334 | 303 |
|
| 335 | 304 |
// Constructor |
| 336 | 305 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 337 | 306 |
_source(ns._source), _target(ns._target), |
| 338 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 339 |
_in_arc(ns.in_arc), |
|
| 308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
|
| 340 | 309 |
{}
|
| 341 | 310 |
|
| 342 | 311 |
// Find next entering arc |
| 343 | 312 |
bool findEnteringArc() {
|
| 344 | 313 |
Cost c, min = 0; |
| 345 |
for (int e = 0; e < |
|
| 314 |
for (int e = 0; e < _search_arc_num; ++e) {
|
|
| 346 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 347 | 316 |
if (c < min) {
|
| 348 | 317 |
min = c; |
| 349 | 318 |
_in_arc = e; |
| 350 | 319 |
} |
| 351 | 320 |
} |
| ... | ... |
@@ -364,41 +333,42 @@ |
| 364 | 333 |
const IntVector &_source; |
| 365 | 334 |
const IntVector &_target; |
| 366 | 335 |
const CostVector &_cost; |
| 367 | 336 |
const IntVector &_state; |
| 368 | 337 |
const CostVector &_pi; |
| 369 | 338 |
int &_in_arc; |
| 370 |
int |
|
| 339 |
int _search_arc_num; |
|
| 371 | 340 |
|
| 372 | 341 |
// Pivot rule data |
| 373 | 342 |
int _block_size; |
| 374 | 343 |
int _next_arc; |
| 375 | 344 |
|
| 376 | 345 |
public: |
| 377 | 346 |
|
| 378 | 347 |
// Constructor |
| 379 | 348 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 380 | 349 |
_source(ns._source), _target(ns._target), |
| 381 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 382 |
_in_arc(ns.in_arc), |
|
| 351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
| 352 |
_next_arc(0) |
|
| 383 | 353 |
{
|
| 384 | 354 |
// The main parameters of the pivot rule |
| 385 |
const double BLOCK_SIZE_FACTOR = |
|
| 355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
|
| 386 | 356 |
const int MIN_BLOCK_SIZE = 10; |
| 387 | 357 |
|
| 388 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 389 |
std::sqrt(double( |
|
| 359 |
std::sqrt(double(_search_arc_num))), |
|
| 390 | 360 |
MIN_BLOCK_SIZE ); |
| 391 | 361 |
} |
| 392 | 362 |
|
| 393 | 363 |
// Find next entering arc |
| 394 | 364 |
bool findEnteringArc() {
|
| 395 | 365 |
Cost c, min = 0; |
| 396 | 366 |
int cnt = _block_size; |
| 397 | 367 |
int e, min_arc = _next_arc; |
| 398 |
for (e = _next_arc; e < |
|
| 368 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 399 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 400 | 370 |
if (c < min) {
|
| 401 | 371 |
min = c; |
| 402 | 372 |
min_arc = e; |
| 403 | 373 |
} |
| 404 | 374 |
if (--cnt == 0) {
|
| ... | ... |
@@ -437,13 +407,13 @@ |
| 437 | 407 |
const IntVector &_source; |
| 438 | 408 |
const IntVector &_target; |
| 439 | 409 |
const CostVector &_cost; |
| 440 | 410 |
const IntVector &_state; |
| 441 | 411 |
const CostVector &_pi; |
| 442 | 412 |
int &_in_arc; |
| 443 |
int |
|
| 413 |
int _search_arc_num; |
|
| 444 | 414 |
|
| 445 | 415 |
// Pivot rule data |
| 446 | 416 |
IntVector _candidates; |
| 447 | 417 |
int _list_length, _minor_limit; |
| 448 | 418 |
int _curr_length, _minor_count; |
| 449 | 419 |
int _next_arc; |
| ... | ... |
@@ -451,22 +421,23 @@ |
| 451 | 421 |
public: |
| 452 | 422 |
|
| 453 | 423 |
/// Constructor |
| 454 | 424 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 455 | 425 |
_source(ns._source), _target(ns._target), |
| 456 | 426 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 457 |
_in_arc(ns.in_arc), |
|
| 427 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
| 428 |
_next_arc(0) |
|
| 458 | 429 |
{
|
| 459 | 430 |
// The main parameters of the pivot rule |
| 460 | 431 |
const double LIST_LENGTH_FACTOR = 1.0; |
| 461 | 432 |
const int MIN_LIST_LENGTH = 10; |
| 462 | 433 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 463 | 434 |
const int MIN_MINOR_LIMIT = 3; |
| 464 | 435 |
|
| 465 | 436 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 466 |
std::sqrt(double( |
|
| 437 |
std::sqrt(double(_search_arc_num))), |
|
| 467 | 438 |
MIN_LIST_LENGTH ); |
| 468 | 439 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 469 | 440 |
MIN_MINOR_LIMIT ); |
| 470 | 441 |
_curr_length = _minor_count = 0; |
| 471 | 442 |
_candidates.resize(_list_length); |
| 472 | 443 |
} |
| ... | ... |
@@ -497,13 +468,13 @@ |
| 497 | 468 |
} |
| 498 | 469 |
} |
| 499 | 470 |
|
| 500 | 471 |
// Major iteration: build a new candidate list |
| 501 | 472 |
min = 0; |
| 502 | 473 |
_curr_length = 0; |
| 503 |
for (e = _next_arc; e < |
|
| 474 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 504 | 475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 505 | 476 |
if (c < 0) {
|
| 506 | 477 |
_candidates[_curr_length++] = e; |
| 507 | 478 |
if (c < min) {
|
| 508 | 479 |
min = c; |
| 509 | 480 |
min_arc = e; |
| ... | ... |
@@ -543,13 +514,13 @@ |
| 543 | 514 |
const IntVector &_source; |
| 544 | 515 |
const IntVector &_target; |
| 545 | 516 |
const CostVector &_cost; |
| 546 | 517 |
const IntVector &_state; |
| 547 | 518 |
const CostVector &_pi; |
| 548 | 519 |
int &_in_arc; |
| 549 |
int |
|
| 520 |
int _search_arc_num; |
|
| 550 | 521 |
|
| 551 | 522 |
// Pivot rule data |
| 552 | 523 |
int _block_size, _head_length, _curr_length; |
| 553 | 524 |
int _next_arc; |
| 554 | 525 |
IntVector _candidates; |
| 555 | 526 |
CostVector _cand_cost; |
| ... | ... |
@@ -571,23 +542,23 @@ |
| 571 | 542 |
public: |
| 572 | 543 |
|
| 573 | 544 |
// Constructor |
| 574 | 545 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 575 | 546 |
_source(ns._source), _target(ns._target), |
| 576 | 547 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 577 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
|
| 578 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
| 548 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
| 549 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
|
| 579 | 550 |
