↑ Collapse diff ↑
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\dir demo
21 21
\brief A collection of demo applications.
22 22

	
23 23
This directory contains several simple demo applications, mainly
24 24
for educational purposes.
25 25
*/
26 26

	
27 27
/**
28 28
\dir doc
29 29
\brief Auxiliary (and the whole generated) documentation.
30 30

	
31 31
This directory contains some auxiliary pages and the whole generated
32 32
documentation.
33 33
*/
34 34

	
35 35
/**
36 36
\dir test
37 37
\brief Test programs.
38 38

	
39 39
This directory contains several test programs that check the consistency
40 40
of the code.
41 41
*/
42 42

	
43 43
/**
44 44
\dir tools
45 45
\brief Some useful executables.
46 46

	
47 47
This directory contains the sources of some useful complete executables.
48 48
*/
49 49

	
50 50
/**
51 51
\dir lemon
52 52
\brief Base include directory of LEMON.
53 53

	
54 54
This is the base directory of LEMON includes, so each include file must be
55 55
prefixed with this, e.g.
56 56
\code
57 57
#include<lemon/list_graph.h>
58 58
#include<lemon/dijkstra.h>
59 59
\endcode
60 60
*/
61 61

	
62 62
/**
63 63
\dir concepts
64 64
\brief Concept descriptors and checking classes.
65 65

	
66 66
This directory contains the concept descriptors and concept checking tools.
67 67
For more information see the \ref concept "Concepts" module.
68 68
*/
69 69

	
70 70
/**
71 71
\dir bits
72 72
\brief Auxiliary tools for implementation.
73 73

	
74 74
This directory contains some auxiliary classes for implementing graphs, 
75 75
maps and some other classes.
76 76
As a user you typically don't have to deal with these files.
77 77
*/
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
@defgroup datas Data Structures
21 21
This group describes the several data structures implemented in LEMON.
22 22
*/
23 23

	
24 24
/**
25 25
@defgroup graphs Graph Structures
26 26
@ingroup datas
27 27
\brief Graph structures implemented in LEMON.
28 28

	
29 29
The implementation of combinatorial algorithms heavily relies on
30 30
efficient graph implementations. LEMON offers data structures which are
31 31
planned to be easily used in an experimental phase of implementation studies,
32 32
and thereafter the program code can be made efficient by small modifications.
33 33

	
34 34
The most efficient implementation of diverse applications require the
35 35
usage of different physical graph implementations. These differences
36 36
appear in the size of graph we require to handle, memory or time usage
37 37
limitations or in the set of operations through which the graph can be
38 38
accessed.  LEMON provides several physical graph structures to meet
39 39
the diverging requirements of the possible users.  In order to save on
40 40
running time or on memory usage, some structures may fail to provide
41 41
some graph features like arc/edge or node deletion.
42 42

	
43 43
You are free to use the graph structure that fit your requirements
44 44
the best, most graph algorithms and auxiliary data structures can be used
45 45
with any graph structure.
46 46

	
47 47
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
48 48
*/
49 49

	
50 50
/**
51 51
@defgroup maps Maps
52 52
@ingroup datas
53 53
\brief Map structures implemented in LEMON.
54 54

	
55 55
This group describes the map structures implemented in LEMON.
56 56

	
57 57
LEMON provides several special purpose maps and map adaptors that e.g. combine
58 58
new maps from existing ones.
59 59

	
60 60
<b>See also:</b> \ref map_concepts "Map Concepts".
61 61
*/
62 62

	
63 63
/**
64 64
@defgroup graph_maps Graph Maps
65 65
@ingroup maps
66 66
\brief Special graph-related maps.
67 67

	
68 68
This group describes maps that are specifically designed to assign
69 69
values to the nodes and arcs of graphs.
70 70
*/
71 71

	
72 72
/**
73 73
\defgroup map_adaptors Map Adaptors
74 74
\ingroup maps
75 75
\brief Tools to create new maps from existing ones
76 76

	
77 77
This group describes map adaptors that are used to create "implicit"
78 78
maps from other maps.
79 79

	
80 80
Most of them are \ref lemon::concepts::ReadMap "read-only maps".
81 81
They can make arithmetic and logical operations between one or two maps
82 82
(negation, shifting, addition, multiplication, logical 'and', 'or',
83 83
'not' etc.) or e.g. convert a map to another one of different Value type.
84 84

	
85 85
The typical usage of this classes is passing implicit maps to
86 86
algorithms.  If a function type algorithm is called then the function
87 87
type map adaptors can be used comfortable. For example let's see the
88 88
usage of map adaptors with the \c graphToEps() function.
89 89
\code
90 90
  Color nodeColor(int deg) {
91 91
    if (deg >= 2) {
92 92
      return Color(0.5, 0.0, 0.5);
93 93
    } else if (deg == 1) {
94 94
      return Color(1.0, 0.5, 1.0);
95 95
    } else {
96 96
      return Color(0.0, 0.0, 0.0);
97 97
    }
98 98
  }
99 99

	
100 100
  Digraph::NodeMap<int> degree_map(graph);
101 101

	
102 102
  graphToEps(graph, "graph.eps")
103 103
    .coords(coords).scaleToA4().undirected()
104 104
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
105 105
    .run();
106 106
\endcode
107 107
The \c functorToMap() function makes an \c int to \c Color map from the
108 108
\c nodeColor() function. The \c composeMap() compose the \c degree_map
109 109
and the previously created map. The composed map is a proper function to
110 110
get the color of each node.
111 111

	
112 112
The usage with class type algorithms is little bit harder. In this
113 113
case the function type map adaptors can not be used, because the
114 114
function map adaptors give back temporary objects.
115 115
\code
116 116
  Digraph graph;
117 117

	
118 118
  typedef Digraph::ArcMap<double> DoubleArcMap;
119 119
  DoubleArcMap length(graph);
120 120
  DoubleArcMap speed(graph);
121 121

	
122 122
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
123 123
  TimeMap time(length, speed);
124 124

	
125 125
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
126 126
  dijkstra.run(source, target);
127 127
\endcode
128 128
We have a length map and a maximum speed map on the arcs of a digraph.
129 129
The minimum time to pass the arc can be calculated as the division of
130 130
the two maps which can be done implicitly with the \c DivMap template
131 131
class. We use the implicit minimum time map as the length map of the
132 132
\c Dijkstra algorithm.
133 133
*/
134 134

	
135 135
/**
136 136
@defgroup paths Path Structures
137 137
@ingroup datas
138 138
\brief %Path structures implemented in LEMON.
139 139

	
140 140
This group describes the path structures implemented in LEMON.
141 141

	
142 142
LEMON provides flexible data structures to work with paths.
143 143
All of them have similar interfaces and they can be copied easily with
144 144
assignment operators and copy constructors. This makes it easy and
145 145
efficient to have e.g. the Dijkstra algorithm to store its result in
146 146
any kind of path structure.
147 147

	
148 148
\sa lemon::concepts::Path
149 149
*/
150 150

	
151 151
/**
152 152
@defgroup auxdat Auxiliary Data Structures
153 153
@ingroup datas
154 154
\brief Auxiliary data structures implemented in LEMON.
155 155

	
156 156
This group describes some data structures implemented in LEMON in
157 157
order to make it easier to implement combinatorial algorithms.
158 158
*/
159 159

	
160 160
/**
161 161
@defgroup algs Algorithms
162 162
\brief This group describes the several algorithms
163 163
implemented in LEMON.
164 164

	
165 165
This group describes the several algorithms
166 166
implemented in LEMON.
167 167
*/
168 168

	
169 169
/**
170 170
@defgroup search Graph Search
171 171
@ingroup algs
172 172
\brief Common graph search algorithms.
173 173

	
174 174
This group describes the common graph search algorithms like
175 175
Breadth-First Search (BFS) and Depth-First Search (DFS).
176 176
*/
177 177

	
178 178
/**
179 179
@defgroup shortest_path Shortest Path Algorithms
180 180
@ingroup algs
181 181
\brief Algorithms for finding shortest paths.
182 182

	
183 183
This group describes the algorithms for finding shortest paths in graphs.
184 184
*/
185 185

	
186 186
/**
187 187
@defgroup spantree Minimum Spanning Tree Algorithms
188 188
@ingroup algs
189 189
\brief Algorithms for finding a minimum cost spanning tree in a graph.
190 190

	
191 191
This group describes the algorithms for finding a minimum cost spanning
192 192
tree in a graph
193 193
*/
194 194

	
195 195
/**
196 196
@defgroup utils Tools and Utilities
197 197
\brief Tools and utilities for programming in LEMON
198 198

	
199 199
Tools and utilities for programming in LEMON.
200 200
*/
201 201

	
202 202
/**
203 203
@defgroup gutils Basic Graph Utilities
204 204
@ingroup utils
205 205
\brief Simple basic graph utilities.
206 206

	
207 207
This group describes some simple basic graph utilities.
208 208
*/
209 209

	
210 210
/**
211 211
@defgroup misc Miscellaneous Tools
212 212
@ingroup utils
213 213
\brief Tools for development, debugging and testing.
214 214

	
215 215
This group describes several useful tools for development,
216 216
debugging and testing.
217 217
*/
218 218

	
219 219
/**
220 220
@defgroup timecount Time Measuring and Counting
221 221
@ingroup misc
222 222
\brief Simple tools for measuring the performance of algorithms.
223 223

	
224 224
This group describes simple tools for measuring the performance
225 225
of algorithms.
226 226
*/
227 227

	
228 228
/**
229 229
@defgroup exceptions Exceptions
230 230
@ingroup utils
231 231
\brief Exceptions defined in LEMON.
232 232

	
233 233
This group describes the exceptions defined in LEMON.
234 234
*/
235 235

	
236 236
/**
237 237
@defgroup io_group Input-Output
238 238
\brief Graph Input-Output methods
239 239

	
240 240
This group describes the tools for importing and exporting graphs
241 241
and graph related data. Now it supports the LEMON format
242 242
and the encapsulated postscript (EPS) format.
243 243
postscript (EPS) format.
244 244
*/
245 245

	
246 246
/**
247 247
@defgroup lemon_io LEMON Input-Output
248 248
@ingroup io_group
249 249
\brief Reading and writing LEMON Graph Format.
250 250

	
251 251
This group describes methods for reading and writing
252 252
\ref lgf-format "LEMON Graph Format".
253 253
*/
254 254

	
255 255
/**
256 256
@defgroup eps_io Postscript Exporting
257 257
@ingroup io_group
258 258
\brief General \c EPS drawer and graph exporter
259 259

	
260 260
This group describes general \c EPS drawing methods and special
261 261
graph exporting tools.
262 262
*/
263 263

	
264 264
/**
265 265
@defgroup concept Concepts
266 266
\brief Skeleton classes and concept checking classes
267 267

	
268 268
This group describes the data/algorithm skeletons and concept checking
269 269
classes implemented in LEMON.
270 270

	
271 271
The purpose of the classes in this group is fourfold.
272 272

	
273 273
- These classes contain the documentations of the %concepts. In order
274 274
  to avoid document multiplications, an implementation of a concept
275 275
  simply refers to the corresponding concept class.
276 276

	
277 277
- These classes declare every functions, <tt>typedef</tt>s etc. an
278 278
  implementation of the %concepts should provide, however completely
279 279
  without implementations and real data structures behind the
280 280
  interface. On the other hand they should provide nothing else. All
281 281
  the algorithms working on a data structure meeting a certain concept
282 282
  should compile with these classes. (Though it will not run properly,
283 283
  of course.) In this way it is easily to check if an algorithm
284 284
  doesn't use any extra feature of a certain implementation.
285 285

	
286 286
- The concept descriptor classes also provide a <em>checker class</em>
287 287
  that makes it possible to check whether a certain implementation of a
288 288
  concept indeed provides all the required features.
289 289

	
290 290
- Finally, They can serve as a skeleton of a new implementation of a concept.
291 291
*/
292 292

	
293 293
/**
294 294
@defgroup graph_concepts Graph Structure Concepts
295 295
@ingroup concept
296 296
\brief Skeleton and concept checking classes for graph structures
297 297

	
298 298
This group describes the skeletons and concept checking classes of LEMON's
299 299
graph structures and helper classes used to implement these.
300 300
*/
301 301

	
302 302
/**
303 303
@defgroup map_concepts Map Concepts
304 304
@ingroup concept
305 305
\brief Skeleton and concept checking classes for maps
306 306
 
307 307
This group describes the skeletons and concept checking classes of maps.
308 308
*/
309 309

	
310 310
/**
311 311
\anchor demoprograms
312 312

	
313 313
@defgroup demos Demo programs
314 314

	
315 315
Some demo programs are listed here. Their full source codes can be found in
316 316
the \c demo subdirectory of the source tree.
317 317

	
318 318
It order to compile them, use <tt>--enable-demo</tt> configure option when
319 319
build the library.
320 320
*/
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22

	
23 23

	
24 24
\page lgf-format LEMON Graph Format (LGF)
25 25

	
26 26
The \e LGF is a <em>column oriented</em>
27 27
file format for storing graphs and associated data like
28 28
node and edge maps.
29 29

	
30 30
Each line with \c '#' first non-whitespace
31 31
character is considered as a comment line.
32 32

	
33 33
Otherwise the file consists of sections starting with
34 34
a header line. The header lines starts with an \c '@' character followed by the
35 35
type of section. The standard section types are \c \@nodes, \c
36 36
\@arcs and \c \@edges
37 37
and \@attributes. Each header line may also have an optional
38 38
\e name, which can be use to distinguish the sections of the same
39 39
type.
40 40

	
41 41
The standard sections are column oriented, each line consists of
42 42
<em>token</em>s separated by whitespaces. A token can be \e plain or
43 43
\e quoted. A plain token is just a sequence of non-whitespace characters,
44 44
while a quoted token is a
45 45
character sequence surrounded by double quotes, and it can also
46 46
contain whitespaces and escape sequences.
47 47

	
48 48
The \c \@nodes section describes a set of nodes and associated
49 49
maps. The first is a header line, its columns are the names of the
50 50
maps appearing in the following lines.
51 51
One of the maps must be called \c
52 52
"label", which plays special role in the file.
53 53
The following
54 54
non-empty lines until the next section describes nodes of the
55 55
graph. Each line contains the values of the node maps
56 56
associated to the current node.
57 57

	
58 58
\code
59 59
 @nodes
60 60
 label  coordinates  size    title
61 61
 1      (10,20)      10      "First node"
62 62
 2      (80,80)      8       "Second node"
63 63
 3      (40,10)      10      "Third node"
64 64
\endcode
65 65

	
66 66
The \c \@arcs section is very similar to the \c \@nodes section, it
67 67
again starts with a header line describing the names of the maps, but
68 68
the \c "label" map is not obligatory here. The following lines
69 69
describe the arcs. The first two tokens of each line are the source
70 70
and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81 81
If there is no map in the \c \@arcs section at all, then it must be
82 82
indicated by a sole '-' sign in the first line.
83 83

	
84 84
\code
85 85
 @arcs
86 86
         -
87 87
 1   2
88 88
 1   3
89 89
 2   3
90 90
\endcode
91 91

	
92 92
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
93 93
also store the edge set of an undirected graph. In such case there is
94 94
a conventional method for store arc maps in the file, if two columns
95 95
have the same caption with \c '+' and \c '-' prefix, then these columns
96 96
can be regarded as the values of an arc map.
97 97

	
98 98
The \c \@attributes section contains key-value pairs, each line
99 99
consists of two tokens, an attribute name, and then an attribute
100 100
value. The value of the attribute could be also a label value of a
101 101
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
102 102
which regards to the forward or backward directed arc of the
103 103
corresponding edge.
104 104

	
105 105
\code
106 106
 @attributes
107 107
 source 1
108 108
 target 3
109 109
 caption "LEMON test digraph"
110 110
\endcode
111 111

	
112 112
The \e LGF can contain extra sections, but there is no restriction on
113 113
the format of such sections.
114 114

	
115 115
*/
116 116
}
117 117

	
118 118
//  LocalWords:  whitespace whitespaces
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/tolerance.h>
23 23
#include<lemon/core.h>
24 24
namespace lemon {
25 25

	
26 26
  float Tolerance<float>::def_epsilon = static_cast<float>(1e-4);
27 27
  double Tolerance<double>::def_epsilon = 1e-10;
28 28
  long double Tolerance<long double>::def_epsilon = 1e-14;
29 29

	
30 30
#ifndef LEMON_ONLY_TEMPLATES
31 31
  const Invalid INVALID = Invalid();
32 32
#endif
33 33

	
34 34
} //namespace lemon
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_DEFAULT_MAP_H
20 20
#define LEMON_BITS_DEFAULT_MAP_H
21 21

	
22 22
#include <lemon/config.h>
23 23
#include <lemon/bits/array_map.h>
24 24
#include <lemon/bits/vector_map.h>
25 25
//#include <lemon/bits/debug_map.h>
26 26

	
27 27
//\ingroup graphbits
28 28
//\file
29 29
//\brief Graph maps that construct and destruct their elements dynamically.
30 30

	
31 31
namespace lemon {
32 32

	
33 33

	
34 34
  //#ifndef LEMON_USE_DEBUG_MAP
35 35

	
36 36
  template <typename _Graph, typename _Item, typename _Value>
37 37
  struct DefaultMapSelector {
38 38
    typedef ArrayMap<_Graph, _Item, _Value> Map;
39 39
  };
40 40

