0
28
0
35
48
1
1
5
5
1
1
19
35
15
9
1
1
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup demos |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Demo of the graph drawing function \ref graphToEps() |
22 | 22 |
/// |
23 | 23 |
/// This demo program shows examples how to use the function \ref |
24 | 24 |
/// graphToEps(). It takes no input but simply creates seven |
25 | 25 |
/// <tt>.eps</tt> files demonstrating the capability of \ref |
26 | 26 |
/// graphToEps(), and showing how to draw directed graphs, |
27 | 27 |
/// how to handle parallel egdes, how to change the properties (like |
28 | 28 |
/// color, shape, size, title etc.) of nodes and arcs individually |
29 |
/// using appropriate |
|
29 |
/// using appropriate graph maps. |
|
30 | 30 |
/// |
31 | 31 |
/// \include graph_to_eps_demo.cc |
32 | 32 |
|
33 | 33 |
#include<lemon/list_graph.h> |
34 | 34 |
#include<lemon/graph_to_eps.h> |
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
|
37 | 37 |
using namespace std; |
38 | 38 |
using namespace lemon; |
39 | 39 |
|
40 | 40 |
int main() |
41 | 41 |
{ |
42 | 42 |
Palette palette; |
43 | 43 |
Palette paletteW(true); |
44 | 44 |
|
45 | 45 |
// Create a small digraph |
46 | 46 |
ListDigraph g; |
47 | 47 |
typedef ListDigraph::Node Node; |
48 | 48 |
typedef ListDigraph::NodeIt NodeIt; |
49 | 49 |
typedef ListDigraph::Arc Arc; |
50 | 50 |
typedef dim2::Point<int> Point; |
51 | 51 |
|
52 | 52 |
Node n1=g.addNode(); |
53 | 53 |
Node n2=g.addNode(); |
54 | 54 |
Node n3=g.addNode(); |
55 | 55 |
Node n4=g.addNode(); |
56 | 56 |
Node n5=g.addNode(); |
57 | 57 |
|
58 | 58 |
ListDigraph::NodeMap<Point> coords(g); |
59 | 59 |
ListDigraph::NodeMap<double> sizes(g); |
60 | 60 |
ListDigraph::NodeMap<int> colors(g); |
61 | 61 |
ListDigraph::NodeMap<int> shapes(g); |
62 | 62 |
ListDigraph::ArcMap<int> acolors(g); |
63 | 63 |
ListDigraph::ArcMap<int> widths(g); |
64 | 64 |
|
65 | 65 |
coords[n1]=Point(50,50); sizes[n1]=1; colors[n1]=1; shapes[n1]=0; |
66 | 66 |
coords[n2]=Point(50,70); sizes[n2]=2; colors[n2]=2; shapes[n2]=2; |
67 | 67 |
coords[n3]=Point(70,70); sizes[n3]=1; colors[n3]=3; shapes[n3]=0; |
68 | 68 |
coords[n4]=Point(70,50); sizes[n4]=2; colors[n4]=4; shapes[n4]=1; |
69 | 69 |
coords[n5]=Point(85,60); sizes[n5]=3; colors[n5]=5; shapes[n5]=2; |
70 | 70 |
|
71 | 71 |
Arc a; |
72 | 72 |
|
73 | 73 |
a=g.addArc(n1,n2); acolors[a]=0; widths[a]=1; |
74 | 74 |
a=g.addArc(n2,n3); acolors[a]=0; widths[a]=1; |
75 | 75 |
a=g.addArc(n3,n5); acolors[a]=0; widths[a]=3; |
76 | 76 |
a=g.addArc(n5,n4); acolors[a]=0; widths[a]=1; |
77 | 77 |
a=g.addArc(n4,n1); acolors[a]=0; widths[a]=1; |
... | ... |
@@ -9,555 +9,542 @@ |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
@defgroup datas Data Structures |
21 | 21 |
This group describes the several data structures implemented in LEMON. |
22 | 22 |
*/ |
23 | 23 |
|
24 | 24 |
/** |
25 | 25 |
@defgroup graphs Graph Structures |
26 | 26 |
@ingroup datas |
27 | 27 |
\brief Graph structures implemented in LEMON. |
28 | 28 |
|
29 | 29 |
The implementation of combinatorial algorithms heavily relies on |
30 | 30 |
efficient graph implementations. LEMON offers data structures which are |
31 | 31 |
planned to be easily used in an experimental phase of implementation studies, |
32 | 32 |
and thereafter the program code can be made efficient by small modifications. |
33 | 33 |
|
34 | 34 |
The most efficient implementation of diverse applications require the |
35 | 35 |
usage of different physical graph implementations. These differences |
36 | 36 |
appear in the size of graph we require to handle, memory or time usage |
37 | 37 |
limitations or in the set of operations through which the graph can be |
38 | 38 |
accessed. LEMON provides several physical graph structures to meet |
39 | 39 |
the diverging requirements of the possible users. In order to save on |
40 | 40 |
running time or on memory usage, some structures may fail to provide |
41 | 41 |
some graph features like arc/edge or node deletion. |
42 | 42 |
|
43 | 43 |
Alteration of standard containers need a very limited number of |
44 | 44 |
operations, these together satisfy the everyday requirements. |
45 | 45 |
In the case of graph structures, different operations are needed which do |
46 | 46 |
not alter the physical graph, but gives another view. If some nodes or |
47 | 47 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
48 | 48 |
this is the case. It also may happen that in a flow implementation |
49 | 49 |
the residual graph can be accessed by another algorithm, or a node-set |
50 | 50 |
is to be shrunk for another algorithm. |
51 | 51 |
LEMON also provides a variety of graphs for these requirements called |
52 | 52 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
53 | 53 |
in conjunction with other graph representations. |
54 | 54 |
|
55 | 55 |
You are free to use the graph structure that fit your requirements |
56 | 56 |
the best, most graph algorithms and auxiliary data structures can be used |
57 |
with any graph |
|
57 |
with any graph structure. |
|
58 |
|
|
59 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
|
58 | 60 |
*/ |
59 | 61 |
|
60 | 62 |
/** |
61 | 63 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
62 | 64 |
@ingroup graphs |
63 | 65 |
\brief Graph types between real graphs and graph adaptors. |
64 | 66 |
|
65 | 67 |
This group describes some graph types between real graphs and graph adaptors. |
66 | 68 |
These classes wrap graphs to give new functionality as the adaptors do it. |
67 | 69 |
On the other hand they are not light-weight structures as the adaptors. |
68 | 70 |
*/ |
69 | 71 |
|
70 | 72 |
/** |
71 | 73 |
@defgroup maps Maps |
72 | 74 |
@ingroup datas |
73 | 75 |
\brief Map structures implemented in LEMON. |
74 | 76 |
|
75 | 77 |
This group describes the map structures implemented in LEMON. |
76 | 78 |
|
77 |
LEMON provides several special purpose maps that e.g. combine |
|
79 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
|
78 | 80 |
new maps from existing ones. |
81 |
|
|
82 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
|
79 | 83 |
*/ |
80 | 84 |
|
81 | 85 |
/** |
82 | 86 |
@defgroup graph_maps Graph Maps |
83 | 87 |
@ingroup maps |
84 | 88 |
\brief Special graph-related maps. |
85 | 89 |
|
86 | 90 |
This group describes maps that are specifically designed to assign |
87 | 91 |
values to the nodes and arcs of graphs. |
88 | 92 |
*/ |
89 | 93 |
|
90 |
|
|
91 | 94 |
/** |
92 | 95 |
\defgroup map_adaptors Map Adaptors |
93 | 96 |
\ingroup maps |
94 | 97 |
\brief Tools to create new maps from existing ones |
95 | 98 |
|
96 | 99 |
This group describes map adaptors that are used to create "implicit" |
97 | 100 |
maps from other maps. |
98 | 101 |
|
99 | 102 |
Most of them are \ref lemon::concepts::ReadMap "read-only maps". |
100 | 103 |
They can make arithmetic and logical operations between one or two maps |
101 | 104 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
102 | 105 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
103 | 106 |
|
104 | 107 |
The typical usage of this classes is passing implicit maps to |
105 | 108 |
algorithms. If a function type algorithm is called then the function |
106 | 109 |
type map adaptors can be used comfortable. For example let's see the |
107 |
usage of map adaptors with the \c |
|
110 |
usage of map adaptors with the \c graphToEps() function. |
|
108 | 111 |
\code |
109 | 112 |
Color nodeColor(int deg) { |
110 | 113 |
if (deg >= 2) { |
111 | 114 |
return Color(0.5, 0.0, 0.5); |
112 | 115 |
} else if (deg == 1) { |
113 | 116 |
return Color(1.0, 0.5, 1.0); |
114 | 117 |
} else { |
115 | 118 |
return Color(0.0, 0.0, 0.0); |
116 | 119 |
} |
117 | 120 |
} |
118 | 121 |
|
119 | 122 |
Digraph::NodeMap<int> degree_map(graph); |
120 | 123 |
|
121 |
|
|
124 |
graphToEps(graph, "graph.eps") |
|
122 | 125 |
.coords(coords).scaleToA4().undirected() |
123 | 126 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
124 | 127 |
.run(); |
125 | 128 |
\endcode |
126 | 129 |
The \c functorToMap() function makes an \c int to \c Color map from the |
127 |
\ |
|
130 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
|
128 | 131 |
and the previously created map. The composed map is a proper function to |
129 | 132 |
get the color of each node. |
130 | 133 |
|
131 | 134 |
The usage with class type algorithms is little bit harder. In this |
132 | 135 |
case the function type map adaptors can not be used, because the |
133 | 136 |
function map adaptors give back temporary objects. |
134 | 137 |
\code |
135 | 138 |
Digraph graph; |
136 | 139 |
|
137 | 140 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
138 | 141 |
DoubleArcMap length(graph); |
139 | 142 |
DoubleArcMap speed(graph); |
140 | 143 |
|
141 | 144 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
142 | 145 |
TimeMap time(length, speed); |
143 | 146 |
|
144 | 147 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
145 | 148 |
dijkstra.run(source, target); |
146 | 149 |
\endcode |
147 | 150 |
We have a length map and a maximum speed map on the arcs of a digraph. |
148 | 151 |
The minimum time to pass the arc can be calculated as the division of |
149 | 152 |
the two maps which can be done implicitly with the \c DivMap template |
150 | 153 |
class. We use the implicit minimum time map as the length map of the |
151 | 154 |
\c Dijkstra algorithm. |
152 | 155 |
*/ |
153 | 156 |
|
154 | 157 |
/** |
155 | 158 |
@defgroup matrices Matrices |
156 | 159 |
@ingroup datas |
157 | 160 |
\brief Two dimensional data storages implemented in LEMON. |
158 | 161 |
|
159 | 162 |
This group describes two dimensional data storages implemented in LEMON. |
160 | 163 |
*/ |
161 | 164 |
|
162 | 165 |
/** |
163 | 166 |
@defgroup paths Path Structures |
164 | 167 |
@ingroup datas |
165 | 168 |
\brief Path structures implemented in LEMON. |
166 | 169 |
|
167 | 170 |
This group describes the path structures implemented in LEMON. |
168 | 171 |
|
169 | 172 |
LEMON provides flexible data structures to work with paths. |
170 | 173 |
All of them have similar interfaces and they can be copied easily with |
171 | 174 |
assignment operators and copy constructors. This makes it easy and |
172 | 175 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
173 | 176 |
any kind of path structure. |
174 | 177 |
|
175 | 178 |
\sa lemon::concepts::Path |
176 |
|
|
177 | 179 |
*/ |
178 | 180 |
|
179 | 181 |
/** |
180 | 182 |
@defgroup auxdat Auxiliary Data Structures |
181 | 183 |
@ingroup datas |
182 | 184 |
\brief Auxiliary data structures implemented in LEMON. |
183 | 185 |
|
184 | 186 |
This group describes some data structures implemented in LEMON in |
185 | 187 |
order to make it easier to implement combinatorial algorithms. |
186 | 188 |
*/ |
187 | 189 |
|
188 |
|
|
189 | 190 |
/** |
190 | 191 |
@defgroup algs Algorithms |
191 | 192 |
\brief This group describes the several algorithms |
192 | 193 |
implemented in LEMON. |
193 | 194 |
|
194 | 195 |
This group describes the several algorithms |
195 | 196 |
implemented in LEMON. |
196 | 197 |
*/ |
197 | 198 |
|
198 | 199 |
/** |
199 | 200 |
@defgroup search Graph Search |
200 | 201 |
@ingroup algs |
201 | 202 |
\brief Common graph search algorithms. |
202 | 203 |
|
203 | 204 |
This group describes the common graph search algorithms like |
204 |
Breadth- |
|
205 |
Breadth-First Search (BFS) and Depth-First Search (DFS). |
|
205 | 206 |
*/ |
206 | 207 |
|
207 | 208 |
/** |
208 |
@defgroup shortest_path Shortest Path |
|
209 |
@defgroup shortest_path Shortest Path Algorithms |
|
209 | 210 |
@ingroup algs |
210 | 211 |
\brief Algorithms for finding shortest paths. |
211 | 212 |
|
212 | 213 |
This group describes the algorithms for finding shortest paths in graphs. |
213 | 214 |
*/ |
214 | 215 |
|
215 | 216 |
/** |
216 |
@defgroup max_flow Maximum Flow |
|
217 |
@defgroup max_flow Maximum Flow Algorithms |
|
217 | 218 |
@ingroup algs |
218 | 219 |
\brief Algorithms for finding maximum flows. |
219 | 220 |
|
220 | 221 |
This group describes the algorithms for finding maximum flows and |
221 | 222 |
feasible circulations. |
222 | 223 |
|
223 | 224 |
The maximum flow problem is to find a flow between a single source and |
224 | 225 |
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$ |
225 | 226 |
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity |
226 | 227 |
function and given \f$s, t \in V\f$ source and target node. The |
227 | 228 |
maximum flow is the \f$f_a\f$ solution of the next optimization problem: |
228 | 229 |
|
229 | 230 |
\f[ 0 \le f_a \le c_a \f] |
230 | 231 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} |
231 | 232 |
\qquad \forall u \in V \setminus \{s,t\}\f] |
232 | 233 |
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f] |
233 | 234 |
|
234 | 235 |
LEMON contains several algorithms for solving maximum flow problems: |
235 | 236 |
- \ref lemon::EdmondsKarp "Edmonds-Karp" |
236 | 237 |
- \ref lemon::Preflow "Goldberg's Preflow algorithm" |
237 | 238 |
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees" |
238 | 239 |
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees" |
239 | 240 |
|
240 | 241 |
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the |
241 | 242 |
fastest method to compute the maximum flow. All impelementations |
242 | 243 |
provides functions to query the minimum cut, which is the dual linear |
243 | 244 |
programming problem of the maximum flow. |
244 |
|
|
245 | 245 |
*/ |
246 | 246 |
|
247 | 247 |
/** |
248 |
@defgroup min_cost_flow Minimum Cost Flow |
|
248 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
|
249 | 249 |
@ingroup algs |
250 | 250 |
|
251 | 251 |
\brief Algorithms for finding minimum cost flows and circulations. |
252 | 252 |
|
253 | 253 |
This group describes the algorithms for finding minimum cost flows and |
254 | 254 |
circulations. |
255 | 255 |
*/ |
256 | 256 |
|
257 | 257 |
/** |
258 |
@defgroup min_cut Minimum Cut |
|
258 |
@defgroup min_cut Minimum Cut Algorithms |
|
259 | 259 |
@ingroup algs |
260 | 260 |
|
261 | 261 |
\brief Algorithms for finding minimum cut in graphs. |
262 | 262 |
|
263 | 263 |
This group describes the algorithms for finding minimum cut in graphs. |
264 | 264 |
|
265 | 265 |
The minimum cut problem is to find a non-empty and non-complete |
266 | 266 |
\f$X\f$ subset of the vertices with minimum overall capacity on |
267 | 267 |
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an |
268 | 268 |
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
269 | 269 |
cut is the \f$X\f$ solution of the next optimization problem: |
270 | 270 |
|
271 | 271 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
272 | 272 |
\sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f] |
273 | 273 |
|
274 | 274 |
LEMON contains several algorithms related to minimum cut problems: |
275 | 275 |
|
276 | 276 |
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut |
277 | 277 |
in directed graphs |
278 | 278 |
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to |
279 | 279 |
calculate minimum cut in undirected graphs |
280 | 280 |
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all |
281 | 281 |
pairs minimum cut in undirected graphs |
282 | 282 |
|
283 | 283 |
If you want to find minimum cut just between two distinict nodes, |
284 | 284 |
please see the \ref max_flow "Maximum Flow page". |
285 |
|
|
286 | 285 |
*/ |
287 | 286 |
|
288 | 287 |
/** |
289 |
@defgroup graph_prop Connectivity and |
|
288 |
@defgroup graph_prop Connectivity and Other Graph Properties |
|
290 | 289 |
@ingroup algs |
291 | 290 |
\brief Algorithms for discovering the graph properties |
292 | 291 |
|
293 | 292 |
This group describes the algorithms for discovering the graph properties |
294 | 293 |
like connectivity, bipartiteness, euler property, simplicity etc. |
295 | 294 |
|
296 | 295 |
\image html edge_biconnected_components.png |
297 | 296 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
298 | 297 |
*/ |
299 | 298 |
|
300 | 299 |
/** |
301 |
@defgroup planar Planarity |
|
300 |
@defgroup planar Planarity Embedding and Drawing |
|
302 | 301 |
@ingroup algs |
303 | 302 |
\brief Algorithms for planarity checking, embedding and drawing |
304 | 303 |
|
305 | 304 |
This group describes the algorithms for planarity checking, |
306 | 305 |
embedding and drawing. |
307 | 306 |
|
308 | 307 |
\image html planar.png |
309 | 308 |
\image latex planar.eps "Plane graph" width=\textwidth |
310 | 309 |
*/ |
311 | 310 |
|
312 | 311 |
/** |
313 |
@defgroup matching Matching |
|
312 |
@defgroup matching Matching Algorithms |
|
314 | 313 |
@ingroup algs |
315 | 314 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
316 | 315 |
|
317 | 316 |
This group contains algorithm objects and functions to calculate |
318 | 317 |
matchings in graphs and bipartite graphs. The general matching problem is |
319 | 318 |
finding a subset of the arcs which does not shares common endpoints. |
320 | 319 |
|
321 | 320 |
There are several different algorithms for calculate matchings in |
322 | 321 |
graphs. The matching problems in bipartite graphs are generally |
323 | 322 |
easier than in general graphs. The goal of the matching optimization |
324 | 323 |
can be the finding maximum cardinality, maximum weight or minimum cost |
325 | 324 |
matching. The search can be constrained to find perfect or |
326 | 325 |
maximum cardinality matching. |
327 | 326 |
|
328 | 327 |
LEMON contains the next algorithms: |
329 | 328 |
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp |
330 | 329 |
augmenting path algorithm for calculate maximum cardinality matching in |
331 | 330 |
bipartite graphs |
332 | 331 |
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel |
333 | 332 |
algorithm for calculate maximum cardinality matching in bipartite graphs |
334 | 333 |
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" |
335 | 334 |
Successive shortest path algorithm for calculate maximum weighted matching |
336 | 335 |
and maximum weighted bipartite matching in bipartite graph |
337 | 336 |
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" |
338 | 337 |
Successive shortest path algorithm for calculate minimum cost maximum |
339 | 338 |
matching in bipartite graph |
340 | 339 |
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm |
341 | 340 |
for calculate maximum cardinality matching in general graph |
342 | 341 |
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom |
343 | 342 |
shrinking algorithm for calculate maximum weighted matching in general |
344 | 343 |
graph |
345 | 344 |
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching" |
346 | 345 |
Edmond's blossom shrinking algorithm for calculate maximum weighted |
347 | 346 |
perfect matching in general graph |
348 | 347 |
|
349 | 348 |
\image html bipartite_matching.png |
350 | 349 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
351 |
|
|
352 | 350 |
*/ |
353 | 351 |
|
354 | 352 |
/** |
355 |
@defgroup spantree Minimum Spanning Tree |
|
353 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
356 | 354 |
@ingroup algs |
357 | 355 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
358 | 356 |
|
359 | 357 |
This group describes the algorithms for finding a minimum cost spanning |
360 | 358 |
tree in a graph |
361 | 359 |
*/ |
362 | 360 |
|
363 |
|
|
364 | 361 |
/** |
365 |
@defgroup auxalg Auxiliary |
|
362 |
@defgroup auxalg Auxiliary Algorithms |
|
366 | 363 |
@ingroup algs |
367 | 364 |
\brief Auxiliary algorithms implemented in LEMON. |
368 | 365 |
|
369 | 366 |
This group describes some algorithms implemented in LEMON |
370 | 367 |
in order to make it easier to implement complex algorithms. |
371 | 368 |
*/ |
372 | 369 |
|
373 | 370 |
/** |
374 |
@defgroup approx Approximation |
|
371 |
@defgroup approx Approximation Algorithms |
|
372 |
@ingroup algs |
|
375 | 373 |
\brief Approximation algorithms. |
376 | 374 |
|
377 | 375 |
This group describes the approximation and heuristic algorithms |
378 | 376 |
implemented in LEMON. |
379 | 377 |
*/ |
380 | 378 |
|
381 | 379 |
/** |
382 | 380 |
@defgroup gen_opt_group General Optimization Tools |
383 | 381 |
\brief This group describes some general optimization frameworks |
384 | 382 |
implemented in LEMON. |
385 | 383 |
|
386 | 384 |
This group describes some general optimization frameworks |
387 | 385 |
implemented in LEMON. |
388 |
|
|
389 | 386 |
*/ |
390 | 387 |
|
391 | 388 |
/** |
392 |
@defgroup lp_group Lp and Mip |
|
389 |
@defgroup lp_group Lp and Mip Solvers |
|
393 | 390 |
@ingroup gen_opt_group |
394 | 391 |
\brief Lp and Mip solver interfaces for LEMON. |
395 | 392 |
|
396 | 393 |
This group describes Lp and Mip solver interfaces for LEMON. The |
397 | 394 |
various LP solvers could be used in the same manner with this |
398 | 395 |
interface. |
399 |
|
|
400 | 396 |
*/ |
401 | 397 |
|
402 | 398 |
/** |
403 |
@defgroup lp_utils Tools for Lp and Mip |
|
399 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
|
404 | 400 |
@ingroup lp_group |
405 | 401 |
\brief Helper tools to the Lp and Mip solvers. |
406 | 402 |
|
407 | 403 |
This group adds some helper tools to general optimization framework |
408 | 404 |
implemented in LEMON. |
409 | 405 |
*/ |
410 | 406 |
|
411 | 407 |
/** |
412 | 408 |
@defgroup metah Metaheuristics |
413 | 409 |
@ingroup gen_opt_group |
414 | 410 |
\brief Metaheuristics for LEMON library. |
415 | 411 |
|
416 | 412 |
This group describes some metaheuristic optimization tools. |
417 | 413 |
*/ |
418 | 414 |
|
419 | 415 |
/** |
420 | 416 |
@defgroup utils Tools and Utilities |
421 | 417 |
\brief Tools and utilities for programming in LEMON |
422 | 418 |
|
423 | 419 |
Tools and utilities for programming in LEMON. |
424 | 420 |
*/ |
425 | 421 |
|
426 | 422 |
/** |
427 | 423 |
@defgroup gutils Basic Graph Utilities |
428 | 424 |
@ingroup utils |
429 | 425 |
\brief Simple basic graph utilities. |
430 | 426 |
|
431 | 427 |
This group describes some simple basic graph utilities. |
432 | 428 |
*/ |
433 | 429 |
|
434 | 430 |
/** |
435 | 431 |
@defgroup misc Miscellaneous Tools |
436 | 432 |
@ingroup utils |
437 | 433 |
\brief Tools for development, debugging and testing. |
438 | 434 |
|
439 | 435 |
This group describes several useful tools for development, |
440 | 436 |
debugging and testing. |
441 | 437 |
*/ |
442 | 438 |
|
443 | 439 |
/** |
444 |
@defgroup timecount Time |
|
440 |
@defgroup timecount Time Measuring and Counting |
|
445 | 441 |
@ingroup misc |
446 | 442 |
\brief Simple tools for measuring the performance of algorithms. |
447 | 443 |
|
448 | 444 |
This group describes simple tools for measuring the performance |
449 | 445 |
of algorithms. |
450 | 446 |
*/ |
451 | 447 |
|
452 | 448 |
/** |
453 |
@defgroup graphbits Tools for Graph Implementation |
|
454 |
@ingroup utils |
|
455 |
\brief Tools to make it easier to create graphs. |
|
456 |
|
|
457 |
This group describes the tools that makes it easier to create graphs and |
|
458 |
the maps that dynamically update with the graph changes. |
|
459 |
*/ |
|
460 |
|
|
461 |
/** |
|
462 | 449 |
@defgroup exceptions Exceptions |
463 | 450 |
@ingroup utils |
464 | 451 |
\brief Exceptions defined in LEMON. |
465 | 452 |
|
466 | 453 |
This group describes the exceptions defined in LEMON. |
467 | 454 |
*/ |
468 | 455 |
|
469 | 456 |
/** |
470 | 457 |
@defgroup io_group Input-Output |
471 | 458 |
\brief Graph Input-Output methods |
472 | 459 |
|
473 | 460 |
This group describes the tools for importing and exporting graphs |
474 |
and graph related data. Now it supports the LEMON format, the |
|
475 |
\c DIMACS format and the encapsulated postscript (EPS) format. |
|
461 |
and graph related data. Now it supports the \ref lgf-format |
|
462 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
|
463 |
postscript (EPS) format. |
|
476 | 464 |
*/ |
477 | 465 |
|
478 | 466 |
/** |
479 | 467 |
@defgroup lemon_io LEMON Input-Output |
480 | 468 |
@ingroup io_group |
481 |
\brief Reading and writing |
|
469 |
\brief Reading and writing LEMON Graph Format. |
|
482 | 470 |
|
483 | 471 |
This group describes methods for reading and writing |
484 | 472 |
\ref lgf-format "LEMON Graph Format". |
485 | 473 |
*/ |
486 | 474 |
|
487 | 475 |
/** |
488 |
@defgroup eps_io Postscript |
|
476 |
@defgroup eps_io Postscript Exporting |
|
489 | 477 |
@ingroup io_group |
490 | 478 |
\brief General \c EPS drawer and graph exporter |
491 | 479 |
|
492 | 480 |
This group describes general \c EPS drawing methods and special |
493 | 481 |
graph exporting tools. |
494 | 482 |
*/ |
495 | 483 |
|
496 |
|
|
497 | 484 |
/** |
498 | 485 |
@defgroup concept Concepts |
499 | 486 |
\brief Skeleton classes and concept checking classes |
500 | 487 |
|
501 | 488 |
This group describes the data/algorithm skeletons and concept checking |
502 | 489 |
classes implemented in LEMON. |
503 | 490 |
|
504 | 491 |
The purpose of the classes in this group is fourfold. |
505 | 492 |
|
506 | 493 |
- These classes contain the documentations of the concepts. In order |
507 | 494 |
to avoid document multiplications, an implementation of a concept |
508 | 495 |
simply refers to the corresponding concept class. |
509 | 496 |
|
510 | 497 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
511 | 498 |
implementation of the concepts should provide, however completely |
512 | 499 |
without implementations and real data structures behind the |
513 | 500 |
interface. On the other hand they should provide nothing else. All |
514 | 501 |
the algorithms working on a data structure meeting a certain concept |
515 | 502 |
should compile with these classes. (Though it will not run properly, |
516 | 503 |
of course.) In this way it is easily to check if an algorithm |
517 | 504 |
doesn't use any extra feature of a certain implementation. |
518 | 505 |
|
519 | 506 |
- The concept descriptor classes also provide a <em>checker class</em> |
520 | 507 |
that makes it possible to check whether a certain implementation of a |
521 | 508 |
concept indeed provides all the required features. |
522 | 509 |
|
523 | 510 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
524 |
|
|
525 | 511 |
*/ |
526 | 512 |
|
527 |
|
|
528 | 513 |
/** |
529 | 514 |
@defgroup graph_concepts Graph Structure Concepts |
530 | 515 |
@ingroup concept |
531 | 516 |
\brief Skeleton and concept checking classes for graph structures |
532 | 517 |
|
533 | 518 |
This group describes the skeletons and concept checking classes of LEMON's |
534 | 519 |
graph structures and helper classes used to implement these. |
535 | 520 |
*/ |
536 | 521 |
|
537 |
/* --- Unused group |
|
538 |
@defgroup experimental Experimental Structures and Algorithms |
|
539 |
This group describes some Experimental structures and algorithms. |
|
540 |
The stuff here is subject to change. |
|
522 |
/** |
|
523 |
@defgroup map_concepts Map Concepts |
|
524 |
@ingroup concept |
|
525 |
\brief Skeleton and concept checking classes for maps |
|
526 |
|
|
527 |
This group describes the skeletons and concept checking classes of maps. |
|
541 | 528 |
*/ |
542 | 529 |
|
543 | 530 |
/** |
544 | 531 |
\anchor demoprograms |
545 | 532 |
|
546 | 533 |
@defgroup demos Demo programs |
547 | 534 |
|
548 | 535 |
Some demo programs are listed here. Their full source codes can be found in |
549 | 536 |
the \c demo subdirectory of the source tree. |
550 | 537 |
|
551 | 538 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
552 | 539 |
build the library. |
553 | 540 |
*/ |
554 | 541 |
|
555 | 542 |
/** |
556 | 543 |
@defgroup tools Standalone utility applications |
557 | 544 |
|
558 | 545 |
Some utility applications are listed here. |
559 | 546 |
|
560 | 547 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
561 | 548 |
them, as well. |
562 | 549 |
*/ |
563 | 550 |
... | ... |
@@ -33,75 +33,75 @@ |
33 | 33 |
Otherwise the file consists of sections starting with |
34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
36 | 36 |
\@arcs and \c \@edges |
37 | 37 |
and \@attributes. Each header line may also have an optional |
38 | 38 |
\e name, which can be use to distinguish the sections of the same |
39 | 39 |
type. |
40 | 40 |
|
41 | 41 |
The standard sections are column oriented, each line consists of |
42 | 42 |
<em>token</em>s separated by whitespaces. A token can be \e plain or |
43 | 43 |
\e quoted. A plain token is just a sequence of non-whitespace characters, |
44 | 44 |
while a quoted token is a |
45 | 45 |
character sequence surrounded by double quotes, and it can also |
46 | 46 |
contain whitespaces and escape sequences. |
47 | 47 |
|
48 | 48 |
The \c \@nodes section describes a set of nodes and associated |
49 | 49 |
maps. The first is a header line, its columns are the names of the |
50 | 50 |
maps appearing in the following lines. |
51 | 51 |
One of the maps must be called \c |
52 | 52 |
"label", which plays special role in the file. |
53 | 53 |
The following |
54 | 54 |
non-empty lines until the next section describes nodes of the |
55 | 55 |
graph. Each line contains the values of the node maps |