{
|
| 580 | 551 |
// The main parameters of the pivot rule |
| 581 | 552 |
const double BLOCK_SIZE_FACTOR = 1.5; |
| 582 | 553 |
const int MIN_BLOCK_SIZE = 10; |
| 583 | 554 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 584 | 555 |
const int MIN_HEAD_LENGTH = 3; |
| 585 | 556 |
|
| 586 | 557 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 587 |
std::sqrt(double( |
|
| 558 |
std::sqrt(double(_search_arc_num))), |
|
| 588 | 559 |
MIN_BLOCK_SIZE ); |
| 589 | 560 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 590 | 561 |
MIN_HEAD_LENGTH ); |
| 591 | 562 |
_candidates.resize(_head_length + _block_size); |
| 592 | 563 |
_curr_length = 0; |
| 593 | 564 |
} |
| ... | ... |
@@ -607,13 +578,13 @@ |
| 607 | 578 |
|
| 608 | 579 |
// Extend the list |
| 609 | 580 |
int cnt = _block_size; |
| 610 | 581 |
int last_arc = 0; |
| 611 | 582 |
int limit = _head_length; |
| 612 | 583 |
|
| 613 |
for (int e = _next_arc; e < |
|
| 584 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 614 | 585 |
_cand_cost[e] = _state[e] * |
| 615 | 586 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 616 | 587 |
if (_cand_cost[e] < 0) {
|
| 617 | 588 |
_candidates[_curr_length++] = e; |
| 618 | 589 |
last_arc = e; |
| 619 | 590 |
} |
| ... | ... |
@@ -675,33 +646,33 @@ |
| 675 | 646 |
"The cost type of NetworkSimplex must be signed"); |
| 676 | 647 |
|
| 677 | 648 |
// Resize vectors |
| 678 | 649 |
_node_num = countNodes(_graph); |
| 679 | 650 |
_arc_num = countArcs(_graph); |
| 680 | 651 |
int all_node_num = _node_num + 1; |
| 681 |
int |
|
| 652 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
| 682 | 653 |
|
| 683 |
_source.resize(all_arc_num); |
|
| 684 |
_target.resize(all_arc_num); |
|
| 654 |
_source.resize(max_arc_num); |
|
| 655 |
_target.resize(max_arc_num); |
|
| 685 | 656 |
|
| 686 |
_lower.resize(all_arc_num); |
|
| 687 |
_upper.resize(all_arc_num); |
|
| 688 |
_cap.resize(all_arc_num); |
|
| 689 |
_cost.resize(all_arc_num); |
|
| 657 |
_lower.resize(_arc_num); |
|
| 658 |
_upper.resize(_arc_num); |
|
| 659 |
_cap.resize(max_arc_num); |
|
| 660 |
_cost.resize(max_arc_num); |
|
| 690 | 661 |
_supply.resize(all_node_num); |
| 691 |
_flow.resize( |
|
| 662 |
_flow.resize(max_arc_num); |
|
| 692 | 663 |
_pi.resize(all_node_num); |
| 693 | 664 |
|
| 694 | 665 |
_parent.resize(all_node_num); |
| 695 | 666 |
_pred.resize(all_node_num); |
| 696 | 667 |
_forward.resize(all_node_num); |
| 697 | 668 |
_thread.resize(all_node_num); |
| 698 | 669 |
_rev_thread.resize(all_node_num); |
| 699 | 670 |
_succ_num.resize(all_node_num); |
| 700 | 671 |
_last_succ.resize(all_node_num); |
| 701 |
_state.resize( |
|
| 672 |
_state.resize(max_arc_num); |
|
| 702 | 673 |
|
| 703 | 674 |
// Copy the graph (store the arcs in a mixed order) |
| 704 | 675 |
int i = 0; |
| 705 | 676 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 706 | 677 |
_node_id[n] = i; |
| 707 | 678 |
} |
| ... | ... |
@@ -1066,13 +1037,13 @@ |
| 1066 | 1037 |
} |
| 1067 | 1038 |
} |
| 1068 | 1039 |
|
| 1069 | 1040 |
// Initialize artifical cost |
| 1070 | 1041 |
Cost ART_COST; |
| 1071 | 1042 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1072 |
ART_COST = std::numeric_limits<Cost>::max() / |
|
| 1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
|
| 1073 | 1044 |
} else {
|
| 1074 | 1045 |
ART_COST = std::numeric_limits<Cost>::min(); |
| 1075 | 1046 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1076 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
| 1077 | 1048 |
} |
| 1078 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
| ... | ... |
@@ -1090,35 +1061,127 @@ |
| 1090 | 1061 |
_pred[_root] = -1; |
| 1091 | 1062 |
_thread[_root] = 0; |
| 1092 | 1063 |
_rev_thread[0] = _root; |
| 1093 | 1064 |
_succ_num[_root] = _node_num + 1; |
| 1094 | 1065 |
_last_succ[_root] = _root - 1; |
| 1095 | 1066 |
_supply[_root] = -_sum_supply; |
| 1096 |
_pi[_root] = |
|
| 1067 |
_pi[_root] = 0; |
|
| 1097 | 1068 |
|
| 1098 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1100 |
_parent[u] = _root; |
|
| 1101 |
_pred[u] = e; |
|
| 1102 |
_thread[u] = u + 1; |
|
| 1103 |
_rev_thread[u + 1] = u; |
|
| 1104 |
_succ_num[u] = 1; |
|
| 1105 |
_last_succ[u] = u; |
|
| 1106 |
_cost[e] = ART_COST; |
|
| 1107 |
_cap[e] = INF; |
|
| 1108 |
_state[e] = STATE_TREE; |
|
| 1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
|
| 1110 |
_flow[e] = _supply[u]; |
|
| 1111 |
_forward[u] = true; |
|
| 1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
| 1113 |
} else {
|
|
| 1114 |
_flow[e] = -_supply[u]; |
|
| 1115 |
_forward[u] = false; |
|
| 1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
| 1070 |
if (_sum_supply == 0) {
|
|
| 1071 |
// EQ supply constraints |
|
| 1072 |
_search_arc_num = _arc_num; |
|
| 1073 |
_all_arc_num = _arc_num + _node_num; |
|
| 1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1075 |
_parent[u] = _root; |
|
| 1076 |
_pred[u] = e; |
|
| 1077 |
_thread[u] = u + 1; |
|
| 1078 |
_rev_thread[u + 1] = u; |
|
| 1079 |
_succ_num[u] = 1; |
|
| 1080 |
_last_succ[u] = u; |
|
| 1081 |
_cap[e] = INF; |
|
| 1082 |
_state[e] = STATE_TREE; |
|
| 1083 |
if (_supply[u] >= 0) {
|
|
| 1084 |
_forward[u] = true; |
|
| 1085 |
_pi[u] = 0; |
|
| 1086 |
_source[e] = u; |
|
| 1087 |
_target[e] = _root; |
|
| 1088 |
_flow[e] = _supply[u]; |
|
| 1089 |
_cost[e] = 0; |
|
| 1090 |
} else {
|
|
| 1091 |
_forward[u] = false; |
|
| 1092 |
_pi[u] = ART_COST; |
|
| 1093 |
_source[e] = _root; |
|
| 1094 |
_target[e] = u; |
|
| 1095 |
_flow[e] = -_supply[u]; |
|
| 1096 |
_cost[e] = ART_COST; |
|
| 1097 |
} |
|
| 1117 | 1098 |
} |
| 1118 | 1099 |
} |
| 1100 |
else if (_sum_supply > 0) {
|
|
| 1101 |
// LEQ supply constraints |
|
| 1102 |
_search_arc_num = _arc_num + _node_num; |
|
| 1103 |
int f = _arc_num + _node_num; |