	
41 41
  // bool
42 42
  template <typename _Graph, typename _Item>
43 43
  struct DefaultMapSelector<_Graph, _Item, bool> {
44 44
    typedef VectorMap<_Graph, _Item, bool> Map;
45 45
  };
46 46

	
47 47
  // char
48 48
  template <typename _Graph, typename _Item>
49 49
  struct DefaultMapSelector<_Graph, _Item, char> {
50 50
    typedef VectorMap<_Graph, _Item, char> Map;
51 51
  };
52 52

	
53 53
  template <typename _Graph, typename _Item>
54 54
  struct DefaultMapSelector<_Graph, _Item, signed char> {
55 55
    typedef VectorMap<_Graph, _Item, signed char> Map;
56 56
  };
57 57

	
58 58
  template <typename _Graph, typename _Item>
59 59
  struct DefaultMapSelector<_Graph, _Item, unsigned char> {
60 60
    typedef VectorMap<_Graph, _Item, unsigned char> Map;
61 61
  };
62 62

	
63 63

	
64 64
  // int
65 65
  template <typename _Graph, typename _Item>
66 66
  struct DefaultMapSelector<_Graph, _Item, signed int> {
67 67
    typedef VectorMap<_Graph, _Item, signed int> Map;
68 68
  };
69 69

	
70 70
  template <typename _Graph, typename _Item>
71 71
  struct DefaultMapSelector<_Graph, _Item, unsigned int> {
72 72
    typedef VectorMap<_Graph, _Item, unsigned int> Map;
73 73
  };
74 74

	
75 75

	
76 76
  // short
77 77
  template <typename _Graph, typename _Item>
78 78
  struct DefaultMapSelector<_Graph, _Item, signed short> {
79 79
    typedef VectorMap<_Graph, _Item, signed short> Map;
80 80
  };
81 81

	
82 82
  template <typename _Graph, typename _Item>
83 83
  struct DefaultMapSelector<_Graph, _Item, unsigned short> {
84 84
    typedef VectorMap<_Graph, _Item, unsigned short> Map;
85 85
  };
86 86

	
87 87

	
88 88
  // long
89 89
  template <typename _Graph, typename _Item>
90 90
  struct DefaultMapSelector<_Graph, _Item, signed long> {
91 91
    typedef VectorMap<_Graph, _Item, signed long> Map;
92 92
  };
93 93

	
94 94
  template <typename _Graph, typename _Item>
95 95
  struct DefaultMapSelector<_Graph, _Item, unsigned long> {
96 96
    typedef VectorMap<_Graph, _Item, unsigned long> Map;
97 97
  };
98 98

	
99 99

	
100 100
#if defined LEMON_HAVE_LONG_LONG
101 101

	
102 102
  // long long
103 103
  template <typename _Graph, typename _Item>
104 104
  struct DefaultMapSelector<_Graph, _Item, signed long long> {
105 105
    typedef VectorMap<_Graph, _Item, signed long long> Map;
106 106
  };
107 107

	
108 108
  template <typename _Graph, typename _Item>
109 109
  struct DefaultMapSelector<_Graph, _Item, unsigned long long> {
110 110
    typedef VectorMap<_Graph, _Item, unsigned long long> Map;
111 111
  };
112 112

	
113 113
#endif
114 114

	
115 115

	
116 116
  // float
117 117
  template <typename _Graph, typename _Item>
118 118
  struct DefaultMapSelector<_Graph, _Item, float> {
119 119
    typedef VectorMap<_Graph, _Item, float> Map;
120 120
  };
121 121

	
122 122

	
123 123
  // double
124 124
  template <typename _Graph, typename _Item>
125 125
  struct DefaultMapSelector<_Graph, _Item, double> {
126 126
    typedef VectorMap<_Graph, _Item,  double> Map;
127 127
  };
128 128

	
129 129

	
130 130
  // long double
131 131
  template <typename _Graph, typename _Item>
132 132
  struct DefaultMapSelector<_Graph, _Item, long double> {
133 133
    typedef VectorMap<_Graph, _Item, long double> Map;
134 134
  };
135 135

	
136 136

	
137 137
  // pointer
138 138
  template <typename _Graph, typename _Item, typename _Ptr>
139 139
  struct DefaultMapSelector<_Graph, _Item, _Ptr*> {
140 140
    typedef VectorMap<_Graph, _Item, _Ptr*> Map;
141 141
  };
142 142

	
143 143
// #else
144 144

	
145 145
//   template <typename _Graph, typename _Item, typename _Value>
146 146
//   struct DefaultMapSelector {
147 147
//     typedef DebugMap<_Graph, _Item, _Value> Map;
148 148
//   };
149 149

	
150 150
// #endif
151 151

	
152 152
  // DefaultMap class
153 153
  template <typename _Graph, typename _Item, typename _Value>
154 154
  class DefaultMap
155 155
    : public DefaultMapSelector<_Graph, _Item, _Value>::Map {
156 156
  public:
157 157
    typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent;
158 158
    typedef DefaultMap<_Graph, _Item, _Value> Map;
159 159

	
160 160
    typedef typename Parent::Graph Graph;
161 161
    typedef typename Parent::Value Value;
162 162

	
163 163
    explicit DefaultMap(const Graph& graph) : Parent(graph) {}
164 164
    DefaultMap(const Graph& graph, const Value& value)
165 165
      : Parent(graph, value) {}
166 166

	
167 167
    DefaultMap& operator=(const DefaultMap& cmap) {
168 168
      return operator=<DefaultMap>(cmap);
169 169
    }
170 170

	
171 171
    template <typename CMap>
172 172
    DefaultMap& operator=(const CMap& cmap) {
173 173
      Parent::operator=(cmap);
174 174
      return *this;
175 175
    }
176 176

	
177 177
  };
178 178

	
179 179
}
180 180

	
181 181
#endif
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_MAP_EXTENDER_H
20 20
#define LEMON_BITS_MAP_EXTENDER_H
21 21

	
22 22
#include <iterator>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25

	
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
//\file
30 30
//\brief Extenders for iterable maps.
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  // \ingroup graphbits
35 35
  //
36 36
  // \brief Extender for maps
37 37
  template <typename _Map>
38 38
  class MapExtender : public _Map {
39 39
  public:
40 40

	
41 41
    typedef _Map Parent;
42 42
    typedef MapExtender Map;
43 43

	
44 44

	
45 45
    typedef typename Parent::Graph Graph;
46 46
    typedef typename Parent::Key Item;
47 47

	
48 48
    typedef typename Parent::Key Key;
49 49
    typedef typename Parent::Value Value;
50 50

	
51 51
    class MapIt;
52 52
    class ConstMapIt;
53 53

	
54 54
    friend class MapIt;
55 55
    friend class ConstMapIt;
56 56

	
57 57
  public:
58 58

	
59 59
    MapExtender(const Graph& graph)
60 60
      : Parent(graph) {}
61 61

	
62 62
    MapExtender(const Graph& graph, const Value& value)
63 63
      : Parent(graph, value) {}
64 64

	
65 65
  private:
66 66
    MapExtender& operator=(const MapExtender& cmap) {
67 67
      return operator=<MapExtender>(cmap);
68 68
    }
69 69

	
70 70
    template <typename CMap>
71 71
    MapExtender& operator=(const CMap& cmap) {
72 72
      Parent::operator=(cmap);
73 73
      return *this;
74 74
    }
75 75

	
76 76
  public:
77 77
    class MapIt : public Item {
78 78
    public:
79 79

	
80 80
      typedef Item Parent;
81 81
      typedef typename Map::Value Value;
82 82

	
83 83
      MapIt() : map(NULL) {}
84 84

	
85 85
      MapIt(Invalid i) : Parent(i), map(NULL) {}
86 86

	
87 87
      explicit MapIt(Map& _map) : map(&_map) {
88 88
        map->notifier()->first(*this);
89 89
      }
90 90

	
91 91
      MapIt(const Map& _map, const Item& item)
92 92
        : Parent(item), map(&_map) {}
93 93

	
94 94
      MapIt& operator++() {
95 95
        map->notifier()->next(*this);
96 96
        return *this;
97 97
      }
98 98

	
99 99
      typename MapTraits<Map>::ConstReturnValue operator*() const {
100 100
        return (*map)[*this];
101 101
      }
102 102

	
103 103
      typename MapTraits<Map>::ReturnValue operator*() {
104 104
        return (*map)[*this];
105 105
      }
106 106

	
107 107
      void set(const Value& value) {
108 108
        map->set(*this, value);
109 109
      }
110 110

	
111 111
    protected:
112 112
      Map* map;
113 113

	
114 114
    };
115 115

	
116 116
    class ConstMapIt : public Item {
117 117
    public:
118 118

	
119 119
      typedef Item Parent;
120 120

	
121 121
      typedef typename Map::Value Value;
122 122

	
123 123
      ConstMapIt() : map(NULL) {}
124 124

	
125 125
      ConstMapIt(Invalid i) : Parent(i), map(NULL) {}
126 126

	
127 127
      explicit ConstMapIt(Map& _map) : map(&_map) {
128 128
        map->notifier()->first(*this);
129 129
      }
130 130

	
131 131
      ConstMapIt(const Map& _map, const Item& item)
132 132
        : Parent(item), map(_map) {}
133 133

	
134 134
      ConstMapIt& operator++() {
135 135
        map->notifier()->next(*this);
136 136
        return *this;
137 137
      }
138 138

	
139 139
      typename MapTraits<Map>::ConstReturnValue operator*() const {
140 140
        return map[*this];
141 141
      }
142 142

	
143 143
    protected:
144 144
      const Map* map;
145 145
    };
146 146

	
147 147
    class ItemIt : public Item {
148 148
    public:
149 149

	
150 150
      typedef Item Parent;
151 151

	
152 152
      ItemIt() : map(NULL) {}
153 153

	
154 154
      ItemIt(Invalid i) : Parent(i), map(NULL) {}
155 155

	
156 156
      explicit ItemIt(Map& _map) : map(&_map) {
157 157
        map->notifier()->first(*this);
158 158
      }
159 159

	
160 160
      ItemIt(const Map& _map, const Item& item)
161 161
        : Parent(item), map(&_map) {}
162 162

	
163 163
      ItemIt& operator++() {
164 164
        map->notifier()->next(*this);
165 165
        return *this;
166 166
      }
167 167

	
168 168
    protected:
169 169
      const Map* map;
170 170

	
171 171
    };
172 172
  };
173 173

	
174 174
  // \ingroup graphbits
175 175
  //
176 176
  // \brief Extender for maps which use a subset of the items.
177 177
  template <typename _Graph, typename _Map>
178 178
  class SubMapExtender : public _Map {
179 179
  public:
180 180

	
181 181
    typedef _Map Parent;
182 182
    typedef SubMapExtender Map;
183 183

	
184 184
    typedef _Graph Graph;
185 185

	
186 186
    typedef typename Parent::Key Item;
187 187

	
188 188
    typedef typename Parent::Key Key;
189 189
    typedef typename Parent::Value Value;
190 190

	
191 191
    class MapIt;
192 192
    class ConstMapIt;
193 193

	
194 194
    friend class MapIt;
195 195
    friend class ConstMapIt;
196 196

	
197 197
  public:
198 198

	
199 199
    SubMapExtender(const Graph& _graph)
200 200
      : Parent(_graph), graph(_graph) {}
201 201

	
202 202
    SubMapExtender(const Graph& _graph, const Value& _value)
203 203
      : Parent(_graph, _value), graph(_graph) {}
204 204

	
205 205
  private:
206 206
    SubMapExtender& operator=(const SubMapExtender& cmap) {
207 207
      return operator=<MapExtender>(cmap);
208 208
    }
209 209

	
210 210
    template <typename CMap>
211 211
    SubMapExtender& operator=(const CMap& cmap) {
212 212
      checkConcept<concepts::ReadMap<Key, Value>, CMap>();
213 213
      Item it;
214 214
      for (graph.first(it); it != INVALID; graph.next(it)) {
215 215
        Parent::set(it, cmap[it]);
216 216
      }
217 217
      return *this;
218 218
    }
219 219

	
220 220
  public:
221 221
    class MapIt : public Item {
222 222
    public:
223 223

	
224 224
      typedef Item Parent;
225 225
      typedef typename Map::Value Value;
226 226

	
227 227
      MapIt() : map(NULL) {}
228 228

	
229 229
      MapIt(Invalid i) : Parent(i), map(NULL) { }
230 230

	
231 231
      explicit MapIt(Map& _map) : map(&_map) {
232 232
        map->graph.first(*this);
233 233
      }
234 234

	
235 235
      MapIt(const Map& _map, const Item& item)
236 236
        : Parent(item), map(&_map) {}
237 237

	
238 238
      MapIt& operator++() {
239 239
        map->graph.next(*this);
240 240
        return *this;
241 241
      }
242 242

	
243 243
      typename MapTraits<Map>::ConstReturnValue operator*() const {
244 244
        return (*map)[*this];
245 245
      }
246 246

	
247 247
      typename MapTraits<Map>::ReturnValue operator*() {
248 248
        return (*map)[*this];
249 249
      }
250 250

	
251 251
      void set(const Value& value) {
252 252
        map->set(*this, value);
253 253
      }
254 254

	
255 255
    protected:
256 256
      Map* map;
257 257

	
258 258
    };
259 259

	
260 260
    class ConstMapIt : public Item {
261 261
    public:
262 262

	
263 263
      typedef Item Parent;
264 264

	
265 265
      typedef typename Map::Value Value;
266 266

	
267 267
      ConstMapIt() : map(NULL) {}
268 268

	
269 269
      ConstMapIt(Invalid i) : Parent(i), map(NULL) { }
270 270

	
271 271
      explicit ConstMapIt(Map& _map) : map(&_map) {
272 272
        map->graph.first(*this);
273 273
      }
274 274

	
275 275
      ConstMapIt(const Map& _map, const Item& item)
276 276
        : Parent(item), map(&_map) {}
277 277

	
278 278
      ConstMapIt& operator++() {
279 279
        map->graph.next(*this);
280 280
        return *this;
281 281
      }
282 282

	
283 283
      typename MapTraits<Map>::ConstReturnValue operator*() const {
284 284
        return (*map)[*this];
285 285
      }
286 286

	
287 287
    protected:
288 288
      const Map* map;
289 289
    };
290 290

	
291 291
    class ItemIt : public Item {
292 292
    public:
293 293

	
294 294
      typedef Item Parent;
295 295

	
296 296
      ItemIt() : map(NULL) {}
297 297

	
298 298
      ItemIt(Invalid i) : Parent(i), map(NULL) { }
299 299

	
300 300
      explicit ItemIt(Map& _map) : map(&_map) {
301 301
        map->graph.first(*this);
302 302
      }
303 303

	
304 304
      ItemIt(const Map& _map, const Item& item)
305 305
        : Parent(item), map(&_map) {}
306 306

	
307 307
      ItemIt& operator++() {
308 308
        map->graph.next(*this);
309 309
        return *this;
310 310
      }
311 311

	
312 312
    protected:
313 313
      const Map* map;
314 314

	
315 315
    };
316 316

	
317 317
  private:
318 318

	
319 319
    const Graph& graph;
320 320

	
321 321
  };
322 322

	
323 323
}
324 324

	
325 325
#endif
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_PRED_MAP_PATH_H
20 20
#define LEMON_BITS_PRED_MAP_PATH_H
21 21

	
22 22
namespace lemon {
23 23

	
24 24
  template <typename _Digraph, typename _PredMap>
25 25
  class PredMapPath {
26 26
  public:
27 27
    typedef True RevPathTag;
28 28

	
29 29
    typedef _Digraph Digraph;
30 30
    typedef typename Digraph::Arc Arc;
31 31
    typedef _PredMap PredMap;
32 32

	
33 33
    PredMapPath(const Digraph& _digraph, const PredMap& _predMap,
34 34
                typename Digraph::Node _target)
35 35
      : digraph(_digraph), predMap(_predMap), target(_target) {}
36 36

	
37 37
    int length() const {
38 38
      int len = 0;
39 39
      typename Digraph::Node node = target;
40 40
      typename Digraph::Arc arc;
41 41
      while ((arc = predMap[node]) != INVALID) {
42 42
        node = digraph.source(arc);
43 43
        ++len;
44 44
      }
45 45
      return len;
46 46
    }
47 47

	
48 48
    bool empty() const {
49 49
      return predMap[target] == INVALID;
50 50
    }
51 51

	
52 52
    class RevArcIt {
53 53
    public:
54 54
      RevArcIt() {}
55 55
      RevArcIt(Invalid) : path(0), current(INVALID) {}
56 56
      RevArcIt(const PredMapPath& _path)
57 57
        : path(&_path), current(_path.target) {
58 58
        if (path->predMap[current] == INVALID) current = INVALID;
59 59
      }
60 60

	
61 61
      operator const typename Digraph::Arc() const {
62 62
        return path->predMap[current];
63 63
      }
64 64

	
65 65
      RevArcIt& operator++() {
66 66
        current = path->digraph.source(path->predMap[current]);
67 67
        if (path->predMap[current] == INVALID) current = INVALID;
68 68
        return *this;
69 69
      }
70 70

