gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
1 21 2
merge 1.1
2 files changed:
↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
namespace lemon {
20

	
21
/**
22
\page min_cost_flow Minimum Cost Flow Problem
23

	
24
\section mcf_def Definition (GEQ form)
25

	
26
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
27
minimum total cost from a set of supply nodes to a set of demand nodes
28
in a network with capacity constraints (lower and upper bounds)
29
and arc costs.
30

	
31
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
32
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
33
upper bounds for the flow values on the arcs, for which
34
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
35
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
36
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
37
signed supply values of the nodes.
38
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
39
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
40
\f$-sup(u)\f$ demand.
41
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
42
of the following optimization problem.
43

	
44
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
45
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
46
    sup(u) \quad \forall u\in V \f]
47
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
48

	
49
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
50
zero or negative in order to have a feasible solution (since the sum
51
of the expressions on the left-hand side of the inequalities is zero).
52
It means that the total demand must be greater or equal to the total
53
supply and all the supplies have to be carried out from the supply nodes,
54
but there could be demands that are not satisfied.
55
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
56
constraints have to be satisfied with equality, i.e. all demands
57
have to be satisfied and all supplies have to be used.
58

	
59

	
60
\section mcf_algs Algorithms
61

	
62
LEMON contains several algorithms for solving this problem, for more
63
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms".
64

	
65
A feasible solution for this problem can be found using \ref Circulation.
66

	
67

	
68
\section mcf_dual Dual Solution
69

	
70
The dual solution of the minimum cost flow problem is represented by
71
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
72
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
73
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
74
the following \e complementary \e slackness optimality conditions hold.
75

	
76
 - For all \f$uv\in A\f$ arcs:
77
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
78
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
79
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
80
 - For all \f$u\in V\f$ nodes:
81
   - \f$\pi(u)<=0\f$;
82
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
83
     then \f$\pi(u)=0\f$.
84
 
85
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
86
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
87
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
88

	
89
All algorithms provide dual solution (node potentials), as well,
90
if an optimal flow is found.
91

	
92

	
93
\section mcf_eq Equality Form
94

	
95
The above \ref mcf_def "definition" is actually more general than the
96
usual formulation of the minimum cost flow problem, in which strict
97
equalities are required in the supply/demand contraints.
98

	
99
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
100
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
101
    sup(u) \quad \forall u\in V \f]
102
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
103

	
104
However if the sum of the supply values is zero, then these two problems
105
are equivalent.
106
The \ref min_cost_flow_algs "algorithms" in LEMON support the general
107
form, so if you need the equality form, you have to ensure this additional
108
contraint manually.
109

	
110

	
111
\section mcf_leq Opposite Inequalites (LEQ Form)
112

	
113
Another possible definition of the minimum cost flow problem is
114
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints,
115
instead of the <em>"greater or equal"</em> (GEQ) constraints.
116

	
117
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
118
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
119
    sup(u) \quad \forall u\in V \f]
120
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
121

	
122
It means that the total demand must be less or equal to the 
123
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
124
positive) and all the demands have to be satisfied, but there
125
could be supplies that are not carried out from the supply
126
nodes.
127
The equality form is also a special case of this form, of course.
128

	
129
You could easily transform this case to the \ref mcf_def "GEQ form"
130
of the problem by reversing the direction of the arcs and taking the
131
negative of the supply values (e.g. using \ref ReverseDigraph and
132
\ref NegMap adaptors).
133
However \ref NetworkSimplex algorithm also supports this form directly
134
for the sake of convenience.
135

	
136
Note that the optimality conditions for this supply constraint type are
137
slightly differ from the conditions that are discussed for the GEQ form,
138
namely the potentials have to be non-negative instead of non-positive.
139
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
140
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
141
node potentials the following conditions hold.
142

	
143
 - For all \f$uv\in A\f$ arcs:
144
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
145
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
146
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
147
 - For all \f$u\in V\f$ nodes:
148
   - \f$\pi(u)>=0\f$;
149
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
150
     then \f$\pi(u)=0\f$.
151

	
152
*/
153
}
Ignore white space 1536 line context
1 1
CMAKE_MINIMUM_REQUIRED(VERSION 2.6)
2 2

	
3 3
IF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake)
4 4
  INCLUDE(${CMAKE_SOURCE_DIR}/cmake/version.cmake)
5 5
ELSE(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake)
6 6
  SET(PROJECT_NAME "LEMON")
7 7
  SET(PROJECT_VERSION "hg-tip" CACHE STRING "LEMON version string.")
8 8
ENDIF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake)
9 9

	
10 10
PROJECT(${PROJECT_NAME})
11 11

	
12 12
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
13 13

	
14 14
INCLUDE(FindDoxygen)
15 15
INCLUDE(FindGhostscript)
16 16
FIND_PACKAGE(GLPK 4.33)
17 17
FIND_PACKAGE(CPLEX)
18 18
FIND_PACKAGE(COIN)
19 19

	
20 20
IF(MSVC)
21 21
  SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996")
22 22
# Suppressed warnings:
23 23
# C4250: 'class1' : inherits 'class2::member' via dominance
24 24
# C4355: 'this' : used in base member initializer list
25 25
# C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
26 26
# C4996: 'function': was declared deprecated
27 27
ENDIF(MSVC)
28 28

	
29 29
INCLUDE(CheckTypeSize)
30 30
CHECK_TYPE_SIZE("long long" LEMON_LONG_LONG)
31 31

	
32 32
ENABLE_TESTING()
33 33

	
34 34
ADD_SUBDIRECTORY(lemon)
35 35
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
36 36
  ADD_SUBDIRECTORY(demo)
37 37
  ADD_SUBDIRECTORY(tools)
38 38
  ADD_SUBDIRECTORY(doc)
39 39
  ADD_SUBDIRECTORY(test)
40 40
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
41 41

	
42 42
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
43 43
  IF(WIN32)
44 44
    SET(CPACK_PACKAGE_NAME ${PROJECT_NAME})
45 45
    SET(CPACK_PACKAGE_VENDOR "EGRES")
46 46
    SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY
47
      "LEMON - Library of Efficient Models and Optimization in Networks")
47
      "LEMON - Library for Efficient Modeling and Optimization in Networks")
48 48
    SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE")
49 49

	
50 50
    SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION})
51 51

	
52 52
    SET(CPACK_PACKAGE_INSTALL_DIRECTORY
53 53
      "${PROJECT_NAME} ${PROJECT_VERSION}")
54 54
    SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY
55 55
      "${PROJECT_NAME} ${PROJECT_VERSION}")
56 56

	
57 57
    SET(CPACK_COMPONENTS_ALL headers library html_documentation bin)
58 58

	
59 59
    SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers")
60 60
    SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library")
61 61
    SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities")
62 62
    SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation")
63 63

	
64 64
    SET(CPACK_COMPONENT_HEADERS_DESCRIPTION
65 65
      "C++ header files")
66 66
    SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION
67 67
      "DLL and import library")
68 68
    SET(CPACK_COMPONENT_BIN_DESCRIPTION
69 69
      "Command line utilities")
70 70
    SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION
71 71
      "Doxygen generated documentation")
72 72

	
73 73
    SET(CPACK_COMPONENT_HEADERS_DEPENDS library)
74 74

	
75 75
    SET(CPACK_COMPONENT_HEADERS_GROUP "Development")
76 76
    SET(CPACK_COMPONENT_LIBRARY_GROUP "Development")
77 77
    SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation")
78 78

	
79 79
    SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION
80 80
      "Components needed to develop software using LEMON")
81 81
    SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION
82 82
      "Documentation of LEMON")
83 83

	
84 84
    SET(CPACK_ALL_INSTALL_TYPES Full Developer)
85 85

	
86 86
    SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full)
87 87
    SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full)
88 88
    SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full)
89 89

	
90 90
    SET(CPACK_GENERATOR "NSIS")
91 91
    SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico")
92 92
    SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico")
93 93
    #SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp")
94 94
    SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico")
95 95
    SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}")
96 96
    SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\lemon.cs.elte.hu")
97 97
    SET(CPACK_NSIS_URL_INFO_ABOUT "http:\\\\\\\\lemon.cs.elte.hu")
98 98
    SET(CPACK_NSIS_CONTACT "lemon-user@lemon.cs.elte.hu")
99 99
    SET(CPACK_NSIS_CREATE_ICONS_EXTRA "
100 100
      CreateShortCut \\\"$SMPROGRAMS\\\\$STARTMENU_FOLDER\\\\Documentation.lnk\\\" \\\"$INSTDIR\\\\share\\\\doc\\\\index.html\\\"
101 101
      ")
102 102
    SET(CPACK_NSIS_DELETE_ICONS_EXTRA "
103 103
      !insertmacro MUI_STARTMENU_GETFOLDER Application $MUI_TEMP
104 104
      Delete \\\"$SMPROGRAMS\\\\$MUI_TEMP\\\\Documentation.lnk\\\"
105 105
      ")
106 106

	
107 107
    INCLUDE(CPack)
108 108
  ENDIF(WIN32)
109 109
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
Ignore white space 6 line context
1
2009-05-13 Version 1.1 released
2

	
3
        This is the second stable release of the 1.x series. It
4
        features a better coverage of the tools available in the 0.x
5
        series, a thoroughly reworked LP/MIP interface plus various
6
        improvements in the existing tools.
7

	
8
        * Much improved M$ Windows support
9
          * Various improvements in the CMAKE build system
10
          * Compilation warnings are fixed/suppressed
11
        * Support IBM xlC compiler
12
        * New algorithms
13
          * Connectivity related algorithms (#61)
14
          * Euler walks (#65)
15
          * Preflow push-relabel max. flow algorithm (#176)
16
          * Circulation algorithm (push-relabel based) (#175)
17
          * Suurballe algorithm (#47)
18
          * Gomory-Hu algorithm (#66)
19
          * Hao-Orlin algorithm (#58)
20
          * Edmond's maximum cardinality and weighted matching algorithms
21
            in general graphs (#48,#265)
22
          * Minimum cost arborescence/branching (#60)
23
          * Network Simplex min. cost flow algorithm (#234)
24
        * New data structures
25
          * Full graph structure (#57)
26
          * Grid graph structure (#57)
27
          * Hypercube graph structure (#57)
28
          * Graph adaptors (#67)
29
          * ArcSet and EdgeSet classes (#67)
30
          * Elevator class (#174)
31
        * Other new tools
32
          * LP/MIP interface (#44)
33
            * Support for GLPK, CPLEX, Soplex, COIN-OR CLP and CBC
34
          * Reader for the Nauty file format (#55)
35
          * DIMACS readers (#167)
36
          * Radix sort algorithms (#72)
37
          * RangeIdMap and CrossRefMap (#160)
38
        * New command line tools
39
          * DIMACS to LGF converter (#182)
40
          * lgf-gen - a graph generator (#45)
41
          * DIMACS solver utility (#226)
42
        * Other code improvements
43
          * Lognormal distribution added to Random (#102)
44
          * Better (i.e. O(1) time) item counting in SmartGraph (#3)
45
          * The standard maps of graphs are guaranteed to be
46
            reference maps (#190)
47
        * Miscellaneous
48
          * Various doc improvements
49
          * Improved 0.x -> 1.x converter script
50

	
51
        * Several bugfixes (compared to release 1.0):
52
          #170: Bugfix SmartDigraph::split()
53
          #171: Bugfix in SmartGraph::restoreSnapshot()
54
          #172: Extended test cases for graphs and digraphs
55
          #173: Bugfix in Random
56
                * operator()s always return a double now
57
                * the faulty real<Num>(Num) and real<Num>(Num,Num)
58
                  have been removed
59
          #187: Remove DijkstraWidestPathOperationTraits
60
          #61:  Bugfix in DfsVisit
61
          #193: Bugfix in GraphReader::skipSection()
62
          #195: Bugfix in ConEdgeIt()
63
          #197: Bugfix in heap unionfind
64
                * This bug affects Edmond's general matching algorithms
65
          #207: Fix 'make install' without 'make html' using CMAKE
66
          #208: Suppress or fix VS2008 compilation warnings
67
          ----: Update the LEMON icon
68
          ----: Enable the component-based installer
69
                (in installers made by CPACK)
70
          ----: Set the proper version for CMAKE in the tarballs
71
                (made by autotools)
72
          ----: Minor clarification in the LICENSE file
73
          ----: Add missing unistd.h include to time_measure.h
74
          #204: Compilation bug fixed in graph_to_eps.h with VS2005
75
          #214,#215: windows.h should never be included by lemon headers
76
          #230: Build systems check the availability of 'long long' type
77
          #229: Default implementation of Tolerance<> is used for integer types
78
          #211,#212: Various fixes for compiling on AIX
79
          ----: Improvements in CMAKE config
80
                - docs is installed in share/doc/
81
                - detects newer versions of Ghostscript
82
          #239: Fix missing 'inline' specifier in time_measure.h
83
          #274,#280: Install lemon/config.h
84
          #275: Prefix macro names with LEMON_ in lemon/config.h
85
          ----: Small script for making the release tarballs added
86
          ----: Minor improvement in unify-sources.sh (a76f55d7d397)
87

	
1 88
2009-03-27 LEMON joins to the COIN-OR initiative
2 89

	
3 90
        COIN-OR (Computational Infrastructure for Operations Research,
4 91
        http://www.coin-or.org) project is an initiative to spur the
5 92
        development of open-source software for the operations research
6 93
        community.
7 94

	
8 95
2008-10-13 Version 1.0 released
9 96

	
10 97
	This is the first stable release of LEMON. Compared to the 0.x
11 98
	release series, it features a considerably smaller but more
12 99
	matured set of tools. The API has also completely revised and
13 100
	changed in several places.
14 101

	
15 102
	* The major name changes compared to the 0.x series (see the
16 103
          Migration Guide in the doc for more details)
17 104
          * Graph -> Digraph, UGraph -> Graph
18 105
          * Edge -> Arc, UEdge -> Edge
19 106
	  * source(UEdge)/target(UEdge) -> u(Edge)/v(Edge)
20 107
	* Other improvements
21 108
	  * Better documentation
22 109
	  * Reviewed and cleaned up codebase
23 110
	  * CMake based build system (along with the autotools based one)
24 111
	* Contents of the library (ported from 0.x)
25 112
	  * Algorithms
26 113
       	    * breadth-first search (bfs.h)
27 114
       	    * depth-first search (dfs.h)
28 115
       	    * Dijkstra's algorithm (dijkstra.h)
29 116
       	    * Kruskal's algorithm (kruskal.h)
30 117
    	  * Data structures
31 118
       	    * graph data structures (list_graph.h, smart_graph.h)
32 119
       	    * path data structures (path.h)
33 120
       	    * binary heap data structure (bin_heap.h)
34 121
       	    * union-find data structures (unionfind.h)
35 122
       	    * miscellaneous property maps (maps.h)
36 123
       	    * two dimensional vector and bounding box (dim2.h)
37 124
          * Concepts
38 125
       	    * graph structure concepts (concepts/digraph.h, concepts/graph.h,
39 126
              concepts/graph_components.h)
40 127
       	    * concepts for other structures (concepts/heap.h, concepts/maps.h,
41 128
	      concepts/path.h)
42 129
    	  * Tools
43 130
       	    * Mersenne twister random number generator (random.h)
44 131
       	    * tools for measuring cpu and wall clock time (time_measure.h)
45 132
       	    * tools for counting steps and events (counter.h)
46 133
       	    * tool for parsing command line arguments (arg_parser.h)
47 134
       	    * tool for visualizing graphs (graph_to_eps.h)
48 135
       	    * tools for reading and writing data in LEMON Graph Format
49 136
              (lgf_reader.h, lgf_writer.h)
50 137
            * tools to handle the anomalies of calculations with
51 138
	      floating point numbers (tolerance.h)
52 139
            * tools to manage RGB colors (color.h)
53 140
    	  * Infrastructure
54 141
       	    * extended assertion handling (assert.h)
55 142
       	    * exception classes and error handling (error.h)
56 143
      	    * concept checking (concept_check.h)
57 144
       	    * commonly used mathematical constants (math.h)
Ignore white space 6 line context
1
==================================================================
2
LEMON - a Library of Efficient Models and Optimization in Networks
3
==================================================================
1
=====================================================================
2
LEMON - a Library for Efficient Modeling and Optimization in Networks
3
=====================================================================
4 4

	
5 5
LEMON is an open source library written in C++. It provides
6 6
easy-to-use implementations of common data structures and algorithms
7 7
in the area of optimization and helps implementing new ones. The main
8 8
focus is on graphs and graph algorithms, thus it is especially
9 9
suitable for solving design and optimization problems of
10 10
telecommunication networks. To achieve wide usability its data
11 11
structures and algorithms provide generic interfaces.
12 12

	
13 13
Contents
14 14
========
15 15

	
16 16
LICENSE
17 17

	
18 18
   Copying, distribution and modification conditions and terms.
19 19

	
20 20
INSTALL
21 21

	
22 22
   General building and installation instructions.
23 23

	
24 24
lemon/
25 25

	
26 26
   Source code of LEMON library.
27 27

	
28 28
doc/
29 29

	
30 30
   Documentation of LEMON. The starting page is doc/html/index.html.
31 31

	
32 32
demo/
33 33

	
34 34
   Some example programs to make you easier to get familiar with LEMON.
35 35

	
36 36
test/
37 37

	
38 38
   Programs to check the integrity and correctness of LEMON.
39 39

	
40 40
tools/
41 41

	
42 42
   Various utilities related to LEMON.
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	doc/Doxyfile.in \
3 3
	doc/DoxygenLayout.xml \
4 4
	doc/coding_style.dox \
5 5
	doc/dirs.dox \
6 6
	doc/groups.dox \
7 7
	doc/lgf.dox \
8 8
	doc/license.dox \
9 9
	doc/mainpage.dox \
10 10
	doc/migration.dox \
11
	doc/min_cost_flow.dox \
11 12
	doc/named-param.dox \
12 13
	doc/namespaces.dox \
13 14
	doc/html \
14 15
	doc/CMakeLists.txt
15 16

	
16 17
DOC_EPS_IMAGES18 = \
17 18
	grid_graph.eps \
18 19
	nodeshape_0.eps \
19 20
	nodeshape_1.eps \
20 21
	nodeshape_2.eps \
21 22
	nodeshape_3.eps \
22 23
	nodeshape_4.eps
23 24

	
24 25
DOC_EPS_IMAGES27 = \
25 26
	bipartite_matching.eps \
26 27
	bipartite_partitions.eps \
27 28
	connected_components.eps \
28 29
	edge_biconnected_components.eps \
29 30
	node_biconnected_components.eps \
30 31
	strongly_connected_components.eps
31 32

	
32 33
DOC_EPS_IMAGES = \
33 34
	$(DOC_EPS_IMAGES18) \
34 35
	$(DOC_EPS_IMAGES27)
35 36

	
36 37
DOC_PNG_IMAGES = \
37 38
	$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png)
38 39

	
39 40
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%)
40 41

	
41 42
doc/html:
42 43
	$(MAKE) $(AM_MAKEFLAGS) html
43 44

	
44 45
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4
45 46

	
46 47
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
47 48
	-mkdir doc/gen-images
48 49
	if test ${gs_found} = yes; then \
49 50
	  $(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \
50 51
	else \
51 52
	  echo; \
52 53
	  echo "Ghostscript not found."; \
53 54
	  echo; \
54 55
	  exit 1; \
55 56
	fi
56 57

	
57 58
$(DOC_EPS_IMAGES27:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
58 59
	-mkdir doc/gen-images
59 60
	if test ${gs_found} = yes; then \
60 61
	  $(GS_COMMAND) -sDEVICE=pngalpha -r27 -sOutputFile=$@ $<; \
61 62
	else \
62 63
	  echo; \
63 64
	  echo "Ghostscript not found."; \
64 65
	  echo; \
65 66
	  exit 1; \
66 67
	fi
67 68

	
68 69
html-local: $(DOC_PNG_IMAGES)
69 70
	if test ${doxygen_found} = yes; then \
70 71
	  cd doc; \
71 72
	  doxygen Doxyfile; \
72 73
	  cd ..; \
73 74
	else \
74 75
	  echo; \
75 76
	  echo "Doxygen not found."; \
76 77
	  echo; \
77 78
	  exit 1; \
78 79
	fi
79 80

	
80 81
clean-local:
81 82
	-rm -rf doc/html
82 83
	-rm -f doc/doxygen.log
83 84
	-rm -f $(DOC_PNG_IMAGES)
84 85
	-rm -rf doc/gen-images
85 86

	
86 87
update-external-tags:
87 88
	wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \
88 89
	mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \
89 90
	rm doc/libstdc++.tag.tmp
90 91

	
91 92
install-html-local: doc/html
92 93
	@$(NORMAL_INSTALL)
93 94
	$(mkinstalldirs) $(DESTDIR)$(htmldir)/docs
94 95
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
95 96
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
96 97
	  echo " $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/docs/$$f"; \
97 98
	  $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/docs/$$f; \
98 99
	done
99 100

	
100 101
uninstall-local:
101 102
	@$(NORMAL_UNINSTALL)
102 103
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
103 104
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
104 105
	  echo " rm -f $(DESTDIR)$(htmldir)/docs/$$f"; \
105 106
	  rm -f $(DESTDIR)$(htmldir)/docs/$$f; \
106 107
	done
107 108

	
108 109
.PHONY: update-external-tags
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
@defgroup datas Data Structures
23 23
This group contains the several data structures implemented in LEMON.
24 24
*/
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65 65
@defgroup graph_adaptors Adaptor Classes for Graphs
66 66
@ingroup graphs
67 67
\brief Adaptor classes for digraphs and graphs
68 68

	
69 69
This group contains several useful adaptor classes for digraphs and graphs.
70 70

	
71 71
The main parts of LEMON are the different graph structures, generic
72 72
graph algorithms, graph concepts, which couple them, and graph
73 73
adaptors. While the previous notions are more or less clear, the
74 74
latter one needs further explanation. Graph adaptors are graph classes
75 75
which serve for considering graph structures in different ways.
76 76

	
77 77
A short example makes this much clearer.  Suppose that we have an
78 78
instance \c g of a directed graph type, say ListDigraph and an algorithm
79 79
\code
80 80
template <typename Digraph>
81 81
int algorithm(const Digraph&);
82 82
\endcode
83 83
is needed to run on the reverse oriented graph.  It may be expensive
84 84
(in time or in memory usage) to copy \c g with the reversed
85 85
arcs.  In this case, an adaptor class is used, which (according
86 86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
87 87
The adaptor uses the original digraph structure and digraph operations when
88 88
methods of the reversed oriented graph are called.  This means that the adaptor
89 89
have minor memory usage, and do not perform sophisticated algorithmic
90 90
actions.  The purpose of it is to give a tool for the cases when a
91 91
graph have to be used in a specific alteration.  If this alteration is
92 92
obtained by a usual construction like filtering the node or the arc set or
93 93
considering a new orientation, then an adaptor is worthwhile to use.
94 94
To come back to the reverse oriented graph, in this situation
95 95
\code
96 96
template<typename Digraph> class ReverseDigraph;
97 97
\endcode
98 98
template class can be used. The code looks as follows
99 99
\code
100 100
ListDigraph g;
101 101
ReverseDigraph<ListDigraph> rg(g);
102 102
int result = algorithm(rg);
103 103
\endcode
104 104
During running the algorithm, the original digraph \c g is untouched.
105 105
This techniques give rise to an elegant code, and based on stable
106 106
graph adaptors, complex algorithms can be implemented easily.
107 107

	
108 108
In flow, circulation and matching problems, the residual
109 109
graph is of particular importance. Combining an adaptor implementing
110 110
this with shortest path algorithms or minimum mean cycle algorithms,
111 111
a range of weighted and cardinality optimization algorithms can be
112 112
obtained. For other examples, the interested user is referred to the
113 113
detailed documentation of particular adaptors.
114 114

	
115 115
The behavior of graph adaptors can be very different. Some of them keep
116 116
capabilities of the original graph while in other cases this would be
117 117
meaningless. This means that the concepts that they meet depend
118 118
on the graph adaptor, and the wrapped graph.
119 119
For example, if an arc of a reversed digraph is deleted, this is carried
120 120
out by deleting the corresponding arc of the original digraph, thus the
121 121
adaptor modifies the original digraph.
122 122
However in case of a residual digraph, this operation has no sense.
123 123

	
124 124
Let us stand one more example here to simplify your work.
125 125
ReverseDigraph has constructor
126 126
\code
127 127
ReverseDigraph(Digraph& digraph);
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
142
@ingroup graphs
143
\brief Graph types between real graphs and graph adaptors.
144

	
145
This group contains some graph types between real graphs and graph adaptors.
146
These classes wrap graphs to give new functionality as the adaptors do it.
147
On the other hand they are not light-weight structures as the adaptors.
148
*/
149

	
150
/**
151 141
@defgroup maps Maps
152 142
@ingroup datas
153 143
\brief Map structures implemented in LEMON.
154 144

	
155 145
This group contains the map structures implemented in LEMON.
156 146

	
157 147
LEMON provides several special purpose maps and map adaptors that e.g. combine
158 148
new maps from existing ones.
159 149

	
160 150
<b>See also:</b> \ref map_concepts "Map Concepts".
161 151
*/
162 152

	
163 153
/**
164 154
@defgroup graph_maps Graph Maps
165 155
@ingroup maps
166 156
\brief Special graph-related maps.
167 157

	
168 158
This group contains maps that are specifically designed to assign
169 159
values to the nodes and arcs/edges of graphs.
170 160

	
171 161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
172 162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
173 163
*/
174 164

	
175 165
/**
176 166
\defgroup map_adaptors Map Adaptors
177 167
\ingroup maps
178 168
\brief Tools to create new maps from existing ones
179 169

	
180 170
This group contains map adaptors that are used to create "implicit"
181 171
maps from other maps.
182 172

	
183 173
Most of them are \ref concepts::ReadMap "read-only maps".
184 174
They can make arithmetic and logical operations between one or two maps
185 175
(negation, shifting, addition, multiplication, logical 'and', 'or',
186 176
'not' etc.) or e.g. convert a map to another one of different Value type.
187 177

	
188 178
The typical usage of this classes is passing implicit maps to
189 179
algorithms.  If a function type algorithm is called then the function
190 180
type map adaptors can be used comfortable. For example let's see the
191 181
usage of map adaptors with the \c graphToEps() function.
192 182
\code
193 183
  Color nodeColor(int deg) {
194 184
    if (deg >= 2) {
195 185
      return Color(0.5, 0.0, 0.5);
196 186
    } else if (deg == 1) {
197 187
      return Color(1.0, 0.5, 1.0);
198 188
    } else {
199 189
      return Color(0.0, 0.0, 0.0);
200 190
    }
201 191
  }
202 192

	
203 193
  Digraph::NodeMap<int> degree_map(graph);
204 194

	
205 195
  graphToEps(graph, "graph.eps")
206 196
    .coords(coords).scaleToA4().undirected()
207 197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
208 198
    .run();
209 199
\endcode
210 200
The \c functorToMap() function makes an \c int to \c Color map from the
211 201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
212 202
and the previously created map. The composed map is a proper function to
213 203
get the color of each node.
214 204

	
215 205
The usage with class type algorithms is little bit harder. In this
216 206
case the function type map adaptors can not be used, because the
217 207
function map adaptors give back temporary objects.
218 208
\code
219 209
  Digraph graph;
220 210

	
221 211
  typedef Digraph::ArcMap<double> DoubleArcMap;
222 212
  DoubleArcMap length(graph);
223 213
  DoubleArcMap speed(graph);
224 214

	
225 215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
226 216
  TimeMap time(length, speed);
227 217

	
228 218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
229 219
  dijkstra.run(source, target);
230 220
\endcode
231 221
We have a length map and a maximum speed map on the arcs of a digraph.
232 222
The minimum time to pass the arc can be calculated as the division of
233 223
the two maps which can be done implicitly with the \c DivMap template
234 224
class. We use the implicit minimum time map as the length map of the
235 225
\c Dijkstra algorithm.
236 226
*/
237 227

	
238 228
/**
239 229
@defgroup paths Path Structures
240 230
@ingroup datas
241 231
\brief %Path structures implemented in LEMON.
242 232

	
243 233
This group contains the path structures implemented in LEMON.
244 234

	
245 235
LEMON provides flexible data structures to work with paths.
246 236
All of them have similar interfaces and they can be copied easily with
247 237
assignment operators and copy constructors. This makes it easy and
248 238
efficient to have e.g. the Dijkstra algorithm to store its result in
249 239
any kind of path structure.
250 240

	
251 241
\sa lemon::concepts::Path
252 242
*/
253 243

	
254 244
/**
255 245
@defgroup auxdat Auxiliary Data Structures
256 246
@ingroup datas
257 247
\brief Auxiliary data structures implemented in LEMON.
258 248

	
259 249
This group contains some data structures implemented in LEMON in
260 250
order to make it easier to implement combinatorial algorithms.
261 251
*/
262 252

	
263 253
/**
264 254
@defgroup algs Algorithms
265 255
\brief This group contains the several algorithms
266 256
implemented in LEMON.
267 257

	
268 258
This group contains the several algorithms
269 259
implemented in LEMON.
270 260
*/
271 261

	
272 262
/**
273 263
@defgroup search Graph Search
274 264
@ingroup algs
275 265
\brief Common graph search algorithms.
276 266

	
277 267
This group contains the common graph search algorithms, namely
278 268
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
279 269
*/
280 270

	
281 271
/**
282 272
@defgroup shortest_path Shortest Path Algorithms
283 273
@ingroup algs
284 274
\brief Algorithms for finding shortest paths.
285 275

	
286 276
This group contains the algorithms for finding shortest paths in digraphs.
287 277

	
288 278
 - \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a 
289 279
   source node when all arc lengths are non-negative.
290 280
 - \ref Suurballe A successive shortest path algorithm for finding
291 281
   arc-disjoint paths between two nodes having minimum total length.
292 282
*/
293 283

	
294 284
/**
295 285
@defgroup max_flow Maximum Flow Algorithms
296 286
@ingroup algs
297 287
\brief Algorithms for finding maximum flows.
298 288

	
299 289
This group contains the algorithms for finding maximum flows and
300 290
feasible circulations.
301 291

	
302 292
The \e maximum \e flow \e problem is to find a flow of maximum value between
303 293
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
304 294
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
305 295
\f$s, t \in V\f$ source and target nodes.
306 296
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
307 297
following optimization problem.
308 298

	
309 299
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
310 300
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
311 301
    \quad \forall u\in V\setminus\{s,t\} \f]
312 302
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
313 303

	
314 304
\ref Preflow implements the preflow push-relabel algorithm of Goldberg and
315 305
Tarjan for solving this problem. It also provides functions to query the
316 306
minimum cut, which is the dual problem of maximum flow.
317 307

	
308

	
318 309
\ref Circulation is a preflow push-relabel algorithm implemented directly 
319 310
for finding feasible circulations, which is a somewhat different problem,
320 311
but it is strongly related to maximum flow.
321 312
For more information, see \ref Circulation.
322 313
*/
323 314

	
324 315
/**
325
@defgroup min_cost_flow Minimum Cost Flow Algorithms
316
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
326 317
@ingroup algs
327 318

	
328 319
\brief Algorithms for finding minimum cost flows and circulations.
329 320

	
330 321
This group contains the algorithms for finding minimum cost flows and
331
circulations.
332

	
333
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
334
minimum total cost from a set of supply nodes to a set of demand nodes
335
in a network with capacity constraints (lower and upper bounds)
336
and arc costs.
337
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
338
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
339
upper bounds for the flow values on the arcs, for which
340
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
341
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
342
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
343
signed supply values of the nodes.
344
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
345
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
346
\f$-sup(u)\f$ demand.
347
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
348
of the following optimization problem.
349

	
350
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
351
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
352
    sup(u) \quad \forall u\in V \f]
353
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
354

	
355
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
356
zero or negative in order to have a feasible solution (since the sum
357
of the expressions on the left-hand side of the inequalities is zero).
358
It means that the total demand must be greater or equal to the total
359
supply and all the supplies have to be carried out from the supply nodes,
360
but there could be demands that are not satisfied.
361
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
362
constraints have to be satisfied with equality, i.e. all demands
363
have to be satisfied and all supplies have to be used.
364

	
365
If you need the opposite inequalities in the supply/demand constraints
366
(i.e. the total demand is less than the total supply and all the demands
367
have to be satisfied while there could be supplies that are not used),
368
then you could easily transform the problem to the above form by reversing
369
the direction of the arcs and taking the negative of the supply values
370
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
371
However \ref NetworkSimplex algorithm also supports this form directly
372
for the sake of convenience.
373

	
374
A feasible solution for this problem can be found using \ref Circulation.
375

	
376
Note that the above formulation is actually more general than the usual
377
definition of the minimum cost flow problem, in which strict equalities
378
are required in the supply/demand contraints, i.e.
379

	
380
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
381
    sup(u) \quad \forall u\in V. \f]
382

	
383
However if the sum of the supply values is zero, then these two problems
384
are equivalent. So if you need the equality form, you have to ensure this
385
additional contraint for the algorithms.
386

	
387
The dual solution of the minimum cost flow problem is represented by node 
388
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
389
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
390
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
391
node potentials the following \e complementary \e slackness optimality
392
conditions hold.
393

	
394
 - For all \f$uv\in A\f$ arcs:
395
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
396
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
397
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
398
 - For all \f$u\in V\f$ nodes:
399
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
400
     then \f$\pi(u)=0\f$.
401
 
402
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
403
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
404
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
322
circulations. For more information about this problem and its dual
323
solution see \ref min_cost_flow "Minimum Cost Flow Problem".
405 324

	
406 325
\ref NetworkSimplex is an efficient implementation of the primal Network
407 326
Simplex algorithm for finding minimum cost flows. It also provides dual
408 327
solution (node potentials), if an optimal flow is found.
409 328
*/
410 329

	
411 330
/**
412 331
@defgroup min_cut Minimum Cut Algorithms
413 332
@ingroup algs
414 333

	
415 334
\brief Algorithms for finding minimum cut in graphs.
416 335

	
417 336
This group contains the algorithms for finding minimum cut in graphs.
418 337

	
419 338
The \e minimum \e cut \e problem is to find a non-empty and non-complete
420 339
\f$X\f$ subset of the nodes with minimum overall capacity on
421 340
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
422 341
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
423 342
cut is the \f$X\f$ solution of the next optimization problem:
424 343

	
425 344
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
426 345
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
427 346

	
428 347
LEMON contains several algorithms related to minimum cut problems:
429 348

	
430 349
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
431 350
  in directed graphs.
432 351
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
433 352
  all-pairs minimum cut in undirected graphs.
434 353

	
435 354
If you want to find minimum cut just between two distinict nodes,
436 355
see the \ref max_flow "maximum flow problem".
437 356
*/
438 357

	
439 358
/**
440 359
@defgroup graph_properties Connectivity and Other Graph Properties
441 360
@ingroup algs
442 361
\brief Algorithms for discovering the graph properties
443 362

	
444 363
This group contains the algorithms for discovering the graph properties
445 364
like connectivity, bipartiteness, euler property, simplicity etc.
446 365

	
447 366
\image html edge_biconnected_components.png
448 367
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
449 368
*/
450 369

	
451 370
/**
452 371
@defgroup matching Matching Algorithms
453 372
@ingroup algs
454 373
\brief Algorithms for finding matchings in graphs and bipartite graphs.
455 374

	
456 375
This group contains the algorithms for calculating matchings in graphs.
457 376
The general matching problem is finding a subset of the edges for which
458 377
each node has at most one incident edge.
459 378