|
| 1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1105 |
_parent[u] = _root; |
|
| 1106 |
_thread[u] = u + 1; |
|
| 1107 |
_rev_thread[u + 1] = u; |
|
| 1108 |
_succ_num[u] = 1; |
|
| 1109 |
_last_succ[u] = u; |
|
| 1110 |
if (_supply[u] >= 0) {
|
|
| 1111 |
_forward[u] = true; |
|
| 1112 |
_pi[u] = 0; |
|
| 1113 |
_pred[u] = e; |
|
| 1114 |
_source[e] = u; |
|
| 1115 |
_target[e] = _root; |
|
| 1116 |
_cap[e] = INF; |
|
| 1117 |
_flow[e] = _supply[u]; |
|
| 1118 |
_cost[e] = 0; |
|
| 1119 |
_state[e] = STATE_TREE; |
|
| 1120 |
} else {
|
|
| 1121 |
_forward[u] = false; |
|
| 1122 |
_pi[u] = ART_COST; |
|
| 1123 |
_pred[u] = f; |
|
| 1124 |
_source[f] = _root; |
|
| 1125 |
_target[f] = u; |
|
| 1126 |
_cap[f] = INF; |
|
| 1127 |
_flow[f] = -_supply[u]; |
|
| 1128 |
_cost[f] = ART_COST; |
|
| 1129 |
_state[f] = STATE_TREE; |
|
| 1130 |
_source[e] = u; |
|
| 1131 |
_target[e] = _root; |
|
| 1132 |
_cap[e] = INF; |
|
| 1133 |
_flow[e] = 0; |
|
| 1134 |
_cost[e] = 0; |
|
| 1135 |
_state[e] = STATE_LOWER; |
|
| 1136 |
++f; |
|
| 1137 |
} |
|
| 1138 |
} |
|
| 1139 |
_all_arc_num = f; |
|
| 1140 |
} |
|
| 1141 |
else {
|
|
| 1142 |
// GEQ supply constraints |
|
| 1143 |
_search_arc_num = _arc_num + _node_num; |
|
| 1144 |
int f = _arc_num + _node_num; |
|
| 1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1146 |
_parent[u] = _root; |
|
| 1147 |
_thread[u] = u + 1; |
|
| 1148 |
_rev_thread[u + 1] = u; |
|
| 1149 |
_succ_num[u] = 1; |
|
| 1150 |
_last_succ[u] = u; |
|
| 1151 |
if (_supply[u] <= 0) {
|
|
| 1152 |
_forward[u] = false; |
|
| 1153 |
_pi[u] = 0; |
|
| 1154 |
_pred[u] = e; |
|
| 1155 |
_source[e] = _root; |
|
| 1156 |
_target[e] = u; |
|
| 1157 |
_cap[e] = INF; |
|
| 1158 |
_flow[e] = -_supply[u]; |
|
| 1159 |
_cost[e] = 0; |
|
| 1160 |
_state[e] = STATE_TREE; |
|
| 1161 |
} else {
|
|
| 1162 |
_forward[u] = true; |
|
| 1163 |
_pi[u] = -ART_COST; |
|
| 1164 |
_pred[u] = f; |
|
| 1165 |
_source[f] = u; |
|
| 1166 |
_target[f] = _root; |
|
| 1167 |
_cap[f] = INF; |
|
| 1168 |
_flow[f] = _supply[u]; |
|
| 1169 |
_state[f] = STATE_TREE; |
|
| 1170 |
_cost[f] = ART_COST; |
|
| 1171 |
_source[e] = _root; |
|
| 1172 |
_target[e] = u; |
|
| 1173 |
_cap[e] = INF; |
|
| 1174 |
_flow[e] = 0; |
|
| 1175 |
_cost[e] = 0; |
|
| 1176 |
_state[e] = STATE_LOWER; |
|
| 1177 |
++f; |
|
| 1178 |
} |
|
| 1179 |
} |
|
| 1180 |
_all_arc_num = f; |
|
| 1181 |
} |
|
| 1119 | 1182 |
|
| 1120 | 1183 |
return true; |
| 1121 | 1184 |
} |
| 1122 | 1185 |
|
| 1123 | 1186 |
// Find the join node |
| 1124 | 1187 |
void findJoinNode() {
|
| ... | ... |
@@ -1371,26 +1434,14 @@ |
| 1371 | 1434 |
updateTreeStructure(); |
| 1372 | 1435 |
updatePotential(); |
| 1373 | 1436 |
} |
| 1374 | 1437 |
} |
| 1375 | 1438 |
|
| 1376 | 1439 |
// Check feasibility |
| 1377 |
if (_sum_supply < 0) {
|
|
| 1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1380 |
} |
|
| 1381 |
} |
|
| 1382 |
else if (_sum_supply > 0) {
|
|
| 1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1385 |
} |
|
| 1386 |
} |
|
| 1387 |
else {
|
|
| 1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
| 1390 |
} |
|
| 1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
|
| 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
|
| 1391 | 1442 |
} |
| 1392 | 1443 |
|
| 1393 | 1444 |
// Transform the solution and the supply map to the original form |
| 1394 | 1445 |
if (_have_lower) {
|
| 1395 | 1446 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1396 | 1447 |
Value c = _lower[i]; |
| ... | ... |
@@ -1398,12 +1449,36 @@ |
| 1398 | 1449 |
_flow[i] += c; |
| 1399 | 1450 |
_supply[_source[i]] += c; |
| 1400 | 1451 |
_supply[_target[i]] -= c; |
| 1401 | 1452 |
} |
| 1402 | 1453 |
} |
| 1403 | 1454 |
} |
| 1455 |
|
|
| 1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
|
| 1457 |
// optimality conditions |
|
| 1458 |
if (_sum_supply == 0) {
|
|
| 1459 |
if (_stype == GEQ) {
|
|
| 1460 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
|
| 1461 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
|
| 1463 |
} |
|
| 1464 |
if (max_pot > 0) {
|
|
| 1465 |
for (int i = 0; i != _node_num; ++i) |
|
| 1466 |
_pi[i] -= max_pot; |
|
| 1467 |
} |
|
| 1468 |
} else {
|
|
| 1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
|
| 1470 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
|
| 1472 |
} |
|
| 1473 |
if (min_pot < 0) {
|
|
| 1474 |
for (int i = 0; i != _node_num; ++i) |
|
| 1475 |
_pi[i] -= min_pot; |
|
| 1476 |
} |
|
| 1477 |
} |
|
| 1478 |
} |
|
| 1404 | 1479 |
|
| 1405 | 1480 |
return OPTIMAL; |
| 1406 | 1481 |
} |
| 1407 | 1482 |
|
| 1408 | 1483 |
}; //class NetworkSimplex |
| 1409 | 1484 |
| ... | ... |
@@ -3,12 +3,16 @@ |
| 3 | 3 |
YEAR=`date +%Y` |
| 4 | 4 |
HGROOT=`hg root` |
| 5 | 5 |
|
| 6 | 6 |
function hg_year() {
|
| 7 | 7 |
if [ -n "$(hg st $1)" ]; then |
| 8 | 8 |
echo $YEAR |
| 9 |
else |
|
| 10 |
hg log -l 1 --template='{date|isodate}\n' $1 |
|
|
| 11 |
cut -d '-' -f 1 |
|
| 12 |
fi |
|
| 9 | 13 |
} |
| 10 | 14 |
|
| 11 | 15 |
# file enumaration modes |
| 12 | 16 |
|
| 13 | 17 |
function all_files() {
|
| 14 | 18 |
hg status -a -m -c | |
| ... | ... |
@@ -6,12 +6,13 @@ |
| 6 | 6 |
test/test_tools.h |
| 7 | 7 |
|
| 8 | 8 |
check_PROGRAMS += \ |
| 9 | 9 |
test/adaptors_test \ |
| 10 | 10 |
test/bfs_test \ |
| 11 | 11 |
test/circulation_test \ |
| 12 |
test/connectivity_test \ |
|
| 12 | 13 |
test/counter_test \ |
| 13 | 14 |
test/dfs_test \ |
| 14 | 15 |
test/digraph_test \ |
| 15 | 16 |
test/dijkstra_test \ |
| 16 | 17 |
test/dim_test \ |
| 17 | 18 |
test/edge_set_test \ |
| ... | ... |
@@ -51,12 +52,13 @@ |
| 51 | 52 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
| 52 | 53 |
|
| 53 | 54 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
| 54 | 55 |