	
71 71
      bool operator==(const RevArcIt& e) const {
72 72
        return current == e.current;
73 73
      }
74 74

	
75 75
      bool operator!=(const RevArcIt& e) const {
76 76
        return current != e.current;
77 77
      }
78 78

	
79 79
      bool operator<(const RevArcIt& e) const {
80 80
        return current < e.current;
81 81
      }
82 82

	
83 83
    private:
84 84
      const PredMapPath* path;
85 85
      typename Digraph::Node current;
86 86
    };
87 87

	
88 88
  private:
89 89
    const Digraph& digraph;
90 90
    const PredMap& predMap;
91 91
    typename Digraph::Node target;
92 92
  };
93 93

	
94 94

	
95 95
  template <typename _Digraph, typename _PredMatrixMap>
96 96
  class PredMatrixMapPath {
97 97
  public:
98 98
    typedef True RevPathTag;
99 99

	
100 100
    typedef _Digraph Digraph;
101 101
    typedef typename Digraph::Arc Arc;
102 102
    typedef _PredMatrixMap PredMatrixMap;
103 103

	
104 104
    PredMatrixMapPath(const Digraph& _digraph,
105 105
                      const PredMatrixMap& _predMatrixMap,
106 106
                      typename Digraph::Node _source,
107 107
                      typename Digraph::Node _target)
108 108
      : digraph(_digraph), predMatrixMap(_predMatrixMap),
109 109
        source(_source), target(_target) {}
110 110

	
111 111
    int length() const {
112 112
      int len = 0;
113 113
      typename Digraph::Node node = target;
114 114
      typename Digraph::Arc arc;
115 115
      while ((arc = predMatrixMap(source, node)) != INVALID) {
116 116
        node = digraph.source(arc);
117 117
        ++len;
118 118
      }
119 119
      return len;
120 120
    }
121 121

	
122 122
    bool empty() const {
123 123
      return predMatrixMap(source, target) == INVALID;
124 124
    }
125 125

	
126 126
    class RevArcIt {
127 127
    public:
128 128
      RevArcIt() {}
129 129
      RevArcIt(Invalid) : path(0), current(INVALID) {}
130 130
      RevArcIt(const PredMatrixMapPath& _path)
131 131
        : path(&_path), current(_path.target) {
132 132
        if (path->predMatrixMap(path->source, current) == INVALID)
133 133
          current = INVALID;
134 134
      }
135 135

	
136 136
      operator const typename Digraph::Arc() const {
137 137
        return path->predMatrixMap(path->source, current);
138 138
      }
139 139

	
140 140
      RevArcIt& operator++() {
141 141
        current =
142 142
          path->digraph.source(path->predMatrixMap(path->source, current));
143 143
        if (path->predMatrixMap(path->source, current) == INVALID)
144 144
          current = INVALID;
145 145
        return *this;
146 146
      }
147 147

	
148 148
      bool operator==(const RevArcIt& e) const {
149 149
        return current == e.current;
150 150
      }
151 151

	
152 152
      bool operator!=(const RevArcIt& e) const {
153 153
        return current != e.current;
154 154
      }
155 155

	
156 156
      bool operator<(const RevArcIt& e) const {
157 157
        return current < e.current;
158 158
      }
159 159

	
160 160
    private:
161 161
      const PredMatrixMapPath* path;
162 162
      typename Digraph::Node current;
163 163
    };
164 164

	
165 165
  private:
166 166
    const Digraph& digraph;
167 167
    const PredMatrixMap& predMatrixMap;
168 168
    typename Digraph::Node source;
169 169
    typename Digraph::Node target;
170 170
  };
171 171

	
172 172
}
173 173

	
174 174
#endif
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/bits/windows.h>
23 23

	
24 24
#ifdef WIN32
25 25
#ifndef WIN32_LEAN_AND_MEAN
26 26
#define WIN32_LEAN_AND_MEAN
27 27
#endif
28 28
#ifndef NOMINMAX
29 29
#define NOMINMAX
30 30
#endif
31 31
#ifdef UNICODE
32 32
#undef UNICODE
33 33
#endif
34 34
#include <windows.h>
35 35
#ifdef LOCALE_INVARIANT
36 36
#define MY_LOCALE LOCALE_INVARIANT
37 37
#else
38 38
#define MY_LOCALE LOCALE_NEUTRAL
39 39
#endif
40 40
#else
41 41
#include <unistd.h>
42 42
#include <ctime>
43 43
#include <sys/times.h>
44 44
#include <sys/time.h>
45 45
#endif
46 46

	
47 47
#include <cmath>
48 48
#include <sstream>
49 49

	
50 50
namespace lemon {
51 51
  namespace bits {
52 52
    void getWinProcTimes(double &rtime,
53 53
                         double &utime, double &stime,
54 54
                         double &cutime, double &cstime)
55 55
    {
56 56
#ifdef WIN32
57 57
      static const double ch = 4294967296.0e-7;
58 58
      static const double cl = 1.0e-7;
59 59

	
60 60
      FILETIME system;
61 61
      GetSystemTimeAsFileTime(&system);
62 62
      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
63 63

	
64 64
      FILETIME create, exit, kernel, user;
65 65
      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
66 66
        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
67 67
        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
68 68
        cutime = 0;
69 69
        cstime = 0;
70 70
      } else {
71 71
        rtime = 0;
72 72
        utime = 0;
73 73
        stime = 0;
74 74
        cutime = 0;
75 75
        cstime = 0;
76 76
      }
77 77
#else
78 78
      timeval tv;
79 79
      gettimeofday(&tv, 0);
80 80
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
81 81

	
82 82
      tms ts;
83 83
      double tck=sysconf(_SC_CLK_TCK);
84 84
      times(&ts);
85 85
      utime=ts.tms_utime/tck;
86 86
      stime=ts.tms_stime/tck;
87 87
      cutime=ts.tms_cutime/tck;
88 88
      cstime=ts.tms_cstime/tck;
89 89
#endif
90 90
    }
91 91

	
92 92
    std::string getWinFormattedDate()
93 93
    {
94 94
      std::ostringstream os;
95 95
#ifdef WIN32
96 96
      SYSTEMTIME time;
97 97
      GetSystemTime(&time);
98 98
      char buf1[11], buf2[9], buf3[5];
99 99
	  if (GetDateFormat(MY_LOCALE, 0, &time,
100 100
                        ("ddd MMM dd"), buf1, 11) &&
101 101
          GetTimeFormat(MY_LOCALE, 0, &time,
102 102
                        ("HH':'mm':'ss"), buf2, 9) &&
103 103
          GetDateFormat(MY_LOCALE, 0, &time,
104 104
                        ("yyyy"), buf3, 5)) {
105 105
        os << buf1 << ' ' << buf2 << ' ' << buf3;
106 106
      }
107 107
      else os << "unknown";
108 108
#else
109 109
      timeval tv;
110 110
      gettimeofday(&tv, 0);
111 111

	
112 112
      char cbuf[26];
113 113
      ctime_r(&tv.tv_sec,cbuf);
114 114
      os << cbuf;
115 115
#endif
116 116
      return os.str();
117 117
    }
118 118

	
119 119
    int getWinRndSeed()
120 120
    {
121 121
#ifdef WIN32
122 122
      FILETIME time;
123 123
      GetSystemTimeAsFileTime(&time);
124 124
      return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime;
125 125
#else
126 126
      timeval tv;
127 127
      gettimeofday(&tv, 0);
128 128
      return getpid() + tv.tv_sec + tv.tv_usec;
129 129
#endif
130 130
    }
131 131
  }
132 132
}
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CORE_H
20 20
#define LEMON_CORE_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/config.h>
26 26
#include <lemon/bits/enable_if.h>
27 27
#include <lemon/bits/traits.h>
28 28
#include <lemon/assert.h>
29 29

	
30 30
///\file
31 31
///\brief LEMON core utilities.
32 32
///
33 33
///This header file contains core utilities for LEMON.
34 34
///It is automatically included by all graph types, therefore it usually
35 35
///do not have to be included directly.
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Dummy type to make it easier to create invalid iterators.
40 40
  ///
41 41
  /// Dummy type to make it easier to create invalid iterators.
42 42
  /// See \ref INVALID for the usage.
43 43
  struct Invalid {
44 44
  public:
45 45
    bool operator==(Invalid) { return true;  }
46 46
    bool operator!=(Invalid) { return false; }
47 47
    bool operator< (Invalid) { return false; }
48 48
  };
49 49

	
50 50
  /// \brief Invalid iterators.
51 51
  ///
52 52
  /// \ref Invalid is a global type that converts to each iterator
53 53
  /// in such a way that the value of the target iterator will be invalid.
54 54
#ifdef LEMON_ONLY_TEMPLATES
55 55
  const Invalid INVALID = Invalid();
56 56
#else
57 57
  extern const Invalid INVALID;
58 58
#endif
59 59

	
60 60
  /// \addtogroup gutils
61 61
  /// @{
62 62

	
63 63
  ///Create convenience typedefs for the digraph types and iterators
64 64

	
65 65
  ///This \c \#define creates convenient type definitions for the following
66 66
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
67 67
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
68 68
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
69 69
  ///
70 70
  ///\note If the graph type is a dependent type, ie. the graph type depend
71 71
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
72 72
  ///macro.
73 73
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
74 74
  typedef Digraph::Node Node;                                           \
75 75
  typedef Digraph::NodeIt NodeIt;                                       \
76 76
  typedef Digraph::Arc Arc;                                             \
77 77
  typedef Digraph::ArcIt ArcIt;                                         \
78 78
  typedef Digraph::InArcIt InArcIt;                                     \
79 79
  typedef Digraph::OutArcIt OutArcIt;                                   \
80 80
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
81 81
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
82 82
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
83 83
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
84 84
  typedef Digraph::ArcMap<int> IntArcMap;                               \
85 85
  typedef Digraph::ArcMap<double> DoubleArcMap
86 86

	
87 87
  ///Create convenience typedefs for the digraph types and iterators
88 88

	
89 89
  ///\see DIGRAPH_TYPEDEFS
90 90
  ///
91 91
  ///\note Use this macro, if the graph type is a dependent type,
92 92
  ///ie. the graph type depend on a template parameter.
93 93
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
94 94
  typedef typename Digraph::Node Node;                                  \
95 95
  typedef typename Digraph::NodeIt NodeIt;                              \
96 96
  typedef typename Digraph::Arc Arc;                                    \
97 97
  typedef typename Digraph::ArcIt ArcIt;                                \
98 98
  typedef typename Digraph::InArcIt InArcIt;                            \
99 99
  typedef typename Digraph::OutArcIt OutArcIt;                          \
100 100
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
101 101
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
102 102
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
103 103
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
104 104
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
105 105
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
106 106

	
107 107
  ///Create convenience typedefs for the graph types and iterators
108 108

	
109 109
  ///This \c \#define creates the same convenient type definitions as defined
110 110
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
111 111
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
112 112
  ///\c DoubleEdgeMap.
113 113
  ///
114 114
  ///\note If the graph type is a dependent type, ie. the graph type depend
115 115
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
116 116
  ///macro.
117 117
#define GRAPH_TYPEDEFS(Graph)                                           \
118 118
  DIGRAPH_TYPEDEFS(Graph);                                              \
119 119
  typedef Graph::Edge Edge;                                             \
120 120
  typedef Graph::EdgeIt EdgeIt;                                         \
121 121
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
122 122
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
123 123
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
124 124
  typedef Graph::EdgeMap<double> DoubleEdgeMap
125 125

	
126 126
  ///Create convenience typedefs for the graph types and iterators
127 127

	
128 128
  ///\see GRAPH_TYPEDEFS
129 129
  ///
130 130
  ///\note Use this macro, if the graph type is a dependent type,
131 131
  ///ie. the graph type depend on a template parameter.
132 132
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
133 133
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
134 134
  typedef typename Graph::Edge Edge;                                    \
135 135
  typedef typename Graph::EdgeIt EdgeIt;                                \
136 136
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
137 137
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
138 138
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
139 139
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
140 140

	
141 141
  /// \brief Function to count the items in a graph.
142 142
  ///
143 143
  /// This function counts the items (nodes, arcs etc.) in a graph.
144 144
  /// The complexity of the function is linear because
145 145
  /// it iterates on all of the items.
146 146
  template <typename Graph, typename Item>
147 147
  inline int countItems(const Graph& g) {
148 148
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
149 149
    int num = 0;
150 150
    for (ItemIt it(g); it != INVALID; ++it) {
151 151
      ++num;
152 152
    }
153 153
    return num;
154 154
  }
155 155

	
156 156
  // Node counting:
157 157

	
158 158
  namespace _core_bits {
159 159

	
160 160
    template <typename Graph, typename Enable = void>
161 161
    struct CountNodesSelector {
162 162
      static int count(const Graph &g) {
163 163
        return countItems<Graph, typename Graph::Node>(g);
164 164
      }
165 165
    };
166 166

	
167 167
    template <typename Graph>
168 168
    struct CountNodesSelector<
169 169
      Graph, typename
170 170
      enable_if<typename Graph::NodeNumTag, void>::type>
171 171
    {
172 172
      static int count(const Graph &g) {
173 173
        return g.nodeNum();
174 174
      }
175 175
    };
176 176
  }
177 177

	
178 178
  /// \brief Function to count the nodes in the graph.
179 179
  ///
180 180
  /// This function counts the nodes in the graph.
181 181
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
182 182
  /// graph structures it is specialized to run in <em>O</em>(1).
183 183
  ///
184 184
  /// \note If the graph contains a \c nodeNum() member function and a
185 185
  /// \c NodeNumTag tag then this function calls directly the member
186 186
  /// function to query the cardinality of the node set.
187 187
  template <typename Graph>
188 188
  inline int countNodes(const Graph& g) {
189 189
    return _core_bits::CountNodesSelector<Graph>::count(g);
190 190
  }
191 191

	
192 192
  // Arc counting:
193 193

	
194 194
  namespace _core_bits {
195 195

	
196 196
    template <typename Graph, typename Enable = void>
197 197
    struct CountArcsSelector {
198 198
      static int count(const Graph &g) {
199 199
        return countItems<Graph, typename Graph::Arc>(g);
200 200
      }
201 201
    };
202 202

	
203 203
    template <typename Graph>
204 204
    struct CountArcsSelector<
205 205
      Graph,
206 206
      typename enable_if<typename Graph::ArcNumTag, void>::type>
207 207
    {
208 208
      static int count(const Graph &g) {
209 209
        return g.arcNum();
210 210
      }
211 211
    };
212 212
  }
213 213

	
214 214
  /// \brief Function to count the arcs in the graph.
215 215
  ///
216 216
  /// This function counts the arcs in the graph.
217 217
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
218 218
  /// graph structures it is specialized to run in <em>O</em>(1).
219 219
  ///
220 220
  /// \note If the graph contains a \c arcNum() member function and a
221 221
  /// \c ArcNumTag tag then this function calls directly the member
222 222
  /// function to query the cardinality of the arc set.
223 223
  template <typename Graph>
224 224
  inline int countArcs(const Graph& g) {
225 225
    return _core_bits::CountArcsSelector<Graph>::count(g);
226 226
  }
227 227

	
228 228
  // Edge counting:
229 229

	
230 230
  namespace _core_bits {
231 231

	
232 232
    template <typename Graph, typename Enable = void>
233 233
    struct CountEdgesSelector {
234 234
      static int count(const Graph &g) {
235 235
        return countItems<Graph, typename Graph::Edge>(g);
236 236
      }
237 237
    };
238 238

	
239 239
    template <typename Graph>
240 240
    struct CountEdgesSelector<
241 241
      Graph,
242 242
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
243 243
    {
244 244
      static int count(const Graph &g) {
245 245
        return g.edgeNum();
246 246
      }
247 247
    };
248 248
  }
249 249

	
250 250
  /// \brief Function to count the edges in the graph.
251 251
  ///
252 252
  /// This function counts the edges in the graph.
253 253
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
254 254
  /// graph structures it is specialized to run in <em>O</em>(1).
255 255
  ///
256 256
  /// \note If the graph contains a \c edgeNum() member function and a
257 257
  /// \c EdgeNumTag tag then this function calls directly the member
258 258
  /// function to query the cardinality of the edge set.
259 259
  template <typename Graph>
260 260
  inline int countEdges(const Graph& g) {
261 261
    return _core_bits::CountEdgesSelector<Graph>::count(g);
262 262

	
263 263
  }
264 264

	
265 265

	
266 266
  template <typename Graph, typename DegIt>
267 267
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
268 268
    int num = 0;
269 269
    for (DegIt it(_g, _n); it != INVALID; ++it) {
270 270
      ++num;
271 271
    }
272 272
    return num;
273 273
  }
274 274

	
275 275
  /// \brief Function to count the number of the out-arcs from node \c n.
276 276
  ///
277 277
  /// This function counts the number of the out-arcs from node \c n
278 278
  /// in the graph \c g.
279 279
  template <typename Graph>
280 280
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
281 281
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
282 282
  }
283 283

	
284 284
  /// \brief Function to count the number of the in-arcs to node \c n.
285 285
  ///
286 286
  /// This function counts the number of the in-arcs to node \c n
287 287
  /// in the graph \c g.
288 288
  template <typename Graph>
289 289
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
290 290
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
291 291
  }
292 292