	
460 379
There are several different algorithms for calculate matchings in
461 380
graphs. The goal of the matching optimization
462 381
can be finding maximum cardinality, maximum weight or minimum cost
463 382
matching. The search can be constrained to find perfect or
464 383
maximum cardinality matching.
465 384

	
466 385
The matching algorithms implemented in LEMON:
467 386
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
468 387
  maximum cardinality matching in general graphs.
469 388
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
470 389
  maximum weighted matching in general graphs.
471 390
- \ref MaxWeightedPerfectMatching
472 391
  Edmond's blossom shrinking algorithm for calculating maximum weighted
473 392
  perfect matching in general graphs.
474 393

	
475 394
\image html bipartite_matching.png
476 395
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
477 396
*/
478 397

	
479 398
/**
480 399
@defgroup spantree Minimum Spanning Tree Algorithms
481 400
@ingroup algs
482
\brief Algorithms for finding a minimum cost spanning tree in a graph.
401
\brief Algorithms for finding minimum cost spanning trees and arborescences.
483 402

	
484
This group contains the algorithms for finding a minimum cost spanning
485
tree in a graph.
403
This group contains the algorithms for finding minimum cost spanning
404
trees and arborescences.
486 405
*/
487 406

	
488 407
/**
489 408
@defgroup auxalg Auxiliary Algorithms
490 409
@ingroup algs
491 410
\brief Auxiliary algorithms implemented in LEMON.
492 411

	
493 412
This group contains some algorithms implemented in LEMON
494 413
in order to make it easier to implement complex algorithms.
495 414
*/
496 415

	
497 416
/**
498 417
@defgroup gen_opt_group General Optimization Tools
499 418
\brief This group contains some general optimization frameworks
500 419
implemented in LEMON.
501 420

	
502 421
This group contains some general optimization frameworks
503 422
implemented in LEMON.
504 423
*/
505 424

	
506 425
/**
507 426
@defgroup lp_group Lp and Mip Solvers
508 427
@ingroup gen_opt_group
509 428
\brief Lp and Mip solver interfaces for LEMON.
510 429

	
511 430
This group contains Lp and Mip solver interfaces for LEMON. The
512 431
various LP solvers could be used in the same manner with this
513 432
interface.
514 433
*/
515 434

	
516 435
/**
517 436
@defgroup utils Tools and Utilities
518 437
\brief Tools and utilities for programming in LEMON
519 438

	
520 439
Tools and utilities for programming in LEMON.
521 440
*/
522 441

	
523 442
/**
524 443
@defgroup gutils Basic Graph Utilities
525 444
@ingroup utils
526 445
\brief Simple basic graph utilities.
527 446

	
528 447
This group contains some simple basic graph utilities.
529 448
*/
530 449

	
531 450
/**
532 451
@defgroup misc Miscellaneous Tools
533 452
@ingroup utils
534 453
\brief Tools for development, debugging and testing.
535 454

	
536 455
This group contains several useful tools for development,
537 456
debugging and testing.
538 457
*/
539 458

	
540 459
/**
541 460
@defgroup timecount Time Measuring and Counting
542 461
@ingroup misc
543 462
\brief Simple tools for measuring the performance of algorithms.
544 463

	
545 464
This group contains simple tools for measuring the performance
546 465
of algorithms.
547 466
*/
548 467

	
549 468
/**
550 469
@defgroup exceptions Exceptions
551 470
@ingroup utils
552 471
\brief Exceptions defined in LEMON.
553 472

	
554 473
This group contains the exceptions defined in LEMON.
555 474
*/
556 475

	
557 476
/**
558 477
@defgroup io_group Input-Output
559 478
\brief Graph Input-Output methods
560 479

	
561 480
This group contains the tools for importing and exporting graphs
562 481
and graph related data. Now it supports the \ref lgf-format
563 482
"LEMON Graph Format", the \c DIMACS format and the encapsulated
564 483
postscript (EPS) format.
565 484
*/
566 485

	
567 486
/**
568 487
@defgroup lemon_io LEMON Graph Format
569 488
@ingroup io_group
570 489
\brief Reading and writing LEMON Graph Format.
571 490

	
572 491
This group contains methods for reading and writing
573 492
\ref lgf-format "LEMON Graph Format".
574 493
*/
575 494

	
576 495
/**
577 496
@defgroup eps_io Postscript Exporting
578 497
@ingroup io_group
579 498
\brief General \c EPS drawer and graph exporter
580 499

	
581 500
This group contains general \c EPS drawing methods and special
582 501
graph exporting tools.
583 502
*/
584 503

	
585 504
/**
586 505
@defgroup dimacs_group DIMACS format
587 506
@ingroup io_group
588 507
\brief Read and write files in DIMACS format
589 508

	
590 509
Tools to read a digraph from or write it to a file in DIMACS format data.
591 510
*/
592 511

	
593 512
/**
594 513
@defgroup nauty_group NAUTY Format
595 514
@ingroup io_group
596 515
\brief Read \e Nauty format
597 516

	
598 517
Tool to read graphs from \e Nauty format data.
599 518
*/
600 519

	
601 520
/**
602 521
@defgroup concept Concepts
603 522
\brief Skeleton classes and concept checking classes
604 523

	
605 524
This group contains the data/algorithm skeletons and concept checking
606 525
classes implemented in LEMON.
607 526

	
608 527
The purpose of the classes in this group is fourfold.
609 528

	
610 529
- These classes contain the documentations of the %concepts. In order
611 530
  to avoid document multiplications, an implementation of a concept
612 531
  simply refers to the corresponding concept class.
613 532

	
614 533
- These classes declare every functions, <tt>typedef</tt>s etc. an
615 534
  implementation of the %concepts should provide, however completely
616 535
  without implementations and real data structures behind the
617 536
  interface. On the other hand they should provide nothing else. All
618 537
  the algorithms working on a data structure meeting a certain concept
619 538
  should compile with these classes. (Though it will not run properly,
620 539
  of course.) In this way it is easily to check if an algorithm
621 540
  doesn't use any extra feature of a certain implementation.
622 541

	
623 542
- The concept descriptor classes also provide a <em>checker class</em>
624 543
  that makes it possible to check whether a certain implementation of a
625 544
  concept indeed provides all the required features.
626 545

	
627 546
- Finally, They can serve as a skeleton of a new implementation of a concept.
628 547
*/
629 548

	
630 549
/**
631 550
@defgroup graph_concepts Graph Structure Concepts
632 551
@ingroup concept
633 552
\brief Skeleton and concept checking classes for graph structures
634 553

	
635 554
This group contains the skeletons and concept checking classes of LEMON's
636 555
graph structures and helper classes used to implement these.
637 556
*/
638 557

	
639 558
/**
640 559
@defgroup map_concepts Map Concepts
641 560
@ingroup concept
642 561
\brief Skeleton and concept checking classes for maps
643 562

	
644 563
This group contains the skeletons and concept checking classes of maps.
645 564
*/
646 565

	
647 566
/**
648 567
\anchor demoprograms
649 568

	
650 569
@defgroup demos Demo Programs
651 570

	
652 571
Some demo programs are listed here. Their full source codes can be found in
653 572
the \c demo subdirectory of the source tree.
654 573

	
655 574
In order to compile them, use the <tt>make demo</tt> or the
656 575
<tt>make check</tt> commands.
657 576
*/
658 577

	
659 578
/**
660 579
@defgroup tools Standalone Utility Applications
661 580

	
662 581
Some utility applications are listed here.
663 582

	
664 583
The standard compilation procedure (<tt>./configure;make</tt>) will compile
665 584
them, as well.
666 585
*/
667 586

	
668 587
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\mainpage LEMON Documentation
21 21

	
22 22
\section intro Introduction
23 23

	
24 24
\subsection whatis What is LEMON
25 25

	
26
LEMON stands for
27
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels
26
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling
28 27
and <b>O</b>ptimization in <b>N</b>etworks.
29 28
It is a C++ template
30 29
library aimed at combinatorial optimization tasks which
31 30
often involve in working
32 31
with graphs.
33 32

	
34 33
<b>
35 34
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
36 35
project.
37 36
You are free to use it in your commercial or
38 37
non-commercial applications under very permissive
39 38
\ref license "license terms".
40 39
</b>
41 40

	
42 41
\subsection howtoread How to read the documentation
43 42

	
44
If you want to get a quick start and see the most important features then
45
take a look at our \ref quicktour
46
"Quick Tour to LEMON" which will guide you along.
47

	
48
If you already feel like using our library, see the
43
If you would like to get to know the library, see
49 44
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>.
50 45

	
51
If you know what you are looking for then try to find it under the
46
If you know what you are looking for, then try to find it under the
52 47
<a class="el" href="modules.html">Modules</a> section.
53 48

	
54 49
If you are a user of the old (0.x) series of LEMON, please check out the
55 50
\ref migration "Migration Guide" for the backward incompatibilities.
56 51
*/
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	lemon/lemon.pc.in \
3 3
	lemon/CMakeLists.txt
4 4

	
5 5
pkgconfig_DATA += lemon/lemon.pc
6 6

	
7 7
lib_LTLIBRARIES += lemon/libemon.la
8 8

	
9 9
lemon_libemon_la_SOURCES = \
10 10
	lemon/arg_parser.cc \
11 11
	lemon/base.cc \
12 12
	lemon/color.cc \
13 13
	lemon/lp_base.cc \
14 14
	lemon/lp_skeleton.cc \
15 15
	lemon/random.cc \
16 16
	lemon/bits/windows.cc
17 17

	
18 18
nodist_lemon_HEADERS = lemon/config.h	
19 19
	
20 20
lemon_libemon_la_CXXFLAGS = \
21 21
	$(AM_CXXFLAGS) \
22 22
	$(GLPK_CFLAGS) \
23 23
	$(CPLEX_CFLAGS) \
24 24
	$(SOPLEX_CXXFLAGS) \
25 25
	$(CLP_CXXFLAGS) \
26 26
	$(CBC_CXXFLAGS)
27 27

	
28 28
lemon_libemon_la_LDFLAGS = \
29 29
	$(GLPK_LIBS) \
30 30
	$(CPLEX_LIBS) \
31 31
	$(SOPLEX_LIBS) \
32 32
	$(CLP_LIBS) \
33 33
	$(CBC_LIBS)
34 34

	
35 35
if HAVE_GLPK
36 36
lemon_libemon_la_SOURCES += lemon/glpk.cc
37 37
endif
38 38

	
39 39
if HAVE_CPLEX
40 40
lemon_libemon_la_SOURCES += lemon/cplex.cc
41 41
endif
42 42

	
43 43
if HAVE_SOPLEX
44 44
lemon_libemon_la_SOURCES += lemon/soplex.cc
45 45
endif
46 46

	
47 47
if HAVE_CLP
48 48
lemon_libemon_la_SOURCES += lemon/clp.cc
49 49
endif
50 50

	
51 51
if HAVE_CBC
52 52
lemon_libemon_la_SOURCES += lemon/cbc.cc
53 53
endif
54 54

	
55 55
lemon_HEADERS += \
56 56
	lemon/adaptors.h \
57 57
	lemon/arg_parser.h \
58 58
	lemon/assert.h \
59 59
	lemon/bfs.h \
60 60
	lemon/bin_heap.h \
61 61
	lemon/cbc.h \
62 62
	lemon/circulation.h \
63 63
	lemon/clp.h \
64 64
	lemon/color.h \
65 65
	lemon/concept_check.h \
66 66
	lemon/connectivity.h \
67 67
	lemon/counter.h \
68 68
	lemon/core.h \
69 69
	lemon/cplex.h \
70 70
	lemon/dfs.h \
71 71
	lemon/dijkstra.h \
72 72
	lemon/dim2.h \
73 73
	lemon/dimacs.h \
74 74
	lemon/edge_set.h \
75 75
	lemon/elevator.h \
76 76
	lemon/error.h \
77 77
	lemon/euler.h \
78 78
	lemon/full_graph.h \
79 79
	lemon/glpk.h \
80 80
	lemon/gomory_hu.h \
81 81
	lemon/graph_to_eps.h \
82 82
	lemon/grid_graph.h \
83 83
	lemon/hypercube_graph.h \
84 84
	lemon/kruskal.h \
85 85
	lemon/hao_orlin.h \
86 86
	lemon/lgf_reader.h \
87 87
	lemon/lgf_writer.h \
88 88
	lemon/list_graph.h \
89 89
	lemon/lp.h \
90 90
	lemon/lp_base.h \
91 91
	lemon/lp_skeleton.h \
92 92
	lemon/list_graph.h \
93 93
	lemon/maps.h \
94 94
	lemon/matching.h \
95 95
	lemon/math.h \
96 96
	lemon/min_cost_arborescence.h \
97 97
	lemon/nauty_reader.h \
98 98
	lemon/network_simplex.h \
99 99
	lemon/path.h \
100 100
	lemon/preflow.h \
101 101
	lemon/radix_sort.h \
102 102
	lemon/random.h \
103 103
	lemon/smart_graph.h \
104 104
	lemon/soplex.h \
105 105
	lemon/suurballe.h \
106 106
	lemon/time_measure.h \
107 107
	lemon/tolerance.h \
108 108
	lemon/unionfind.h \
109 109
	lemon/bits/windows.h
110 110

	
111 111
bits_HEADERS += \
112 112
	lemon/bits/alteration_notifier.h \
113 113
	lemon/bits/array_map.h \
114
	lemon/bits/base_extender.h \
115 114
	lemon/bits/bezier.h \
116 115
	lemon/bits/default_map.h \
117 116
	lemon/bits/edge_set_extender.h \
118 117
	lemon/bits/enable_if.h \
119 118
	lemon/bits/graph_adaptor_extender.h \
120 119
	lemon/bits/graph_extender.h \
121 120
	lemon/bits/map_extender.h \
122 121
	lemon/bits/path_dump.h \
123 122
	lemon/bits/solver_bits.h \
124 123
	lemon/bits/traits.h \
125 124
	lemon/bits/variant.h \
126 125
	lemon/bits/vector_map.h
127 126

	
128 127
concept_HEADERS += \
129 128
	lemon/concepts/digraph.h \
130 129
	lemon/concepts/graph.h \
131 130
	lemon/concepts/graph_components.h \
132 131
	lemon/concepts/heap.h \
133 132
	lemon/concepts/maps.h \
134 133
	lemon/concepts/path.h
Ignore white space 6 line context
... ...
@@ -1074,1682 +1074,1679 @@
1074 1074
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1075 1075
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1076 1076
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1077 1077
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1078 1078

	
1079 1079
    public:
1080 1080
      typedef V Value;
1081 1081

	
1082 1082
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1083 1083
        : Parent(adaptor) {}
1084 1084

	
1085 1085
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1086 1086
        : Parent(adaptor, value) {}
1087 1087

	
1088 1088
    private:
1089 1089
      EdgeMap& operator=(const EdgeMap& cmap) {
1090 1090
        return operator=<EdgeMap>(cmap);
1091 1091
      }
1092 1092

	
1093 1093
      template <typename CMap>
1094 1094
      EdgeMap& operator=(const CMap& cmap) {
1095 1095
        Parent::operator=(cmap);
1096 1096
        return *this;
1097 1097
      }
1098 1098
    };
1099 1099

	
1100 1100
  };
1101 1101

	
1102 1102
  template <typename GR, typename NF, typename EF>
1103 1103
  class SubGraphBase<GR, NF, EF, false>
1104 1104
    : public GraphAdaptorBase<GR> {
1105 1105
    typedef GraphAdaptorBase<GR> Parent;
1106 1106
  public:
1107 1107
    typedef GR Graph;
1108 1108
    typedef NF NodeFilterMap;
1109 1109
    typedef EF EdgeFilterMap;
1110 1110

	
1111 1111
    typedef SubGraphBase Adaptor;
1112 1112
  protected:
1113 1113
    NF* _node_filter;
1114 1114
    EF* _edge_filter;
1115 1115
    SubGraphBase() 
1116 1116
	  : Parent(), _node_filter(0), _edge_filter(0) { }
1117 1117

	
1118 1118
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1119 1119
      Parent::initialize(graph);
1120 1120
      _node_filter = &node_filter;
1121 1121
      _edge_filter = &edge_filter;
1122 1122
    }
1123 1123

	
1124 1124
  public:
1125 1125

	
1126 1126
    typedef typename Parent::Node Node;
1127 1127
    typedef typename Parent::Arc Arc;
1128 1128
    typedef typename Parent::Edge Edge;
1129 1129

	
1130 1130
    void first(Node& i) const {
1131 1131
      Parent::first(i);
1132 1132
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1133 1133
    }
1134 1134

	
1135 1135
    void first(Arc& i) const {
1136 1136
      Parent::first(i);
1137 1137
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1138 1138
    }
1139 1139

	
1140 1140
    void first(Edge& i) const {
1141 1141
      Parent::first(i);
1142 1142
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1143 1143
    }
1144 1144

	
1145 1145
    void firstIn(Arc& i, const Node& n) const {
1146 1146
      Parent::firstIn(i, n);
1147 1147
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1148 1148
    }
1149 1149

	
1150 1150
    void firstOut(Arc& i, const Node& n) const {
1151 1151
      Parent::firstOut(i, n);
1152 1152
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1153 1153
    }
1154 1154

	
1155 1155
    void firstInc(Edge& i, bool& d, const Node& n) const {
1156 1156
      Parent::firstInc(i, d, n);
1157 1157
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1158 1158
    }
1159 1159

	
1160 1160
    void next(Node& i) const {
1161 1161
      Parent::next(i);
1162 1162
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1163 1163
    }
1164 1164
    void next(Arc& i) const {
1165 1165
      Parent::next(i);
1166 1166
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1167 1167
    }
1168 1168
    void next(Edge& i) const {
1169 1169
      Parent::next(i);
1170 1170
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1171 1171
    }
1172 1172
    void nextIn(Arc& i) const {
1173 1173
      Parent::nextIn(i);
1174 1174
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1175 1175
    }
1176 1176

	
1177 1177
    void nextOut(Arc& i) const {
1178 1178
      Parent::nextOut(i);
1179 1179
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1180 1180
    }
1181 1181
    void nextInc(Edge& i, bool& d) const {
1182 1182
      Parent::nextInc(i, d);
1183 1183
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1184 1184
    }
1185 1185

	
1186 1186
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1187 1187
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1188 1188

	
1189 1189
    bool status(const Node& n) const { return (*_node_filter)[n]; }
1190 1190
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
1191 1191

	
1192 1192
    typedef False NodeNumTag;
1193 1193
    typedef False ArcNumTag;
1194 1194
    typedef False EdgeNumTag;
1195 1195

	
1196 1196
    typedef FindArcTagIndicator<Graph> FindArcTag;
1197 1197
    Arc findArc(const Node& u, const Node& v,
1198 1198
                const Arc& prev = INVALID) const {
1199 1199
      Arc arc = Parent::findArc(u, v, prev);
1200 1200
      while (arc != INVALID && !(*_edge_filter)[arc]) {
1201 1201
        arc = Parent::findArc(u, v, arc);
1202 1202
      }
1203 1203
      return arc;
1204 1204
    }
1205 1205

	
1206 1206
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1207 1207
    Edge findEdge(const Node& u, const Node& v,
1208 1208
                  const Edge& prev = INVALID) const {
1209 1209
      Edge edge = Parent::findEdge(u, v, prev);
1210 1210
      while (edge != INVALID && !(*_edge_filter)[edge]) {
1211 1211
        edge = Parent::findEdge(u, v, edge);
1212 1212
      }
1213 1213
      return edge;
1214 1214
    }
1215 1215

	
1216 1216
    template <typename V>
1217 1217
    class NodeMap 
1218 1218
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1219 1219
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1220 1220
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1221 1221
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1222 1222

	
1223 1223
    public:
1224 1224
      typedef V Value;
1225 1225

	
1226 1226
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1227 1227
        : Parent(adaptor) {}
1228 1228
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1229 1229
        : Parent(adaptor, value) {}
1230 1230

	
1231 1231
    private:
1232 1232
      NodeMap& operator=(const NodeMap& cmap) {
1233 1233
        return operator=<NodeMap>(cmap);
1234 1234
      }
1235 1235

	
1236 1236
      template <typename CMap>
1237 1237
      NodeMap& operator=(const CMap& cmap) {
1238 1238
        Parent::operator=(cmap);
1239 1239
        return *this;
1240 1240
      }
1241 1241
    };
1242 1242

	
1243 1243
    template <typename V>
1244 1244
    class ArcMap 
1245 1245
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1246 1246
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1247 1247
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1248 1248
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1249 1249

	
1250 1250
    public:
1251 1251
      typedef V Value;
1252 1252

	
1253 1253
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1254 1254
        : Parent(adaptor) {}
1255 1255
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1256 1256
        : Parent(adaptor, value) {}
1257 1257

	
1258 1258
    private:
1259 1259
      ArcMap& operator=(const ArcMap& cmap) {
1260 1260
        return operator=<ArcMap>(cmap);
1261 1261
      }
1262 1262

	
1263 1263
      template <typename CMap>
1264 1264
      ArcMap& operator=(const CMap& cmap) {
1265 1265
        Parent::operator=(cmap);
1266 1266
        return *this;
1267 1267
      }
1268 1268
    };
1269 1269

	
1270 1270
    template <typename V>
1271 1271
    class EdgeMap 
1272 1272
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1273 1273
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1274 1274
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1275 1275
	LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1276 1276

	
1277 1277
    public:
1278 1278
      typedef V Value;
1279 1279

	
1280 1280
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1281 1281
        : Parent(adaptor) {}
1282 1282

	
1283 1283
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1284 1284
        : Parent(adaptor, value) {}
1285 1285

	
1286 1286
    private:
1287 1287
      EdgeMap& operator=(const EdgeMap& cmap) {
1288 1288
        return operator=<EdgeMap>(cmap);
1289 1289
      }
1290 1290

	
1291 1291
      template <typename CMap>
1292 1292
      EdgeMap& operator=(const CMap& cmap) {
1293 1293
        Parent::operator=(cmap);
1294 1294
        return *this;
1295 1295
      }
1296 1296
    };
1297 1297

	
1298 1298
  };
1299 1299

	
1300 1300
  /// \ingroup graph_adaptors
1301 1301
  ///
1302 1302
  /// \brief Adaptor class for hiding nodes and edges in an undirected
1303 1303
  /// graph.
1304 1304
  ///
1305 1305
  /// SubGraph can be used for hiding nodes and edges in a graph.
1306 1306
  /// A \c bool node map and a \c bool edge map must be specified, which
1307 1307
  /// define the filters for nodes and edges.
1308 1308
  /// Only the nodes and edges with \c true filter value are
1309 1309
  /// shown in the subgraph. The edges that are incident to hidden
1310 1310
  /// nodes are also filtered out.
1311 1311
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1312 1312
  ///
1313 1313
  /// The adapted graph can also be modified through this adaptor
1314 1314
  /// by adding or removing nodes or edges, unless the \c GR template
1315 1315
  /// parameter is set to be \c const.
1316 1316
  ///
1317 1317
  /// \tparam GR The type of the adapted graph.
1318 1318
  /// It must conform to the \ref concepts::Graph "Graph" concept.
1319 1319
  /// It can also be specified to be \c const.
1320 1320
  /// \tparam NF The type of the node filter map.
1321 1321
  /// It must be a \c bool (or convertible) node map of the
1322 1322
  /// adapted graph. The default type is
1323 1323
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1324 1324
  /// \tparam EF The type of the edge filter map.
1325 1325
  /// It must be a \c bool (or convertible) edge map of the
1326 1326
  /// adapted graph. The default type is
1327 1327
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1328 1328
  ///
1329 1329
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1330 1330
  /// adapted graph are convertible to each other.
1331 1331
  ///
1332 1332
  /// \see FilterNodes
1333 1333
  /// \see FilterEdges
1334 1334
#ifdef DOXYGEN
1335 1335
  template<typename GR, typename NF, typename EF>
1336 1336
  class SubGraph {
1337 1337
#else
1338 1338
  template<typename GR,
1339 1339
           typename NF = typename GR::template NodeMap<bool>,
1340 1340
           typename EF = typename GR::template EdgeMap<bool> >
1341 1341
  class SubGraph :
1342 1342
    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1343 1343
#endif
1344 1344
  public:
1345 1345
    /// The type of the adapted graph.
1346 1346
    typedef GR Graph;
1347 1347
    /// The type of the node filter map.
1348 1348
    typedef NF NodeFilterMap;
1349 1349
    /// The type of the edge filter map.
1350 1350
    typedef EF EdgeFilterMap;
1351 1351

	
1352 1352
    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
1353 1353
      Parent;
1354 1354

	
1355 1355
    typedef typename Parent::Node Node;
1356 1356
    typedef typename Parent::Edge Edge;
1357 1357

	
1358 1358
  protected:
1359 1359
    SubGraph() { }
1360 1360
  public:
1361 1361

	
1362 1362
    /// \brief Constructor
1363 1363
    ///
1364 1364
    /// Creates a subgraph for the given graph with the given node
1365 1365
    /// and edge filter maps.
1366 1366
    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1367 1367
      initialize(graph, node_filter, edge_filter);
1368 1368
    }
1369 1369

	
1370 1370
    /// \brief Sets the status of the given node
1371 1371
    ///
1372 1372
    /// This function sets the status of the given node.
1373 1373
    /// It is done by simply setting the assigned value of \c n
1374 1374
    /// to \c v in the node filter map.
1375 1375
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1376 1376

	
1377 1377
    /// \brief Sets the status of the given edge
1378 1378
    ///
1379 1379
    /// This function sets the status of the given edge.
1380 1380
    /// It is done by simply setting the assigned value of \c e
1381 1381
    /// to \c v in the edge filter map.
1382 1382
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1383 1383

	
1384 1384
    /// \brief Returns the status of the given node
1385 1385
    ///
1386 1386
    /// This function returns the status of the given node.
1387 1387
    /// It is \c true if the given node is enabled (i.e. not hidden).
1388 1388
    bool status(const Node& n) const { return Parent::status(n); }
1389 1389

	
1390 1390
    /// \brief Returns the status of the given edge
1391 1391
    ///
1392 1392
    /// This function returns the status of the given edge.
1393 1393
    /// It is \c true if the given edge is enabled (i.e. not hidden).
1394 1394
    bool status(const Edge& e) const { return Parent::status(e); }
1395 1395

	
1396 1396
    /// \brief Disables the given node
1397 1397
    ///
1398 1398
    /// This function disables the given node in the subdigraph,
1399 1399
    /// so the iteration jumps over it.
1400 1400
    /// It is the same as \ref status() "status(n, false)".
1401 1401
    void disable(const Node& n) const { Parent::status(n, false); }
1402 1402

	
1403 1403
    /// \brief Disables the given edge
1404 1404
    ///
1405 1405
    /// This function disables the given edge in the subgraph,
1406 1406
    /// so the iteration jumps over it.
1407 1407
    /// It is the same as \ref status() "status(e, false)".
1408 1408
    void disable(const Edge& e) const { Parent::status(e, false); }
1409 1409

	
1410 1410
    /// \brief Enables the given node
1411 1411
    ///
1412 1412
    /// This function enables the given node in the subdigraph.
1413 1413
    /// It is the same as \ref status() "status(n, true)".
1414 1414
    void enable(const Node& n) const { Parent::status(n, true); }
1415 1415

	
1416 1416
    /// \brief Enables the given edge
1417 1417
    ///
1418 1418
    /// This function enables the given edge in the subgraph.
1419 1419
    /// It is the same as \ref status() "status(e, true)".
1420 1420
    void enable(const Edge& e) const { Parent::status(e, true); }
1421 1421

	
1422 1422
  };
1423 1423

	
1424 1424
  /// \brief Returns a read-only SubGraph adaptor
1425 1425
  ///
1426 1426
  /// This function just returns a read-only \ref SubGraph adaptor.
1427 1427
  /// \ingroup graph_adaptors
1428 1428
  /// \relates SubGraph
1429 1429
  template<typename GR, typename NF, typename EF>
1430 1430
  SubGraph<const GR, NF, EF>
1431 1431
  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
1432 1432
    return SubGraph<const GR, NF, EF>
1433 1433
      (graph, node_filter, edge_filter);
1434 1434
  }
1435 1435

	
1436 1436
  template<typename GR, typename NF, typename EF>
1437 1437
  SubGraph<const GR, const NF, EF>
1438 1438
  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
1439 1439
    return SubGraph<const GR, const NF, EF>
1440 1440
      (graph, node_filter, edge_filter);
1441 1441
  }
1442 1442

	
1443 1443
  template<typename GR, typename NF, typename EF>
1444 1444
  SubGraph<const GR, NF, const EF>
1445 1445
  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
1446 1446
    return SubGraph<const GR, NF, const EF>
1447 1447
      (graph, node_filter, edge_filter);
1448 1448
  }
1449 1449

	
1450 1450
  template<typename GR, typename NF, typename EF>
1451 1451
  SubGraph<const GR, const NF, const EF>
1452 1452
  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
1453 1453
    return SubGraph<const GR, const NF, const EF>
1454 1454
      (graph, node_filter, edge_filter);
1455 1455
  }
1456 1456

	
1457 1457

	
1458 1458
  /// \ingroup graph_adaptors
1459 1459
  ///
1460 1460
  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1461 1461
  ///
1462 1462
  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1463 1463
  /// graph. A \c bool node map must be specified, which defines the filter
1464 1464
  /// for the nodes. Only the nodes with \c true filter value and the
1465 1465
  /// arcs/edges incident to nodes both with \c true filter value are shown
1466 1466
  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1467 1467
  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1468 1468
  /// depending on the \c GR template parameter.
1469 1469
  ///
1470 1470
  /// The adapted (di)graph can also be modified through this adaptor
1471 1471
  /// by adding or removing nodes or arcs/edges, unless the \c GR template
1472 1472
  /// parameter is set to be \c const.
1473 1473
  ///
1474 1474
  /// \tparam GR The type of the adapted digraph or graph.
1475 1475
  /// It must conform to the \ref concepts::Digraph "Digraph" concept
1476 1476
  /// or the \ref concepts::Graph "Graph" concept.
1477 1477
  /// It can also be specified to be \c const.
1478 1478
  /// \tparam NF The type of the node filter map.
1479 1479
  /// It must be a \c bool (or convertible) node map of the
1480 1480
  /// adapted (di)graph. The default type is
1481 1481
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1482 1482
  ///
1483 1483
  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1484 1484
  /// adapted (di)graph are convertible to each other.
1485 1485
#ifdef DOXYGEN
1486 1486
  template<typename GR, typename NF>
1487 1487
  class FilterNodes {
1488 1488
#else
1489 1489
  template<typename GR,
1490 1490
           typename NF = typename GR::template NodeMap<bool>,
1491 1491
           typename Enable = void>
1492 1492
  class FilterNodes :
1493 1493
    public DigraphAdaptorExtender<
1494 1494
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1495 1495
                     true> > {
1496 1496
#endif
1497 1497
    typedef DigraphAdaptorExtender<
1498 1498
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, 
1499 1499
                     true> > Parent;
1500 1500

	
1501 1501
  public:
1502 1502

	
1503 1503
    typedef GR Digraph;
1504 1504
    typedef NF NodeFilterMap;
1505 1505

	
1506 1506
    typedef typename Parent::Node Node;
1507 1507

	
1508 1508
  protected:
1509 1509
    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1510 1510

	
1511 1511
    FilterNodes() : const_true_map() {}
1512 1512

	
1513 1513
  public:
1514 1514

	
1515 1515
    /// \brief Constructor
1516 1516
    ///
1517 1517
    /// Creates a subgraph for the given digraph or graph with the
1518 1518
    /// given node filter map.
1519 1519
    FilterNodes(GR& graph, NF& node_filter) 
1520 1520
      : Parent(), const_true_map()
1521 1521
    {
1522 1522
      Parent::initialize(graph, node_filter, const_true_map);
1523 1523
    }
1524 1524

	
1525 1525
    /// \brief Sets the status of the given node
1526 1526
    ///
1527 1527
    /// This function sets the status of the given node.
1528 1528
    /// It is done by simply setting the assigned value of \c n
1529 1529
    /// to \c v in the node filter map.
1530 1530
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1531 1531

	
1532 1532
    /// \brief Returns the status of the given node
1533 1533
    ///
1534 1534
    /// This function returns the status of the given node.
1535 1535
    /// It is \c true if the given node is enabled (i.e. not hidden).
1536 1536
    bool status(const Node& n) const { return Parent::status(n); }
1537 1537

	
1538 1538
    /// \brief Disables the given node
1539 1539
    ///
1540 1540
    /// This function disables the given node, so the iteration
1541 1541
    /// jumps over it.
1542 1542
    /// It is the same as \ref status() "status(n, false)".
1543 1543
    void disable(const Node& n) const { Parent::status(n, false); }
1544 1544

	
1545 1545
    /// \brief Enables the given node
1546 1546
    ///
1547 1547
    /// This function enables the given node.
1548 1548
    /// It is the same as \ref status() "status(n, true)".
1549 1549
    void enable(const Node& n) const { Parent::status(n, true); }
1550 1550

	
1551 1551
  };
1552 1552

	
1553 1553
  template<typename GR, typename NF>
1554 1554
  class FilterNodes<GR, NF,
1555 1555
                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1556 1556
    public GraphAdaptorExtender<
1557 1557
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
1558 1558
                   true> > {
1559 1559

	
1560 1560
    typedef GraphAdaptorExtender<
1561 1561
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
1562 1562
                   true> > Parent;
1563 1563

	
1564 1564
  public:
1565 1565

	
1566 1566
    typedef GR Graph;
1567 1567
    typedef NF NodeFilterMap;
1568 1568

	
1569 1569
    typedef typename Parent::Node Node;
1570 1570

	
1571 1571
  protected:
1572 1572
    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1573 1573

	
1574 1574
    FilterNodes() : const_true_map() {}
1575 1575

	
1576 1576
  public:
1577 1577

	
1578 1578
    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1579 1579
      Parent(), const_true_map() {
1580 1580
      Parent::initialize(graph, node_filter, const_true_map);
1581 1581
    }
1582 1582

	
1583 1583
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1584 1584
    bool status(const Node& n) const { return Parent::status(n); }
1585 1585
    void disable(const Node& n) const { Parent::status(n, false); }
1586 1586
    void enable(const Node& n) const { Parent::status(n, true); }
1587 1587

	
1588 1588
  };
1589 1589

	
1590 1590

	
1591 1591
  /// \brief Returns a read-only FilterNodes adaptor
1592 1592
  ///
1593 1593
  /// This function just returns a read-only \ref FilterNodes adaptor.
1594 1594
  /// \ingroup graph_adaptors
1595 1595
  /// \relates FilterNodes
1596 1596
  template<typename GR, typename NF>
1597 1597
  FilterNodes<const GR, NF>
1598 1598
  filterNodes(const GR& graph, NF& node_filter) {
1599 1599
    return FilterNodes<const GR, NF>(graph, node_filter);
1600 1600
  }
1601 1601

	
1602 1602
  template<typename GR, typename NF>
1603 1603
  FilterNodes<const GR, const NF>
1604 1604
  filterNodes(const GR& graph, const NF& node_filter) {
1605 1605
    return FilterNodes<const GR, const NF>(graph, node_filter);
1606 1606
  }
1607 1607