test_bfs_test_SOURCES = test/bfs_test.cc |
| 55 | 56 |
test_circulation_test_SOURCES = test/circulation_test.cc |
| 56 | 57 |
test_counter_test_SOURCES = test/counter_test.cc |
| 58 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
|
| 57 | 59 |
test_dfs_test_SOURCES = test/dfs_test.cc |
| 58 | 60 |
test_digraph_test_SOURCES = test/digraph_test.cc |
| 59 | 61 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
| 60 | 62 |
test_dim_test_SOURCES = test/dim_test.cc |
| 61 | 63 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
| 62 | 64 |
test_error_test_SOURCES = test/error_test.cc |
| ... | ... |
@@ -171,13 +171,13 @@ |
| 171 | 171 |
// Check the feasibility of the given potentials (dual soluiton) |
| 172 | 172 |
// using the "Complementary Slackness" optimality condition |
| 173 | 173 |
template < typename GR, typename LM, typename UM, |
| 174 | 174 |
typename CM, typename SM, typename FM, typename PM > |
| 175 | 175 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 176 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
| 177 |
const PM& pi ) |
|
| 177 |
const PM& pi, SupplyType type ) |
|
| 178 | 178 |
{
|
| 179 | 179 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 180 | 180 |
|
| 181 | 181 |
bool opt = true; |
| 182 | 182 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 183 | 183 |
typename CM::Value red_cost = |
| ... | ... |
@@ -190,18 +190,56 @@ |
| 190 | 190 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
| 191 | 191 |
typename SM::Value sum = 0; |
| 192 | 192 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 193 | 193 |
sum += flow[e]; |
| 194 | 194 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 195 | 195 |
sum -= flow[e]; |
| 196 |
|
|
| 196 |
if (type != LEQ) {
|
|
| 197 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
|
| 198 |
} else {
|
|
| 199 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
|
| 200 |
} |
|
| 197 | 201 |
} |
| 198 | 202 |
|
| 199 | 203 |
return opt; |
| 200 | 204 |
} |
| 201 | 205 |
|
| 206 |
// Check whether the dual cost is equal to the primal cost |
|
| 207 |
template < typename GR, typename LM, typename UM, |
|
| 208 |
typename CM, typename SM, typename PM > |
|
| 209 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
|
| 210 |
const CM& cost, const SM& supply, const PM& pi, |
|
| 211 |
typename CM::Value total ) |
|
| 212 |
{
|
|
| 213 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 214 |
|
|
| 215 |
typename CM::Value dual_cost = 0; |
|
| 216 |
SM red_supply(gr); |
|
| 217 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
|
| 218 |
red_supply[n] = supply[n]; |
|
| 219 |
} |
|
| 220 |
for (ArcIt a(gr); a != INVALID; ++a) {
|
|
| 221 |
if (lower[a] != 0) {
|
|
| 222 |
dual_cost += lower[a] * cost[a]; |
|
| 223 |
red_supply[gr.source(a)] -= lower[a]; |
|
| 224 |
red_supply[gr.target(a)] += lower[a]; |
|
| 225 |
} |
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
|
| 229 |
dual_cost -= red_supply[n] * pi[n]; |
|
| 230 |
} |
|
| 231 |
for (ArcIt a(gr); a != INVALID; ++a) {
|
|
| 232 |
typename CM::Value red_cost = |
|
| 233 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
|
| 234 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
return dual_cost == total; |
|
| 238 |
} |
|
| 239 |
|
|
| 202 | 240 |
// Run a minimum cost flow algorithm and check the results |
| 203 | 241 |
template < typename MCF, typename GR, |
| 204 | 242 |
typename LM, typename UM, |
| 205 | 243 |
typename CM, typename SM, |
| 206 | 244 |
typename PT > |
| 207 | 245 |
void checkMcf( const MCF& mcf, PT mcf_result, |
| ... | ... |
@@ -217,14 +255,16 @@ |
| 217 | 255 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
| 218 | 256 |
mcf.flowMap(flow); |
| 219 | 257 |
mcf.potentialMap(pi); |
| 220 | 258 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
| 221 | 259 |
"The flow is not feasible " + test_id); |
| 222 | 260 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
| 261 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), |
|
| 224 | 262 |
"Wrong potentials " + test_id); |
| 263 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
|
| 264 |
"Wrong dual cost " + test_id); |
|
| 225 | 265 |
} |
| 226 | 266 |
} |
| 227 | 267 |
|
| 228 | 268 |
int main() |
| 229 | 269 |
{
|
| 230 | 270 |
// Check the interfaces |
| ... | ... |
@@ -263,51 +303,62 @@ |
| 263 | 303 |
.nodeMap("sup5", s5)
|
| 264 | 304 |
.nodeMap("sup6", s6)
|
| 265 | 305 |
.node("source", v)
|
| 266 | 306 |
.node("target", w)
|
| 267 | 307 |
.run(); |
| 268 | 308 |
|
| 269 |
// Build a test digraph for testing negative costs |
|
| 270 |
Digraph ngr; |
|
| 271 |
Node n1 = ngr.addNode(); |
|
| 272 |
Node n2 = ngr.addNode(); |
|
| 273 |
Node n3 = ngr.addNode(); |
|
| 274 |
Node n4 = ngr.addNode(); |
|
| 275 |
Node n5 = ngr.addNode(); |
|
| 276 |
Node n6 = ngr.addNode(); |
|
| 277 |
|
|
| 309 |
// Build test digraphs with negative costs |
|
| 310 |
Digraph neg_gr; |
|
| 311 |
Node n1 = neg_gr.addNode(); |
|
| 312 |
Node n2 = neg_gr.addNode(); |
|
| 313 |
Node n3 = neg_gr.addNode(); |
|
| 314 |
Node n4 = neg_gr.addNode(); |
|
| 315 |
Node n5 = neg_gr.addNode(); |
|
| 316 |
Node n6 = neg_gr.addNode(); |
|
| 317 |
Node n7 = neg_gr.addNode(); |
|
| 278 | 318 |
|
| 279 |
Arc a1 = ngr.addArc(n1, n2); |
|
| 280 |
Arc a2 = ngr.addArc(n1, n3); |
|
| 281 |
Arc a3 = ngr.addArc(n2, n4); |
|
| 282 |
Arc a4 = ngr.addArc(n3, n4); |
|
| 283 |
Arc a5 = ngr.addArc(n3, n2); |
|
| 284 |
Arc a6 = ngr.addArc(n5, n3); |
|
| 285 |
Arc a7 = ngr.addArc(n5, n6); |
|
| 286 |
Arc a8 = ngr.addArc(n6, n7); |
|
| 287 |
Arc |
|
| 319 |
Arc a1 = neg_gr.addArc(n1, n2); |
|
| 320 |
Arc a2 = neg_gr.addArc(n1, n3); |
|
| 321 |
Arc a3 = neg_gr.addArc(n2, n4); |
|
| 322 |
Arc a4 = neg_gr.addArc(n3, n4); |
|
| 323 |
Arc a5 = neg_gr.addArc(n3, n2); |
|
| 324 |