	
293 293
  /// \brief Function to count the number of the inc-edges to node \c n.
294 294
  ///
295 295
  /// This function counts the number of the inc-edges to node \c n
296 296
  /// in the undirected graph \c g.
297 297
  template <typename Graph>
298 298
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
299 299
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
300 300
  }
301 301

	
302 302
  namespace _core_bits {
303 303

	
304 304
    template <typename Digraph, typename Item, typename RefMap>
305 305
    class MapCopyBase {
306 306
    public:
307 307
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
308 308

	
309 309
      virtual ~MapCopyBase() {}
310 310
    };
311 311

	
312 312
    template <typename Digraph, typename Item, typename RefMap,
313 313
              typename FromMap, typename ToMap>
314 314
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
315 315
    public:
316 316

	
317 317
      MapCopy(const FromMap& map, ToMap& tmap)
318 318
        : _map(map), _tmap(tmap) {}
319 319

	
320 320
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
321 321
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
322 322
        for (ItemIt it(digraph); it != INVALID; ++it) {
323 323
          _tmap.set(refMap[it], _map[it]);
324 324
        }
325 325
      }
326 326

	
327 327
    private:
328 328
      const FromMap& _map;
329 329
      ToMap& _tmap;
330 330
    };
331 331

	
332 332
    template <typename Digraph, typename Item, typename RefMap, typename It>
333 333
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
334 334
    public:
335 335

	
336 336
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
337 337

	
338 338
      virtual void copy(const Digraph&, const RefMap& refMap) {
339 339
        _it = refMap[_item];
340 340
      }
341 341

	
342 342
    private:
343 343
      Item _item;
344 344
      It& _it;
345 345
    };
346 346

	
347 347
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
348 348
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
349 349
    public:
350 350

	
351 351
      RefCopy(Ref& map) : _map(map) {}
352 352

	
353 353
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
354 354
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
355 355
        for (ItemIt it(digraph); it != INVALID; ++it) {
356 356
          _map.set(it, refMap[it]);
357 357
        }
358 358
      }
359 359

	
360 360
    private:
361 361
      Ref& _map;
362 362
    };
363 363

	
364 364
    template <typename Digraph, typename Item, typename RefMap,
365 365
              typename CrossRef>
366 366
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
367 367
    public:
368 368

	
369 369
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
370 370

	
371 371
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
372 372
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
373 373
        for (ItemIt it(digraph); it != INVALID; ++it) {
374 374
          _cmap.set(refMap[it], it);
375 375
        }
376 376
      }
377 377

	
378 378
    private:
379 379
      CrossRef& _cmap;
380 380
    };
381 381

	
382 382
    template <typename Digraph, typename Enable = void>
383 383
    struct DigraphCopySelector {
384 384
      template <typename From, typename NodeRefMap, typename ArcRefMap>
385 385
      static void copy(const From& from, Digraph &to,
386 386
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
387 387
        to.clear();
388 388
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
389 389
          nodeRefMap[it] = to.addNode();
390 390
        }
391 391
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
392 392
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
393 393
                                    nodeRefMap[from.target(it)]);
394 394
        }
395 395
      }
396 396
    };
397 397

	
398 398
    template <typename Digraph>
399 399
    struct DigraphCopySelector<
400 400
      Digraph,
401 401
      typename enable_if<typename Digraph::BuildTag, void>::type>
402 402
    {
403 403
      template <typename From, typename NodeRefMap, typename ArcRefMap>
404 404
      static void copy(const From& from, Digraph &to,
405 405
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
406 406
        to.build(from, nodeRefMap, arcRefMap);
407 407
      }
408 408
    };
409 409

	
410 410
    template <typename Graph, typename Enable = void>
411 411
    struct GraphCopySelector {
412 412
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
413 413
      static void copy(const From& from, Graph &to,
414 414
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
415 415
        to.clear();
416 416
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
417 417
          nodeRefMap[it] = to.addNode();
418 418
        }
419 419
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
420 420
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
421 421
                                      nodeRefMap[from.v(it)]);
422 422
        }
423 423
      }
424 424
    };
425 425

	
426 426
    template <typename Graph>
427 427
    struct GraphCopySelector<
428 428
      Graph,
429 429
      typename enable_if<typename Graph::BuildTag, void>::type>
430 430
    {
431 431
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
432 432
      static void copy(const From& from, Graph &to,
433 433
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
434 434
        to.build(from, nodeRefMap, edgeRefMap);
435 435
      }
436 436
    };
437 437

	
438 438
  }
439 439

	
440 440
  /// \brief Class to copy a digraph.
441 441
  ///
442 442
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
443 443
  /// simplest way of using it is through the \c digraphCopy() function.
444 444
  ///
445 445
  /// This class not only make a copy of a digraph, but it can create
446 446
  /// references and cross references between the nodes and arcs of
447 447
  /// the two digraphs, and it can copy maps to use with the newly created
448 448
  /// digraph.
449 449
  ///
450 450
  /// To make a copy from a digraph, first an instance of DigraphCopy
451 451
  /// should be created, then the data belongs to the digraph should
452 452
  /// assigned to copy. In the end, the \c run() member should be
453 453
  /// called.
454 454
  ///
455 455
  /// The next code copies a digraph with several data:
456 456
  ///\code
457 457
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
458 458
  ///  // Create references for the nodes
459 459
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
460 460
  ///  cg.nodeRef(nr);
461 461
  ///  // Create cross references (inverse) for the arcs
462 462
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
463 463
  ///  cg.arcCrossRef(acr);
464 464
  ///  // Copy an arc map
465 465
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
466 466
  ///  NewGraph::ArcMap<double> namap(new_graph);
467 467
  ///  cg.arcMap(oamap, namap);
468 468
  ///  // Copy a node
469 469
  ///  OrigGraph::Node on;
470 470
  ///  NewGraph::Node nn;
471 471
  ///  cg.node(on, nn);
472 472
  ///  // Execute copying
473 473
  ///  cg.run();
474 474
  ///\endcode
475 475
  template <typename From, typename To>
476 476
  class DigraphCopy {
477 477
  private:
478 478

	
479 479
    typedef typename From::Node Node;
480 480
    typedef typename From::NodeIt NodeIt;
481 481
    typedef typename From::Arc Arc;
482 482
    typedef typename From::ArcIt ArcIt;
483 483

	
484 484
    typedef typename To::Node TNode;
485 485
    typedef typename To::Arc TArc;
486 486

	
487 487
    typedef typename From::template NodeMap<TNode> NodeRefMap;
488 488
    typedef typename From::template ArcMap<TArc> ArcRefMap;
489 489

	
490 490
  public:
491 491

	
492 492
    /// \brief Constructor of DigraphCopy.
493 493
    ///
494 494
    /// Constructor of DigraphCopy for copying the content of the
495 495
    /// \c from digraph into the \c to digraph.
496 496
    DigraphCopy(const From& from, To& to)
497 497
      : _from(from), _to(to) {}
498 498

	
499 499
    /// \brief Destructor of DigraphCopy
500 500
    ///
501 501
    /// Destructor of DigraphCopy.
502 502
    ~DigraphCopy() {
503 503
      for (int i = 0; i < int(_node_maps.size()); ++i) {
504 504
        delete _node_maps[i];
505 505
      }
506 506
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
507 507
        delete _arc_maps[i];
508 508
      }
509 509

	
510 510
    }
511 511

	
512 512
    /// \brief Copy the node references into the given map.
513 513
    ///
514 514
    /// This function copies the node references into the given map.
515 515
    /// The parameter should be a map, whose key type is the Node type of
516 516
    /// the source digraph, while the value type is the Node type of the
517 517
    /// destination digraph.
518 518
    template <typename NodeRef>
519 519
    DigraphCopy& nodeRef(NodeRef& map) {
520 520
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
521 521
                           NodeRefMap, NodeRef>(map));
522 522
      return *this;
523 523
    }
524 524

	
525 525
    /// \brief Copy the node cross references into the given map.
526 526
    ///
527 527
    /// This function copies the node cross references (reverse references)
528 528
    /// into the given map. The parameter should be a map, whose key type
529 529
    /// is the Node type of the destination digraph, while the value type is
530 530
    /// the Node type of the source digraph.
531 531
    template <typename NodeCrossRef>
532 532
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
533 533
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
534 534
                           NodeRefMap, NodeCrossRef>(map));
535 535
      return *this;
536 536
    }
537 537

	
538 538
    /// \brief Make a copy of the given node map.
539 539
    ///
540 540
    /// This function makes a copy of the given node map for the newly
541 541
    /// created digraph.
542 542
    /// The key type of the new map \c tmap should be the Node type of the
543 543
    /// destination digraph, and the key type of the original map \c map
544 544
    /// should be the Node type of the source digraph.
545 545
    template <typename FromMap, typename ToMap>
546 546
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
547 547
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
548 548
                           NodeRefMap, FromMap, ToMap>(map, tmap));
549 549
      return *this;
550 550
    }
551 551

	
552 552
    /// \brief Make a copy of the given node.
553 553
    ///
554 554
    /// This function makes a copy of the given node.
555 555
    DigraphCopy& node(const Node& node, TNode& tnode) {
556 556
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
557 557
                           NodeRefMap, TNode>(node, tnode));
558 558
      return *this;
559 559
    }
560 560

	
561 561
    /// \brief Copy the arc references into the given map.
562 562
    ///
563 563
    /// This function copies the arc references into the given map.
564 564
    /// The parameter should be a map, whose key type is the Arc type of
565 565
    /// the source digraph, while the value type is the Arc type of the
566 566
    /// destination digraph.
567 567
    template <typename ArcRef>
568 568
    DigraphCopy& arcRef(ArcRef& map) {
569 569
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
570 570
                          ArcRefMap, ArcRef>(map));
571 571
      return *this;
572 572
    }
573 573

	
574 574
    /// \brief Copy the arc cross references into the given map.
575 575
    ///
576 576
    /// This function copies the arc cross references (reverse references)
577 577
    /// into the given map. The parameter should be a map, whose key type
578 578
    /// is the Arc type of the destination digraph, while the value type is
579 579
    /// the Arc type of the source digraph.
580 580
    template <typename ArcCrossRef>
581 581
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
582 582
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
583 583
                          ArcRefMap, ArcCrossRef>(map));
584 584
      return *this;
585 585
    }
586 586

	
587 587
    /// \brief Make a copy of the given arc map.
588 588
    ///
589 589
    /// This function makes a copy of the given arc map for the newly
590 590
    /// created digraph.
591 591
    /// The key type of the new map \c tmap should be the Arc type of the
592 592
    /// destination digraph, and the key type of the original map \c map
593 593
    /// should be the Arc type of the source digraph.
594 594
    template <typename FromMap, typename ToMap>
595 595
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
596 596
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
597 597
                          ArcRefMap, FromMap, ToMap>(map, tmap));
598 598
      return *this;
599 599
    }
600 600

	
601 601
    /// \brief Make a copy of the given arc.
602 602
    ///
603 603
    /// This function makes a copy of the given arc.
604 604
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
605 605
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
606 606
                          ArcRefMap, TArc>(arc, tarc));
607 607
      return *this;
608 608
    }
609 609

	
610 610
    /// \brief Execute copying.
611 611
    ///
612 612
    /// This function executes the copying of the digraph along with the
613 613
    /// copying of the assigned data.
614 614
    void run() {
615 615
      NodeRefMap nodeRefMap(_from);
616 616
      ArcRefMap arcRefMap(_from);
617 617
      _core_bits::DigraphCopySelector<To>::
618 618
        copy(_from, _to, nodeRefMap, arcRefMap);
619 619
      for (int i = 0; i < int(_node_maps.size()); ++i) {
620 620
        _node_maps[i]->copy(_from, nodeRefMap);
621 621
      }
622 622
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
623 623
        _arc_maps[i]->copy(_from, arcRefMap);
624 624
      }
625 625
    }
626 626

	
627 627
  protected:
628 628

	
629 629
    const From& _from;
630 630
    To& _to;
631 631

	
632 632
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
633 633
      _node_maps;
634 634

	
635 635
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
636 636
      _arc_maps;
637 637

	
638 638
  };
639 639

	
640 640
  /// \brief Copy a digraph to another digraph.
641 641
  ///
642 642
  /// This function copies a digraph to another digraph.
643 643
  /// The complete usage of it is detailed in the DigraphCopy class, but
644 644
  /// a short example shows a basic work:
645 645
  ///\code
646 646
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
647 647
  ///\endcode
648 648
  ///
649 649
  /// After the copy the \c nr map will contain the mapping from the
650 650
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
651 651
  /// \c acr will contain the mapping from the arcs of the \c to digraph
652 652
  /// to the arcs of the \c from digraph.
653 653
  ///
654 654
  /// \see DigraphCopy
655 655
  template <typename From, typename To>
656 656
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
657 657
    return DigraphCopy<From, To>(from, to);
658 658
  }
659 659

	
660 660
  /// \brief Class to copy a graph.
661 661
  ///
662 662
  /// Class to copy a graph to another graph (duplicate a graph). The
663 663
  /// simplest way of using it is through the \c graphCopy() function.
664 664
  ///
665 665
  /// This class not only make a copy of a graph, but it can create
666 666
  /// references and cross references between the nodes, edges and arcs of
667 667
  /// the two graphs, and it can copy maps for using with the newly created
668 668
  /// graph.
669 669
  ///
670 670
  /// To make a copy from a graph, first an instance of GraphCopy
671 671
  /// should be created, then the data belongs to the graph should
672 672
  /// assigned to copy. In the end, the \c run() member should be
673 673
  /// called.
674 674
  ///
675 675
  /// The next code copies a graph with several data:
676 676
  ///\code
677 677
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
678 678
  ///  // Create references for the nodes
679 679
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
680 680
  ///  cg.nodeRef(nr);
681 681
  ///  // Create cross references (inverse) for the edges
682 682
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
683 683
  ///  cg.edgeCrossRef(ecr);
684 684
  ///  // Copy an edge map
685 685
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
686 686
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
687 687
  ///  cg.edgeMap(oemap, nemap);
688 688
  ///  // Copy a node
689 689
  ///  OrigGraph::Node on;
690 690
  ///  NewGraph::Node nn;
691 691
  ///  cg.node(on, nn);
692 692
  ///  // Execute copying
693 693
  ///  cg.run();
694 694
  ///\endcode
695 695
  template <typename From, typename To>
696 696
  class GraphCopy {
697 697
  private:
698 698

	
699 699
    typedef typename From::Node Node;
700 700
    typedef typename From::NodeIt NodeIt;
701 701
    typedef typename From::Arc Arc;
702 702
    typedef typename From::ArcIt ArcIt;
703 703
    typedef typename From::Edge Edge;
704 704
    typedef typename From::EdgeIt EdgeIt;
705 705

	
706 706
    typedef typename To::Node TNode;
707 707
    typedef typename To::Arc TArc;
708 708
    typedef typename To::Edge TEdge;
709 709

	
710 710
    typedef typename From::template NodeMap<TNode> NodeRefMap;
711 711
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
712 712

	
713 713
    struct ArcRefMap {
714 714
      ArcRefMap(const From& from, const To& to,
715 715
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
716 716
        : _from(from), _to(to),
717 717
          _edge_ref(edge_ref), _node_ref(node_ref) {}
718 718

	
719 719
      typedef typename From::Arc Key;
720 720
      typedef typename To::Arc Value;
721 721

	
722 722
      Value operator[](const Key& key) const {
723 723
        bool forward = _from.u(key) != _from.v(key) ?
724 724
          _node_ref[_from.source(key)] ==
725 725
          _to.source(_to.direct(_edge_ref[key], true)) :
726 726
          _from.direction(key);
727 727
        return _to.direct(_edge_ref[key], forward);
728 728
      }
729 729

	
730 730
      const From& _from;
731 731
      const To& _to;
732 732
      const EdgeRefMap& _edge_ref;
733 733
      const NodeRefMap& _node_ref;
734 734
    };
735 735

	
736 736
  public:
737 737

	
738 738
    /// \brief Constructor of GraphCopy.
739 739
    ///
740 740
    /// Constructor of GraphCopy for copying the content of the
741 741
    /// \c from graph into the \c to graph.
742 742
    GraphCopy(const From& from, To& to)
743 743
      : _from(from), _to(to) {}
744 744

	
745 745
    /// \brief Destructor of GraphCopy
746 746
    ///
747 747
    /// Destructor of GraphCopy.
748 748
    ~GraphCopy() {
749 749
      for (int i = 0; i < int(_node_maps.size()); ++i) {
750 750
        delete _node_maps[i];
751 751
      }
752 752
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
753 753
        delete _arc_maps[i];
754 754
      }
755 755
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
756 756
        delete _edge_maps[i];
757 757
      }
758 758
    }
759 759

	
760 760
    /// \brief Copy the node references into the given map.
761 761
    ///
762 762
    /// This function copies the node references into the given map.
763 763
    /// The parameter should be a map, whose key type is the Node type of
764 764
    /// the source graph, while the value type is the Node type of the
765 765
    /// destination graph.
766 766
    template <typename NodeRef>
767 767
    GraphCopy& nodeRef(NodeRef& map) {
768 768
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
769 769
                           NodeRefMap, NodeRef>(map));
770 770
      return *this;
771 771
    }
772 772