	
1608 1608
  /// \ingroup graph_adaptors
1609 1609
  ///
1610 1610
  /// \brief Adaptor class for hiding arcs in a digraph.
1611 1611
  ///
1612 1612
  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1613 1613
  /// A \c bool arc map must be specified, which defines the filter for
1614 1614
  /// the arcs. Only the arcs with \c true filter value are shown in the
1615 1615
  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1616 1616
  /// "Digraph" concept.
1617 1617
  ///
1618 1618
  /// The adapted digraph can also be modified through this adaptor
1619 1619
  /// by adding or removing nodes or arcs, unless the \c GR template
1620 1620
  /// parameter is set to be \c const.
1621 1621
  ///
1622 1622
  /// \tparam DGR The type of the adapted digraph.
1623 1623
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1624 1624
  /// It can also be specified to be \c const.
1625 1625
  /// \tparam AF The type of the arc filter map.
1626 1626
  /// It must be a \c bool (or convertible) arc map of the
1627 1627
  /// adapted digraph. The default type is
1628 1628
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
1629 1629
  ///
1630 1630
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
1631 1631
  /// digraph are convertible to each other.
1632 1632
#ifdef DOXYGEN
1633 1633
  template<typename DGR,
1634 1634
           typename AF>
1635 1635
  class FilterArcs {
1636 1636
#else
1637 1637
  template<typename DGR,
1638 1638
           typename AF = typename DGR::template ArcMap<bool> >
1639 1639
  class FilterArcs :
1640 1640
    public DigraphAdaptorExtender<
1641 1641
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1642 1642
                     AF, false> > {
1643 1643
#endif
1644 1644
    typedef DigraphAdaptorExtender<
1645 1645
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, 
1646 1646
                     AF, false> > Parent;
1647 1647

	
1648 1648
  public:
1649 1649

	
1650 1650
    /// The type of the adapted digraph.
1651 1651
    typedef DGR Digraph;
1652 1652
    /// The type of the arc filter map.
1653 1653
    typedef AF ArcFilterMap;
1654 1654

	
1655 1655
    typedef typename Parent::Arc Arc;
1656 1656

	
1657 1657
  protected:
1658 1658
    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1659 1659

	
1660 1660
    FilterArcs() : const_true_map() {}
1661 1661

	
1662 1662
  public:
1663 1663

	
1664 1664
    /// \brief Constructor
1665 1665
    ///
1666 1666
    /// Creates a subdigraph for the given digraph with the given arc
1667 1667
    /// filter map.
1668 1668
    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1669 1669
      : Parent(), const_true_map() {
1670 1670
      Parent::initialize(digraph, const_true_map, arc_filter);
1671 1671
    }
1672 1672

	
1673 1673
    /// \brief Sets the status of the given arc
1674 1674
    ///
1675 1675
    /// This function sets the status of the given arc.
1676 1676
    /// It is done by simply setting the assigned value of \c a
1677 1677
    /// to \c v in the arc filter map.
1678 1678
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
1679 1679

	
1680 1680
    /// \brief Returns the status of the given arc
1681 1681
    ///
1682 1682
    /// This function returns the status of the given arc.
1683 1683
    /// It is \c true if the given arc is enabled (i.e. not hidden).
1684 1684
    bool status(const Arc& a) const { return Parent::status(a); }
1685 1685

	
1686 1686
    /// \brief Disables the given arc
1687 1687
    ///
1688 1688
    /// This function disables the given arc in the subdigraph,
1689 1689
    /// so the iteration jumps over it.
1690 1690
    /// It is the same as \ref status() "status(a, false)".
1691 1691
    void disable(const Arc& a) const { Parent::status(a, false); }
1692 1692

	
1693 1693
    /// \brief Enables the given arc
1694 1694
    ///
1695 1695
    /// This function enables the given arc in the subdigraph.
1696 1696
    /// It is the same as \ref status() "status(a, true)".
1697 1697
    void enable(const Arc& a) const { Parent::status(a, true); }
1698 1698

	
1699 1699
  };
1700 1700

	
1701 1701
  /// \brief Returns a read-only FilterArcs adaptor
1702 1702
  ///
1703 1703
  /// This function just returns a read-only \ref FilterArcs adaptor.
1704 1704
  /// \ingroup graph_adaptors
1705 1705
  /// \relates FilterArcs
1706 1706
  template<typename DGR, typename AF>
1707 1707
  FilterArcs<const DGR, AF>
1708 1708
  filterArcs(const DGR& digraph, AF& arc_filter) {
1709 1709
    return FilterArcs<const DGR, AF>(digraph, arc_filter);
1710 1710
  }
1711 1711

	
1712 1712
  template<typename DGR, typename AF>
1713 1713
  FilterArcs<const DGR, const AF>
1714 1714
  filterArcs(const DGR& digraph, const AF& arc_filter) {
1715 1715
    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
1716 1716
  }
1717 1717

	
1718 1718
  /// \ingroup graph_adaptors
1719 1719
  ///
1720 1720
  /// \brief Adaptor class for hiding edges in a graph.
1721 1721
  ///
1722 1722
  /// FilterEdges adaptor can be used for hiding edges in a graph.
1723 1723
  /// A \c bool edge map must be specified, which defines the filter for
1724 1724
  /// the edges. Only the edges with \c true filter value are shown in the
1725 1725
  /// subgraph. This adaptor conforms to the \ref concepts::Graph
1726 1726
  /// "Graph" concept.
1727 1727
  ///
1728 1728
  /// The adapted graph can also be modified through this adaptor
1729 1729
  /// by adding or removing nodes or edges, unless the \c GR template
1730 1730
  /// parameter is set to be \c const.
1731 1731
  ///
1732 1732
  /// \tparam GR The type of the adapted graph.
1733 1733
  /// It must conform to the \ref concepts::Graph "Graph" concept.
1734 1734
  /// It can also be specified to be \c const.
1735 1735
  /// \tparam EF The type of the edge filter map.
1736 1736
  /// It must be a \c bool (or convertible) edge map of the
1737 1737
  /// adapted graph. The default type is
1738 1738
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1739 1739
  ///
1740 1740
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1741 1741
  /// adapted graph are convertible to each other.
1742 1742
#ifdef DOXYGEN
1743 1743
  template<typename GR,
1744 1744
           typename EF>
1745 1745
  class FilterEdges {
1746 1746
#else
1747 1747
  template<typename GR,
1748 1748
           typename EF = typename GR::template EdgeMap<bool> >
1749 1749
  class FilterEdges :
1750 1750
    public GraphAdaptorExtender<
1751 1751
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, 
1752 1752
                   EF, false> > {
1753 1753
#endif
1754 1754
    typedef GraphAdaptorExtender<
1755 1755
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, 
1756 1756
                   EF, false> > Parent;
1757 1757

	
1758 1758
  public:
1759 1759

	
1760 1760
    /// The type of the adapted graph.
1761 1761
    typedef GR Graph;
1762 1762
    /// The type of the edge filter map.
1763 1763
    typedef EF EdgeFilterMap;
1764 1764

	
1765 1765
    typedef typename Parent::Edge Edge;
1766 1766

	
1767 1767
  protected:
1768 1768
    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
1769 1769

	
1770 1770
    FilterEdges() : const_true_map(true) {
1771 1771
      Parent::setNodeFilterMap(const_true_map);
1772 1772
    }
1773 1773

	
1774 1774
  public:
1775 1775

	
1776 1776
    /// \brief Constructor
1777 1777
    ///
1778 1778
    /// Creates a subgraph for the given graph with the given edge
1779 1779
    /// filter map.
1780 1780
    FilterEdges(GR& graph, EF& edge_filter) 
1781 1781
      : Parent(), const_true_map() {
1782 1782
      Parent::initialize(graph, const_true_map, edge_filter);
1783 1783
    }
1784 1784

	
1785 1785
    /// \brief Sets the status of the given edge
1786 1786
    ///
1787 1787
    /// This function sets the status of the given edge.
1788 1788
    /// It is done by simply setting the assigned value of \c e
1789 1789
    /// to \c v in the edge filter map.
1790 1790
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1791 1791

	
1792 1792
    /// \brief Returns the status of the given edge
1793 1793
    ///
1794 1794
    /// This function returns the status of the given edge.
1795 1795
    /// It is \c true if the given edge is enabled (i.e. not hidden).
1796 1796
    bool status(const Edge& e) const { return Parent::status(e); }
1797 1797

	
1798 1798
    /// \brief Disables the given edge
1799 1799
    ///
1800 1800
    /// This function disables the given edge in the subgraph,
1801 1801
    /// so the iteration jumps over it.
1802 1802
    /// It is the same as \ref status() "status(e, false)".
1803 1803
    void disable(const Edge& e) const { Parent::status(e, false); }
1804 1804

	
1805 1805
    /// \brief Enables the given edge
1806 1806
    ///
1807 1807
    /// This function enables the given edge in the subgraph.
1808 1808
    /// It is the same as \ref status() "status(e, true)".
1809 1809
    void enable(const Edge& e) const { Parent::status(e, true); }
1810 1810

	
1811 1811
  };
1812 1812

	
1813 1813
  /// \brief Returns a read-only FilterEdges adaptor
1814 1814
  ///
1815 1815
  /// This function just returns a read-only \ref FilterEdges adaptor.
1816 1816
  /// \ingroup graph_adaptors
1817 1817
  /// \relates FilterEdges
1818 1818
  template<typename GR, typename EF>
1819 1819
  FilterEdges<const GR, EF>
1820 1820
  filterEdges(const GR& graph, EF& edge_filter) {
1821 1821
    return FilterEdges<const GR, EF>(graph, edge_filter);
1822 1822
  }
1823 1823

	
1824 1824
  template<typename GR, typename EF>
1825 1825
  FilterEdges<const GR, const EF>
1826 1826
  filterEdges(const GR& graph, const EF& edge_filter) {
1827 1827
    return FilterEdges<const GR, const EF>(graph, edge_filter);
1828 1828
  }
1829 1829

	
1830 1830

	
1831 1831
  template <typename DGR>
1832 1832
  class UndirectorBase {
1833 1833
  public:
1834 1834
    typedef DGR Digraph;
1835 1835
    typedef UndirectorBase Adaptor;
1836 1836

	
1837 1837
    typedef True UndirectedTag;
1838 1838

	
1839 1839
    typedef typename Digraph::Arc Edge;
1840 1840
    typedef typename Digraph::Node Node;
1841 1841

	
1842
    class Arc : public Edge {
1842
    class Arc {
1843 1843
      friend class UndirectorBase;
1844 1844
    protected:
1845
      Edge _edge;
1845 1846
      bool _forward;
1846 1847

	
1847
      Arc(const Edge& edge, bool forward) :
1848
        Edge(edge), _forward(forward) {}
1848
      Arc(const Edge& edge, bool forward) 
1849
        : _edge(edge), _forward(forward) {}
1849 1850

	
1850 1851
    public:
1851 1852
      Arc() {}
1852 1853

	
1853
      Arc(Invalid) : Edge(INVALID), _forward(true) {}
1854
      Arc(Invalid) : _edge(INVALID), _forward(true) {}
1855

	
1856
      operator const Edge&() const { return _edge; }
1854 1857

	
1855 1858
      bool operator==(const Arc &other) const {
1856
        return _forward == other._forward &&
1857
          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
1859
        return _forward == other._forward && _edge == other._edge;
1858 1860
      }
1859 1861
      bool operator!=(const Arc &other) const {
1860
        return _forward != other._forward ||
1861
          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
1862
        return _forward != other._forward || _edge != other._edge;
1862 1863
      }
1863 1864
      bool operator<(const Arc &other) const {
1864 1865
        return _forward < other._forward ||
1865
          (_forward == other._forward &&
1866
           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
1866
          (_forward == other._forward && _edge < other._edge);
1867 1867
      }
1868 1868
    };
1869 1869

	
1870 1870
    void first(Node& n) const {
1871 1871
      _digraph->first(n);
1872 1872
    }
1873 1873

	
1874 1874
    void next(Node& n) const {
1875 1875
      _digraph->next(n);
1876 1876
    }
1877 1877

	
1878 1878
    void first(Arc& a) const {
1879
      _digraph->first(a);
1879
      _digraph->first(a._edge);
1880 1880
      a._forward = true;
1881 1881
    }
1882 1882

	
1883 1883
    void next(Arc& a) const {
1884 1884
      if (a._forward) {
1885 1885
        a._forward = false;
1886 1886
      } else {
1887
        _digraph->next(a);
1887
        _digraph->next(a._edge);
1888 1888
        a._forward = true;
1889 1889
      }
1890 1890
    }
1891 1891

	
1892 1892
    void first(Edge& e) const {
1893 1893
      _digraph->first(e);
1894 1894
    }
1895 1895

	
1896 1896
    void next(Edge& e) const {
1897 1897
      _digraph->next(e);
1898 1898
    }
1899 1899

	
1900 1900
    void firstOut(Arc& a, const Node& n) const {
1901
      _digraph->firstIn(a, n);
1902
      if( static_cast<const Edge&>(a) != INVALID ) {
1901
      _digraph->firstIn(a._edge, n);
1902
      if (a._edge != INVALID ) {
1903 1903
        a._forward = false;
1904 1904
      } else {
1905
        _digraph->firstOut(a, n);
1905
        _digraph->firstOut(a._edge, n);
1906 1906
        a._forward = true;
1907 1907
      }
1908 1908
    }
1909 1909
    void nextOut(Arc &a) const {
1910 1910
      if (!a._forward) {
1911
        Node n = _digraph->target(a);
1912
        _digraph->nextIn(a);
1913
        if (static_cast<const Edge&>(a) == INVALID ) {
1914
          _digraph->firstOut(a, n);
1911
        Node n = _digraph->target(a._edge);
1912
        _digraph->nextIn(a._edge);
1913
        if (a._edge == INVALID) {
1914
          _digraph->firstOut(a._edge, n);
1915 1915
          a._forward = true;
1916 1916
        }
1917 1917
      }
1918 1918
      else {
1919
        _digraph->nextOut(a);
1919
        _digraph->nextOut(a._edge);
1920 1920
      }
1921 1921
    }
1922 1922

	
1923 1923
    void firstIn(Arc &a, const Node &n) const {
1924
      _digraph->firstOut(a, n);
1925
      if (static_cast<const Edge&>(a) != INVALID ) {
1924
      _digraph->firstOut(a._edge, n);
1925
      if (a._edge != INVALID ) {
1926 1926
        a._forward = false;
1927 1927
      } else {
1928
        _digraph->firstIn(a, n);
1928
        _digraph->firstIn(a._edge, n);
1929 1929
        a._forward = true;
1930 1930
      }
1931 1931
    }
1932 1932
    void nextIn(Arc &a) const {
1933 1933
      if (!a._forward) {
1934
        Node n = _digraph->source(a);
1935
        _digraph->nextOut(a);
1936
        if( static_cast<const Edge&>(a) == INVALID ) {
1937
          _digraph->firstIn(a, n);
1934
        Node n = _digraph->source(a._edge);
1935
        _digraph->nextOut(a._edge);
1936
        if (a._edge == INVALID ) {
1937
          _digraph->firstIn(a._edge, n);
1938 1938
          a._forward = true;
1939 1939
        }
1940 1940
      }
1941 1941
      else {
1942
        _digraph->nextIn(a);
1942
        _digraph->nextIn(a._edge);
1943 1943
      }
1944 1944
    }
1945 1945

	
1946 1946
    void firstInc(Edge &e, bool &d, const Node &n) const {
1947 1947
      d = true;
1948 1948
      _digraph->firstOut(e, n);
1949 1949
      if (e != INVALID) return;
1950 1950
      d = false;
1951 1951
      _digraph->firstIn(e, n);
1952 1952
    }
1953 1953

	
1954 1954
    void nextInc(Edge &e, bool &d) const {
1955 1955
      if (d) {
1956 1956
        Node s = _digraph->source(e);
1957 1957
        _digraph->nextOut(e);
1958 1958
        if (e != INVALID) return;
1959 1959
        d = false;
1960 1960
        _digraph->firstIn(e, s);
1961 1961
      } else {
1962 1962
        _digraph->nextIn(e);
1963 1963
      }
1964 1964
    }
1965 1965

	
1966 1966
    Node u(const Edge& e) const {
1967 1967
      return _digraph->source(e);
1968 1968
    }
1969 1969

	
1970 1970
    Node v(const Edge& e) const {
1971 1971
      return _digraph->target(e);
1972 1972
    }
1973 1973

	
1974 1974
    Node source(const Arc &a) const {
1975
      return a._forward ? _digraph->source(a) : _digraph->target(a);
1975
      return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
1976 1976
    }
1977 1977

	
1978 1978
    Node target(const Arc &a) const {
1979
      return a._forward ? _digraph->target(a) : _digraph->source(a);
1979
      return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
1980 1980
    }
1981 1981

	
1982 1982
    static Arc direct(const Edge &e, bool d) {
1983 1983
      return Arc(e, d);
1984 1984
    }
1985
    Arc direct(const Edge &e, const Node& n) const {
1986
      return Arc(e, _digraph->source(e) == n);
1987
    }
1988 1985

	
1989 1986
    static bool direction(const Arc &a) { return a._forward; }
1990 1987

	
1991 1988
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1992 1989
    Arc arcFromId(int ix) const {
1993 1990
      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1994 1991
    }
1995 1992
    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1996 1993

	
1997 1994
    int id(const Node &n) const { return _digraph->id(n); }
1998 1995
    int id(const Arc &a) const {
1999 1996
      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
2000 1997
    }
2001 1998
    int id(const Edge &e) const { return _digraph->id(e); }
2002 1999

	
2003 2000
    int maxNodeId() const { return _digraph->maxNodeId(); }
2004 2001
    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
2005 2002
    int maxEdgeId() const { return _digraph->maxArcId(); }
2006 2003

	
2007 2004
    Node addNode() { return _digraph->addNode(); }
2008 2005
    Edge addEdge(const Node& u, const Node& v) {
2009 2006
      return _digraph->addArc(u, v);
2010 2007
    }
2011 2008

	
2012 2009
    void erase(const Node& i) { _digraph->erase(i); }
2013 2010
    void erase(const Edge& i) { _digraph->erase(i); }
2014 2011

	
2015 2012
    void clear() { _digraph->clear(); }
2016 2013

	
2017 2014
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2018 2015
    int nodeNum() const { return _digraph->nodeNum(); }
2019 2016

	
2020 2017
    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2021 2018
    int arcNum() const { return 2 * _digraph->arcNum(); }
2022 2019

	
2023 2020
    typedef ArcNumTag EdgeNumTag;
2024 2021
    int edgeNum() const { return _digraph->arcNum(); }
2025 2022

	
2026 2023
    typedef FindArcTagIndicator<Digraph> FindArcTag;
2027 2024
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
2028 2025
      if (p == INVALID) {
2029 2026
        Edge arc = _digraph->findArc(s, t);
2030 2027
        if (arc != INVALID) return direct(arc, true);
2031 2028
        arc = _digraph->findArc(t, s);
2032 2029
        if (arc != INVALID) return direct(arc, false);
2033 2030
      } else if (direction(p)) {
2034 2031
        Edge arc = _digraph->findArc(s, t, p);
2035 2032
        if (arc != INVALID) return direct(arc, true);
2036 2033
        arc = _digraph->findArc(t, s);
2037 2034
        if (arc != INVALID) return direct(arc, false);
2038 2035
      } else {
2039 2036
        Edge arc = _digraph->findArc(t, s, p);
2040 2037
        if (arc != INVALID) return direct(arc, false);
2041 2038
      }
2042 2039
      return INVALID;
2043 2040
    }
2044 2041

	
2045 2042
    typedef FindArcTag FindEdgeTag;
2046 2043
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2047 2044
      if (s != t) {
2048 2045
        if (p == INVALID) {
2049 2046
          Edge arc = _digraph->findArc(s, t);
2050 2047
          if (arc != INVALID) return arc;
2051 2048
          arc = _digraph->findArc(t, s);
2052 2049
          if (arc != INVALID) return arc;
2053 2050
        } else if (_digraph->source(p) == s) {
2054 2051
          Edge arc = _digraph->findArc(s, t, p);
2055 2052
          if (arc != INVALID) return arc;
2056 2053
          arc = _digraph->findArc(t, s);
2057 2054
          if (arc != INVALID) return arc;
2058 2055
        } else {
2059 2056
          Edge arc = _digraph->findArc(t, s, p);
2060 2057
          if (arc != INVALID) return arc;
2061 2058
        }
2062 2059
      } else {
2063 2060
        return _digraph->findArc(s, t, p);
2064 2061
      }
2065 2062
      return INVALID;
2066 2063
    }
2067 2064

	
2068 2065
  private:
2069 2066

	
2070 2067
    template <typename V>
2071 2068
    class ArcMapBase {
2072 2069
    private:
2073 2070

	
2074 2071
      typedef typename DGR::template ArcMap<V> MapImpl;
2075 2072

	
2076 2073
    public:
2077 2074

	
2078 2075
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2079 2076

	
2080 2077
      typedef V Value;
2081 2078
      typedef Arc Key;
2082 2079
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2083 2080
      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2084 2081
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2085 2082
      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2086 2083

	
2087 2084
      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2088 2085
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2089 2086

	
2090 2087
      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2091 2088
        : _forward(*adaptor._digraph, value), 
2092 2089
          _backward(*adaptor._digraph, value) {}
2093 2090

	
2094 2091
      void set(const Arc& a, const V& value) {
2095 2092
        if (direction(a)) {
2096 2093
          _forward.set(a, value);
2097 2094
        } else {
2098 2095
          _backward.set(a, value);
2099 2096
        }
2100 2097
      }
2101 2098

	
2102 2099
      ConstReturnValue operator[](const Arc& a) const {
2103 2100
        if (direction(a)) {
2104 2101
          return _forward[a];
2105 2102
        } else {
2106 2103
          return _backward[a];
2107 2104
        }
2108 2105
      }
2109 2106

	
2110 2107
      ReturnValue operator[](const Arc& a) {
2111 2108
        if (direction(a)) {
2112 2109
          return _forward[a];
2113 2110
        } else {
2114 2111
          return _backward[a];
2115 2112
        }
2116 2113
      }
2117 2114

	
2118 2115
    protected:
2119 2116

	
2120 2117
      MapImpl _forward, _backward;
2121 2118

	
2122 2119
    };
2123 2120

	
2124 2121
  public:
2125 2122

	
2126 2123
    template <typename V>
2127 2124
    class NodeMap : public DGR::template NodeMap<V> {
2128 2125
      typedef typename DGR::template NodeMap<V> Parent;
2129 2126

	
2130 2127
    public:
2131 2128
      typedef V Value;
2132 2129

	
2133 2130
      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2134 2131
        : Parent(*adaptor._digraph) {}
2135 2132

	
2136 2133
      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2137 2134
        : Parent(*adaptor._digraph, value) { }
2138 2135

	
2139 2136
    private:
2140 2137
      NodeMap& operator=(const NodeMap& cmap) {
2141 2138
        return operator=<NodeMap>(cmap);
2142 2139
      }
2143 2140

	
2144 2141
      template <typename CMap>
2145 2142
      NodeMap& operator=(const CMap& cmap) {
2146 2143
        Parent::operator=(cmap);
2147 2144
        return *this;
2148 2145
      }
2149 2146

	
2150 2147
    };
2151 2148

	
2152 2149
    template <typename V>
2153 2150
    class ArcMap
2154 2151
      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
2155 2152
      typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
2156 2153

	
2157 2154
    public:
2158 2155
      typedef V Value;
2159 2156

	
2160 2157
      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2161 2158
        : Parent(adaptor) {}
2162 2159

	
2163 2160
      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2164 2161
        : Parent(adaptor, value) {}
2165 2162

	
2166 2163
    private:
2167 2164
      ArcMap& operator=(const ArcMap& cmap) {
2168 2165
        return operator=<ArcMap>(cmap);
2169 2166
      }
2170 2167

	
2171 2168
      template <typename CMap>
2172 2169
      ArcMap& operator=(const CMap& cmap) {
2173 2170
        Parent::operator=(cmap);
2174 2171
        return *this;
2175 2172
      }
2176 2173
    };
2177 2174

	
2178 2175
    template <typename V>
2179 2176
    class EdgeMap : public Digraph::template ArcMap<V> {
2180 2177
      typedef typename Digraph::template ArcMap<V> Parent;
2181 2178

	
2182 2179
    public:
2183 2180
      typedef V Value;
2184 2181

	
2185 2182
      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2186 2183
        : Parent(*adaptor._digraph) {}
2187 2184

	
2188 2185
      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2189 2186
        : Parent(*adaptor._digraph, value) {}
2190 2187

	
2191 2188
    private:
2192 2189
      EdgeMap& operator=(const EdgeMap& cmap) {
2193 2190
        return operator=<EdgeMap>(cmap);
2194 2191
      }
2195 2192

	
2196 2193
      template <typename CMap>
2197 2194
      EdgeMap& operator=(const CMap& cmap) {
2198 2195
        Parent::operator=(cmap);
2199 2196
        return *this;
2200 2197
      }
2201 2198

	
2202 2199
    };
2203 2200

	
2204 2201
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2205 2202
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2206 2203

	
2207 2204
    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2208 2205
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2209 2206
    
2210 2207
    typedef EdgeNotifier ArcNotifier;
2211 2208
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
2212 2209

	
2213 2210
  protected:
2214 2211

	
2215 2212
    UndirectorBase() : _digraph(0) {}
2216 2213

	
2217 2214
    DGR* _digraph;
2218 2215

	
2219 2216
    void initialize(DGR& digraph) {
2220 2217
      _digraph = &digraph;
2221 2218
    }
2222 2219

	
2223 2220
  };
2224 2221

	
2225 2222
  /// \ingroup graph_adaptors
2226 2223
  ///
2227 2224
  /// \brief Adaptor class for viewing a digraph as an undirected graph.
2228 2225
  ///
2229 2226
  /// Undirector adaptor can be used for viewing a digraph as an undirected
2230 2227
  /// graph. All arcs of the underlying digraph are showed in the
2231 2228
  /// adaptor as an edge (and also as a pair of arcs, of course).
2232 2229
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2233 2230
  ///
2234 2231
  /// The adapted digraph can also be modified through this adaptor
2235 2232
  /// by adding or removing nodes or edges, unless the \c GR template
2236 2233
  /// parameter is set to be \c const.
2237 2234
  ///
2238 2235
  /// \tparam DGR The type of the adapted digraph.
2239 2236
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2240 2237
  /// It can also be specified to be \c const.
2241 2238
  ///
2242 2239
  /// \note The \c Node type of this adaptor and the adapted digraph are
2243 2240
  /// convertible to each other, moreover the \c Edge type of the adaptor
2244 2241
  /// and the \c Arc type of the adapted digraph are also convertible to
2245 2242
  /// each other.
2246 2243
  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2247 2244
  /// of the adapted digraph.)
2248 2245
  template<typename DGR>
2249 2246
#ifdef DOXYGEN
2250 2247
  class Undirector {
2251 2248
#else
2252 2249
  class Undirector :
2253 2250
    public GraphAdaptorExtender<UndirectorBase<DGR> > {
2254 2251
#endif
2255 2252
    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2256 2253
  public:
2257 2254
    /// The type of the adapted digraph.
2258 2255
    typedef DGR Digraph;
2259 2256
  protected:
2260 2257
    Undirector() { }
2261 2258
  public:
2262 2259

	
2263 2260
    /// \brief Constructor
2264 2261
    ///
2265 2262
    /// Creates an undirected graph from the given digraph.
2266 2263
    Undirector(DGR& digraph) {
2267 2264
      initialize(digraph);
2268 2265
    }
2269 2266

	
2270 2267
    /// \brief Arc map combined from two original arc maps
2271 2268
    ///
2272 2269
    /// This map adaptor class adapts two arc maps of the underlying
2273 2270
    /// digraph to get an arc map of the undirected graph.
2274 2271
    /// Its value type is inherited from the first arc map type (\c FW).
2275 2272
    /// \tparam FW The type of the "foward" arc map.
2276 2273
    /// \tparam BK The type of the "backward" arc map.
2277 2274
    template <typename FW, typename BK>
2278 2275
    class CombinedArcMap {
2279 2276
    public:
2280 2277

	
2281 2278
      /// The key type of the map
2282 2279
      typedef typename Parent::Arc Key;
2283 2280
      /// The value type of the map
2284 2281
      typedef typename FW::Value Value;
2285 2282

	
2286 2283
      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2287 2284

	
2288 2285
      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2289 2286
      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2290 2287
      typedef typename MapTraits<FW>::ReturnValue Reference;
2291 2288
      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
2292 2289

	
2293 2290
      /// Constructor
2294 2291
      CombinedArcMap(FW& forward, BK& backward)
2295 2292
        : _forward(&forward), _backward(&backward) {}
2296 2293

	
2297 2294
      /// Sets the value associated with the given key.
2298 2295
      void set(const Key& e, const Value& a) {
2299 2296
        if (Parent::direction(e)) {
2300 2297
          _forward->set(e, a);
2301 2298
        } else {
2302 2299
          _backward->set(e, a);
2303 2300
        }
2304 2301
      }
2305 2302

	
2306 2303
      /// Returns the value associated with the given key.
2307 2304
      ConstReturnValue operator[](const Key& e) const {
2308 2305
        if (Parent::direction(e)) {
2309 2306
          return (*_forward)[e];
2310 2307
        } else {
2311 2308
          return (*_backward)[e];
2312 2309
        }
2313 2310
      }
2314 2311

	
2315 2312
      /// Returns a reference to the value associated with the given key.
2316 2313
      ReturnValue operator[](const Key& e) {
2317 2314
        if (Parent::direction(e)) {
2318 2315
          return (*_forward)[e];
2319 2316
        } else {
2320 2317
          return (*_backward)[e];
2321 2318
        }
2322 2319
      }
2323 2320

	
2324 2321
    protected:
2325 2322

	
2326 2323
      FW* _forward;
2327 2324
      BK* _backward;
2328 2325

	
2329 2326
    };
2330 2327

	
2331 2328
    /// \brief Returns a combined arc map
2332 2329
    ///
2333 2330
    /// This function just returns a combined arc map.
2334 2331
    template <typename FW, typename BK>
2335 2332
    static CombinedArcMap<FW, BK>
2336 2333
    combinedArcMap(FW& forward, BK& backward) {
2337 2334
      return CombinedArcMap<FW, BK>(forward, backward);
2338 2335
    }
2339 2336

	
2340 2337
    template <typename FW, typename BK>
2341 2338
    static CombinedArcMap<const FW, BK>
2342 2339
    combinedArcMap(const FW& forward, BK& backward) {
2343 2340
      return CombinedArcMap<const FW, BK>(forward, backward);
2344 2341
    }
2345 2342

	
2346 2343
    template <typename FW, typename BK>
2347 2344
    static CombinedArcMap<FW, const BK>
2348 2345
    combinedArcMap(FW& forward, const BK& backward) {
2349 2346
      return CombinedArcMap<FW, const BK>(forward, backward);
2350 2347
    }
2351 2348

	
2352 2349
    template <typename FW, typename BK>
2353 2350
    static CombinedArcMap<const FW, const BK>
2354 2351
    combinedArcMap(const FW& forward, const BK& backward) {
2355 2352
      return CombinedArcMap<const FW, const BK>(forward, backward);
2356 2353
    }
2357 2354

	
2358 2355
  };
2359 2356

	
2360 2357
  /// \brief Returns a read-only Undirector adaptor
2361 2358
  ///
2362 2359
  /// This function just returns a read-only \ref Undirector adaptor.
2363 2360
  /// \ingroup graph_adaptors
2364 2361
  /// \relates Undirector
2365 2362
  template<typename DGR>
2366 2363
  Undirector<const DGR> undirector(const DGR& digraph) {
2367 2364
    return Undirector<const DGR>(digraph);
2368 2365
  }
2369 2366

	
2370 2367

	
2371 2368
  template <typename GR, typename DM>
2372 2369
  class OrienterBase {
2373 2370
  public:
2374 2371

	
2375 2372
    typedef GR Graph;
2376 2373
    typedef DM DirectionMap;
2377 2374

	
2378 2375
    typedef typename GR::Node Node;
2379 2376
    typedef typename GR::Edge Arc;
2380 2377

	
2381 2378
    void reverseArc(const Arc& arc) {
2382 2379
      _direction->set(arc, !(*_direction)[arc]);
2383 2380
    }
2384 2381

	
2385 2382
    void first(Node& i) const { _graph->first(i); }
2386 2383
    void first(Arc& i) const { _graph->first(i); }
2387 2384
    void firstIn(Arc& i, const Node& n) const {
2388 2385
      bool d = true;
2389 2386
      _graph->firstInc(i, d, n);
2390 2387
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2391 2388
    }
2392 2389
    void firstOut(Arc& i, const Node& n ) const {
2393 2390
      bool d = true;
2394 2391
      _graph->firstInc(i, d, n);
2395 2392
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2396 2393
    }
2397 2394

	
2398 2395
    void next(Node& i) const { _graph->next(i); }
2399 2396
    void next(Arc& i) const { _graph->next(i); }
2400 2397
    void nextIn(Arc& i) const {
2401 2398
      bool d = !(*_direction)[i];
2402 2399
      _graph->nextInc(i, d);
2403 2400
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2404 2401
    }
2405 2402
    void nextOut(Arc& i) const {
2406 2403
      bool d = (*_direction)[i];
2407 2404
      _graph->nextInc(i, d);
2408 2405
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2409 2406
    }
2410 2407

	
2411 2408
    Node source(const Arc& e) const {
2412 2409
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2413 2410
    }
2414 2411
    Node target(const Arc& e) const {
2415 2412
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2416 2413
    }
2417 2414

	
2418 2415
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2419 2416
    int nodeNum() const { return _graph->nodeNum(); }
2420 2417

	
2421 2418
    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2422 2419
    int arcNum() const { return _graph->edgeNum(); }
2423 2420

	
2424 2421
    typedef FindEdgeTagIndicator<Graph> FindArcTag;
2425 2422
    Arc findArc(const Node& u, const Node& v,
2426 2423
                const Arc& prev = INVALID) const {
2427 2424
      Arc arc = _graph->findEdge(u, v, prev);
2428 2425
      while (arc != INVALID && source(arc) != u) {
2429 2426
        arc = _graph->findEdge(u, v, arc);
2430 2427
      }
2431 2428
      return arc;
2432 2429
    }
2433 2430

	
2434 2431
    Node addNode() {
2435 2432
      return Node(_graph->addNode());
2436 2433
    }
2437 2434

	
2438 2435
    Arc addArc(const Node& u, const Node& v) {
2439 2436
      Arc arc = _graph->addEdge(u, v);
2440 2437
      _direction->set(arc, _graph->u(arc) == u);
2441 2438
      return arc;
2442 2439
    }
2443 2440

	
2444 2441
    void erase(const Node& i) { _graph->erase(i); }
2445 2442
    void erase(const Arc& i) { _graph->erase(i); }
2446 2443

	
2447 2444
    void clear() { _graph->clear(); }
2448 2445

	
2449 2446
    int id(const Node& v) const { return _graph->id(v); }
2450 2447
    int id(const Arc& e) const { return _graph->id(e); }
2451 2448

	
2452 2449
    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2453 2450
    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2454 2451

	
2455 2452
    int maxNodeId() const { return _graph->maxNodeId(); }
2456 2453
    int maxArcId() const { return _graph->maxEdgeId(); }
2457 2454

	
2458 2455
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2459 2456
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2460 2457

	
2461 2458
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2462 2459
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2463 2460

	
2464 2461
    template <typename V>
2465 2462
    class NodeMap : public GR::template NodeMap<V> {
2466 2463
      typedef typename GR::template NodeMap<V> Parent;
2467 2464

	
2468 2465
    public:
2469 2466

	
2470 2467
      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2471 2468
        : Parent(*adapter._graph) {}
2472 2469