Arc a6 = neg_gr.addArc(n5, n3); |
|
| 325 |
Arc a7 = neg_gr.addArc(n5, n6); |
|
| 326 |
Arc a8 = neg_gr.addArc(n6, n7); |
|
| 327 |
Arc a9 = neg_gr.addArc(n7, n5); |
|
| 288 | 328 |
|
| 289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
| 290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
| 291 |
Digraph:: |
|
| 329 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
|
| 330 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
|
| 331 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
|
| 292 | 332 |
|
| 293 |
nl2[a7] = 1000; |
|
| 294 |
nl2[a8] = -1000; |
|
| 333 |
neg_l2[a7] = 1000; |
|
| 334 |
neg_l2[a8] = -1000; |
|
| 295 | 335 |
|
| 296 |
ns[n1] = 100; |
|
| 297 |
ns[n4] = -100; |
|
| 336 |
neg_s[n1] = 100; |
|
| 337 |
neg_s[n4] = -100; |
|
| 298 | 338 |
|
| 299 |
nc[a1] = 100; |
|
| 300 |
nc[a2] = 30; |
|
| 301 |
nc[a3] = 20; |
|
| 302 |
nc[a4] = 80; |
|
| 303 |
nc[a5] = 50; |
|
| 304 |
nc[a6] = 10; |
|
| 305 |
nc[a7] = 80; |
|
| 306 |
nc[a8] = 30; |
|
| 307 |
|
|
| 339 |
neg_c[a1] = 100; |
|
| 340 |
neg_c[a2] = 30; |
|
| 341 |
neg_c[a3] = 20; |
|
| 342 |
neg_c[a4] = 80; |
|
| 343 |
neg_c[a5] = 50; |
|
| 344 |
neg_c[a6] = 10; |
|
| 345 |
neg_c[a7] = 80; |
|
| 346 |
neg_c[a8] = 30; |
|
| 347 |
neg_c[a9] = -120; |
|
| 348 |
|
|
| 349 |
Digraph negs_gr; |
|
| 350 |
Digraph::NodeMap<int> negs_s(negs_gr); |
|
| 351 |
Digraph::ArcMap<int> negs_c(negs_gr); |
|
| 352 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
|
| 353 |
n1 = negs_gr.addNode(); |
|
| 354 |
n2 = negs_gr.addNode(); |
|
| 355 |
negs_s[n1] = 100; |
|
| 356 |
negs_s[n2] = -300; |
|
| 357 |
negs_c[negs_gr.addArc(n1, n2)] = -1; |
|
| 358 |
|
|
| 308 | 359 |
|
| 309 | 360 |
// A. Test NetworkSimplex with the default pivot rule |
| 310 | 361 |
{
|
| 311 | 362 |
NetworkSimplex<Digraph> mcf(gr); |
| 312 | 363 |
|
| 313 | 364 |
// Check the equality form |
| ... | ... |
@@ -339,37 +390,43 @@ |
| 339 | 390 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
| 340 | 391 |
checkMcf(mcf, mcf.run(), |
| 341 | 392 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
| 342 | 393 |
mcf.supplyType(mcf.GEQ); |
| 343 | 394 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 344 | 395 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
| 345 |
mcf. |
|
| 396 |
mcf.supplyMap(s6); |
|
| 346 | 397 |
checkMcf(mcf, mcf.run(), |
| 347 | 398 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
| 348 | 399 |
|
| 349 | 400 |
// Check the LEQ form |
| 350 | 401 |
mcf.reset().supplyType(mcf.LEQ); |
| 351 | 402 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
| 352 | 403 |
checkMcf(mcf, mcf.run(), |
| 353 | 404 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
| 354 | 405 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 355 | 406 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
| 356 |
mcf. |
|
| 407 |
mcf.supplyMap(s5); |
|
| 357 | 408 |
checkMcf(mcf, mcf.run(), |
| 358 | 409 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
| 359 | 410 |
|
| 360 | 411 |
// Check negative costs |
| 361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
| 362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
| 363 |
checkMcf(nmcf, nmcf.run(), |
|
| 364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
| 365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
| 366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
| 367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
| 368 |
checkMcf(nmcf, nmcf.run(), |
|
| 369 |
|
|
| 412 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
|
| 413 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
|
| 414 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
|
| 415 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
|
| 416 |
neg_mcf.upperMap(neg_u2); |
|
| 417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
|
| 418 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
|
| 419 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
|
| 420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
|
| 421 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
|
| 422 |
|
|
| 423 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
|
| 424 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
|
| 425 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
|
| 426 |
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); |
|
| 370 | 427 |
} |
| 371 | 428 |
|
| 372 | 429 |
// B. Test NetworkSimplex with each pivot rule |
| 373 | 430 |
{
|
| 374 | 431 |
NetworkSimplex<Digraph> mcf(gr); |
| 375 | 432 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
| ... | ... |
@@ -15,21 +15,21 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
/// \ingroup tools |
| 20 | 20 |
/// \file |
| 21 |
/// \brief Special plane |
|
| 21 |
/// \brief Special plane graph generator. |
|
| 22 | 22 |
/// |
| 23 | 23 |
/// Graph generator application for various types of plane graphs. |
| 24 | 24 |
/// |
| 25 | 25 |
/// See |
| 26 | 26 |
/// \code |
| 27 | 27 |
/// lgf-gen --help |
| 28 | 28 |
/// \endcode |
| 29 |
/// for more |
|
| 29 |
/// for more information on the usage. |
|
| 30 | 30 |
|
| 31 | 31 |
#include <algorithm> |
| 32 | 32 |
#include <set> |
| 33 | 33 |
#include <ctime> |
| 34 | 34 |
#include <lemon/list_graph.h> |
| 35 | 35 |
#include <lemon/random.h> |
| ... | ... |
@@ -683,34 +683,35 @@ |
| 683 | 683 |
// girth=10; |
| 684 | 684 |
std::string ndist("disc");
|
| 685 | 685 |
ap.refOption("n", "Number of nodes (default is 100)", N)
|
| 686 | 686 |
.intOption("g", "Girth parameter (default is 10)", 10)
|
| 687 | 687 |
.refOption("cities", "Number of cities (default is 1)", num_of_cities)
|
| 688 | 688 |
.refOption("area", "Full relative area of the cities (default is 1)", area)
|
| 689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)",
|
|