	
773 773
    /// \brief Copy the node cross references into the given map.
774 774
    ///
775 775
    /// This function copies the node cross references (reverse references)
776 776
    /// into the given map. The parameter should be a map, whose key type
777 777
    /// is the Node type of the destination graph, while the value type is
778 778
    /// the Node type of the source graph.
779 779
    template <typename NodeCrossRef>
780 780
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
781 781
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
782 782
                           NodeRefMap, NodeCrossRef>(map));
783 783
      return *this;
784 784
    }
785 785

	
786 786
    /// \brief Make a copy of the given node map.
787 787
    ///
788 788
    /// This function makes a copy of the given node map for the newly
789 789
    /// created graph.
790 790
    /// The key type of the new map \c tmap should be the Node type of the
791 791
    /// destination graph, and the key type of the original map \c map
792 792
    /// should be the Node type of the source graph.
793 793
    template <typename FromMap, typename ToMap>
794 794
    GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
795 795
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
796 796
                           NodeRefMap, FromMap, ToMap>(map, tmap));
797 797
      return *this;
798 798
    }
799 799

	
800 800
    /// \brief Make a copy of the given node.
801 801
    ///
802 802
    /// This function makes a copy of the given node.
803 803
    GraphCopy& node(const Node& node, TNode& tnode) {
804 804
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
805 805
                           NodeRefMap, TNode>(node, tnode));
806 806
      return *this;
807 807
    }
808 808

	
809 809
    /// \brief Copy the arc references into the given map.
810 810
    ///
811 811
    /// This function copies the arc references into the given map.
812 812
    /// The parameter should be a map, whose key type is the Arc type of
813 813
    /// the source graph, while the value type is the Arc type of the
814 814
    /// destination graph.
815 815
    template <typename ArcRef>
816 816
    GraphCopy& arcRef(ArcRef& map) {
817 817
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
818 818
                          ArcRefMap, ArcRef>(map));
819 819
      return *this;
820 820
    }
821 821

	
822 822
    /// \brief Copy the arc cross references into the given map.
823 823
    ///
824 824
    /// This function copies the arc cross references (reverse references)
825 825
    /// into the given map. The parameter should be a map, whose key type
826 826
    /// is the Arc type of the destination graph, while the value type is
827 827
    /// the Arc type of the source graph.
828 828
    template <typename ArcCrossRef>
829 829
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
830 830
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
831 831
                          ArcRefMap, ArcCrossRef>(map));
832 832
      return *this;
833 833
    }
834 834

	
835 835
    /// \brief Make a copy of the given arc map.
836 836
    ///
837 837
    /// This function makes a copy of the given arc map for the newly
838 838
    /// created graph.
839 839
    /// The key type of the new map \c tmap should be the Arc type of the
840 840
    /// destination graph, and the key type of the original map \c map
841 841
    /// should be the Arc type of the source graph.
842 842
    template <typename FromMap, typename ToMap>
843 843
    GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
844 844
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
845 845
                          ArcRefMap, FromMap, ToMap>(map, tmap));
846 846
      return *this;
847 847
    }
848 848

	
849 849
    /// \brief Make a copy of the given arc.
850 850
    ///
851 851
    /// This function makes a copy of the given arc.
852 852
    GraphCopy& arc(const Arc& arc, TArc& tarc) {
853 853
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
854 854
                          ArcRefMap, TArc>(arc, tarc));
855 855
      return *this;
856 856
    }
857 857

	
858 858
    /// \brief Copy the edge references into the given map.
859 859
    ///
860 860
    /// This function copies the edge references into the given map.
861 861
    /// The parameter should be a map, whose key type is the Edge type of
862 862
    /// the source graph, while the value type is the Edge type of the
863 863
    /// destination graph.
864 864
    template <typename EdgeRef>
865 865
    GraphCopy& edgeRef(EdgeRef& map) {
866 866
      _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
867 867
                           EdgeRefMap, EdgeRef>(map));
868 868
      return *this;
869 869
    }
870 870

	
871 871
    /// \brief Copy the edge cross references into the given map.
872 872
    ///
873 873
    /// This function copies the edge cross references (reverse references)
874 874
    /// into the given map. The parameter should be a map, whose key type
875 875
    /// is the Edge type of the destination graph, while the value type is
876 876
    /// the Edge type of the source graph.
877 877
    template <typename EdgeCrossRef>
878 878
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
879 879
      _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
880 880
                           Edge, EdgeRefMap, EdgeCrossRef>(map));
881 881
      return *this;
882 882
    }
883 883

	
884 884
    /// \brief Make a copy of the given edge map.
885 885
    ///
886 886
    /// This function makes a copy of the given edge map for the newly
887 887
    /// created graph.
888 888
    /// The key type of the new map \c tmap should be the Edge type of the
889 889
    /// destination graph, and the key type of the original map \c map
890 890
    /// should be the Edge type of the source graph.
891 891
    template <typename FromMap, typename ToMap>
892 892
    GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
893 893
      _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
894 894
                           EdgeRefMap, FromMap, ToMap>(map, tmap));
895 895
      return *this;
896 896
    }
897 897

	
898 898
    /// \brief Make a copy of the given edge.
899 899
    ///
900 900
    /// This function makes a copy of the given edge.
901 901
    GraphCopy& edge(const Edge& edge, TEdge& tedge) {
902 902
      _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
903 903
                           EdgeRefMap, TEdge>(edge, tedge));
904 904
      return *this;
905 905
    }
906 906

	
907 907
    /// \brief Execute copying.
908 908
    ///
909 909
    /// This function executes the copying of the graph along with the
910 910
    /// copying of the assigned data.
911 911
    void run() {
912 912
      NodeRefMap nodeRefMap(_from);
913 913
      EdgeRefMap edgeRefMap(_from);
914 914
      ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
915 915
      _core_bits::GraphCopySelector<To>::
916 916
        copy(_from, _to, nodeRefMap, edgeRefMap);
917 917
      for (int i = 0; i < int(_node_maps.size()); ++i) {
918 918
        _node_maps[i]->copy(_from, nodeRefMap);
919 919
      }
920 920
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
921 921
        _edge_maps[i]->copy(_from, edgeRefMap);
922 922
      }
923 923
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
924 924
        _arc_maps[i]->copy(_from, arcRefMap);
925 925
      }
926 926
    }
927 927

	
928 928
  private:
929 929

	
930 930
    const From& _from;
931 931
    To& _to;
932 932

	
933 933
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
934 934
      _node_maps;
935 935

	
936 936
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
937 937
      _arc_maps;
938 938

	
939 939
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
940 940
      _edge_maps;
941 941

	
942 942
  };
943 943

	
944 944
  /// \brief Copy a graph to another graph.
945 945
  ///
946 946
  /// This function copies a graph to another graph.
947 947
  /// The complete usage of it is detailed in the GraphCopy class,
948 948
  /// but a short example shows a basic work:
949 949
  ///\code
950 950
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
951 951
  ///\endcode
952 952
  ///
953 953
  /// After the copy the \c nr map will contain the mapping from the
954 954
  /// nodes of the \c from graph to the nodes of the \c to graph and
955 955
  /// \c ecr will contain the mapping from the edges of the \c to graph
956 956
  /// to the edges of the \c from graph.
957 957
  ///
958 958
  /// \see GraphCopy
959 959
  template <typename From, typename To>
960 960
  GraphCopy<From, To>
961 961
  graphCopy(const From& from, To& to) {
962 962
    return GraphCopy<From, To>(from, to);
963 963
  }
964 964

	
965 965
  namespace _core_bits {
966 966

	
967 967
    template <typename Graph, typename Enable = void>
968 968
    struct FindArcSelector {
969 969
      typedef typename Graph::Node Node;
970 970
      typedef typename Graph::Arc Arc;
971 971
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
972 972
        if (e == INVALID) {
973 973
          g.firstOut(e, u);
974 974
        } else {
975 975
          g.nextOut(e);
976 976
        }
977 977
        while (e != INVALID && g.target(e) != v) {
978 978
          g.nextOut(e);
979 979
        }
980 980
        return e;
981 981
      }
982 982
    };
983 983

	
984 984
    template <typename Graph>
985 985
    struct FindArcSelector<
986 986
      Graph,
987 987
      typename enable_if<typename Graph::FindArcTag, void>::type>
988 988
    {
989 989
      typedef typename Graph::Node Node;
990 990
      typedef typename Graph::Arc Arc;
991 991
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
992 992
        return g.findArc(u, v, prev);
993 993
      }
994 994
    };
995 995
  }
996 996

	
997 997
  /// \brief Find an arc between two nodes of a digraph.
998 998
  ///
999 999
  /// This function finds an arc from node \c u to node \c v in the
1000 1000
  /// digraph \c g.
1001 1001
  ///
1002 1002
  /// If \c prev is \ref INVALID (this is the default value), then
1003 1003
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
1004 1004
  /// the next arc from \c u to \c v after \c prev.
1005 1005
  /// \return The found arc or \ref INVALID if there is no such an arc.
1006 1006
  ///
1007 1007
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
1008 1008
  ///\code
1009 1009
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1010 1010
  ///   ...
1011 1011
  /// }
1012 1012
  ///\endcode
1013 1013
  ///
1014 1014
  /// \note \ref ConArcIt provides iterator interface for the same
1015 1015
  /// functionality.
1016 1016
  ///
1017 1017
  ///\sa ConArcIt
1018 1018
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1019 1019
  template <typename Graph>
1020 1020
  inline typename Graph::Arc
1021 1021
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1022 1022
          typename Graph::Arc prev = INVALID) {
1023 1023
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1024 1024
  }
1025 1025

	
1026 1026
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1027 1027
  ///
1028 1028
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1029 1029
  /// a higher level interface for the \ref findArc() function. You can
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DFS_H
20 20
#define LEMON_DFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief DFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Dfs class.
36 36

	
37 37
  ///Default traits class of Dfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct DfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the %DFS paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the %DFS paths.
50 50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a PredMap.
53 53

	
54 54
    ///This function instantiates a PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
66 66
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67 67
    ///Instantiates a ProcessedMap.
68 68

	
69 69
    ///This function instantiates a ProcessedMap.
70 70
    ///\param g is the digraph, to which
71 71
    ///we would like to define the ProcessedMap
72 72
#ifdef DOXYGEN
73 73
    static ProcessedMap *createProcessedMap(const Digraph &g)
74 74
#else
75 75
    static ProcessedMap *createProcessedMap(const Digraph &)
76 76
#endif
77 77
    {
78 78
      return new ProcessedMap();
79 79
    }
80 80

	
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86 86
    ///Instantiates a ReachedMap.
87 87

	
88 88
    ///This function instantiates a ReachedMap.
89 89
    ///\param g is the digraph, to which
90 90
    ///we would like to define the ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101 101
    ///Instantiates a DistMap.
102 102

	
103 103
    ///This function instantiates a DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105 105
    ///DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%DFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %DFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref dfs() "function-type interface" for the DFS
118 118
  ///algorithm, which is convenient in the simplier cases and it can be
119 119
  ///used easier.
120 120
  ///
121 121
  ///\tparam GR The type of the digraph the algorithm runs on.
122 122
  ///The default value is \ref ListDigraph. The value of GR is not used
123 123
  ///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits.
124 124
  ///\tparam TR Traits class to set various data types used by the algorithm.
125 125
  ///The default traits class is
126 126
  ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
127 127
  ///See \ref DfsDefaultTraits for the documentation of
128 128
  ///a Dfs traits class.
129 129
#ifdef DOXYGEN
130 130
  template <typename GR,
131 131
            typename TR>
132 132
#else
133 133
  template <typename GR=ListDigraph,
134 134
            typename TR=DfsDefaultTraits<GR> >
135 135
#endif
136 136
  class Dfs {
137 137
  public:
138 138

	
139 139
    ///The type of the digraph the algorithm runs on.
140 140
    typedef typename TR::Digraph Digraph;
141 141

	
142 142
    ///\brief The type of the map that stores the predecessor arcs of the
143 143
    ///DFS paths.
144 144
    typedef typename TR::PredMap PredMap;
145 145
    ///The type of the map that stores the distances of the nodes.
146 146
    typedef typename TR::DistMap DistMap;
147 147
    ///The type of the map that indicates which nodes are reached.
148 148
    typedef typename TR::ReachedMap ReachedMap;
149 149
    ///The type of the map that indicates which nodes are processed.
150 150
    typedef typename TR::ProcessedMap ProcessedMap;
151 151
    ///The type of the paths.
152 152
    typedef PredMapPath<Digraph, PredMap> Path;
153 153

	
154 154
    ///The traits class.
155 155
    typedef TR Traits;
156 156

	
157 157
  private:
158 158

	
159 159
    typedef typename Digraph::Node Node;
160 160
    typedef typename Digraph::NodeIt NodeIt;
161 161
    typedef typename Digraph::Arc Arc;
162 162
    typedef typename Digraph::OutArcIt OutArcIt;
163 163

	
164 164
    //Pointer to the underlying digraph.
165 165
    const Digraph *G;
166 166
    //Pointer to the map of predecessor arcs.
167 167
    PredMap *_pred;
168 168
    //Indicates if _pred is locally allocated (true) or not.
169 169
    bool local_pred;
170 170
    //Pointer to the map of distances.
171 171
    DistMap *_dist;
172 172
    //Indicates if _dist is locally allocated (true) or not.
173 173
    bool local_dist;
174 174
    //Pointer to the map of reached status of the nodes.
175 175
    ReachedMap *_reached;
176 176
    //Indicates if _reached is locally allocated (true) or not.
177 177
    bool local_reached;
178 178
    //Pointer to the map of processed status of the nodes.
179 179
    ProcessedMap *_processed;
180 180
    //Indicates if _processed is locally allocated (true) or not.
181 181
    bool local_processed;
182 182

	
183 183
    std::vector<typename Digraph::OutArcIt> _stack;
184 184
    int _stack_head;
185 185

	
186 186
    //Creates the maps if necessary.
187 187
    void create_maps()
188 188
    {
189 189
      if(!_pred) {
190 190
        local_pred = true;
191 191
        _pred = Traits::createPredMap(*G);
192 192
      }
193 193
      if(!_dist) {
194 194
        local_dist = true;
195 195
        _dist = Traits::createDistMap(*G);
196 196
      }
197 197
      if(!_reached) {
198 198
        local_reached = true;
199 199
        _reached = Traits::createReachedMap(*G);
200 200
      }
201 201
      if(!_processed) {
202 202
        local_processed = true;
203 203
        _processed = Traits::createProcessedMap(*G);
204 204
      }
205 205
    }
206 206

	
207 207
  protected:
208 208

	
209 209
    Dfs() {}
210 210

	
211 211
  public:
212 212

	
213 213
    typedef Dfs Create;
214 214

	
215 215
    ///\name Named template parameters
216 216

	
217 217
    ///@{
218 218

	
219 219
    template <class T>
220 220
    struct SetPredMapTraits : public Traits {
221 221
      typedef T PredMap;
222 222
      static PredMap *createPredMap(const Digraph &)
223 223
      {
224 224
        LEMON_ASSERT(false, "PredMap is not initialized");
225 225
        return 0; // ignore warnings
226 226
      }
227 227
    };
228 228
    ///\brief \ref named-templ-param "Named parameter" for setting
229 229
    ///PredMap type.
230 230
    ///
231 231
    ///\ref named-templ-param "Named parameter" for setting
232 232
    ///PredMap type.
233 233
    template <class T>
234 234
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
235 235
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
236 236
    };
237 237

	
238 238
    template <class T>
239 239
    struct SetDistMapTraits : public Traits {
240 240
      typedef T DistMap;
241 241
      static DistMap *createDistMap(const Digraph &)
242 242
      {
243 243
        LEMON_ASSERT(false, "DistMap is not initialized");
244 244
        return 0; // ignore warnings
245 245
      }
246 246
    };
247 247
    ///\brief \ref named-templ-param "Named parameter" for setting
248 248
    ///DistMap type.
249 249
    ///
250 250
    ///\ref named-templ-param "Named parameter" for setting
251 251
    ///DistMap type.
252 252
    template <class T>
253 253
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
254 254
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
255 255
    };
256 256

	
257 257
    template <class T>
258 258
    struct SetReachedMapTraits : public Traits {
259 259
      typedef T ReachedMap;
260 260
      static ReachedMap *createReachedMap(const Digraph &)
261 261
      {
262 262
        LEMON_ASSERT(false, "ReachedMap is not initialized");
263 263
        return 0; // ignore warnings
264 264
      }
265 265
    };
266 266
    ///\brief \ref named-templ-param "Named parameter" for setting
267 267
    ///ReachedMap type.
268 268
    ///
269 269
    ///\ref named-templ-param "Named parameter" for setting
270 270
    ///ReachedMap type.
271 271
    template <class T>
272 272
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
273 273
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
274 274
    };
275 275