	
2473 2470
      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2474 2471
        : Parent(*adapter._graph, value) {}
2475 2472

	
2476 2473
    private:
2477 2474
      NodeMap& operator=(const NodeMap& cmap) {
2478 2475
        return operator=<NodeMap>(cmap);
2479 2476
      }
2480 2477

	
2481 2478
      template <typename CMap>
2482 2479
      NodeMap& operator=(const CMap& cmap) {
2483 2480
        Parent::operator=(cmap);
2484 2481
        return *this;
2485 2482
      }
2486 2483

	
2487 2484
    };
2488 2485

	
2489 2486
    template <typename V>
2490 2487
    class ArcMap : public GR::template EdgeMap<V> {
2491 2488
      typedef typename Graph::template EdgeMap<V> Parent;
2492 2489

	
2493 2490
    public:
2494 2491

	
2495 2492
      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2496 2493
        : Parent(*adapter._graph) { }
2497 2494

	
2498 2495
      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2499 2496
        : Parent(*adapter._graph, value) { }
2500 2497

	
2501 2498
    private:
2502 2499
      ArcMap& operator=(const ArcMap& cmap) {
2503 2500
        return operator=<ArcMap>(cmap);
2504 2501
      }
2505 2502

	
2506 2503
      template <typename CMap>
2507 2504
      ArcMap& operator=(const CMap& cmap) {
2508 2505
        Parent::operator=(cmap);
2509 2506
        return *this;
2510 2507
      }
2511 2508
    };
2512 2509

	
2513 2510

	
2514 2511

	
2515 2512
  protected:
2516 2513
    Graph* _graph;
2517 2514
    DM* _direction;
2518 2515

	
2519 2516
    void initialize(GR& graph, DM& direction) {
2520 2517
      _graph = &graph;
2521 2518
      _direction = &direction;
2522 2519
    }
2523 2520

	
2524 2521
  };
2525 2522

	
2526 2523
  /// \ingroup graph_adaptors
2527 2524
  ///
2528 2525
  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2529 2526
  ///
2530 2527
  /// Orienter adaptor can be used for orienting the edges of a graph to
2531 2528
  /// get a digraph. A \c bool edge map of the underlying graph must be
2532 2529
  /// specified, which define the direction of the arcs in the adaptor.
2533 2530
  /// The arcs can be easily reversed by the \c reverseArc() member function
2534 2531
  /// of the adaptor.
2535 2532
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2536 2533
  ///
2537 2534
  /// The adapted graph can also be modified through this adaptor
2538 2535
  /// by adding or removing nodes or arcs, unless the \c GR template
2539 2536
  /// parameter is set to be \c const.
2540 2537
  ///
2541 2538
  /// \tparam GR The type of the adapted graph.
2542 2539
  /// It must conform to the \ref concepts::Graph "Graph" concept.
2543 2540
  /// It can also be specified to be \c const.
2544 2541
  /// \tparam DM The type of the direction map.
2545 2542
  /// It must be a \c bool (or convertible) edge map of the
2546 2543
  /// adapted graph. The default type is
2547 2544
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2548 2545
  ///
2549 2546
  /// \note The \c Node type of this adaptor and the adapted graph are
2550 2547
  /// convertible to each other, moreover the \c Arc type of the adaptor
2551 2548
  /// and the \c Edge type of the adapted graph are also convertible to
2552 2549
  /// each other.
2553 2550
#ifdef DOXYGEN
2554 2551
  template<typename GR,
2555 2552
           typename DM>
2556 2553
  class Orienter {
2557 2554
#else
2558 2555
  template<typename GR,
2559 2556
           typename DM = typename GR::template EdgeMap<bool> >
2560 2557
  class Orienter :
2561 2558
    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2562 2559
#endif
2563 2560
    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2564 2561
  public:
2565 2562

	
2566 2563
    /// The type of the adapted graph.
2567 2564
    typedef GR Graph;
2568 2565
    /// The type of the direction edge map.
2569 2566
    typedef DM DirectionMap;
2570 2567

	
2571 2568
    typedef typename Parent::Arc Arc;
2572 2569

	
2573 2570
  protected:
2574 2571
    Orienter() { }
2575 2572

	
2576 2573
  public:
2577 2574

	
2578 2575
    /// \brief Constructor
2579 2576
    ///
2580 2577
    /// Constructor of the adaptor.
2581 2578
    Orienter(GR& graph, DM& direction) {
2582 2579
      Parent::initialize(graph, direction);
2583 2580
    }
2584 2581

	
2585 2582
    /// \brief Reverses the given arc
2586 2583
    ///
2587 2584
    /// This function reverses the given arc.
2588 2585
    /// It is done by simply negate the assigned value of \c a
2589 2586
    /// in the direction map.
2590 2587
    void reverseArc(const Arc& a) {
2591 2588
      Parent::reverseArc(a);
2592 2589
    }
2593 2590
  };
2594 2591

	
2595 2592
  /// \brief Returns a read-only Orienter adaptor
2596 2593
  ///
2597 2594
  /// This function just returns a read-only \ref Orienter adaptor.
2598 2595
  /// \ingroup graph_adaptors
2599 2596
  /// \relates Orienter
2600 2597
  template<typename GR, typename DM>
2601 2598
  Orienter<const GR, DM>
2602 2599
  orienter(const GR& graph, DM& direction) {
2603 2600
    return Orienter<const GR, DM>(graph, direction);
2604 2601
  }
2605 2602

	
2606 2603
  template<typename GR, typename DM>
2607 2604
  Orienter<const GR, const DM>
2608 2605
  orienter(const GR& graph, const DM& direction) {
2609 2606
    return Orienter<const GR, const DM>(graph, direction);
2610 2607
  }
2611 2608

	
2612 2609
  namespace _adaptor_bits {
2613 2610

	
2614 2611
    template <typename DGR, typename CM, typename FM, typename TL>
2615 2612
    class ResForwardFilter {
2616 2613
    public:
2617 2614

	
2618 2615
      typedef typename DGR::Arc Key;
2619 2616
      typedef bool Value;
2620 2617

	
2621 2618
    private:
2622 2619

	
2623 2620
      const CM* _capacity;
2624 2621
      const FM* _flow;
2625 2622
      TL _tolerance;
2626 2623

	
2627 2624
    public:
2628 2625

	
2629 2626
      ResForwardFilter(const CM& capacity, const FM& flow,
2630 2627
                       const TL& tolerance = TL())
2631 2628
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2632 2629

	
2633 2630
      bool operator[](const typename DGR::Arc& a) const {
2634 2631
        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2635 2632
      }
2636 2633
    };
2637 2634

	
2638 2635
    template<typename DGR,typename CM, typename FM, typename TL>
2639 2636
    class ResBackwardFilter {
2640 2637
    public:
2641 2638

	
2642 2639
      typedef typename DGR::Arc Key;
2643 2640
      typedef bool Value;
2644 2641

	
2645 2642
    private:
2646 2643

	
2647 2644
      const CM* _capacity;
2648 2645
      const FM* _flow;
2649 2646
      TL _tolerance;
2650 2647

	
2651 2648
    public:
2652 2649

	
2653 2650
      ResBackwardFilter(const CM& capacity, const FM& flow,
2654 2651
                        const TL& tolerance = TL())
2655 2652
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2656 2653

	
2657 2654
      bool operator[](const typename DGR::Arc& a) const {
2658 2655
        return _tolerance.positive((*_flow)[a]);
2659 2656
      }
2660 2657
    };
2661 2658

	
2662 2659
  }
2663 2660

	
2664 2661
  /// \ingroup graph_adaptors
2665 2662
  ///
2666 2663
  /// \brief Adaptor class for composing the residual digraph for directed
2667 2664
  /// flow and circulation problems.
2668 2665
  ///
2669 2666
  /// ResidualDigraph can be used for composing the \e residual digraph
2670 2667
  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2671 2668
  /// be a directed graph and let \f$ F \f$ be a number type.
2672 2669
  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
2673 2670
  /// This adaptor implements a digraph structure with node set \f$ V \f$
2674 2671
  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2675 2672
  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2676 2673
  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2677 2674
  /// called residual digraph.
2678 2675
  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2679 2676
  /// multiplicities are counted, i.e. the adaptor has exactly
2680 2677
  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2681 2678
  /// arcs).
2682 2679
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2683 2680
  ///
2684 2681
  /// \tparam DGR The type of the adapted digraph.
2685 2682
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2686 2683
  /// It is implicitly \c const.
2687 2684
  /// \tparam CM The type of the capacity map.
2688 2685
  /// It must be an arc map of some numerical type, which defines
2689 2686
  /// the capacities in the flow problem. It is implicitly \c const.
2690 2687
  /// The default type is
2691 2688
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2692 2689
  /// \tparam FM The type of the flow map.
2693 2690
  /// It must be an arc map of some numerical type, which defines
2694 2691
  /// the flow values in the flow problem. The default type is \c CM.
2695 2692
  /// \tparam TL The tolerance type for handling inexact computation.
2696 2693
  /// The default tolerance type depends on the value type of the
2697 2694
  /// capacity map.
2698 2695
  ///
2699 2696
  /// \note This adaptor is implemented using Undirector and FilterArcs
2700 2697
  /// adaptors.
2701 2698
  ///
2702 2699
  /// \note The \c Node type of this adaptor and the adapted digraph are
2703 2700
  /// convertible to each other, moreover the \c Arc type of the adaptor
2704 2701
  /// is convertible to the \c Arc type of the adapted digraph.
2705 2702
#ifdef DOXYGEN
2706 2703
  template<typename DGR, typename CM, typename FM, typename TL>
2707 2704
  class ResidualDigraph
2708 2705
#else
2709 2706
  template<typename DGR,
2710 2707
           typename CM = typename DGR::template ArcMap<int>,
2711 2708
           typename FM = CM,
2712 2709
           typename TL = Tolerance<typename CM::Value> >
2713 2710
  class ResidualDigraph 
2714 2711
    : public SubDigraph<
2715 2712
        Undirector<const DGR>,
2716 2713
        ConstMap<typename DGR::Node, Const<bool, true> >,
2717 2714
        typename Undirector<const DGR>::template CombinedArcMap<
2718 2715
          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2719 2716
          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
2720 2717
#endif
2721 2718
  {
2722 2719
  public:
2723 2720

	
2724 2721
    /// The type of the underlying digraph.
2725 2722
    typedef DGR Digraph;
2726 2723
    /// The type of the capacity map.
2727 2724
    typedef CM CapacityMap;
2728 2725
    /// The type of the flow map.
2729 2726
    typedef FM FlowMap;
2730 2727
    /// The tolerance type.
2731 2728
    typedef TL Tolerance;
2732 2729

	
2733 2730
    typedef typename CapacityMap::Value Value;
2734 2731
    typedef ResidualDigraph Adaptor;
2735 2732

	
2736 2733
  protected:
2737 2734

	
2738 2735
    typedef Undirector<const Digraph> Undirected;
2739 2736

	
2740 2737
    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2741 2738

	
2742 2739
    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2743 2740
                                            FM, TL> ForwardFilter;
2744 2741

	
2745 2742
    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2746 2743
                                             FM, TL> BackwardFilter;
2747 2744

	
2748 2745
    typedef typename Undirected::
2749 2746
      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2750 2747

	
2751 2748
    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
2752 2749

	
2753 2750
    const CapacityMap* _capacity;
2754 2751
    FlowMap* _flow;
2755 2752

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21 21
///\brief The concept of Undirected Graphs.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_GRAPH_H
24 24
#define LEMON_CONCEPTS_GRAPH_H
25 25

	
26 26
#include <lemon/concepts/graph_components.h>
27 27
#include <lemon/core.h>
28 28

	
29 29
namespace lemon {
30 30
  namespace concepts {
31 31

	
32 32
    /// \ingroup graph_concepts
33 33
    ///
34 34
    /// \brief Class describing the concept of Undirected Graphs.
35 35
    ///
36 36
    /// This class describes the common interface of all Undirected
37 37
    /// Graphs.
38 38
    ///
39 39
    /// As all concept describing classes it provides only interface
40 40
    /// without any sensible implementation. So any algorithm for
41 41
    /// undirected graph should compile with this class, but it will not
42 42
    /// run properly, of course.
43 43
    ///
44 44
    /// The LEMON undirected graphs also fulfill the concept of
45 45
    /// directed graphs (\ref lemon::concepts::Digraph "Digraph
46 46
    /// Concept"). Each edges can be seen as two opposite
47 47
    /// directed arc and consequently the undirected graph can be
48 48
    /// seen as the direceted graph of these directed arcs. The
49 49
    /// Graph has the Edge inner class for the edges and
50 50
    /// the Arc type for the directed arcs. The Arc type is
51 51
    /// convertible to Edge or inherited from it so from a directed
52 52
    /// arc we can get the represented edge.
53 53
    ///
54 54
    /// In the sense of the LEMON each edge has a default
55 55
    /// direction (it should be in every computer implementation,
56 56
    /// because the order of edge's nodes defines an
57 57
    /// orientation). With the default orientation we can define that
58 58
    /// the directed arc is forward or backward directed. With the \c
59 59
    /// direction() and \c direct() function we can get the direction
60 60
    /// of the directed arc and we can direct an edge.
61 61
    ///
62 62
    /// The EdgeIt is an iterator for the edges. We can use
63 63
    /// the EdgeMap to map values for the edges. The InArcIt and
64 64
    /// OutArcIt iterates on the same edges but with opposite
65 65
    /// direction. The IncEdgeIt iterates also on the same edges
66 66
    /// as the OutArcIt and InArcIt but it is not convertible to Arc just
67 67
    /// to Edge.
68 68
    class Graph {
69 69
    public:
70 70
      /// \brief The undirected graph should be tagged by the
71 71
      /// UndirectedTag.
72 72
      ///
73 73
      /// The undirected graph should be tagged by the UndirectedTag. This
74 74
      /// tag helps the enable_if technics to make compile time
75 75
      /// specializations for undirected graphs.
76 76
      typedef True UndirectedTag;
77 77

	
78 78
      /// \brief The base type of node iterators,
79 79
      /// or in other words, the trivial node iterator.
80 80
      ///
81 81
      /// This is the base type of each node iterator,
82 82
      /// thus each kind of node iterator converts to this.
83 83
      /// More precisely each kind of node iterator should be inherited
84 84
      /// from the trivial node iterator.
85 85
      class Node {
86 86
      public:
87 87
        /// Default constructor
88 88

	
89 89
        /// @warning The default constructor sets the iterator
90 90
        /// to an undefined value.
91 91
        Node() { }
92 92
        /// Copy constructor.
93 93

	
94 94
        /// Copy constructor.
95 95
        ///
96 96
        Node(const Node&) { }
97 97

	
98 98
        /// Invalid constructor \& conversion.
99 99

	
100 100
        /// This constructor initializes the iterator to be invalid.
101 101
        /// \sa Invalid for more details.
102 102
        Node(Invalid) { }
103 103
        /// Equality operator
104 104

	
105 105
        /// Two iterators are equal if and only if they point to the
106 106
        /// same object or both are invalid.
107 107
        bool operator==(Node) const { return true; }
108 108

	
109 109
        /// Inequality operator
110 110

	
111 111
        /// \sa operator==(Node n)
112 112
        ///
113 113
        bool operator!=(Node) const { return true; }
114 114

	
115 115
        /// Artificial ordering operator.
116 116

	
117 117
        /// To allow the use of graph descriptors as key type in std::map or
118 118
        /// similar associative container we require this.
119 119
        ///
120 120
        /// \note This operator only have to define some strict ordering of
121 121
        /// the items; this order has nothing to do with the iteration
122 122
        /// ordering of the items.
123 123
        bool operator<(Node) const { return false; }
124 124

	
125 125
      };
126 126

	
127 127
      /// This iterator goes through each node.
128 128

	
129 129
      /// This iterator goes through each node.
130 130
      /// Its usage is quite simple, for example you can count the number
131 131
      /// of nodes in graph \c g of type \c Graph like this:
132 132
      ///\code
133 133
      /// int count=0;
134 134
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
135 135
      ///\endcode
136 136
      class NodeIt : public Node {
137 137
      public:
138 138
        /// Default constructor
139 139

	
140 140
        /// @warning The default constructor sets the iterator
141 141
        /// to an undefined value.
142 142
        NodeIt() { }
143 143
        /// Copy constructor.
144 144

	
145 145
        /// Copy constructor.
146 146
        ///
147 147
        NodeIt(const NodeIt& n) : Node(n) { }
148 148
        /// Invalid constructor \& conversion.
149 149

	
150 150
        /// Initialize the iterator to be invalid.
151 151
        /// \sa Invalid for more details.
152 152
        NodeIt(Invalid) { }
153 153
        /// Sets the iterator to the first node.
154 154

	
155 155
        /// Sets the iterator to the first node of \c g.
156 156
        ///
157 157
        NodeIt(const Graph&) { }
158 158
        /// Node -> NodeIt conversion.
159 159

	
160 160
        /// Sets the iterator to the node of \c the graph pointed by
161 161
        /// the trivial iterator.
162 162
        /// This feature necessitates that each time we
163 163
        /// iterate the arc-set, the iteration order is the same.
164 164
        NodeIt(const Graph&, const Node&) { }
165 165
        /// Next node.
166 166

	
167 167
        /// Assign the iterator to the next node.
168 168
        ///
169 169
        NodeIt& operator++() { return *this; }
170 170
      };
171 171

	
172 172

	
173 173
      /// The base type of the edge iterators.
174 174

	
175 175
      /// The base type of the edge iterators.
176 176
      ///
177 177
      class Edge {
178 178
      public:
179 179
        /// Default constructor
180 180

	
181 181
        /// @warning The default constructor sets the iterator
182 182
        /// to an undefined value.
183 183
        Edge() { }
184 184
        /// Copy constructor.
185 185

	
186 186
        /// Copy constructor.
187 187
        ///
188 188
        Edge(const Edge&) { }
189 189
        /// Initialize the iterator to be invalid.
190 190

	
191 191
        /// Initialize the iterator to be invalid.
192 192
        ///
193 193
        Edge(Invalid) { }
194 194
        /// Equality operator
195 195

	
196 196
        /// Two iterators are equal if and only if they point to the
197 197
        /// same object or both are invalid.
198 198
        bool operator==(Edge) const { return true; }
199 199
        /// Inequality operator
200 200

	
201 201
        /// \sa operator==(Edge n)
202 202
        ///
203 203
        bool operator!=(Edge) const { return true; }
204 204

	
205 205
        /// Artificial ordering operator.
206 206

	
207 207
        /// To allow the use of graph descriptors as key type in std::map or
208 208
        /// similar associative container we require this.
209 209
        ///
210 210
        /// \note This operator only have to define some strict ordering of
211 211
        /// the items; this order has nothing to do with the iteration
212 212
        /// ordering of the items.
213 213
        bool operator<(Edge) const { return false; }
214 214
      };
215 215

	
216 216
      /// This iterator goes through each edge.
217 217

	
218 218
      /// This iterator goes through each edge of a graph.
219 219
      /// Its usage is quite simple, for example you can count the number
220 220
      /// of edges in a graph \c g of type \c Graph as follows:
221 221
      ///\code
222 222
      /// int count=0;
223 223
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
224 224
      ///\endcode
225 225
      class EdgeIt : public Edge {
226 226
      public:
227 227
        /// Default constructor
228 228

	
229 229
        /// @warning The default constructor sets the iterator
230 230
        /// to an undefined value.
231 231
        EdgeIt() { }
232 232
        /// Copy constructor.
233 233

	
234 234
        /// Copy constructor.
235 235
        ///
236 236
        EdgeIt(const EdgeIt& e) : Edge(e) { }
237 237
        /// Initialize the iterator to be invalid.
238 238

	
239 239
        /// Initialize the iterator to be invalid.
240 240
        ///
241 241
        EdgeIt(Invalid) { }
242 242
        /// This constructor sets the iterator to the first edge.
243 243

	
244 244
        /// This constructor sets the iterator to the first edge.
245 245
        EdgeIt(const Graph&) { }
246 246
        /// Edge -> EdgeIt conversion
247 247

	
248 248
        /// Sets the iterator to the value of the trivial iterator.
249 249
        /// This feature necessitates that each time we
250 250
        /// iterate the edge-set, the iteration order is the
251 251
        /// same.
252 252
        EdgeIt(const Graph&, const Edge&) { }
253 253
        /// Next edge
254 254

	
255 255
        /// Assign the iterator to the next edge.
256 256
        EdgeIt& operator++() { return *this; }
257 257
      };
258 258

	
259 259
      /// \brief This iterator goes trough the incident undirected
260 260
      /// arcs of a node.
261 261
      ///
262 262
      /// This iterator goes trough the incident edges
263 263
      /// of a certain node of a graph. You should assume that the
264 264
      /// loop arcs will be iterated twice.
265 265
      ///
266 266
      /// Its usage is quite simple, for example you can compute the
267 267
      /// degree (i.e. count the number of incident arcs of a node \c n
268 268
      /// in graph \c g of type \c Graph as follows.
269 269
      ///
270 270
      ///\code
271 271
      /// int count=0;
272 272
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
273 273
      ///\endcode
274 274
      class IncEdgeIt : public Edge {
275 275
      public:
276 276
        /// Default constructor
277 277

	
278 278
        /// @warning The default constructor sets the iterator
279 279
        /// to an undefined value.
280 280
        IncEdgeIt() { }
281 281
        /// Copy constructor.
282 282

	
283 283
        /// Copy constructor.
284 284
        ///
285 285
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
286 286
        /// Initialize the iterator to be invalid.
287 287

	
288 288
        /// Initialize the iterator to be invalid.
289 289
        ///
290 290
        IncEdgeIt(Invalid) { }
291 291
        /// This constructor sets the iterator to first incident arc.
292 292

	
293 293
        /// This constructor set the iterator to the first incident arc of
294 294
        /// the node.
295 295
        IncEdgeIt(const Graph&, const Node&) { }
296 296
        /// Edge -> IncEdgeIt conversion
297 297

	
298 298
        /// Sets the iterator to the value of the trivial iterator \c e.
299 299
        /// This feature necessitates that each time we
300 300
        /// iterate the arc-set, the iteration order is the same.
301 301
        IncEdgeIt(const Graph&, const Edge&) { }
302 302
        /// Next incident arc
303 303

	
304 304
        /// Assign the iterator to the next incident arc
305 305
        /// of the corresponding node.
306 306
        IncEdgeIt& operator++() { return *this; }
307 307
      };
308 308

	
309 309
      /// The directed arc type.
310 310

	
311 311
      /// The directed arc type. It can be converted to the
312 312
      /// edge or it should be inherited from the undirected
313
      /// arc.
314
      class Arc : public Edge {
313
      /// edge.
314
      class Arc {
315 315
      public:
316 316
        /// Default constructor
317 317

	
318 318
        /// @warning The default constructor sets the iterator
319 319
        /// to an undefined value.
320 320
        Arc() { }
321 321
        /// Copy constructor.
322 322

	
323 323
        /// Copy constructor.
324 324
        ///
325
        Arc(const Arc& e) : Edge(e) { }
325
        Arc(const Arc&) { }
326 326
        /// Initialize the iterator to be invalid.
327 327

	
328 328
        /// Initialize the iterator to be invalid.
329 329
        ///
330 330
        Arc(Invalid) { }
331 331
        /// Equality operator
332 332

	
333 333
        /// Two iterators are equal if and only if they point to the
334 334
        /// same object or both are invalid.
335 335
        bool operator==(Arc) const { return true; }
336 336
        /// Inequality operator
337 337

	
338 338
        /// \sa operator==(Arc n)
339 339
        ///
340 340
        bool operator!=(Arc) const { return true; }
341 341

	
342 342
        /// Artificial ordering operator.
343 343

	
344 344
        /// To allow the use of graph descriptors as key type in std::map or
345 345
        /// similar associative container we require this.
346 346
        ///
347 347
        /// \note This operator only have to define some strict ordering of
348 348
        /// the items; this order has nothing to do with the iteration
349 349
        /// ordering of the items.
350 350
        bool operator<(Arc) const { return false; }
351 351

	
352
        /// Converison to Edge
353
        operator Edge() const { return Edge(); }
352 354
      };
353 355
      /// This iterator goes through each directed arc.
354 356

	
355 357
      /// This iterator goes through each arc of a graph.
356 358
      /// Its usage is quite simple, for example you can count the number
357 359
      /// of arcs in a graph \c g of type \c Graph as follows:
358 360
      ///\code
359 361
      /// int count=0;
360 362
      /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
361 363
      ///\endcode
362 364
      class ArcIt : public Arc {
363 365
      public:
364 366
        /// Default constructor
365 367

	
366 368
        /// @warning The default constructor sets the iterator
367 369
        /// to an undefined value.
368 370
        ArcIt() { }
369 371
        /// Copy constructor.
370 372

	
371 373
        /// Copy constructor.
372 374
        ///
373 375
        ArcIt(const ArcIt& e) : Arc(e) { }
374 376
        /// Initialize the iterator to be invalid.
375 377

	
376 378
        /// Initialize the iterator to be invalid.
377 379
        ///
378 380
        ArcIt(Invalid) { }
379 381
        /// This constructor sets the iterator to the first arc.
380 382

	
381 383
        /// This constructor sets the iterator to the first arc of \c g.
382 384
        ///@param g the graph
383 385
        ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
384 386
        /// Arc -> ArcIt conversion
385 387

	
386 388
        /// Sets the iterator to the value of the trivial iterator \c e.
387 389
        /// This feature necessitates that each time we
388 390
        /// iterate the arc-set, the iteration order is the same.
389 391
        ArcIt(const Graph&, const Arc&) { }
390 392
        ///Next arc
391 393

	
392 394
        /// Assign the iterator to the next arc.
393 395
        ArcIt& operator++() { return *this; }
394 396
      };
395 397

	
396 398
      /// This iterator goes trough the outgoing directed arcs of a node.
397 399

	
398 400
      /// This iterator goes trough the \e outgoing arcs of a certain node
399 401
      /// of a graph.
400 402
      /// Its usage is quite simple, for example you can count the number
401 403
      /// of outgoing arcs of a node \c n
402 404
      /// in graph \c g of type \c Graph as follows.
403 405
      ///\code
404 406
      /// int count=0;
405 407
      /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
406 408
      ///\endcode
407 409

	
408 410
      class OutArcIt : public Arc {
409 411
      public:
410 412
        /// Default constructor
411 413

	
412 414
        /// @warning The default constructor sets the iterator
413 415
        /// to an undefined value.
414 416
        OutArcIt() { }
415 417
        /// Copy constructor.
416 418

	
417 419
        /// Copy constructor.
418 420
        ///
419 421
        OutArcIt(const OutArcIt& e) : Arc(e) { }
420 422
        /// Initialize the iterator to be invalid.
421 423

	
422 424
        /// Initialize the iterator to be invalid.
423 425
        ///
424 426
        OutArcIt(Invalid) { }
425 427
        /// This constructor sets the iterator to the first outgoing arc.
426 428

	
427 429
        /// This constructor sets the iterator to the first outgoing arc of
428 430
        /// the node.
429 431
        ///@param n the node
430 432
        ///@param g the graph
431 433
        OutArcIt(const Graph& n, const Node& g) {
432 434
          ignore_unused_variable_warning(n);
433 435
          ignore_unused_variable_warning(g);
434 436
        }
435 437
        /// Arc -> OutArcIt conversion
436 438

	
437 439
        /// Sets the iterator to the value of the trivial iterator.
438 440
        /// This feature necessitates that each time we
439 441
        /// iterate the arc-set, the iteration order is the same.
440 442
        OutArcIt(const Graph&, const Arc&) { }
441 443
        ///Next outgoing arc
442 444

	
443 445
        /// Assign the iterator to the next
444 446
        /// outgoing arc of the corresponding node.
445 447
        OutArcIt& operator++() { return *this; }
446 448
      };
447 449

	
448 450
      /// This iterator goes trough the incoming directed arcs of a node.
449 451

	
450 452
      /// This iterator goes trough the \e incoming arcs of a certain node
451 453
      /// of a graph.
452 454
      /// Its usage is quite simple, for example you can count the number
453 455
      /// of outgoing arcs of a node \c n
454 456
      /// in graph \c g of type \c Graph as follows.
455 457
      ///\code
456 458
      /// int count=0;
457 459
      /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
458 460
      ///\endcode
459 461

	
460 462
      class InArcIt : public Arc {
461 463
      public:
462 464
        /// Default constructor
463 465

	
464 466
        /// @warning The default constructor sets the iterator
465 467
        /// to an undefined value.
466 468
        InArcIt() { }
467 469
        /// Copy constructor.
468 470

	
469 471
        /// Copy constructor.
470 472
        ///
471 473
        InArcIt(const InArcIt& e) : Arc(e) { }
472 474
        /// Initialize the iterator to be invalid.
473 475

	
474 476
        /// Initialize the iterator to be invalid.
475 477
        ///
476 478
        InArcIt(Invalid) { }
477 479
        /// This constructor sets the iterator to first incoming arc.
478 480

	
479 481
        /// This constructor set the iterator to the first incoming arc of
480 482
        /// the node.
481 483
        ///@param n the node
482 484
        ///@param g the graph
483 485
        InArcIt(const Graph& g, const Node& n) {
484 486
          ignore_unused_variable_warning(n);
485 487
          ignore_unused_variable_warning(g);
486 488
        }
487 489
        /// Arc -> InArcIt conversion
488 490

	
489 491
        /// Sets the iterator to the value of the trivial iterator \c e.
490 492
        /// This feature necessitates that each time we
491 493
        /// iterate the arc-set, the iteration order is the same.
492 494
        InArcIt(const Graph&, const Arc&) { }
493 495
        /// Next incoming arc
494 496

	
495 497
        /// Assign the iterator to the next inarc of the corresponding node.
496 498
        ///
497 499
        InArcIt& operator++() { return *this; }
498 500
      };
499 501

	
500 502
      /// \brief Reference map of the nodes to type \c T.
501 503
      ///
502 504
      /// Reference map of the nodes to type \c T.
503 505
      template<class T>
504 506
      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
505 507
      {
506 508
      public:
507 509

	
508 510
        ///\e
509 511
        NodeMap(const Graph&) { }
510 512
        ///\e
511 513
        NodeMap(const Graph&, T) { }
512 514

	
513 515
      private:
514 516
        ///Copy constructor
515 517
        NodeMap(const NodeMap& nm) :
516 518
          ReferenceMap<Node, T, T&, const T&>(nm) { }
517 519
        ///Assignment operator
518 520
        template <typename CMap>
519 521
        NodeMap& operator=(const CMap&) {
520 522
          checkConcept<ReadMap<Node, T>, CMap>();
521 523
          return *this;
522 524
        }
523 525
      };
524 526

	
525 527
      /// \brief Reference map of the arcs to type \c T.
526 528
      ///
527 529
      /// Reference map of the arcs to type \c T.
528 530
      template<class T>
529 531
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
530 532
      {
531 533
      public:
532 534

	
533 535
        ///\e
534 536
        ArcMap(const Graph&) { }
535 537
        ///\e
536 538
        ArcMap(const Graph&, T) { }
537 539
      private:
538 540
        ///Copy constructor
539 541
        ArcMap(const ArcMap& em) :
540 542
          ReferenceMap<Arc, T, T&, const T&>(em) { }
541 543
        ///Assignment operator
542 544
        template <typename CMap>
543 545
        ArcMap& operator=(const CMap&) {
544 546
          checkConcept<ReadMap<Arc, T>, CMap>();
545 547
          return *this;
546 548
        }
547 549
      };
548 550

	
549 551
      /// Reference map of the edges to type \c T.
550 552

	
551 553
      /// Reference map of the edges to type \c T.
552 554
      template<class T>
553 555
      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
554 556
      {
555 557
      public:
556 558

	
557 559
        ///\e
558 560
        EdgeMap(const Graph&) { }
559 561
        ///\e
560 562
        EdgeMap(const Graph&, T) { }
561 563
      private:
562 564
        ///Copy constructor
563 565
        EdgeMap(const EdgeMap& em) :
564 566
          ReferenceMap<Edge, T, T&, const T&>(em) {}
565 567
        ///Assignment operator
566 568
        template <typename CMap>
567 569
        EdgeMap& operator=(const CMap&) {
568 570
          checkConcept<ReadMap<Edge, T>, CMap>();
569 571
          return *this;
570 572
        }
571 573
      };
572 574

	
573 575
      /// \brief Direct the given edge.
574 576
      ///
575 577
      /// Direct the given edge. The returned arc source
576 578
      /// will be the given node.
577 579
      Arc direct(const Edge&, const Node&) const {
578 580
        return INVALID;
579 581
      }
580 582

	
581 583
      /// \brief Direct the given edge.
582 584
      ///
583 585
      /// Direct the given edge. The returned arc
584 586
      /// represents the given edge and the direction comes
585 587
      /// from the bool parameter. The source of the edge and
586 588
      /// the directed arc is the same when the given bool is true.
587 589
      Arc direct(const Edge&, bool) const {
588 590
        return INVALID;
589 591
      }
590 592

	
591 593
      /// \brief Returns true if the arc has default orientation.
592 594
      ///
593 595
      /// Returns whether the given directed arc is same orientation as
594 596
      /// the corresponding edge's default orientation.
595 597
      bool direction(Arc) const { return true; }
596 598

	
597 599
      /// \brief Returns the opposite directed arc.
598 600
      ///
599 601
      /// Returns the opposite directed arc.
600 602
      Arc oppositeArc(Arc) const { return INVALID; }
601 603

	
602 604
      /// \brief Opposite node on an arc
603 605
      ///
604 606
      /// \return The opposite of the given node on the given edge.
605 607
      Node oppositeNode(Node, Edge) const { return INVALID; }
606 608

	
607 609
      /// \brief First node of the edge.
608 610
      ///
609 611
      /// \return The first node of the given edge.
610 612
      ///
611 613
      /// Naturally edges don't have direction and thus
612 614
      /// don't have source and target node. However we use \c u() and \c v()
613 615
      /// methods to query the two nodes of the arc. The direction of the
614 616
      /// arc which arises this way is called the inherent direction of the
615 617
      /// edge, and is used to define the "default" direction
616 618
      /// of the directed versions of the arcs.
617 619
      /// \sa v()
618 620
      /// \sa direction()
619 621
      Node u(Edge) const { return INVALID; }
620 622

	
621 623
      /// \brief Second node of the edge.
622 624
      ///
623 625
      /// \return The second node of the given edge.
624 626
      ///
625 627
      /// Naturally edges don't have direction and thus
626 628
      /// don't have source and target node. However we use \c u() and \c v()
627 629
      /// methods to query the two nodes of the arc. The direction of the
628 630
      /// arc which arises this way is called the inherent direction of the
629 631
      /// edge, and is used to define the "default" direction
630 632
      /// of the directed versions of the arcs.
631 633
      /// \sa u()
632 634
      /// \sa direction()
633 635
      Node v(Edge) const { return INVALID; }
634 636

	
635 637
      /// \brief Source node of the directed arc.
636 638
      Node source(Arc) const { return INVALID; }
637 639

	
638 640
      /// \brief Target node of the directed arc.
639 641
      Node target(Arc) const { return INVALID; }
640 642

	
641 643
      /// \brief Returns the id of the node.
642 644
      int id(Node) const { return -1; }
643 645

	
644 646
      /// \brief Returns the id of the edge.
645 647
      int id(Edge) const { return -1; }
646 648

	
647 649
      /// \brief Returns the id of the arc.
648 650
      int id(Arc) const { return -1; }
649 651