| 689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)",
|
|
| 690 |
disc_d) |
|
| 690 | 691 |
.optionGroup("dist", "disc")
|
| 691 |
.refOption("square", "Nodes are evenly distributed on a unit square",
|
|
| 692 |
.refOption("square", "Nodes are evenly distributed on a unit square",
|
|
| 693 |
square_d) |
|
| 692 | 694 |
.optionGroup("dist", "square")
|
| 693 |
.refOption("gauss",
|
|
| 694 |
"Nodes are located according to a two-dim gauss distribution", |
|
| 695 |
|
|
| 695 |
.refOption("gauss", "Nodes are located according to a two-dim Gauss "
|
|
| 696 |
"distribution", gauss_d) |
|
| 696 | 697 |
.optionGroup("dist", "gauss")
|
| 697 |
// .mandatoryGroup("dist")
|
|
| 698 | 698 |
.onlyOneGroup("dist")
|
| 699 |
.boolOption("eps", "Also generate .eps output (prefix.eps)")
|
|
| 700 |
.boolOption("nonodes", "Draw the edges only in the generated .eps")
|
|
| 701 |
.boolOption("dir", "Directed digraph is generated (each arcs are replaced by two directed ones)")
|
|
| 702 |
.boolOption("2con", "Create a two connected planar digraph")
|
|
| 699 |
.boolOption("eps", "Also generate .eps output (<prefix>.eps)")
|
|
| 700 |
.boolOption("nonodes", "Draw only the edges in the generated .eps output")
|
|
| 701 |
.boolOption("dir", "Directed graph is generated (each edge is replaced by "
|
|
| 702 |
"two directed arcs)") |
|
| 703 |
.boolOption("2con", "Create a two connected planar graph")
|
|
| 703 | 704 |
.optionGroup("alg","2con")
|
| 704 | 705 |
.boolOption("tree", "Create a min. cost spanning tree")
|
| 705 | 706 |
.optionGroup("alg","tree")
|
| 706 | 707 |
.boolOption("tsp", "Create a TSP tour")
|
| 707 | 708 |
.optionGroup("alg","tsp")
|
| 708 | 709 |
.boolOption("tsp2", "Create a TSP tour (tree based)")
|
| 709 | 710 |
.optionGroup("alg","tsp2")
|
| 710 |
.boolOption("dela", "Delaunay triangulation
|
|
| 711 |
.boolOption("dela", "Delaunay triangulation graph")
|
|
| 711 | 712 |
.optionGroup("alg","dela")
|
| 712 | 713 |
.onlyOneGroup("alg")
|
| 713 | 714 |
.boolOption("rand", "Use time seed for random number generator")
|
| 714 | 715 |
.optionGroup("rand", "rand")
|
| 715 | 716 |
.intOption("seed", "Random seed", -1)
|
| 716 | 717 |
.optionGroup("rand", "seed")
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
|
| 20 |
#define LEMON_BITS_BASE_EXTENDER_H |
|
| 21 |
|
|
| 22 |
#include <lemon/core.h> |
|
| 23 |
#include <lemon/error.h> |
|
| 24 |
|
|
| 25 |
#include <lemon/bits/map_extender.h> |
|
| 26 |
#include <lemon/bits/default_map.h> |
|
| 27 |
|
|
| 28 |
#include <lemon/concept_check.h> |
|
| 29 |
#include <lemon/concepts/maps.h> |
|
| 30 |
|
|
| 31 |
//\ingroup digraphbits |
|
| 32 |
//\file |
|
| 33 |
//\brief Extenders for the graph types |
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
// \ingroup digraphbits |
|
| 37 |
// |
|
| 38 |
// \brief BaseDigraph to BaseGraph extender |
|
| 39 |
template <typename Base> |
|
| 40 |
class UndirDigraphExtender : public Base {
|
|
| 41 |
typedef Base Parent; |
|
| 42 |
|
|
| 43 |
public: |
|
| 44 |
|
|
| 45 |
typedef typename Parent::Arc Edge; |
|
| 46 |
typedef typename Parent::Node Node; |
|
| 47 |
|
|
| 48 |
typedef True UndirectedTag; |
|
| 49 |
|
|
| 50 |
class Arc : public Edge {
|
|
| 51 |
friend class UndirDigraphExtender; |
|
| 52 |
|
|
| 53 |
protected: |
|
| 54 |
bool forward; |
|
| 55 |
|
|
| 56 |
Arc(const Edge &ue, bool _forward) : |
|
| 57 |
Edge(ue), forward(_forward) {}
|
|
| 58 |
|
|
| 59 |
public: |
|
| 60 |
Arc() {}
|
|
| 61 |
|
|
| 62 |
// Invalid arc constructor |
|
| 63 |
Arc(Invalid i) : Edge(i), forward(true) {}
|
|
| 64 |
|
|
| 65 |
bool operator==(const Arc &that) const {
|
|
| 66 |
return forward==that.forward && Edge(*this)==Edge(that); |
|
| 67 |
} |
|
| 68 |
bool operator!=(const Arc &that) const {
|
|
| 69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
|
| 70 |
} |
|
| 71 |
bool operator<(const Arc &that) const {
|
|
| 72 |
return forward<that.forward || |
|
| 73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
|
| 74 |
} |
|
| 75 |
}; |
|
| 76 |
|
|
| 77 |
// First node of the edge |
|
| 78 |
Node u(const Edge &e) const {
|
|
| 79 |
return Parent::source(e); |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
// Source of the given arc |
|
| 83 |
Node source(const Arc &e) const {
|
|
| 84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
|
| 85 |
} |
|
| 86 |
|
|
| 87 |
// Second node of the edge |
|
| 88 |
Node v(const Edge &e) const {
|
|
| 89 |
return Parent::target(e); |
|
| 90 |
} |
|
| 91 |
|
|
| 92 |
// Target of the given arc |
|
| 93 |
Node target(const Arc &e) const {
|
|
| 94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
|
| 95 |
} |
|
| 96 |
|
|
| 97 |
// \brief Directed arc from an edge. |
|
| 98 |
// |
|
| 99 |
// Returns a directed arc corresponding to the specified edge. |
|
| 100 |
// If the given bool is true, the first node of the given edge and |
|
| 101 |
// the source node of the returned arc are the same. |
|
| 102 |
static Arc direct(const Edge &e, bool d) {
|
|
| 103 |
return Arc(e, d); |
|
| 104 |
} |
|
| 105 |
|
|
| 106 |
// Returns whether the given directed arc has the same orientation |
|
| 107 |
// as the corresponding edge. |
|
| 108 |
static bool direction(const Arc &a) { return a.forward; }
|
|
| 109 |
|
|
| 110 |
using Parent::first; |
|
| 111 |
using Parent::next; |
|
| 112 |
|
|
| 113 |
void first(Arc &e) const {
|
|
| 114 |
Parent::first(e); |
|
| 115 |
e.forward=true; |
|
| 116 |
} |
|
| 117 |
|
|
| 118 |
void next(Arc &e) const {
|
|
| 119 |
if( e.forward ) {
|
|
| 120 |
e.forward = false; |
|
| 121 |
} |
|
| 122 |
else {
|
|
| 123 |
Parent::next(e); |
|
| 124 |
e.forward = true; |
|
| 125 |
} |
|
| 126 |
} |
|
| 127 |
|
|
| 128 |
void firstOut(Arc &e, const Node &n) const {
|
|
| 129 |
Parent::firstIn(e,n); |
|
| 130 |