56 | 56 |
associated to the current node. |
57 | 57 |
|
58 | 58 |
\code |
59 | 59 |
@nodes |
60 | 60 |
label coordinates size title |
61 | 61 |
1 (10,20) 10 "First node" |
62 | 62 |
2 (80,80) 8 "Second node" |
63 | 63 |
3 (40,10) 10 "Third node" |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
The \c \@arcs section is very similar to the \c \@nodes section, |
67 | 67 |
it again starts with a header line describing the names of the maps, |
68 | 68 |
but the \c "label" map is not obligatory here. The following lines |
69 | 69 |
describe the arcs. The first two tokens of each line are |
70 | 70 |
the source and the target node of the arc, respectively, then come the map |
71 | 71 |
values. The source and target tokens must be node labels. |
72 | 72 |
|
73 | 73 |
\code |
74 | 74 |
@arcs |
75 | 75 |
capacity |
76 | 76 |
1 2 16 |
77 | 77 |
1 3 12 |
78 | 78 |
2 3 18 |
79 | 79 |
\endcode |
80 | 80 |
|
81 |
The \c \@edges is just a synonym of \c \@arcs. The @arcs section can |
|
81 |
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can |
|
82 | 82 |
also store the edge set of an undirected graph. In such case there is |
83 | 83 |
a conventional method for store arc maps in the file, if two columns |
84 | 84 |
has the same caption with \c '+' and \c '-' prefix, then these columns |
85 | 85 |
can be regarded as the values of an arc map. |
86 | 86 |
|
87 | 87 |
The \c \@attributes section contains key-value pairs, each line |
88 | 88 |
consists of two tokens, an attribute name, and then an attribute |
89 | 89 |
value. The value of the attribute could be also a label value of a |
90 | 90 |
node or an edge, or even an edge label prefixed with \c '+' or \c '-', |
91 | 91 |
which regards to the forward or backward directed arc of the |
92 | 92 |
corresponding edge. |
93 | 93 |
|
94 | 94 |
\code |
95 | 95 |
@attributes |
96 | 96 |
source 1 |
97 | 97 |
target 3 |
98 | 98 |
caption "LEMON test digraph" |
99 | 99 |
\endcode |
100 | 100 |
|
101 | 101 |
The \e LGF can contain extra sections, but there is no restriction on |
102 | 102 |
the format of such sections. |
103 | 103 |
|
104 | 104 |
*/ |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
// LocalWords: whitespace whitespaces |
... | ... |
@@ -5,56 +5,57 @@ |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 | 24 |
\subsection whatis What is LEMON |
25 | 25 |
|
26 | 26 |
LEMON stands for |
27 | 27 |
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels |
28 | 28 |
and <b>O</b>ptimization in <b>N</b>etworks. |
29 | 29 |
It is a C++ template |
30 | 30 |
library aimed at combinatorial optimization tasks which |
31 | 31 |
often involve in working |
32 | 32 |
with graphs. |
33 | 33 |
|
34 | 34 |
<b> |
35 | 35 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
36 | 36 |
project. |
37 | 37 |
You are free to use it in your commercial or |
38 | 38 |
non-commercial applications under very permissive |
39 | 39 |
\ref license "license terms". |
40 | 40 |
</b> |
41 | 41 |
|
42 | 42 |
\subsection howtoread How to read the documentation |
43 | 43 |
|
44 | 44 |
If you want to get a quick start and see the most important features then |
45 | 45 |
take a look at our \ref quicktour |
46 | 46 |
"Quick Tour to LEMON" which will guide you along. |
47 | 47 |
|
48 | 48 |
If you already feel like using our library, see the page that tells you |
49 | 49 |
\ref getstart "How to start using LEMON". |
50 | 50 |
|
51 | 51 |
If you |
52 | 52 |
want to see how LEMON works, see |
53 |
some \ref demoprograms "demo programs" |
|
53 |
some \ref demoprograms "demo programs". |
|
54 | 54 |
|
55 | 55 |
If you know what you are looking for then try to find it under the |
56 | 56 |
<a class="el" href="modules.html">Modules</a> |
57 | 57 |
section. |
58 | 58 |
|
59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
|
59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
|
60 |
\ref migration "Migration Guide" for the backward incompatibilities. |
|
60 | 61 |
*/ |
... | ... |
@@ -12,97 +12,97 @@ |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
\page migration Migration from the 0.x Series |
23 | 23 |
|
24 | 24 |
This guide gives an in depth description on what has changed compared |
25 | 25 |
to the 0.x release series. |
26 | 26 |
|
27 | 27 |
Many of these changes adjusted automatically by the |
28 | 28 |
<tt>script/lemon-0.x-to-1.x.sh</tt> tool. Those requiring manual |
29 | 29 |
update are typeset <b>boldface</b>. |
30 | 30 |
|
31 | 31 |
\section migration-graph Graph Related Name Changes |
32 | 32 |
|
33 | 33 |
- \ref concepts::Digraph "Directed graphs" are called \c Digraph and |
34 | 34 |
they have <tt>Arc</tt>s (instead of <tt>Edge</tt>s), while |
35 | 35 |
\ref concepts::Graph "undirected graphs" are called \c Graph |
36 | 36 |
(instead of \c UGraph) and they have <tt>Edge</tt>s (instead of |
37 | 37 |
<tt>UEdge</tt>s). These changes reflected thoroughly everywhere in |
38 | 38 |
the library. Namely, |
39 | 39 |
- \c Graph -> \c Digraph |
40 | 40 |
- \c %ListGraph -> \c ListDigraph, \c %SmartGraph -> \c SmartDigraph etc. |
41 | 41 |
- \c UGraph -> \c Graph |
42 | 42 |
- \c ListUGraph -> \c ListGraph, \c SmartUGraph -> \c SmartGraph etc. |
43 | 43 |
- \c Edge -> \c Arc, \c UEdge -> \c Edge |
44 | 44 |
- \c EdgeMap -> \c ArcMap, \c UEdgeMap -> \c EdgeMap |
45 | 45 |
- \c EdgeIt -> \c ArcIt, \c UEdgeIt -> \c EdgeIt |
46 | 46 |
- Class names and function names containing the words \c graph, |
47 | 47 |
\c ugraph, \e edge or \e arc should also be updated. |
48 | 48 |
- <b>The two endpoints of an (\e undirected) \c Edge can be obtained by the |
49 | 49 |
<tt>u()</tt> and <tt>v()</tt> member function of the graph |
50 | 50 |
(instead of <tt>source()</tt> and <tt>target()</tt>). This change |
51 | 51 |
must be done by hand.</b> |
52 | 52 |
\n Of course, you can still use <tt>source()</tt> and <tt>target()</tt> |
53 | 53 |
for <tt>Arc</tt>s (directed edges). |
54 | 54 |
|
55 | 55 |
\warning |
56 | 56 |
<b>The <tt>script/lemon-0.x-to-1.x.sh</tt> tool replaces all instances of |
57 | 57 |
the words \c graph, \c digraph, \c edge and \c arc, so it replaces them |
58 | 58 |
in strings, comments etc. as well as in all identifiers.</b> |
59 | 59 |
|
60 |
\section migration-lgf LGF tools |
|
60 |
\section migration-lgf LGF tools |
|
61 | 61 |
- The \ref lgf-format "LGF file format" has changed, |
62 | 62 |
<tt>\@nodeset</tt> has changed to <tt>\@nodes</tt>, |
63 | 63 |
<tt>\@edgeset</tt> and <tt>\@uedgeset</tt> to <tt>\@arcs</tt> or |
64 | 64 |
<tt>\@edges</tt>, which become completely equivalents. The |
65 | 65 |
<tt>\@nodes</tt>, <tt>\@edges</tt> and <tt>\@uedges</tt> sections are |
66 | 66 |
removed from the format, the content of them should be |
67 | 67 |
the part of <tt>\@attributes</tt> section. The data fields in |
68 | 68 |
the sections must follow a strict format, they must be either character |
69 | 69 |
sequences without whitespaces or quoted strings. |
70 | 70 |
- The <tt>LemonReader</tt> and <tt>LemonWriter</tt> core interfaces |
71 | 71 |
are no longer available. |
72 | 72 |
- The implementation of the general section readers and writers has changed |
73 | 73 |
they are simple functors now. Beside the old |
74 | 74 |
stream based section handling, currently line oriented section |
75 | 75 |
reading and writing are also supported. In the |
76 | 76 |
section readers the lines must be counted manually. The sections |
77 | 77 |
should be read and written with the SectionWriter and SectionReader |
78 | 78 |
classes. |
79 | 79 |
- Instead of the item readers and writers, item converters should be |
80 | 80 |
used. The converters are functors, which map the type to |
81 | 81 |
std::string or std::string to the type. The converters for standard |
82 | 82 |
containers hasn't yet been implemented in the new LEMON. The converters |
83 | 83 |
can return strings in any format, because if it is necessary, the LGF |
84 | 84 |
writer and reader will quote and unquote the given value. |
85 | 85 |
- The DigraphReader and DigraphWriter can used similarly to the |
86 | 86 |
0.x series, however the <tt>read</tt> or <tt>write</tt> prefix of |
87 | 87 |
the member functions are removed. |
88 | 88 |
- The new LEMON supports the function like interface, the \c |
89 | 89 |
digraphReader and \c digraphWriter functions are more convenient than |
90 | 90 |
using the classes directly. |
91 | 91 |
|
92 | 92 |
\section migration-search BFS, DFS and Dijkstra |
93 | 93 |
- <b>Using the function interface of BFS, DFS and %Dijkstra both source and |
94 | 94 |
target nodes can be given as parameters of the <tt>run()</tt> function |
95 | 95 |
(instead of \c bfs(), \c dfs() or \c dijkstra() itself).</b> |
96 | 96 |
- \ref named-templ-param "Named class template parameters" of \c Bfs, |
97 | 97 |
\c Dfs, \c Dijkstra, \c BfsVisit, \c DfsVisit are renamed to start |
98 | 98 |
with "Set" instead of "Def". Namely, |
99 | 99 |
- \c DefPredMap -> \c SetPredMap |
100 | 100 |
- \c DefDistMap -> \c SetDistMap |
101 | 101 |
- \c DefReachedMap -> \c SetReachedMap |
102 | 102 |
- \c DefProcessedMap -> \c SetProcessedMap |
103 | 103 |
- \c DefHeap -> \c SetHeap |
104 | 104 |
- \c DefStandardHeap -> \c SetStandardHeap |
105 | 105 |
- \c DefOperationTraits -> \c SetOperationTraits |
106 | 106 |
- \c DefProcessedMapToBeDefaultMap -> \c SetStandardProcessedMap |
107 | 107 |
|
108 | 108 |
\section migration-error Exceptions and Debug tools |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H |
20 | 20 |
#define LEMON_BITS_ALTERATION_NOTIFIER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
|
25 | 25 |
#include <lemon/core.h> |
26 | 26 |
|
27 |
///\ingroup graphbits |
|
28 |
///\file |
|
29 |
|
|
27 |
//\ingroup graphbits |
|
28 |
//\file |
|
29 |
//\brief Observer notifier for graph alteration observers. |
|
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 |
/// \ingroup graphbits |
|
34 |
/// |
|
35 |
/// \brief Notifier class to notify observes about alterations in |
|
36 |
/// a container. |
|
37 |
/// |
|
38 |
/// The simple graph's can be refered as two containers, one node container |
|
39 |
/// and one edge container. But they are not standard containers they |
|
40 |
/// does not store values directly they are just key continars for more |
|
41 |
/// value containers which are the node and edge maps. |
|
42 |
/// |
|
43 |
/// The graph's node and edge sets can be changed as we add or erase |
|
44 |
/// nodes and edges in the graph. LEMON would like to handle easily |
|
45 |
/// that the node and edge maps should contain values for all nodes or |
|
46 |
/// edges. If we want to check on every indicing if the map contains |
|
47 |
/// the current indicing key that cause a drawback in the performance |
|
48 |
/// in the library. We use another solution we notify all maps about |
|
49 |
/// an alteration in the graph, which cause only drawback on the |
|
50 |
/// alteration of the graph. |
|
51 |
/// |
|
52 |
/// This class provides an interface to the container. The \e first() and \e |
|
53 |
/// next() member functions make possible to iterate on the keys of the |
|
54 |
/// container. The \e id() function returns an integer id for each key. |
|
55 |
/// The \e maxId() function gives back an upper bound of the ids. |
|
56 |
/// |
|
57 |
/// For the proper functonality of this class, we should notify it |
|
58 |
/// about each alteration in the container. The alterations have four type |
|
59 |
/// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
|
60 |
/// \e erase() signals that only one or few items added or erased to or |
|
61 |
/// from the graph. If all items are erased from the graph or from an empty |
|
62 |
/// graph a new graph is builded then it can be signaled with the |
|
63 |
/// clear() and build() members. Important rule that if we erase items |
|
64 |
/// from graph we should first signal the alteration and after that erase |
|
65 |
/// them from the container, on the other way on item addition we should |
|
66 |
/// first extend the container and just after that signal the alteration. |
|
67 |
/// |
|
68 |
/// The alteration can be observed with a class inherited from the |
|
69 |
/// \e ObserverBase nested class. The signals can be handled with |
|
70 |
/// overriding the virtual functions defined in the base class. The |
|
71 |
/// observer base can be attached to the notifier with the |
|
72 |
/// \e attach() member and can be detached with detach() function. The |
|
73 |
/// alteration handlers should not call any function which signals |
|
74 |
/// an other alteration in the same notifier and should not |
|
75 |
/// detach any observer from the notifier. |
|
76 |
/// |
|
77 |
/// Alteration observers try to be exception safe. If an \e add() or |
|
78 |
/// a \e clear() function throws an exception then the remaining |
|
79 |
/// observeres will not be notified and the fulfilled additions will |
|
80 |
/// be rolled back by calling the \e erase() or \e clear() |
|
81 |
/// functions. Thence the \e erase() and \e clear() should not throw |
|
82 |
/// exception. Actullay, it can be throw only |
|
83 |
/// \ref AlterationObserver::ImmediateDetach ImmediateDetach |
|
84 |
/// exception which detach the observer from the notifier. |
|
85 |
/// |
|
86 |
/// There are some place when the alteration observing is not completly |
|
87 |
/// reliable. If we want to carry out the node degree in the graph |
|
88 |
/// as in the \ref InDegMap and we use the reverseEdge that cause |
|
89 |
/// unreliable functionality. Because the alteration observing signals |
|
90 |
/// only erasing and adding but not the reversing it will stores bad |
|
91 |
/// degrees. The sub graph adaptors cannot signal the alterations because |
|
92 |
/// just a setting in the filter map can modify the graph and this cannot |
|
93 |
/// be watched in any way. |
|
94 |
/// |
|
95 |
/// \param _Container The container which is observed. |
|
96 |
/// \param _Item The item type which is obserbved. |
|
33 |
// \ingroup graphbits |
|
34 |
// |
|
35 |
// \brief Notifier class to notify observes about alterations in |
|
36 |
// a container. |
|
37 |
// |
|
38 |
// The simple graph's can be refered as two containers, one node container |
|
39 |
// and one edge container. But they are not standard containers they |
|
40 |
// does not store values directly they are just key continars for more |
|
41 |
// value containers which are the node and edge maps. |
|
42 |
// |
|
43 |
// The graph's node and edge sets can be changed as we add or erase |
|
44 |
// nodes and edges in the graph. LEMON would like to handle easily |
|
45 |
// that the node and edge maps should contain values for all nodes or |
|
46 |
// edges. If we want to check on every indicing if the map contains |
|
47 |
// the current indicing key that cause a drawback in the performance |
|
48 |
// in the library. We use another solution we notify all maps about |
|
49 |
// an alteration in the graph, which cause only drawback on the |
|
50 |
// alteration of the graph. |
|
51 |
// |
|
52 |
// This class provides an interface to the container. The \e first() and \e |
|
53 |
// next() member functions make possible to iterate on the keys of the |
|
54 |
// container. The \e id() function returns an integer id for each key. |
|
55 |
// The \e maxId() function gives back an upper bound of the ids. |
|
56 |
// |
|
57 |
// For the proper functonality of this class, we should notify it |
|
58 |
// about each alteration in the container. The alterations have four type |
|
59 |
// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
|
60 |
// \e erase() signals that only one or few items added or erased to or |
|
61 |
// from the graph. If all items are erased from the graph or from an empty |
|
62 |
// graph a new graph is builded then it can be signaled with the |
|
63 |
// clear() and build() members. Important rule that if we erase items |
|
64 |
// from graph we should first signal the alteration and after that erase |
|
65 |
// them from the container, on the other way on item addition we should |
|
66 |
// first extend the container and just after that signal the alteration. |
|
67 |
// |
|
68 |
// The alteration can be observed with a class inherited from the |
|
69 |
// \e ObserverBase nested class. The signals can be handled with |
|
70 |
// overriding the virtual functions defined in the base class. The |
|
71 |
// observer base can be attached to the notifier with the |
|
72 |
// \e attach() member and can be detached with detach() function. The |
|
73 |
// alteration handlers should not call any function which signals |
|
74 |
// an other alteration in the same notifier and should not |
|
75 |
// detach any observer from the notifier. |
|
76 |
// |
|
77 |
// Alteration observers try to be exception safe. If an \e add() or |
|
78 |
// a \e clear() function throws an exception then the remaining |
|
79 |
// observeres will not be notified and the fulfilled additions will |
|
80 |
// be rolled back by calling the \e erase() or \e clear() |
|
81 |
// functions. Thence the \e erase() and \e clear() should not throw |
|
82 |
// exception. Actullay, it can be throw only \ref ImmediateDetach |
|
83 |
// exception which detach the observer from the notifier. |
|
84 |
// |
|
85 |
// There are some place when the alteration observing is not completly |
|
86 |
// reliable. If we want to carry out the node degree in the graph |
|
87 |
// as in the \ref InDegMap and we use the reverseEdge that cause |
|
88 |
// unreliable functionality. Because the alteration observing signals |
|
89 |
// only erasing and adding but not the reversing it will stores bad |
|
90 |
// degrees. The sub graph adaptors cannot signal the alterations because |
|
91 |
// just a setting in the filter map can modify the graph and this cannot |
|
92 |
// be watched in any way. |
|
93 |
// |
|
94 |
// \param _Container The container which is observed. |
|
95 |
// \param _Item The item type which is obserbved. |
|
97 | 96 |
|
98 | 97 |
template <typename _Container, typename _Item> |
99 | 98 |
class AlterationNotifier { |
100 | 99 |
public: |
101 | 100 |
|
102 | 101 |
typedef True Notifier; |
103 | 102 |
|
104 | 103 |
typedef _Container Container; |
105 | 104 |
typedef _Item Item; |
106 | 105 |
|
107 |
/// \brief Exception which can be called from \e clear() and |
|
108 |
/// \e erase(). |
|
109 |
/// |
|
110 |
/// From the \e clear() and \e erase() function only this |
|
111 |
/// exception is allowed to throw. The exception immediatly |
|
112 |
/// detaches the current observer from the notifier. Because the |
|
113 |
/// \e clear() and \e erase() should not throw other exceptions |
|
114 |
/// it can be used to invalidate the observer. |
|
106 |
// \brief Exception which can be called from \e clear() and |
|
107 |
// \e erase(). |
|
108 |
// |
|
109 |
// From the \e clear() and \e erase() function only this |
|
110 |
// exception is allowed to throw. The exception immediatly |
|
111 |
// detaches the current observer from the notifier. Because the |
|
112 |
// \e clear() and \e erase() should not throw other exceptions |
|
113 |
// it can be used to invalidate the observer. |
|
115 | 114 |
struct ImmediateDetach {}; |
116 | 115 |
|
117 |
/// \brief ObserverBase is the base class for the observers. |
|
118 |
/// |
|
119 |
/// ObserverBase is the abstract base class for the observers. |
|
120 |
/// It will be notified about an item was inserted into or |
|
121 |
/// erased from the graph. |
|
122 |
/// |
|
123 |
/// The observer interface contains some pure virtual functions |
|
124 |
/// to override. The add() and erase() functions are |
|
125 |
/// to notify the oberver when one item is added or |
|
126 |
/// erased. |
|
127 |
/// |
|
128 |
/// The build() and clear() members are to notify the observer |
|
129 |
/// about the container is built from an empty container or |
|
130 |
/// is cleared to an empty container. |
|
131 |
|
|
116 |
// \brief ObserverBase is the base class for the observers. |
|
117 |
// |
|
118 |
// ObserverBase is the abstract base class for the observers. |
|
119 |
// It will be notified about an item was inserted into or |
|
120 |
// erased from the graph. |
|
121 |
// |
|
122 |
// The observer interface contains some pure virtual functions |
|
123 |
// to override. The add() and erase() functions are |
|
124 |
// to notify the oberver when one item is added or |
|
125 |
// erased. |
|
126 |
// |
|
127 |
// The build() and clear() members are to notify the observer |
|
128 |
// about the container is built from an empty container or |
|
129 |
// is cleared to an empty container. |
|
132 | 130 |
class ObserverBase { |
133 | 131 |
protected: |
134 | 132 |
typedef AlterationNotifier Notifier; |
135 | 133 |
|
136 | 134 |
friend class AlterationNotifier; |
137 | 135 |
|
138 |
/// \brief Default constructor. |
|
139 |
/// |
|
140 |
/// Default constructor for ObserverBase. |
|
141 |
/// |
|
136 |
// \brief Default constructor. |
|
137 |
// |
|
138 |
// Default constructor for ObserverBase. |
|
142 | 139 |
ObserverBase() : _notifier(0) {} |
143 | 140 |
|
144 |
/// \brief Constructor which attach the observer into notifier. |
|
145 |
/// |
|
146 |
// |
|
141 |
// \brief Constructor which attach the observer into notifier. |
|
142 |
// |
|
143 |
// Constructor which attach the observer into notifier. |
|
147 | 144 |
ObserverBase(AlterationNotifier& nf) { |
148 | 145 |
attach(nf); |
149 | 146 |
} |
150 | 147 |
|
151 |
/// \brief Constructor which attach the obserever to the same notifier. |
|
152 |
/// |
|
153 |
/// Constructor which attach the obserever to the same notifier as |
|
154 |
/// the other observer is attached to. |
|
148 |
// \brief Constructor which attach the obserever to the same notifier. |
|
149 |
// |
|
150 |
// Constructor which attach the obserever to the same notifier as |
|
151 |
// the other observer is attached to. |
|
155 | 152 |
ObserverBase(const ObserverBase& copy) { |
156 | 153 |
if (copy.attached()) { |
157 | 154 |
attach(*copy.notifier()); |
158 | 155 |
} |
159 | 156 |
} |
160 | 157 |
|
161 |
// |
|
158 |
// \brief Destructor |
|
162 | 159 |
virtual ~ObserverBase() { |
163 | 160 |
if (attached()) { |
164 | 161 |
detach(); |
165 | 162 |
} |
166 | 163 |
} |
167 | 164 |
|
168 |
/// \brief Attaches the observer into an AlterationNotifier. |
|
169 |
/// |
|
170 |
/// This member attaches the observer into an AlterationNotifier. |
|
171 |
/// |
|
165 |
// \brief Attaches the observer into an AlterationNotifier. |
|
166 |
// |
|
167 |
// This member attaches the observer into an AlterationNotifier. |
|
172 | 168 |
void attach(AlterationNotifier& nf) { |
173 | 169 |
nf.attach(*this); |
174 | 170 |
} |
175 | 171 |
|
176 |
/// \brief Detaches the observer into an AlterationNotifier. |
|
177 |
/// |
|
178 |
/// This member detaches the observer from an AlterationNotifier. |
|
179 |
/// |
|
172 |
// \brief Detaches the observer into an AlterationNotifier. |
|
173 |
// |
|
174 |
// This member detaches the observer from an AlterationNotifier. |
|
180 | 175 |
void detach() { |
181 | 176 |
_notifier->detach(*this); |
182 | 177 |
} |
183 | 178 |
|
184 |
/// \brief Gives back a pointer to the notifier which the map |
|
185 |
/// attached into. |
|
186 |
/// |
|
187 |
/// This function gives back a pointer to the notifier which the map |
|
188 |
/// attached into. |
|
189 |
/// |
|
179 |
// \brief Gives back a pointer to the notifier which the map |
|
180 |
// attached into. |
|
181 |
// |
|
182 |
// This function gives back a pointer to the notifier which the map |
|
183 |
// attached into. |
|
190 | 184 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); } |
191 | 185 |
|
192 |
|
|
186 |
// Gives back true when the observer is attached into a notifier. |
|
193 | 187 |
bool attached() const { return _notifier != 0; } |
194 | 188 |
|
195 | 189 |
private: |
196 | 190 |
|
197 | 191 |
ObserverBase& operator=(const ObserverBase& copy); |
198 | 192 |
|
199 | 193 |
protected: |
200 | 194 |
|
201 | 195 |
Notifier* _notifier; |
202 | 196 |
typename std::list<ObserverBase*>::iterator _index; |
203 | 197 |
|
204 |
/// \brief The member function to notificate the observer about an |
|
205 |
/// item is added to the container. |
|
206 |
/// |
|
207 |
/// The add() member function notificates the observer about an item |
|
208 |
/// is added to the container. It have to be overrided in the |
|
209 |
/// subclasses. |
|
198 |
// \brief The member function to notificate the observer about an |
|
199 |
// item is added to the container. |
|
200 |
// |
|
201 |
// The add() member function notificates the observer about an item |
|
202 |
// is added to the container. It have to be overrided in the |
|
203 |
// subclasses. |
|
210 | 204 |
virtual void add(const Item&) = 0; |
211 | 205 |
|
212 |
/// \brief The member function to notificate the observer about |
|
213 |
/// more item is added to the container. |
|
214 |
/// |
|
215 |
/// The add() member function notificates the observer about more item |
|
216 |
/// is added to the container. It have to be overrided in the |
|
217 |
/// subclasses. |
|
206 |
// \brief The member function to notificate the observer about |
|
207 |
// more item is added to the container. |
|
208 |
// |
|
209 |
// The add() member function notificates the observer about more item |
|
210 |
// is added to the container. It have to be overrided in the |
|
211 |
// subclasses. |
|
218 | 212 |
virtual void add(const std::vector<Item>& items) = 0; |
219 | 213 |
|
220 |
/// \brief The member function to notificate the observer about an |
|
221 |
/// item is erased from the container. |
|
222 |
/// |
|
223 |
/// The erase() member function notificates the observer about an |
|
224 |
/// item is erased from the container. It have to be overrided in |
|
225 |
/// the subclasses. |
|
214 |
// \brief The member function to notificate the observer about an |
|
215 |
// item is erased from the container. |
|
216 |
// |
|
217 |
// The erase() member function notificates the observer about an |
|
218 |
// item is erased from the container. It have to be overrided in |
|
219 |
// the subclasses. |
|
226 | 220 |
virtual void erase(const Item&) = 0; |
227 | 221 |
|
228 |
/// \brief The member function to notificate the observer about |
|
229 |
/// more item is erased from the container. |
|
230 |
/// |
|
231 |
/// The erase() member function notificates the observer about more item |
|
232 |
/// is erased from the container. It have to be overrided in the |
|
233 |
/// subclasses. |
|
222 |
// \brief The member function to notificate the observer about |
|
223 |
// more item is erased from the container. |
|
224 |
// |
|
225 |
// The erase() member function notificates the observer about more item |
|
226 |
// is erased from the container. It have to be overrided in the |
|
227 |
// subclasses. |
|
234 | 228 |
virtual void erase(const std::vector<Item>& items) = 0; |
235 | 229 |
|
236 |
/// \brief The member function to notificate the observer about the |
|
237 |
/// container is built. |
|
238 |
/// |
|
239 |
/// The build() member function notificates the observer about the |
|
240 |
/// container is built from an empty container. It have to be |
|
241 |
/// overrided in the subclasses. |
|
242 |
|
|
230 |
// \brief The member function to notificate the observer about the |
|
231 |
// container is built. |
|
232 |
// |
|
233 |
// The build() member function notificates the observer about the |
|
234 |
// container is built from an empty container. It have to be |
|
235 |
// overrided in the subclasses. |
|
243 | 236 |
virtual void build() = 0; |
244 | 237 |
|
245 |
/// \brief The member function to notificate the observer about all |
|
246 |
/// items are erased from the container. |
|
247 |
/// |
|
248 |
/// The clear() member function notificates the observer about all |
|
249 |
/// items are erased from the container. It have to be overrided in |
|
250 |
/// the subclasses. |
|
238 |
// \brief The member function to notificate the observer about all |
|
239 |
// items are erased from the container. |
|
240 |
// |
|
241 |
// The clear() member function notificates the observer about all |
|
242 |
// items are erased from the container. It have to be overrided in |
|
243 |
// the subclasses. |
|
251 | 244 |
virtual void clear() = 0; |
252 | 245 |
|
253 | 246 |
}; |
254 | 247 |
|
255 | 248 |
protected: |
256 | 249 |
|
257 | 250 |
const Container* container; |
258 | 251 |
|
259 | 252 |
typedef std::list<ObserverBase*> Observers; |
260 | 253 |
Observers _observers; |
261 | 254 |
|
262 | 255 |
|
263 | 256 |
public: |
264 | 257 |
|
265 |
/// \brief Default constructor. |
|
266 |
/// |
|
267 |
/// The default constructor of the AlterationNotifier. |
|
268 |
/// It creates an empty notifier. |
|
258 |
// \brief Default constructor. |
|
259 |
// |
|
260 |
// The default constructor of the AlterationNotifier. |
|
261 |
// It creates an empty notifier. |
|
269 | 262 |
AlterationNotifier() |
270 | 263 |