	
650 652
      /// \brief Returns the node with the given id.
651 653
      ///
652 654
      /// \pre The argument should be a valid node id in the graph.
653 655
      Node nodeFromId(int) const { return INVALID; }
654 656

	
655 657
      /// \brief Returns the edge with the given id.
656 658
      ///
657 659
      /// \pre The argument should be a valid edge id in the graph.
658 660
      Edge edgeFromId(int) const { return INVALID; }
659 661

	
660 662
      /// \brief Returns the arc with the given id.
661 663
      ///
662 664
      /// \pre The argument should be a valid arc id in the graph.
663 665
      Arc arcFromId(int) const { return INVALID; }
664 666

	
665 667
      /// \brief Returns an upper bound on the node IDs.
666 668
      int maxNodeId() const { return -1; }
667 669

	
668 670
      /// \brief Returns an upper bound on the edge IDs.
669 671
      int maxEdgeId() const { return -1; }
670 672

	
671 673
      /// \brief Returns an upper bound on the arc IDs.
672 674
      int maxArcId() const { return -1; }
673 675

	
674 676
      void first(Node&) const {}
675 677
      void next(Node&) const {}
676 678

	
677 679
      void first(Edge&) const {}
678 680
      void next(Edge&) const {}
679 681

	
680 682
      void first(Arc&) const {}
681 683
      void next(Arc&) const {}
682 684

	
683 685
      void firstOut(Arc&, Node) const {}
684 686
      void nextOut(Arc&) const {}
685 687

	
686 688
      void firstIn(Arc&, Node) const {}
687 689
      void nextIn(Arc&) const {}
688 690

	
689 691
      void firstInc(Edge &, bool &, const Node &) const {}
690 692
      void nextInc(Edge &, bool &) const {}
691 693

	
692 694
      // The second parameter is dummy.
693 695
      Node fromId(int, Node) const { return INVALID; }
694 696
      // The second parameter is dummy.
695 697
      Edge fromId(int, Edge) const { return INVALID; }
696 698
      // The second parameter is dummy.
697 699
      Arc fromId(int, Arc) const { return INVALID; }
698 700

	
699 701
      // Dummy parameter.
700 702
      int maxId(Node) const { return -1; }
701 703
      // Dummy parameter.
702 704
      int maxId(Edge) const { return -1; }
703 705
      // Dummy parameter.
704 706
      int maxId(Arc) const { return -1; }
705 707

	
706 708
      /// \brief Base node of the iterator
707 709
      ///
708 710
      /// Returns the base node (the source in this case) of the iterator
709 711
      Node baseNode(OutArcIt e) const {
710 712
        return source(e);
711 713
      }
712 714
      /// \brief Running node of the iterator
713 715
      ///
714 716
      /// Returns the running node (the target in this case) of the
715 717
      /// iterator
716 718
      Node runningNode(OutArcIt e) const {
717 719
        return target(e);
718 720
      }
719 721

	
720 722
      /// \brief Base node of the iterator
721 723
      ///
722 724
      /// Returns the base node (the target in this case) of the iterator
723 725
      Node baseNode(InArcIt e) const {
724 726
        return target(e);
725 727
      }
726 728
      /// \brief Running node of the iterator
727 729
      ///
728 730
      /// Returns the running node (the source in this case) of the
729 731
      /// iterator
730 732
      Node runningNode(InArcIt e) const {
731 733
        return source(e);
732 734
      }
733 735

	
734 736
      /// \brief Base node of the iterator
735 737
      ///
736 738
      /// Returns the base node of the iterator
737 739
      Node baseNode(IncEdgeIt) const {
738 740
        return INVALID;
739 741
      }
740 742

	
741 743
      /// \brief Running node of the iterator
742 744
      ///
743 745
      /// Returns the running node of the iterator
744 746
      Node runningNode(IncEdgeIt) const {
745 747
        return INVALID;
746 748
      }
747 749

	
748 750
      template <typename _Graph>
749 751
      struct Constraints {
750 752
        void constraints() {
751 753
          checkConcept<BaseGraphComponent, _Graph>();
752 754
          checkConcept<IterableGraphComponent<>, _Graph>();
753 755
          checkConcept<IDableGraphComponent<>, _Graph>();
754 756
          checkConcept<MappableGraphComponent<>, _Graph>();
755 757
        }
756 758
      };
757 759

	
758 760
    };
759 761

	
760 762
  }
761 763

	
762 764
}
763 765

	
764 766
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CONNECTIVITY_H
20 20
#define LEMON_CONNECTIVITY_H
21 21

	
22 22
#include <lemon/dfs.h>
23 23
#include <lemon/bfs.h>
24 24
#include <lemon/core.h>
25 25
#include <lemon/maps.h>
26 26
#include <lemon/adaptors.h>
27 27

	
28 28
#include <lemon/concepts/digraph.h>
29 29
#include <lemon/concepts/graph.h>
30 30
#include <lemon/concept_check.h>
31 31

	
32 32
#include <stack>
33 33
#include <functional>
34 34

	
35 35
/// \ingroup graph_properties
36 36
/// \file
37 37
/// \brief Connectivity algorithms
38 38
///
39 39
/// Connectivity algorithms
40 40

	
41 41
namespace lemon {
42 42

	
43 43
  /// \ingroup graph_properties
44 44
  ///
45
  /// \brief Check whether the given undirected graph is connected.
45
  /// \brief Check whether an undirected graph is connected.
46 46
  ///
47
  /// Check whether the given undirected graph is connected.
48
  /// \param graph The undirected graph.
49
  /// \return \c true when there is path between any two nodes in the graph.
47
  /// This function checks whether the given undirected graph is connected,
48
  /// i.e. there is a path between any two nodes in the graph.
49
  ///
50
  /// \return \c true if the graph is connected.
50 51
  /// \note By definition, the empty graph is connected.
52
  ///
53
  /// \see countConnectedComponents(), connectedComponents()
54
  /// \see stronglyConnected()
51 55
  template <typename Graph>
52 56
  bool connected(const Graph& graph) {
53 57
    checkConcept<concepts::Graph, Graph>();
54 58
    typedef typename Graph::NodeIt NodeIt;
55 59
    if (NodeIt(graph) == INVALID) return true;
56 60
    Dfs<Graph> dfs(graph);
57 61
    dfs.run(NodeIt(graph));
58 62
    for (NodeIt it(graph); it != INVALID; ++it) {
59 63
      if (!dfs.reached(it)) {
60 64
        return false;
61 65
      }
62 66
    }
63 67
    return true;
64 68
  }
65 69

	
66 70
  /// \ingroup graph_properties
67 71
  ///
68 72
  /// \brief Count the number of connected components of an undirected graph
69 73
  ///
70
  /// Count the number of connected components of an undirected graph
74
  /// This function counts the number of connected components of the given
75
  /// undirected graph.
71 76
  ///
72
  /// \param graph The graph. It must be undirected.
73
  /// \return The number of components
77
  /// The connected components are the classes of an equivalence relation
78
  /// on the nodes of an undirected graph. Two nodes are in the same class
79
  /// if they are connected with a path.
80
  ///
81
  /// \return The number of connected components.
74 82
  /// \note By definition, the empty graph consists
75 83
  /// of zero connected components.
84
  ///
85
  /// \see connected(), connectedComponents()
76 86
  template <typename Graph>
77 87
  int countConnectedComponents(const Graph &graph) {
78 88
    checkConcept<concepts::Graph, Graph>();
79 89
    typedef typename Graph::Node Node;
80 90
    typedef typename Graph::Arc Arc;
81 91

	
82 92
    typedef NullMap<Node, Arc> PredMap;
83 93
    typedef NullMap<Node, int> DistMap;
84 94

	
85 95
    int compNum = 0;
86 96
    typename Bfs<Graph>::
87 97
      template SetPredMap<PredMap>::
88 98
      template SetDistMap<DistMap>::
89 99
      Create bfs(graph);
90 100

	
91 101
    PredMap predMap;
92 102
    bfs.predMap(predMap);
93 103

	
94 104
    DistMap distMap;
95 105
    bfs.distMap(distMap);
96 106

	
97 107
    bfs.init();
98 108
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
99 109
      if (!bfs.reached(n)) {
100 110
        bfs.addSource(n);
101 111
        bfs.start();
102 112
        ++compNum;
103 113
      }
104 114
    }
105 115
    return compNum;
106 116
  }
107 117

	
108 118
  /// \ingroup graph_properties
109 119
  ///
110 120
  /// \brief Find the connected components of an undirected graph
111 121
  ///
112
  /// Find the connected components of an undirected graph.
122
  /// This function finds the connected components of the given undirected
123
  /// graph.
124
  ///
125
  /// The connected components are the classes of an equivalence relation
126
  /// on the nodes of an undirected graph. Two nodes are in the same class
127
  /// if they are connected with a path.
113 128
  ///
114 129
  /// \image html connected_components.png
115 130
  /// \image latex connected_components.eps "Connected components" width=\textwidth
116 131
  ///
117
  /// \param graph The graph. It must be undirected.
132
  /// \param graph The undirected graph.
118 133
  /// \retval compMap A writable node map. The values will be set from 0 to
119
  /// the number of the connected components minus one. Each values of the map
120
  /// will be set exactly once, the values of a certain component will be
134
  /// the number of the connected components minus one. Each value of the map
135
  /// will be set exactly once, and the values of a certain component will be
121 136
  /// set continuously.
122
  /// \return The number of components
137
  /// \return The number of connected components.
138
  /// \note By definition, the empty graph consists
139
  /// of zero connected components.
140
  ///
141
  /// \see connected(), countConnectedComponents()
123 142
  template <class Graph, class NodeMap>
124 143
  int connectedComponents(const Graph &graph, NodeMap &compMap) {
125 144
    checkConcept<concepts::Graph, Graph>();
126 145
    typedef typename Graph::Node Node;
127 146
    typedef typename Graph::Arc Arc;
128 147
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
129 148

	
130 149
    typedef NullMap<Node, Arc> PredMap;
131 150
    typedef NullMap<Node, int> DistMap;
132 151

	
133 152
    int compNum = 0;
134 153
    typename Bfs<Graph>::
135 154
      template SetPredMap<PredMap>::
136 155
      template SetDistMap<DistMap>::
137 156
      Create bfs(graph);
138 157

	
139 158
    PredMap predMap;
140 159
    bfs.predMap(predMap);
141 160

	
142 161
    DistMap distMap;
143 162
    bfs.distMap(distMap);
144 163

	
145 164
    bfs.init();
146 165
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
147 166
      if(!bfs.reached(n)) {
148 167
        bfs.addSource(n);
149 168
        while (!bfs.emptyQueue()) {
150 169
          compMap.set(bfs.nextNode(), compNum);
151 170
          bfs.processNextNode();
152 171
        }
153 172
        ++compNum;
154 173
      }
155 174
    }
156 175
    return compNum;
157 176
  }
158 177

	
159 178
  namespace _connectivity_bits {
160 179

	
161 180
    template <typename Digraph, typename Iterator >
162 181
    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
163 182
    public:
164 183
      typedef typename Digraph::Node Node;
165 184
      LeaveOrderVisitor(Iterator it) : _it(it) {}
166 185

	
167 186
      void leave(const Node& node) {
168 187
        *(_it++) = node;
169 188
      }
170 189

	
171 190
    private:
172 191
      Iterator _it;
173 192
    };
174 193

	
175 194
    template <typename Digraph, typename Map>
176 195
    struct FillMapVisitor : public DfsVisitor<Digraph> {
177 196
    public:
178 197
      typedef typename Digraph::Node Node;
179 198
      typedef typename Map::Value Value;
180 199

	
181 200
      FillMapVisitor(Map& map, Value& value)
182 201
        : _map(map), _value(value) {}
183 202

	
184 203
      void reach(const Node& node) {
185 204
        _map.set(node, _value);
186 205
      }
187 206
    private:
188 207
      Map& _map;
189 208
      Value& _value;
190 209
    };
191 210

	
192 211
    template <typename Digraph, typename ArcMap>
193 212
    struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
194 213
    public:
195 214
      typedef typename Digraph::Node Node;
196 215
      typedef typename Digraph::Arc Arc;
197 216

	
198 217
      StronglyConnectedCutArcsVisitor(const Digraph& digraph,
199 218
                                      ArcMap& cutMap,
200 219
                                      int& cutNum)
201 220
        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
202 221
          _compMap(digraph, -1), _num(-1) {
203 222
      }
204 223

	
205 224
      void start(const Node&) {
206 225
        ++_num;
207 226
      }
208 227

	
209 228
      void reach(const Node& node) {
210 229
        _compMap.set(node, _num);
211 230
      }
212 231

	
213 232
      void examine(const Arc& arc) {
214 233
         if (_compMap[_digraph.source(arc)] !=
215 234
             _compMap[_digraph.target(arc)]) {
216 235
           _cutMap.set(arc, true);
217 236
           ++_cutNum;
218 237
         }
219 238
      }
220 239
    private:
221 240
      const Digraph& _digraph;
222 241
      ArcMap& _cutMap;
223 242
      int& _cutNum;
224 243

	
225 244
      typename Digraph::template NodeMap<int> _compMap;
226 245
      int _num;
227 246
    };
228 247

	
229 248
  }
230 249

	
231 250

	
232 251
  /// \ingroup graph_properties
233 252
  ///
234
  /// \brief Check whether the given directed graph is strongly connected.
253
  /// \brief Check whether a directed graph is strongly connected.
235 254
  ///
236
  /// Check whether the given directed graph is strongly connected. The
237
  /// graph is strongly connected when any two nodes of the graph are
255
  /// This function checks whether the given directed graph is strongly
256
  /// connected, i.e. any two nodes of the digraph are
238 257
  /// connected with directed paths in both direction.
239
  /// \return \c false when the graph is not strongly connected.
240
  /// \see connected
241 258
  ///
242
  /// \note By definition, the empty graph is strongly connected.
259
  /// \return \c true if the digraph is strongly connected.
260
  /// \note By definition, the empty digraph is strongly connected.
261
  /// 
262
  /// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
263
  /// \see connected()
243 264
  template <typename Digraph>
244 265
  bool stronglyConnected(const Digraph& digraph) {
245 266
    checkConcept<concepts::Digraph, Digraph>();
246 267

	
247 268
    typedef typename Digraph::Node Node;
248 269
    typedef typename Digraph::NodeIt NodeIt;
249 270

	
250 271
    typename Digraph::Node source = NodeIt(digraph);
251 272
    if (source == INVALID) return true;
252 273

	
253 274
    using namespace _connectivity_bits;
254 275

	
255 276
    typedef DfsVisitor<Digraph> Visitor;
256 277
    Visitor visitor;
257 278

	
258 279
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
259 280
    dfs.init();
260 281
    dfs.addSource(source);
261 282
    dfs.start();
262 283

	
263 284
    for (NodeIt it(digraph); it != INVALID; ++it) {
264 285
      if (!dfs.reached(it)) {
265 286
        return false;
266 287
      }
267 288
    }
268 289

	
269 290
    typedef ReverseDigraph<const Digraph> RDigraph;
270 291
    typedef typename RDigraph::NodeIt RNodeIt;
271 292
    RDigraph rdigraph(digraph);
272 293

	
273
    typedef DfsVisitor<Digraph> RVisitor;
294
    typedef DfsVisitor<RDigraph> RVisitor;
274 295
    RVisitor rvisitor;
275 296

	
276 297
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
277 298
    rdfs.init();
278 299
    rdfs.addSource(source);
279 300
    rdfs.start();
280 301

	
281 302
    for (RNodeIt it(rdigraph); it != INVALID; ++it) {
282 303
      if (!rdfs.reached(it)) {
283 304
        return false;
284 305
      }
285 306
    }
286 307

	
287 308
    return true;
288 309
  }
289 310

	
290 311
  /// \ingroup graph_properties
291 312
  ///
292
  /// \brief Count the strongly connected components of a directed graph
313
  /// \brief Count the number of strongly connected components of a 
314
  /// directed graph
293 315
  ///
294
  /// Count the strongly connected components of a directed graph.
316
  /// This function counts the number of strongly connected components of
317
  /// the given directed graph.
318
  ///
295 319
  /// The strongly connected components are the classes of an
296
  /// equivalence relation on the nodes of the graph. Two nodes are in
320
  /// equivalence relation on the nodes of a digraph. Two nodes are in
297 321
  /// the same class if they are connected with directed paths in both
298 322
  /// direction.
299 323
  ///
300
  /// \param digraph The graph.
301
  /// \return The number of components
302
  /// \note By definition, the empty graph has zero
324
  /// \return The number of strongly connected components.
325
  /// \note By definition, the empty digraph has zero
303 326
  /// strongly connected components.
327
  ///
328
  /// \see stronglyConnected(), stronglyConnectedComponents()
304 329
  template <typename Digraph>
305 330
  int countStronglyConnectedComponents(const Digraph& digraph) {
306 331
    checkConcept<concepts::Digraph, Digraph>();
307 332

	
308 333
    using namespace _connectivity_bits;
309 334

	
310 335
    typedef typename Digraph::Node Node;
311 336
    typedef typename Digraph::Arc Arc;
312 337
    typedef typename Digraph::NodeIt NodeIt;
313 338
    typedef typename Digraph::ArcIt ArcIt;
314 339

	
315 340
    typedef std::vector<Node> Container;
316 341
    typedef typename Container::iterator Iterator;
317 342

	
318 343
    Container nodes(countNodes(digraph));
319 344
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
320 345
    Visitor visitor(nodes.begin());
321 346

	
322 347
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
323 348
    dfs.init();
324 349
    for (NodeIt it(digraph); it != INVALID; ++it) {
325 350
      if (!dfs.reached(it)) {
326 351
        dfs.addSource(it);
327 352
        dfs.start();
328 353
      }
329 354
    }
330 355

	
331 356
    typedef typename Container::reverse_iterator RIterator;
332 357
    typedef ReverseDigraph<const Digraph> RDigraph;
333 358

	
334 359
    RDigraph rdigraph(digraph);
335 360

	
336 361
    typedef DfsVisitor<Digraph> RVisitor;
337 362
    RVisitor rvisitor;
338 363

	
339 364
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
340 365

	
341 366
    int compNum = 0;
342 367

	
343 368
    rdfs.init();
344 369
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
345 370
      if (!rdfs.reached(*it)) {
346 371
        rdfs.addSource(*it);
347 372
        rdfs.start();
348 373
        ++compNum;
349 374
      }
350 375
    }
351 376
    return compNum;
352 377
  }
353 378

	
354 379
  /// \ingroup graph_properties
355 380
  ///
356 381
  /// \brief Find the strongly connected components of a directed graph
357 382
  ///
358
  /// Find the strongly connected components of a directed graph.  The
359
  /// strongly connected components are the classes of an equivalence
360
  /// relation on the nodes of the graph. Two nodes are in
361
  /// relationship when there are directed paths between them in both
362
  /// direction. In addition, the numbering of components will satisfy
363
  /// that there is no arc going from a higher numbered component to
364
  /// a lower.
383
  /// This function finds the strongly connected components of the given
384
  /// directed graph. In addition, the numbering of the components will
385
  /// satisfy that there is no arc going from a higher numbered component
386
  /// to a lower one (i.e. it provides a topological order of the components).
387
  ///
388
  /// The strongly connected components are the classes of an
389
  /// equivalence relation on the nodes of a digraph. Two nodes are in
390
  /// the same class if they are connected with directed paths in both
391
  /// direction.
365 392
  ///
366 393
  /// \image html strongly_connected_components.png
367 394
  /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
368 395
  ///
369 396
  /// \param digraph The digraph.
370 397
  /// \retval compMap A writable node map. The values will be set from 0 to
371 398
  /// the number of the strongly connected components minus one. Each value
372
  /// of the map will be set exactly once, the values of a certain component
373
  /// will be set continuously.
374
  /// \return The number of components
399
  /// of the map will be set exactly once, and the values of a certain
400
  /// component will be set continuously.
401
  /// \return The number of strongly connected components.
402
  /// \note By definition, the empty digraph has zero
403
  /// strongly connected components.
404
  ///
405
  /// \see stronglyConnected(), countStronglyConnectedComponents()
375 406
  template <typename Digraph, typename NodeMap>
376 407
  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
377 408
    checkConcept<concepts::Digraph, Digraph>();
378 409
    typedef typename Digraph::Node Node;
379 410
    typedef typename Digraph::NodeIt NodeIt;
380 411
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
381 412

	
382 413
    using namespace _connectivity_bits;
383 414

	
384 415
    typedef std::vector<Node> Container;
385 416
    typedef typename Container::iterator Iterator;
386 417

	
387 418
    Container nodes(countNodes(digraph));
388 419
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
389 420
    Visitor visitor(nodes.begin());
390 421

	
391 422
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
392 423
    dfs.init();
393 424
    for (NodeIt it(digraph); it != INVALID; ++it) {
394 425
      if (!dfs.reached(it)) {
395 426
        dfs.addSource(it);
396 427
        dfs.start();
397 428
      }
398 429
    }
399 430

	
400 431
    typedef typename Container::reverse_iterator RIterator;
401 432
    typedef ReverseDigraph<const Digraph> RDigraph;
402 433

	
403 434
    RDigraph rdigraph(digraph);
404 435

	
405 436
    int compNum = 0;
406 437

	
407 438
    typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
408 439
    RVisitor rvisitor(compMap, compNum);
409 440

	
410 441
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
411 442

	
412 443
    rdfs.init();
413 444
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
414 445
      if (!rdfs.reached(*it)) {
415 446
        rdfs.addSource(*it);
416 447
        rdfs.start();
417 448
        ++compNum;
418 449
      }
419 450
    }
420 451
    return compNum;
421 452
  }
422 453

	
423 454
  /// \ingroup graph_properties
424 455
  ///
425 456
  /// \brief Find the cut arcs of the strongly connected components.
426 457
  ///
427
  /// Find the cut arcs of the strongly connected components.
428
  /// The strongly connected components are the classes of an equivalence
429
  /// relation on the nodes of the graph. Two nodes are in relationship
430
  /// when there are directed paths between them in both direction.
458
  /// This function finds the cut arcs of the strongly connected components
459
  /// of the given digraph.
460
  ///
461
  /// The strongly connected components are the classes of an
462
  /// equivalence relation on the nodes of a digraph. Two nodes are in
463
  /// the same class if they are connected with directed paths in both
464
  /// direction.
431 465
  /// The strongly connected components are separated by the cut arcs.
432 466
  ///
433
  /// \param graph The graph.
434
  /// \retval cutMap A writable node map. The values will be set true when the
435
  /// arc is a cut arc.
467
  /// \param digraph The digraph.
468
  /// \retval cutMap A writable arc map. The values will be set to \c true
469
  /// for the cut arcs (exactly once for each cut arc), and will not be
470
  /// changed for other arcs.
471
  /// \return The number of cut arcs.
436 472
  ///
437
  /// \return The number of cut arcs
473
  /// \see stronglyConnected(), stronglyConnectedComponents()
438 474
  template <typename Digraph, typename ArcMap>
439
  int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
475
  int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
440 476
    checkConcept<concepts::Digraph, Digraph>();
441 477
    typedef typename Digraph::Node Node;
442 478
    typedef typename Digraph::Arc Arc;
443 479
    typedef typename Digraph::NodeIt NodeIt;
444 480
    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
445 481

	
446 482
    using namespace _connectivity_bits;
447 483

	
448 484
    typedef std::vector<Node> Container;
449 485
    typedef typename Container::iterator Iterator;
450 486

	
451
    Container nodes(countNodes(graph));
487
    Container nodes(countNodes(digraph));
452 488
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
453 489
    Visitor visitor(nodes.begin());
454 490

	
455
    DfsVisit<Digraph, Visitor> dfs(graph, visitor);
491
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
456 492
    dfs.init();
457
    for (NodeIt it(graph); it != INVALID; ++it) {
493
    for (NodeIt it(digraph); it != INVALID; ++it) {
458 494
      if (!dfs.reached(it)) {
459 495
        dfs.addSource(it);
460 496
        dfs.start();
461 497
      }
462 498
    }
463 499

	
464 500
    typedef typename Container::reverse_iterator RIterator;
465 501
    typedef ReverseDigraph<const Digraph> RDigraph;
466 502

	
467
    RDigraph rgraph(graph);
503
    RDigraph rdigraph(digraph);
468 504

	
469 505
    int cutNum = 0;
470 506

	
471 507
    typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
472
    RVisitor rvisitor(rgraph, cutMap, cutNum);
508
    RVisitor rvisitor(rdigraph, cutMap, cutNum);
473 509

	
474
    DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
510
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
475 511

	
476 512
    rdfs.init();
477 513
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
478 514
      if (!rdfs.reached(*it)) {
479 515
        rdfs.addSource(*it);
480 516
        rdfs.start();
481 517
      }
482 518
    }
483 519
    return cutNum;
484 520
  }
485 521

	
486 522
  namespace _connectivity_bits {
487 523

	
488 524
    template <typename Digraph>
489 525
    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
490 526
    public:
491 527
      typedef typename Digraph::Node Node;
492 528
      typedef typename Digraph::Arc Arc;
493 529
      typedef typename Digraph::Edge Edge;
494 530

	
495 531
      CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
496 532
        : _graph(graph), _compNum(compNum),
497 533
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
498 534

	
499 535
      void start(const Node& node) {
500 536
        _predMap.set(node, INVALID);
501 537
      }
502 538

	
503 539
      void reach(const Node& node) {
504 540
        _numMap.set(node, _num);
505 541
        _retMap.set(node, _num);
506 542
        ++_num;
507 543
      }
508 544

	
509 545
      void discover(const Arc& edge) {
510 546
        _predMap.set(_graph.target(edge), _graph.source(edge));
511 547
      }
512 548

	
513 549
      void examine(const Arc& edge) {
514 550
        if (_graph.source(edge) == _graph.target(edge) &&
515 551
            _graph.direction(edge)) {
516 552
          ++_compNum;
517 553
          return;
518 554
        }
519 555
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
520 556
          return;
521 557
        }
522 558
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
523 559
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
524 560
        }
525 561
      }
526 562

	
527 563
      void backtrack(const Arc& edge) {
528 564
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
529 565
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
530 566
        }
531 567
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
532 568
          ++_compNum;
533 569
        }
534 570
      }
535 571

	
536 572
    private:
537 573
      const Digraph& _graph;
538 574
      int& _compNum;
539 575

	
540 576
      typename Digraph::template NodeMap<int> _numMap;
541 577
      typename Digraph::template NodeMap<int> _retMap;
542 578
      typename Digraph::template NodeMap<Node> _predMap;
543 579
      int _num;
544 580
    };
545 581

	
546 582
    template <typename Digraph, typename ArcMap>
547 583
    class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
548 584
    public:
549 585
      typedef typename Digraph::Node Node;
550 586
      typedef typename Digraph::Arc Arc;
551 587
      typedef typename Digraph::Edge Edge;
552 588

	
553 589
      BiNodeConnectedComponentsVisitor(const Digraph& graph,
554 590
                                       ArcMap& compMap, int &compNum)
555 591
        : _graph(graph), _compMap(compMap), _compNum(compNum),
556 592
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
557 593

	
558 594
      void start(const Node& node) {
559 595
        _predMap.set(node, INVALID);
560 596
      }
561 597

	
562 598
      void reach(const Node& node) {
563 599
        _numMap.set(node, _num);
564 600
        _retMap.set(node, _num);
565 601
        ++_num;
566 602
      }
567 603

	
568 604
      void discover(const Arc& edge) {
569 605
        Node target = _graph.target(edge);
570 606
        _predMap.set(target, edge);
571 607
        _edgeStack.push(edge);
572 608
      }
573 609

	
574 610
      void examine(const Arc& edge) {
575 611
        Node source = _graph.source(edge);
576 612
        Node target = _graph.target(edge);
577 613
        if (source == target && _graph.direction(edge)) {
578 614
          _compMap.set(edge, _compNum);
579 615
          ++_compNum;
580 616
          return;
581 617
        }
582 618
        if (_numMap[target] < _numMap[source]) {
583 619
          if (_predMap[source] != _graph.oppositeArc(edge)) {
584 620
            _edgeStack.push(edge);
585 621
          }
586 622
        }
587 623
        if (_predMap[source] != INVALID &&
588 624
            target == _graph.source(_predMap[source])) {
589 625
          return;
590 626
        }
591 627
        if (_retMap[source] > _numMap[target]) {
592 628
          _retMap.set(source, _numMap[target]);
593 629
        }
594 630
      }
595 631

	
596 632
      void backtrack(const Arc& edge) {
597 633
        Node source = _graph.source(edge);
598 634
        Node target = _graph.target(edge);
599 635
        if (_retMap[source] > _retMap[target]) {
600 636
          _retMap.set(source, _retMap[target]);
601 637
        }
602 638
        if (_numMap[source] <= _retMap[target]) {
603 639
          while (_edgeStack.top() != edge) {
604 640
            _compMap.set(_edgeStack.top(), _compNum);
605 641
            _edgeStack.pop();
606 642
          }
607 643
          _compMap.set(edge, _compNum);
608 644
          _edgeStack.pop();
609 645
          ++_compNum;
610 646
        }
611 647
      }
612 648

	
613 649
    private:
614 650
      const Digraph& _graph;
615 651
      ArcMap& _compMap;
616 652
      int& _compNum;
617 653

	
618 654
      typename Digraph::template NodeMap<int> _numMap;
619 655
      typename Digraph::template NodeMap<int> _retMap;
620 656
      typename Digraph::template NodeMap<Arc> _predMap;
621 657
      std::stack<Edge> _edgeStack;
622 658
      int _num;
623 659
    };
624 660

	
625 661

	
626 662
    template <typename Digraph, typename NodeMap>
627 663
    class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
628 664
    public:
629 665
      typedef typename Digraph::Node Node;
630 666
      typedef typename Digraph::Arc Arc;
631 667
      typedef typename Digraph::Edge Edge;
632 668

	
633 669
      BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
634 670
                                     int& cutNum)
635 671
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
636 672
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
637 673

	
638 674
      void start(const Node& node) {
639 675
        _predMap.set(node, INVALID);
640 676
        rootCut = false;
641 677
      }
642 678

	
643 679
      void reach(const Node& node) {
644 680
        _numMap.set(node, _num);
645 681
        _retMap.set(node, _num);
646 682
        ++_num;
647 683
      }
648 684

	
649 685
      void discover(const Arc& edge) {
650 686
        _predMap.set(_graph.target(edge), _graph.source(edge));
651 687
      }
652 688

	
653 689
      void examine(const Arc& edge) {
654 690
        if (_graph.source(edge) == _graph.target(edge) &&
655 691
            _graph.direction(edge)) {
656 692
          if (!_cutMap[_graph.source(edge)]) {
657 693
            _cutMap.set(_graph.source(edge), true);
658 694
            ++_cutNum;
659 695
          }
660 696
          return;
661 697
        }
662 698
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
663 699
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
664 700
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
665 701
        }
666 702
      }
667 703

	
668 704
      void backtrack(const Arc& edge) {
669 705
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
670 706
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
671 707
        }
672 708
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
673 709
          if (_predMap[_graph.source(edge)] != INVALID) {
674 710
            if (!_cutMap[_graph.source(edge)]) {
675 711
              _cutMap.set(_graph.source(edge), true);
676 712
              ++_cutNum;
677 713
            }
678 714
          } else if (rootCut) {
679 715
            if (!_cutMap[_graph.source(edge)]) {
680 716
              _cutMap.set(_graph.source(edge), true);
681 717
              ++_cutNum;
682 718
            }
683 719
          } else {
684 720
            rootCut = true;
685 721
          }
686 722
        }
687 723
      }
688 724

	
689 725
    private:
690 726
      const Digraph& _graph;
691 727
      NodeMap& _cutMap;
692 728
      int& _cutNum;
693 729

	
694 730
      typename Digraph::template NodeMap<int> _numMap;
695 731
      typename Digraph::template NodeMap<int> _retMap;
696 732
      typename Digraph::template NodeMap<Node> _predMap;
697 733
      std::stack<Edge> _edgeStack;
698 734
      int _num;
699 735
      bool rootCut;
700 736
    };
701 737

	
702 738
  }
703 739

	
704 740
  template <typename Graph>
705 741
  int countBiNodeConnectedComponents(const Graph& graph);
706 742

	
707 743
  /// \ingroup graph_properties
708 744
  ///
709
  /// \brief Checks the graph is bi-node-connected.
745
  /// \brief Check whether an undirected graph is bi-node-connected.
710 746
  ///
711
  /// This function checks that the undirected graph is bi-node-connected
712
  /// graph. The graph is bi-node-connected if any two undirected edge is
713
  /// on same circle.
747
  /// This function checks whether the given undirected graph is 
748
  /// bi-node-connected, i.e. any two edges are on same circle.
714 749
  ///
715
  /// \param graph The graph.
716
  /// \return \c true when the graph bi-node-connected.
750
  /// \return \c true if the graph bi-node-connected.
751
  /// \note By definition, the empty graph is bi-node-connected.
752
  ///
753
  /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
717 754
  template <typename Graph>
718 755
  bool biNodeConnected(const Graph& graph) {
719 756
    return countBiNodeConnectedComponents(graph) <= 1;
720 757
  }
721 758

	
722 759
  /// \ingroup graph_properties
723 760
  ///
724
  /// \brief Count the biconnected components.
761
  /// \brief Count the number of bi-node-connected components of an 
762
  /// undirected graph.
725 763
  ///
726
  /// This function finds the bi-node-connected components in an undirected
727
  /// graph. The biconnected components are the classes of an equivalence
728
  /// relation on the undirected edges. Two undirected edge is in relationship
729
  /// when they are on same circle.
764
  /// This function counts the number of bi-node-connected components of
765
  /// the given undirected graph.
730 766
  ///
731
  /// \param graph The graph.
732
  /// \return The number of components.
767
  /// The bi-node-connected components are the classes of an equivalence
768
  /// relation on the edges of a undirected graph. Two edges are in the
769
  /// same class if they are on same circle.
770
  ///
771
  /// \return The number of bi-node-connected components.
772
  ///
773
  /// \see biNodeConnected(), biNodeConnectedComponents()
733 774
  template <typename Graph>
734 775
  int countBiNodeConnectedComponents(const Graph& graph) {
735 776
    checkConcept<concepts::Graph, Graph>();
736 777
    typedef typename Graph::NodeIt NodeIt;
737 778

	
738 779
    using namespace _connectivity_bits;
739 780

	
740 781
    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
741 782

	
742 783
    int compNum = 0;
743 784
    Visitor visitor(graph, compNum);
744 785

	
745 786
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
746 787
    dfs.init();
747 788

	
748 789
    for (NodeIt it(graph); it != INVALID; ++it) {
749 790
      if (!dfs.reached(it)) {
750 791
        dfs.addSource(it);
751 792
        dfs.start();
752 793
      }
753 794
    }
754 795
    return compNum;
755 796
  }
756 797