	
276 276
    template <class T>
277 277
    struct SetProcessedMapTraits : public Traits {
278 278
      typedef T ProcessedMap;
279 279
      static ProcessedMap *createProcessedMap(const Digraph &)
280 280
      {
281 281
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
282 282
        return 0; // ignore warnings
283 283
      }
284 284
    };
285 285
    ///\brief \ref named-templ-param "Named parameter" for setting
286 286
    ///ProcessedMap type.
287 287
    ///
288 288
    ///\ref named-templ-param "Named parameter" for setting
289 289
    ///ProcessedMap type.
290 290
    template <class T>
291 291
    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
292 292
      typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
293 293
    };
294 294

	
295 295
    struct SetStandardProcessedMapTraits : public Traits {
296 296
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
297 297
      static ProcessedMap *createProcessedMap(const Digraph &g)
298 298
      {
299 299
        return new ProcessedMap(g);
300 300
      }
301 301
    };
302 302
    ///\brief \ref named-templ-param "Named parameter" for setting
303 303
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
304 304
    ///
305 305
    ///\ref named-templ-param "Named parameter" for setting
306 306
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
307 307
    ///If you don't set it explicitly, it will be automatically allocated.
308 308
    struct SetStandardProcessedMap :
309 309
      public Dfs< Digraph, SetStandardProcessedMapTraits > {
310 310
      typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
311 311
    };
312 312

	
313 313
    ///@}
314 314

	
315 315
  public:
316 316

	
317 317
    ///Constructor.
318 318

	
319 319
    ///Constructor.
320 320
    ///\param g The digraph the algorithm runs on.
321 321
    Dfs(const Digraph &g) :
322 322
      G(&g),
323 323
      _pred(NULL), local_pred(false),
324 324
      _dist(NULL), local_dist(false),
325 325
      _reached(NULL), local_reached(false),
326 326
      _processed(NULL), local_processed(false)
327 327
    { }
328 328

	
329 329
    ///Destructor.
330 330
    ~Dfs()
331 331
    {
332 332
      if(local_pred) delete _pred;
333 333
      if(local_dist) delete _dist;
334 334
      if(local_reached) delete _reached;
335 335
      if(local_processed) delete _processed;
336 336
    }
337 337

	
338 338
    ///Sets the map that stores the predecessor arcs.
339 339

	
340 340
    ///Sets the map that stores the predecessor arcs.
341 341
    ///If you don't use this function before calling \ref run(),
342 342
    ///it will allocate one. The destructor deallocates this
343 343
    ///automatically allocated map, of course.
344 344
    ///\return <tt> (*this) </tt>
345 345
    Dfs &predMap(PredMap &m)
346 346
    {
347 347
      if(local_pred) {
348 348
        delete _pred;
349 349
        local_pred=false;
350 350
      }
351 351
      _pred = &m;
352 352
      return *this;
353 353
    }
354 354

	
355 355
    ///Sets the map that indicates which nodes are reached.
356 356

	
357 357
    ///Sets the map that indicates which nodes are reached.
358 358
    ///If you don't use this function before calling \ref run(),
359 359
    ///it will allocate one. The destructor deallocates this
360 360
    ///automatically allocated map, of course.
361 361
    ///\return <tt> (*this) </tt>
362 362
    Dfs &reachedMap(ReachedMap &m)
363 363
    {
364 364
      if(local_reached) {
365 365
        delete _reached;
366 366
        local_reached=false;
367 367
      }
368 368
      _reached = &m;
369 369
      return *this;
370 370
    }
371 371

	
372 372
    ///Sets the map that indicates which nodes are processed.
373 373

	
374 374
    ///Sets the map that indicates which nodes are processed.
375 375
    ///If you don't use this function before calling \ref run(),
376 376
    ///it will allocate one. The destructor deallocates this
377 377
    ///automatically allocated map, of course.
378 378
    ///\return <tt> (*this) </tt>
379 379
    Dfs &processedMap(ProcessedMap &m)
380 380
    {
381 381
      if(local_processed) {
382 382
        delete _processed;
383 383
        local_processed=false;
384 384
      }
385 385
      _processed = &m;
386 386
      return *this;
387 387
    }
388 388

	
389 389
    ///Sets the map that stores the distances of the nodes.
390 390

	
391 391
    ///Sets the map that stores the distances of the nodes calculated by
392 392
    ///the algorithm.
393 393
    ///If you don't use this function before calling \ref run(),
394 394
    ///it will allocate one. The destructor deallocates this
395 395
    ///automatically allocated map, of course.
396 396
    ///\return <tt> (*this) </tt>
397 397
    Dfs &distMap(DistMap &m)
398 398
    {
399 399
      if(local_dist) {
400 400
        delete _dist;
401 401
        local_dist=false;
402 402
      }
403 403
      _dist = &m;
404 404
      return *this;
405 405
    }
406 406

	
407 407
  public:
408 408

	
409 409
    ///\name Execution control
410 410
    ///The simplest way to execute the algorithm is to use
411 411
    ///one of the member functions called \ref lemon::Dfs::run() "run()".
412 412
    ///\n
413 413
    ///If you need more control on the execution, first you must call
414 414
    ///\ref lemon::Dfs::init() "init()", then you can add a source node
415 415
    ///with \ref lemon::Dfs::addSource() "addSource()".
416 416
    ///Finally \ref lemon::Dfs::start() "start()" will perform the
417 417
    ///actual path computation.
418 418

	
419 419
    ///@{
420 420

	
421 421
    ///Initializes the internal data structures.
422 422

	
423 423
    ///Initializes the internal data structures.
424 424
    ///
425 425
    void init()
426 426
    {
427 427
      create_maps();
428 428
      _stack.resize(countNodes(*G));
429 429
      _stack_head=-1;
430 430
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
431 431
        _pred->set(u,INVALID);
432 432
        _reached->set(u,false);
433 433
        _processed->set(u,false);
434 434
      }
435 435
    }
436 436

	
437 437
    ///Adds a new source node.
438 438

	
439 439
    ///Adds a new source node to the set of nodes to be processed.
440 440
    ///
441 441
    ///\pre The stack must be empty. (Otherwise the algorithm gives
442 442
    ///false results.)
443 443
    ///
444 444
    ///\warning Distances will be wrong (or at least strange) in case of
445 445
    ///multiple sources.
446 446
    void addSource(Node s)
447 447
    {
448 448
      LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
449 449
      if(!(*_reached)[s])
450 450
        {
451 451
          _reached->set(s,true);
452 452
          _pred->set(s,INVALID);
453 453
          OutArcIt e(*G,s);
454 454
          if(e!=INVALID) {
455 455
            _stack[++_stack_head]=e;
456 456
            _dist->set(s,_stack_head);
457 457
          }
458 458
          else {
459 459
            _processed->set(s,true);
460 460
            _dist->set(s,0);
461 461
          }
462 462
        }
463 463
    }
464 464

	
465 465
    ///Processes the next arc.
466 466

	
467 467
    ///Processes the next arc.
468 468
    ///
469 469
    ///\return The processed arc.
470 470
    ///
471 471
    ///\pre The stack must not be empty.
472 472
    Arc processNextArc()
473 473
    {
474 474
      Node m;
475 475
      Arc e=_stack[_stack_head];
476 476
      if(!(*_reached)[m=G->target(e)]) {
477 477
        _pred->set(m,e);
478 478
        _reached->set(m,true);
479 479
        ++_stack_head;
480 480
        _stack[_stack_head] = OutArcIt(*G, m);
481 481
        _dist->set(m,_stack_head);
482 482
      }
483 483
      else {
484 484
        m=G->source(e);
485 485
        ++_stack[_stack_head];
486 486
      }
487 487
      while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
488 488
        _processed->set(m,true);
489 489
        --_stack_head;
490 490
        if(_stack_head>=0) {
491 491
          m=G->source(_stack[_stack_head]);
492 492
          ++_stack[_stack_head];
493 493
        }
494 494
      }
495 495
      return e;
496 496
    }
497 497

	
498 498
    ///Next arc to be processed.
499 499

	
500 500
    ///Next arc to be processed.
501 501
    ///
502 502
    ///\return The next arc to be processed or \c INVALID if the stack
503 503
    ///is empty.
504 504
    OutArcIt nextArc() const
505 505
    {
506 506
      return _stack_head>=0?_stack[_stack_head]:INVALID;
507 507
    }
508 508

	
509 509
    ///\brief Returns \c false if there are nodes
510 510
    ///to be processed.
511 511
    ///
512 512
    ///Returns \c false if there are nodes
513 513
    ///to be processed in the queue (stack).
514 514
    bool emptyQueue() const { return _stack_head<0; }
515 515

	
516 516
    ///Returns the number of the nodes to be processed.
517 517

	
518 518
    ///Returns the number of the nodes to be processed in the queue (stack).
519 519
    int queueSize() const { return _stack_head+1; }
520 520

	
521 521
    ///Executes the algorithm.
522 522

	
523 523
    ///Executes the algorithm.
524 524
    ///
525 525
    ///This method runs the %DFS algorithm from the root node
526 526
    ///in order to compute the DFS path to each node.
527 527
    ///
528 528
    /// The algorithm computes
529 529
    ///- the %DFS tree,
530 530
    ///- the distance of each node from the root in the %DFS tree.
531 531
    ///
532 532
    ///\pre init() must be called and a root node should be
533 533
    ///added with addSource() before using this function.
534 534
    ///
535 535
    ///\note <tt>d.start()</tt> is just a shortcut of the following code.
536 536
    ///\code
537 537
    ///  while ( !d.emptyQueue() ) {
538 538
    ///    d.processNextArc();
539 539
    ///  }
540 540
    ///\endcode
541 541
    void start()
542 542
    {
543 543
      while ( !emptyQueue() ) processNextArc();
544 544
    }
545 545

	
546 546
    ///Executes the algorithm until the given target node is reached.
547 547

	
548 548
    ///Executes the algorithm until the given target node is reached.
549 549
    ///
550 550
    ///This method runs the %DFS algorithm from the root node
551 551
    ///in order to compute the DFS path to \c t.
552 552
    ///
553 553
    ///The algorithm computes
554 554
    ///- the %DFS path to \c t,
555 555
    ///- the distance of \c t from the root in the %DFS tree.
556 556
    ///
557 557
    ///\pre init() must be called and a root node should be
558 558
    ///added with addSource() before using this function.
559 559
    void start(Node t)
560 560
    {
561 561
      while ( !emptyQueue() && !(*_reached)[t] )
562 562
        processNextArc();
563 563
    }
564 564

	
565 565
    ///Executes the algorithm until a condition is met.
566 566

	
567 567
    ///Executes the algorithm until a condition is met.
568 568
    ///
569 569
    ///This method runs the %DFS algorithm from the root node
570 570
    ///until an arc \c a with <tt>am[a]</tt> true is found.
571 571
    ///
572 572
    ///\param am A \c bool (or convertible) arc map. The algorithm
573 573
    ///will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
574 574
    ///
575 575
    ///\return The reached arc \c a with <tt>am[a]</tt> true or
576 576
    ///\c INVALID if no such arc was found.
577 577
    ///
578 578
    ///\pre init() must be called and a root node should be
579 579
    ///added with addSource() before using this function.
580 580
    ///
581 581
    ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
582 582
    ///not a node map.
583 583
    template<class ArcBoolMap>
584 584
    Arc start(const ArcBoolMap &am)
585 585
    {
586 586
      while ( !emptyQueue() && !am[_stack[_stack_head]] )
587 587
        processNextArc();
588 588
      return emptyQueue() ? INVALID : _stack[_stack_head];
589 589
    }
590 590

	
591 591
    ///Runs the algorithm from the given source node.
592 592

	
593 593
    ///This method runs the %DFS algorithm from node \c s
594 594
    ///in order to compute the DFS path to each node.
595 595
    ///
596 596
    ///The algorithm computes
597 597
    ///- the %DFS tree,
598 598
    ///- the distance of each node from the root in the %DFS tree.
599 599
    ///
600 600
    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
601 601
    ///\code
602 602
    ///  d.init();
603 603
    ///  d.addSource(s);
604 604
    ///  d.start();
605 605
    ///\endcode
606 606
    void run(Node s) {
607 607
      init();
608 608
      addSource(s);
609 609
      start();
610 610
    }
611 611

	
612 612
    ///Finds the %DFS path between \c s and \c t.
613 613

	
614 614
    ///This method runs the %DFS algorithm from node \c s
615 615
    ///in order to compute the DFS path to node \c t
616 616
    ///(it stops searching when \c t is processed)
617 617
    ///
618 618
    ///\return \c true if \c t is reachable form \c s.
619 619
    ///
620 620
    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is
621 621
    ///just a shortcut of the following code.
622 622
    ///\code
623 623
    ///  d.init();
624 624
    ///  d.addSource(s);
625 625
    ///  d.start(t);
626 626
    ///\endcode
627 627
    bool run(Node s,Node t) {
628 628
      init();
629 629
      addSource(s);
630 630
      start(t);
631 631
      return reached(t);
632 632
    }
633 633

	
634 634
    ///Runs the algorithm to visit all nodes in the digraph.
635 635

	
636 636
    ///This method runs the %DFS algorithm in order to compute the
637 637
    ///%DFS path to each node.
638 638
    ///
639 639
    ///The algorithm computes
640 640
    ///- the %DFS tree,
641 641
    ///- the distance of each node from the root in the %DFS tree.
642 642
    ///
643 643
    ///\note <tt>d.run()</tt> is just a shortcut of the following code.
644 644
    ///\code
645 645
    ///  d.init();
646 646
    ///  for (NodeIt n(digraph); n != INVALID; ++n) {
647 647
    ///    if (!d.reached(n)) {
648 648
    ///      d.addSource(n);
649 649
    ///      d.start();
650 650
    ///    }
651 651
    ///  }
652 652
    ///\endcode
653 653
    void run() {
654 654
      init();
655 655
      for (NodeIt it(*G); it != INVALID; ++it) {
656 656
        if (!reached(it)) {
657 657
          addSource(it);
658 658
          start();
659 659
        }
660 660
      }
661 661
    }
662 662

	
663 663
    ///@}
664 664

	
665 665
    ///\name Query Functions
666 666
    ///The result of the %DFS algorithm can be obtained using these
667 667
    ///functions.\n
668 668
    ///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start()
669 669
    ///"start()" must be called before using them.
670 670

	
671 671
    ///@{
672 672

	
673 673
    ///The DFS path to a node.
674 674

	
675 675
    ///Returns the DFS path to a node.
676 676
    ///
677 677
    ///\warning \c t should be reachable from the root.
678 678
    ///
679 679
    ///\pre Either \ref run() or \ref start() must be called before
680 680
    ///using this function.
681 681
    Path path(Node t) const { return Path(*G, *_pred, t); }
682 682

	
683 683
    ///The distance of a node from the root.
684 684

	
685 685
    ///Returns the distance of a node from the root.
686 686
    ///
687 687
    ///\warning If node \c v is not reachable from the root, then
688 688
    ///the return value of this function is undefined.
689 689
    ///
690 690
    ///\pre Either \ref run() or \ref start() must be called before
691 691
    ///using this function.
692 692
    int dist(Node v) const { return (*_dist)[v]; }
693 693

	
694 694
    ///Returns the 'previous arc' of the %DFS tree for a node.
695 695

	
696 696
    ///This function returns the 'previous arc' of the %DFS tree for the
697 697
    ///node \c v, i.e. it returns the last arc of a %DFS path from the
698 698
    ///root to \c v. It is \c INVALID
699 699
    ///if \c v is not reachable from the root(s) or if \c v is a root.
700 700
    ///
701 701
    ///The %DFS tree used here is equal to the %DFS tree used in
702 702
    ///\ref predNode().
703 703
    ///
704 704
    ///\pre Either \ref run() or \ref start() must be called before using
705 705
    ///this function.
706 706
    Arc predArc(Node v) const { return (*_pred)[v];}
707 707

	
708 708
    ///Returns the 'previous node' of the %DFS tree.
709 709

	
710 710
    ///This function returns the 'previous node' of the %DFS
711 711
    ///tree for the node \c v, i.e. it returns the last but one node
712 712
    ///from a %DFS path from the root to \c v. It is \c INVALID
713 713
    ///if \c v is not reachable from the root(s) or if \c v is a root.
714 714
    ///
715 715
    ///The %DFS tree used here is equal to the %DFS tree used in
716 716
    ///\ref predArc().
717 717
    ///
718 718
    ///\pre Either \ref run() or \ref start() must be called before
719 719
    ///using this function.
720 720
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
721 721
                                  G->source((*_pred)[v]); }
722 722

	
723 723
    ///\brief Returns a const reference to the node map that stores the
724 724
    ///distances of the nodes.
725 725
    ///
726 726
    ///Returns a const reference to the node map that stores the
727 727
    ///distances of the nodes calculated by the algorithm.
728 728
    ///
729 729
    ///\pre Either \ref run() or \ref init()
730 730
    ///must be called before using this function.
731 731
    const DistMap &distMap() const { return *_dist;}
732 732

	
733 733
    ///\brief Returns a const reference to the node map that stores the
734 734
    ///predecessor arcs.
735 735
    ///
736 736
    ///Returns a const reference to the node map that stores the predecessor
737 737
    ///arcs, which form the DFS tree.
738 738
    ///
739 739
    ///\pre Either \ref run() or \ref init()
740 740
    ///must be called before using this function.
741 741
    const PredMap &predMap() const { return *_pred;}
742 742