: container(0) {} |
271 | 264 |
|
272 |
/// \brief Constructor. |
|
273 |
/// |
|
274 |
// |
|
265 |
// \brief Constructor. |
|
266 |
// |
|
267 |
// Constructor with the observed container parameter. |
|
275 | 268 |
AlterationNotifier(const Container& _container) |
276 | 269 |
: container(&_container) {} |
277 | 270 |
|
278 |
/// \brief Copy Constructor of the AlterationNotifier. |
|
279 |
/// |
|
280 |
/// Copy constructor of the AlterationNotifier. |
|
281 |
/// It creates only an empty notifier because the copiable |
|
282 |
// |
|
271 |
// \brief Copy Constructor of the AlterationNotifier. |
|
272 |
// |
|
273 |
// Copy constructor of the AlterationNotifier. |
|
274 |
// It creates only an empty notifier because the copiable |
|
275 |
// notifier's observers have to be registered still into that notifier. |
|
283 | 276 |
AlterationNotifier(const AlterationNotifier& _notifier) |
284 | 277 |
: container(_notifier.container) {} |
285 | 278 |
|
286 |
/// \brief Destructor. |
|
287 |
/// |
|
288 |
/// Destructor of the AlterationNotifier. |
|
289 |
/// |
|
279 |
// \brief Destructor. |
|
280 |
// |
|
281 |
// Destructor of the AlterationNotifier. |
|
290 | 282 |
~AlterationNotifier() { |
291 | 283 |
typename Observers::iterator it; |
292 | 284 |
for (it = _observers.begin(); it != _observers.end(); ++it) { |
293 | 285 |
(*it)->_notifier = 0; |
294 | 286 |
} |
295 | 287 |
} |
296 | 288 |
|
297 |
/// \brief Sets the container. |
|
298 |
/// |
|
299 |
// |
|
289 |
// \brief Sets the container. |
|
290 |
// |
|
291 |
// Sets the container. |
|
300 | 292 |
void setContainer(const Container& _container) { |
301 | 293 |
container = &_container; |
302 | 294 |
} |
303 | 295 |
|
304 | 296 |
protected: |
305 | 297 |
|
306 | 298 |
AlterationNotifier& operator=(const AlterationNotifier&); |
307 | 299 |
|
308 | 300 |
public: |
309 | 301 |
|
310 |
|
|
311 |
|
|
312 |
/// \brief First item in the container. |
|
313 |
/// |
|
314 |
/// Returns the first item in the container. It is |
|
315 |
/// for start the iteration on the container. |
|
302 |
// \brief First item in the container. |
|
303 |
// |
|
304 |
// Returns the first item in the container. It is |
|
305 |
// for start the iteration on the container. |
|
316 | 306 |
void first(Item& item) const { |
317 | 307 |
container->first(item); |
318 | 308 |
} |
319 | 309 |
|
320 |
/// \brief Next item in the container. |
|
321 |
/// |
|
322 |
/// Returns the next item in the container. It is |
|
323 |
/// for iterate on the container. |
|
310 |
// \brief Next item in the container. |
|
311 |
// |
|
312 |
// Returns the next item in the container. It is |
|
313 |
// for iterate on the container. |
|
324 | 314 |
void next(Item& item) const { |
325 | 315 |
container->next(item); |
326 | 316 |
} |
327 | 317 |
|
328 |
/// \brief Returns the id of the item. |
|
329 |
/// |
|
330 |
// |
|
318 |
// \brief Returns the id of the item. |
|
319 |
// |
|
320 |
// Returns the id of the item provided by the container. |
|
331 | 321 |
int id(const Item& item) const { |
332 | 322 |
return container->id(item); |
333 | 323 |
} |
334 | 324 |
|
335 |
/// \brief Returns the maximum id of the container. |
|
336 |
/// |
|
337 |
// |
|
325 |
// \brief Returns the maximum id of the container. |
|
326 |
// |
|
327 |
// Returns the maximum id of the container. |
|
338 | 328 |
int maxId() const { |
339 | 329 |
return container->maxId(Item()); |
340 | 330 |
} |
341 | 331 |
|
342 | 332 |
protected: |
343 | 333 |
|
344 | 334 |
void attach(ObserverBase& observer) { |
345 | 335 |
observer._index = _observers.insert(_observers.begin(), &observer); |
346 | 336 |
observer._notifier = this; |
347 | 337 |
} |
348 | 338 |
|
349 | 339 |
void detach(ObserverBase& observer) { |
350 | 340 |
_observers.erase(observer._index); |
351 | 341 |
observer._index = _observers.end(); |
352 | 342 |
observer._notifier = 0; |
353 | 343 |
} |
354 | 344 |
|
355 | 345 |
public: |
356 | 346 |
|
357 |
/// \brief Notifies all the registed observers about an item added to |
|
358 |
/// the container. |
|
359 |
/// |
|
360 |
/// It notifies all the registed observers about an item added to |
|
361 |
/// the container. |
|
362 |
/// |
|
347 |
// \brief Notifies all the registed observers about an item added to |
|
348 |
// the container. |
|
349 |
// |
|
350 |
// It notifies all the registed observers about an item added to |
|
351 |
// the container. |
|
363 | 352 |
void add(const Item& item) { |
364 | 353 |
typename Observers::reverse_iterator it; |
365 | 354 |
try { |
366 | 355 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
367 | 356 |
(*it)->add(item); |
368 | 357 |
} |
369 | 358 |
} catch (...) { |
370 | 359 |
typename Observers::iterator jt; |
371 | 360 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
372 | 361 |
(*jt)->erase(item); |
373 | 362 |
} |
374 | 363 |
throw; |
375 | 364 |
} |
376 | 365 |
} |
377 | 366 |
|
378 |
/// \brief Notifies all the registed observers about more item added to |
|
379 |
/// the container. |
|
380 |
/// |
|
381 |
/// It notifies all the registed observers about more item added to |
|
382 |
/// the container. |
|
383 |
/// |
|
367 |
// \brief Notifies all the registed observers about more item added to |
|
368 |
// the container. |
|
369 |
// |
|
370 |
// It notifies all the registed observers about more item added to |
|
371 |
// the container. |
|
384 | 372 |
void add(const std::vector<Item>& items) { |
385 | 373 |
typename Observers::reverse_iterator it; |
386 | 374 |
try { |
387 | 375 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
388 | 376 |
(*it)->add(items); |
389 | 377 |
} |
390 | 378 |
} catch (...) { |
391 | 379 |
typename Observers::iterator jt; |
392 | 380 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
393 | 381 |
(*jt)->erase(items); |
394 | 382 |
} |
395 | 383 |
throw; |
396 | 384 |
} |
397 | 385 |
} |
398 | 386 |
|
399 |
/// \brief Notifies all the registed observers about an item erased from |
|
400 |
/// the container. |
|
401 |
/// |
|
402 |
/// It notifies all the registed observers about an item erased from |
|
403 |
/// the container. |
|
404 |
/// |
|
387 |
// \brief Notifies all the registed observers about an item erased from |
|
388 |
// the container. |
|
389 |
// |
|
390 |
// It notifies all the registed observers about an item erased from |
|
391 |
// the container. |
|
405 | 392 |
void erase(const Item& item) throw() { |
406 | 393 |
typename Observers::iterator it = _observers.begin(); |
407 | 394 |
while (it != _observers.end()) { |
408 | 395 |
try { |
409 | 396 |
(*it)->erase(item); |
410 | 397 |
++it; |
411 | 398 |
} catch (const ImmediateDetach&) { |
412 | 399 |
(*it)->_index = _observers.end(); |
413 | 400 |
(*it)->_notifier = 0; |
414 | 401 |
it = _observers.erase(it); |
415 | 402 |
} |
416 | 403 |
} |
417 | 404 |
} |
418 | 405 |
|
419 |
/// \brief Notifies all the registed observers about more item erased |
|
420 |
/// from the container. |
|
421 |
/// |
|
422 |
/// It notifies all the registed observers about more item erased from |
|
423 |
/// the container. |
|
424 |
/// |
|
406 |
// \brief Notifies all the registed observers about more item erased |
|
407 |
// from the container. |
|
408 |
// |
|
409 |
// It notifies all the registed observers about more item erased from |
|
410 |
// the container. |
|
425 | 411 |
void erase(const std::vector<Item>& items) { |
426 | 412 |
typename Observers::iterator it = _observers.begin(); |
427 | 413 |
while (it != _observers.end()) { |
428 | 414 |
try { |
429 | 415 |
(*it)->erase(items); |
430 | 416 |
++it; |
431 | 417 |
} catch (const ImmediateDetach&) { |
432 | 418 |
(*it)->_index = _observers.end(); |
433 | 419 |
(*it)->_notifier = 0; |
434 | 420 |
it = _observers.erase(it); |
435 | 421 |
} |
436 | 422 |
} |
437 | 423 |
} |
438 | 424 |
|
439 |
/// \brief Notifies all the registed observers about the container is |
|
440 |
/// built. |
|
441 |
/// |
|
442 |
/// Notifies all the registed observers about the container is built |
|
443 |
// |
|
425 |
// \brief Notifies all the registed observers about the container is |
|
426 |
// built. |
|
427 |
// |
|
428 |
// Notifies all the registed observers about the container is built |
|
429 |
// from an empty container. |
|
444 | 430 |
void build() { |
445 | 431 |
typename Observers::reverse_iterator it; |
446 | 432 |
try { |
447 | 433 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
448 | 434 |
(*it)->build(); |
449 | 435 |
} |
450 | 436 |
} catch (...) { |
451 | 437 |
typename Observers::iterator jt; |
452 | 438 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
453 | 439 |
(*jt)->clear(); |
454 | 440 |
} |
455 | 441 |
throw; |
456 | 442 |
} |
457 | 443 |
} |
458 | 444 |
|
459 |
/// \brief Notifies all the registed observers about all items are |
|
460 |
/// erased. |
|
461 |
/// |
|
462 |
/// Notifies all the registed observers about all items are erased |
|
463 |
// |
|
445 |
// \brief Notifies all the registed observers about all items are |
|
446 |
// erased. |
|
447 |
// |
|
448 |
// Notifies all the registed observers about all items are erased |
|
449 |
// from the container. |
|
464 | 450 |
void clear() { |
465 | 451 |
typename Observers::iterator it = _observers.begin(); |
466 | 452 |
while (it != _observers.end()) { |
467 | 453 |
try { |
468 | 454 |
(*it)->clear(); |
469 | 455 |
++it; |
470 | 456 |
} catch (const ImmediateDetach&) { |
471 | 457 |
(*it)->_index = _observers.end(); |
472 | 458 |
(*it)->_notifier = 0; |
473 | 459 |
it = _observers.erase(it); |
474 | 460 |
} |
475 | 461 |
} |
476 | 462 |
} |
477 | 463 |
}; |
478 | 464 |
|
479 | 465 |
} |
480 | 466 |
|
481 | 467 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ARRAY_MAP_H |
20 | 20 |
#define LEMON_BITS_ARRAY_MAP_H |
21 | 21 |
|
22 | 22 |
#include <memory> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
#include <lemon/bits/alteration_notifier.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 |
/// \ingroup graphbits |
|
30 |
/// \file |
|
31 |
|
|
29 |
// \ingroup graphbits |
|
30 |
// \file |
|
31 |
// \brief Graph map based on the array storage. |
|
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 |
/// \ingroup graphbits |
|
36 |
/// |
|
37 |
/// \brief Graph map based on the array storage. |
|
38 |
/// |
|
39 |
/// The ArrayMap template class is graph map structure what |
|
40 |
/// automatically updates the map when a key is added to or erased from |
|
41 |
/// the map. This map uses the allocators to implement |
|
42 |
/// the container functionality. |
|
43 |
/// |
|
44 |
/// The template parameters are the Graph the current Item type and |
|
45 |
// |
|
35 |
// \ingroup graphbits |
|
36 |
// |
|
37 |
// \brief Graph map based on the array storage. |
|
38 |
// |
|
39 |
// The ArrayMap template class is graph map structure what |
|
40 |
// automatically updates the map when a key is added to or erased from |
|
41 |
// the map. This map uses the allocators to implement |
|
42 |
// the container functionality. |
|
43 |
// |
|
44 |
// The template parameters are the Graph the current Item type and |
|
45 |
// the Value type of the map. |
|
46 | 46 |
template <typename _Graph, typename _Item, typename _Value> |
47 | 47 |
class ArrayMap |
48 | 48 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
49 | 49 |
public: |
50 |
|
|
50 |
// The graph type of the maps. |
|
51 | 51 |
typedef _Graph Graph; |
52 |
|
|
52 |
// The item type of the map. |
|
53 | 53 |
typedef _Item Item; |
54 |
|
|
54 |
// The reference map tag. |
|
55 | 55 |
typedef True ReferenceMapTag; |
56 | 56 |
|
57 |
|
|
57 |
// The key type of the maps. |
|
58 | 58 |
typedef _Item Key; |
59 |
|
|
59 |
// The value type of the map. |
|
60 | 60 |
typedef _Value Value; |
61 | 61 |
|
62 |
|
|
62 |
// The const reference type of the map. |
|
63 | 63 |
typedef const _Value& ConstReference; |
64 |
|
|
64 |
// The reference type of the map. |
|
65 | 65 |
typedef _Value& Reference; |
66 | 66 |
|
67 |
|
|
67 |
// The notifier type. |
|
68 | 68 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
69 | 69 |
|
70 |
|
|
70 |
// The MapBase of the Map which imlements the core regisitry function. |
|
71 | 71 |
typedef typename Notifier::ObserverBase Parent; |
72 | 72 |
|
73 | 73 |
private: |
74 | 74 |
typedef std::allocator<Value> Allocator; |
75 | 75 |
|
76 | 76 |
public: |
77 | 77 |
|
78 |
/// \brief Graph initialized map constructor. |
|
79 |
/// |
|
80 |
// |
|
78 |
// \brief Graph initialized map constructor. |
|
79 |
// |
|
80 |
// Graph initialized map constructor. |
|
81 | 81 |
explicit ArrayMap(const Graph& graph) { |
82 | 82 |
Parent::attach(graph.notifier(Item())); |
83 | 83 |
allocate_memory(); |
84 | 84 |
Notifier* nf = Parent::notifier(); |
85 | 85 |
Item it; |
86 | 86 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
87 | 87 |
int id = nf->id(it);; |
88 | 88 |
allocator.construct(&(values[id]), Value()); |
89 | 89 |
} |
90 | 90 |
} |
91 | 91 |
|
92 |
/// \brief Constructor to use default value to initialize the map. |
|
93 |
/// |
|
94 |
// |
|
92 |
// \brief Constructor to use default value to initialize the map. |
|
93 |
// |
|
94 |
// It constructs a map and initialize all of the the map. |
|
95 | 95 |
ArrayMap(const Graph& graph, const Value& value) { |
96 | 96 |
Parent::attach(graph.notifier(Item())); |
97 | 97 |
allocate_memory(); |
98 | 98 |
Notifier* nf = Parent::notifier(); |
99 | 99 |
Item it; |
100 | 100 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
101 | 101 |
int id = nf->id(it);; |
102 | 102 |
allocator.construct(&(values[id]), value); |
103 | 103 |
} |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
private: |
107 |
/// \brief Constructor to copy a map of the same map type. |
|
108 |
/// |
|
109 |
// |
|
107 |
// \brief Constructor to copy a map of the same map type. |
|
108 |
// |
|
109 |
// Constructor to copy a map of the same map type. |
|
110 | 110 |
ArrayMap(const ArrayMap& copy) : Parent() { |
111 | 111 |
if (copy.attached()) { |
112 | 112 |
attach(*copy.notifier()); |
113 | 113 |
} |
114 | 114 |
capacity = copy.capacity; |
115 | 115 |
if (capacity == 0) return; |
116 | 116 |
values = allocator.allocate(capacity); |
117 | 117 |
Notifier* nf = Parent::notifier(); |
118 | 118 |
Item it; |
119 | 119 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
120 | 120 |
int id = nf->id(it);; |
121 | 121 |
allocator.construct(&(values[id]), copy.values[id]); |
122 | 122 |
} |
123 | 123 |
} |
124 | 124 |
|
125 |
/// \brief Assign operator. |
|
126 |
/// |
|
127 |
/// This operator assigns for each item in the map the |
|
128 |
/// value mapped to the same item in the copied map. |
|
129 |
/// The parameter map should be indiced with the same |
|
130 |
/// itemset because this assign operator does not change |
|
131 |
// |
|
125 |
// \brief Assign operator. |
|
126 |
// |
|
127 |
// This operator assigns for each item in the map the |
|
128 |
// value mapped to the same item in the copied map. |
|
129 |
// The parameter map should be indiced with the same |
|
130 |
// itemset because this assign operator does not change |
|
131 |
// the container of the map. |
|
132 | 132 |
ArrayMap& operator=(const ArrayMap& cmap) { |
133 | 133 |
return operator=<ArrayMap>(cmap); |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
|
137 |
/// \brief Template assign operator. |
|
138 |
/// |
|
139 |
/// The given parameter should be conform to the ReadMap |
|
140 |
/// concecpt and could be indiced by the current item set of |
|
141 |
/// the NodeMap. In this case the value for each item |
|
142 |
/// is assigned by the value of the given ReadMap. |
|
137 |
// \brief Template assign operator. |
|
138 |
// |
|
139 |
// The given parameter should be conform to the ReadMap |
|
140 |
// concecpt and could be indiced by the current item set of |
|
141 |
// the NodeMap. In this case the value for each item |
|
142 |
// is assigned by the value of the given ReadMap. |
|
143 | 143 |
template <typename CMap> |
144 | 144 |
ArrayMap& operator=(const CMap& cmap) { |
145 | 145 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
146 | 146 |
const typename Parent::Notifier* nf = Parent::notifier(); |
147 | 147 |
Item it; |
148 | 148 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
149 | 149 |
set(it, cmap[it]); |
150 | 150 |
} |
151 | 151 |
return *this; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
public: |
155 |
/// \brief The destructor of the map. |
|
156 |
/// |
|
157 |
// |
|
155 |
// \brief The destructor of the map. |
|
156 |
// |
|
157 |
// The destructor of the map. |
|
158 | 158 |
virtual ~ArrayMap() { |
159 | 159 |
if (attached()) { |
160 | 160 |
clear(); |
161 | 161 |
detach(); |
162 | 162 |
} |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
protected: |
166 | 166 |
|
167 | 167 |
using Parent::attach; |
168 | 168 |
using Parent::detach; |
169 | 169 |
using Parent::attached; |
170 | 170 |
|
171 | 171 |
public: |
172 | 172 |
|
173 |
/// \brief The subscript operator. |
|
174 |
/// |
|
175 |
/// The subscript operator. The map can be subscripted by the |
|
176 |
/// actual keys of the graph. |
|
173 |
// \brief The subscript operator. |
|
174 |
// |
|
175 |
// The subscript operator. The map can be subscripted by the |
|
176 |
// actual keys of the graph. |
|
177 | 177 |
Value& operator[](const Key& key) { |
178 | 178 |
int id = Parent::notifier()->id(key); |
179 | 179 |
return values[id]; |
180 | 180 |
} |
181 | 181 |
|
182 |
/// \brief The const subscript operator. |
|
183 |
/// |
|
184 |
/// The const subscript operator. The map can be subscripted by the |
|
185 |
/// actual keys of the graph. |
|
182 |
// \brief The const subscript operator. |
|
183 |
// |
|
184 |
// The const subscript operator. The map can be subscripted by the |
|
185 |
// actual keys of the graph. |
|
186 | 186 |
const Value& operator[](const Key& key) const { |
187 | 187 |
int id = Parent::notifier()->id(key); |
188 | 188 |
return values[id]; |
189 | 189 |
} |
190 | 190 |
|
191 |
/// \brief Setter function of the map. |
|
192 |
/// |
|
193 |
/// Setter function of the map. Equivalent with map[key] = val. |
|
194 |
/// This is a compatibility feature with the not dereferable maps. |
|
191 |
// \brief Setter function of the map. |
|
192 |
// |
|
193 |
// Setter function of the map. Equivalent with map[key] = val. |
|
194 |
// This is a compatibility feature with the not dereferable maps. |
|
195 | 195 |
void set(const Key& key, const Value& val) { |
196 | 196 |
(*this)[key] = val; |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
protected: |
200 | 200 |
|
201 |
/// \brief Adds a new key to the map. |
|
202 |
/// |
|
203 |
/// It adds a new key to the map. It called by the observer notifier |
|
204 |
/// and it overrides the add() member function of the observer base. |
|
201 |
// \brief Adds a new key to the map. |
|
202 |
// |
|
203 |
// It adds a new key to the map. It called by the observer notifier |
|
204 |
// and it overrides the add() member function of the observer base. |
|
205 | 205 |
virtual void add(const Key& key) { |
206 | 206 |
Notifier* nf = Parent::notifier(); |
207 | 207 |
int id = nf->id(key); |
208 | 208 |
if (id >= capacity) { |
209 | 209 |
int new_capacity = (capacity == 0 ? 1 : capacity); |
210 | 210 |
while (new_capacity <= id) { |
211 | 211 |
new_capacity <<= 1; |
212 | 212 |
} |
213 | 213 |
Value* new_values = allocator.allocate(new_capacity); |
214 | 214 |
Item it; |
215 | 215 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
216 | 216 |
int jd = nf->id(it);; |
217 | 217 |
if (id != jd) { |
218 | 218 |
allocator.construct(&(new_values[jd]), values[jd]); |
219 | 219 |
allocator.destroy(&(values[jd])); |
220 | 220 |
} |
221 | 221 |
} |
222 | 222 |
if (capacity != 0) allocator.deallocate(values, capacity); |
223 | 223 |
values = new_values; |
224 | 224 |
capacity = new_capacity; |
225 | 225 |
} |
226 | 226 |
allocator.construct(&(values[id]), Value()); |
227 | 227 |
} |
228 | 228 |
|
229 |
/// \brief Adds more new keys to the map. |
|
230 |
/// |
|
231 |
/// It adds more new keys to the map. It called by the observer notifier |
|
232 |
/// and it overrides the add() member function of the observer base. |
|
229 |
// \brief Adds more new keys to the map. |
|
230 |
// |
|
231 |
// It adds more new keys to the map. It called by the observer notifier |
|
232 |
// and it overrides the add() member function of the observer base. |
|
233 | 233 |
virtual void add(const std::vector<Key>& keys) { |
234 | 234 |
Notifier* nf = Parent::notifier(); |
235 | 235 |
int max_id = -1; |
236 | 236 |
for (int i = 0; i < int(keys.size()); ++i) { |
237 | 237 |
int id = nf->id(keys[i]); |
238 | 238 |
if (id > max_id) { |
239 | 239 |
max_id = id; |
240 | 240 |
} |
241 | 241 |
} |
242 | 242 |
if (max_id >= capacity) { |
243 | 243 |
int new_capacity = (capacity == 0 ? 1 : capacity); |
244 | 244 |
while (new_capacity <= max_id) { |
245 | 245 |
new_capacity <<= 1; |
246 | 246 |
} |
247 | 247 |
Value* new_values = allocator.allocate(new_capacity); |
248 | 248 |
Item it; |
249 | 249 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
250 | 250 |
int id = nf->id(it); |
251 | 251 |
bool found = false; |
252 | 252 |
for (int i = 0; i < int(keys.size()); ++i) { |
253 | 253 |
int jd = nf->id(keys[i]); |
254 | 254 |
if (id == jd) { |
255 | 255 |
found = true; |
256 | 256 |
break; |
257 | 257 |
} |
258 | 258 |
} |
259 | 259 |
if (found) continue; |
260 | 260 |
allocator.construct(&(new_values[id]), values[id]); |
261 | 261 |
allocator.destroy(&(values[id])); |
262 | 262 |
} |
263 | 263 |
if (capacity != 0) allocator.deallocate(values, capacity); |
264 | 264 |
values = new_values; |
265 | 265 |
capacity = new_capacity; |
266 | 266 |
} |
267 | 267 |
for (int i = 0; i < int(keys.size()); ++i) { |
268 | 268 |
int id = nf->id(keys[i]); |
269 | 269 |
allocator.construct(&(values[id]), Value()); |
270 | 270 |
} |
271 | 271 |
} |
272 | 272 |
|
273 |
/// \brief Erase a key from the map. |
|
274 |
/// |
|
275 |
/// Erase a key from the map. It called by the observer notifier |
|
276 |
/// and it overrides the erase() member function of the observer base. |
|
273 |
// \brief Erase a key from the map. |
|
274 |
// |
|
275 |
// Erase a key from the map. It called by the observer notifier |
|
276 |
// and it overrides the erase() member function of the observer base. |
|
277 | 277 |
virtual void erase(const Key& key) { |
278 | 278 |
int id = Parent::notifier()->id(key); |
279 | 279 |
allocator.destroy(&(values[id])); |
280 | 280 |
} |
281 | 281 |
|
282 |
/// \brief Erase more keys from the map. |
|
283 |
/// |
|
284 |
/// Erase more keys from the map. It called by the observer notifier |
|
285 |
/// and it overrides the erase() member function of the observer base. |
|
282 |
// \brief Erase more keys from the map. |
|
283 |
// |
|
284 |
// Erase more keys from the map. It called by the observer notifier |
|
285 |
// and it overrides the erase() member function of the observer base. |
|
286 | 286 |
virtual void erase(const std::vector<Key>& keys) { |
287 | 287 |
for (int i = 0; i < int(keys.size()); ++i) { |
288 | 288 |
int id = Parent::notifier()->id(keys[i]); |
289 | 289 |
allocator.destroy(&(values[id])); |
290 | 290 |
} |
291 | 291 |
} |
292 | 292 |
|
293 |
/// \brief Buildes the map. |
|
294 |
/// |
|
295 |
/// It buildes the map. It called by the observer notifier |
|
296 |
/// and it overrides the build() member function of the observer base. |
|
293 |
// \brief Buildes the map. |
|
294 |
// |
|
295 |
// It buildes the map. It called by the observer notifier |
|
296 |
// and it overrides the build() member function of the observer base. |
|
297 | 297 |
virtual void build() { |
298 | 298 |
Notifier* nf = Parent::notifier(); |
299 | 299 |
allocate_memory(); |
300 | 300 |
Item it; |
301 | 301 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
302 | 302 |
int id = nf->id(it);; |
303 | 303 |
allocator.construct(&(values[id]), Value()); |
304 | 304 |
} |
305 | 305 |
} |
306 | 306 |
|
307 |
/// \brief Clear the map. |
|
308 |
/// |
|
309 |
/// It erase all items from the map. It called by the observer notifier |
|
310 |
/// and it overrides the clear() member function of the observer base. |
|
307 |
// \brief Clear the map. |
|
308 |
// |
|
309 |
// It erase all items from the map. It called by the observer notifier |
|
310 |
// and it overrides the clear() member function of the observer base. |
|
311 | 311 |
virtual void clear() { |
312 | 312 |
Notifier* nf = Parent::notifier(); |
313 | 313 |
if (capacity != 0) { |
314 | 314 |
Item it; |
315 | 315 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
316 | 316 |
int id = nf->id(it); |
317 | 317 |
allocator.destroy(&(values[id])); |
318 | 318 |
} |
319 | 319 |
allocator.deallocate(values, capacity); |
320 | 320 |
capacity = 0; |
321 | 321 |
} |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
private: |
325 | 325 |
|
326 | 326 |
void allocate_memory() { |
327 | 327 |
int max_id = Parent::notifier()->maxId(); |
328 | 328 |
if (max_id == -1) { |
329 | 329 |
capacity = 0; |
330 | 330 |
values = 0; |
331 | 331 |
return; |
332 | 332 |
} |
333 | 333 |
capacity = 1; |
334 | 334 |
while (capacity <= max_id) { |
335 | 335 |
capacity <<= 1; |
336 | 336 |
} |
337 | 337 |
values = allocator.allocate(capacity); |
338 | 338 |
} |
339 | 339 |
|
340 | 340 |
int capacity; |
341 | 341 |
Value* values; |
342 | 342 |
Allocator allocator; |
343 | 343 |
|
344 | 344 |
}; |
345 | 345 |
|
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_BASE_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/map_extender.h> |
26 | 26 |
#include <lemon/bits/default_map.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/maps.h> |
30 | 30 |
|
31 |
///\ingroup digraphbits |
|
32 |
///\file |
|
33 |
|
|
31 |
//\ingroup digraphbits |
|
32 |
//\file |
|
33 |
//\brief Extenders for the digraph types |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 |
/// \ingroup digraphbits |
|
37 |
/// |
|
38 |
// |
|
36 |
// \ingroup digraphbits |
|
37 |
// |
|
38 |
// \brief BaseDigraph to BaseGraph extender |
|
39 | 39 |
template <typename Base> |
40 | 40 |
class UndirDigraphExtender : public Base { |
41 | 41 |
|
42 | 42 |
public: |
43 | 43 |
|
44 | 44 |
typedef Base Parent; |
45 | 45 |
typedef typename Parent::Arc Edge; |
46 | 46 |
typedef typename Parent::Node Node; |
47 | 47 |
|
48 | 48 |
typedef True UndirectedTag; |
49 | 49 |
|
50 | 50 |
class Arc : public Edge { |
51 | 51 |
friend class UndirDigraphExtender; |
52 | 52 |
|
53 | 53 |
protected: |
54 | 54 |
bool forward; |
55 | 55 |
|
56 | 56 |
Arc(const Edge &ue, bool _forward) : |
57 | 57 |
Edge(ue), forward(_forward) {} |
58 | 58 |
|
59 | 59 |
public: |
60 | 60 |
Arc() {} |
61 | 61 |
|
62 | 62 |
// Invalid arc constructor |
63 | 63 |
Arc(Invalid i) : Edge(i), forward(true) {} |
64 | 64 |
|
65 | 65 |
bool operator==(const Arc &that) const { |
66 | 66 |
return forward==that.forward && Edge(*this)==Edge(that); |
67 | 67 |
} |
68 | 68 |
bool operator!=(const Arc &that) const { |
69 | 69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
70 | 70 |
} |
71 | 71 |
bool operator<(const Arc &that) const { |
72 | 72 |
return forward<that.forward || |
73 | 73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 |
|
|
77 |
// First node of the edge |
|
78 | 78 |
Node u(const Edge &e) const { |
79 | 79 |
return Parent::source(e); |
80 | 80 |
} |
81 | 81 |
|
82 |
|
|
82 |
// Source of the given arc |
|
83 | 83 |
Node source(const Arc &e) const { |
84 | 84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
85 | 85 |
} |
86 | 86 |
|
87 |
|
|
87 |
// Second node of the edge |
|
88 | 88 |
Node v(const Edge &e) const { |
89 | 89 |
return Parent::target(e); |
90 | 90 |
} |
91 | 91 |
|
92 |
|
|
92 |
// Target of the given arc |
|
93 | 93 |
Node target(const Arc &e) const { |
94 | 94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
95 | 95 |
} |
96 | 96 |
|
97 |
/// \brief Directed arc from an edge. |
|
98 |
/// |
|
99 |
/// Returns a directed arc corresponding to the specified edge. |
|
100 |
/// If the given bool is true, the first node of the given edge and |
|
101 |
// |
|
97 |
// \brief Directed arc from an edge. |
|
98 |
// |
|
99 |
// Returns a directed arc corresponding to the specified edge. |
|
100 |
// If the given bool is true, the first node of the given edge and |
|
101 |
// the source node of the returned arc are the same. |
|
102 | 102 |
static Arc direct(const Edge &e, bool d) { |
103 | 103 |
return Arc(e, d); |
104 | 104 |
} |
105 | 105 |
|
106 |
/// Returns whether the given directed arc has the same orientation |
|
107 |
/// as the corresponding edge. |
|
106 |
// Returns whether the given directed arc has the same orientation |
|
107 |
// as the corresponding edge. |
|
108 | 108 |
static bool direction(const Arc &a) { return a.forward; } |
109 | 109 |
|
110 | 110 |
using Parent::first; |
111 | 111 |
using Parent::next; |
112 | 112 |
|
113 | 113 |
void first(Arc &e) const { |
114 | 114 |
Parent::first(e); |
115 | 115 |
e.forward=true; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