	
757 798
  /// \ingroup graph_properties
758 799
  ///
759
  /// \brief Find the bi-node-connected components.
800
  /// \brief Find the bi-node-connected components of an undirected graph.
760 801
  ///
761
  /// This function finds the bi-node-connected components in an undirected
762
  /// graph. The bi-node-connected components are the classes of an equivalence
763
  /// relation on the undirected edges. Two undirected edge are in relationship
764
  /// when they are on same circle.
802
  /// This function finds the bi-node-connected components of the given
803
  /// undirected graph.
804
  ///
805
  /// The bi-node-connected components are the classes of an equivalence
806
  /// relation on the edges of a undirected graph. Two edges are in the
807
  /// same class if they are on same circle.
765 808
  ///
766 809
  /// \image html node_biconnected_components.png
767 810
  /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
768 811
  ///
769
  /// \param graph The graph.
770
  /// \retval compMap A writable uedge map. The values will be set from 0
771
  /// to the number of the biconnected components minus one. Each values
772
  /// of the map will be set exactly once, the values of a certain component
773
  /// will be set continuously.
774
  /// \return The number of components.
812
  /// \param graph The undirected graph.
813
  /// \retval compMap A writable edge map. The values will be set from 0
814
  /// to the number of the bi-node-connected components minus one. Each
815
  /// value of the map will be set exactly once, and the values of a 
816
  /// certain component will be set continuously.
817
  /// \return The number of bi-node-connected components.
818
  ///
819
  /// \see biNodeConnected(), countBiNodeConnectedComponents()
775 820
  template <typename Graph, typename EdgeMap>
776 821
  int biNodeConnectedComponents(const Graph& graph,
777 822
                                EdgeMap& compMap) {
778 823
    checkConcept<concepts::Graph, Graph>();
779 824
    typedef typename Graph::NodeIt NodeIt;
780 825
    typedef typename Graph::Edge Edge;
781 826
    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
782 827

	
783 828
    using namespace _connectivity_bits;
784 829

	
785 830
    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
786 831

	
787 832
    int compNum = 0;
788 833
    Visitor visitor(graph, compMap, compNum);
789 834

	
790 835
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
791 836
    dfs.init();
792 837

	
793 838
    for (NodeIt it(graph); it != INVALID; ++it) {
794 839
      if (!dfs.reached(it)) {
795 840
        dfs.addSource(it);
796 841
        dfs.start();
797 842
      }
798 843
    }
799 844
    return compNum;
800 845
  }
801 846

	
802 847
  /// \ingroup graph_properties
803 848
  ///
804
  /// \brief Find the bi-node-connected cut nodes.
849
  /// \brief Find the bi-node-connected cut nodes in an undirected graph.
805 850
  ///
806
  /// This function finds the bi-node-connected cut nodes in an undirected
807
  /// graph. The bi-node-connected components are the classes of an equivalence
808
  /// relation on the undirected edges. Two undirected edges are in
809
  /// relationship when they are on same circle. The biconnected components
810
  /// are separted by nodes which are the cut nodes of the components.
851
  /// This function finds the bi-node-connected cut nodes in the given
852
  /// undirected graph.
811 853
  ///
812
  /// \param graph The graph.
813
  /// \retval cutMap A writable edge map. The values will be set true when
814
  /// the node separate two or more components.
854
  /// The bi-node-connected components are the classes of an equivalence
855
  /// relation on the edges of a undirected graph. Two edges are in the
856
  /// same class if they are on same circle.
857
  /// The bi-node-connected components are separted by the cut nodes of
858
  /// the components.
859
  ///
860
  /// \param graph The undirected graph.
861
  /// \retval cutMap A writable node map. The values will be set to 
862
  /// \c true for the nodes that separate two or more components
863
  /// (exactly once for each cut node), and will not be changed for
864
  /// other nodes.
815 865
  /// \return The number of the cut nodes.
866
  ///
867
  /// \see biNodeConnected(), biNodeConnectedComponents()
816 868
  template <typename Graph, typename NodeMap>
817 869
  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
818 870
    checkConcept<concepts::Graph, Graph>();
819 871
    typedef typename Graph::Node Node;
820 872
    typedef typename Graph::NodeIt NodeIt;
821 873
    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
822 874

	
823 875
    using namespace _connectivity_bits;
824 876

	
825 877
    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
826 878

	
827 879
    int cutNum = 0;
828 880
    Visitor visitor(graph, cutMap, cutNum);
829 881

	
830 882
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
831 883
    dfs.init();
832 884

	
833 885
    for (NodeIt it(graph); it != INVALID; ++it) {
834 886
      if (!dfs.reached(it)) {
835 887
        dfs.addSource(it);
836 888
        dfs.start();
837 889
      }
838 890
    }
839 891
    return cutNum;
840 892
  }
841 893

	
842 894
  namespace _connectivity_bits {
843 895

	
844 896
    template <typename Digraph>
845 897
    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
846 898
    public:
847 899
      typedef typename Digraph::Node Node;
848 900
      typedef typename Digraph::Arc Arc;
849 901
      typedef typename Digraph::Edge Edge;
850 902

	
851 903
      CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
852 904
        : _graph(graph), _compNum(compNum),
853 905
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
854 906

	
855 907
      void start(const Node& node) {
856 908
        _predMap.set(node, INVALID);
857 909
      }
858 910

	
859 911
      void reach(const Node& node) {
860 912
        _numMap.set(node, _num);
861 913
        _retMap.set(node, _num);
862 914
        ++_num;
863 915
      }
864 916

	
865 917
      void leave(const Node& node) {
866 918
        if (_numMap[node] <= _retMap[node]) {
867 919
          ++_compNum;
868 920
        }
869 921
      }
870 922

	
871 923
      void discover(const Arc& edge) {
872 924
        _predMap.set(_graph.target(edge), edge);
873 925
      }
874 926

	
875 927
      void examine(const Arc& edge) {
876 928
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
877 929
          return;
878 930
        }
879 931
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
880 932
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
881 933
        }
882 934
      }
883 935

	
884 936
      void backtrack(const Arc& edge) {
885 937
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
886 938
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
887 939
        }
888 940
      }
889 941

	
890 942
    private:
891 943
      const Digraph& _graph;
892 944
      int& _compNum;
893 945

	
894 946
      typename Digraph::template NodeMap<int> _numMap;
895 947
      typename Digraph::template NodeMap<int> _retMap;
896 948
      typename Digraph::template NodeMap<Arc> _predMap;
897 949
      int _num;
898 950
    };
899 951

	
900 952
    template <typename Digraph, typename NodeMap>
901 953
    class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
902 954
    public:
903 955
      typedef typename Digraph::Node Node;
904 956
      typedef typename Digraph::Arc Arc;
905 957
      typedef typename Digraph::Edge Edge;
906 958

	
907 959
      BiEdgeConnectedComponentsVisitor(const Digraph& graph,
908 960
                                       NodeMap& compMap, int &compNum)
909 961
        : _graph(graph), _compMap(compMap), _compNum(compNum),
910 962
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
911 963

	
912 964
      void start(const Node& node) {
913 965
        _predMap.set(node, INVALID);
914 966
      }
915 967

	
916 968
      void reach(const Node& node) {
917 969
        _numMap.set(node, _num);
918 970
        _retMap.set(node, _num);
919 971
        _nodeStack.push(node);
920 972
        ++_num;
921 973
      }
922 974

	
923 975
      void leave(const Node& node) {
924 976
        if (_numMap[node] <= _retMap[node]) {
925 977
          while (_nodeStack.top() != node) {
926 978
            _compMap.set(_nodeStack.top(), _compNum);
927 979
            _nodeStack.pop();
928 980
          }
929 981
          _compMap.set(node, _compNum);
930 982
          _nodeStack.pop();
931 983
          ++_compNum;
932 984
        }
933 985
      }
934 986

	
935 987
      void discover(const Arc& edge) {
936 988
        _predMap.set(_graph.target(edge), edge);
937 989
      }
938 990

	
939 991
      void examine(const Arc& edge) {
940 992
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
941 993
          return;
942 994
        }
943 995
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
944 996
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
945 997
        }
946 998
      }
947 999

	
948 1000
      void backtrack(const Arc& edge) {
949 1001
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
950 1002
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
951 1003
        }
952 1004
      }
953 1005

	
954 1006
    private:
955 1007
      const Digraph& _graph;
956 1008
      NodeMap& _compMap;
957 1009
      int& _compNum;
958 1010

	
959 1011
      typename Digraph::template NodeMap<int> _numMap;
960 1012
      typename Digraph::template NodeMap<int> _retMap;
961 1013
      typename Digraph::template NodeMap<Arc> _predMap;
962 1014
      std::stack<Node> _nodeStack;
963 1015
      int _num;
964 1016
    };
965 1017

	
966 1018

	
967 1019
    template <typename Digraph, typename ArcMap>
968 1020
    class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
969 1021
    public:
970 1022
      typedef typename Digraph::Node Node;
971 1023
      typedef typename Digraph::Arc Arc;
972 1024
      typedef typename Digraph::Edge Edge;
973 1025

	
974 1026
      BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
975 1027
                                     ArcMap& cutMap, int &cutNum)
976 1028
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
977 1029
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
978 1030

	
979 1031
      void start(const Node& node) {
980 1032
        _predMap[node] = INVALID;
981 1033
      }
982 1034

	
983 1035
      void reach(const Node& node) {
984 1036
        _numMap.set(node, _num);
985 1037
        _retMap.set(node, _num);
986 1038
        ++_num;
987 1039
      }
988 1040

	
989 1041
      void leave(const Node& node) {
990 1042
        if (_numMap[node] <= _retMap[node]) {
991 1043
          if (_predMap[node] != INVALID) {
992 1044
            _cutMap.set(_predMap[node], true);
993 1045
            ++_cutNum;
994 1046
          }
995 1047
        }
996 1048
      }
997 1049

	
998 1050
      void discover(const Arc& edge) {
999 1051
        _predMap.set(_graph.target(edge), edge);
1000 1052
      }
1001 1053

	
1002 1054
      void examine(const Arc& edge) {
1003 1055
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
1004 1056
          return;
1005 1057
        }
1006 1058
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
1007 1059
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
1008 1060
        }
1009 1061
      }
1010 1062

	
1011 1063
      void backtrack(const Arc& edge) {
1012 1064
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
1013 1065
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
1014 1066
        }
1015 1067
      }
1016 1068

	
1017 1069
    private:
1018 1070
      const Digraph& _graph;
1019 1071
      ArcMap& _cutMap;
1020 1072
      int& _cutNum;
1021 1073

	
1022 1074
      typename Digraph::template NodeMap<int> _numMap;
1023 1075
      typename Digraph::template NodeMap<int> _retMap;
1024 1076
      typename Digraph::template NodeMap<Arc> _predMap;
1025 1077
      int _num;
1026 1078
    };
1027 1079
  }
1028 1080

	
1029 1081
  template <typename Graph>
1030 1082
  int countBiEdgeConnectedComponents(const Graph& graph);
1031 1083

	
1032 1084
  /// \ingroup graph_properties
1033 1085
  ///
1034
  /// \brief Checks that the graph is bi-edge-connected.
1086
  /// \brief Check whether an undirected graph is bi-edge-connected.
1035 1087
  ///
1036
  /// This function checks that the graph is bi-edge-connected. The undirected
1037
  /// graph is bi-edge-connected when any two nodes are connected with two
1038
  /// edge-disjoint paths.
1088
  /// This function checks whether the given undirected graph is 
1089
  /// bi-edge-connected, i.e. any two nodes are connected with at least
1090
  /// two edge-disjoint paths.
1039 1091
  ///
1040
  /// \param graph The undirected graph.
1041
  /// \return The number of components.
1092
  /// \return \c true if the graph is bi-edge-connected.
1093
  /// \note By definition, the empty graph is bi-edge-connected.
1094
  ///
1095
  /// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
1042 1096
  template <typename Graph>
1043 1097
  bool biEdgeConnected(const Graph& graph) {
1044 1098
    return countBiEdgeConnectedComponents(graph) <= 1;
1045 1099
  }
1046 1100

	
1047 1101
  /// \ingroup graph_properties
1048 1102
  ///
1049
  /// \brief Count the bi-edge-connected components.
1103
  /// \brief Count the number of bi-edge-connected components of an
1104
  /// undirected graph.
1050 1105
  ///
1051
  /// This function count the bi-edge-connected components in an undirected
1052
  /// graph. The bi-edge-connected components are the classes of an equivalence
1053
  /// relation on the nodes. Two nodes are in relationship when they are
1054
  /// connected with at least two edge-disjoint paths.
1106
  /// This function counts the number of bi-edge-connected components of
1107
  /// the given undirected graph.
1055 1108
  ///
1056
  /// \param graph The undirected graph.
1057
  /// \return The number of components.
1109
  /// The bi-edge-connected components are the classes of an equivalence
1110
  /// relation on the nodes of an undirected graph. Two nodes are in the
1111
  /// same class if they are connected with at least two edge-disjoint
1112
  /// paths.
1113
  ///
1114
  /// \return The number of bi-edge-connected components.
1115
  ///
1116
  /// \see biEdgeConnected(), biEdgeConnectedComponents()
1058 1117
  template <typename Graph>
1059 1118
  int countBiEdgeConnectedComponents(const Graph& graph) {
1060 1119
    checkConcept<concepts::Graph, Graph>();
1061 1120
    typedef typename Graph::NodeIt NodeIt;
1062 1121

	
1063 1122
    using namespace _connectivity_bits;
1064 1123

	
1065 1124
    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
1066 1125

	
1067 1126
    int compNum = 0;
1068 1127
    Visitor visitor(graph, compNum);
1069 1128

	
1070 1129
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1071 1130
    dfs.init();
1072 1131

	
1073 1132
    for (NodeIt it(graph); it != INVALID; ++it) {
1074 1133
      if (!dfs.reached(it)) {
1075 1134
        dfs.addSource(it);
1076 1135
        dfs.start();
1077 1136
      }
1078 1137
    }
1079 1138
    return compNum;
1080 1139
  }
1081 1140

	
1082 1141
  /// \ingroup graph_properties
1083 1142
  ///
1084
  /// \brief Find the bi-edge-connected components.
1143
  /// \brief Find the bi-edge-connected components of an undirected graph.
1085 1144
  ///
1086
  /// This function finds the bi-edge-connected components in an undirected
1087
  /// graph. The bi-edge-connected components are the classes of an equivalence
1088
  /// relation on the nodes. Two nodes are in relationship when they are
1089
  /// connected at least two edge-disjoint paths.
1145
  /// This function finds the bi-edge-connected components of the given
1146
  /// undirected graph.
1147
  ///
1148
  /// The bi-edge-connected components are the classes of an equivalence
1149
  /// relation on the nodes of an undirected graph. Two nodes are in the
1150
  /// same class if they are connected with at least two edge-disjoint
1151
  /// paths.
1090 1152
  ///
1091 1153
  /// \image html edge_biconnected_components.png
1092 1154
  /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
1093 1155
  ///
1094
  /// \param graph The graph.
1156
  /// \param graph The undirected graph.
1095 1157
  /// \retval compMap A writable node map. The values will be set from 0 to
1096
  /// the number of the biconnected components minus one. Each values
1097
  /// of the map will be set exactly once, the values of a certain component
1098
  /// will be set continuously.
1099
  /// \return The number of components.
1158
  /// the number of the bi-edge-connected components minus one. Each value
1159
  /// of the map will be set exactly once, and the values of a certain
1160
  /// component will be set continuously.
1161
  /// \return The number of bi-edge-connected components.
1162
  ///
1163
  /// \see biEdgeConnected(), countBiEdgeConnectedComponents()
1100 1164
  template <typename Graph, typename NodeMap>
1101 1165
  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
1102 1166
    checkConcept<concepts::Graph, Graph>();
1103 1167
    typedef typename Graph::NodeIt NodeIt;
1104 1168
    typedef typename Graph::Node Node;
1105 1169
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
1106 1170

	
1107 1171
    using namespace _connectivity_bits;
1108 1172

	
1109 1173
    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
1110 1174

	
1111 1175
    int compNum = 0;
1112 1176
    Visitor visitor(graph, compMap, compNum);
1113 1177

	
1114 1178
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1115 1179
    dfs.init();
1116 1180

	
1117 1181
    for (NodeIt it(graph); it != INVALID; ++it) {
1118 1182
      if (!dfs.reached(it)) {
1119 1183
        dfs.addSource(it);
1120 1184
        dfs.start();
1121 1185
      }
1122 1186
    }
1123 1187
    return compNum;
1124 1188
  }
1125 1189

	
1126 1190
  /// \ingroup graph_properties
1127 1191
  ///
1128
  /// \brief Find the bi-edge-connected cut edges.
1192
  /// \brief Find the bi-edge-connected cut edges in an undirected graph.
1129 1193
  ///
1130
  /// This function finds the bi-edge-connected components in an undirected
1131
  /// graph. The bi-edge-connected components are the classes of an equivalence
1132
  /// relation on the nodes. Two nodes are in relationship when they are
1133
  /// connected with at least two edge-disjoint paths. The bi-edge-connected
1134
  /// components are separted by edges which are the cut edges of the
1135
  /// components.
1194
  /// This function finds the bi-edge-connected cut edges in the given
1195
  /// undirected graph. 
1136 1196
  ///
1137
  /// \param graph The graph.
1138
  /// \retval cutMap A writable node map. The values will be set true when the
1139
  /// edge is a cut edge.
1197
  /// The bi-edge-connected components are the classes of an equivalence
1198
  /// relation on the nodes of an undirected graph. Two nodes are in the
1199
  /// same class if they are connected with at least two edge-disjoint
1200
  /// paths.
1201
  /// The bi-edge-connected components are separted by the cut edges of
1202
  /// the components.
1203
  ///
1204
  /// \param graph The undirected graph.
1205
  /// \retval cutMap A writable edge map. The values will be set to \c true
1206
  /// for the cut edges (exactly once for each cut edge), and will not be
1207
  /// changed for other edges.
1140 1208
  /// \return The number of cut edges.
1209
  ///
1210
  /// \see biEdgeConnected(), biEdgeConnectedComponents()
1141 1211
  template <typename Graph, typename EdgeMap>
1142 1212
  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
1143 1213
    checkConcept<concepts::Graph, Graph>();
1144 1214
    typedef typename Graph::NodeIt NodeIt;
1145 1215
    typedef typename Graph::Edge Edge;
1146 1216
    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
1147 1217

	
1148 1218
    using namespace _connectivity_bits;
1149 1219

	
1150 1220
    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
1151 1221

	
1152 1222
    int cutNum = 0;
1153 1223
    Visitor visitor(graph, cutMap, cutNum);
1154 1224

	
1155 1225
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1156 1226
    dfs.init();
1157 1227

	
1158 1228
    for (NodeIt it(graph); it != INVALID; ++it) {
1159 1229
      if (!dfs.reached(it)) {
1160 1230
        dfs.addSource(it);
1161 1231
        dfs.start();
1162 1232
      }
1163 1233
    }
1164 1234
    return cutNum;
1165 1235
  }
1166 1236

	
1167 1237

	
1168 1238
  namespace _connectivity_bits {
1169 1239

	
1170 1240
    template <typename Digraph, typename IntNodeMap>
1171 1241
    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
1172 1242
    public:
1173 1243
      typedef typename Digraph::Node Node;
1174 1244
      typedef typename Digraph::Arc edge;
1175 1245

	
1176 1246
      TopologicalSortVisitor(IntNodeMap& order, int num)
1177 1247
        : _order(order), _num(num) {}
1178 1248

	
1179 1249
      void leave(const Node& node) {
1180 1250
        _order.set(node, --_num);
1181 1251
      }
1182 1252

	
1183 1253
    private:
1184 1254
      IntNodeMap& _order;
1185 1255
      int _num;
1186 1256
    };
1187 1257

	
1188 1258
  }
1189 1259

	
1190 1260
  /// \ingroup graph_properties
1191 1261
  ///
1262
  /// \brief Check whether a digraph is DAG.
1263
  ///
1264
  /// This function checks whether the given digraph is DAG, i.e.
1265
  /// \e Directed \e Acyclic \e Graph.
1266
  /// \return \c true if there is no directed cycle in the digraph.
1267
  /// \see acyclic()
1268
  template <typename Digraph>
1269
  bool dag(const Digraph& digraph) {
1270

	
1271
    checkConcept<concepts::Digraph, Digraph>();
1272

	
1273
    typedef typename Digraph::Node Node;
1274
    typedef typename Digraph::NodeIt NodeIt;
1275
    typedef typename Digraph::Arc Arc;
1276

	
1277
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1278

	
1279
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1280
      Create dfs(digraph);
1281

	
1282
    ProcessedMap processed(digraph);
1283
    dfs.processedMap(processed);
1284

	
1285
    dfs.init();
1286
    for (NodeIt it(digraph); it != INVALID; ++it) {
1287
      if (!dfs.reached(it)) {
1288
        dfs.addSource(it);
1289
        while (!dfs.emptyQueue()) {
1290
          Arc arc = dfs.nextArc();
1291
          Node target = digraph.target(arc);
1292
          if (dfs.reached(target) && !processed[target]) {
1293
            return false;
1294
          }
1295
          dfs.processNextArc();
1296
        }
1297
      }
1298
    }
1299
    return true;
1300
  }
1301

	
1302
  /// \ingroup graph_properties
1303
  ///
1192 1304
  /// \brief Sort the nodes of a DAG into topolgical order.
1193 1305
  ///
1194
  /// Sort the nodes of a DAG into topolgical order.
1306
  /// This function sorts the nodes of the given acyclic digraph (DAG)
1307
  /// into topolgical order.
1195 1308
  ///
1196
  /// \param graph The graph. It must be directed and acyclic.
1309
  /// \param digraph The digraph, which must be DAG.
1197 1310
  /// \retval order A writable node map. The values will be set from 0 to
1198
  /// the number of the nodes in the graph minus one. Each values of the map
1199
  /// will be set exactly once, the values  will be set descending order.
1311
  /// the number of the nodes in the digraph minus one. Each value of the
1312
  /// map will be set exactly once, and the values will be set descending
1313
  /// order.
1200 1314
  ///
1201
  /// \see checkedTopologicalSort
1202
  /// \see dag
1315
  /// \see dag(), checkedTopologicalSort()
1203 1316
  template <typename Digraph, typename NodeMap>
1204
  void topologicalSort(const Digraph& graph, NodeMap& order) {
1317
  void topologicalSort(const Digraph& digraph, NodeMap& order) {
1205 1318
    using namespace _connectivity_bits;
1206 1319

	
1207 1320
    checkConcept<concepts::Digraph, Digraph>();
1208 1321
    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
1209 1322

	
1210 1323
    typedef typename Digraph::Node Node;
1211 1324
    typedef typename Digraph::NodeIt NodeIt;
1212 1325
    typedef typename Digraph::Arc Arc;
1213 1326

	
1214 1327
    TopologicalSortVisitor<Digraph, NodeMap>
1215
      visitor(order, countNodes(graph));
1328
      visitor(order, countNodes(digraph));
1216 1329

	
1217 1330
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1218
      dfs(graph, visitor);
1331
      dfs(digraph, visitor);
1219 1332

	
1220 1333
    dfs.init();
1221
    for (NodeIt it(graph); it != INVALID; ++it) {
1334
    for (NodeIt it(digraph); it != INVALID; ++it) {
1222 1335
      if (!dfs.reached(it)) {
1223 1336
        dfs.addSource(it);
1224 1337
        dfs.start();
1225 1338
      }
1226 1339
    }
1227 1340
  }
1228 1341

	
1229 1342
  /// \ingroup graph_properties
1230 1343
  ///
1231 1344
  /// \brief Sort the nodes of a DAG into topolgical order.
1232 1345
  ///
1233
  /// Sort the nodes of a DAG into topolgical order. It also checks
1234
  /// that the given graph is DAG.
1346
  /// This function sorts the nodes of the given acyclic digraph (DAG)
1347
  /// into topolgical order and also checks whether the given digraph
1348
  /// is DAG.
1235 1349
  ///
1236
  /// \param digraph The graph. It must be directed and acyclic.
1237
  /// \retval order A readable - writable node map. The values will be set
1238
  /// from 0 to the number of the nodes in the graph minus one. Each values
1239
  /// of the map will be set exactly once, the values will be set descending
1240
  /// order.
1241
  /// \return \c false when the graph is not DAG.
1350
  /// \param digraph The digraph.
1351
  /// \retval order A readable and writable node map. The values will be
1352
  /// set from 0 to the number of the nodes in the digraph minus one. 
1353
  /// Each value of the map will be set exactly once, and the values will
1354
  /// be set descending order.
1355
  /// \return \c false if the digraph is not DAG.
1242 1356
  ///
1243
  /// \see topologicalSort
1244
  /// \see dag
1357
  /// \see dag(), topologicalSort()
1245 1358
  template <typename Digraph, typename NodeMap>
1246 1359
  bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
1247 1360
    using namespace _connectivity_bits;
1248 1361

	
1249 1362
    checkConcept<concepts::Digraph, Digraph>();
1250 1363
    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
1251 1364
      NodeMap>();
1252 1365

	
1253 1366
    typedef typename Digraph::Node Node;
1254 1367
    typedef typename Digraph::NodeIt NodeIt;
1255 1368
    typedef typename Digraph::Arc Arc;
1256 1369

	
1257 1370
    for (NodeIt it(digraph); it != INVALID; ++it) {
1258 1371
      order.set(it, -1);
1259 1372
    }
1260 1373

	
1261 1374
    TopologicalSortVisitor<Digraph, NodeMap>
1262 1375
      visitor(order, countNodes(digraph));
1263 1376

	
1264 1377
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1265 1378
      dfs(digraph, visitor);
1266 1379

	
1267 1380
    dfs.init();
1268 1381
    for (NodeIt it(digraph); it != INVALID; ++it) {
1269 1382
      if (!dfs.reached(it)) {
1270 1383
        dfs.addSource(it);
1271 1384
        while (!dfs.emptyQueue()) {
1272 1385
           Arc arc = dfs.nextArc();
1273 1386
           Node target = digraph.target(arc);
1274 1387
           if (dfs.reached(target) && order[target] == -1) {
1275 1388
             return false;
1276 1389
           }
1277 1390
           dfs.processNextArc();
1278 1391
         }
1279 1392
      }
1280 1393
    }
1281 1394
    return true;
1282 1395
  }
1283 1396

	
1284 1397
  /// \ingroup graph_properties
1285 1398
  ///
1286
  /// \brief Check that the given directed graph is a DAG.
1399
  /// \brief Check whether an undirected graph is acyclic.
1287 1400
  ///
1288
  /// Check that the given directed graph is a DAG. The DAG is
1289
  /// an Directed Acyclic Digraph.
1290
  /// \return \c false when the graph is not DAG.
1291
  /// \see acyclic
1292
  template <typename Digraph>
1293
  bool dag(const Digraph& digraph) {
1294

	
1295
    checkConcept<concepts::Digraph, Digraph>();
1296

	
1297
    typedef typename Digraph::Node Node;
1298
    typedef typename Digraph::NodeIt NodeIt;
1299
    typedef typename Digraph::Arc Arc;
1300

	
1301
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1302

	
1303
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1304
      Create dfs(digraph);
1305

	
1306
    ProcessedMap processed(digraph);
1307
    dfs.processedMap(processed);
1308

	
1309
    dfs.init();
1310
    for (NodeIt it(digraph); it != INVALID; ++it) {
1311
      if (!dfs.reached(it)) {
1312
        dfs.addSource(it);
1313
        while (!dfs.emptyQueue()) {
1314
          Arc edge = dfs.nextArc();
1315
          Node target = digraph.target(edge);
1316
          if (dfs.reached(target) && !processed[target]) {
1317
            return false;
1318
          }
1319
          dfs.processNextArc();
1320
        }
1321
      }
1322
    }
1323
    return true;
1324
  }
1325

	
1326
  /// \ingroup graph_properties
1327
  ///
1328
  /// \brief Check that the given undirected graph is acyclic.
1329
  ///
1330
  /// Check that the given undirected graph acyclic.
1331
  /// \param graph The undirected graph.
1332
  /// \return \c true when there is no circle in the graph.
1333
  /// \see dag
1401
  /// This function checks whether the given undirected graph is acyclic.
1402
  /// \return \c true if there is no cycle in the graph.
1403
  /// \see dag()
1334 1404
  template <typename Graph>
1335 1405
  bool acyclic(const Graph& graph) {
1336 1406
    checkConcept<concepts::Graph, Graph>();
1337 1407
    typedef typename Graph::Node Node;
1338 1408
    typedef typename Graph::NodeIt NodeIt;
1339 1409
    typedef typename Graph::Arc Arc;
1340 1410
    Dfs<Graph> dfs(graph);
1341 1411
    dfs.init();
1342 1412
    for (NodeIt it(graph); it != INVALID; ++it) {
1343 1413
      if (!dfs.reached(it)) {
1344 1414
        dfs.addSource(it);
1345 1415
        while (!dfs.emptyQueue()) {
1346
          Arc edge = dfs.nextArc();
1347
          Node source = graph.source(edge);
1348
          Node target = graph.target(edge);
1416
          Arc arc = dfs.nextArc();
1417
          Node source = graph.source(arc);
1418
          Node target = graph.target(arc);
1349 1419
          if (dfs.reached(target) &&
1350
              dfs.predArc(source) != graph.oppositeArc(edge)) {
1420
              dfs.predArc(source) != graph.oppositeArc(arc)) {
1351 1421
            return false;
1352 1422
          }
1353 1423
          dfs.processNextArc();
1354 1424
        }
1355 1425
      }
1356 1426
    }
1357 1427
    return true;
1358 1428
  }
1359 1429

	
1360 1430
  /// \ingroup graph_properties
1361 1431
  ///
1362
  /// \brief Check that the given undirected graph is tree.
1432
  /// \brief Check whether an undirected graph is tree.
1363 1433
  ///
1364
  /// Check that the given undirected graph is tree.
1365
  /// \param graph The undirected graph.
1366
  /// \return \c true when the graph is acyclic and connected.
1434
  /// This function checks whether the given undirected graph is tree.
1435
  /// \return \c true if the graph is acyclic and connected.
1436
  /// \see acyclic(), connected()
1367 1437
  template <typename Graph>
1368 1438
  bool tree(const Graph& graph) {
1369 1439
    checkConcept<concepts::Graph, Graph>();
1370 1440
    typedef typename Graph::Node Node;
1371 1441
    typedef typename Graph::NodeIt NodeIt;
1372 1442
    typedef typename Graph::Arc Arc;
1443
    if (NodeIt(graph) == INVALID) return true;
1373 1444
    Dfs<Graph> dfs(graph);
1374 1445
    dfs.init();
1375 1446
    dfs.addSource(NodeIt(graph));
1376 1447
    while (!dfs.emptyQueue()) {
1377
      Arc edge = dfs.nextArc();
1378
      Node source = graph.source(edge);
1379
      Node target = graph.target(edge);
1448
      Arc arc = dfs.nextArc();
1449
      Node source = graph.source(arc);
1450
      Node target = graph.target(arc);
1380 1451
      if (dfs.reached(target) &&
1381
          dfs.predArc(source) != graph.oppositeArc(edge)) {
1452
          dfs.predArc(source) != graph.oppositeArc(arc)) {
1382 1453
        return false;
1383 1454
      }
1384 1455
      dfs.processNextArc();
1385 1456
    }
1386 1457
    for (NodeIt it(graph); it != INVALID; ++it) {
1387 1458
      if (!dfs.reached(it)) {
1388 1459
        return false;
1389 1460
      }
1390 1461
    }
1391 1462
    return true;
1392 1463
  }
1393 1464

	
1394 1465
  namespace _connectivity_bits {
1395 1466

	
1396 1467
    template <typename Digraph>
1397 1468
    class BipartiteVisitor : public BfsVisitor<Digraph> {
1398 1469
    public:
1399 1470
      typedef typename Digraph::Arc Arc;
1400 1471
      typedef typename Digraph::Node Node;
1401 1472

	
1402 1473
      BipartiteVisitor(const Digraph& graph, bool& bipartite)
1403 1474
        : _graph(graph), _part(graph), _bipartite(bipartite) {}
1404 1475

	
1405 1476
      void start(const Node& node) {
1406 1477
        _part[node] = true;
1407 1478
      }
1408 1479
      void discover(const Arc& edge) {
1409 1480
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
1410 1481
      }
1411 1482
      void examine(const Arc& edge) {
1412 1483
        _bipartite = _bipartite &&
1413 1484
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
1414 1485
      }
1415 1486

	
1416 1487
    private:
1417 1488

	
1418 1489
      const Digraph& _graph;
1419 1490
      typename Digraph::template NodeMap<bool> _part;
1420 1491
      bool& _bipartite;
1421 1492
    };
1422 1493

	
1423 1494
    template <typename Digraph, typename PartMap>
1424 1495
    class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
1425 1496
    public:
1426 1497
      typedef typename Digraph::Arc Arc;
1427 1498
      typedef typename Digraph::Node Node;
1428 1499

	
1429 1500
      BipartitePartitionsVisitor(const Digraph& graph,
1430 1501
                                 PartMap& part, bool& bipartite)
1431 1502
        : _graph(graph), _part(part), _bipartite(bipartite) {}
1432 1503

	
1433 1504
      void start(const Node& node) {
1434 1505
        _part.set(node, true);
1435 1506
      }
1436 1507
      void discover(const Arc& edge) {
1437 1508
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
1438 1509
      }
1439 1510
      void examine(const Arc& edge) {
1440 1511
        _bipartite = _bipartite &&
1441 1512
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
1442 1513
      }
1443 1514

	
1444 1515
    private:
1445 1516

	
1446 1517
      const Digraph& _graph;
1447 1518
      PartMap& _part;
1448 1519
      bool& _bipartite;
1449 1520
    };
1450 1521
  }
1451 1522

	
1452 1523
  /// \ingroup graph_properties
1453 1524
  ///
1454
  /// \brief Check if the given undirected graph is bipartite or not
1525
  /// \brief Check whether an undirected graph is bipartite.
1455 1526
  ///
1456
  /// The function checks if the given undirected \c graph graph is bipartite
1457
  /// or not. The \ref Bfs algorithm is used to calculate the result.
1458
  /// \param graph The undirected graph.
1459
  /// \return \c true if \c graph is bipartite, \c false otherwise.
1460
  /// \sa bipartitePartitions
1527
  /// The function checks whether the given undirected graph is bipartite.
1528
  /// \return \c true if the graph is bipartite.
1529
  ///
1530
  /// \see bipartitePartitions()
1461 1531
  template<typename Graph>
1462
  inline bool bipartite(const Graph &graph){
1532
  bool bipartite(const Graph &graph){
1463 1533
    using namespace _connectivity_bits;
1464 1534

	
1465 1535
    checkConcept<concepts::Graph, Graph>();
1466 1536

	
1467 1537
    typedef typename Graph::NodeIt NodeIt;
1468 1538
    typedef typename Graph::ArcIt ArcIt;
1469 1539

	
1470 1540
    bool bipartite = true;
1471 1541

	
1472 1542
    BipartiteVisitor<Graph>
1473 1543
      visitor(graph, bipartite);
1474 1544
    BfsVisit<Graph, BipartiteVisitor<Graph> >
1475 1545
      bfs(graph, visitor);
1476 1546
    bfs.init();
1477 1547
    for(NodeIt it(graph); it != INVALID; ++it) {
1478 1548
      if(!bfs.reached(it)){
1479 1549
        bfs.addSource(it);
1480 1550
        while (!bfs.emptyQueue()) {
1481 1551
          bfs.processNextNode();
1482 1552
          if (!bipartite) return false;
1483 1553
        }
1484 1554
      }
1485 1555
    }
1486 1556
    return true;
1487 1557
  }
1488 1558