if( Edge(e) != INVALID ) {
|
|
| 131 |
e.forward = false; |
|
| 132 |
} |
|
| 133 |
else {
|
|
| 134 |
Parent::firstOut(e,n); |
|
| 135 |
e.forward = true; |
|
| 136 |
} |
|
| 137 |
} |
|
| 138 |
void nextOut(Arc &e) const {
|
|
| 139 |
if( ! e.forward ) {
|
|
| 140 |
Node n = Parent::target(e); |
|
| 141 |
Parent::nextIn(e); |
|
| 142 |
if( Edge(e) == INVALID ) {
|
|
| 143 |
Parent::firstOut(e, n); |
|
| 144 |
e.forward = true; |
|
| 145 |
} |
|
| 146 |
} |
|
| 147 |
else {
|
|
| 148 |
Parent::nextOut(e); |
|
| 149 |
} |
|
| 150 |
} |
|
| 151 |
|
|
| 152 |
void firstIn(Arc &e, const Node &n) const {
|
|
| 153 |
Parent::firstOut(e,n); |
|
| 154 |
if( Edge(e) != INVALID ) {
|
|
| 155 |
e.forward = false; |
|
| 156 |
} |
|
| 157 |
else {
|
|
| 158 |
Parent::firstIn(e,n); |
|
| 159 |
e.forward = true; |
|
| 160 |
} |
|
| 161 |
} |
|
| 162 |
void nextIn(Arc &e) const {
|
|
| 163 |
if( ! e.forward ) {
|
|
| 164 |
Node n = Parent::source(e); |
|
| 165 |
Parent::nextOut(e); |
|
| 166 |
if( Edge(e) == INVALID ) {
|
|
| 167 |
Parent::firstIn(e, n); |
|
| 168 |
e.forward = true; |
|
| 169 |
} |
|
| 170 |
} |
|
| 171 |
else {
|
|
| 172 |
Parent::nextIn(e); |
|
| 173 |
} |
|
| 174 |
} |
|
| 175 |
|
|
| 176 |
void firstInc(Edge &e, bool &d, const Node &n) const {
|
|
| 177 |
d = true; |
|
| 178 |
Parent::firstOut(e, n); |
|
| 179 |
if (e != INVALID) return; |
|
| 180 |
d = false; |
|
| 181 |
Parent::firstIn(e, n); |
|
| 182 |
} |
|
| 183 |
|
|
| 184 |
void nextInc(Edge &e, bool &d) const {
|
|
| 185 |
if (d) {
|
|
| 186 |
Node s = Parent::source(e); |
|
| 187 |
Parent::nextOut(e); |
|
| 188 |
if (e != INVALID) return; |
|
| 189 |
d = false; |
|
| 190 |
Parent::firstIn(e, s); |
|
| 191 |
} else {
|
|
| 192 |
Parent::nextIn(e); |
|
| 193 |
} |
|
| 194 |
} |
|
| 195 |
|
|
| 196 |
Node nodeFromId(int ix) const {
|
|
| 197 |
return Parent::nodeFromId(ix); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
Arc arcFromId(int ix) const {
|
|
| 201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
|
| 202 |
} |
|
| 203 |
|
|
| 204 |
Edge edgeFromId(int ix) const {
|
|
| 205 |
return Parent::arcFromId(ix); |
|
| 206 |
} |
|
| 207 |
|
|
| 208 |
int id(const Node &n) const {
|
|
| 209 |
return Parent::id(n); |
|
| 210 |
} |
|
| 211 |
|
|
| 212 |
int id(const Edge &e) const {
|
|
| 213 |
return Parent::id(e); |
|
| 214 |
} |
|
| 215 |
|
|
| 216 |
int id(const Arc &e) const {
|
|
| 217 |
return 2 * Parent::id(e) + int(e.forward); |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
int maxNodeId() const {
|
|
| 221 |
return Parent::maxNodeId(); |
|
| 222 |
} |
|
| 223 |
|
|
| 224 |
int maxArcId() const {
|
|
| 225 |
return 2 * Parent::maxArcId() + 1; |
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
int maxEdgeId() const {
|
|
| 229 |
return Parent::maxArcId(); |
|
| 230 |
} |
|
| 231 |
|
|
| 232 |
int arcNum() const {
|
|
| 233 |
return 2 * Parent::arcNum(); |
|
| 234 |
} |
|
| 235 |
|
|
| 236 |
int edgeNum() const {
|
|
| 237 |
return Parent::arcNum(); |
|
| 238 |
} |
|
| 239 |
|
|
| 240 |
Arc findArc(Node s, Node t, Arc p = INVALID) const {
|
|
| 241 |
if (p == INVALID) {
|
|
| 242 |
Edge arc = Parent::findArc(s, t); |
|
| 243 |
if (arc != INVALID) return direct(arc, true); |
|
| 244 |
arc = Parent::findArc(t, s); |
|
| 245 |
if (arc != INVALID) return direct(arc, false); |
|
| 246 |
} else if (direction(p)) {
|
|
| 247 |
Edge arc = Parent::findArc(s, t, p); |
|
| 248 |
if (arc != INVALID) return direct(arc, true); |
|
| 249 |
arc = Parent::findArc(t, s); |
|
| 250 |
if (arc != INVALID) return direct(arc, false); |
|
| 251 |
} else {
|
|
| 252 |
Edge arc = Parent::findArc(t, s, p); |
|
| 253 |
if (arc != INVALID) return direct(arc, false); |
|
| 254 |
} |
|
| 255 |
return INVALID; |
|
| 256 |
} |
|
| 257 |
|
|
| 258 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
|
|
| 259 |
if (s != t) {
|
|
| 260 |
if (p == INVALID) {
|
|
| 261 |
Edge arc = Parent::findArc(s, t); |
|
| 262 |
if (arc != INVALID) return arc; |
|
| 263 |
arc = Parent::findArc(t, s); |
|
| 264 |
if (arc != INVALID) return arc; |
|
| 265 |
} else if (Parent::s(p) == s) {
|
|
| 266 |
Edge arc = Parent::findArc(s, t, p); |
|
| 267 |
if (arc != INVALID) return arc; |
|
| 268 |
arc = Parent::findArc(t, s); |
|
| 269 |
if (arc != INVALID) return arc; |
|
| 270 |
} else {
|
|
| 271 |
Edge arc = Parent::findArc(t, s, p); |
|
| 272 |
if (arc != INVALID) return arc; |
|
| 273 |
} |
|
| 274 |
} else {
|
|
| 275 |
return Parent::findArc(s, t, p); |
|
| 276 |
} |
|
| 277 |
return INVALID; |
|
| 278 |
} |
|
| 279 |
}; |
|
| 280 |
|
|
| 281 |
template <typename Base> |
|
| 282 |
class BidirBpGraphExtender : public Base {
|
|
| 283 |
typedef Base Parent; |
|
| 284 |
|
|
| 285 |
public: |
|
| 286 |
typedef BidirBpGraphExtender Digraph; |
|
| 287 |
|
|
| 288 |
typedef typename Parent::Node Node; |
|
| 289 |
typedef typename Parent::Edge Edge; |
|
| 290 |
|
|
| 291 |
|
|
| 292 |
using Parent::first; |
|
| 293 |
using Parent::next; |
|
| 294 |
|
|
| 295 |
using Parent::id; |
|
| 296 |
|
|
| 297 |
class Red : public Node {
|
|
| 298 |
friend class BidirBpGraphExtender; |
|
| 299 |
public: |
|
| 300 |
Red() {}
|
|
| 301 |
Red(const Node& node) : Node(node) {
|
|
| 302 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
|
| 303 |
typename Parent::NodeSetError()); |
|
| 304 |
} |
|
| 305 |
Red& operator=(const Node& node) {
|
|
| 306 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
|
| 307 |
typename Parent::NodeSetError()); |
|
| 308 |
Node::operator=(node); |
|
| 309 |
return *this; |
|
| 310 |
} |
|
| 311 |
Red(Invalid) : Node(INVALID) {}
|
|
| 312 |
Red& operator=(Invalid) {
|
|
| 313 |
Node::operator=(INVALID); |
|
| 314 |
return *this; |
|
| 315 |
} |
|
| 316 |
}; |
|
| 317 |
|
|
| 318 |
void first(Red& node) const {