void next(Arc &e) const { |
119 | 119 |
if( e.forward ) { |
120 | 120 |
e.forward = false; |
121 | 121 |
} |
122 | 122 |
else { |
123 | 123 |
Parent::next(e); |
124 | 124 |
e.forward = true; |
125 | 125 |
} |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
void firstOut(Arc &e, const Node &n) const { |
129 | 129 |
Parent::firstIn(e,n); |
130 | 130 |
if( Edge(e) != INVALID ) { |
131 | 131 |
e.forward = false; |
132 | 132 |
} |
133 | 133 |
else { |
134 | 134 |
Parent::firstOut(e,n); |
135 | 135 |
e.forward = true; |
136 | 136 |
} |
137 | 137 |
} |
138 | 138 |
void nextOut(Arc &e) const { |
139 | 139 |
if( ! e.forward ) { |
140 | 140 |
Node n = Parent::target(e); |
141 | 141 |
Parent::nextIn(e); |
142 | 142 |
if( Edge(e) == INVALID ) { |
143 | 143 |
Parent::firstOut(e, n); |
144 | 144 |
e.forward = true; |
145 | 145 |
} |
146 | 146 |
} |
147 | 147 |
else { |
148 | 148 |
Parent::nextOut(e); |
149 | 149 |
} |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
void firstIn(Arc &e, const Node &n) const { |
153 | 153 |
Parent::firstOut(e,n); |
154 | 154 |
if( Edge(e) != INVALID ) { |
155 | 155 |
e.forward = false; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BEZIER_H |
20 | 20 |
#define LEMON_BEZIER_H |
21 | 21 |
|
22 |
///\ingroup misc |
|
23 |
///\file |
|
24 |
///\brief Classes to compute with Bezier curves. |
|
25 |
/// |
|
26 |
// |
|
22 |
//\ingroup misc |
|
23 |
//\file |
|
24 |
//\brief Classes to compute with Bezier curves. |
|
25 |
// |
|
26 |
//Up to now this file is used internally by \ref graph_to_eps.h |
|
27 | 27 |
|
28 | 28 |
#include<lemon/dim2.h> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace dim2 { |
32 | 32 |
|
33 | 33 |
class BezierBase { |
34 | 34 |
public: |
35 | 35 |
typedef lemon::dim2::Point<double> Point; |
36 | 36 |
protected: |
37 | 37 |
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;} |
38 | 38 |
}; |
39 | 39 |
|
40 | 40 |
class Bezier1 : public BezierBase |
41 | 41 |
{ |
42 | 42 |
public: |
43 | 43 |
Point p1,p2; |
44 | 44 |
|
45 | 45 |
Bezier1() {} |
46 | 46 |
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {} |
47 | 47 |
|
48 | 48 |
Point operator()(double t) const |
49 | 49 |
{ |
50 | 50 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
51 | 51 |
return conv(p1,p2,t); |
52 | 52 |
} |
53 | 53 |
Bezier1 before(double t) const |
54 | 54 |
{ |
55 | 55 |
return Bezier1(p1,conv(p1,p2,t)); |
56 | 56 |
} |
57 | 57 |
|
58 | 58 |
Bezier1 after(double t) const |
59 | 59 |
{ |
60 | 60 |
return Bezier1(conv(p1,p2,t),p2); |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
Bezier1 revert() const { return Bezier1(p2,p1);} |
64 | 64 |
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); } |
65 | 65 |
Point grad() const { return p2-p1; } |
66 | 66 |
Point norm() const { return rot90(p2-p1); } |
67 | 67 |
Point grad(double) const { return grad(); } |
68 | 68 |
Point norm(double t) const { return rot90(grad(t)); } |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
class Bezier2 : public BezierBase |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
Point p1,p2,p3; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
21 | 21 |
|
22 |
|
|
23 | 22 |
#include <lemon/bits/array_map.h> |
24 | 23 |
#include <lemon/bits/vector_map.h> |
25 | 24 |
//#include <lemon/bits/debug_map.h> |
26 | 25 |
|
27 |
///\ingroup graphbits |
|
28 |
///\file |
|
29 |
|
|
26 |
//\ingroup graphbits |
|
27 |
//\file |
|
28 |
//\brief Graph maps that construct and destruct their elements dynamically. |
|
30 | 29 |
|
31 | 30 |
namespace lemon { |
32 | 31 |
|
33 | 32 |
|
34 | 33 |
//#ifndef LEMON_USE_DEBUG_MAP |
35 | 34 |
|
36 | 35 |
template <typename _Graph, typename _Item, typename _Value> |
37 | 36 |
struct DefaultMapSelector { |
38 | 37 |
typedef ArrayMap<_Graph, _Item, _Value> Map; |
39 | 38 |
}; |
40 | 39 |
|
41 | 40 |
// bool |
42 | 41 |
template <typename _Graph, typename _Item> |
43 | 42 |
struct DefaultMapSelector<_Graph, _Item, bool> { |
44 | 43 |
typedef VectorMap<_Graph, _Item, bool> Map; |
45 | 44 |
}; |
46 | 45 |
|
47 | 46 |
// char |
48 | 47 |
template <typename _Graph, typename _Item> |
49 | 48 |
struct DefaultMapSelector<_Graph, _Item, char> { |
50 | 49 |
typedef VectorMap<_Graph, _Item, char> Map; |
51 | 50 |
}; |
52 | 51 |
|
53 | 52 |
template <typename _Graph, typename _Item> |
54 | 53 |
struct DefaultMapSelector<_Graph, _Item, signed char> { |
55 | 54 |
typedef VectorMap<_Graph, _Item, signed char> Map; |
56 | 55 |
}; |
57 | 56 |
|
58 | 57 |
template <typename _Graph, typename _Item> |
59 | 58 |
struct DefaultMapSelector<_Graph, _Item, unsigned char> { |
60 | 59 |
typedef VectorMap<_Graph, _Item, unsigned char> Map; |
61 | 60 |
}; |
62 | 61 |
|
63 | 62 |
|
64 | 63 |
// int |
65 | 64 |
template <typename _Graph, typename _Item> |
66 | 65 |
struct DefaultMapSelector<_Graph, _Item, signed int> { |
67 | 66 |
typedef VectorMap<_Graph, _Item, signed int> Map; |
68 | 67 |
}; |
69 | 68 |
|
70 | 69 |
template <typename _Graph, typename _Item> |
71 | 70 |
struct DefaultMapSelector<_Graph, _Item, unsigned int> { |
72 | 71 |
typedef VectorMap<_Graph, _Item, unsigned int> Map; |
73 | 72 |
}; |
74 | 73 |
|
75 | 74 |
|
76 | 75 |
// short |
77 | 76 |
template <typename _Graph, typename _Item> |
... | ... |
@@ -104,78 +103,78 @@ |
104 | 103 |
struct DefaultMapSelector<_Graph, _Item, signed long long> { |
105 | 104 |
typedef VectorMap<_Graph, _Item, signed long long> Map; |
106 | 105 |
}; |
107 | 106 |
|
108 | 107 |
template <typename _Graph, typename _Item> |
109 | 108 |
struct DefaultMapSelector<_Graph, _Item, unsigned long long> { |
110 | 109 |
typedef VectorMap<_Graph, _Item, unsigned long long> Map; |
111 | 110 |
}; |
112 | 111 |
|
113 | 112 |
#endif |
114 | 113 |
|
115 | 114 |
|
116 | 115 |
// float |
117 | 116 |
template <typename _Graph, typename _Item> |
118 | 117 |
struct DefaultMapSelector<_Graph, _Item, float> { |
119 | 118 |
typedef VectorMap<_Graph, _Item, float> Map; |
120 | 119 |
}; |
121 | 120 |
|
122 | 121 |
|
123 | 122 |
// double |
124 | 123 |
template <typename _Graph, typename _Item> |
125 | 124 |
struct DefaultMapSelector<_Graph, _Item, double> { |
126 | 125 |
typedef VectorMap<_Graph, _Item, double> Map; |
127 | 126 |
}; |
128 | 127 |
|
129 | 128 |
|
130 | 129 |
// long double |
131 | 130 |
template <typename _Graph, typename _Item> |
132 | 131 |
struct DefaultMapSelector<_Graph, _Item, long double> { |
133 | 132 |
typedef VectorMap<_Graph, _Item, long double> Map; |
134 | 133 |
}; |
135 | 134 |
|
136 | 135 |
|
137 | 136 |
// pointer |
138 | 137 |
template <typename _Graph, typename _Item, typename _Ptr> |
139 | 138 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> { |
140 | 139 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
141 | 140 |
}; |
142 | 141 |
|
143 | 142 |
// #else |
144 | 143 |
|
145 | 144 |
// template <typename _Graph, typename _Item, typename _Value> |
146 | 145 |
// struct DefaultMapSelector { |
147 | 146 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
148 | 147 |
// }; |
149 | 148 |
|
150 | 149 |
// #endif |
151 | 150 |
|
152 |
// |
|
151 |
// DefaultMap class |
|
153 | 152 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 153 |
class DefaultMap |
155 | 154 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 | 155 |
public: |
157 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
158 | 157 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
159 | 158 |
|
160 | 159 |
typedef typename Parent::Graph Graph; |
161 | 160 |
typedef typename Parent::Value Value; |
162 | 161 |
|
163 | 162 |
explicit DefaultMap(const Graph& graph) : Parent(graph) {} |
164 | 163 |
DefaultMap(const Graph& graph, const Value& value) |
165 | 164 |
: Parent(graph, value) {} |
166 | 165 |
|
167 | 166 |
DefaultMap& operator=(const DefaultMap& cmap) { |
168 | 167 |
return operator=<DefaultMap>(cmap); |
169 | 168 |
} |
170 | 169 |
|
171 | 170 |
template <typename CMap> |
172 | 171 |
DefaultMap& operator=(const CMap& cmap) { |
173 | 172 |
Parent::operator=(cmap); |
174 | 173 |
return *this; |
175 | 174 |
} |
176 | 175 |
|
177 | 176 |
}; |
178 | 177 |
|
179 | 178 |
} |
180 | 179 |
|
181 | 180 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
// This file contains a modified version of the enable_if library from BOOST. |
20 | 20 |
// See the appropriate copyright notice below. |
21 | 21 |
|
22 | 22 |
// Boost enable_if library |
23 | 23 |
|
24 | 24 |
// Copyright 2003 (c) The Trustees of Indiana University. |
25 | 25 |
|
26 | 26 |
// Use, modification, and distribution is subject to the Boost Software |
27 | 27 |
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
28 | 28 |
// http://www.boost.org/LICENSE_1_0.txt) |
29 | 29 |
|
30 | 30 |
// Authors: Jaakko Jarvi (jajarvi at osl.iu.edu) |
31 | 31 |
// Jeremiah Willcock (jewillco at osl.iu.edu) |
32 | 32 |
// Andrew Lumsdaine (lums at osl.iu.edu) |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
#ifndef LEMON_BITS_ENABLE_IF_H |
36 | 36 |
#define LEMON_BITS_ENABLE_IF_H |
37 | 37 |
|
38 |
///\file |
|
39 |
///\brief Miscellaneous basic utilities |
|
38 |
//\file |
|
39 |
//\brief Miscellaneous basic utilities |
|
40 | 40 |
|
41 | 41 |
namespace lemon |
42 | 42 |
{ |
43 | 43 |
|
44 |
|
|
44 |
// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
45 | 45 |
|
46 |
/// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
47 |
/// |
|
48 |
// |
|
46 |
// Basic type for defining "tags". A "YES" condition for \c enable_if. |
|
47 |
// |
|
48 |
//\sa False |
|
49 | 49 |
struct True { |
50 |
// |
|
50 |
//\e |
|
51 | 51 |
static const bool value = true; |
52 | 52 |
}; |
53 | 53 |
|
54 |
|
|
54 |
// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
55 | 55 |
|
56 |
/// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
57 |
/// |
|
58 |
// |
|
56 |
// Basic type for defining "tags". A "NO" condition for \c enable_if. |
|
57 |
// |
|
58 |
//\sa True |
|
59 | 59 |
struct False { |
60 |
// |
|
60 |
//\e |
|
61 | 61 |
static const bool value = false; |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
|
65 | 65 |
|
66 | 66 |
template <typename T> |
67 | 67 |
struct Wrap { |
68 | 68 |
const T &value; |
69 | 69 |
Wrap(const T &t) : value(t) {} |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
/**************** dummy class to avoid ambiguity ****************/ |
73 | 73 |
|
74 | 74 |
template<int T> struct dummy { dummy(int) {} }; |
75 | 75 |
|
76 | 76 |
/**************** enable_if from BOOST ****************/ |
77 | 77 |
|
78 | 78 |
template <typename Type, typename T = void> |
79 | 79 |
struct exists { |
80 | 80 |
typedef T type; |
81 | 81 |
}; |
82 | 82 |
|
83 | 83 |
|
84 | 84 |
template <bool B, class T = void> |
85 | 85 |
struct enable_if_c { |
86 | 86 |
typedef T type; |
87 | 87 |
}; |
88 | 88 |
|
89 | 89 |
template <class T> |
90 | 90 |
struct enable_if_c<false, T> {}; |
91 | 91 |
|
92 | 92 |
template <class Cond, class T = void> |
93 | 93 |
struct enable_if : public enable_if_c<Cond::value, T> {}; |
94 | 94 |
|
95 | 95 |
template <bool B, class T> |
96 | 96 |
struct lazy_enable_if_c { |
97 | 97 |
typedef typename T::type type; |
98 | 98 |
}; |
99 | 99 |
|
100 | 100 |
template <class T> |
101 | 101 |
struct lazy_enable_if_c<false, T> {}; |
102 | 102 |
|
103 | 103 |
template <class Cond, class T> |
104 | 104 |
struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {}; |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
template <bool B, class T = void> |
108 | 108 |
struct disable_if_c { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_GRAPH_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_GRAPH_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/map_extender.h> |
25 | 25 |
#include <lemon/bits/default_map.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
#include <lemon/concepts/maps.h> |
29 | 29 |
|
30 |
///\ingroup graphbits |
|
31 |
///\file |
|
32 |
|
|
30 |
//\ingroup graphbits |
|
31 |
//\file |
|
32 |
//\brief Extenders for the digraph types |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 |
/// \ingroup graphbits |
|
36 |
/// |
|
37 |
// |
|
35 |
// \ingroup graphbits |
|
36 |
// |
|
37 |
// \brief Extender for the Digraphs |
|
38 | 38 |
template <typename Base> |
39 | 39 |
class DigraphExtender : public Base { |
40 | 40 |
public: |
41 | 41 |
|
42 | 42 |
typedef Base Parent; |
43 | 43 |
typedef DigraphExtender Digraph; |
44 | 44 |
|
45 | 45 |
// Base extensions |
46 | 46 |
|
47 | 47 |
typedef typename Parent::Node Node; |
48 | 48 |
typedef typename Parent::Arc Arc; |
49 | 49 |
|
50 | 50 |
int maxId(Node) const { |
51 | 51 |
return Parent::maxNodeId(); |
52 | 52 |
} |
53 | 53 |
|
54 | 54 |
int maxId(Arc) const { |
55 | 55 |
return Parent::maxArcId(); |
56 | 56 |
} |
57 | 57 |
|
58 | 58 |
Node fromId(int id, Node) const { |
59 | 59 |
return Parent::nodeFromId(id); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
Arc fromId(int id, Arc) const { |
63 | 63 |
return Parent::arcFromId(id); |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
Node oppositeNode(const Node &node, const Arc &arc) const { |
67 | 67 |
if (node == Parent::source(arc)) |
68 | 68 |
return Parent::target(arc); |
69 | 69 |
else if(node == Parent::target(arc)) |
70 | 70 |
return Parent::source(arc); |
71 | 71 |
else |
72 | 72 |
return INVALID; |
73 | 73 |
} |
74 | 74 |
|
75 | 75 |
// Alterable extension |
76 | 76 |
|
77 | 77 |
typedef AlterationNotifier<DigraphExtender, Node> NodeNotifier; |
78 | 78 |
typedef AlterationNotifier<DigraphExtender, Arc> ArcNotifier; |
79 | 79 |
|
80 | 80 |
|
81 | 81 |
protected: |
82 | 82 |
|
83 | 83 |
mutable NodeNotifier node_notifier; |
84 | 84 |
mutable ArcNotifier arc_notifier; |
85 | 85 |
|
... | ... |
@@ -141,120 +141,120 @@ |
141 | 141 |
|
142 | 142 |
class OutArcIt : public Arc { |
143 | 143 |
const Digraph* _digraph; |
144 | 144 |
public: |
145 | 145 |
|
146 | 146 |
OutArcIt() { } |
147 | 147 |
|
148 | 148 |
OutArcIt(Invalid i) : Arc(i) { } |
149 | 149 |
|
150 | 150 |
OutArcIt(const Digraph& digraph, const Node& node) |
151 | 151 |
: _digraph(&digraph) { |
152 | 152 |
_digraph->firstOut(*this, node); |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
OutArcIt(const Digraph& digraph, const Arc& arc) |
156 | 156 |
: Arc(arc), _digraph(&digraph) {} |
157 | 157 |
|
158 | 158 |
OutArcIt& operator++() { |
159 | 159 |
_digraph->nextOut(*this); |
160 | 160 |
return *this; |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
}; |
164 | 164 |
|
165 | 165 |
|
166 | 166 |
class InArcIt : public Arc { |
167 | 167 |
const Digraph* _digraph; |
168 | 168 |
public: |
169 | 169 |
|
170 | 170 |
InArcIt() { } |
171 | 171 |
|
172 | 172 |
InArcIt(Invalid i) : Arc(i) { } |
173 | 173 |
|
174 | 174 |
InArcIt(const Digraph& digraph, const Node& node) |
175 | 175 |
: _digraph(&digraph) { |
176 | 176 |
_digraph->firstIn(*this, node); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
InArcIt(const Digraph& digraph, const Arc& arc) : |
180 | 180 |
Arc(arc), _digraph(&digraph) {} |
181 | 181 |
|
182 | 182 |
InArcIt& operator++() { |
183 | 183 |
_digraph->nextIn(*this); |
184 | 184 |
return *this; |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
}; |
188 | 188 |
|
189 |
/// \brief Base node of the iterator |
|
190 |
/// |
|
191 |
// |
|
189 |
// \brief Base node of the iterator |
|
190 |
// |
|
191 |
// Returns the base node (i.e. the source in this case) of the iterator |
|
192 | 192 |
Node baseNode(const OutArcIt &arc) const { |
193 | 193 |
return Parent::source(arc); |
194 | 194 |
} |
195 |
/// \brief Running node of the iterator |
|
196 |
/// |
|
197 |
/// Returns the running node (i.e. the target in this case) of the |
|
198 |
/// iterator |
|
195 |
// \brief Running node of the iterator |
|
196 |
// |
|
197 |
// Returns the running node (i.e. the target in this case) of the |
|
198 |
// iterator |
|
199 | 199 |
Node runningNode(const OutArcIt &arc) const { |
200 | 200 |
return Parent::target(arc); |
201 | 201 |
} |
202 | 202 |
|
203 |
/// \brief Base node of the iterator |
|
204 |
/// |
|
205 |
// |
|
203 |
// \brief Base node of the iterator |
|
204 |
// |
|
205 |
// Returns the base node (i.e. the target in this case) of the iterator |
|
206 | 206 |
Node baseNode(const InArcIt &arc) const { |
207 | 207 |
return Parent::target(arc); |
208 | 208 |
} |
209 |
/// \brief Running node of the iterator |
|
210 |
/// |
|
211 |
/// Returns the running node (i.e. the source in this case) of the |
|
212 |
/// iterator |
|
209 |
// \brief Running node of the iterator |
|
210 |
// |
|
211 |
// Returns the running node (i.e. the source in this case) of the |
|
212 |
// iterator |
|
213 | 213 |
Node runningNode(const InArcIt &arc) const { |
214 | 214 |
return Parent::source(arc); |
215 | 215 |
} |
216 | 216 |
|
217 | 217 |
|
218 | 218 |
template <typename _Value> |
219 | 219 |
class NodeMap |
220 | 220 |
: public MapExtender<DefaultMap<Digraph, Node, _Value> > { |
221 | 221 |
public: |
222 | 222 |
typedef DigraphExtender Digraph; |
223 | 223 |
typedef MapExtender<DefaultMap<Digraph, Node, _Value> > Parent; |
224 | 224 |
|
225 | 225 |
explicit NodeMap(const Digraph& digraph) |
226 | 226 |
: Parent(digraph) {} |
227 | 227 |
NodeMap(const Digraph& digraph, const _Value& value) |
228 | 228 |
: Parent(digraph, value) {} |
229 | 229 |
|
230 | 230 |
private: |
231 | 231 |
NodeMap& operator=(const NodeMap& cmap) { |
232 | 232 |
return operator=<NodeMap>(cmap); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
template <typename CMap> |
236 | 236 |
NodeMap& operator=(const CMap& cmap) { |
237 | 237 |
Parent::operator=(cmap); |
238 | 238 |
return *this; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
}; |
242 | 242 |
|
243 | 243 |
template <typename _Value> |
244 | 244 |
class ArcMap |
245 | 245 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
246 | 246 |
public: |
247 | 247 |
typedef DigraphExtender Digraph; |
248 | 248 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
249 | 249 |
|
250 | 250 |
explicit ArcMap(const Digraph& digraph) |
251 | 251 |
: Parent(digraph) {} |
252 | 252 |
ArcMap(const Digraph& digraph, const _Value& value) |
253 | 253 |
: Parent(digraph, value) {} |
254 | 254 |
|
255 | 255 |
private: |
256 | 256 |
ArcMap& operator=(const ArcMap& cmap) { |
257 | 257 |
return operator=<ArcMap>(cmap); |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
template <typename CMap> |
... | ... |
@@ -280,99 +280,99 @@ |
280 | 280 |
void clear() { |
281 | 281 |
notifier(Arc()).clear(); |
282 | 282 |
notifier(Node()).clear(); |
283 | 283 |
Parent::clear(); |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
287 | 287 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
288 | 288 |
Parent::build(digraph, nodeRef, arcRef); |
289 | 289 |
notifier(Node()).build(); |
290 | 290 |
notifier(Arc()).build(); |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
void erase(const Node& node) { |
294 | 294 |
Arc arc; |
295 | 295 |
Parent::firstOut(arc, node); |
296 | 296 |
while (arc != INVALID ) { |
297 | 297 |
erase(arc); |
298 | 298 |
Parent::firstOut(arc, node); |
299 | 299 |
} |
300 | 300 |
|
301 | 301 |
Parent::firstIn(arc, node); |
302 | 302 |
while (arc != INVALID ) { |
303 | 303 |
erase(arc); |
304 | 304 |
Parent::firstIn(arc, node); |
305 | 305 |
} |
306 | 306 |
|
307 | 307 |
notifier(Node()).erase(node); |
308 | 308 |
Parent::erase(node); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
void erase(const Arc& arc) { |
312 | 312 |
notifier(Arc()).erase(arc); |
313 | 313 |
Parent::erase(arc); |
314 | 314 |
} |
315 | 315 |
|
316 | 316 |
DigraphExtender() { |
317 | 317 |
node_notifier.setContainer(*this); |
318 | 318 |
arc_notifier.setContainer(*this); |
319 | 319 |
} |
320 | 320 |
|
321 | 321 |
|
322 | 322 |
~DigraphExtender() { |
323 | 323 |
arc_notifier.clear(); |
324 | 324 |
node_notifier.clear(); |
325 | 325 |
} |
326 | 326 |
}; |
327 | 327 |
|
328 |
/// \ingroup _graphbits |
|
329 |
/// |
|
330 |
// |
|
328 |
// \ingroup _graphbits |
|
329 |
// |
|
330 |
// \brief Extender for the Graphs |
|
331 | 331 |
template <typename Base> |
332 | 332 |
class GraphExtender : public Base { |
333 | 333 |
public: |
334 | 334 |
|
335 | 335 |
typedef Base Parent; |
336 | 336 |
typedef GraphExtender Graph; |
337 | 337 |
|
338 | 338 |
typedef True UndirectedTag; |
339 | 339 |
|
340 | 340 |
typedef typename Parent::Node Node; |
341 | 341 |
typedef typename Parent::Arc Arc; |
342 | 342 |
typedef typename Parent::Edge Edge; |
343 | 343 |
|
344 | 344 |
// Graph extension |
345 | 345 |
|
346 | 346 |
int maxId(Node) const { |
347 | 347 |
return Parent::maxNodeId(); |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
int maxId(Arc) const { |
351 | 351 |
return Parent::maxArcId(); |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
int maxId(Edge) const { |
355 | 355 |
return Parent::maxEdgeId(); |
356 | 356 |
} |
357 | 357 |
|
358 | 358 |
Node fromId(int id, Node) const { |
359 | 359 |
return Parent::nodeFromId(id); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
Arc fromId(int id, Arc) const { |
363 | 363 |
return Parent::arcFromId(id); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
Edge fromId(int id, Edge) const { |
367 | 367 |
return Parent::edgeFromId(id); |
368 | 368 |
} |
369 | 369 |
|
370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const { |
371 | 371 |
if( n == Parent::u(e)) |
372 | 372 |
return Parent::v(e); |
373 | 373 |
else if( n == Parent::v(e)) |
374 | 374 |
return Parent::u(e); |
375 | 375 |
else |
376 | 376 |
return INVALID; |
377 | 377 |
} |
378 | 378 |
|
... | ... |
@@ -510,133 +510,133 @@ |
510 | 510 |
|
511 | 511 |
class EdgeIt : public Parent::Edge { |
512 | 512 |
const Graph* _graph; |
513 | 513 |
public: |
514 | 514 |
|
515 | 515 |
EdgeIt() { } |
516 | 516 |
|
517 | 517 |
EdgeIt(Invalid i) : Edge(i) { } |
518 | 518 |
|
519 | 519 |
explicit EdgeIt(const Graph& graph) : _graph(&graph) { |
520 | 520 |
_graph->first(static_cast<Edge&>(*this)); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
EdgeIt(const Graph& graph, const Edge& edge) : |
524 | 524 |
Edge(edge), _graph(&graph) { } |
525 | 525 |
|
526 | 526 |
EdgeIt& operator++() { |
527 | 527 |
_graph->next(*this); |
528 | 528 |
return *this; |
529 | 529 |
} |
530 | 530 |
|
531 | 531 |
}; |
532 | 532 |
|
533 | 533 |
class IncEdgeIt : public Parent::Edge { |
534 | 534 |
friend class GraphExtender; |
535 | 535 |
const Graph* _graph; |
536 | 536 |
bool _direction; |
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
IncEdgeIt() { } |
540 | 540 |
|
541 | 541 |
IncEdgeIt(Invalid i) : Edge(i), _direction(false) { } |
542 | 542 |
|
543 | 543 |
IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) { |
544 | 544 |
_graph->firstInc(*this, _direction, node); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node) |
548 | 548 |
: _graph(&graph), Edge(edge) { |
549 | 549 |
_direction = (_graph->source(edge) == node); |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
IncEdgeIt& operator++() { |
553 | 553 |
_graph->nextInc(*this, _direction); |
554 | 554 |
return *this; |
555 | 555 |
} |
556 | 556 |
}; |
557 | 557 |
|
558 |
/// \brief Base node of the iterator |
|
559 |
/// |
|
560 |
// |
|
558 |
// \brief Base node of the iterator |
|
559 |
// |
|
560 |
// Returns the base node (ie. the source in this case) of the iterator |
|
561 | 561 |
Node baseNode(const OutArcIt &arc) const { |
562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
563 | 563 |
} |
564 |
/// \brief Running node of the iterator |
|
565 |
/// |
|
566 |
/// Returns the running node (ie. the target in this case) of the |
|
567 |
/// iterator |
|
564 |
// \brief Running node of the iterator |
|
565 |
// |
|
566 |
// Returns the running node (ie. the target in this case) of the |
|
567 |
// iterator |
|
568 | 568 |
Node runningNode(const OutArcIt &arc) const { |
569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
570 | 570 |
} |
571 | 571 |
|
572 |
/// \brief Base node of the iterator |
|
573 |
/// |
|
574 |
// |
|
572 |
// \brief Base node of the iterator |
|
573 |
// |
|
574 |
// Returns the base node (ie. the target in this case) of the iterator |
|
575 | 575 |
Node baseNode(const InArcIt &arc) const { |
576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
577 | 577 |
} |
578 |
/// \brief Running node of the iterator |
|
579 |
/// |
|
580 |
/// Returns the running node (ie. the source in this case) of the |
|
581 |
/// iterator |
|
578 |
// \brief Running node of the iterator |
|
579 |
// |
|
580 |
// Returns the running node (ie. the source in this case) of the |
|
581 |
// iterator |
|
582 | 582 |
Node runningNode(const InArcIt &arc) const { |
583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
584 | 584 |
} |
585 | 585 |
|
586 |
/// Base node of the iterator |
|
587 |
/// |
|
588 |
// |
|
586 |
// Base node of the iterator |
|
587 |
// |
|
588 |
// Returns the base node of the iterator |
|
589 | 589 |
Node baseNode(const IncEdgeIt &edge) const { |
590 | 590 |
return edge._direction ? u(edge) : v(edge); |
591 | 591 |
} |
592 |
/// Running node of the iterator |
|
593 |
/// |
|
594 |
// |
|
592 |
// Running node of the iterator |
|
593 |
// |
|
594 |
// Returns the running node of the iterator |
|
595 | 595 |
Node runningNode(const IncEdgeIt &edge) const { |
596 | 596 |
return edge._direction ? v(edge) : u(edge); |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
// Mappable extension |
600 | 600 |
|
601 | 601 |
template <typename _Value> |
602 | 602 |
class NodeMap |
603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > { |
604 | 604 |
public: |
605 | 605 |
typedef GraphExtender Graph; |
606 | 606 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
607 | 607 |
|
608 | 608 |
NodeMap(const Graph& graph) |
609 | 609 |
: Parent(graph) {} |
610 | 610 |
NodeMap(const Graph& graph, const _Value& value) |
611 | 611 |
: Parent(graph, value) {} |
612 | 612 |
|
613 | 613 |
private: |
614 | 614 |
NodeMap& operator=(const NodeMap& cmap) { |
615 | 615 |
return operator=<NodeMap>(cmap); |
616 | 616 |
} |
617 | 617 |
|
618 | 618 |
template <typename CMap> |
619 | 619 |
NodeMap& operator=(const CMap& cmap) { |
620 | 620 |
Parent::operator=(cmap); |
621 | 621 |
return *this; |
622 | 622 |
} |
623 | 623 |
|
624 | 624 |
}; |
625 | 625 |
|
626 | 626 |
template <typename _Value> |
627 | 627 |
class ArcMap |
628 | 628 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
629 | 629 |
public: |
630 | 630 |
typedef GraphExtender Graph; |
631 | 631 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
632 | 632 |
|
633 | 633 |
ArcMap(const Graph& graph) |
634 | 634 |
: Parent(graph) {} |
635 | 635 |
ArcMap(const Graph& graph, const _Value& value) |
636 | 636 |
: Parent(graph, value) {} |
637 | 637 |
|
638 | 638 |
private: |
639 | 639 |
ArcMap& operator=(const ArcMap& cmap) { |
640 | 640 |
return operator=<ArcMap>(cmap); |
641 | 641 |
} |
642 | 642 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 |
///\file |
|
30 |
///\brief Extenders for iterable maps. |
|
29 |
//\file |
|
30 |
//\brief Extenders for iterable maps. |
|
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 |
/// \ingroup graphbits |
|
35 |
/// |
|
36 |
// |
|
34 |
// \ingroup graphbits |
|
35 |
// |
|
36 |
// \brief Extender for maps |
|
37 | 37 |
template <typename _Map> |
38 | 38 |
class MapExtender : public _Map { |
39 | 39 |
public: |
40 | 40 |
|
41 | 41 |
typedef _Map Parent; |
42 | 42 |
typedef MapExtender Map; |
43 | 43 |
|
44 | 44 |
|
45 | 45 |
typedef typename Parent::Graph Graph; |
46 | 46 |
typedef typename Parent::Key Item; |
47 | 47 |
|
48 | 48 |
typedef typename Parent::Key Key; |
49 | 49 |
typedef typename Parent::Value Value; |
50 | 50 |
|
51 | 51 |
class MapIt; |
52 | 52 |
class ConstMapIt; |
53 | 53 |
|
54 | 54 |
friend class MapIt; |
55 | 55 |
friend class ConstMapIt; |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
MapExtender(const Graph& graph) |
60 | 60 |
: Parent(graph) {} |
61 | 61 |
|
62 | 62 |
MapExtender(const Graph& graph, const Value& value) |
63 | 63 |
: Parent(graph, value) {} |
64 | 64 |
|
65 | 65 |
private: |
66 | 66 |
MapExtender& operator=(const MapExtender& cmap) { |
67 | 67 |
return operator=<MapExtender>(cmap); |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
template <typename CMap> |
71 | 71 |
MapExtender& operator=(const CMap& cmap) { |
72 | 72 |
Parent::operator=(cmap); |
73 | 73 |
return *this; |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
public: |
77 | 77 |
class MapIt : public Item { |
78 | 78 |
public: |
79 | 79 |
|
80 | 80 |
typedef Item Parent; |
81 | 81 |
typedef typename Map::Value Value; |
82 | 82 |
|
83 | 83 |
MapIt() {} |
84 | 84 |
|
... | ... |
@@ -126,99 +126,99 @@ |
126 | 126 |
|
127 | 127 |
explicit ConstMapIt(Map& _map) : map(_map) { |
128 | 128 |
map.notifier()->first(*this); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
ConstMapIt(const Map& _map, const Item& item) |
132 | 132 |
: Parent(item), map(_map) {} |
133 | 133 |
|
134 | 134 |
ConstMapIt& operator++() { |
135 | 135 |
map.notifier()->next(*this); |
136 | 136 |
return *this; |
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