	
1489 1559
  /// \ingroup graph_properties
1490 1560
  ///
1491
  /// \brief Check if the given undirected graph is bipartite or not
1561
  /// \brief Find the bipartite partitions of an undirected graph.
1492 1562
  ///
1493
  /// The function checks if the given undirected graph is bipartite
1494
  /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result.
1495
  /// During the execution, the \c partMap will be set as the two
1496
  /// partitions of the graph.
1563
  /// This function checks whether the given undirected graph is bipartite
1564
  /// and gives back the bipartite partitions.
1497 1565
  ///
1498 1566
  /// \image html bipartite_partitions.png
1499 1567
  /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
1500 1568
  ///
1501 1569
  /// \param graph The undirected graph.
1502
  /// \retval partMap A writable bool map of nodes. It will be set as the
1503
  /// two partitions of the graph.
1504
  /// \return \c true if \c graph is bipartite, \c false otherwise.
1570
  /// \retval partMap A writable node map of \c bool (or convertible) value
1571
  /// type. The values will be set to \c true for one component and
1572
  /// \c false for the other one.
1573
  /// \return \c true if the graph is bipartite, \c false otherwise.
1574
  ///
1575
  /// \see bipartite()
1505 1576
  template<typename Graph, typename NodeMap>
1506
  inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1577
  bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1507 1578
    using namespace _connectivity_bits;
1508 1579

	
1509 1580
    checkConcept<concepts::Graph, Graph>();
1581
    checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
1510 1582

	
1511 1583
    typedef typename Graph::Node Node;
1512 1584
    typedef typename Graph::NodeIt NodeIt;
1513 1585
    typedef typename Graph::ArcIt ArcIt;
1514 1586

	
1515 1587
    bool bipartite = true;
1516 1588

	
1517 1589
    BipartitePartitionsVisitor<Graph, NodeMap>
1518 1590
      visitor(graph, partMap, bipartite);
1519 1591
    BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
1520 1592
      bfs(graph, visitor);
1521 1593
    bfs.init();
1522 1594
    for(NodeIt it(graph); it != INVALID; ++it) {
1523 1595
      if(!bfs.reached(it)){
1524 1596
        bfs.addSource(it);
1525 1597
        while (!bfs.emptyQueue()) {
1526 1598
          bfs.processNextNode();
1527 1599
          if (!bipartite) return false;
1528 1600
        }
1529 1601
      }
1530 1602
    }
1531 1603
    return true;
1532 1604
  }
1533 1605

	
1534
  /// \brief Returns true when there are not loop edges in the graph.
1606
  /// \ingroup graph_properties
1535 1607
  ///
1536
  /// Returns true when there are not loop edges in the graph.
1537
  template <typename Digraph>
1538
  bool loopFree(const Digraph& digraph) {
1539
    for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
1540
      if (digraph.source(it) == digraph.target(it)) return false;
1608
  /// \brief Check whether the given graph contains no loop arcs/edges.
1609
  ///
1610
  /// This function returns \c true if there are no loop arcs/edges in
1611
  /// the given graph. It works for both directed and undirected graphs.
1612
  template <typename Graph>
1613
  bool loopFree(const Graph& graph) {
1614
    for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
1615
      if (graph.source(it) == graph.target(it)) return false;
1541 1616
    }
1542 1617
    return true;
1543 1618
  }
1544 1619

	
1545
  /// \brief Returns true when there are not parallel edges in the graph.
1620
  /// \ingroup graph_properties
1546 1621
  ///
1547
  /// Returns true when there are not parallel edges in the graph.
1548
  template <typename Digraph>
1549
  bool parallelFree(const Digraph& digraph) {
1550
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1551
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1552
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1553
        if (reached[digraph.target(a)]) return false;
1554
        reached.set(digraph.target(a), true);
1622
  /// \brief Check whether the given graph contains no parallel arcs/edges.
1623
  ///
1624
  /// This function returns \c true if there are no parallel arcs/edges in
1625
  /// the given graph. It works for both directed and undirected graphs.
1626
  template <typename Graph>
1627
  bool parallelFree(const Graph& graph) {
1628
    typename Graph::template NodeMap<int> reached(graph, 0);
1629
    int cnt = 1;
1630
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
1631
      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
1632
        if (reached[graph.target(a)] == cnt) return false;
1633
        reached[graph.target(a)] = cnt;
1555 1634
      }
1556
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1557
        reached.set(digraph.target(a), false);
1558
      }
1635
      ++cnt;
1559 1636
    }
1560 1637
    return true;
1561 1638
  }
1562 1639

	
1563
  /// \brief Returns true when there are not loop edges and parallel
1564
  /// edges in the graph.
1640
  /// \ingroup graph_properties
1565 1641
  ///
1566
  /// Returns true when there are not loop edges and parallel edges in
1567
  /// the graph.
1568
  template <typename Digraph>
1569
  bool simpleDigraph(const Digraph& digraph) {
1570
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1571
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1572
      reached.set(n, true);
1573
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1574
        if (reached[digraph.target(a)]) return false;
1575
        reached.set(digraph.target(a), true);
1642
  /// \brief Check whether the given graph is simple.
1643
  ///
1644
  /// This function returns \c true if the given graph is simple, i.e.
1645
  /// it contains no loop arcs/edges and no parallel arcs/edges.
1646
  /// The function works for both directed and undirected graphs.
1647
  /// \see loopFree(), parallelFree()
1648
  template <typename Graph>
1649
  bool simpleGraph(const Graph& graph) {
1650
    typename Graph::template NodeMap<int> reached(graph, 0);
1651
    int cnt = 1;
1652
    for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
1653
      reached[n] = cnt;
1654
      for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
1655
        if (reached[graph.target(a)] == cnt) return false;
1656
        reached[graph.target(a)] = cnt;
1576 1657
      }
1577
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1578
        reached.set(digraph.target(a), false);
1579
      }
1580
      reached.set(n, false);
1658
      ++cnt;
1581 1659
    }
1582 1660
    return true;
1583 1661
  }
1584 1662

	
1585 1663
} //namespace lemon
1586 1664

	
1587 1665
#endif //LEMON_CONNECTIVITY_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_EDGE_SET_H
20 20
#define LEMON_EDGE_SET_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/bits/edge_set_extender.h>
24 24

	
25
/// \ingroup semi_adaptors
25
/// \ingroup graphs
26 26
/// \file
27 27
/// \brief ArcSet and EdgeSet classes.
28 28
///
29 29
/// Graphs which use another graph's node-set as own.
30 30
namespace lemon {
31 31

	
32 32
  template <typename GR>
33 33
  class ListArcSetBase {
34 34
  public:
35 35

	
36 36
    typedef typename GR::Node Node;
37 37
    typedef typename GR::NodeIt NodeIt;
38 38

	
39 39
  protected:
40 40

	
41 41
    struct NodeT {
42 42
      int first_out, first_in;
43 43
      NodeT() : first_out(-1), first_in(-1) {}
44 44
    };
45 45

	
46 46
    typedef typename ItemSetTraits<GR, Node>::
47 47
    template Map<NodeT>::Type NodesImplBase;
48 48

	
49 49
    NodesImplBase* _nodes;
50 50

	
51 51
    struct ArcT {
52 52
      Node source, target;
53 53
      int next_out, next_in;
54 54
      int prev_out, prev_in;
55 55
      ArcT() : prev_out(-1), prev_in(-1) {}
56 56
    };
57 57

	
58 58
    std::vector<ArcT> arcs;
59 59

	
60 60
    int first_arc;
61 61
    int first_free_arc;
62 62

	
63 63
    const GR* _graph;
64 64

	
65 65
    void initalize(const GR& graph, NodesImplBase& nodes) {
66 66
      _graph = &graph;
67 67
      _nodes = &nodes;
68 68
    }
69 69

	
70 70
  public:
71 71

	
72 72
    class Arc {
73 73
      friend class ListArcSetBase<GR>;
74 74
    protected:
75 75
      Arc(int _id) : id(_id) {}
76 76
      int id;
77 77
    public:
78 78
      Arc() {}
79 79
      Arc(Invalid) : id(-1) {}
80 80
      bool operator==(const Arc& arc) const { return id == arc.id; }
81 81
      bool operator!=(const Arc& arc) const { return id != arc.id; }
82 82
      bool operator<(const Arc& arc) const { return id < arc.id; }
83 83
    };
84 84

	
85 85
    ListArcSetBase() : first_arc(-1), first_free_arc(-1) {}
86 86

	
87 87
    Arc addArc(const Node& u, const Node& v) {
88 88
      int n;
89 89
      if (first_free_arc == -1) {
90 90
        n = arcs.size();
91 91
        arcs.push_back(ArcT());
92 92
      } else {
93 93
        n = first_free_arc;
94 94
        first_free_arc = arcs[first_free_arc].next_in;
95 95
      }
96 96
      arcs[n].next_in = (*_nodes)[v].first_in;
97 97
      if ((*_nodes)[v].first_in != -1) {
98 98
        arcs[(*_nodes)[v].first_in].prev_in = n;
99 99
      }
100 100
      (*_nodes)[v].first_in = n;
101 101
      arcs[n].next_out = (*_nodes)[u].first_out;
102 102
      if ((*_nodes)[u].first_out != -1) {
103 103
        arcs[(*_nodes)[u].first_out].prev_out = n;
104 104
      }
105 105
      (*_nodes)[u].first_out = n;
106 106
      arcs[n].source = u;
107 107
      arcs[n].target = v;
108 108
      return Arc(n);
109 109
    }
110 110

	
111 111
    void erase(const Arc& arc) {
112 112
      int n = arc.id;
113 113
      if (arcs[n].prev_in != -1) {
114 114
        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
115 115
      } else {
116 116
        (*_nodes)[arcs[n].target].first_in = arcs[n].next_in;
117 117
      }
118 118
      if (arcs[n].next_in != -1) {
119 119
        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
120 120
      }
121 121

	
122 122
      if (arcs[n].prev_out != -1) {
123 123
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
124 124
      } else {
125 125
        (*_nodes)[arcs[n].source].first_out = arcs[n].next_out;
126 126
      }
127 127
      if (arcs[n].next_out != -1) {
128 128
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
129 129
      }
130 130

	
131 131
    }
132 132

	
133 133
    void clear() {
134 134
      Node node;
135 135
      for (first(node); node != INVALID; next(node)) {
136 136
        (*_nodes)[node].first_in = -1;
137 137
        (*_nodes)[node].first_out = -1;
138 138
      }
139 139
      arcs.clear();
140 140
      first_arc = -1;
141 141
      first_free_arc = -1;
142 142
    }
143 143

	
144 144
    void first(Node& node) const {
145 145
      _graph->first(node);
146 146
    }
147 147

	
148 148
    void next(Node& node) const {
149 149
      _graph->next(node);
150 150
    }
151 151

	
152 152
    void first(Arc& arc) const {
153 153
      Node node;
154 154
      first(node);
155 155
      while (node != INVALID && (*_nodes)[node].first_in == -1) {
156 156
        next(node);
157 157
      }
158 158
      arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in;
159 159
    }
160 160

	
161 161
    void next(Arc& arc) const {
162 162
      if (arcs[arc.id].next_in != -1) {
163 163
        arc.id = arcs[arc.id].next_in;
164 164
      } else {
165 165
        Node node = arcs[arc.id].target;
166 166
        next(node);
167 167
        while (node != INVALID && (*_nodes)[node].first_in == -1) {
168 168
          next(node);
169 169
        }
170 170
        arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in;
171 171
      }
172 172
    }
173 173

	
174 174
    void firstOut(Arc& arc, const Node& node) const {
175 175
      arc.id = (*_nodes)[node].first_out;
176 176
    }
177 177

	
178 178
    void nextOut(Arc& arc) const {
179 179
      arc.id = arcs[arc.id].next_out;
180 180
    }
181 181

	
182 182
    void firstIn(Arc& arc, const Node& node) const {
183 183
      arc.id = (*_nodes)[node].first_in;
184 184
    }
185 185

	
186 186
    void nextIn(Arc& arc) const {
187 187
      arc.id = arcs[arc.id].next_in;
188 188
    }
189 189

	
190 190
    int id(const Node& node) const { return _graph->id(node); }
191 191
    int id(const Arc& arc) const { return arc.id; }
192 192

	
193 193
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
194 194
    Arc arcFromId(int ix) const { return Arc(ix); }
195 195

	
196 196
    int maxNodeId() const { return _graph->maxNodeId(); };
197 197
    int maxArcId() const { return arcs.size() - 1; }
198 198

	
199 199
    Node source(const Arc& arc) const { return arcs[arc.id].source;}
200 200
    Node target(const Arc& arc) const { return arcs[arc.id].target;}
201 201

	
202 202
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
203 203

	
204 204
    NodeNotifier& notifier(Node) const {
205 205
      return _graph->notifier(Node());
206 206
    }
207 207

	
208 208
    template <typename V>
209 209
    class NodeMap : public GR::template NodeMap<V> {
210 210
      typedef typename GR::template NodeMap<V> Parent;
211 211

	
212 212
    public:
213 213

	
214 214
      explicit NodeMap(const ListArcSetBase<GR>& arcset)
215 215
        : Parent(*arcset._graph) {}
216 216

	
217 217
      NodeMap(const ListArcSetBase<GR>& arcset, const V& value)
218 218
        : Parent(*arcset._graph, value) {}
219 219

	
220 220
      NodeMap& operator=(const NodeMap& cmap) {
221 221
        return operator=<NodeMap>(cmap);
222 222
      }
223 223

	
224 224
      template <typename CMap>
225 225
      NodeMap& operator=(const CMap& cmap) {
226 226
        Parent::operator=(cmap);
227 227
        return *this;
228 228
      }
229 229
    };
230 230

	
231 231
  };
232 232

	
233
  /// \ingroup semi_adaptors
233
  /// \ingroup graphs
234 234
  ///
235 235
  /// \brief Digraph using a node set of another digraph or graph and
236 236
  /// an own arc set.
237 237
  ///
238 238
  /// This structure can be used to establish another directed graph
239 239
  /// over a node set of an existing one. This class uses the same
240 240
  /// Node type as the underlying graph, and each valid node of the
241 241
  /// original graph is valid in this arc set, therefore the node
242 242
  /// objects of the original graph can be used directly with this
243 243
  /// class. The node handling functions (id handling, observing, and
244 244
  /// iterators) works equivalently as in the original graph.
245 245
  ///
246 246
  /// This implementation is based on doubly-linked lists, from each
247 247
  /// node the outgoing and the incoming arcs make up lists, therefore
248 248
  /// one arc can be erased in constant time. It also makes possible,
249 249
  /// that node can be removed from the underlying graph, in this case
250 250
  /// all arcs incident to the given node is erased from the arc set.
251 251
  ///
252 252
  /// \param GR The type of the graph which shares its node set with
253 253
  /// this class. Its interface must conform to the
254 254
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
255 255
  /// concept.
256 256
  ///
257 257
  /// This class fully conforms to the \ref concepts::Digraph
258 258
  /// "Digraph" concept.
259 259
  template <typename GR>
260 260
  class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
261 261
    typedef ArcSetExtender<ListArcSetBase<GR> > Parent;
262 262

	
263 263
  public:
264 264

	
265 265
    typedef typename Parent::Node Node;
266 266
    typedef typename Parent::Arc Arc;
267 267

	
268 268
    typedef typename Parent::NodesImplBase NodesImplBase;
269 269

	
270 270
    void eraseNode(const Node& node) {
271 271
      Arc arc;
272 272
      Parent::firstOut(arc, node);
273 273
      while (arc != INVALID ) {
274 274
        erase(arc);
275 275
        Parent::firstOut(arc, node);
276 276
      }
277 277

	
278 278
      Parent::firstIn(arc, node);
279 279
      while (arc != INVALID ) {
280 280
        erase(arc);
281 281
        Parent::firstIn(arc, node);
282 282
      }
283 283
    }
284 284

	
285 285
    void clearNodes() {
286 286
      Parent::clear();
287 287
    }
288 288

	
289 289
    class NodesImpl : public NodesImplBase {
290 290
      typedef NodesImplBase Parent;
291 291

	
292 292
    public:
293 293
      NodesImpl(const GR& graph, ListArcSet& arcset)
294 294
        : Parent(graph), _arcset(arcset) {}
295 295

	
296 296
      virtual ~NodesImpl() {}
297 297

	
298 298
    protected:
299 299

	
300 300
      virtual void erase(const Node& node) {
301 301
        _arcset.eraseNode(node);
302 302
        Parent::erase(node);
303 303
      }
304 304
      virtual void erase(const std::vector<Node>& nodes) {
305 305
        for (int i = 0; i < int(nodes.size()); ++i) {
306 306
          _arcset.eraseNode(nodes[i]);
307 307
        }
308 308
        Parent::erase(nodes);
309 309
      }
310 310
      virtual void clear() {
311 311
        _arcset.clearNodes();
312 312
        Parent::clear();
313 313
      }
314 314

	
315 315
    private:
316 316
      ListArcSet& _arcset;
317 317
    };
318 318

	
319 319
    NodesImpl _nodes;
320 320

	
321 321
  public:
322 322

	
323 323
    /// \brief Constructor of the ArcSet.
324 324
    ///
325 325
    /// Constructor of the ArcSet.
326 326
    ListArcSet(const GR& graph) : _nodes(graph, *this) {
327 327
      Parent::initalize(graph, _nodes);
328 328
    }
329 329

	
330 330
    /// \brief Add a new arc to the digraph.
331 331
    ///
332 332
    /// Add a new arc to the digraph with source node \c s
333 333
    /// and target node \c t.
334 334
    /// \return The new arc.
335 335
    Arc addArc(const Node& s, const Node& t) {
336 336
      return Parent::addArc(s, t);
337 337
    }
338 338

	
339 339
    /// \brief Erase an arc from the digraph.
340 340
    ///
341 341
    /// Erase an arc \c a from the digraph.
342 342
    void erase(const Arc& a) {
343 343
      return Parent::erase(a);
344 344
    }
345 345

	
346 346
  };
347 347

	
348 348
  template <typename GR>
349 349
  class ListEdgeSetBase {
350 350
  public:
351 351

	
352 352
    typedef typename GR::Node Node;
353 353
    typedef typename GR::NodeIt NodeIt;
354 354

	
355 355
  protected:
356 356

	
357 357
    struct NodeT {
358 358
      int first_out;
359 359
      NodeT() : first_out(-1) {}
360 360
    };
361 361

	
362 362
    typedef typename ItemSetTraits<GR, Node>::
363 363
    template Map<NodeT>::Type NodesImplBase;
364 364

	
365 365
    NodesImplBase* _nodes;
366 366

	
367 367
    struct ArcT {
368 368
      Node target;
369 369
      int prev_out, next_out;
370 370
      ArcT() : prev_out(-1), next_out(-1) {}
371 371
    };
372 372

	
373 373
    std::vector<ArcT> arcs;
374 374

	
375 375
    int first_arc;
376 376
    int first_free_arc;
377 377

	
378 378
    const GR* _graph;
379 379

	
380 380
    void initalize(const GR& graph, NodesImplBase& nodes) {
381 381
      _graph = &graph;
382 382
      _nodes = &nodes;
383 383
    }
384 384

	
385 385
  public:
386 386

	
387 387
    class Edge {
388 388
      friend class ListEdgeSetBase;
389 389
    protected:
390 390

	
391 391
      int id;
392 392
      explicit Edge(int _id) { id = _id;}
393 393

	
394 394
    public:
395 395
      Edge() {}
396 396
      Edge (Invalid) { id = -1; }
397 397
      bool operator==(const Edge& arc) const {return id == arc.id;}
398 398
      bool operator!=(const Edge& arc) const {return id != arc.id;}
399 399
      bool operator<(const Edge& arc) const {return id < arc.id;}
400 400
    };
401 401

	
402 402
    class Arc {
403 403
      friend class ListEdgeSetBase;
404 404
    protected:
405 405
      Arc(int _id) : id(_id) {}
406 406
      int id;
407 407
    public:
408 408
      operator Edge() const { return edgeFromId(id / 2); }
409 409

	
410 410
      Arc() {}
411 411
      Arc(Invalid) : id(-1) {}
412 412
      bool operator==(const Arc& arc) const { return id == arc.id; }
413 413
      bool operator!=(const Arc& arc) const { return id != arc.id; }
414 414
      bool operator<(const Arc& arc) const { return id < arc.id; }
415 415
    };
416 416

	
417 417
    ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {}
418 418

	
419 419
    Edge addEdge(const Node& u, const Node& v) {
420 420
      int n;
421 421

	
422 422
      if (first_free_arc == -1) {
423 423
        n = arcs.size();
424 424
        arcs.push_back(ArcT());
425 425
        arcs.push_back(ArcT());
426 426
      } else {
427 427
        n = first_free_arc;
428 428
        first_free_arc = arcs[n].next_out;
429 429
      }
430 430

	
431 431
      arcs[n].target = u;
432 432
      arcs[n | 1].target = v;
433 433

	
434 434
      arcs[n].next_out = (*_nodes)[v].first_out;
435 435
      if ((*_nodes)[v].first_out != -1) {
436 436
        arcs[(*_nodes)[v].first_out].prev_out = n;
437 437
      }
438 438
      (*_nodes)[v].first_out = n;
439 439
      arcs[n].prev_out = -1;
440 440

	
441 441
      if ((*_nodes)[u].first_out != -1) {
442 442
        arcs[(*_nodes)[u].first_out].prev_out = (n | 1);
443 443
      }
444 444
      arcs[n | 1].next_out = (*_nodes)[u].first_out;
445 445
      (*_nodes)[u].first_out = (n | 1);
446 446
      arcs[n | 1].prev_out = -1;
447 447

	
448 448
      return Edge(n / 2);
449 449
    }
450 450

	
451 451
    void erase(const Edge& arc) {
452 452
      int n = arc.id * 2;
453 453

	
454 454
      if (arcs[n].next_out != -1) {
455 455
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
456 456
      }
457 457

	
458 458
      if (arcs[n].prev_out != -1) {
459 459
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
460 460
      } else {
461 461
        (*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out;
462 462
      }
463 463

	
464 464
      if (arcs[n | 1].next_out != -1) {
465 465
        arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
466 466
      }
467 467

	
468 468
      if (arcs[n | 1].prev_out != -1) {
469 469
        arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
470 470
      } else {
471 471
        (*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out;
472 472
      }
473 473

	
474 474
      arcs[n].next_out = first_free_arc;
475 475
      first_free_arc = n;
476 476

	
477 477
    }
478 478

	
479 479
    void clear() {
480 480
      Node node;
481 481
      for (first(node); node != INVALID; next(node)) {
482 482
        (*_nodes)[node].first_out = -1;
483 483
      }
484 484
      arcs.clear();
485 485
      first_arc = -1;
486 486
      first_free_arc = -1;
487 487
    }
488 488

	
489 489
    void first(Node& node) const {
490 490
      _graph->first(node);
491 491
    }
492 492

	
493 493
    void next(Node& node) const {
494 494
      _graph->next(node);
495 495
    }
496 496

	
497 497
    void first(Arc& arc) const {
498 498
      Node node;
499 499
      first(node);
500 500
      while (node != INVALID && (*_nodes)[node].first_out == -1) {
501 501
        next(node);
502 502
      }
503 503
      arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out;
504 504
    }
505 505

	
506 506
    void next(Arc& arc) const {
507 507
      if (arcs[arc.id].next_out != -1) {
508 508
        arc.id = arcs[arc.id].next_out;
509 509
      } else {
510 510
        Node node = arcs[arc.id ^ 1].target;
511 511
        next(node);
512 512
        while(node != INVALID && (*_nodes)[node].first_out == -1) {
513 513
          next(node);
514 514
        }
515 515
        arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out;
516 516
      }
517 517
    }
518 518

	
519 519
    void first(Edge& edge) const {
520 520
      Node node;
521 521
      first(node);
522 522
      while (node != INVALID) {
523 523
        edge.id = (*_nodes)[node].first_out;
524 524
        while ((edge.id & 1) != 1) {
525 525
          edge.id = arcs[edge.id].next_out;
526 526
        }
527 527
        if (edge.id != -1) {
528 528
          edge.id /= 2;
529 529
          return;
530 530
        }
531 531
        next(node);
532 532
      }
533 533
      edge.id = -1;
534 534
    }
535 535

	
536 536
    void next(Edge& edge) const {
537 537
      Node node = arcs[edge.id * 2].target;
538 538
      edge.id = arcs[(edge.id * 2) | 1].next_out;
539 539
      while ((edge.id & 1) != 1) {
540 540
        edge.id = arcs[edge.id].next_out;
541 541
      }
542 542
      if (edge.id != -1) {
543 543
        edge.id /= 2;
544 544
        return;
545 545
      }
546 546
      next(node);
547 547
      while (node != INVALID) {
548 548
        edge.id = (*_nodes)[node].first_out;
549 549
        while ((edge.id & 1) != 1) {
550 550
          edge.id = arcs[edge.id].next_out;
551 551
        }
552 552
        if (edge.id != -1) {
553 553
          edge.id /= 2;
554 554
          return;
555 555
        }
556 556
        next(node);
557 557
      }
558 558
      edge.id = -1;
559 559
    }
560 560

	
561 561
    void firstOut(Arc& arc, const Node& node) const {
562 562
      arc.id = (*_nodes)[node].first_out;
563 563
    }
564 564

	
565 565
    void nextOut(Arc& arc) const {
566 566
      arc.id = arcs[arc.id].next_out;
567 567
    }
568 568

	
569 569
    void firstIn(Arc& arc, const Node& node) const {
570 570
      arc.id = (((*_nodes)[node].first_out) ^ 1);
571 571
      if (arc.id == -2) arc.id = -1;
572 572
    }
573 573

	
574 574
    void nextIn(Arc& arc) const {
575 575
      arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1);
576 576
      if (arc.id == -2) arc.id = -1;
577 577
    }
578 578

	
579 579
    void firstInc(Edge &arc, bool& dir, const Node& node) const {
580 580
      int de = (*_nodes)[node].first_out;
581 581
      if (de != -1 ) {
582 582
        arc.id = de / 2;
583 583
        dir = ((de & 1) == 1);
584 584
      } else {
585 585
        arc.id = -1;
586 586
        dir = true;
587 587
      }
588 588
    }
589 589
    void nextInc(Edge &arc, bool& dir) const {
590 590
      int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out);
591 591
      if (de != -1 ) {
592 592
        arc.id = de / 2;
593 593
        dir = ((de & 1) == 1);
594 594
      } else {
595 595
        arc.id = -1;
596 596
        dir = true;
597 597
      }
598 598
    }
599 599

	
600 600
    static bool direction(Arc arc) {
601 601
      return (arc.id & 1) == 1;
602 602
    }
603 603

	
604 604
    static Arc direct(Edge edge, bool dir) {
605 605
      return Arc(edge.id * 2 + (dir ? 1 : 0));
606 606
    }
607 607

	
608 608
    int id(const Node& node) const { return _graph->id(node); }
609 609
    static int id(Arc e) { return e.id; }
610 610
    static int id(Edge e) { return e.id; }
611 611

	
612 612
    Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
613 613
    static Arc arcFromId(int id) { return Arc(id);}
614 614
    static Edge edgeFromId(int id) { return Edge(id);}
615 615

	
616 616
    int maxNodeId() const { return _graph->maxNodeId(); };
617 617
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
618 618
    int maxArcId() const { return arcs.size()-1; }
619 619

	
620 620
    Node source(Arc e) const { return arcs[e.id ^ 1].target; }
621 621
    Node target(Arc e) const { return arcs[e.id].target; }
622 622

	
623 623
    Node u(Edge e) const { return arcs[2 * e.id].target; }
624 624
    Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
625 625

	
626 626
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
627 627

	
628 628
    NodeNotifier& notifier(Node) const {
629 629
      return _graph->notifier(Node());
630 630
    }
631 631

	
632 632
    template <typename V>
633 633
    class NodeMap : public GR::template NodeMap<V> {
634 634
      typedef typename GR::template NodeMap<V> Parent;
635 635

	
636 636
    public:
637 637

	
638 638
      explicit NodeMap(const ListEdgeSetBase<GR>& arcset)
639 639
        : Parent(*arcset._graph) {}
640 640

	
641 641
      NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value)
642 642
        : Parent(*arcset._graph, value) {}
643 643

	
644 644
      NodeMap& operator=(const NodeMap& cmap) {
645 645
        return operator=<NodeMap>(cmap);
646 646
      }
647 647

	
648 648
      template <typename CMap>
649 649
      NodeMap& operator=(const CMap& cmap) {
650 650
        Parent::operator=(cmap);
651 651
        return *this;
652 652
      }
653 653
    };
654 654

	
655 655
  };
656 656

	
657
  /// \ingroup semi_adaptors
657
  /// \ingroup graphs
658 658
  ///
659 659
  /// \brief Graph using a node set of another digraph or graph and an
660 660
  /// own edge set.
661 661
  ///
662 662
  /// This structure can be used to establish another graph over a
663 663
  /// node set of an existing one. This class uses the same Node type
664 664
  /// as the underlying graph, and each valid node of the original
665 665
  /// graph is valid in this arc set, therefore the node objects of
666 666
  /// the original graph can be used directly with this class. The
667 667
  /// node handling functions (id handling, observing, and iterators)
668 668
  /// works equivalently as in the original graph.
669 669
  ///
670 670
  /// This implementation is based on doubly-linked lists, from each
671 671
  /// node the incident edges make up lists, therefore one edge can be
672 672
  /// erased in constant time. It also makes possible, that node can
673 673
  /// be removed from the underlying graph, in this case all edges
674 674
  /// incident to the given node is erased from the arc set.
675 675
  ///
676 676
  /// \param GR The type of the graph which shares its node set
677 677
  /// with this class. Its interface must conform to the
678 678
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
679 679
  /// concept.
680 680
  ///
681 681
  /// This class fully conforms to the \ref concepts::Graph "Graph"
682 682
  /// concept.
683 683
  template <typename GR>
684 684
  class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
685 685
    typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent;
686 686

	
687 687
  public:
688 688

	
689 689
    typedef typename Parent::Node Node;
690 690
    typedef typename Parent::Arc Arc;
691 691
    typedef typename Parent::Edge Edge;
692 692

	
693 693
    typedef typename Parent::NodesImplBase NodesImplBase;
694 694

	
695 695
    void eraseNode(const Node& node) {
696 696
      Arc arc;
697 697
      Parent::firstOut(arc, node);
698 698
      while (arc != INVALID ) {
699 699
        erase(arc);
700 700
        Parent::firstOut(arc, node);
701 701
      }
702 702

	
703 703
    }
704 704

	
705 705
    void clearNodes() {
706 706
      Parent::clear();
707 707
    }
708 708

	
709 709
    class NodesImpl : public NodesImplBase {
710 710
      typedef NodesImplBase Parent;
711 711

	
712 712
    public:
713 713
      NodesImpl(const GR& graph, ListEdgeSet& arcset)
714 714
        : Parent(graph), _arcset(arcset) {}
715 715

	
716 716
      virtual ~NodesImpl() {}
717 717

	
718 718
    protected:
719 719

	
720 720
      virtual void erase(const Node& node) {
721 721
        _arcset.eraseNode(node);
722 722
        Parent::erase(node);
723 723
      }
724 724
      virtual void erase(const std::vector<Node>& nodes) {
725 725
        for (int i = 0; i < int(nodes.size()); ++i) {
726 726
          _arcset.eraseNode(nodes[i]);
727 727
        }
728 728
        Parent::erase(nodes);
729 729
      }
730 730
      virtual void clear() {
731 731
        _arcset.clearNodes();
732 732
        Parent::clear();
733 733
      }
734 734

	
735 735
    private:
736 736
      ListEdgeSet& _arcset;
737 737
    };
738 738

	
739 739
    NodesImpl _nodes;
740 740

	
741 741
  public:
742 742

	
743 743
    /// \brief Constructor of the EdgeSet.
744 744
    ///
745 745
    /// Constructor of the EdgeSet.
746 746
    ListEdgeSet(const GR& graph) : _nodes(graph, *this) {
747 747
      Parent::initalize(graph, _nodes);
748 748
    }
749 749

	
750 750
    /// \brief Add a new edge to the graph.
751 751
    ///
752 752
    /// Add a new edge to the graph with node \c u
753 753
    /// and node \c v endpoints.
754 754
    /// \return The new edge.
755 755
    Edge addEdge(const Node& u, const Node& v) {
756 756
      return Parent::addEdge(u, v);
757 757
    }
758 758

	
759 759
    /// \brief Erase an edge from the graph.
760 760
    ///
761 761
    /// Erase the edge \c e from the graph.
762 762
    void erase(const Edge& e) {
763 763
      return Parent::erase(e);
764 764
    }
765 765

	
766 766
  };
767 767

	
768 768
  template <typename GR>
769 769
  class SmartArcSetBase {
770 770
  public:
771 771

	
772 772
    typedef typename GR::Node Node;
773 773
    typedef typename GR::NodeIt NodeIt;
774 774

	
775 775
  protected:
776 776

	
777 777
    struct NodeT {
778 778
      int first_out, first_in;
779 779
      NodeT() : first_out(-1), first_in(-1) {}
780 780
    };
781 781

	
782 782
    typedef typename ItemSetTraits<GR, Node>::
783 783
    template Map<NodeT>::Type NodesImplBase;
784 784

	
785 785
    NodesImplBase* _nodes;
786 786

	
787 787
    struct ArcT {
788 788
      Node source, target;
789 789
      int next_out, next_in;
790 790
      ArcT() {}
791 791
    };
792 792

	
793 793
    std::vector<ArcT> arcs;
794 794

	
795 795
    const GR* _graph;
796 796

	
797 797
    void initalize(const GR& graph, NodesImplBase& nodes) {
798 798
      _graph = &graph;
799 799
      _nodes = &nodes;
800 800
    }
801 801

	
802 802
  public:
803 803

	
804 804
    class Arc {
805 805
      friend class SmartArcSetBase<GR>;
806 806
    protected:
807 807
      Arc(int _id) : id(_id) {}
808 808
      int id;
809 809
    public:
810 810
      Arc() {}
811 811
      Arc(Invalid) : id(-1) {}
812 812
      bool operator==(const Arc& arc) const { return id == arc.id; }
813 813
      bool operator!=(const Arc& arc) const { return id != arc.id; }
814 814
      bool operator<(const Arc& arc) const { return id < arc.id; }
815 815
    };
816 816

	
817 817
    SmartArcSetBase() {}
818 818

	
819 819
    Arc addArc(const Node& u, const Node& v) {
820 820
      int n = arcs.size();
821 821
      arcs.push_back(ArcT());
822 822
      arcs[n].next_in = (*_nodes)[v].first_in;
823 823
      (*_nodes)[v].first_in = n;
824 824
      arcs[n].next_out = (*_nodes)[u].first_out;
825 825
      (*_nodes)[u].first_out = n;
826 826
      arcs[n].source = u;
827 827
      arcs[n].target = v;
828 828
      return Arc(n);
829 829
    }
830 830

	
831 831
    void clear() {
832 832
      Node node;
833 833
      for (first(node); node != INVALID; next(node)) {
834 834
        (*_nodes)[node].first_in = -1;
835 835
        (*_nodes)[node].first_out = -1;
836 836
      }
837 837
      arcs.clear();
838 838
    }
839 839

	
840 840
    void first(Node& node) const {
841 841
      _graph->first(node);
842 842
    }
843 843

	
844 844
    void next(Node& node) const {
845 845
      _graph->next(node);
846 846
    }
847 847

	
848 848
    void first(Arc& arc) const {
849 849
      arc.id = arcs.size() - 1;
850 850
    }
851 851

	
852 852
    void next(Arc& arc) const {
853 853
      --arc.id;
854 854
    }
855 855

	
856 856
    void firstOut(Arc& arc, const Node& node) const {
857 857
      arc.id = (*_nodes)[node].first_out;
858 858
    }
859 859

	
860 860
    void nextOut(Arc& arc) const {
861 861
      arc.id = arcs[arc.id].next_out;
862 862
    }
863 863