|
|
| 319 |
Parent::firstRed(static_cast<Node&>(node)); |
|
| 320 |
} |
|
| 321 |
void next(Red& node) const {
|
|
| 322 |
Parent::nextRed(static_cast<Node&>(node)); |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
int id(const Red& node) const {
|
|
| 326 |
return Parent::redId(node); |
|
| 327 |
} |
|
| 328 |
|
|
| 329 |
class Blue : public Node {
|
|
| 330 |
friend class BidirBpGraphExtender; |
|
| 331 |
public: |
|
| 332 |
Blue() {}
|
|
| 333 |
Blue(const Node& node) : Node(node) {
|
|
| 334 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
|
| 335 |
typename Parent::NodeSetError()); |
|
| 336 |
} |
|
| 337 |
Blue& operator=(const Node& node) {
|
|
| 338 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
|
| 339 |
typename Parent::NodeSetError()); |
|
| 340 |
Node::operator=(node); |
|
| 341 |
return *this; |
|
| 342 |
} |
|
| 343 |
Blue(Invalid) : Node(INVALID) {}
|
|
| 344 |
Blue& operator=(Invalid) {
|
|
| 345 |
Node::operator=(INVALID); |
|
| 346 |
return *this; |
|
| 347 |
} |
|
| 348 |
}; |
|
| 349 |
|
|
| 350 |
void first(Blue& node) const {
|
|
| 351 |
Parent::firstBlue(static_cast<Node&>(node)); |
|
| 352 |
} |
|
| 353 |
void next(Blue& node) const {
|
|
| 354 |
Parent::nextBlue(static_cast<Node&>(node)); |
|
| 355 |
} |
|
| 356 |
|
|
| 357 |
int id(const Blue& node) const {
|
|
| 358 |
return Parent::redId(node); |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
Node source(const Edge& arc) const {
|
|
| 362 |
return red(arc); |
|
| 363 |
} |
|
| 364 |
Node target(const Edge& arc) const {
|
|
| 365 |
return blue(arc); |
|
| 366 |
} |
|
| 367 |
|
|
| 368 |
void firstInc(Edge& arc, bool& dir, const Node& node) const {
|
|
| 369 |
if (Parent::red(node)) {
|
|
| 370 |
Parent::firstFromRed(arc, node); |
|
| 371 |
dir = true; |
|
| 372 |
} else {
|
|
| 373 |
Parent::firstFromBlue(arc, node); |
|
| 374 |
dir = static_cast<Edge&>(arc) == INVALID; |
|
| 375 |
} |
|
| 376 |
} |
|
| 377 |
void nextInc(Edge& arc, bool& dir) const {
|
|
| 378 |
if (dir) {
|
|
| 379 |
Parent::nextFromRed(arc); |
|
| 380 |
} else {
|
|
| 381 |
Parent::nextFromBlue(arc); |
|
| 382 |
if (arc == INVALID) dir = true; |
|
| 383 |
} |
|
| 384 |
} |
|
| 385 |
|
|
| 386 |
class Arc : public Edge {
|
|
| 387 |
friend class BidirBpGraphExtender; |
|
| 388 |
protected: |
|
| 389 |
bool forward; |
|
| 390 |
|
|
| 391 |
Arc(const Edge& arc, bool _forward) |
|
| 392 |
: Edge(arc), forward(_forward) {}
|
|
| 393 |
|
|
| 394 |
public: |
|
| 395 |
Arc() {}
|
|
| 396 |
Arc (Invalid) : Edge(INVALID), forward(true) {}
|
|
| 397 |
bool operator==(const Arc& i) const {
|
|
| 398 |
return Edge::operator==(i) && forward == i.forward; |
|
| 399 |
} |
|
| 400 |
bool operator!=(const Arc& i) const {
|
|
| 401 |
return Edge::operator!=(i) || forward != i.forward; |
|
| 402 |
} |
|
| 403 |
bool operator<(const Arc& i) const {
|
|
| 404 |
return Edge::operator<(i) || |
|
| 405 |
(!(i.forward<forward) && Edge(*this)<Edge(i)); |
|
| 406 |
} |
|
| 407 |
}; |
|
| 408 |
|
|
| 409 |
void first(Arc& arc) const {
|
|
| 410 |
Parent::first(static_cast<Edge&>(arc)); |
|
| 411 |
arc.forward = true; |
|
| 412 |
} |
|
| 413 |
|
|
| 414 |
void next(Arc& arc) const {
|
|
| 415 |
if (!arc.forward) {
|
|
| 416 |
Parent::next(static_cast<Edge&>(arc)); |
|
| 417 |
} |
|
| 418 |
arc.forward = !arc.forward; |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
void firstOut(Arc& arc, const Node& node) const {
|
|
| 422 |
if (Parent::red(node)) {
|
|
| 423 |
Parent::firstFromRed(arc, node); |
|
| 424 |
arc.forward = true; |
|
| 425 |
} else {
|
|
| 426 |
Parent::firstFromBlue(arc, node); |
|
| 427 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
| 428 |
} |
|
| 429 |
} |
|
| 430 |
void nextOut(Arc& arc) const {
|
|
| 431 |
if (arc.forward) {
|
|
| 432 |
Parent::nextFromRed(arc); |
|
| 433 |
} else {
|
|
| 434 |
Parent::nextFromBlue(arc); |
|
| 435 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
| 436 |
} |
|
| 437 |
} |
|
| 438 |
|
|
| 439 |
void firstIn(Arc& arc, const Node& node) const {
|
|
| 440 |
if (Parent::blue(node)) {
|
|
| 441 |
Parent::firstFromBlue(arc, node); |
|
| 442 |
arc.forward = true; |
|
| 443 |
} else {
|
|
| 444 |
Parent::firstFromRed(arc, node); |
|
| 445 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
| 446 |
} |
|
| 447 |
} |
|
| 448 |
void nextIn(Arc& arc) const {
|
|
| 449 |
if (arc.forward) {
|
|
| 450 |
Parent::nextFromBlue(arc); |
|
| 451 |
} else {
|
|
| 452 |
Parent::nextFromRed(arc); |
|
| 453 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
|
| 454 |
} |
|
| 455 |
} |
|
| 456 |
|
|
| 457 |
Node source(const Arc& arc) const {
|
|
| 458 |
return arc.forward ? Parent::red(arc) : Parent::blue(arc); |
|
| 459 |
} |
|
| 460 |
Node target(const Arc& arc) const {
|
|
| 461 |
return arc.forward ? Parent::blue(arc) : Parent::red(arc); |
|
| 462 |
} |
|
| 463 |
|
|
| 464 |
int id(const Arc& arc) const {
|
|
| 465 |
return (Parent::id(static_cast<const Edge&>(arc)) << 1) + |
|
| 466 |
(arc.forward ? 0 : 1); |
|
| 467 |
} |
|
| 468 |
Arc arcFromId(int ix) const {
|
|
| 469 |
return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0); |
|
| 470 |
} |
|
| 471 |
int maxArcId() const {
|
|
| 472 |
return (Parent::maxEdgeId() << 1) + 1; |
|
| 473 |
} |
|
| 474 |
|
|
| 475 |
bool direction(const Arc& arc) const {
|
|
| 476 |
return arc.forward; |
|
| 477 |
} |
|
| 478 |
|
|
| 479 |
Arc direct(const Edge& arc, bool dir) const {
|
|
| 480 |
return Arc(arc, dir); |
|
| 481 |
} |
|
| 482 |
|
|
| 483 |
int arcNum() const {
|
|
| 484 |
return 2 * Parent::edgeNum(); |
|
| 485 |
} |
|
| 486 |
|
|
| 487 |
int edgeNum() const {
|
|
| 488 |
return Parent::edgeNum(); |
|
| 489 |
} |
|
| 490 |
|
|
| 491 |
|
|
| 492 |
}; |
|
| 493 |
} |
|
| 494 |
|
|
| 495 |
#endif |
0 comments (0 inline)