140 | 140 |
return map[*this]; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
protected: |
144 | 144 |
const Map& map; |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
class ItemIt : public Item { |
148 | 148 |
public: |
149 | 149 |
|
150 | 150 |
typedef Item Parent; |
151 | 151 |
|
152 | 152 |
ItemIt() {} |
153 | 153 |
|
154 | 154 |
ItemIt(Invalid i) : Parent(i) { } |
155 | 155 |
|
156 | 156 |
explicit ItemIt(Map& _map) : map(_map) { |
157 | 157 |
map.notifier()->first(*this); |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
ItemIt(const Map& _map, const Item& item) |
161 | 161 |
: Parent(item), map(_map) {} |
162 | 162 |
|
163 | 163 |
ItemIt& operator++() { |
164 | 164 |
map.notifier()->next(*this); |
165 | 165 |
return *this; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
protected: |
169 | 169 |
const Map& map; |
170 | 170 |
|
171 | 171 |
}; |
172 | 172 |
}; |
173 | 173 |
|
174 |
/// \ingroup graphbits |
|
175 |
/// |
|
176 |
// |
|
174 |
// \ingroup graphbits |
|
175 |
// |
|
176 |
// \brief Extender for maps which use a subset of the items. |
|
177 | 177 |
template <typename _Graph, typename _Map> |
178 | 178 |
class SubMapExtender : public _Map { |
179 | 179 |
public: |
180 | 180 |
|
181 | 181 |
typedef _Map Parent; |
182 | 182 |
typedef SubMapExtender Map; |
183 | 183 |
|
184 | 184 |
typedef _Graph Graph; |
185 | 185 |
|
186 | 186 |
typedef typename Parent::Key Item; |
187 | 187 |
|
188 | 188 |
typedef typename Parent::Key Key; |
189 | 189 |
typedef typename Parent::Value Value; |
190 | 190 |
|
191 | 191 |
class MapIt; |
192 | 192 |
class ConstMapIt; |
193 | 193 |
|
194 | 194 |
friend class MapIt; |
195 | 195 |
friend class ConstMapIt; |
196 | 196 |
|
197 | 197 |
public: |
198 | 198 |
|
199 | 199 |
SubMapExtender(const Graph& _graph) |
200 | 200 |
: Parent(_graph), graph(_graph) {} |
201 | 201 |
|
202 | 202 |
SubMapExtender(const Graph& _graph, const Value& _value) |
203 | 203 |
: Parent(_graph, _value), graph(_graph) {} |
204 | 204 |
|
205 | 205 |
private: |
206 | 206 |
SubMapExtender& operator=(const SubMapExtender& cmap) { |
207 | 207 |
return operator=<MapExtender>(cmap); |
208 | 208 |
} |
209 | 209 |
|
210 | 210 |
template <typename CMap> |
211 | 211 |
SubMapExtender& operator=(const CMap& cmap) { |
212 | 212 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
213 | 213 |
Item it; |
214 | 214 |
for (graph.first(it); it != INVALID; graph.next(it)) { |
215 | 215 |
Parent::set(it, cmap[it]); |
216 | 216 |
} |
217 | 217 |
return *this; |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
public: |
221 | 221 |
class MapIt : public Item { |
222 | 222 |
public: |
223 | 223 |
|
224 | 224 |
typedef Item Parent; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_TRAITS_H |
20 | 20 |
#define LEMON_BITS_TRAITS_H |
21 | 21 |
|
22 |
///\file |
|
23 |
///\brief Traits for graphs and maps |
|
24 |
// |
|
22 |
//\file |
|
23 |
//\brief Traits for graphs and maps |
|
24 |
// |
|
25 | 25 |
|
26 | 26 |
#include <lemon/bits/enable_if.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
struct InvalidType {}; |
31 | 31 |
|
32 | 32 |
template <typename _Graph, typename _Item> |
33 | 33 |
class ItemSetTraits {}; |
34 | 34 |
|
35 | 35 |
|
36 | 36 |
template <typename Graph, typename Enable = void> |
37 | 37 |
struct NodeNotifierIndicator { |
38 | 38 |
typedef InvalidType Type; |
39 | 39 |
}; |
40 | 40 |
template <typename Graph> |
41 | 41 |
struct NodeNotifierIndicator< |
42 | 42 |
Graph, |
43 | 43 |
typename enable_if<typename Graph::NodeNotifier::Notifier, void>::type |
44 | 44 |
> { |
45 | 45 |
typedef typename Graph::NodeNotifier Type; |
46 | 46 |
}; |
47 | 47 |
|
48 | 48 |
template <typename _Graph> |
49 | 49 |
class ItemSetTraits<_Graph, typename _Graph::Node> { |
50 | 50 |
public: |
51 | 51 |
|
52 | 52 |
typedef _Graph Graph; |
53 | 53 |
|
54 | 54 |
typedef typename Graph::Node Item; |
55 | 55 |
typedef typename Graph::NodeIt ItemIt; |
56 | 56 |
|
57 | 57 |
typedef typename NodeNotifierIndicator<Graph>::Type ItemNotifier; |
58 | 58 |
|
59 | 59 |
template <typename _Value> |
60 | 60 |
class Map : public Graph::template NodeMap<_Value> { |
61 | 61 |
public: |
62 | 62 |
typedef typename Graph::template NodeMap<_Value> Parent; |
63 | 63 |
typedef typename Graph::template NodeMap<_Value> Type; |
64 | 64 |
typedef typename Parent::Value Value; |
65 | 65 |
|
66 | 66 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
67 | 67 |
Map(const Graph& _digraph, const Value& _value) |
68 | 68 |
: Parent(_digraph, _value) {} |
69 | 69 |
|
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
}; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/core.h> |
26 | 26 |
#include <lemon/bits/alteration_notifier.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/maps.h> |
30 | 30 |
|
31 |
///\ingroup graphbits |
|
32 |
/// |
|
33 |
///\file |
|
34 |
///\brief Vector based graph maps. |
|
31 |
//\ingroup graphbits |
|
32 |
// |
|
33 |
//\file |
|
34 |
//\brief Vector based graph maps. |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 |
/// \ingroup graphbits |
|
38 |
/// |
|
39 |
/// \brief Graph map based on the std::vector storage. |
|
40 |
/// |
|
41 |
/// The VectorMap template class is graph map structure what |
|
42 |
/// automatically updates the map when a key is added to or erased from |
|
43 |
/// the map. This map type uses the std::vector to store the values. |
|
44 |
/// |
|
45 |
/// \tparam _Graph The graph this map is attached to. |
|
46 |
/// \tparam _Item The item type of the graph items. |
|
47 |
// |
|
37 |
// \ingroup graphbits |
|
38 |
// |
|
39 |
// \brief Graph map based on the std::vector storage. |
|
40 |
// |
|
41 |
// The VectorMap template class is graph map structure what |
|
42 |
// automatically updates the map when a key is added to or erased from |
|
43 |
// the map. This map type uses the std::vector to store the values. |
|
44 |
// |
|
45 |
// \tparam _Graph The graph this map is attached to. |
|
46 |
// \tparam _Item The item type of the graph items. |
|
47 |
// \tparam _Value The value type of the map. |
|
48 | 48 |
template <typename _Graph, typename _Item, typename _Value> |
49 | 49 |
class VectorMap |
50 | 50 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
51 | 51 |
private: |
52 | 52 |
|
53 |
|
|
53 |
// The container type of the map. |
|
54 | 54 |
typedef std::vector<_Value> Container; |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 |
|
|
58 |
// The graph type of the map. |
|
59 | 59 |
typedef _Graph Graph; |
60 |
|
|
60 |
// The item type of the map. |
|
61 | 61 |
typedef _Item Item; |
62 |
|
|
62 |
// The reference map tag. |
|
63 | 63 |
typedef True ReferenceMapTag; |
64 | 64 |
|
65 |
|
|
65 |
// The key type of the map. |
|
66 | 66 |
typedef _Item Key; |
67 |
|
|
67 |
// The value type of the map. |
|
68 | 68 |
typedef _Value Value; |
69 | 69 |
|
70 |
|
|
70 |
// The notifier type. |
|
71 | 71 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
72 | 72 |
|
73 |
|
|
73 |
// The map type. |
|
74 | 74 |
typedef VectorMap Map; |
75 |
|
|
75 |
// The base class of the map. |
|
76 | 76 |
typedef typename Notifier::ObserverBase Parent; |
77 | 77 |
|
78 |
|
|
78 |
// The reference type of the map; |
|
79 | 79 |
typedef typename Container::reference Reference; |
80 |
|
|
80 |
// The const reference type of the map; |
|
81 | 81 |
typedef typename Container::const_reference ConstReference; |
82 | 82 |
|
83 | 83 |
|
84 |
/// \brief Constructor to attach the new map into the notifier. |
|
85 |
/// |
|
86 |
/// It constructs a map and attachs it into the notifier. |
|
87 |
/// It adds all the items of the graph to the map. |
|
84 |
// \brief Constructor to attach the new map into the notifier. |
|
85 |
// |
|
86 |
// It constructs a map and attachs it into the notifier. |
|
87 |
// It adds all the items of the graph to the map. |
|
88 | 88 |
VectorMap(const Graph& graph) { |
89 | 89 |
Parent::attach(graph.notifier(Item())); |
90 | 90 |
container.resize(Parent::notifier()->maxId() + 1); |
91 | 91 |
} |
92 | 92 |
|
93 |
/// \brief Constructor uses given value to initialize the map. |
|
94 |
/// |
|
95 |
/// It constructs a map uses a given value to initialize the map. |
|
96 |
/// It adds all the items of the graph to the map. |
|
93 |
// \brief Constructor uses given value to initialize the map. |
|
94 |
// |
|
95 |
// It constructs a map uses a given value to initialize the map. |
|
96 |
// It adds all the items of the graph to the map. |
|
97 | 97 |
VectorMap(const Graph& graph, const Value& value) { |
98 | 98 |
Parent::attach(graph.notifier(Item())); |
99 | 99 |
container.resize(Parent::notifier()->maxId() + 1, value); |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
private: |
103 |
/// \brief Copy constructor |
|
104 |
/// |
|
105 |
// |
|
103 |
// \brief Copy constructor |
|
104 |
// |
|
105 |
// Copy constructor. |
|
106 | 106 |
VectorMap(const VectorMap& _copy) : Parent() { |
107 | 107 |
if (_copy.attached()) { |
108 | 108 |
Parent::attach(*_copy.notifier()); |
109 | 109 |
container = _copy.container; |
110 | 110 |
} |
111 | 111 |
} |
112 | 112 |
|
113 |
/// \brief Assign operator. |
|
114 |
/// |
|
115 |
/// This operator assigns for each item in the map the |
|
116 |
/// value mapped to the same item in the copied map. |
|
117 |
/// The parameter map should be indiced with the same |
|
118 |
/// itemset because this assign operator does not change |
|
119 |
// |
|
113 |
// \brief Assign operator. |
|
114 |
// |
|
115 |
// This operator assigns for each item in the map the |
|
116 |
// value mapped to the same item in the copied map. |
|
117 |
// The parameter map should be indiced with the same |
|
118 |
// itemset because this assign operator does not change |
|
119 |
// the container of the map. |
|
120 | 120 |
VectorMap& operator=(const VectorMap& cmap) { |
121 | 121 |
return operator=<VectorMap>(cmap); |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
|
125 |
/// \brief Template assign operator. |
|
126 |
/// |
|
127 |
/// The given parameter should be conform to the ReadMap |
|
128 |
/// concecpt and could be indiced by the current item set of |
|
129 |
/// the NodeMap. In this case the value for each item |
|
130 |
/// is assigned by the value of the given ReadMap. |
|
125 |
// \brief Template assign operator. |
|
126 |
// |
|
127 |
// The given parameter should be conform to the ReadMap |
|
128 |
// concecpt and could be indiced by the current item set of |
|
129 |
// the NodeMap. In this case the value for each item |
|
130 |
// is assigned by the value of the given ReadMap. |
|
131 | 131 |
template <typename CMap> |
132 | 132 |
VectorMap& operator=(const CMap& cmap) { |
133 | 133 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
134 | 134 |
const typename Parent::Notifier* nf = Parent::notifier(); |
135 | 135 |
Item it; |
136 | 136 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
137 | 137 |
set(it, cmap[it]); |
138 | 138 |
} |
139 | 139 |
return *this; |
140 | 140 |
} |
141 | 141 |
|
142 | 142 |
public: |
143 | 143 |
|
144 |
/// \brief The subcript operator. |
|
145 |
/// |
|
146 |
/// The subscript operator. The map can be subscripted by the |
|
147 |
/// actual items of the graph. |
|
144 |
// \brief The subcript operator. |
|
145 |
// |
|
146 |
// The subscript operator. The map can be subscripted by the |
|
147 |
// actual items of the graph. |
|
148 | 148 |
Reference operator[](const Key& key) { |
149 | 149 |
return container[Parent::notifier()->id(key)]; |
150 | 150 |
} |
151 | 151 |
|
152 |
/// \brief The const subcript operator. |
|
153 |
/// |
|
154 |
/// The const subscript operator. The map can be subscripted by the |
|
155 |
/// actual items of the graph. |
|
152 |
// \brief The const subcript operator. |
|
153 |
// |
|
154 |
// The const subscript operator. The map can be subscripted by the |
|
155 |
// actual items of the graph. |
|
156 | 156 |
ConstReference operator[](const Key& key) const { |
157 | 157 |
return container[Parent::notifier()->id(key)]; |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
|
161 |
/// \brief The setter function of the map. |
|
162 |
/// |
|
163 |
// |
|
161 |
// \brief The setter function of the map. |
|
162 |
// |
|
163 |
// It the same as operator[](key) = value expression. |
|
164 | 164 |
void set(const Key& key, const Value& value) { |
165 | 165 |
(*this)[key] = value; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
protected: |
169 | 169 |
|
170 |
/// \brief Adds a new key to the map. |
|
171 |
/// |
|
172 |
/// It adds a new key to the map. It called by the observer notifier |
|
173 |
/// and it overrides the add() member function of the observer base. |
|
170 |
// \brief Adds a new key to the map. |
|
171 |
// |
|
172 |
// It adds a new key to the map. It called by the observer notifier |
|
173 |
// and it overrides the add() member function of the observer base. |
|
174 | 174 |
virtual void add(const Key& key) { |
175 | 175 |
int id = Parent::notifier()->id(key); |
176 | 176 |
if (id >= int(container.size())) { |
177 | 177 |
container.resize(id + 1); |
178 | 178 |
} |
179 | 179 |
} |
180 | 180 |
|
181 |
/// \brief Adds more new keys to the map. |
|
182 |
/// |
|
183 |
/// It adds more new keys to the map. It called by the observer notifier |
|
184 |
/// and it overrides the add() member function of the observer base. |
|
181 |
// \brief Adds more new keys to the map. |
|
182 |
// |
|
183 |
// It adds more new keys to the map. It called by the observer notifier |
|
184 |
// and it overrides the add() member function of the observer base. |
|
185 | 185 |
virtual void add(const std::vector<Key>& keys) { |
186 | 186 |
int max = container.size() - 1; |
187 | 187 |
for (int i = 0; i < int(keys.size()); ++i) { |
188 | 188 |
int id = Parent::notifier()->id(keys[i]); |
189 | 189 |
if (id >= max) { |
190 | 190 |
max = id; |
191 | 191 |
} |
192 | 192 |
} |
193 | 193 |
container.resize(max + 1); |
194 | 194 |
} |
195 | 195 |
|
196 |
/// \brief Erase a key from the map. |
|
197 |
/// |
|
198 |
/// Erase a key from the map. It called by the observer notifier |
|
199 |
/// and it overrides the erase() member function of the observer base. |
|
196 |
// \brief Erase a key from the map. |
|
197 |
// |
|
198 |
// Erase a key from the map. It called by the observer notifier |
|
199 |
// and it overrides the erase() member function of the observer base. |
|
200 | 200 |
virtual void erase(const Key& key) { |
201 | 201 |
container[Parent::notifier()->id(key)] = Value(); |
202 | 202 |
} |
203 | 203 |
|
204 |
/// \brief Erase more keys from the map. |
|
205 |
/// |
|
206 |
/// Erase more keys from the map. It called by the observer notifier |
|
207 |
/// and it overrides the erase() member function of the observer base. |
|
204 |
// \brief Erase more keys from the map. |
|
205 |
// |
|
206 |
// Erase more keys from the map. It called by the observer notifier |
|
207 |
// and it overrides the erase() member function of the observer base. |
|
208 | 208 |
virtual void erase(const std::vector<Key>& keys) { |
209 | 209 |
for (int i = 0; i < int(keys.size()); ++i) { |
210 | 210 |
container[Parent::notifier()->id(keys[i])] = Value(); |
211 | 211 |
} |
212 | 212 |
} |
213 | 213 |
|
214 |
/// \brief Buildes the map. |
|
215 |
/// |
|
216 |
/// It buildes the map. It called by the observer notifier |
|
217 |
/// and it overrides the build() member function of the observer base. |
|
214 |
// \brief Buildes the map. |
|
215 |
// |
|
216 |
// It buildes the map. It called by the observer notifier |
|
217 |
// and it overrides the build() member function of the observer base. |
|
218 | 218 |
virtual void build() { |
219 | 219 |
int size = Parent::notifier()->maxId() + 1; |
220 | 220 |
container.reserve(size); |
221 | 221 |
container.resize(size); |
222 | 222 |
} |
223 | 223 |
|
224 |
/// \brief Clear the map. |
|
225 |
/// |
|
226 |
/// It erase all items from the map. It called by the observer notifier |
|
227 |
/// and it overrides the clear() member function of the observer base. |
|
224 |
// \brief Clear the map. |
|
225 |
// |
|
226 |
// It erase all items from the map. It called by the observer notifier |
|
227 |
// and it overrides the clear() member function of the observer base. |
|
228 | 228 |
virtual void clear() { |
229 | 229 |
container.clear(); |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
private: |
233 | 233 |
|
234 | 234 |
Container container; |
235 | 235 |
|
236 | 236 |
}; |
237 | 237 |
|
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
#endif |
... | ... |
@@ -47,97 +47,97 @@ |
47 | 47 |
Color(double r,double g,double b) :_r(r),_g(g),_b(b) {}; |
48 | 48 |
///Set the red component |
49 | 49 |
double & red() {return _r;} |
50 | 50 |
///Return the red component |
51 | 51 |
const double & red() const {return _r;} |
52 | 52 |
///Set the green component |
53 | 53 |
double & green() {return _g;} |
54 | 54 |
///Return the green component |
55 | 55 |
const double & green() const {return _g;} |
56 | 56 |
///Set the blue component |
57 | 57 |
double & blue() {return _b;} |
58 | 58 |
///Return the blue component |
59 | 59 |
const double & blue() const {return _b;} |
60 | 60 |
///Set the color components |
61 | 61 |
void set(double r,double g,double b) { _r=r;_g=g;_b=b; }; |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
/// White color constant |
65 | 65 |
extern const Color WHITE; |
66 | 66 |
/// Black color constant |
67 | 67 |
extern const Color BLACK; |
68 | 68 |
/// Red color constant |
69 | 69 |
extern const Color RED; |
70 | 70 |
/// Green color constant |
71 | 71 |
extern const Color GREEN; |
72 | 72 |
/// Blue color constant |
73 | 73 |
extern const Color BLUE; |
74 | 74 |
/// Yellow color constant |
75 | 75 |
extern const Color YELLOW; |
76 | 76 |
/// Magenta color constant |
77 | 77 |
extern const Color MAGENTA; |
78 | 78 |
/// Cyan color constant |
79 | 79 |
extern const Color CYAN; |
80 | 80 |
/// Grey color constant |
81 | 81 |
extern const Color GREY; |
82 | 82 |
/// Dark red color constant |
83 | 83 |
extern const Color DARK_RED; |
84 | 84 |
/// Dark green color constant |
85 | 85 |
extern const Color DARK_GREEN; |
86 | 86 |
/// Drak blue color constant |
87 | 87 |
extern const Color DARK_BLUE; |
88 | 88 |
/// Dark yellow color constant |
89 | 89 |
extern const Color DARK_YELLOW; |
90 | 90 |
/// Dark magenta color constant |
91 | 91 |
extern const Color DARK_MAGENTA; |
92 | 92 |
/// Dark cyan color constant |
93 | 93 |
extern const Color DARK_CYAN; |
94 | 94 |
|
95 |
///Map <tt>int</tt>s to different |
|
95 |
///Map <tt>int</tt>s to different <tt>Color</tt>s |
|
96 | 96 |
|
97 | 97 |
///This map assigns one of the predefined \ref Color "Color"s to |
98 | 98 |
///each <tt>int</tt>. It is possible to change the colors as well as |
99 | 99 |
///their number. The integer range is cyclically mapped to the |
100 | 100 |
///provided set of colors. |
101 | 101 |
/// |
102 | 102 |
///This is a true \ref concepts::ReferenceMap "reference map", so |
103 | 103 |
///you can also change the actual colors. |
104 | 104 |
|
105 | 105 |
class Palette : public MapBase<int,Color> |
106 | 106 |
{ |
107 | 107 |
std::vector<Color> colors; |
108 | 108 |
public: |
109 | 109 |
///Constructor |
110 | 110 |
|
111 | 111 |
///Constructor. |
112 | 112 |
///\param have_white Indicates whether white is among the |
113 | 113 |
///provided initial colors (\c true) or not (\c false). If it is true, |
114 | 114 |
///white will be assigned to \c 0. |
115 | 115 |
///\param num The number of the allocated colors. If it is \c -1, |
116 | 116 |
///the default color configuration is set up (26 color plus optionaly the |
117 | 117 |
///white). If \c num is less then 26/27 then the default color |
118 | 118 |
///list is cut. Otherwise the color list is filled repeatedly with |
119 | 119 |
///the default color list. (The colors can be changed later on.) |
120 | 120 |
Palette(bool have_white=false,int num=-1) |
121 | 121 |
{ |
122 | 122 |
if (num==0) return; |
123 | 123 |
do { |
124 | 124 |
if(have_white) colors.push_back(Color(1,1,1)); |
125 | 125 |
|
126 | 126 |
colors.push_back(Color(0,0,0)); |
127 | 127 |
colors.push_back(Color(1,0,0)); |
128 | 128 |
colors.push_back(Color(0,1,0)); |
129 | 129 |
colors.push_back(Color(0,0,1)); |
130 | 130 |
colors.push_back(Color(1,1,0)); |
131 | 131 |
colors.push_back(Color(1,0,1)); |
132 | 132 |
colors.push_back(Color(0,1,1)); |
133 | 133 |
|
134 | 134 |
colors.push_back(Color(.5,0,0)); |
135 | 135 |
colors.push_back(Color(0,.5,0)); |
136 | 136 |
colors.push_back(Color(0,0,.5)); |
137 | 137 |
colors.push_back(Color(.5,.5,0)); |
138 | 138 |
colors.push_back(Color(.5,0,.5)); |
139 | 139 |
colors.push_back(Color(0,.5,.5)); |
140 | 140 |
|
141 | 141 |
colors.push_back(Color(.5,.5,.5)); |
142 | 142 |
colors.push_back(Color(1,.5,.5)); |
143 | 143 |
colors.push_back(Color(.5,1,.5)); |
... | ... |
@@ -937,97 +937,97 @@ |
937 | 937 |
|
938 | 938 |
}; |
939 | 939 |
|
940 | 940 |
/// \brief An empty alteration notifier undirected graph class. |
941 | 941 |
/// |
942 | 942 |
/// This class provides beside the core graph features alteration |
943 | 943 |
/// notifier interface for the graph structure. This implements |
944 | 944 |
/// an observer-notifier pattern for each graph item. More |
945 | 945 |
/// obsevers can be registered into the notifier and whenever an |
946 | 946 |
/// alteration occured in the graph all the observers will |
947 | 947 |
/// notified about it. |
948 | 948 |
template <typename _Base = BaseGraphComponent> |
949 | 949 |
class AlterableGraphComponent : public AlterableDigraphComponent<_Base> { |
950 | 950 |
public: |
951 | 951 |
|
952 | 952 |
typedef _Base Base; |
953 | 953 |
typedef typename Base::Edge Edge; |
954 | 954 |
|
955 | 955 |
|
956 | 956 |
/// The arc observer registry. |
957 | 957 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
958 | 958 |
EdgeNotifier; |
959 | 959 |
|
960 | 960 |
/// \brief Gives back the arc alteration notifier. |
961 | 961 |
/// |
962 | 962 |
/// Gives back the arc alteration notifier. |
963 | 963 |
EdgeNotifier& notifier(Edge) const { |
964 | 964 |
return EdgeNotifier(); |
965 | 965 |
} |
966 | 966 |
|
967 | 967 |
template <typename _Graph> |
968 | 968 |
struct Constraints { |
969 | 969 |
void constraints() { |
970 | 970 |
checkConcept<AlterableGraphComponent<Base>, _Graph>(); |
971 | 971 |
typename _Graph::EdgeNotifier& uen |
972 | 972 |
= graph.notifier(typename _Graph::Edge()); |
973 | 973 |
ignore_unused_variable_warning(uen); |
974 | 974 |
} |
975 | 975 |
|
976 | 976 |
const _Graph& graph; |
977 | 977 |
|
978 | 978 |
}; |
979 | 979 |
|
980 | 980 |
}; |
981 | 981 |
|
982 | 982 |
/// \brief Class describing the concept of graph maps |
983 | 983 |
/// |
984 | 984 |
/// This class describes the common interface of the graph maps |
985 |
/// (NodeMap, ArcMap), that is |
|
985 |
/// (NodeMap, ArcMap), that is maps that can be used to |
|
986 | 986 |
/// associate data to graph descriptors (nodes or arcs). |
987 | 987 |
template <typename _Graph, typename _Item, typename _Value> |
988 | 988 |
class GraphMap : public ReadWriteMap<_Item, _Value> { |
989 | 989 |
public: |
990 | 990 |
|
991 | 991 |
typedef ReadWriteMap<_Item, _Value> Parent; |
992 | 992 |
|
993 | 993 |
/// The graph type of the map. |
994 | 994 |
typedef _Graph Graph; |
995 | 995 |
/// The key type of the map. |
996 | 996 |
typedef _Item Key; |
997 | 997 |
/// The value type of the map. |
998 | 998 |
typedef _Value Value; |
999 | 999 |
|
1000 | 1000 |
/// \brief Construct a new map. |
1001 | 1001 |
/// |
1002 | 1002 |
/// Construct a new map for the graph. |
1003 | 1003 |
explicit GraphMap(const Graph&) {} |
1004 | 1004 |
/// \brief Construct a new map with default value. |
1005 | 1005 |
/// |
1006 | 1006 |
/// Construct a new map for the graph and initalise the values. |
1007 | 1007 |
GraphMap(const Graph&, const Value&) {} |
1008 | 1008 |
|
1009 | 1009 |
private: |
1010 | 1010 |
/// \brief Copy constructor. |
1011 | 1011 |
/// |
1012 | 1012 |
/// Copy Constructor. |
1013 | 1013 |
GraphMap(const GraphMap&) : Parent() {} |
1014 | 1014 |
|
1015 | 1015 |
/// \brief Assign operator. |
1016 | 1016 |
/// |
1017 | 1017 |
/// Assign operator. It does not mofify the underlying graph, |
1018 | 1018 |
/// it just iterates on the current item set and set the map |
1019 | 1019 |
/// with the value returned by the assigned map. |
1020 | 1020 |
template <typename CMap> |
1021 | 1021 |
GraphMap& operator=(const CMap&) { |
1022 | 1022 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1023 | 1023 |
return *this; |
1024 | 1024 |
} |
1025 | 1025 |
|
1026 | 1026 |
public: |
1027 | 1027 |
template<typename _Map> |
1028 | 1028 |
struct Constraints { |
1029 | 1029 |
void constraints() { |
1030 | 1030 |
checkConcept<ReadWriteMap<Key, Value>, _Map >(); |
1031 | 1031 |
// Construction with a graph parameter |
1032 | 1032 |
_Map a(g); |
1033 | 1033 |
// Constructor with a graph and a default value parameter |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPT_MAPS_H |
20 | 20 |
#define LEMON_CONCEPT_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 |
///\ingroup |
|
25 |
///\ingroup map_concepts |
|
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 |
/// \addtogroup |
|
33 |
/// \addtogroup map_concepts |
|
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
|
38 | 38 |
/// Readable map concept. |
39 | 39 |
/// |
40 | 40 |
template<typename K, typename T> |
41 | 41 |
class ReadMap |
42 | 42 |
{ |
43 | 43 |
public: |
44 | 44 |
/// The key type of the map. |
45 | 45 |
typedef K Key; |
46 | 46 |
/// \brief The value type of the map. |
47 | 47 |
/// (The type of objects associated with the keys). |
48 | 48 |
typedef T Value; |
49 | 49 |
|
50 | 50 |
/// Returns the value associated with the given key. |
51 | 51 |
Value operator[](const Key &) const { |
52 | 52 |
return *static_cast<Value *>(0); |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
template<typename _ReadMap> |
56 | 56 |
struct Constraints { |
57 | 57 |
void constraints() { |
58 | 58 |
Value val = m[key]; |
59 | 59 |
val = m[key]; |
60 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
61 | 61 |
own_val = m[own_key]; |
62 | 62 |
|
63 | 63 |
ignore_unused_variable_warning(key); |
64 | 64 |
ignore_unused_variable_warning(val); |
65 | 65 |
ignore_unused_variable_warning(own_key); |
66 | 66 |
ignore_unused_variable_warning(own_val); |
67 | 67 |
} |
68 | 68 |
const Key& key; |
69 | 69 |
const typename _ReadMap::Key& own_key; |
70 | 70 |
const _ReadMap& m; |
71 | 71 |
}; |
72 | 72 |
|
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
/// Writable map concept |
77 | 77 |
|
78 | 78 |
/// Writable map concept. |
79 | 79 |
/// |
80 | 80 |
template<typename K, typename T> |
81 | 81 |
class WriteMap |
... | ... |
@@ -1509,97 +1509,97 @@ |
1509 | 1509 |
} |
1510 | 1510 |
} else { |
1511 | 1511 |
if (_parent[_parent[v]] == INVALID) { |
1512 | 1512 |
zag(v); |
1513 | 1513 |
} else { |
1514 | 1514 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1515 | 1515 |
zag(v); |
1516 | 1516 |
zig(v); |
1517 | 1517 |
} else { |
1518 | 1518 |
zag(_parent[v]); |
1519 | 1519 |
zag(v); |
1520 | 1520 |
} |
1521 | 1521 |
} |
1522 | 1522 |
} |
1523 | 1523 |
} |
1524 | 1524 |
_head[_g.source(v)] = v; |
1525 | 1525 |
} |
1526 | 1526 |
|
1527 | 1527 |
|
1528 | 1528 |
public: |
1529 | 1529 |
|
1530 | 1530 |
///Find an arc between two nodes. |
1531 | 1531 |
|
1532 | 1532 |
///Find an arc between two nodes. |
1533 | 1533 |
///\param s The source node. |
1534 | 1534 |
///\param t The target node. |
1535 | 1535 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
1536 | 1536 |
///not given, the operator finds the first appropriate arc. |
1537 | 1537 |
///\return An arc from \c s to \c t after \c p or |
1538 | 1538 |
///\ref INVALID if there is no more. |
1539 | 1539 |
/// |
1540 | 1540 |
///For example, you can count the number of arcs from \c u to \c v in the |
1541 | 1541 |
///following way. |
1542 | 1542 |
///\code |
1543 | 1543 |
///DynArcLookUp<ListDigraph> ae(g); |
1544 | 1544 |
///... |
1545 | 1545 |
///int n = 0; |
1546 | 1546 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
1547 | 1547 |
///\endcode |
1548 | 1548 |
/// |
1549 | 1549 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
1550 | 1550 |
///amortized time, specifically, the time complexity of the lookups |
1551 | 1551 |
///is equal to the optimal search tree implementation for the |
1552 | 1552 |
///current query distribution in a constant factor. |
1553 | 1553 |
/// |
1554 | 1554 |
///\note This is a dynamic data structure, therefore the data |
1555 | 1555 |
///structure is updated after each graph alteration. Thus although |
1556 | 1556 |
///this data structure is theoretically faster than \ref ArcLookUp |
1557 |
///and \ref |
|
1557 |
///and \ref AllArcLookUp, it often provides worse performance than |
|
1558 | 1558 |
///them. |
1559 | 1559 |
Arc operator()(Node s, Node t, Arc p = INVALID) const { |
1560 | 1560 |
if (p == INVALID) { |
1561 | 1561 |