	
743 743
    ///Checks if a node is reachable from the root(s).
744 744

	
745 745
    ///Returns \c true if \c v is reachable from the root(s).
746 746
    ///\pre Either \ref run() or \ref start()
747 747
    ///must be called before using this function.
748 748
    bool reached(Node v) const { return (*_reached)[v]; }
749 749

	
750 750
    ///@}
751 751
  };
752 752

	
753 753
  ///Default traits class of dfs() function.
754 754

	
755 755
  ///Default traits class of dfs() function.
756 756
  ///\tparam GR Digraph type.
757 757
  template<class GR>
758 758
  struct DfsWizardDefaultTraits
759 759
  {
760 760
    ///The type of the digraph the algorithm runs on.
761 761
    typedef GR Digraph;
762 762

	
763 763
    ///\brief The type of the map that stores the predecessor
764 764
    ///arcs of the %DFS paths.
765 765
    ///
766 766
    ///The type of the map that stores the predecessor
767 767
    ///arcs of the %DFS paths.
768 768
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
769 769
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
770 770
    ///Instantiates a PredMap.
771 771

	
772 772
    ///This function instantiates a PredMap.
773 773
    ///\param g is the digraph, to which we would like to define the
774 774
    ///PredMap.
775 775
    static PredMap *createPredMap(const Digraph &g)
776 776
    {
777 777
      return new PredMap(g);
778 778
    }
779 779

	
780 780
    ///The type of the map that indicates which nodes are processed.
781 781

	
782 782
    ///The type of the map that indicates which nodes are processed.
783 783
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
784 784
    ///By default it is a NullMap.
785 785
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
786 786
    ///Instantiates a ProcessedMap.
787 787

	
788 788
    ///This function instantiates a ProcessedMap.
789 789
    ///\param g is the digraph, to which
790 790
    ///we would like to define the ProcessedMap.
791 791
#ifdef DOXYGEN
792 792
    static ProcessedMap *createProcessedMap(const Digraph &g)
793 793
#else
794 794
    static ProcessedMap *createProcessedMap(const Digraph &)
795 795
#endif
796 796
    {
797 797
      return new ProcessedMap();
798 798
    }
799 799

	
800 800
    ///The type of the map that indicates which nodes are reached.
801 801

	
802 802
    ///The type of the map that indicates which nodes are reached.
803 803
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
804 804
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
805 805
    ///Instantiates a ReachedMap.
806 806

	
807 807
    ///This function instantiates a ReachedMap.
808 808
    ///\param g is the digraph, to which
809 809
    ///we would like to define the ReachedMap.
810 810
    static ReachedMap *createReachedMap(const Digraph &g)
811 811
    {
812 812
      return new ReachedMap(g);
813 813
    }
814 814

	
815 815
    ///The type of the map that stores the distances of the nodes.
816 816

	
817 817
    ///The type of the map that stores the distances of the nodes.
818 818
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
819 819
    typedef typename Digraph::template NodeMap<int> DistMap;
820 820
    ///Instantiates a DistMap.
821 821

	
822 822
    ///This function instantiates a DistMap.
823 823
    ///\param g is the digraph, to which we would like to define
824 824
    ///the DistMap
825 825
    static DistMap *createDistMap(const Digraph &g)
826 826
    {
827 827
      return new DistMap(g);
828 828
    }
829 829

	
830 830
    ///The type of the DFS paths.
831 831

	
832 832
    ///The type of the DFS paths.
833 833
    ///It must meet the \ref concepts::Path "Path" concept.
834 834
    typedef lemon::Path<Digraph> Path;
835 835
  };
836 836

	
837 837
  /// Default traits class used by DfsWizard
838 838

	
839 839
  /// To make it easier to use Dfs algorithm
840 840
  /// we have created a wizard class.
841 841
  /// This \ref DfsWizard class needs default traits,
842 842
  /// as well as the \ref Dfs class.
843 843
  /// The \ref DfsWizardBase is a class to be the default traits of the
844 844
  /// \ref DfsWizard class.
845 845
  template<class GR>
846 846
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
847 847
  {
848 848

	
849 849
    typedef DfsWizardDefaultTraits<GR> Base;
850 850
  protected:
851 851
    //The type of the nodes in the digraph.
852 852
    typedef typename Base::Digraph::Node Node;
853 853

	
854 854
    //Pointer to the digraph the algorithm runs on.
855 855
    void *_g;
856 856
    //Pointer to the map of reached nodes.
857 857
    void *_reached;
858 858
    //Pointer to the map of processed nodes.
859 859
    void *_processed;
860 860
    //Pointer to the map of predecessors arcs.
861 861
    void *_pred;
862 862
    //Pointer to the map of distances.
863 863
    void *_dist;
864 864
    //Pointer to the DFS path to the target node.
865 865
    void *_path;
866 866
    //Pointer to the distance of the target node.
867 867
    int *_di;
868 868

	
869 869
    public:
870 870
    /// Constructor.
871 871

	
872 872
    /// This constructor does not require parameters, therefore it initiates
873 873
    /// all of the attributes to \c 0.
874 874
    DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
875 875
                      _dist(0), _path(0), _di(0) {}
876 876

	
877 877
    /// Constructor.
878 878

	
879 879
    /// This constructor requires one parameter,
880 880
    /// others are initiated to \c 0.
881 881
    /// \param g The digraph the algorithm runs on.
882 882
    DfsWizardBase(const GR &g) :
883 883
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
884 884
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
885 885

	
886 886
  };
887 887

	
888 888
  /// Auxiliary class for the function-type interface of DFS algorithm.
889 889

	
890 890
  /// This auxiliary class is created to implement the
891 891
  /// \ref dfs() "function-type interface" of \ref Dfs algorithm.
892 892
  /// It does not have own \ref run() method, it uses the functions
893 893
  /// and features of the plain \ref Dfs.
894 894
  ///
895 895
  /// This class should only be used through the \ref dfs() function,
896 896
  /// which makes it easier to use the algorithm.
897 897
  template<class TR>
898 898
  class DfsWizard : public TR
899 899
  {
900 900
    typedef TR Base;
901 901

	
902 902
    ///The type of the digraph the algorithm runs on.
903 903
    typedef typename TR::Digraph Digraph;
904 904

	
905 905
    typedef typename Digraph::Node Node;
906 906
    typedef typename Digraph::NodeIt NodeIt;
907 907
    typedef typename Digraph::Arc Arc;
908 908
    typedef typename Digraph::OutArcIt OutArcIt;
909 909

	
910 910
    ///\brief The type of the map that stores the predecessor
911 911
    ///arcs of the DFS paths.
912 912
    typedef typename TR::PredMap PredMap;
913 913
    ///\brief The type of the map that stores the distances of the nodes.
914 914
    typedef typename TR::DistMap DistMap;
915 915
    ///\brief The type of the map that indicates which nodes are reached.
916 916
    typedef typename TR::ReachedMap ReachedMap;
917 917
    ///\brief The type of the map that indicates which nodes are processed.
918 918
    typedef typename TR::ProcessedMap ProcessedMap;
919 919
    ///The type of the DFS paths
920 920
    typedef typename TR::Path Path;
921 921

	
922 922
  public:
923 923

	
924 924
    /// Constructor.
925 925
    DfsWizard() : TR() {}
926 926

	
927 927
    /// Constructor that requires parameters.
928 928

	
929 929
    /// Constructor that requires parameters.
930 930
    /// These parameters will be the default values for the traits class.
931 931
    /// \param g The digraph the algorithm runs on.
932 932
    DfsWizard(const Digraph &g) :
933 933
      TR(g) {}
934 934

	
935 935
    ///Copy constructor
936 936
    DfsWizard(const TR &b) : TR(b) {}
937 937

	
938 938
    ~DfsWizard() {}
939 939

	
940 940
    ///Runs DFS algorithm from the given source node.
941 941

	
942 942
    ///This method runs DFS algorithm from node \c s
943 943
    ///in order to compute the DFS path to each node.
944 944
    void run(Node s)
945 945
    {
946 946
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
947 947
      if (Base::_pred)
948 948
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
949 949
      if (Base::_dist)
950 950
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
951 951
      if (Base::_reached)
952 952
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
953 953
      if (Base::_processed)
954 954
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
955 955
      if (s!=INVALID)
956 956
        alg.run(s);
957 957
      else
958 958
        alg.run();
959 959
    }
960 960

	
961 961
    ///Finds the DFS path between \c s and \c t.
962 962

	
963 963
    ///This method runs DFS algorithm from node \c s
964 964
    ///in order to compute the DFS path to node \c t
965 965
    ///(it stops searching when \c t is processed).
966 966
    ///
967 967
    ///\return \c true if \c t is reachable form \c s.
968 968
    bool run(Node s, Node t)
969 969
    {
970 970
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
971 971
      if (Base::_pred)
972 972
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
973 973
      if (Base::_dist)
974 974
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
975 975
      if (Base::_reached)
976 976
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
977 977
      if (Base::_processed)
978 978
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
979 979
      alg.run(s,t);
980 980
      if (Base::_path)
981 981
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
982 982
      if (Base::_di)
983 983
        *Base::_di = alg.dist(t);
984 984
      return alg.reached(t);
985 985
      }
986 986

	
987 987
    ///Runs DFS algorithm to visit all nodes in the digraph.
988 988

	
989 989
    ///This method runs DFS algorithm in order to compute
990 990
    ///the DFS path to each node.
991 991
    void run()
992 992
    {
993 993
      run(INVALID);
994 994
    }
995 995

	
996 996
    template<class T>
997 997
    struct SetPredMapBase : public Base {
998 998
      typedef T PredMap;
999 999
      static PredMap *createPredMap(const Digraph &) { return 0; };
1000 1000
      SetPredMapBase(const TR &b) : TR(b) {}
1001 1001
    };
1002 1002
    ///\brief \ref named-func-param "Named parameter"
1003 1003
    ///for setting PredMap object.
1004 1004
    ///
1005 1005
    ///\ref named-func-param "Named parameter"
1006 1006
    ///for setting PredMap object.
1007 1007
    template<class T>
1008 1008
    DfsWizard<SetPredMapBase<T> > predMap(const T &t)
1009 1009
    {
1010 1010
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1011 1011
      return DfsWizard<SetPredMapBase<T> >(*this);
1012 1012
    }
1013 1013

	
1014 1014
    template<class T>
1015 1015
    struct SetReachedMapBase : public Base {
1016 1016
      typedef T ReachedMap;
1017 1017
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1018 1018
      SetReachedMapBase(const TR &b) : TR(b) {}
1019 1019
    };
1020 1020
    ///\brief \ref named-func-param "Named parameter"
1021 1021
    ///for setting ReachedMap object.
1022 1022
    ///
1023 1023
    /// \ref named-func-param "Named parameter"
1024 1024
    ///for setting ReachedMap object.
1025 1025
    template<class T>
1026 1026
    DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1027 1027
    {
1028 1028
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1029 1029
      return DfsWizard<SetReachedMapBase<T> >(*this);
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GRAPH_TO_EPS_H
20 20
#define LEMON_GRAPH_TO_EPS_H
21 21

	
22 22
#include<iostream>
23 23
#include<fstream>
24 24
#include<sstream>
25 25
#include<algorithm>
26 26
#include<vector>
27 27

	
28 28
#ifndef WIN32
29 29
#include<sys/time.h>
30 30
#include<ctime>
31 31
#else
32 32
#include<lemon/bits/windows.h>
33 33
#endif
34 34

	
35 35
#include<lemon/math.h>
36 36
#include<lemon/core.h>
37 37
#include<lemon/dim2.h>
38 38
#include<lemon/maps.h>
39 39
#include<lemon/color.h>
40 40
#include<lemon/bits/bezier.h>
41 41
#include<lemon/error.h>
42 42

	
43 43

	
44 44
///\ingroup eps_io
45 45
///\file
46 46
///\brief A well configurable tool for visualizing graphs
47 47

	
48 48
namespace lemon {
49 49

	
50 50
  namespace _graph_to_eps_bits {
51 51
    template<class MT>
52 52
    class _NegY {
53 53
    public:
54 54
      typedef typename MT::Key Key;
55 55
      typedef typename MT::Value Value;
56 56
      const MT &map;
57 57
      int yscale;
58 58
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
59 59
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
60 60
    };
61 61
  }
62 62

	
63 63
///Default traits class of GraphToEps
64 64

	
65 65
///Default traits class of \ref GraphToEps.
66 66
///
67 67
///\c G is the type of the underlying graph.
68 68
template<class G>
69 69
struct DefaultGraphToEpsTraits
70 70
{
71 71
  typedef G Graph;
72 72
  typedef typename Graph::Node Node;
73 73
  typedef typename Graph::NodeIt NodeIt;
74 74
  typedef typename Graph::Arc Arc;
75 75
  typedef typename Graph::ArcIt ArcIt;
76 76
  typedef typename Graph::InArcIt InArcIt;
77 77
  typedef typename Graph::OutArcIt OutArcIt;
78 78

	
79 79

	
80 80
  const Graph &g;
81 81

	
82 82
  std::ostream& os;
83 83

	
84 84
  typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
85 85
  CoordsMapType _coords;
86 86
  ConstMap<typename Graph::Node,double > _nodeSizes;
87 87
  ConstMap<typename Graph::Node,int > _nodeShapes;
88 88

	
89 89
  ConstMap<typename Graph::Node,Color > _nodeColors;
90 90
  ConstMap<typename Graph::Arc,Color > _arcColors;
91 91

	
92 92
  ConstMap<typename Graph::Arc,double > _arcWidths;
93 93

	
94 94
  double _arcWidthScale;
95 95

	
96 96
  double _nodeScale;
97 97
  double _xBorder, _yBorder;
98 98
  double _scale;
99 99
  double _nodeBorderQuotient;
100 100

	
101 101
  bool _drawArrows;
102 102
  double _arrowLength, _arrowWidth;
103 103

	
104 104
  bool _showNodes, _showArcs;
105 105

	
106 106
  bool _enableParallel;
107 107
  double _parArcDist;
108 108

	
109 109
  bool _showNodeText;
110 110
  ConstMap<typename Graph::Node,bool > _nodeTexts;
111 111
  double _nodeTextSize;
112 112

	
113 113
  bool _showNodePsText;
114 114
  ConstMap<typename Graph::Node,bool > _nodePsTexts;
115 115
  char *_nodePsTextsPreamble;
116 116

	
117 117
  bool _undirected;
118 118

	
119 119
  bool _pleaseRemoveOsStream;
120 120

	
121 121
  bool _scaleToA4;
122 122

	
123 123
  std::string _title;
124 124
  std::string _copyright;
125 125

	
126 126
  enum NodeTextColorType
127 127
    { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
128 128
  ConstMap<typename Graph::Node,Color > _nodeTextColors;
129 129

	
130 130
  bool _autoNodeScale;
131 131
  bool _autoArcWidthScale;
132 132

	
133 133
  bool _absoluteNodeSizes;
134 134
  bool _absoluteArcWidths;
135 135

	
136 136
  bool _negY;
137 137

	
138 138
  bool _preScale;
139 139
  ///Constructor
140 140

	
141 141
  ///Constructor
142 142
  ///\param _g  Reference to the graph to be printed.
143 143
  ///\param _os Reference to the output stream.
144 144
  ///\param _os Reference to the output stream.
145 145
  ///By default it is <tt>std::cout</tt>.
146 146
  ///\param _pros If it is \c true, then the \c ostream referenced by \c _os
147 147
  ///will be explicitly deallocated by the destructor.
148 148
  DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout,
149 149
                          bool _pros=false) :
150 150
    g(_g), os(_os),
151 151
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
152 152
    _nodeColors(WHITE), _arcColors(BLACK),
153 153
    _arcWidths(1.0), _arcWidthScale(0.003),
154 154
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
155 155
    _nodeBorderQuotient(.1),
156 156
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
157 157
    _showNodes(true), _showArcs(true),
158 158
    _enableParallel(false), _parArcDist(1),
159 159
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
160 160
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
161 161
    _undirected(lemon::UndirectedTagIndicator<G>::value),
162 162
    _pleaseRemoveOsStream(_pros), _scaleToA4(false),
163 163
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
164 164
    _autoNodeScale(false),
165 165
    _autoArcWidthScale(false),
166 166
    _absoluteNodeSizes(false),
167 167
    _absoluteArcWidths(false),
168 168
    _negY(false),
169 169
    _preScale(true)
170 170
  {}
171 171
};
172 172

	
173 173
///Auxiliary class to implement the named parameters of \ref graphToEps()
174 174

	
175 175
///Auxiliary class to implement the named parameters of \ref graphToEps().
176 176
///
177 177
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
178 178
template<class T> class GraphToEps : public T
179 179
{
180 180
  // Can't believe it is required by the C++ standard
181 181
  using T::g;
182 182
  using T::os;
183 183

	
184 184
  using T::_coords;
185 185
  using T::_nodeSizes;
186 186
  using T::_nodeShapes;
187 187
  using T::_nodeColors;
188 188
  using T::_arcColors;
189 189
  using T::_arcWidths;
190 190

	
191 191
  using T::_arcWidthScale;
192 192
  using T::_nodeScale;
193 193
  using T::_xBorder;
194 194
  using T::_yBorder;
195 195
  using T::_scale;
196 196
  using T::_nodeBorderQuotient;
197 197