	
864 864
    void firstIn(Arc& arc, const Node& node) const {
865 865
      arc.id = (*_nodes)[node].first_in;
866 866
    }
867 867

	
868 868
    void nextIn(Arc& arc) const {
869 869
      arc.id = arcs[arc.id].next_in;
870 870
    }
871 871

	
872 872
    int id(const Node& node) const { return _graph->id(node); }
873 873
    int id(const Arc& arc) const { return arc.id; }
874 874

	
875 875
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
876 876
    Arc arcFromId(int ix) const { return Arc(ix); }
877 877

	
878 878
    int maxNodeId() const { return _graph->maxNodeId(); };
879 879
    int maxArcId() const { return arcs.size() - 1; }
880 880

	
881 881
    Node source(const Arc& arc) const { return arcs[arc.id].source;}
882 882
    Node target(const Arc& arc) const { return arcs[arc.id].target;}
883 883

	
884 884
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
885 885

	
886 886
    NodeNotifier& notifier(Node) const {
887 887
      return _graph->notifier(Node());
888 888
    }
889 889

	
890 890
    template <typename V>
891 891
    class NodeMap : public GR::template NodeMap<V> {
892 892
      typedef typename GR::template NodeMap<V> Parent;
893 893

	
894 894
    public:
895 895

	
896 896
      explicit NodeMap(const SmartArcSetBase<GR>& arcset)
897 897
        : Parent(*arcset._graph) { }
898 898

	
899 899
      NodeMap(const SmartArcSetBase<GR>& arcset, const V& value)
900 900
        : Parent(*arcset._graph, value) { }
901 901

	
902 902
      NodeMap& operator=(const NodeMap& cmap) {
903 903
        return operator=<NodeMap>(cmap);
904 904
      }
905 905

	
906 906
      template <typename CMap>
907 907
      NodeMap& operator=(const CMap& cmap) {
908 908
        Parent::operator=(cmap);
909 909
        return *this;
910 910
      }
911 911
    };
912 912

	
913 913
  };
914 914

	
915 915

	
916
  /// \ingroup semi_adaptors
916
  /// \ingroup graphs
917 917
  ///
918 918
  /// \brief Digraph using a node set of another digraph or graph and
919 919
  /// an own arc set.
920 920
  ///
921 921
  /// This structure can be used to establish another directed graph
922 922
  /// over a node set of an existing one. This class uses the same
923 923
  /// Node type as the underlying graph, and each valid node of the
924 924
  /// original graph is valid in this arc set, therefore the node
925 925
  /// objects of the original graph can be used directly with this
926 926
  /// class. The node handling functions (id handling, observing, and
927 927
  /// iterators) works equivalently as in the original graph.
928 928
  ///
929 929
  /// \param GR The type of the graph which shares its node set with
930 930
  /// this class. Its interface must conform to the
931 931
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
932 932
  /// concept.
933 933
  ///
934 934
  /// This implementation is slightly faster than the \c ListArcSet,
935 935
  /// because it uses continuous storage for arcs and it uses just
936 936
  /// single-linked lists for enumerate outgoing and incoming
937 937
  /// arcs. Therefore the arcs cannot be erased from the arc sets.
938 938
  ///
939 939
  /// \warning If a node is erased from the underlying graph and this
940 940
  /// node is the source or target of one arc in the arc set, then
941 941
  /// the arc set is invalidated, and it cannot be used anymore. The
942 942
  /// validity can be checked with the \c valid() member function.
943 943
  ///
944 944
  /// This class fully conforms to the \ref concepts::Digraph
945 945
  /// "Digraph" concept.
946 946
  template <typename GR>
947 947
  class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
948 948
    typedef ArcSetExtender<SmartArcSetBase<GR> > Parent;
949 949

	
950 950
  public:
951 951

	
952 952
    typedef typename Parent::Node Node;
953 953
    typedef typename Parent::Arc Arc;
954 954

	
955 955
  protected:
956 956

	
957 957
    typedef typename Parent::NodesImplBase NodesImplBase;
958 958

	
959 959
    void eraseNode(const Node& node) {
960 960
      if (typename Parent::InArcIt(*this, node) == INVALID &&
961 961
          typename Parent::OutArcIt(*this, node) == INVALID) {
962 962
        return;
963 963
      }
964 964
      throw typename NodesImplBase::Notifier::ImmediateDetach();
965 965
    }
966 966

	
967 967
    void clearNodes() {
968 968
      Parent::clear();
969 969
    }
970 970

	
971 971
    class NodesImpl : public NodesImplBase {
972 972
      typedef NodesImplBase Parent;
973 973

	
974 974
    public:
975 975
      NodesImpl(const GR& graph, SmartArcSet& arcset)
976 976
        : Parent(graph), _arcset(arcset) {}
977 977

	
978 978
      virtual ~NodesImpl() {}
979 979

	
980 980
      bool attached() const {
981 981
        return Parent::attached();
982 982
      }
983 983

	
984 984
    protected:
985 985

	
986 986
      virtual void erase(const Node& node) {
987 987
        try {
988 988
          _arcset.eraseNode(node);
989 989
          Parent::erase(node);
990 990
        } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
991 991
          Parent::clear();
992 992
          throw;
993 993
        }
994 994
      }
995 995
      virtual void erase(const std::vector<Node>& nodes) {
996 996
        try {
997 997
          for (int i = 0; i < int(nodes.size()); ++i) {
998 998
            _arcset.eraseNode(nodes[i]);
999 999
          }
1000 1000
          Parent::erase(nodes);
1001 1001
        } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1002 1002
          Parent::clear();
1003 1003
          throw;
1004 1004
        }
1005 1005
      }
1006 1006
      virtual void clear() {
1007 1007
        _arcset.clearNodes();
1008 1008
        Parent::clear();
1009 1009
      }
1010 1010

	
1011 1011
    private:
1012 1012
      SmartArcSet& _arcset;
1013 1013
    };
1014 1014

	
1015 1015
    NodesImpl _nodes;
1016 1016

	
1017 1017
  public:
1018 1018

	
1019 1019
    /// \brief Constructor of the ArcSet.
1020 1020
    ///
1021 1021
    /// Constructor of the ArcSet.
1022 1022
    SmartArcSet(const GR& graph) : _nodes(graph, *this) {
1023 1023
      Parent::initalize(graph, _nodes);
1024 1024
    }
1025 1025

	
1026 1026
    /// \brief Add a new arc to the digraph.
1027 1027
    ///
1028 1028
    /// Add a new arc to the digraph with source node \c s
1029 1029
    /// and target node \c t.
1030 1030
    /// \return The new arc.
1031 1031
    Arc addArc(const Node& s, const Node& t) {
1032 1032
      return Parent::addArc(s, t);
1033 1033
    }
1034 1034

	
1035 1035
    /// \brief Validity check
1036 1036
    ///
1037 1037
    /// This functions gives back false if the ArcSet is
1038 1038
    /// invalidated. It occurs when a node in the underlying graph is
1039 1039
    /// erased and it is not isolated in the ArcSet.
1040 1040
    bool valid() const {
1041 1041
      return _nodes.attached();
1042 1042
    }
1043 1043

	
1044 1044
  };
1045 1045

	
1046 1046

	
1047 1047
  template <typename GR>
1048 1048
  class SmartEdgeSetBase {
1049 1049
  public:
1050 1050

	
1051 1051
    typedef typename GR::Node Node;
1052 1052
    typedef typename GR::NodeIt NodeIt;
1053 1053

	
1054 1054
  protected:
1055 1055

	
1056 1056
    struct NodeT {
1057 1057
      int first_out;
1058 1058
      NodeT() : first_out(-1) {}
1059 1059
    };
1060 1060

	
1061 1061
    typedef typename ItemSetTraits<GR, Node>::
1062 1062
    template Map<NodeT>::Type NodesImplBase;
1063 1063

	
1064 1064
    NodesImplBase* _nodes;
1065 1065

	
1066 1066
    struct ArcT {
1067 1067
      Node target;
1068 1068
      int next_out;
1069 1069
      ArcT() {}
1070 1070
    };
1071 1071

	
1072 1072
    std::vector<ArcT> arcs;
1073 1073

	
1074 1074
    const GR* _graph;
1075 1075

	
1076 1076
    void initalize(const GR& graph, NodesImplBase& nodes) {
1077 1077
      _graph = &graph;
1078 1078
      _nodes = &nodes;
1079 1079
    }
1080 1080

	
1081 1081
  public:
1082 1082

	
1083 1083
    class Edge {
1084 1084
      friend class SmartEdgeSetBase;
1085 1085
    protected:
1086 1086

	
1087 1087
      int id;
1088 1088
      explicit Edge(int _id) { id = _id;}
1089 1089

	
1090 1090
    public:
1091 1091
      Edge() {}
1092 1092
      Edge (Invalid) { id = -1; }
1093 1093
      bool operator==(const Edge& arc) const {return id == arc.id;}
1094 1094
      bool operator!=(const Edge& arc) const {return id != arc.id;}
1095 1095
      bool operator<(const Edge& arc) const {return id < arc.id;}
1096 1096
    };
1097 1097

	
1098 1098
    class Arc {
1099 1099
      friend class SmartEdgeSetBase;
1100 1100
    protected:
1101 1101
      Arc(int _id) : id(_id) {}
1102 1102
      int id;
1103 1103
    public:
1104 1104
      operator Edge() const { return edgeFromId(id / 2); }
1105 1105

	
1106 1106
      Arc() {}
1107 1107
      Arc(Invalid) : id(-1) {}
1108 1108
      bool operator==(const Arc& arc) const { return id == arc.id; }
1109 1109
      bool operator!=(const Arc& arc) const { return id != arc.id; }
1110 1110
      bool operator<(const Arc& arc) const { return id < arc.id; }
1111 1111
    };
1112 1112

	
1113 1113
    SmartEdgeSetBase() {}
1114 1114

	
1115 1115
    Edge addEdge(const Node& u, const Node& v) {
1116 1116
      int n = arcs.size();
1117 1117
      arcs.push_back(ArcT());
1118 1118
      arcs.push_back(ArcT());
1119 1119

	
1120 1120
      arcs[n].target = u;
1121 1121
      arcs[n | 1].target = v;
1122 1122

	
1123 1123
      arcs[n].next_out = (*_nodes)[v].first_out;
1124 1124
      (*_nodes)[v].first_out = n;
1125 1125

	
1126 1126
      arcs[n | 1].next_out = (*_nodes)[u].first_out;
1127 1127
      (*_nodes)[u].first_out = (n | 1);
1128 1128

	
1129 1129
      return Edge(n / 2);
1130 1130
    }
1131 1131

	
1132 1132
    void clear() {
1133 1133
      Node node;
1134 1134
      for (first(node); node != INVALID; next(node)) {
1135 1135
        (*_nodes)[node].first_out = -1;
1136 1136
      }
1137 1137
      arcs.clear();
1138 1138
    }
1139 1139

	
1140 1140
    void first(Node& node) const {
1141 1141
      _graph->first(node);
1142 1142
    }
1143 1143

	
1144 1144
    void next(Node& node) const {
1145 1145
      _graph->next(node);
1146 1146
    }
1147 1147

	
1148 1148
    void first(Arc& arc) const {
1149 1149
      arc.id = arcs.size() - 1;
1150 1150
    }
1151 1151

	
1152 1152
    void next(Arc& arc) const {
1153 1153
      --arc.id;
1154 1154
    }
1155 1155

	
1156 1156
    void first(Edge& arc) const {
1157 1157
      arc.id = arcs.size() / 2 - 1;
1158 1158
    }
1159 1159

	
1160 1160
    void next(Edge& arc) const {
1161 1161
      --arc.id;
1162 1162
    }
1163 1163

	
1164 1164
    void firstOut(Arc& arc, const Node& node) const {
1165 1165
      arc.id = (*_nodes)[node].first_out;
1166 1166
    }
1167 1167

	
1168 1168
    void nextOut(Arc& arc) const {
1169 1169
      arc.id = arcs[arc.id].next_out;
1170 1170
    }
1171 1171

	
1172 1172
    void firstIn(Arc& arc, const Node& node) const {
1173 1173
      arc.id = (((*_nodes)[node].first_out) ^ 1);
1174 1174
      if (arc.id == -2) arc.id = -1;
1175 1175
    }
1176 1176

	
1177 1177
    void nextIn(Arc& arc) const {
1178 1178
      arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1);
1179 1179
      if (arc.id == -2) arc.id = -1;
1180 1180
    }
1181 1181

	
1182 1182
    void firstInc(Edge &arc, bool& dir, const Node& node) const {
1183 1183
      int de = (*_nodes)[node].first_out;
1184 1184
      if (de != -1 ) {
1185 1185
        arc.id = de / 2;
1186 1186
        dir = ((de & 1) == 1);
1187 1187
      } else {
1188 1188
        arc.id = -1;
1189 1189
        dir = true;
1190 1190
      }
1191 1191
    }
1192 1192
    void nextInc(Edge &arc, bool& dir) const {
1193 1193
      int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out);
1194 1194
      if (de != -1 ) {
1195 1195
        arc.id = de / 2;
1196 1196
        dir = ((de & 1) == 1);
1197 1197
      } else {
1198 1198
        arc.id = -1;
1199 1199
        dir = true;
1200 1200
      }
1201 1201
    }
1202 1202

	
1203 1203
    static bool direction(Arc arc) {
1204 1204
      return (arc.id & 1) == 1;
1205 1205
    }
1206 1206

	
1207 1207
    static Arc direct(Edge edge, bool dir) {
1208 1208
      return Arc(edge.id * 2 + (dir ? 1 : 0));
1209 1209
    }
1210 1210

	
1211 1211
    int id(Node node) const { return _graph->id(node); }
1212 1212
    static int id(Arc arc) { return arc.id; }
1213 1213
    static int id(Edge arc) { return arc.id; }
1214 1214

	
1215 1215
    Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
1216 1216
    static Arc arcFromId(int id) { return Arc(id); }
1217 1217
    static Edge edgeFromId(int id) { return Edge(id);}
1218 1218

	
1219 1219
    int maxNodeId() const { return _graph->maxNodeId(); };
1220 1220
    int maxArcId() const { return arcs.size() - 1; }
1221 1221
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
1222 1222

	
1223 1223
    Node source(Arc e) const { return arcs[e.id ^ 1].target; }
1224 1224
    Node target(Arc e) const { return arcs[e.id].target; }
1225 1225

	
1226 1226
    Node u(Edge e) const { return arcs[2 * e.id].target; }
1227 1227
    Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
1228 1228

	
1229 1229
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
1230 1230

	
1231 1231
    NodeNotifier& notifier(Node) const {
1232 1232
      return _graph->notifier(Node());
1233 1233
    }
1234 1234

	
1235 1235
    template <typename V>
1236 1236
    class NodeMap : public GR::template NodeMap<V> {
1237 1237
      typedef typename GR::template NodeMap<V> Parent;
1238 1238

	
1239 1239
    public:
1240 1240

	
1241 1241
      explicit NodeMap(const SmartEdgeSetBase<GR>& arcset)
1242 1242
        : Parent(*arcset._graph) { }
1243 1243

	
1244 1244
      NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value)
1245 1245
        : Parent(*arcset._graph, value) { }
1246 1246

	
1247 1247
      NodeMap& operator=(const NodeMap& cmap) {
1248 1248
        return operator=<NodeMap>(cmap);
1249 1249
      }
1250 1250

	
1251 1251
      template <typename CMap>
1252 1252
      NodeMap& operator=(const CMap& cmap) {
1253 1253
        Parent::operator=(cmap);
1254 1254
        return *this;
1255 1255
      }
1256 1256
    };
1257 1257

	
1258 1258
  };
1259 1259

	
1260
  /// \ingroup semi_adaptors
1260
  /// \ingroup graphs
1261 1261
  ///
1262 1262
  /// \brief Graph using a node set of another digraph or graph and an
1263 1263
  /// own edge set.
1264 1264
  ///
1265 1265
  /// This structure can be used to establish another graph over a
1266 1266
  /// node set of an existing one. This class uses the same Node type
1267 1267
  /// as the underlying graph, and each valid node of the original
1268 1268
  /// graph is valid in this arc set, therefore the node objects of
1269 1269
  /// the original graph can be used directly with this class. The
1270 1270
  /// node handling functions (id handling, observing, and iterators)
1271 1271
  /// works equivalently as in the original graph.
1272 1272
  ///
1273 1273
  /// \param GR The type of the graph which shares its node set
1274 1274
  /// with this class. Its interface must conform to the
1275 1275
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
1276 1276
  ///  concept.
1277 1277
  ///
1278 1278
  /// This implementation is slightly faster than the \c ListEdgeSet,
1279 1279
  /// because it uses continuous storage for edges and it uses just
1280 1280
  /// single-linked lists for enumerate incident edges. Therefore the
1281 1281
  /// edges cannot be erased from the edge sets.
1282 1282
  ///
1283 1283
  /// \warning If a node is erased from the underlying graph and this
1284 1284
  /// node is incident to one edge in the edge set, then the edge set
1285 1285
  /// is invalidated, and it cannot be used anymore. The validity can
1286 1286
  /// be checked with the \c valid() member function.
1287 1287
  ///
1288 1288
  /// This class fully conforms to the \ref concepts::Graph
1289 1289
  /// "Graph" concept.
1290 1290
  template <typename GR>
1291 1291
  class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
1292 1292
    typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent;
1293 1293

	
1294 1294
  public:
1295 1295

	
1296 1296
    typedef typename Parent::Node Node;
1297 1297
    typedef typename Parent::Arc Arc;
1298 1298
    typedef typename Parent::Edge Edge;
1299 1299

	
1300 1300
  protected:
1301 1301

	
1302 1302
    typedef typename Parent::NodesImplBase NodesImplBase;
1303 1303

	
1304 1304
    void eraseNode(const Node& node) {
1305 1305
      if (typename Parent::IncEdgeIt(*this, node) == INVALID) {
1306 1306
        return;
1307 1307
      }
1308 1308
      throw typename NodesImplBase::Notifier::ImmediateDetach();
1309 1309
    }
1310 1310

	
1311 1311
    void clearNodes() {
1312 1312
      Parent::clear();
1313 1313
    }
1314 1314

	
1315 1315
    class NodesImpl : public NodesImplBase {
1316 1316
      typedef NodesImplBase Parent;
1317 1317

	
1318 1318
    public:
1319 1319
      NodesImpl(const GR& graph, SmartEdgeSet& arcset)
1320 1320
        : Parent(graph), _arcset(arcset) {}
1321 1321

	
1322 1322
      virtual ~NodesImpl() {}
1323 1323

	
1324 1324
      bool attached() const {
1325 1325
        return Parent::attached();
1326 1326
      }
1327 1327

	
1328 1328
    protected:
1329 1329

	
1330 1330
      virtual void erase(const Node& node) {
1331 1331
        try {
1332 1332
          _arcset.eraseNode(node);
1333 1333
          Parent::erase(node);
1334 1334
        } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1335 1335
          Parent::clear();
1336 1336
          throw;
1337 1337
        }
1338 1338
      }
1339 1339
      virtual void erase(const std::vector<Node>& nodes) {
1340 1340
        try {
1341 1341
          for (int i = 0; i < int(nodes.size()); ++i) {
1342 1342
            _arcset.eraseNode(nodes[i]);
1343 1343
          }
1344 1344
          Parent::erase(nodes);
1345 1345
        } catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
1346 1346
          Parent::clear();
1347 1347
          throw;
1348 1348
        }
1349 1349
      }
1350 1350
      virtual void clear() {
1351 1351
        _arcset.clearNodes();
1352 1352
        Parent::clear();
1353 1353
      }
1354 1354

	
1355 1355
    private:
1356 1356
      SmartEdgeSet& _arcset;
1357 1357
    };
1358 1358

	
1359 1359
    NodesImpl _nodes;
1360 1360

	
1361 1361
  public:
1362 1362

	
1363 1363
    /// \brief Constructor of the EdgeSet.
1364 1364
    ///
1365 1365
    /// Constructor of the EdgeSet.
1366 1366
    SmartEdgeSet(const GR& graph) : _nodes(graph, *this) {
1367 1367
      Parent::initalize(graph, _nodes);
1368 1368
    }
1369 1369

	
1370 1370
    /// \brief Add a new edge to the graph.
1371 1371
    ///
1372 1372
    /// Add a new edge to the graph with node \c u
1373 1373
    /// and node \c v endpoints.
1374 1374
    /// \return The new edge.
1375 1375
    Edge addEdge(const Node& u, const Node& v) {
1376 1376
      return Parent::addEdge(u, v);
1377 1377
    }
1378 1378

	
1379 1379
    /// \brief Validity check
1380 1380
    ///
1381 1381
    /// This functions gives back false if the EdgeSet is
1382 1382
    /// invalidated. It occurs when a node in the underlying graph is
1383 1383
    /// erased and it is not isolated in the EdgeSet.
1384 1384
    bool valid() const {
1385 1385
      return _nodes.attached();
1386 1386
    }
1387 1387

	
1388 1388
  };
1389 1389

	
1390 1390
}
1391 1391

	
1392 1392
#endif
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BITS_BASE_EXTENDER_H
20
#define LEMON_BITS_BASE_EXTENDER_H
21

	
22
#include <lemon/core.h>
23
#include <lemon/error.h>
24

	
25
#include <lemon/bits/map_extender.h>
26
#include <lemon/bits/default_map.h>
27

	
28
#include <lemon/concept_check.h>
29
#include <lemon/concepts/maps.h>
30

	
31
//\ingroup digraphbits
32
//\file
33
//\brief Extenders for the graph types
34
namespace lemon {
35

	
36
  // \ingroup digraphbits
37
  //
38
  // \brief BaseDigraph to BaseGraph extender
39
  template <typename Base>
40
  class UndirDigraphExtender : public Base {
41
    typedef Base Parent;
42

	
43
  public:
44

	
45
    typedef typename Parent::Arc Edge;
46
    typedef typename Parent::Node Node;
47

	
48
    typedef True UndirectedTag;
49

	
50
    class Arc : public Edge {
51
      friend class UndirDigraphExtender;
52

	
53
    protected:
54
      bool forward;
55

	
56
      Arc(const Edge &ue, bool _forward) :
57
        Edge(ue), forward(_forward) {}
58

	
59
    public:
60
      Arc() {}
61

	
62
      // Invalid arc constructor
63
      Arc(Invalid i) : Edge(i), forward(true) {}
64

	
65
      bool operator==(const Arc &that) const {
66
        return forward==that.forward && Edge(*this)==Edge(that);
67
      }
68
      bool operator!=(const Arc &that) const {
69
        return forward!=that.forward || Edge(*this)!=Edge(that);
70
      }
71
      bool operator<(const Arc &that) const {
72
        return forward<that.forward ||
73
          (!(that.forward<forward) && Edge(*this)<Edge(that));
74
      }
75
    };
76

	
77
    // First node of the edge
78
    Node u(const Edge &e) const {
79
      return Parent::source(e);
80
    }
81

	
82
    // Source of the given arc
83
    Node source(const Arc &e) const {
84
      return e.forward ? Parent::source(e) : Parent::target(e);
85
    }
86

	
87
    // Second node of the edge
88
    Node v(const Edge &e) const {
89
      return Parent::target(e);
90
    }
91

	
92
    // Target of the given arc
93
    Node target(const Arc &e) const {
94
      return e.forward ? Parent::target(e) : Parent::source(e);
95
    }
96

	
97
    // \brief Directed arc from an edge.
98
    //
99
    // Returns a directed arc corresponding to the specified edge.
100
    // If the given bool is true, the first node of the given edge and
101
    // the source node of the returned arc are the same.
102
    static Arc direct(const Edge &e, bool d) {
103
      return Arc(e, d);
104
    }
105

	
106
    // Returns whether the given directed arc has the same orientation
107
    // as the corresponding edge.
108
    static bool direction(const Arc &a) { return a.forward; }
109

	
110
    using Parent::first;
111
    using Parent::next;
112

	
113
    void first(Arc &e) const {
114
      Parent::first(e);
115
      e.forward=true;
116
    }
117

	
118
    void next(Arc &e) const {
119
      if( e.forward ) {
120
        e.forward = false;
121
      }
122
      else {
123
        Parent::next(e);
124
        e.forward = true;
125
      }
126
    }
127

	
128
    void firstOut(Arc &e, const Node &n) const {
129
      Parent::firstIn(e,n);
130
      if( Edge(e) != INVALID ) {
131
        e.forward = false;
132
      }
133
      else {
134
        Parent::firstOut(e,n);
135
        e.forward = true;
136
      }
137
    }
138
    void nextOut(Arc &e) const {
139
      if( ! e.forward ) {
140
        Node n = Parent::target(e);
141
        Parent::nextIn(e);
142
        if( Edge(e) == INVALID ) {
143
          Parent::firstOut(e, n);
144
          e.forward = true;
145
        }
146
      }
147
      else {
148
        Parent::nextOut(e);
149
      }
150
    }
151

	
152
    void firstIn(Arc &e, const Node &n) const {
153
      Parent::firstOut(e,n);
154
      if( Edge(e) != INVALID ) {
155
        e.forward = false;
156
      }
157
      else {
158
        Parent::firstIn(e,n);
159
        e.forward = true;
160
      }
161
    }
162
    void nextIn(Arc &e) const {
163
      if( ! e.forward ) {
164
        Node n = Parent::source(e);
165
        Parent::nextOut(e);
166
        if( Edge(e) == INVALID ) {
167
          Parent::firstIn(e, n);
168
          e.forward = true;
169
        }
170
      }
171
      else {
172
        Parent::nextIn(e);
173
      }
174
    }
175

	
176
    void firstInc(Edge &e, bool &d, const Node &n) const {
177
      d = true;
178
      Parent::firstOut(e, n);
179
      if (e != INVALID) return;
180
      d = false;
181
      Parent::firstIn(e, n);
182
    }
183

	
184
    void nextInc(Edge &e, bool &d) const {
185
      if (d) {
186
        Node s = Parent::source(e);
187
        Parent::nextOut(e);
188
        if (e != INVALID) return;
189
        d = false;
190
        Parent::firstIn(e, s);
191
      } else {
192
        Parent::nextIn(e);
193
      }
194
    }
195

	
196
    Node nodeFromId(int ix) const {
197
      return Parent::nodeFromId(ix);
198
    }
199

	
200
    Arc arcFromId(int ix) const {
201
      return direct(Parent::arcFromId(ix >> 1), bool(ix & 1));
202
    }
203

	
204
    Edge edgeFromId(int ix) const {
205
      return Parent::arcFromId(ix);
206
    }
207

	
208
    int id(const Node &n) const {
209
      return Parent::id(n);
210
    }
211

	
212
    int id(const Edge &e) const {
213
      return Parent::id(e);
214
    }
215

	
216
    int id(const Arc &e) const {
217
      return 2 * Parent::id(e) + int(e.forward);
218
    }
219

	
220
    int maxNodeId() const {
221
      return Parent::maxNodeId();
222
    }
223

	
224
    int maxArcId() const {
225
      return 2 * Parent::maxArcId() + 1;
226
    }
227

	
228
    int maxEdgeId() const {
229
      return Parent::maxArcId();
230
    }
231

	
232
    int arcNum() const {
233
      return 2 * Parent::arcNum();
234
    }
235

	
236
    int edgeNum() const {
237
      return Parent::arcNum();
238
    }
239

	
240
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
241
      if (p == INVALID) {
242
        Edge arc = Parent::findArc(s, t);
243
        if (arc != INVALID) return direct(arc, true);
244
        arc = Parent::findArc(t, s);
245
        if (arc != INVALID) return direct(arc, false);
246
      } else if (direction(p)) {
247
        Edge arc = Parent::findArc(s, t, p);
248
        if (arc != INVALID) return direct(arc, true);
249
        arc = Parent::findArc(t, s);
250
        if (arc != INVALID) return direct(arc, false);
251
      } else {
252
        Edge arc = Parent::findArc(t, s, p);
253
        if (arc != INVALID) return direct(arc, false);
254
      }
255
      return INVALID;
256
    }
257

	
258
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
259
      if (s != t) {
260
        if (p == INVALID) {
261
          Edge arc = Parent::findArc(s, t);
262
          if (arc != INVALID) return arc;
263
          arc = Parent::findArc(t, s);
264
          if (arc != INVALID) return arc;
265
        } else if (Parent::s(p) == s) {
266
          Edge arc = Parent::findArc(s, t, p);
267
          if (arc != INVALID) return arc;
268
          arc = Parent::findArc(t, s);
269
          if (arc != INVALID) return arc;
270
        } else {
271
          Edge arc = Parent::findArc(t, s, p);
272
          if (arc != INVALID) return arc;
273
        }
274
      } else {
275
        return Parent::findArc(s, t, p);
276
      }
277
      return INVALID;
278
    }
279
  };
280

	
281
  template <typename Base>
282
  class BidirBpGraphExtender : public Base {
283
    typedef Base Parent;
284

	
285
  public:
286
    typedef BidirBpGraphExtender Digraph;
287

	
288
    typedef typename Parent::Node Node;
289
    typedef typename Parent::Edge Edge;
290

	
291

	
292
    using Parent::first;
293
    using Parent::next;
294

	
295
    using Parent::id;
296

	
297
    class Red : public Node {
298
      friend class BidirBpGraphExtender;
299
    public:
300
      Red() {}
301
      Red(const Node& node) : Node(node) {
302
        LEMON_DEBUG(Parent::red(node) || node == INVALID,
303
                    typename Parent::NodeSetError());
304
      }
305
      Red& operator=(const Node& node) {
306
        LEMON_DEBUG(Parent::red(node) || node == INVALID,
307
                    typename Parent::NodeSetError());
308
        Node::operator=(node);
309
        return *this;
310
      }
311
      Red(Invalid) : Node(INVALID) {}
312
      Red& operator=(Invalid) {
313
        Node::operator=(INVALID);
314
        return *this;
315
      }
316
    };
317

	
318
    void first(Red& node) const {
319
      Parent::firstRed(static_cast<Node&>(node));
320
    }
321
    void next(Red& node) const {
322
      Parent::nextRed(static_cast<Node&>(node));
323
    }
324

	
325
    int id(const Red& node) const {
326
      return Parent::redId(node);
327
    }
328

	
329
    class Blue : public Node {
330
      friend class BidirBpGraphExtender;
331
    public:
332
      Blue() {}
333
      Blue(const Node& node) : Node(node) {
334
        LEMON_DEBUG(Parent::blue(node) || node == INVALID,
335
                    typename Parent::NodeSetError());
336
      }
337
      Blue& operator=(const Node& node) {
338
        LEMON_DEBUG(Parent::blue(node) || node == INVALID,
339
                    typename Parent::NodeSetError());
340
        Node::operator=(node);
341
        return *this;
342
      }
343
      Blue(Invalid) : Node(INVALID) {}
344
      Blue& operator=(Invalid) {
345
        Node::operator=(INVALID);
346
        return *this;
347
      }
348
    };
349

	
350
    void first(Blue& node) const {
351
      Parent::firstBlue(static_cast<Node&>(node));
352
    }
353
    void next(Blue& node) const {
354
      Parent::nextBlue(static_cast<Node&>(node));
355
    }
356

	
357
    int id(const Blue& node) const {
358
      return Parent::redId(node);
359
    }
360

	
361
    Node source(const Edge& arc) const {
362
      return red(arc);
363
    }
364
    Node target(const Edge& arc) const {
365
      return blue(arc);
366
    }
367

	
368
    void firstInc(Edge& arc, bool& dir, const Node& node) const {
369
      if (Parent::red(node)) {
370
        Parent::firstFromRed(arc, node);
371
        dir = true;
372
      } else {
373
        Parent::firstFromBlue(arc, node);
374
        dir = static_cast<Edge&>(arc) == INVALID;
375
      }
376
    }
377
    void nextInc(Edge& arc, bool& dir) const {
378
      if (dir) {
379
        Parent::nextFromRed(arc);
380
      } else {
381
        Parent::nextFromBlue(arc);
382
        if (arc == INVALID) dir = true;
383
      }
384
    }
385

	
386
    class Arc : public Edge {
387
      friend class BidirBpGraphExtender;
388
    protected:
389
      bool forward;
390

	
391
      Arc(const Edge& arc, bool _forward)
392
        : Edge(arc), forward(_forward) {}
393

	
394
    public:
395
      Arc() {}
396
      Arc (Invalid) : Edge(INVALID), forward(true) {}
397
      bool operator==(const Arc& i) const {
398
        return Edge::operator==(i) && forward == i.forward;
399
      }
400
      bool operator!=(const Arc& i) const {
401
        return Edge::operator!=(i) || forward != i.forward;
402
      }
403
      bool operator<(const Arc& i) const {
404
        return Edge::operator<(i) ||
405
          (!(i.forward<forward) && Edge(*this)<Edge(i));
406
      }
407
    };
408

	
409
    void first(Arc& arc) const {
410
      Parent::first(static_cast<Edge&>(arc));
411
      arc.forward = true;
412
    }
413

	
414
    void next(Arc& arc) const {
415
      if (!arc.forward) {
416
        Parent::next(static_cast<Edge&>(arc));
417
      }
418
      arc.forward = !arc.forward;
419
    }
420

	
421
    void firstOut(Arc& arc, const Node& node) const {
422
      if (Parent::red(node)) {
423
        Parent::firstFromRed(arc, node);
424
        arc.forward = true;
425
      } else {
426
        Parent::firstFromBlue(arc, node);
427
        arc.forward = static_cast<Edge&>(arc) == INVALID;
428
      }
429
    }
430
    void nextOut(Arc& arc) const {
431
      if (arc.forward) {
432
        Parent::nextFromRed(arc);
433
      } else {
434
        Parent::nextFromBlue(arc);
435
        arc.forward = static_cast<Edge&>(arc) == INVALID;
436
      }
437
    }
438

	
439
    void firstIn(Arc& arc, const Node& node) const {
440
      if (Parent::blue(node)) {
441
        Parent::firstFromBlue(arc, node);
442
        arc.forward = true;
443
      } else {
444
        Parent::firstFromRed(arc, node);
445
        arc.forward = static_cast<Edge&>(arc) == INVALID;
446
      }
447
    }
448
    void nextIn(Arc& arc) const {
449
      if (arc.forward) {
450
        Parent::nextFromBlue(arc);
451
      } else {
452
        Parent::nextFromRed(arc);
453
        arc.forward = static_cast<Edge&>(arc) == INVALID;
454
      }
455
    }
456

	
457
    Node source(const Arc& arc) const {
458
      return arc.forward ? Parent::red(arc) : Parent::blue(arc);
459
    }
460
    Node target(const Arc& arc) const {
461
      return arc.forward ? Parent::blue(arc) : Parent::red(arc);
462
    }
463

	
464
    int id(const Arc& arc) const {
465
      return (Parent::id(static_cast<const Edge&>(arc)) << 1) +
466
        (arc.forward ? 0 : 1);
467
    }
468
    Arc arcFromId(int ix) const {
469
      return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0);
470
    }
471
    int maxArcId() const {
472
      return (Parent::maxEdgeId() << 1) + 1;
473
    }
474

	
475
    bool direction(const Arc& arc) const {
476
      return arc.forward;
477
    }
478

	
479
    Arc direct(const Edge& arc, bool dir) const {
480
      return Arc(arc, dir);
481
    }
482

	
483
    int arcNum() const {
484
      return 2 * Parent::edgeNum();
485
    }
486

	
487
    int edgeNum() const {
488
      return Parent::edgeNum();
489
    }
490

	
491

	
492
  };
493
}
494

	
495
#endif

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)