Arc a = _head[s]; |
1562 | 1562 |
if (a == INVALID) return INVALID; |
1563 | 1563 |
Arc r = INVALID; |
1564 | 1564 |
while (true) { |
1565 | 1565 |
if (_g.target(a) < t) { |
1566 | 1566 |
if (_right[a] == INVALID) { |
1567 | 1567 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1568 | 1568 |
return r; |
1569 | 1569 |
} else { |
1570 | 1570 |
a = _right[a]; |
1571 | 1571 |
} |
1572 | 1572 |
} else { |
1573 | 1573 |
if (_g.target(a) == t) { |
1574 | 1574 |
r = a; |
1575 | 1575 |
} |
1576 | 1576 |
if (_left[a] == INVALID) { |
1577 | 1577 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1578 | 1578 |
return r; |
1579 | 1579 |
} else { |
1580 | 1580 |
a = _left[a]; |
1581 | 1581 |
} |
1582 | 1582 |
} |
1583 | 1583 |
} |
1584 | 1584 |
} else { |
1585 | 1585 |
Arc a = p; |
1586 | 1586 |
if (_right[a] != INVALID) { |
1587 | 1587 |
a = _right[a]; |
1588 | 1588 |
while (_left[a] != INVALID) { |
1589 | 1589 |
a = _left[a]; |
1590 | 1590 |
} |
1591 | 1591 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1592 | 1592 |
} else { |
1593 | 1593 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
1594 | 1594 |
a = _parent[a]; |
1595 | 1595 |
} |
1596 | 1596 |
if (_parent[a] == INVALID) { |
1597 | 1597 |
return INVALID; |
1598 | 1598 |
} else { |
1599 | 1599 |
a = _parent[a]; |
1600 | 1600 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1601 | 1601 |
} |
1602 | 1602 |
} |
1603 | 1603 |
if (_g.target(a) == t) return a; |
1604 | 1604 |
else return INVALID; |
1605 | 1605 |
} |
... | ... |
@@ -1654,98 +1654,98 @@ |
1654 | 1654 |
|
1655 | 1655 |
///Constructor. |
1656 | 1656 |
/// |
1657 | 1657 |
///It builds up the search database, which remains valid until the digraph |
1658 | 1658 |
///changes. |
1659 | 1659 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
1660 | 1660 |
|
1661 | 1661 |
private: |
1662 | 1662 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1663 | 1663 |
{ |
1664 | 1664 |
int m=(a+b)/2; |
1665 | 1665 |
Arc me=v[m]; |
1666 | 1666 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
1667 | 1667 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
1668 | 1668 |
return me; |
1669 | 1669 |
} |
1670 | 1670 |
public: |
1671 | 1671 |
///Refresh the search data structure at a node. |
1672 | 1672 |
|
1673 | 1673 |
///Build up the search database of node \c n. |
1674 | 1674 |
/// |
1675 | 1675 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
1676 | 1676 |
///is the number of the outgoing arcs of \c n. |
1677 | 1677 |
void refresh(Node n) |
1678 | 1678 |
{ |
1679 | 1679 |
std::vector<Arc> v; |
1680 | 1680 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
1681 | 1681 |
if(v.size()) { |
1682 | 1682 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1683 | 1683 |
_head[n]=refreshRec(v,0,v.size()-1); |
1684 | 1684 |
} |
1685 | 1685 |
else _head[n]=INVALID; |
1686 | 1686 |
} |
1687 | 1687 |
///Refresh the full data structure. |
1688 | 1688 |
|
1689 | 1689 |
///Build up the full search database. In fact, it simply calls |
1690 | 1690 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1691 | 1691 |
/// |
1692 | 1692 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1693 | 1693 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1694 | 1694 |
///out-degree of the digraph. |
1695 | 1695 |
void refresh() |
1696 | 1696 |
{ |
1697 | 1697 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
1698 | 1698 |
} |
1699 | 1699 |
|
1700 | 1700 |
///Find an arc between two nodes. |
1701 | 1701 |
|
1702 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), where |
|
1703 |
///<em>d</em> is the number of outgoing arcs of \c s. |
|
1702 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
|
1703 |
///where <em>d</em> is the number of outgoing arcs of \c s. |
|
1704 | 1704 |
///\param s The source node. |
1705 | 1705 |
///\param t The target node. |
1706 | 1706 |
///\return An arc from \c s to \c t if there exists, |
1707 | 1707 |
///\ref INVALID otherwise. |
1708 | 1708 |
/// |
1709 | 1709 |
///\warning If you change the digraph, refresh() must be called before using |
1710 | 1710 |
///this operator. If you change the outgoing arcs of |
1711 | 1711 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1712 | 1712 |
Arc operator()(Node s, Node t) const |
1713 | 1713 |
{ |
1714 | 1714 |
Arc e; |
1715 | 1715 |
for(e=_head[s]; |
1716 | 1716 |
e!=INVALID&&_g.target(e)!=t; |
1717 | 1717 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
1718 | 1718 |
return e; |
1719 | 1719 |
} |
1720 | 1720 |
|
1721 | 1721 |
}; |
1722 | 1722 |
|
1723 | 1723 |
///Fast look-up of all arcs between given endpoints. |
1724 | 1724 |
|
1725 | 1725 |
///This class is the same as \ref ArcLookUp, with the addition |
1726 | 1726 |
///that it makes it possible to find all parallel arcs between given |
1727 | 1727 |
///endpoints. |
1728 | 1728 |
/// |
1729 | 1729 |
///\warning This class is static, so you should call refresh() (or at |
1730 | 1730 |
///least refresh(Node)) to refresh this data structure whenever the |
1731 | 1731 |
///digraph changes. This is a time consuming (superlinearly proportional |
1732 | 1732 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1733 | 1733 |
/// |
1734 | 1734 |
///\tparam G The type of the underlying digraph. |
1735 | 1735 |
/// |
1736 | 1736 |
///\sa DynArcLookUp |
1737 | 1737 |
///\sa ArcLookUp |
1738 | 1738 |
template<class G> |
1739 | 1739 |
class AllArcLookUp : public ArcLookUp<G> |
1740 | 1740 |
{ |
1741 | 1741 |
using ArcLookUp<G>::_g; |
1742 | 1742 |
using ArcLookUp<G>::_right; |
1743 | 1743 |
using ArcLookUp<G>::_left; |
1744 | 1744 |
using ArcLookUp<G>::_head; |
1745 | 1745 |
|
1746 | 1746 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1747 | 1747 |
typedef G Digraph; |
1748 | 1748 |
|
1749 | 1749 |
typename Digraph::template ArcMap<Arc> _next; |
1750 | 1750 |
|
1751 | 1751 |
Arc refreshNext(Arc head,Arc next=INVALID) |
... | ... |
@@ -1772,73 +1772,73 @@ |
1772 | 1772 |
///It builds up the search database, which remains valid until the digraph |
1773 | 1773 |
///changes. |
1774 | 1774 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
1775 | 1775 |
|
1776 | 1776 |
///Refresh the data structure at a node. |
1777 | 1777 |
|
1778 | 1778 |
///Build up the search database of node \c n. |
1779 | 1779 |
/// |
1780 | 1780 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
1781 | 1781 |
///the number of the outgoing arcs of \c n. |
1782 | 1782 |
void refresh(Node n) |
1783 | 1783 |
{ |
1784 | 1784 |
ArcLookUp<G>::refresh(n); |
1785 | 1785 |
refreshNext(_head[n]); |
1786 | 1786 |
} |
1787 | 1787 |
|
1788 | 1788 |
///Refresh the full data structure. |
1789 | 1789 |
|
1790 | 1790 |
///Build up the full search database. In fact, it simply calls |
1791 | 1791 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1792 | 1792 |
/// |
1793 | 1793 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1794 | 1794 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1795 | 1795 |
///out-degree of the digraph. |
1796 | 1796 |
void refresh() |
1797 | 1797 |
{ |
1798 | 1798 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
1799 | 1799 |
} |
1800 | 1800 |
|
1801 | 1801 |
///Find an arc between two nodes. |
1802 | 1802 |
|
1803 | 1803 |
///Find an arc between two nodes. |
1804 | 1804 |
///\param s The source node. |
1805 | 1805 |
///\param t The target node. |
1806 | 1806 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
1807 | 1807 |
///not given, the operator finds the first appropriate arc. |
1808 | 1808 |
///\return An arc from \c s to \c t after \c prev or |
1809 | 1809 |
///\ref INVALID if there is no more. |
1810 | 1810 |
/// |
1811 | 1811 |
///For example, you can count the number of arcs from \c u to \c v in the |
1812 | 1812 |
///following way. |
1813 | 1813 |
///\code |
1814 | 1814 |
///AllArcLookUp<ListDigraph> ae(g); |
1815 | 1815 |
///... |
1816 | 1816 |
///int n = 0; |
1817 | 1817 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
1818 | 1818 |
///\endcode |
1819 | 1819 |
/// |
1820 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, where |
|
1821 |
///<em>d</em> is the number of outgoing arcs of \c s. Then, the |
|
1820 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
|
1821 |
///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
|
1822 | 1822 |
///consecutive arcs are found in constant time. |
1823 | 1823 |
/// |
1824 | 1824 |
///\warning If you change the digraph, refresh() must be called before using |
1825 | 1825 |
///this operator. If you change the outgoing arcs of |
1826 | 1826 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1827 | 1827 |
/// |
1828 | 1828 |
#ifdef DOXYGEN |
1829 | 1829 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
1830 | 1830 |
#else |
1831 | 1831 |
using ArcLookUp<G>::operator() ; |
1832 | 1832 |
Arc operator()(Node s, Node t, Arc prev) const |
1833 | 1833 |
{ |
1834 | 1834 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
1835 | 1835 |
} |
1836 | 1836 |
#endif |
1837 | 1837 |
|
1838 | 1838 |
}; |
1839 | 1839 |
|
1840 | 1840 |
/// @} |
1841 | 1841 |
|
1842 | 1842 |
} //namespace lemon |
1843 | 1843 |
|
1844 | 1844 |
#endif |
... | ... |
@@ -790,97 +790,97 @@ |
790 | 790 |
///\param g is the digraph, to which |
791 | 791 |
///we would like to define the ProcessedMap. |
792 | 792 |
#ifdef DOXYGEN |
793 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
794 | 794 |
#else |
795 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
796 | 796 |
#endif |
797 | 797 |
{ |
798 | 798 |
return new ProcessedMap(); |
799 | 799 |
} |
800 | 800 |
|
801 | 801 |
///The type of the map that indicates which nodes are reached. |
802 | 802 |
|
803 | 803 |
///The type of the map that indicates which nodes are reached. |
804 | 804 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
805 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
806 | 806 |
///Instantiates a ReachedMap. |
807 | 807 |
|
808 | 808 |
///This function instantiates a ReachedMap. |
809 | 809 |
///\param g is the digraph, to which |
810 | 810 |
///we would like to define the ReachedMap. |
811 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
812 | 812 |
{ |
813 | 813 |
return new ReachedMap(g); |
814 | 814 |
} |
815 | 815 |
|
816 | 816 |
///The type of the map that stores the distances of the nodes. |
817 | 817 |
|
818 | 818 |
///The type of the map that stores the distances of the nodes. |
819 | 819 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
820 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
821 | 821 |
///Instantiates a DistMap. |
822 | 822 |
|
823 | 823 |
///This function instantiates a DistMap. |
824 | 824 |
///\param g is the digraph, to which we would like to define |
825 | 825 |
///the DistMap |
826 | 826 |
static DistMap *createDistMap(const Digraph &g) |
827 | 827 |
{ |
828 | 828 |
return new DistMap(g); |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
///The type of the DFS paths. |
832 | 832 |
|
833 | 833 |
///The type of the DFS paths. |
834 | 834 |
///It must meet the \ref concepts::Path "Path" concept. |
835 | 835 |
typedef lemon::Path<Digraph> Path; |
836 | 836 |
}; |
837 | 837 |
|
838 |
/// Default traits class used by |
|
838 |
/// Default traits class used by DfsWizard |
|
839 | 839 |
|
840 | 840 |
/// To make it easier to use Dfs algorithm |
841 | 841 |
/// we have created a wizard class. |
842 | 842 |
/// This \ref DfsWizard class needs default traits, |
843 | 843 |
/// as well as the \ref Dfs class. |
844 | 844 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
845 | 845 |
/// \ref DfsWizard class. |
846 | 846 |
template<class GR> |
847 | 847 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
848 | 848 |
{ |
849 | 849 |
|
850 | 850 |
typedef DfsWizardDefaultTraits<GR> Base; |
851 | 851 |
protected: |
852 | 852 |
//The type of the nodes in the digraph. |
853 | 853 |
typedef typename Base::Digraph::Node Node; |
854 | 854 |
|
855 | 855 |
//Pointer to the digraph the algorithm runs on. |
856 | 856 |
void *_g; |
857 | 857 |
//Pointer to the map of reached nodes. |
858 | 858 |
void *_reached; |
859 | 859 |
//Pointer to the map of processed nodes. |
860 | 860 |
void *_processed; |
861 | 861 |
//Pointer to the map of predecessors arcs. |
862 | 862 |
void *_pred; |
863 | 863 |
//Pointer to the map of distances. |
864 | 864 |
void *_dist; |
865 | 865 |
//Pointer to the DFS path to the target node. |
866 | 866 |
void *_path; |
867 | 867 |
//Pointer to the distance of the target node. |
868 | 868 |
int *_di; |
869 | 869 |
|
870 | 870 |
public: |
871 | 871 |
/// Constructor. |
872 | 872 |
|
873 | 873 |
/// This constructor does not require parameters, therefore it initiates |
874 | 874 |
/// all of the attributes to \c 0. |
875 | 875 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
876 | 876 |
_dist(0), _path(0), _di(0) {} |
877 | 877 |
|
878 | 878 |
/// Constructor. |
879 | 879 |
|
880 | 880 |
/// This constructor requires one parameter, |
881 | 881 |
/// others are initiated to \c 0. |
882 | 882 |
/// \param g The digraph the algorithm runs on. |
883 | 883 |
DfsWizardBase(const GR &g) : |
884 | 884 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
885 | 885 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
886 | 886 |
... | ... |
@@ -408,97 +408,97 @@ |
408 | 408 |
{ |
409 | 409 |
LEMON_ASSERT(false, "Heap is not initialized"); |
410 | 410 |
return 0; // ignore warnings |
411 | 411 |
} |
412 | 412 |
}; |
413 | 413 |
///\brief \ref named-templ-param "Named parameter" for setting |
414 | 414 |
///heap and cross reference type |
415 | 415 |
/// |
416 | 416 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
417 | 417 |
///reference type. |
418 | 418 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
419 | 419 |
struct SetHeap |
420 | 420 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
421 | 421 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
422 | 422 |
}; |
423 | 423 |
|
424 | 424 |
template <class H, class CR> |
425 | 425 |
struct SetStandardHeapTraits : public Traits { |
426 | 426 |
typedef CR HeapCrossRef; |
427 | 427 |
typedef H Heap; |
428 | 428 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
429 | 429 |
return new HeapCrossRef(G); |
430 | 430 |
} |
431 | 431 |
static Heap *createHeap(HeapCrossRef &R) |
432 | 432 |
{ |
433 | 433 |
return new Heap(R); |
434 | 434 |
} |
435 | 435 |
}; |
436 | 436 |
///\brief \ref named-templ-param "Named parameter" for setting |
437 | 437 |
///heap and cross reference type with automatic allocation |
438 | 438 |
/// |
439 | 439 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
440 | 440 |
///reference type. It can allocate the heap and the cross reference |
441 | 441 |
///object if the cross reference's constructor waits for the digraph as |
442 | 442 |
///parameter and the heap's constructor waits for the cross reference. |
443 | 443 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
444 | 444 |
struct SetStandardHeap |
445 | 445 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
446 | 446 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
447 | 447 |
Create; |
448 | 448 |
}; |
449 | 449 |
|
450 | 450 |
template <class T> |
451 | 451 |
struct SetOperationTraitsTraits : public Traits { |
452 | 452 |
typedef T OperationTraits; |
453 | 453 |
}; |
454 | 454 |
|
455 | 455 |
/// \brief \ref named-templ-param "Named parameter" for setting |
456 |
///\ |
|
456 |
///\c OperationTraits type |
|
457 | 457 |
/// |
458 | 458 |
///\ref named-templ-param "Named parameter" for setting |
459 | 459 |
///\ref OperationTraits type. |
460 | 460 |
template <class T> |
461 | 461 |
struct SetOperationTraits |
462 | 462 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
463 | 463 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
464 | 464 |
Create; |
465 | 465 |
}; |
466 | 466 |
|
467 | 467 |
///@} |
468 | 468 |
|
469 | 469 |
protected: |
470 | 470 |
|
471 | 471 |
Dijkstra() {} |
472 | 472 |
|
473 | 473 |
public: |
474 | 474 |
|
475 | 475 |
///Constructor. |
476 | 476 |
|
477 | 477 |
///Constructor. |
478 | 478 |
///\param _g The digraph the algorithm runs on. |
479 | 479 |
///\param _length The length map used by the algorithm. |
480 | 480 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
481 | 481 |
G(&_g), length(&_length), |
482 | 482 |
_pred(NULL), local_pred(false), |
483 | 483 |
_dist(NULL), local_dist(false), |
484 | 484 |
_processed(NULL), local_processed(false), |
485 | 485 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
486 | 486 |
_heap(NULL), local_heap(false) |
487 | 487 |
{ } |
488 | 488 |
|
489 | 489 |
///Destructor. |
490 | 490 |
~Dijkstra() |
491 | 491 |
{ |
492 | 492 |
if(local_pred) delete _pred; |
493 | 493 |
if(local_dist) delete _dist; |
494 | 494 |
if(local_processed) delete _processed; |
495 | 495 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
496 | 496 |
if(local_heap) delete _heap; |
497 | 497 |
} |
498 | 498 |
|
499 | 499 |
///Sets the length map. |
500 | 500 |
|
501 | 501 |
///Sets the length map. |
502 | 502 |
///\return <tt> (*this) </tt> |
503 | 503 |
Dijkstra &lengthMap(const LengthMap &m) |
504 | 504 |
{ |
... | ... |
@@ -993,97 +993,97 @@ |
993 | 993 |
///PredMap. |
994 | 994 |
static PredMap *createPredMap(const Digraph &g) |
995 | 995 |
{ |
996 | 996 |
return new PredMap(g); |
997 | 997 |
} |
998 | 998 |
|
999 | 999 |
///The type of the map that indicates which nodes are processed. |
1000 | 1000 |
|
1001 | 1001 |
///The type of the map that indicates which nodes are processed. |
1002 | 1002 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1003 | 1003 |
///By default it is a NullMap. |
1004 | 1004 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1005 | 1005 |
///Instantiates a ProcessedMap. |
1006 | 1006 |
|
1007 | 1007 |
///This function instantiates a ProcessedMap. |
1008 | 1008 |
///\param g is the digraph, to which |
1009 | 1009 |
///we would like to define the ProcessedMap. |
1010 | 1010 |
#ifdef DOXYGEN |
1011 | 1011 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1012 | 1012 |
#else |
1013 | 1013 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1014 | 1014 |
#endif |
1015 | 1015 |
{ |
1016 | 1016 |
return new ProcessedMap(); |
1017 | 1017 |
} |
1018 | 1018 |
|
1019 | 1019 |
///The type of the map that stores the distances of the nodes. |
1020 | 1020 |
|
1021 | 1021 |
///The type of the map that stores the distances of the nodes. |
1022 | 1022 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1023 | 1023 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
1024 | 1024 |
///Instantiates a DistMap. |
1025 | 1025 |
|
1026 | 1026 |
///This function instantiates a DistMap. |
1027 | 1027 |
///\param g is the digraph, to which we would like to define |
1028 | 1028 |
///the DistMap |
1029 | 1029 |
static DistMap *createDistMap(const Digraph &g) |
1030 | 1030 |
{ |
1031 | 1031 |
return new DistMap(g); |
1032 | 1032 |
} |
1033 | 1033 |
|
1034 | 1034 |
///The type of the shortest paths. |
1035 | 1035 |
|
1036 | 1036 |
///The type of the shortest paths. |
1037 | 1037 |
///It must meet the \ref concepts::Path "Path" concept. |
1038 | 1038 |
typedef lemon::Path<Digraph> Path; |
1039 | 1039 |
}; |
1040 | 1040 |
|
1041 |
/// Default traits class used by |
|
1041 |
/// Default traits class used by DijkstraWizard |
|
1042 | 1042 |
|
1043 | 1043 |
/// To make it easier to use Dijkstra algorithm |
1044 | 1044 |
/// we have created a wizard class. |
1045 | 1045 |
/// This \ref DijkstraWizard class needs default traits, |
1046 | 1046 |
/// as well as the \ref Dijkstra class. |
1047 | 1047 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
1048 | 1048 |
/// \ref DijkstraWizard class. |
1049 | 1049 |
template<class GR,class LM> |
1050 | 1050 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1051 | 1051 |
{ |
1052 | 1052 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1053 | 1053 |
protected: |
1054 | 1054 |
//The type of the nodes in the digraph. |
1055 | 1055 |
typedef typename Base::Digraph::Node Node; |
1056 | 1056 |
|
1057 | 1057 |
//Pointer to the digraph the algorithm runs on. |
1058 | 1058 |
void *_g; |
1059 | 1059 |
//Pointer to the length map. |
1060 | 1060 |
void *_length; |
1061 | 1061 |
//Pointer to the map of processed nodes. |
1062 | 1062 |
void *_processed; |
1063 | 1063 |
//Pointer to the map of predecessors arcs. |
1064 | 1064 |
void *_pred; |
1065 | 1065 |
//Pointer to the map of distances. |
1066 | 1066 |
void *_dist; |
1067 | 1067 |
//Pointer to the shortest path to the target node. |
1068 | 1068 |
void *_path; |
1069 | 1069 |
//Pointer to the distance of the target node. |
1070 | 1070 |
void *_di; |
1071 | 1071 |
|
1072 | 1072 |
public: |
1073 | 1073 |
/// Constructor. |
1074 | 1074 |
|
1075 | 1075 |
/// This constructor does not require parameters, therefore it initiates |
1076 | 1076 |
/// all of the attributes to \c 0. |
1077 | 1077 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1078 | 1078 |
_dist(0), _path(0), _di(0) {} |
1079 | 1079 |
|
1080 | 1080 |
/// Constructor. |
1081 | 1081 |
|
1082 | 1082 |
/// This constructor requires two parameters, |
1083 | 1083 |
/// others are initiated to \c 0. |
1084 | 1084 |
/// \param g The digraph the algorithm runs on. |
1085 | 1085 |
/// \param l The length map. |
1086 | 1086 |
DijkstraWizardBase(const GR &g,const LM &l) : |
1087 | 1087 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1088 | 1088 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1089 | 1089 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
... | ... |
@@ -214,100 +214,100 @@ |
214 | 214 |
|
215 | 215 |
///Write a plain vector to a stream |
216 | 216 |
|
217 | 217 |
///Write a plain vector to a stream. |
218 | 218 |
///\relates Point |
219 | 219 |
/// |
220 | 220 |
template<typename T> |
221 | 221 |
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) |
222 | 222 |
{ |
223 | 223 |
os << "(" << z.x << "," << z.y << ")"; |
224 | 224 |
return os; |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
///Rotate by 90 degrees |
228 | 228 |
|
229 | 229 |
///Returns the parameter rotated by 90 degrees in positive direction. |
230 | 230 |
///\relates Point |
231 | 231 |
/// |
232 | 232 |
template<typename T> |
233 | 233 |
inline Point<T> rot90(const Point<T> &z) |
234 | 234 |
{ |
235 | 235 |
return Point<T>(-z.y,z.x); |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
///Rotate by 180 degrees |
239 | 239 |
|
240 | 240 |
///Returns the parameter rotated by 180 degrees. |
241 | 241 |
///\relates Point |
242 | 242 |
/// |
243 | 243 |
template<typename T> |
244 | 244 |
inline Point<T> rot180(const Point<T> &z) |
245 | 245 |
{ |
246 | 246 |
return Point<T>(-z.x,-z.y); |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
///Rotate by 270 degrees |
250 | 250 |
|
251 | 251 |
///Returns the parameter rotated by 90 degrees in negative direction. |
252 | 252 |
///\relates Point |
253 | 253 |
/// |
254 | 254 |
template<typename T> |
255 | 255 |
inline Point<T> rot270(const Point<T> &z) |
256 | 256 |
{ |
257 | 257 |
return Point<T>(z.y,-z.x); |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
|
261 | 261 |
|
262 |
/// Bounding box of plain vectors ( |
|
262 |
/// Bounding box of plain vectors (points). |
|
263 | 263 |
|
264 | 264 |
/// A class to calculate or store the bounding box of plain vectors |
265 |
/// (\ref Point points). |
|
265 |
/// (\ref Point "points"). |
|
266 | 266 |
template<typename T> |
267 | 267 |
class Box { |
268 | 268 |
Point<T> _bottom_left, _top_right; |
269 | 269 |
bool _empty; |
270 | 270 |
public: |
271 | 271 |
|
272 | 272 |
///Default constructor: creates an empty box |
273 | 273 |
Box() { _empty = true; } |
274 | 274 |
|
275 | 275 |
///Construct a box from one point |
276 | 276 |
Box(Point<T> a) { |
277 | 277 |
_bottom_left = _top_right = a; |
278 | 278 |
_empty = false; |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
///Construct a box from two points |
282 | 282 |
|
283 | 283 |
///Construct a box from two points. |
284 | 284 |
///\param a The bottom left corner. |
285 | 285 |
///\param b The top right corner. |
286 | 286 |
///\warning The coordinates of the bottom left corner must be no more |
287 | 287 |
///than those of the top right one. |
288 | 288 |
Box(Point<T> a,Point<T> b) |
289 | 289 |
{ |
290 | 290 |
_bottom_left = a; |
291 | 291 |
_top_right = b; |
292 | 292 |
_empty = false; |
293 | 293 |
} |
294 | 294 |
|
295 | 295 |
///Construct a box from four numbers |
296 | 296 |
|
297 | 297 |
///Construct a box from four numbers. |
298 | 298 |
///\param l The left side of the box. |
299 | 299 |
///\param b The bottom of the box. |
300 | 300 |
///\param r The right side of the box. |
301 | 301 |
///\param t The top of the box. |
302 | 302 |
///\warning The left side must be no more than the right side and |
303 | 303 |
///bottom must be no more than the top. |
304 | 304 |
Box(T l,T b,T r,T t) |
305 | 305 |
{ |
306 | 306 |
_bottom_left=Point<T>(l,b); |
307 | 307 |
_top_right=Point<T>(r,t); |
308 | 308 |
_empty = false; |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
///Return \c true if the box is empty. |
312 | 312 |
|
313 | 313 |
///Return \c true if the box is empty (i.e. return \c false |
... | ... |
@@ -528,221 +528,205 @@ |
528 | 528 |
} |
529 | 529 |
return b; |
530 | 530 |
} |
531 | 531 |
|
532 | 532 |
};//class Box |
533 | 533 |
|
534 | 534 |
|
535 | 535 |
///Read a box from a stream |
536 | 536 |
|
537 | 537 |
///Read a box from a stream. |
538 | 538 |
///\relates Box |
539 | 539 |
template<typename T> |
540 | 540 |
inline std::istream& operator>>(std::istream &is, Box<T>& b) { |
541 | 541 |
char c; |
542 | 542 |
Point<T> p; |
543 | 543 |
if (is >> c) { |
544 | 544 |
if (c != '(') is.putback(c); |
545 | 545 |
} else { |
546 | 546 |
is.clear(); |
547 | 547 |
} |
548 | 548 |
if (!(is >> p)) return is; |
549 | 549 |
b.bottomLeft(p); |
550 | 550 |
if (is >> c) { |
551 | 551 |
if (c != ',') is.putback(c); |
552 | 552 |
} else { |
553 | 553 |
is.clear(); |
554 | 554 |
} |
555 | 555 |
if (!(is >> p)) return is; |
556 | 556 |
b.topRight(p); |
557 | 557 |
if (is >> c) { |
558 | 558 |
if (c != ')') is.putback(c); |
559 | 559 |
} else { |
560 | 560 |
is.clear(); |
561 | 561 |
} |
562 | 562 |
return is; |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
///Write a box to a stream |
566 | 566 |
|
567 | 567 |
///Write a box to a stream. |
568 | 568 |
///\relates Box |
569 | 569 |
template<typename T> |
570 | 570 |
inline std::ostream& operator<<(std::ostream &os, const Box<T>& b) |
571 | 571 |
{ |
572 | 572 |
os << "(" << b.bottomLeft() << "," << b.topRight() << ")"; |
573 | 573 |
return os; |
574 | 574 |
} |
575 | 575 |
|
576 |
///Map of x-coordinates of a |
|
576 |
///Map of x-coordinates of a <tt>Point</tt>-map |
|
577 | 577 |
|
578 |
///\ingroup maps |
|
579 | 578 |
///Map of x-coordinates of a \ref Point "Point"-map. |
580 | 579 |
/// |
581 | 580 |
template<class M> |
582 | 581 |
class XMap |
583 | 582 |
{ |
584 | 583 |
M& _map; |
585 | 584 |
public: |
586 | 585 |
|
587 | 586 |
typedef typename M::Value::Value Value; |
588 | 587 |
typedef typename M::Key Key; |
589 | 588 |
///\e |
590 | 589 |
XMap(M& map) : _map(map) {} |
591 | 590 |
Value operator[](Key k) const {return _map[k].x;} |
592 | 591 |
void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));} |
593 | 592 |
}; |
594 | 593 |
|
595 |
///Returns an |
|
594 |
///Returns an XMap class |
|
596 | 595 |
|
597 |
///This function just returns an \ref XMap class. |
|
598 |
/// |
|
599 |
/// |
|
596 |
///This function just returns an XMap class. |
|
600 | 597 |
///\relates XMap |
601 | 598 |
template<class M> |
602 | 599 |
inline XMap<M> xMap(M &m) |
603 | 600 |
{ |
604 | 601 |
return XMap<M>(m); |
605 | 602 |
} |
606 | 603 |
|
607 | 604 |
template<class M> |
608 | 605 |
inline XMap<M> xMap(const M &m) |
609 | 606 |
{ |
610 | 607 |
return XMap<M>(m); |
611 | 608 |
} |
612 | 609 |
|
613 |
///Constant (read only) version of |
|
610 |
///Constant (read only) version of XMap |
|
614 | 611 |
|
615 |
///\ingroup maps |
|
616 |
///Constant (read only) version of \ref XMap |
|
612 |
///Constant (read only) version of XMap. |
|
617 | 613 |
/// |
618 | 614 |
template<class M> |
619 | 615 |
class ConstXMap |
620 | 616 |
{ |
621 | 617 |
const M& _map; |
622 | 618 |
public: |
623 | 619 |
|
624 | 620 |
typedef typename M::Value::Value Value; |
625 | 621 |
typedef typename M::Key Key; |
626 | 622 |
///\e |
627 | 623 |
ConstXMap(const M &map) : _map(map) {} |
628 | 624 |
Value operator[](Key k) const {return _map[k].x;} |
629 | 625 |
}; |
630 | 626 |
|
631 |
///Returns a |
|
627 |
///Returns a ConstXMap class |
|
632 | 628 |
|
633 |
///This function just returns a \ref ConstXMap class. |
|
634 |
/// |
|
635 |
/// |
|
629 |
///This function just returns a ConstXMap class. |
|
636 | 630 |
///\relates ConstXMap |
637 | 631 |
template<class M> |
638 | 632 |
inline ConstXMap<M> xMap(const M &m) |
639 | 633 |
{ |
640 | 634 |
return ConstXMap<M>(m); |
641 | 635 |
} |
642 | 636 |
|
643 |
///Map of y-coordinates of a |
|
637 |
///Map of y-coordinates of a <tt>Point</tt>-map |
|
644 | 638 |
|
645 |
///\ingroup maps |
|
646 | 639 |
///Map of y-coordinates of a \ref Point "Point"-map. |
647 | 640 |
/// |
648 | 641 |
template<class M> |
649 | 642 |
class YMap |
650 | 643 |
{ |
651 | 644 |
M& _map; |
652 | 645 |
public: |
653 | 646 |
|
654 | 647 |
typedef typename M::Value::Value Value; |
655 | 648 |
typedef typename M::Key Key; |
656 | 649 |
///\e |
657 | 650 |
YMap(M& map) : _map(map) {} |
658 | 651 |
Value operator[](Key k) const {return _map[k].y;} |
659 | 652 |
void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));} |
660 | 653 |
}; |
661 | 654 |
|
662 |
///Returns a |
|
655 |
///Returns a YMap class |
|
663 | 656 |
|
664 |
///This function just returns a \ref YMap class. |
|
665 |
/// |
|
666 |
/// |
|
657 |
///This function just returns a YMap class. |
|
667 | 658 |
///\relates YMap |
668 | 659 |
template<class M> |
669 | 660 |
inline YMap<M> yMap(M &m) |
670 | 661 |
{ |
671 | 662 |
return YMap<M>(m); |
672 | 663 |
} |
673 | 664 |
|
674 | 665 |
template<class M> |
675 | 666 |
inline YMap<M> yMap(const M &m) |
676 | 667 |
{ |
677 | 668 |
return YMap<M>(m); |
678 | 669 |
} |
679 | 670 |
|
680 |
///Constant (read only) version of |
|
671 |
///Constant (read only) version of YMap |
|
681 | 672 |
|
682 |
///\ingroup maps |
|
683 |
///Constant (read only) version of \ref YMap |
|
673 |
///Constant (read only) version of YMap. |
|
684 | 674 |
/// |
685 | 675 |
template<class M> |
686 | 676 |
class ConstYMap |
687 | 677 |
{ |
688 | 678 |
const M& _map; |
689 | 679 |
public: |
690 | 680 |
|
691 | 681 |
typedef typename M::Value::Value Value; |
692 | 682 |
typedef typename M::Key Key; |
693 | 683 |
///\e |
694 | 684 |
ConstYMap(const M &map) : _map(map) {} |
695 | 685 |
Value operator[](Key k) const {return _map[k].y;} |
696 | 686 |
}; |
697 | 687 |
|
698 |
///Returns a |
|
688 |
///Returns a ConstYMap class |
|
699 | 689 |
|
700 |
///This function just returns a \ref ConstYMap class. |
|
701 |
/// |
|
702 |
/// |
|
690 |
///This function just returns a ConstYMap class. |
|
703 | 691 |
///\relates ConstYMap |
704 | 692 |
template<class M> |
705 | 693 |
inline ConstYMap<M> yMap(const M &m) |
706 | 694 |
{ |
707 | 695 |
return ConstYMap<M>(m); |
708 | 696 |
} |
709 | 697 |
|
710 | 698 |
|
711 |
///\brief Map of the \ref Point::normSquare() "normSquare()" |
|
712 |
///of a \ref Point "Point"-map |
|
699 |
///\brief Map of the normSquare() of a <tt>Point</tt>-map |
|
713 | 700 |
/// |
714 | 701 |
///Map of the \ref Point::normSquare() "normSquare()" |
715 | 702 |
///of a \ref Point "Point"-map. |
716 |
///\ingroup maps |
|
717 | 703 |
template<class M> |
718 | 704 |
class NormSquareMap |
719 | 705 |
{ |
720 | 706 |
const M& _map; |
721 | 707 |
public: |
722 | 708 |
|
723 | 709 |
typedef typename M::Value::Value Value; |
724 | 710 |
typedef typename M::Key Key; |
725 | 711 |
///\e |
726 | 712 |
NormSquareMap(const M &map) : _map(map) {} |
727 | 713 |
Value operator[](Key k) const {return _map[k].normSquare();} |
728 | 714 |
}; |
729 | 715 |
|
730 |
///Returns a |
|
716 |
///Returns a NormSquareMap class |
|
731 | 717 |
|
732 |
///This function just returns a \ref NormSquareMap class. |
|
733 |
/// |
|
734 |
/// |
|
718 |
///This function just returns a NormSquareMap class. |
|
735 | 719 |
///\relates NormSquareMap |
736 | 720 |
template<class M> |
737 | 721 |
inline NormSquareMap<M> normSquareMap(const M &m) |
738 | 722 |
{ |
739 | 723 |
return NormSquareMap<M>(m); |
740 | 724 |
} |
741 | 725 |
|
742 | 726 |
/// @} |
743 | 727 |
|
744 | 728 |
} //namespce dim2 |
745 | 729 |
|
746 | 730 |
} //namespace lemon |
747 | 731 |
|
748 | 732 |
#endif //LEMON_DIM2_H |
... | ... |
@@ -17,97 +17,97 @@ |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#define WIN32_LEAN_AND_MEAN |
33 | 33 |
#define NOMINMAX |
34 | 34 |
#include<windows.h> |
35 | 35 |
#endif |
36 | 36 |
|
37 | 37 |
#include<lemon/math.h> |
38 | 38 |
#include<lemon/core.h> |
39 | 39 |
#include<lemon/dim2.h> |
40 | 40 |
#include<lemon/maps.h> |
41 | 41 |
#include<lemon/color.h> |
42 | 42 |
#include<lemon/bits/bezier.h> |
43 | 43 |
#include<lemon/error.h> |
44 | 44 |
|
45 | 45 |
|
46 | 46 |
///\ingroup eps_io |
47 | 47 |
///\file |
48 | 48 |
///\brief A well configurable tool for visualizing graphs |
49 | 49 |
|
50 | 50 |
namespace lemon { |
51 | 51 |
|
52 | 52 |
namespace _graph_to_eps_bits { |
53 | 53 |
template<class MT> |
54 | 54 |
class _NegY { |
55 | 55 |
public: |
56 | 56 |
typedef typename MT::Key Key; |
57 | 57 |
typedef typename MT::Value Value; |
58 | 58 |
const MT ↦ |
59 | 59 |
int yscale; |
60 | 60 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
61 | 61 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
62 | 62 |
}; |
63 | 63 |
} |
64 | 64 |
|
65 |
///Default traits class of |
|
65 |
///Default traits class of GraphToEps |
|
66 | 66 |
|
67 | 67 |
///Default traits class of \ref GraphToEps. |
68 | 68 |
/// |
69 | 69 |
///\c G is the type of the underlying graph. |
70 | 70 |
template<class G> |
71 | 71 |
struct DefaultGraphToEpsTraits |
72 | 72 |
{ |
73 | 73 |
typedef G Graph; |
74 | 74 |
typedef typename Graph::Node Node; |
75 | 75 |
typedef typename Graph::NodeIt NodeIt; |
76 | 76 |
typedef typename Graph::Arc Arc; |
77 | 77 |
typedef typename Graph::ArcIt ArcIt; |
78 | 78 |
typedef typename Graph::InArcIt InArcIt; |
79 | 79 |
typedef typename Graph::OutArcIt OutArcIt; |
80 | 80 |
|
81 | 81 |
|
82 | 82 |
const Graph &g; |
83 | 83 |
|
84 | 84 |
std::ostream& os; |
85 | 85 |
|
86 | 86 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
87 | 87 |
CoordsMapType _coords; |
88 | 88 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
89 | 89 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
90 | 90 |
|
91 | 91 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
92 | 92 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
93 | 93 |
|
94 | 94 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
95 | 95 |
|
96 | 96 |
double _arcWidthScale; |
97 | 97 |
|
98 | 98 |
double _nodeScale; |
99 | 99 |
double _xBorder, _yBorder; |
100 | 100 |
double _scale; |
101 | 101 |
double _nodeBorderQuotient; |
102 | 102 |
|
103 | 103 |
bool _drawArrows; |
104 | 104 |
double _arrowLength, _arrowWidth; |
105 | 105 |
|
106 | 106 |
bool _showNodes, _showArcs; |
107 | 107 |
|
108 | 108 |
bool _enableParallel; |
109 | 109 |
double _parArcDist; |
110 | 110 |
|
111 | 111 |
bool _showNodeText; |
112 | 112 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
113 | 113 |
double _nodeTextSize; |
... | ... |
@@ -368,97 +368,97 @@ |
368 | 368 |
///Erase a node from the digraph. |
369 | 369 |
/// |
370 | 370 |
void erase(const Node& n) { Parent::erase(n); } |
371 | 371 |
|
372 | 372 |
///\brief Erase an arc from the digraph. |
373 | 373 |
/// |
374 | 374 |
///Erase an arc from the digraph. |
375 | 375 |
/// |
376 | 376 |
void erase(const Arc& a) { Parent::erase(a); } |
377 | 377 |
|
378 | 378 |
/// Node validity check |
379 | 379 |
|
380 | 380 |
/// This function gives back true if the given node is valid, |
381 | 381 |
/// ie. it is a real node of the graph. |
382 | 382 |
/// |
383 | 383 |
/// \warning A Node pointing to a removed item |
384 | 384 |
/// could become valid again later if new nodes are |
385 | 385 |
/// added to the graph. |
386 | 386 |
bool valid(Node n) const { return Parent::valid(n); } |
387 | 387 |
|
388 | 388 |
/// Arc validity check |
389 | 389 |
|
390 | 390 |
/// This function gives back true if the given arc is valid, |
391 | 391 |
/// ie. it is a real arc of the graph. |
392 | 392 |
/// |
393 | 393 |
/// \warning An Arc pointing to a removed item |
394 | 394 |
/// could become valid again later if new nodes are |
395 | 395 |
/// added to the graph. |
396 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
397 | 397 |
|
398 | 398 |
/// Change the target of \c a to \c n |
399 | 399 |
|
400 | 400 |
/// Change the target of \c a to \c n |
401 | 401 |
/// |
402 | 402 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
403 | 403 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
404 | 404 |
///invalidated. |
405 | 405 |
/// |
406 | 406 |
///\warning This functionality cannot be used together with the Snapshot |
407 | 407 |
///feature. |
408 | 408 |
void changeTarget(Arc a, Node n) { |
409 | 409 |
Parent::changeTarget(a,n); |
410 | 410 |
} |
411 | 411 |
/// Change the source of \c a to \c n |
412 | 412 |
|
413 | 413 |
/// Change the source of \c a to \c n |
414 | 414 |
/// |
415 | 415 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
416 |
///valid. However the <tt>ArcIt<tt>s and <tt>OutArcIt</tt>s are |
|
416 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
|
417 | 417 |
///invalidated. |
418 | 418 |
/// |
419 | 419 |
///\warning This functionality cannot be used together with the Snapshot |
420 | 420 |
///feature. |
421 | 421 |
void changeSource(Arc a, Node n) { |
422 | 422 |
Parent::changeSource(a,n); |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
/// Invert the direction of an arc. |
426 | 426 |
|
427 | 427 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
428 | 428 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
429 | 429 |
///invalidated. |
430 | 430 |
/// |
431 | 431 |
///\warning This functionality cannot be used together with the Snapshot |
432 | 432 |
///feature. |
433 | 433 |
void reverseArc(Arc e) { |
434 | 434 |
Node t=target(e); |
435 | 435 |
changeTarget(e,source(e)); |
436 | 436 |
changeSource(e,t); |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
/// Reserve memory for nodes. |
440 | 440 |
|
441 | 441 |
/// Using this function it is possible to avoid the superfluous memory |
442 | 442 |
/// allocation: if you know that the digraph you want to build will |
443 | 443 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
444 | 444 |
/// then it is worth reserving space for this amount before starting |
445 | 445 |
/// to build the digraph. |
446 | 446 |
/// \sa reserveArc |
447 | 447 |
void reserveNode(int n) { nodes.reserve(n); }; |
448 | 448 |
|
449 | 449 |
/// Reserve memory for arcs. |
450 | 450 |
|
451 | 451 |
/// Using this function it is possible to avoid the superfluous memory |
452 | 452 |
/// allocation: if you know that the digraph you want to build will |
453 | 453 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
454 | 454 |
/// then it is worth reserving space for this amount before starting |
455 | 455 |
/// to build the digraph. |
456 | 456 |
/// \sa reserveNode |
457 | 457 |
void reserveArc(int m) { arcs.reserve(m); }; |
458 | 458 |
|
459 | 459 |
///Contract two nodes. |
460 | 460 |
|
461 | 461 |
///This function contracts two nodes. |
462 | 462 |
///Node \p b will be removed but instead of deleting |
463 | 463 |
///incident arcs, they will be joined to \p a. |
464 | 464 |
///The last parameter \p r controls whether to remove loops. \c true |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
|
28 | 28 |
///\file |
29 | 29 |
///\ingroup maps |
30 | 30 |
///\brief Miscellaneous property maps |
31 | 31 |
|
32 | 32 |
#include <map> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup maps |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// Base class of maps. |
40 | 40 |
|
41 | 41 |
/// Base class of maps. It provides the necessary type definitions |
42 | 42 |
/// required by the map %concepts. |
43 | 43 |
template<typename K, typename V> |
44 | 44 |
class MapBase { |
45 | 45 |
public: |
46 |
/// \ |
|
46 |
/// \brief The key type of the map. |
|
47 | 47 |
typedef K Key; |
48 | 48 |
/// \brief The value type of the map. |
49 | 49 |
/// (The type of objects associated with the keys). |
50 | 50 |
typedef V Value; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
|
54 | 54 |
/// Null map. (a.k.a. DoNothingMap) |
55 | 55 |
|
56 | 56 |
/// This map can be used if you have to provide a map only for |
57 | 57 |
/// its type definitions, or if you have to provide a writable map, |
58 | 58 |
/// but data written to it is not required (i.e. it will be sent to |
59 | 59 |
/// <tt>/dev/null</tt>). |
60 | 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
61 | 61 |
/// |
62 | 62 |
/// \sa ConstMap |
63 | 63 |
template<typename K, typename V> |
64 | 64 |
class NullMap : public MapBase<K, V> { |
65 | 65 |
public: |
66 | 66 |
typedef MapBase<K, V> Parent; |
67 | 67 |
typedef typename Parent::Key Key; |
68 | 68 |
typedef typename Parent::Value Value; |
69 | 69 |
|
70 | 70 |
/// Gives back a default constructed element. |
71 | 71 |
Value operator[](const Key&) const { return Value(); } |
72 | 72 |
/// Absorbs the value. |
73 | 73 |
void set(const Key&, const Value&) {} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
/// Returns a \c NullMap class |
77 | 77 |
|
78 | 78 |
/// This function just returns a \c NullMap class. |
79 | 79 |
/// \relates NullMap |
80 | 80 |
template <typename K, typename V> |
81 | 81 |
NullMap<K, V> nullMap() { |
82 | 82 |
return NullMap<K, V>(); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
92 | 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
... | ... |
@@ -1638,188 +1638,198 @@ |
1638 | 1638 |
/// function. |
1639 | 1639 |
/// |
1640 | 1640 |
/// \sa EqualMap |
1641 | 1641 |
template<typename M1, typename M2> |
1642 | 1642 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1643 | 1643 |
const M1 &_m1; |
1644 | 1644 |
const M2 &_m2; |
1645 | 1645 |
public: |
1646 | 1646 |
typedef MapBase<typename M1::Key, bool> Parent; |
1647 | 1647 |
typedef typename Parent::Key Key; |
1648 | 1648 |
typedef typename Parent::Value Value; |
1649 | 1649 |
|
1650 | 1650 |
/// Constructor |
1651 | 1651 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1652 | 1652 |
/// \e |
1653 | 1653 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1654 | 1654 |
}; |
1655 | 1655 |
|
1656 | 1656 |
/// Returns an \c LessMap class |
1657 | 1657 |
|
1658 | 1658 |
/// This function just returns an \c LessMap class. |
1659 | 1659 |
/// |
1660 | 1660 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1661 | 1661 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1662 | 1662 |
/// <tt>m1[x]<m2[x]</tt>. |
1663 | 1663 |
/// |
1664 | 1664 |
/// \relates LessMap |
1665 | 1665 |
template<typename M1, typename M2> |
1666 | 1666 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1667 | 1667 |
return LessMap<M1, M2>(m1,m2); |
1668 | 1668 |
} |
1669 | 1669 |
|
1670 | 1670 |
namespace _maps_bits { |
1671 | 1671 |
|
1672 | 1672 |
template <typename _Iterator, typename Enable = void> |
1673 | 1673 |
struct IteratorTraits { |
1674 | 1674 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1675 | 1675 |
}; |
1676 | 1676 |
|
1677 | 1677 |
template <typename _Iterator> |
1678 | 1678 |
struct IteratorTraits<_Iterator, |
1679 | 1679 |
typename exists<typename _Iterator::container_type>::type> |
1680 | 1680 |
{ |
1681 | 1681 |
typedef typename _Iterator::container_type::value_type Value; |
1682 | 1682 |
}; |
1683 | 1683 |
|
1684 | 1684 |
} |
1685 | 1685 |
|
1686 |
/// @} |
|
1687 |
|
|
1688 |
/// \addtogroup maps |
|
1689 |
/// @{ |
|
1690 |
|
|
1686 | 1691 |
/// \brief Writable bool map for logging each \c true assigned element |
1687 | 1692 |
/// |
1688 | 1693 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1689 | 1694 |
/// each \c true assigned element, i.e it copies subsequently each |
1690 | 1695 |
/// keys set to \c true to the given iterator. |
1691 | 1696 |
/// The most important usage of it is storing certain nodes or arcs |
1692 | 1697 |
/// that were marked \c true by an algorithm. |
1693 | 1698 |
/// |
1694 | 1699 |
/// There are several algorithms that provide solutions through bool |
1695 | 1700 |
/// maps and most of them assign \c true at most once for each key. |
1696 | 1701 |
/// In these cases it is a natural request to store each \c true |
1697 | 1702 |
/// assigned elements (in order of the assignment), which can be |
1698 | 1703 |
/// easily done with LoggerBoolMap. |
1699 | 1704 |
/// |
1700 | 1705 |
/// The simplest way of using this map is through the loggerBoolMap() |
1701 | 1706 |
/// function. |
1702 | 1707 |
/// |
1703 | 1708 |
/// \tparam It The type of the iterator. |
1704 | 1709 |
/// \tparam Ke The key type of the map. The default value set |
1705 | 1710 |
/// according to the iterator type should work in most cases. |
1706 | 1711 |
/// |
1707 | 1712 |
/// \note The container of the iterator must contain enough space |
1708 | 1713 |
/// for the elements or the iterator should be an inserter iterator. |
1709 | 1714 |
#ifdef DOXYGEN |
1710 | 1715 |
template <typename It, typename Ke> |
1711 | 1716 |
#else |
1712 | 1717 |
template <typename It, |
1713 | 1718 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
1714 | 1719 |
#endif |
1715 | 1720 |
class LoggerBoolMap { |
1716 | 1721 |
public: |
1717 | 1722 |
typedef It Iterator; |
1718 | 1723 |
|
1719 | 1724 |
typedef Ke Key; |
1720 | 1725 |
typedef bool Value; |
1721 | 1726 |
|
1722 | 1727 |
/// Constructor |
1723 | 1728 |
LoggerBoolMap(Iterator it) |
1724 | 1729 |
: _begin(it), _end(it) {} |
1725 | 1730 |
|
1726 | 1731 |
/// Gives back the given iterator set for the first key |
1727 | 1732 |
Iterator begin() const { |
1728 | 1733 |
return _begin; |
1729 | 1734 |
} |
1730 | 1735 |
|
1731 | 1736 |
/// Gives back the the 'after the last' iterator |
1732 | 1737 |
Iterator end() const { |
1733 | 1738 |
return _end; |
1734 | 1739 |
} |
1735 | 1740 |
|
1736 | 1741 |
/// The set function of the map |
1737 | 1742 |
void set(const Key& key, Value value) { |
1738 | 1743 |
if (value) { |
1739 | 1744 |
*_end++ = key; |
1740 | 1745 |
} |
1741 | 1746 |
} |
1742 | 1747 |
|
1743 | 1748 |
private: |
1744 | 1749 |
Iterator _begin; |
1745 | 1750 |
Iterator _end; |
1746 | 1751 |
}; |
1747 | 1752 |
|
1748 | 1753 |
/// Returns a \c LoggerBoolMap class |
1749 | 1754 |
|
1750 | 1755 |
/// This function just returns a \c LoggerBoolMap class. |
1751 | 1756 |
/// |
1752 | 1757 |
/// The most important usage of it is storing certain nodes or arcs |
1753 | 1758 |
/// that were marked \c true by an algorithm. |
1754 | 1759 |
/// For example it makes easier to store the nodes in the processing |
1755 | 1760 |
/// order of Dfs algorithm, as the following examples show. |
1756 | 1761 |
/// \code |
1757 | 1762 |
/// std::vector<Node> v; |
1758 | 1763 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1759 | 1764 |
/// \endcode |
1760 | 1765 |
/// \code |
1761 | 1766 |
/// std::vector<Node> v(countNodes(g)); |
1762 | 1767 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1763 | 1768 |
/// \endcode |
1764 | 1769 |
/// |
1765 | 1770 |
/// \note The container of the iterator must contain enough space |
1766 | 1771 |
/// for the elements or the iterator should be an inserter iterator. |
1767 | 1772 |
/// |
1768 | 1773 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1769 | 1774 |
/// it cannot be used when a readable map is needed, for example as |
1770 | 1775 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1771 | 1776 |
/// |
1772 | 1777 |
/// \relates LoggerBoolMap |
1773 | 1778 |
template<typename Iterator> |
1774 | 1779 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1775 | 1780 |
return LoggerBoolMap<Iterator>(it); |
1776 | 1781 |
} |
1777 | 1782 |
|
1783 |
/// @} |
|
1784 |
|
|
1785 |
/// \addtogroup graph_maps |
|
1786 |
/// @{ |
|
1787 |
|
|
1778 | 1788 |
/// Provides an immutable and unique id for each item in the graph. |
1779 | 1789 |
|
1780 | 1790 |
/// The IdMap class provides a unique and immutable id for each item of the |
1781 | 1791 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
1782 | 1792 |
/// different items (nodes) get different ids <li>\b immutable: the id of an |
1783 | 1793 |
/// item (node) does not change (even if you delete other nodes). </ul> |
1784 | 1794 |
/// Through this map you get access (i.e. can read) the inner id values of |
1785 | 1795 |
/// the items stored in the graph. This map can be inverted with its member |
1786 | 1796 |
/// class \c InverseMap or with the \c operator() member. |
1787 | 1797 |
/// |
1788 | 1798 |
template <typename _Graph, typename _Item> |
1789 | 1799 |
class IdMap { |
1790 | 1800 |
public: |
1791 | 1801 |
typedef _Graph Graph; |
1792 | 1802 |
typedef int Value; |
1793 | 1803 |
typedef _Item Item; |
1794 | 1804 |
typedef _Item Key; |
1795 | 1805 |
|
1796 | 1806 |
/// \brief Constructor. |
1797 | 1807 |
/// |
1798 | 1808 |
/// Constructor of the map. |
1799 | 1809 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1800 | 1810 |
|
1801 | 1811 |
/// \brief Gives back the \e id of the item. |
1802 | 1812 |
/// |
1803 | 1813 |
/// Gives back the immutable and unique \e id of the item. |
1804 | 1814 |
int operator[](const Item& item) const { return _graph->id(item);} |
1805 | 1815 |
|
1806 | 1816 |
/// \brief Gives back the item by its id. |
1807 | 1817 |
/// |
1808 | 1818 |
/// Gives back the item by its id. |
1809 | 1819 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1810 | 1820 |
|
1811 | 1821 |
private: |
1812 | 1822 |
const Graph* _graph; |
1813 | 1823 |
|
1814 | 1824 |
public: |
1815 | 1825 |
|
1816 | 1826 |
/// \brief The class represents the inverse of its owner (IdMap). |
1817 | 1827 |
/// |
1818 | 1828 |
/// The class represents the inverse of its owner (IdMap). |
1819 | 1829 |
/// \see inverse() |
1820 | 1830 |
class InverseMap { |
1821 | 1831 |
public: |
1822 | 1832 |
|
1823 | 1833 |
/// \brief Constructor. |
1824 | 1834 |
/// |
1825 | 1835 |
/// Constructor for creating an id-to-item map. |
... | ... |
@@ -1837,98 +1847,96 @@ |
1837 | 1847 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1838 | 1848 |
|
1839 | 1849 |
private: |
1840 | 1850 |
const Graph* _graph; |
1841 | 1851 |
}; |
1842 | 1852 |
|
1843 | 1853 |
/// \brief Gives back the inverse of the map. |
1844 | 1854 |
/// |
1845 | 1855 |
/// Gives back the inverse of the IdMap. |
1846 | 1856 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1847 | 1857 |
|
1848 | 1858 |
}; |
1849 | 1859 |
|
1850 | 1860 |
|
1851 | 1861 |
/// \brief General invertable graph-map type. |
1852 | 1862 |
|
1853 | 1863 |
/// This type provides simple invertable graph-maps. |
1854 | 1864 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
1855 | 1865 |
/// and if a key is set to a new value then store it |
1856 | 1866 |
/// in the inverse map. |
1857 | 1867 |
/// |
1858 | 1868 |
/// The values of the map can be accessed |
1859 | 1869 |
/// with stl compatible forward iterator. |
1860 | 1870 |
/// |
1861 | 1871 |
/// \tparam _Graph The graph type. |
1862 | 1872 |
/// \tparam _Item The item type of the graph. |
1863 | 1873 |
/// \tparam _Value The value type of the map. |
1864 | 1874 |
/// |
1865 | 1875 |
/// \see IterableValueMap |
1866 | 1876 |
template <typename _Graph, typename _Item, typename _Value> |
1867 | 1877 |
class InvertableMap |
1868 | 1878 |
: protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type { |
1869 | 1879 |
private: |
1870 | 1880 |
|
1871 | 1881 |
typedef typename ItemSetTraits<_Graph, _Item>:: |
1872 | 1882 |
template Map<_Value>::Type Map; |
1873 | 1883 |
typedef _Graph Graph; |
1874 | 1884 |
|
1875 | 1885 |
typedef std::map<_Value, _Item> Container; |
1876 | 1886 |
Container _inv_map; |
1877 | 1887 |
|
1878 | 1888 |
public: |
1879 | 1889 |
|
1880 | 1890 |
/// The key type of InvertableMap (Node, Arc, Edge). |
1881 | 1891 |
typedef typename Map::Key Key; |
1882 | 1892 |
/// The value type of the InvertableMap. |
1883 | 1893 |
typedef typename Map::Value Value; |
1884 | 1894 |
|
1885 |
|
|
1886 |
|
|
1887 | 1895 |
/// \brief Constructor. |
1888 | 1896 |
/// |
1889 | 1897 |
/// Construct a new InvertableMap for the graph. |
1890 | 1898 |
/// |
1891 | 1899 |
explicit InvertableMap(const Graph& graph) : Map(graph) {} |
1892 | 1900 |
|
1893 | 1901 |
/// \brief Forward iterator for values. |
1894 | 1902 |
/// |
1895 | 1903 |
/// This iterator is an stl compatible forward |
1896 | 1904 |
/// iterator on the values of the map. The values can |
1897 | 1905 |
/// be accessed in the [beginValue, endValue) range. |
1898 | 1906 |
/// |
1899 | 1907 |
class ValueIterator |
1900 | 1908 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1901 | 1909 |
friend class InvertableMap; |
1902 | 1910 |
private: |
1903 | 1911 |
ValueIterator(typename Container::const_iterator _it) |
1904 | 1912 |
: it(_it) {} |
1905 | 1913 |
public: |
1906 | 1914 |
|
1907 | 1915 |
ValueIterator() {} |
1908 | 1916 |
|
1909 | 1917 |
ValueIterator& operator++() { ++it; return *this; } |
1910 | 1918 |
ValueIterator operator++(int) { |
1911 | 1919 |
ValueIterator tmp(*this); |
1912 | 1920 |
operator++(); |
1913 | 1921 |
return tmp; |
1914 | 1922 |
} |
1915 | 1923 |
|
1916 | 1924 |
const Value& operator*() const { return it->first; } |
1917 | 1925 |
const Value* operator->() const { return &(it->first); } |
1918 | 1926 |
|
1919 | 1927 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1920 | 1928 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1921 | 1929 |
|
1922 | 1930 |
private: |
1923 | 1931 |
typename Container::const_iterator it; |
1924 | 1932 |
}; |
1925 | 1933 |
|
1926 | 1934 |
/// \brief Returns an iterator to the first value. |
1927 | 1935 |
/// |
1928 | 1936 |
/// Returns an stl compatible iterator to the |
1929 | 1937 |
/// first value of the map. The values of the |
1930 | 1938 |
/// map can be accessed in the [beginValue, endValue) |
1931 | 1939 |
/// range. |
1932 | 1940 |
ValueIterator beginValue() const { |
1933 | 1941 |
return ValueIterator(_inv_map.begin()); |
1934 | 1942 |
} |
... | ... |
@@ -2004,98 +2012,96 @@ |
2004 | 2012 |
|
2005 | 2013 |
/// \brief Clear the keys from the map and inverse map. |
2006 | 2014 |
/// |
2007 | 2015 |
/// Clear the keys from the map and inverse map. It is called by the |
2008 | 2016 |
/// \c AlterationNotifier. |
2009 | 2017 |
virtual void clear() { |
2010 | 2018 |
_inv_map.clear(); |
2011 | 2019 |
Map::clear(); |
2012 | 2020 |
} |
2013 | 2021 |
|
2014 | 2022 |
public: |
2015 | 2023 |
|
2016 | 2024 |
/// \brief The inverse map type. |
2017 | 2025 |
/// |
2018 | 2026 |
/// The inverse of this map. The subscript operator of the map |
2019 | 2027 |
/// gives back always the item what was last assigned to the value. |
2020 | 2028 |
class InverseMap { |
2021 | 2029 |
public: |
2022 | 2030 |
/// \brief Constructor of the InverseMap. |
2023 | 2031 |
/// |
2024 | 2032 |
/// Constructor of the InverseMap. |
2025 | 2033 |
explicit InverseMap(const InvertableMap& inverted) |
2026 | 2034 |
: _inverted(inverted) {} |
2027 | 2035 |
|
2028 | 2036 |
/// The value type of the InverseMap. |
2029 | 2037 |
typedef typename InvertableMap::Key Value; |
2030 | 2038 |
/// The key type of the InverseMap. |
2031 | 2039 |
typedef typename InvertableMap::Value Key; |
2032 | 2040 |
|
2033 | 2041 |
/// \brief Subscript operator. |
2034 | 2042 |
/// |
2035 | 2043 |
/// Subscript operator. It gives back always the item |
2036 | 2044 |
/// what was last assigned to the value. |
2037 | 2045 |
Value operator[](const Key& key) const { |
2038 | 2046 |
return _inverted(key); |
2039 | 2047 |
} |
2040 | 2048 |
|
2041 | 2049 |
private: |
2042 | 2050 |
const InvertableMap& _inverted; |
2043 | 2051 |
}; |
2044 | 2052 |
|
2045 | 2053 |
/// \brief It gives back the just readable inverse map. |
2046 | 2054 |
/// |
2047 | 2055 |
/// It gives back the just readable inverse map. |
2048 | 2056 |
InverseMap inverse() const { |
2049 | 2057 |
return InverseMap(*this); |
2050 | 2058 |
} |
2051 | 2059 |
|
2052 |
|
|
2053 |
|
|
2054 | 2060 |
}; |
2055 | 2061 |
|
2056 | 2062 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
2057 | 2063 |
/// item in the graph. |
2058 | 2064 |
/// |
2059 | 2065 |
/// The DescriptorMap class provides a unique and continuous (but mutable) |
2060 | 2066 |
/// descriptor (id) for each item of the same type (e.g. node) in the |
2061 | 2067 |
/// graph. This id is <ul><li>\b unique: different items (nodes) get |
2062 | 2068 |
/// different ids <li>\b continuous: the range of the ids is the set of |
2063 | 2069 |
/// integers between 0 and \c n-1, where \c n is the number of the items of |
2064 | 2070 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an |
2065 | 2071 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted |
2066 | 2072 |
/// with its member class \c InverseMap, or with the \c operator() member. |
2067 | 2073 |
/// |
2068 | 2074 |
/// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
2069 | 2075 |
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
2070 | 2076 |
/// Edge. |
2071 | 2077 |
template <typename _Graph, typename _Item> |
2072 | 2078 |
class DescriptorMap |
2073 | 2079 |
: protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type { |
2074 | 2080 |
|
2075 | 2081 |
typedef _Item Item; |
2076 | 2082 |
typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map; |
2077 | 2083 |
|
2078 | 2084 |
public: |
2079 | 2085 |
/// The graph class of DescriptorMap. |
2080 | 2086 |
typedef _Graph Graph; |
2081 | 2087 |
|
2082 | 2088 |
/// The key type of DescriptorMap (Node, Arc, Edge). |
2083 | 2089 |
typedef typename Map::Key Key; |
2084 | 2090 |
/// The value type of DescriptorMap. |
2085 | 2091 |
typedef typename Map::Value Value; |
2086 | 2092 |
|
2087 | 2093 |
/// \brief Constructor. |
2088 | 2094 |
/// |
2089 | 2095 |
/// Constructor for descriptor map. |
2090 | 2096 |
explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
2091 | 2097 |
Item it; |
2092 | 2098 |
const typename Map::Notifier* nf = Map::notifier(); |
2093 | 2099 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2094 | 2100 |
Map::set(it, _inv_map.size()); |
2095 | 2101 |
_inv_map.push_back(it); |
2096 | 2102 |
} |
2097 | 2103 |
} |
2098 | 2104 |
|
2099 | 2105 |
protected: |
2100 | 2106 |
|
2101 | 2107 |
/// \brief Add a new key to the map. |
... | ... |
@@ -2221,214 +2227,214 @@ |
2221 | 2227 |
|
2222 | 2228 |
|
2223 | 2229 |
/// The value type of the InverseMap. |
2224 | 2230 |
typedef typename DescriptorMap::Key Value; |
2225 | 2231 |
/// The key type of the InverseMap. |
2226 | 2232 |
typedef typename DescriptorMap::Value Key; |
2227 | 2233 |
|
2228 | 2234 |
/// \brief Subscript operator. |
2229 | 2235 |
/// |
2230 | 2236 |
/// Subscript operator. It gives back the item |
2231 | 2237 |
/// that the descriptor belongs to currently. |
2232 | 2238 |
Value operator[](const Key& key) const { |
2233 | 2239 |
return _inverted(key); |
2234 | 2240 |
} |
2235 | 2241 |
|
2236 | 2242 |
/// \brief Size of the map. |
2237 | 2243 |
/// |
2238 | 2244 |
/// Returns the size of the map. |
2239 | 2245 |
unsigned int size() const { |
2240 | 2246 |
return _inverted.size(); |
2241 | 2247 |
} |
2242 | 2248 |
|
2243 | 2249 |
private: |
2244 | 2250 |
const DescriptorMap& _inverted; |
2245 | 2251 |
}; |
2246 | 2252 |
|
2247 | 2253 |
/// \brief Gives back the inverse of the map. |
2248 | 2254 |
/// |
2249 | 2255 |
/// Gives back the inverse of the map. |
2250 | 2256 |
const InverseMap inverse() const { |
2251 | 2257 |
return InverseMap(*this); |
2252 | 2258 |
} |
2253 | 2259 |
}; |
2254 | 2260 |
|
2255 | 2261 |
/// \brief Returns the source of the given arc. |
2256 | 2262 |
/// |
2257 | 2263 |
/// The SourceMap gives back the source Node of the given arc. |
2258 | 2264 |
/// \see TargetMap |
2259 | 2265 |
template <typename Digraph> |
2260 | 2266 |
class SourceMap { |
2261 | 2267 |
public: |
2262 | 2268 |
|
2263 | 2269 |
typedef typename Digraph::Node Value; |
2264 | 2270 |
typedef typename Digraph::Arc Key; |
2265 | 2271 |
|
2266 | 2272 |
/// \brief Constructor |
2267 | 2273 |
/// |
2268 | 2274 |
/// Constructor |
2269 |
/// \param |
|
2275 |
/// \param digraph The digraph that the map belongs to. |
|
2270 | 2276 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
2271 | 2277 |
|
2272 | 2278 |
/// \brief The subscript operator. |
2273 | 2279 |
/// |
2274 | 2280 |
/// The subscript operator. |
2275 | 2281 |
/// \param arc The arc |
2276 | 2282 |
/// \return The source of the arc |
2277 | 2283 |
Value operator[](const Key& arc) const { |
2278 | 2284 |
return _digraph.source(arc); |
2279 | 2285 |
} |
2280 | 2286 |
|
2281 | 2287 |
private: |
2282 | 2288 |
const Digraph& _digraph; |
2283 | 2289 |
}; |
2284 | 2290 |
|
2285 | 2291 |
/// \brief Returns a \c SourceMap class. |
2286 | 2292 |
/// |
2287 | 2293 |
/// This function just returns an \c SourceMap class. |
2288 | 2294 |
/// \relates SourceMap |
2289 | 2295 |
template <typename Digraph> |
2290 | 2296 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
2291 | 2297 |
return SourceMap<Digraph>(digraph); |
2292 | 2298 |
} |
2293 | 2299 |
|
2294 | 2300 |
/// \brief Returns the target of the given arc. |
2295 | 2301 |
/// |
2296 | 2302 |
/// The TargetMap gives back the target Node of the given arc. |
2297 | 2303 |
/// \see SourceMap |
2298 | 2304 |
template <typename Digraph> |
2299 | 2305 |
class TargetMap { |
2300 | 2306 |
public: |
2301 | 2307 |
|
2302 | 2308 |
typedef typename Digraph::Node Value; |
2303 | 2309 |
typedef typename Digraph::Arc Key; |
2304 | 2310 |
|
2305 | 2311 |
/// \brief Constructor |
2306 | 2312 |
/// |
2307 | 2313 |
/// Constructor |
2308 |
/// \param |
|
2314 |
/// \param digraph The digraph that the map belongs to. |
|
2309 | 2315 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
2310 | 2316 |
|
2311 | 2317 |
/// \brief The subscript operator. |
2312 | 2318 |
/// |
2313 | 2319 |
/// The subscript operator. |
2314 | 2320 |
/// \param e The arc |
2315 | 2321 |
/// \return The target of the arc |
2316 | 2322 |
Value operator[](const Key& e) const { |
2317 | 2323 |
return _digraph.target(e); |
2318 | 2324 |
} |
2319 | 2325 |
|
2320 | 2326 |
private: |
2321 | 2327 |
const Digraph& _digraph; |
2322 | 2328 |
}; |
2323 | 2329 |
|
2324 | 2330 |
/// \brief Returns a \c TargetMap class. |
2325 | 2331 |
/// |
2326 | 2332 |
/// This function just returns a \c TargetMap class. |
2327 | 2333 |
/// \relates TargetMap |
2328 | 2334 |
template <typename Digraph> |
2329 | 2335 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
2330 | 2336 |
return TargetMap<Digraph>(digraph); |
2331 | 2337 |
} |
2332 | 2338 |
|
2333 | 2339 |
/// \brief Returns the "forward" directed arc view of an edge. |
2334 | 2340 |
/// |
2335 | 2341 |
/// Returns the "forward" directed arc view of an edge. |
2336 | 2342 |
/// \see BackwardMap |
2337 | 2343 |
template <typename Graph> |
2338 | 2344 |
class ForwardMap { |
2339 | 2345 |
public: |
2340 | 2346 |
|
2341 | 2347 |
typedef typename Graph::Arc Value; |
2342 | 2348 |
typedef typename Graph::Edge Key; |
2343 | 2349 |
|
2344 | 2350 |
/// \brief Constructor |
2345 | 2351 |
/// |
2346 | 2352 |
/// Constructor |
2347 |
/// \param |
|
2353 |
/// \param graph The graph that the map belongs to. |
|
2348 | 2354 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
2349 | 2355 |
|
2350 | 2356 |
/// \brief The subscript operator. |
2351 | 2357 |
/// |
2352 | 2358 |
/// The subscript operator. |
2353 | 2359 |
/// \param key An edge |
2354 | 2360 |
/// \return The "forward" directed arc view of edge |
2355 | 2361 |
Value operator[](const Key& key) const { |
2356 | 2362 |
return _graph.direct(key, true); |
2357 | 2363 |
} |
2358 | 2364 |
|
2359 | 2365 |
private: |
2360 | 2366 |
const Graph& _graph; |
2361 | 2367 |
}; |
2362 | 2368 |
|
2363 | 2369 |
/// \brief Returns a \c ForwardMap class. |
2364 | 2370 |
/// |
2365 | 2371 |
/// This function just returns an \c ForwardMap class. |
2366 | 2372 |
/// \relates ForwardMap |
2367 | 2373 |
template <typename Graph> |
2368 | 2374 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
2369 | 2375 |
return ForwardMap<Graph>(graph); |
2370 | 2376 |
} |
2371 | 2377 |
|
2372 | 2378 |
/// \brief Returns the "backward" directed arc view of an edge. |
2373 | 2379 |
/// |
2374 | 2380 |
/// Returns the "backward" directed arc view of an edge. |
2375 | 2381 |
/// \see ForwardMap |
2376 | 2382 |
template <typename Graph> |
2377 | 2383 |
class BackwardMap { |
2378 | 2384 |
public: |
2379 | 2385 |
|
2380 | 2386 |
typedef typename Graph::Arc Value; |
2381 | 2387 |
typedef typename Graph::Edge Key; |
2382 | 2388 |
|
2383 | 2389 |
/// \brief Constructor |
2384 | 2390 |
/// |
2385 | 2391 |
/// Constructor |
2386 |
/// \param |
|
2392 |
/// \param graph The graph that the map belongs to. |
|
2387 | 2393 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
2388 | 2394 |
|
2389 | 2395 |
/// \brief The subscript operator. |
2390 | 2396 |
/// |
2391 | 2397 |
/// The subscript operator. |
2392 | 2398 |
/// \param key An edge |
2393 | 2399 |
/// \return The "backward" directed arc view of edge |
2394 | 2400 |
Value operator[](const Key& key) const { |
2395 | 2401 |
return _graph.direct(key, false); |
2396 | 2402 |
} |
2397 | 2403 |
|
2398 | 2404 |
private: |
2399 | 2405 |
const Graph& _graph; |
2400 | 2406 |
}; |
2401 | 2407 |
|
2402 | 2408 |
/// \brief Returns a \c BackwardMap class |
2403 | 2409 |
|
2404 | 2410 |
/// This function just returns a \c BackwardMap class. |
2405 | 2411 |
/// \relates BackwardMap |
2406 | 2412 |
template <typename Graph> |
2407 | 2413 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
2408 | 2414 |
return BackwardMap<Graph>(graph); |
2409 | 2415 |
} |
2410 | 2416 |
|
2411 | 2417 |
/// \brief Potential difference map |
2412 | 2418 |
/// |
2413 | 2419 |
/// If there is an potential map on the nodes then we |
2414 | 2420 |
/// can get an arc map as we get the substraction of the |
2415 | 2421 |
/// values of the target and source. |
2416 | 2422 |
template <typename Digraph, typename NodeMap> |
2417 | 2423 |
class PotentialDifferenceMap { |
2418 | 2424 |
public: |
2419 | 2425 |
typedef typename Digraph::Arc Key; |
2420 | 2426 |
typedef typename NodeMap::Value Value; |
2421 | 2427 |
|
2422 | 2428 |
/// \brief Constructor |
2423 | 2429 |
/// |
2424 | 2430 |
/// Contructor of the map |
2425 | 2431 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
2426 | 2432 |
const NodeMap& potential) |
2427 | 2433 |
: _digraph(digraph), _potential(potential) {} |
2428 | 2434 |
|
2429 | 2435 |
/// \brief Const subscription operator |
2430 | 2436 |
/// |
2431 | 2437 |
/// Const subscription operator |
2432 | 2438 |
Value operator[](const Key& arc) const { |
2433 | 2439 |
return _potential[_digraph.target(arc)] - |
2434 | 2440 |
_potential[_digraph.source(arc)]; |
... | ... |
@@ -804,97 +804,97 @@ |
804 | 804 |
/// Constructor with starting point |
805 | 805 |
ArcIt(const StaticPath &_path, int _idx) |
806 | 806 |
: idx(_idx), path(&_path) {} |
807 | 807 |
|
808 | 808 |
public: |
809 | 809 |
|
810 | 810 |
///Conversion to Digraph::Arc |
811 | 811 |
operator const Arc&() const { |
812 | 812 |
return path->nth(idx); |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
/// Next arc |
816 | 816 |
ArcIt& operator++() { |
817 | 817 |
++idx; |
818 | 818 |
if (idx >= path->length()) idx = -1; |
819 | 819 |
return *this; |
820 | 820 |
} |
821 | 821 |
|
822 | 822 |
/// Comparison operator |
823 | 823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
824 | 824 |
/// Comparison operator |
825 | 825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
826 | 826 |
/// Comparison operator |
827 | 827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
828 | 828 |
|
829 | 829 |
private: |
830 | 830 |
const StaticPath *path; |
831 | 831 |
int idx; |
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
/// \brief The nth arc. |
835 | 835 |
/// |
836 | 836 |
/// \pre n is in the [0..length() - 1] range |
837 | 837 |
const Arc& nth(int n) const { |
838 | 838 |
return arcs[n]; |
839 | 839 |
} |
840 | 840 |
|
841 | 841 |
/// \brief The arc iterator pointing to the nth arc. |
842 | 842 |
ArcIt nthIt(int n) const { |
843 | 843 |
return ArcIt(*this, n); |
844 | 844 |
} |
845 | 845 |
|
846 | 846 |
/// \brief The length of the path. |
847 | 847 |
int length() const { return len; } |
848 | 848 |
|
849 | 849 |
/// \brief Return true when the path is empty. |
850 | 850 |
int empty() const { return len == 0; } |
851 | 851 |
|
852 |
/// \ |
|
852 |
/// \brief Erase all arcs in the digraph. |
|
853 | 853 |
void clear() { |
854 | 854 |
len = 0; |
855 | 855 |
if (arcs) delete[] arcs; |
856 | 856 |
arcs = 0; |
857 | 857 |
} |
858 | 858 |
|
859 | 859 |
/// \brief The first arc of the path. |
860 | 860 |
const Arc& front() const { |
861 | 861 |
return arcs[0]; |
862 | 862 |
} |
863 | 863 |
|
864 | 864 |
/// \brief The last arc of the path. |
865 | 865 |
const Arc& back() const { |
866 | 866 |
return arcs[len - 1]; |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
|
870 | 870 |
typedef True BuildTag; |
871 | 871 |
|
872 | 872 |
template <typename CPath> |
873 | 873 |
void build(const CPath& path) { |
874 | 874 |
len = path.length(); |
875 | 875 |
arcs = new Arc[len]; |
876 | 876 |
int index = 0; |
877 | 877 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
878 | 878 |
arcs[index] = it; |
879 | 879 |
++index; |
880 | 880 |
} |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
template <typename CPath> |
884 | 884 |
void buildRev(const CPath& path) { |
885 | 885 |
len = path.length(); |
886 | 886 |
arcs = new Arc[len]; |
887 | 887 |
int index = len; |
888 | 888 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
889 | 889 |
--index; |
890 | 890 |
arcs[index] = it; |
891 | 891 |
} |
892 | 892 |
} |
893 | 893 |
|
894 | 894 |
private: |
895 | 895 |
int len; |
896 | 896 |
Arc* arcs; |
897 | 897 |
}; |
898 | 898 |
|
899 | 899 |
/////////////////////////////////////////////////////////////////////// |
900 | 900 |
// Additional utilities |
... | ... |
@@ -320,109 +320,109 @@ |
320 | 320 |
{ |
321 | 321 |
while(s.arc_num<arcs.size()) { |
322 | 322 |
Arc arc = arcFromId(arcs.size()-1); |
323 | 323 |
Parent::notifier(Arc()).erase(arc); |
324 | 324 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
325 | 325 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
326 | 326 |
arcs.pop_back(); |
327 | 327 |
} |
328 | 328 |
while(s.node_num<nodes.size()) { |
329 | 329 |
Node node = nodeFromId(nodes.size()-1); |
330 | 330 |
Parent::notifier(Node()).erase(node); |
331 | 331 |
nodes.pop_back(); |
332 | 332 |
} |
333 | 333 |
} |
334 | 334 |
|
335 | 335 |
public: |
336 | 336 |
|
337 | 337 |
///Class to make a snapshot of the digraph and to restrore to it later. |
338 | 338 |
|
339 | 339 |
///Class to make a snapshot of the digraph and to restrore to it later. |
340 | 340 |
/// |
341 | 341 |
///The newly added nodes and arcs can be removed using the |
342 | 342 |
///restore() function. |
343 | 343 |
///\note After you restore a state, you cannot restore |
344 | 344 |
///a later state, in other word you cannot add again the arcs deleted |
345 | 345 |
///by restore() using another one Snapshot instance. |
346 | 346 |
/// |
347 | 347 |
///\warning If you do not use correctly the snapshot that can cause |
348 | 348 |
///either broken program, invalid state of the digraph, valid but |
349 | 349 |
///not the restored digraph or no change. Because the runtime performance |
350 | 350 |
///the validity of the snapshot is not stored. |
351 | 351 |
class Snapshot |
352 | 352 |
{ |
353 | 353 |
SmartDigraph *_graph; |
354 | 354 |
protected: |
355 | 355 |
friend class SmartDigraph; |
356 | 356 |
unsigned int node_num; |
357 | 357 |
unsigned int arc_num; |
358 | 358 |
public: |
359 | 359 |
///Default constructor. |
360 | 360 |
|
361 | 361 |
///Default constructor. |
362 | 362 |
///To actually make a snapshot you must call save(). |
363 | 363 |
/// |
364 | 364 |
Snapshot() : _graph(0) {} |
365 | 365 |
///Constructor that immediately makes a snapshot |
366 | 366 |
|
367 | 367 |
///This constructor immediately makes a snapshot of the digraph. |
368 |
///\param |
|
368 |
///\param graph The digraph we make a snapshot of. |
|
369 | 369 |
Snapshot(SmartDigraph &graph) : _graph(&graph) { |
370 | 370 |
node_num=_graph->nodes.size(); |
371 | 371 |
arc_num=_graph->arcs.size(); |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Make a snapshot. |
375 | 375 |
|
376 | 376 |
///Make a snapshot of the digraph. |
377 | 377 |
/// |
378 | 378 |
///This function can be called more than once. In case of a repeated |
379 | 379 |
///call, the previous snapshot gets lost. |
380 |
///\param |
|
380 |
///\param graph The digraph we make the snapshot of. |
|
381 | 381 |
void save(SmartDigraph &graph) |
382 | 382 |
{ |
383 | 383 |
_graph=&graph; |
384 | 384 |
node_num=_graph->nodes.size(); |
385 | 385 |
arc_num=_graph->arcs.size(); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
///Undo the changes until a snapshot. |
389 | 389 |
|
390 | 390 |
///Undo the changes until a snapshot created by save(). |
391 | 391 |
/// |
392 | 392 |
///\note After you restored a state, you cannot restore |
393 | 393 |
///a later state, in other word you cannot add again the arcs deleted |
394 | 394 |
///by restore(). |
395 | 395 |
void restore() |
396 | 396 |
{ |
397 | 397 |
_graph->restoreSnapshot(*this); |
398 | 398 |
} |
399 | 399 |
}; |
400 | 400 |
}; |
401 | 401 |
|
402 | 402 |
|
403 | 403 |
class SmartGraphBase { |
404 | 404 |
|
405 | 405 |
protected: |
406 | 406 |
|
407 | 407 |
struct NodeT { |
408 | 408 |
int first_out; |
409 | 409 |
}; |
410 | 410 |
|
411 | 411 |
struct ArcT { |
412 | 412 |
int target; |
413 | 413 |
int next_out; |
414 | 414 |
}; |
415 | 415 |
|
416 | 416 |
std::vector<NodeT> nodes; |
417 | 417 |
std::vector<ArcT> arcs; |
418 | 418 |
|
419 | 419 |
int first_free_arc; |
420 | 420 |
|
421 | 421 |
public: |
422 | 422 |
|
423 | 423 |
typedef SmartGraphBase Digraph; |
424 | 424 |
|
425 | 425 |
class Node; |
426 | 426 |
class Arc; |
427 | 427 |
class Edge; |
428 | 428 |
|
... | ... |
@@ -730,83 +730,83 @@ |
730 | 730 |
Parent::notifier(Arc()).erase(dir); |
731 | 731 |
nodes[arcs[n].target].first_out=arcs[n].next_out; |
732 | 732 |
nodes[arcs[n-1].target].first_out=arcs[n-1].next_out; |
733 | 733 |
arcs.pop_back(); |
734 | 734 |
arcs.pop_back(); |
735 | 735 |
} |
736 | 736 |
while(s.node_num<nodes.size()) { |
737 | 737 |
int n=nodes.size()-1; |
738 | 738 |
Node node = nodeFromId(n); |
739 | 739 |
Parent::notifier(Node()).erase(node); |
740 | 740 |
nodes.pop_back(); |
741 | 741 |
} |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
public: |
745 | 745 |
|
746 | 746 |
///Class to make a snapshot of the digraph and to restrore to it later. |
747 | 747 |
|
748 | 748 |
///Class to make a snapshot of the digraph and to restrore to it later. |
749 | 749 |
/// |
750 | 750 |
///The newly added nodes and arcs can be removed using the |
751 | 751 |
///restore() function. |
752 | 752 |
/// |
753 | 753 |
///\note After you restore a state, you cannot restore |
754 | 754 |
///a later state, in other word you cannot add again the arcs deleted |
755 | 755 |
///by restore() using another one Snapshot instance. |
756 | 756 |
/// |
757 | 757 |
///\warning If you do not use correctly the snapshot that can cause |
758 | 758 |
///either broken program, invalid state of the digraph, valid but |
759 | 759 |
///not the restored digraph or no change. Because the runtime performance |
760 | 760 |
///the validity of the snapshot is not stored. |
761 | 761 |
class Snapshot |
762 | 762 |
{ |
763 | 763 |
SmartGraph *_graph; |
764 | 764 |
protected: |
765 | 765 |
friend class SmartGraph; |
766 | 766 |
unsigned int node_num; |
767 | 767 |
unsigned int arc_num; |
768 | 768 |
public: |
769 | 769 |
///Default constructor. |
770 | 770 |
|
771 | 771 |
///Default constructor. |
772 | 772 |
///To actually make a snapshot you must call save(). |
773 | 773 |
/// |
774 | 774 |
Snapshot() : _graph(0) {} |
775 | 775 |
///Constructor that immediately makes a snapshot |
776 | 776 |
|
777 | 777 |
///This constructor immediately makes a snapshot of the digraph. |
778 |
///\param |
|
778 |
///\param graph The digraph we make a snapshot of. |
|
779 | 779 |
Snapshot(SmartGraph &graph) { |
780 | 780 |
graph.saveSnapshot(*this); |
781 | 781 |
} |
782 | 782 |
|
783 | 783 |
///Make a snapshot. |
784 | 784 |
|
785 | 785 |
///Make a snapshot of the graph. |
786 | 786 |
/// |
787 | 787 |
///This function can be called more than once. In case of a repeated |
788 | 788 |
///call, the previous snapshot gets lost. |
789 |
///\param |
|
789 |
///\param graph The digraph we make the snapshot of. |
|
790 | 790 |
void save(SmartGraph &graph) |
791 | 791 |
{ |
792 | 792 |
graph.saveSnapshot(*this); |
793 | 793 |
} |
794 | 794 |
|
795 | 795 |
///Undo the changes until a snapshot. |
796 | 796 |
|
797 | 797 |
///Undo the changes until a snapshot created by save(). |
798 | 798 |
/// |
799 | 799 |
///\note After you restored a state, you cannot restore |
800 | 800 |
///a later state, in other word you cannot add again the arcs deleted |
801 | 801 |
///by restore(). |
802 | 802 |
void restore() |
803 | 803 |
{ |
804 | 804 |
_graph->restoreSnapshot(*this); |
805 | 805 |
} |
806 | 806 |
}; |
807 | 807 |
}; |
808 | 808 |
|
809 | 809 |
} //namespace lemon |
810 | 810 |
|
811 | 811 |
|
812 | 812 |
#endif //LEMON_SMART_GRAPH_H |
... | ... |
@@ -266,102 +266,101 @@ |
266 | 266 |
/// |
267 | 267 |
/// ... |
268 | 268 |
/// |
269 | 269 |
/// Timer t; |
270 | 270 |
/// doSomething(); |
271 | 271 |
/// std::cout << t << '\n'; |
272 | 272 |
/// t.restart(); |
273 | 273 |
/// doSomethingElse(); |
274 | 274 |
/// std::cout << t << '\n'; |
275 | 275 |
/// |
276 | 276 |
/// ... |
277 | 277 |
/// |
278 | 278 |
/// } |
279 | 279 |
///\endcode |
280 | 280 |
/// |
281 | 281 |
///The \ref Timer can also be \ref stop() "stopped" and |
282 | 282 |
///\ref start() "started" again, so it is possible to compute collected |
283 | 283 |
///running times. |
284 | 284 |
/// |
285 | 285 |
///\warning Depending on the operation system and its actual configuration |
286 | 286 |
///the time counters have a certain (10ms on a typical Linux system) |
287 | 287 |
///granularity. |
288 | 288 |
///Therefore this tool is not appropriate to measure very short times. |
289 | 289 |
///Also, if you start and stop the timer very frequently, it could lead to |
290 | 290 |
///distorted results. |
291 | 291 |
/// |
292 | 292 |
///\note If you want to measure the running time of the execution of a certain |
293 | 293 |
///function, consider the usage of \ref TimeReport instead. |
294 | 294 |
/// |
295 | 295 |
///\sa TimeReport |
296 | 296 |
class Timer |
297 | 297 |
{ |
298 | 298 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
299 | 299 |
TimeStamp start_time; //This is the relativ start-time if the timer |
300 | 300 |
//is _running, the collected _running time otherwise. |
301 | 301 |
|
302 | 302 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
303 | 303 |
|
304 | 304 |
public: |
305 | 305 |
///Constructor. |
306 | 306 |
|
307 | 307 |
///\param run indicates whether or not the timer starts immediately. |
308 | 308 |
/// |
309 | 309 |
Timer(bool run=true) :_running(run) {_reset();} |
310 | 310 |
|
311 | 311 |
///\name Control the state of the timer |
312 | 312 |
///Basically a Timer can be either running or stopped, |
313 | 313 |
///but it provides a bit finer control on the execution. |
314 |
///The \ref Timer also counts the number of \ref start() |
|
315 |
///executions, and is stops only after the same amount (or more) |
|
316 |
///\ref stop() "stop()"s. This can be useful e.g. to compute |
|
317 |
///the running time |
|
314 |
///The \ref lemon::Timer "Timer" also counts the number of |
|
315 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
|
316 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
|
317 |
///"stop()"s. This can be useful e.g. to compute the running time |
|
318 | 318 |
///of recursive functions. |
319 |
/// |
|
320 | 319 |
|
321 | 320 |
///@{ |
322 | 321 |
|
323 | 322 |
///Reset and stop the time counters |
324 | 323 |
|
325 | 324 |
///This function resets and stops the time counters |
326 | 325 |
///\sa restart() |
327 | 326 |
void reset() |
328 | 327 |
{ |
329 | 328 |
_running=0; |
330 | 329 |
_reset(); |
331 | 330 |
} |
332 | 331 |
|
333 | 332 |
///Start the time counters |
334 | 333 |
|
335 | 334 |
///This function starts the time counters. |
336 | 335 |
/// |
337 | 336 |
///If the timer is started more than ones, it will remain running |
338 | 337 |
///until the same amount of \ref stop() is called. |
339 | 338 |
///\sa stop() |
340 | 339 |
void start() |
341 | 340 |
{ |
342 | 341 |
if(_running) _running++; |
343 | 342 |
else { |
344 | 343 |
_running=1; |
345 | 344 |
TimeStamp t; |
346 | 345 |
t.stamp(); |
347 | 346 |
start_time=t-start_time; |
348 | 347 |
} |
349 | 348 |
} |
350 | 349 |
|
351 | 350 |
|
352 | 351 |
///Stop the time counters |
353 | 352 |
|
354 | 353 |
///This function stops the time counters. If start() was executed more than |
355 | 354 |
///once, then the same number of stop() execution is necessary the really |
356 | 355 |
///stop the timer. |
357 | 356 |
/// |
358 | 357 |
///\sa halt() |
359 | 358 |
///\sa start() |
360 | 359 |
///\sa restart() |
361 | 360 |
///\sa reset() |
362 | 361 |
|
363 | 362 |
void stop() |
364 | 363 |
{ |
365 | 364 |
if(_running && !--_running) { |
366 | 365 |
TimeStamp t; |
367 | 366 |
t.stamp(); |
... | ... |
@@ -427,131 +426,131 @@ |
427 | 426 |
return operator TimeStamp().userTime(); |
428 | 427 |
} |
429 | 428 |
///Gives back the ellapsed system time of the process |
430 | 429 |
double systemTime() const |
431 | 430 |
{ |
432 | 431 |
return operator TimeStamp().systemTime(); |
433 | 432 |
} |
434 | 433 |
///Gives back the ellapsed user time of the process' children |
435 | 434 |
|
436 | 435 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
437 | 436 |
/// |
438 | 437 |
double cUserTime() const |
439 | 438 |
{ |
440 | 439 |
return operator TimeStamp().cUserTime(); |
441 | 440 |
} |
442 | 441 |
///Gives back the ellapsed user time of the process' children |
443 | 442 |
|
444 | 443 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
445 | 444 |
/// |
446 | 445 |
double cSystemTime() const |
447 | 446 |
{ |
448 | 447 |
return operator TimeStamp().cSystemTime(); |
449 | 448 |
} |
450 | 449 |
///Gives back the ellapsed real time |
451 | 450 |
double realTime() const |
452 | 451 |
{ |
453 | 452 |
return operator TimeStamp().realTime(); |
454 | 453 |
} |
455 | 454 |
///Computes the ellapsed time |
456 | 455 |
|
457 | 456 |
///This conversion computes the ellapsed time, therefore you can print |
458 | 457 |
///the ellapsed time like this. |
459 | 458 |
///\code |
460 | 459 |
/// Timer t; |
461 | 460 |
/// doSomething(); |
462 | 461 |
/// std::cout << t << '\n'; |
463 | 462 |
///\endcode |
464 | 463 |
operator TimeStamp () const |
465 | 464 |
{ |
466 | 465 |
TimeStamp t; |
467 | 466 |
t.stamp(); |
468 | 467 |
return _running?t-start_time:start_time; |
469 | 468 |
} |
470 | 469 |
|
471 | 470 |
|
472 | 471 |
///@} |
473 | 472 |
}; |
474 | 473 |
|
475 |
///Same as |
|
474 |
///Same as Timer but prints a report on destruction. |
|
476 | 475 |
|
477 | 476 |
///Same as \ref Timer but prints a report on destruction. |
478 | 477 |
///This example shows its usage. |
479 | 478 |
///\code |
480 | 479 |
/// void myAlg(ListGraph &g,int n) |
481 | 480 |
/// { |
482 | 481 |
/// TimeReport tr("Running time of myAlg: "); |
483 | 482 |
/// ... //Here comes the algorithm |
484 | 483 |
/// } |
485 | 484 |
///\endcode |
486 | 485 |
/// |
487 | 486 |
///\sa Timer |
488 | 487 |
///\sa NoTimeReport |
489 | 488 |
class TimeReport : public Timer |
490 | 489 |
{ |
491 | 490 |
std::string _title; |
492 | 491 |
std::ostream &_os; |
493 | 492 |
public: |
494 |
/// |
|
493 |
///Constructor |
|
495 | 494 |
|
495 |
///Constructor. |
|
496 | 496 |
///\param title This text will be printed before the ellapsed time. |
497 | 497 |
///\param os The stream to print the report to. |
498 | 498 |
///\param run Sets whether the timer should start immediately. |
499 |
|
|
500 | 499 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
501 | 500 |
: Timer(run), _title(title), _os(os){} |
502 |
/// |
|
501 |
///Destructor that prints the ellapsed time |
|
503 | 502 |
~TimeReport() |
504 | 503 |
{ |
505 | 504 |
_os << _title << *this << std::endl; |
506 | 505 |
} |
507 | 506 |
}; |
508 | 507 |
|
509 |
///'Do nothing' version of |
|
508 |
///'Do nothing' version of TimeReport |
|
510 | 509 |
|
511 | 510 |
///\sa TimeReport |
512 | 511 |
/// |
513 | 512 |
class NoTimeReport |
514 | 513 |
{ |
515 | 514 |
public: |
516 | 515 |
///\e |
517 | 516 |
NoTimeReport(std::string,std::ostream &,bool) {} |
518 | 517 |
///\e |
519 | 518 |
NoTimeReport(std::string,std::ostream &) {} |
520 | 519 |
///\e |
521 | 520 |
NoTimeReport(std::string) {} |
522 | 521 |
///\e Do nothing. |
523 | 522 |
~NoTimeReport() {} |
524 | 523 |
|
525 | 524 |
operator TimeStamp () const { return TimeStamp(); } |
526 | 525 |
void reset() {} |
527 | 526 |
void start() {} |
528 | 527 |
void stop() {} |
529 | 528 |
void halt() {} |
530 | 529 |
int running() { return 0; } |
531 | 530 |
void restart() {} |
532 | 531 |
double userTime() const { return 0; } |
533 | 532 |
double systemTime() const { return 0; } |
534 | 533 |
double cUserTime() const { return 0; } |
535 | 534 |
double cSystemTime() const { return 0; } |
536 | 535 |
double realTime() const { return 0; } |
537 | 536 |
}; |
538 | 537 |
|
539 | 538 |
///Tool to measure the running time more exactly. |
540 | 539 |
|
541 | 540 |
///This function calls \c f several times and returns the average |
542 | 541 |
///running time. The number of the executions will be choosen in such a way |
543 | 542 |
///that the full real running time will be roughly between \c min_time |
544 | 543 |
///and <tt>2*min_time</tt>. |
545 | 544 |
///\param f the function object to be measured. |
546 | 545 |
///\param min_time the minimum total running time. |
547 | 546 |
///\retval num if it is not \c NULL, then the actual |
548 | 547 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
549 | 548 |
///\retval full_time if it is not \c NULL, then the actual |
550 | 549 |
/// total running time will be written into <tt>*full_time</tt>. |
551 | 550 |
///\return The average running time of \c f. |
552 | 551 |
|
553 | 552 |
template<class F> |
554 | 553 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
555 | 554 |
TimeStamp *full_time=NULL) |
556 | 555 |
{ |
557 | 556 |
TimeStamp full; |
0 comments (0 inline)