	
198 198
  using T::_drawArrows;
199 199
  using T::_arrowLength;
200 200
  using T::_arrowWidth;
201 201

	
202 202
  using T::_showNodes;
203 203
  using T::_showArcs;
204 204

	
205 205
  using T::_enableParallel;
206 206
  using T::_parArcDist;
207 207

	
208 208
  using T::_showNodeText;
209 209
  using T::_nodeTexts;
210 210
  using T::_nodeTextSize;
211 211

	
212 212
  using T::_showNodePsText;
213 213
  using T::_nodePsTexts;
214 214
  using T::_nodePsTextsPreamble;
215 215

	
216 216
  using T::_undirected;
217 217

	
218 218
  using T::_pleaseRemoveOsStream;
219 219

	
220 220
  using T::_scaleToA4;
221 221

	
222 222
  using T::_title;
223 223
  using T::_copyright;
224 224

	
225 225
  using T::NodeTextColorType;
226 226
  using T::CUST_COL;
227 227
  using T::DIST_COL;
228 228
  using T::DIST_BW;
229 229
  using T::_nodeTextColorType;
230 230
  using T::_nodeTextColors;
231 231

	
232 232
  using T::_autoNodeScale;
233 233
  using T::_autoArcWidthScale;
234 234

	
235 235
  using T::_absoluteNodeSizes;
236 236
  using T::_absoluteArcWidths;
237 237

	
238 238

	
239 239
  using T::_negY;
240 240
  using T::_preScale;
241 241

	
242 242
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
243 243

	
244 244
  typedef typename T::Graph Graph;
245 245
  typedef typename Graph::Node Node;
246 246
  typedef typename Graph::NodeIt NodeIt;
247 247
  typedef typename Graph::Arc Arc;
248 248
  typedef typename Graph::ArcIt ArcIt;
249 249
  typedef typename Graph::InArcIt InArcIt;
250 250
  typedef typename Graph::OutArcIt OutArcIt;
251 251

	
252 252
  static const int INTERPOL_PREC;
253 253
  static const double A4HEIGHT;
254 254
  static const double A4WIDTH;
255 255
  static const double A4BORDER;
256 256

	
257 257
  bool dontPrint;
258 258

	
259 259
public:
260 260
  ///Node shapes
261 261

	
262 262
  ///Node shapes.
263 263
  ///
264 264
  enum NodeShapes {
265 265
    /// = 0
266 266
    ///\image html nodeshape_0.png
267 267
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
268 268
    CIRCLE=0,
269 269
    /// = 1
270 270
    ///\image html nodeshape_1.png
271 271
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
272 272
    ///
273 273
    SQUARE=1,
274 274
    /// = 2
275 275
    ///\image html nodeshape_2.png
276 276
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
277 277
    ///
278 278
    DIAMOND=2,
279 279
    /// = 3
280 280
    ///\image html nodeshape_3.png
281 281
    ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm
282 282
    ///
283 283
    MALE=3,
284 284
    /// = 4
285 285
    ///\image html nodeshape_4.png
286 286
    ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm
287 287
    ///
288 288
    FEMALE=4
289 289
  };
290 290

	
291 291
private:
292 292
  class arcLess {
293 293
    const Graph &g;
294 294
  public:
295 295
    arcLess(const Graph &_g) : g(_g) {}
296 296
    bool operator()(Arc a,Arc b) const
297 297
    {
298 298
      Node ai=std::min(g.source(a),g.target(a));
299 299
      Node aa=std::max(g.source(a),g.target(a));
300 300
      Node bi=std::min(g.source(b),g.target(b));
301 301
      Node ba=std::max(g.source(b),g.target(b));
302 302
      return ai<bi ||
303 303
        (ai==bi && (aa < ba ||
304 304
                    (aa==ba && ai==g.source(a) && bi==g.target(b))));
305 305
    }
306 306
  };
307 307
  bool isParallel(Arc e,Arc f) const
308 308
  {
309 309
    return (g.source(e)==g.source(f)&&
310 310
            g.target(e)==g.target(f)) ||
311 311
      (g.source(e)==g.target(f)&&
312 312
       g.target(e)==g.source(f));
313 313
  }
314 314
  template<class TT>
315 315
  static std::string psOut(const dim2::Point<TT> &p)
316 316
    {
317 317
      std::ostringstream os;
318 318
      os << p.x << ' ' << p.y;
319 319
      return os.str();
320 320
    }
321 321
  static std::string psOut(const Color &c)
322 322
    {
323 323
      std::ostringstream os;
324 324
      os << c.red() << ' ' << c.green() << ' ' << c.blue();
325 325
      return os.str();
326 326
    }
327 327

	
328 328
public:
329 329
  GraphToEps(const T &t) : T(t), dontPrint(false) {};
330 330

	
331 331
  template<class X> struct CoordsTraits : public T {
332 332
  typedef X CoordsMapType;
333 333
    const X &_coords;
334 334
    CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
335 335
  };
336 336
  ///Sets the map of the node coordinates
337 337

	
338 338
  ///Sets the map of the node coordinates.
339 339
  ///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
340 340
  ///\ref dim2::Point "dim2::Point<int>" values.
341 341
  template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
342 342
    dontPrint=true;
343 343
    return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
344 344
  }
345 345
  template<class X> struct NodeSizesTraits : public T {
346 346
    const X &_nodeSizes;
347 347
    NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
348 348
  };
349 349
  ///Sets the map of the node sizes
350 350

	
351 351
  ///Sets the map of the node sizes.
352 352
  ///\param x must be a node map with \c double (or convertible) values.
353 353
  template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
354 354
  {
355 355
    dontPrint=true;
356 356
    return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
357 357
  }
358 358
  template<class X> struct NodeShapesTraits : public T {
359 359
    const X &_nodeShapes;
360 360
    NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
361 361
  };
362 362
  ///Sets the map of the node shapes
363 363

	
364 364
  ///Sets the map of the node shapes.
365 365
  ///The available shape values
366 366
  ///can be found in \ref NodeShapes "enum NodeShapes".
367 367
  ///\param x must be a node map with \c int (or convertible) values.
368 368
  ///\sa NodeShapes
369 369
  template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
370 370
  {
371 371
    dontPrint=true;
372 372
    return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
373 373
  }
374 374
  template<class X> struct NodeTextsTraits : public T {
375 375
    const X &_nodeTexts;
376 376
    NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
377 377
  };
378 378
  ///Sets the text printed on the nodes
379 379

	
380 380
  ///Sets the text printed on the nodes.
381 381
  ///\param x must be a node map with type that can be pushed to a standard
382 382
  ///\c ostream.
383 383
  template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
384 384
  {
385 385
    dontPrint=true;
386 386
    _showNodeText=true;
387 387
    return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
388 388
  }
389 389
  template<class X> struct NodePsTextsTraits : public T {
390 390
    const X &_nodePsTexts;
391 391
    NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
392 392
  };
393 393
  ///Inserts a PostScript block to the nodes
394 394

	
395 395
  ///With this command it is possible to insert a verbatim PostScript
396 396
  ///block to the nodes.
397 397
  ///The PS current point will be moved to the center of the node before
398 398
  ///the PostScript block inserted.
399 399
  ///
400 400
  ///Before and after the block a newline character is inserted so you
401 401
  ///don't have to bother with the separators.
402 402
  ///
403 403
  ///\param x must be a node map with type that can be pushed to a standard
404 404
  ///\c ostream.
405 405
  ///
406 406
  ///\sa nodePsTextsPreamble()
407 407
  template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
408 408
  {
409 409
    dontPrint=true;
410 410
    _showNodePsText=true;
411 411
    return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
412 412
  }
413 413
  template<class X> struct ArcWidthsTraits : public T {
414 414
    const X &_arcWidths;
415 415
    ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
416 416
  };
417 417
  ///Sets the map of the arc widths
418 418

	
419 419
  ///Sets the map of the arc widths.
420 420
  ///\param x must be an arc map with \c double (or convertible) values.
421 421
  template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
422 422
  {
423 423
    dontPrint=true;
424 424
    return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
425 425
  }
426 426

	
427 427
  template<class X> struct NodeColorsTraits : public T {
428 428
    const X &_nodeColors;
429 429
    NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
430 430
  };
431 431
  ///Sets the map of the node colors
432 432

	
433 433
  ///Sets the map of the node colors.
434 434
  ///\param x must be a node map with \ref Color values.
435 435
  ///
436 436
  ///\sa Palette
437 437
  template<class X> GraphToEps<NodeColorsTraits<X> >
438 438
  nodeColors(const X &x)
439 439
  {
440 440
    dontPrint=true;
441 441
    return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
442 442
  }
443 443
  template<class X> struct NodeTextColorsTraits : public T {
444 444
    const X &_nodeTextColors;
445 445
    NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
446 446
  };
447 447
  ///Sets the map of the node text colors
448 448

	
449 449
  ///Sets the map of the node text colors.
450 450
  ///\param x must be a node map with \ref Color values.
451 451
  ///
452 452
  ///\sa Palette
453 453
  template<class X> GraphToEps<NodeTextColorsTraits<X> >
454 454
  nodeTextColors(const X &x)
455 455
  {
456 456
    dontPrint=true;
457 457
    _nodeTextColorType=CUST_COL;
458 458
    return GraphToEps<NodeTextColorsTraits<X> >
459 459
      (NodeTextColorsTraits<X>(*this,x));
460 460
  }
461 461
  template<class X> struct ArcColorsTraits : public T {
462 462
    const X &_arcColors;
463 463
    ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
464 464
  };
465 465
  ///Sets the map of the arc colors
466 466

	
467 467
  ///Sets the map of the arc colors.
468 468
  ///\param x must be an arc map with \ref Color values.
469 469
  ///
470 470
  ///\sa Palette
471 471
  template<class X> GraphToEps<ArcColorsTraits<X> >
472 472
  arcColors(const X &x)
473 473
  {
474 474
    dontPrint=true;
475 475
    return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
476 476
  }
477 477
  ///Sets a global scale factor for node sizes
478 478

	
479 479
  ///Sets a global scale factor for node sizes.
480 480
  ///
481 481
  /// If nodeSizes() is not given, this function simply sets the node
482 482
  /// sizes to \c d.  If nodeSizes() is given, but
483 483
  /// autoNodeScale() is not, then the node size given by
484 484
  /// nodeSizes() will be multiplied by the value \c d.
485 485
  /// If both nodeSizes() and autoNodeScale() are used, then the
486 486
  /// node sizes will be scaled in such a way that the greatest size will be
487 487
  /// equal to \c d.
488 488
  /// \sa nodeSizes()
489 489
  /// \sa autoNodeScale()
490 490
  GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
491 491
  ///Turns on/off the automatic node size scaling.
492 492

	
493 493
  ///Turns on/off the automatic node size scaling.
494 494
  ///
495 495
  ///\sa nodeScale()
496 496
  ///
497 497
  GraphToEps<T> &autoNodeScale(bool b=true) {
498 498
    _autoNodeScale=b;return *this;
499 499
  }
500 500

	
501 501
  ///Turns on/off the absolutematic node size scaling.
502 502

	
503 503
  ///Turns on/off the absolutematic node size scaling.
504 504
  ///
505 505
  ///\sa nodeScale()
506 506
  ///
507 507
  GraphToEps<T> &absoluteNodeSizes(bool b=true) {
508 508
    _absoluteNodeSizes=b;return *this;
509 509
  }
510 510

	
511 511
  ///Negates the Y coordinates.
512 512
  GraphToEps<T> &negateY(bool b=true) {
513 513
    _negY=b;return *this;
514 514
  }
515 515

	
516 516
  ///Turn on/off pre-scaling
517 517

	
518 518
  ///By default graphToEps() rescales the whole image in order to avoid
519 519
  ///very big or very small bounding boxes.
520 520
  ///
521 521
  ///This (p)rescaling can be turned off with this function.
522 522
  ///
523 523
  GraphToEps<T> &preScale(bool b=true) {
524 524
    _preScale=b;return *this;
525 525
  }
526 526

	
527 527
  ///Sets a global scale factor for arc widths
528 528

	
529 529
  /// Sets a global scale factor for arc widths.
530 530
  ///
531 531
  /// If arcWidths() is not given, this function simply sets the arc
532 532
  /// widths to \c d.  If arcWidths() is given, but
533 533
  /// autoArcWidthScale() is not, then the arc withs given by
534 534
  /// arcWidths() will be multiplied by the value \c d.
535 535
  /// If both arcWidths() and autoArcWidthScale() are used, then the
536 536
  /// arc withs will be scaled in such a way that the greatest width will be
537 537
  /// equal to \c d.
538 538
  GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
539 539
  ///Turns on/off the automatic arc width scaling.
540 540

	
541 541
  ///Turns on/off the automatic arc width scaling.
542 542
  ///
543 543
  ///\sa arcWidthScale()
544 544
  ///
545 545
  GraphToEps<T> &autoArcWidthScale(bool b=true) {
546 546
    _autoArcWidthScale=b;return *this;
547 547
  }
548 548
  ///Turns on/off the absolutematic arc width scaling.
549 549

	
550 550
  ///Turns on/off the absolutematic arc width scaling.
551 551
  ///
552 552
  ///\sa arcWidthScale()
553 553
  ///
554 554
  GraphToEps<T> &absoluteArcWidths(bool b=true) {
555 555
    _absoluteArcWidths=b;return *this;
556 556
  }
557 557
  ///Sets a global scale factor for the whole picture
558 558
  GraphToEps<T> &scale(double d) {_scale=d;return *this;}
559 559
  ///Sets the width of the border around the picture
560 560
  GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
561 561
  ///Sets the width of the border around the picture
562 562
  GraphToEps<T> &border(double x, double y) {
563 563
    _xBorder=x;_yBorder=y;return *this;
564 564
  }
565 565
  ///Sets whether to draw arrows
566 566
  GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
567 567
  ///Sets the length of the arrowheads
568 568
  GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
569 569
  ///Sets the width of the arrowheads
570 570
  GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
571 571

	
572 572
  ///Scales the drawing to fit to A4 page
573 573
  GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
574 574

	
575 575
  ///Enables parallel arcs
576 576
  GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
577 577

	
578 578
  ///Sets the distance between parallel arcs
579 579
  GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
580 580

	
581 581
  ///Hides the arcs
582 582
  GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
583 583
  ///Hides the nodes
584 584
  GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
585 585

	
586 586
  ///Sets the size of the node texts
587 587
  GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
588 588

	
589 589
  ///Sets the color of the node texts to be different from the node color
590 590

	
591 591
  ///Sets the color of the node texts to be as different from the node color
592 592
  ///as it is possible.
593 593
  GraphToEps<T> &distantColorNodeTexts()
594 594
  {_nodeTextColorType=DIST_COL;return *this;}
595 595
  ///Sets the color of the node texts to be black or white and always visible.
596 596

	
597 597
  ///Sets the color of the node texts to be black or white according to
598 598
  ///which is more different from the node color.
599 599
  GraphToEps<T> &distantBWNodeTexts()
600 600
  {_nodeTextColorType=DIST_BW;return *this;}
601 601

	
602 602
  ///Gives a preamble block for node Postscript block.
603 603

	
604 604
  ///Gives a preamble block for node Postscript block.
605 605
  ///
606 606
  ///\sa nodePsTexts()
607 607
  GraphToEps<T> & nodePsTextsPreamble(const char *str) {
608 608
    _nodePsTextsPreamble=str ;return *this;
609 609
  }
610 610
  ///Sets whether the graph is undirected
611 611

	
612 612
  ///Sets whether the graph is undirected.
613 613
  ///
614 614
  ///This setting is the default for undirected graphs.
615 615
  ///
616 616
  ///\sa directed()
617 617
   GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
618 618

	
619 619
  ///Sets whether the graph is directed
620 620

	
621 621
  ///Sets whether the graph is directed.
622 622
  ///Use it to show the edges as a pair of directed ones.
623 623
  ///
624 624
  ///This setting is the default for digraphs.
625 625
  ///
626 626
  ///\sa undirected()
627 627
  GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
628 628

	
629 629
  ///Sets the title.
630 630

	
631 631
  ///Sets the title of the generated image,
632 632
  ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
633 633
  ///the EPS file.
634 634
  GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
635 635
  ///Sets the copyright statement.
636 636

	
637 637
  ///Sets the copyright statement of the generated image,
638 638
  ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
639 639
  ///the EPS file.
640 640
  GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
641 641

	
642 642
protected:
643 643
  bool isInsideNode(dim2::Point<double> p, double r,int t)
644 644
  {
645 645
    switch(t) {
646 646
    case CIRCLE:
647 647
    case MALE:
648 648
    case FEMALE:
649 649
      return p.normSquare()<=r*r;
650 650
    case SQUARE:
651 651
      return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
652 652
    case DIAMOND:
653 653
      return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
654 654
    }
655 655
    return false;
656 656
  }
657 657

	
658 658
public:
659 659
  ~GraphToEps() { }
660 660

	
661 661
  ///Draws the graph.
662 662

	
663 663
  ///Like other functions using
664 664
  ///\ref named-templ-func-param "named template parameters",
665 665
  ///this function calls the algorithm itself, i.e. in this case
666 666
  ///it draws the graph.
667 667
  void run() {
668 668
    const double EPSILON=1e-9;
669 669
    if(dontPrint) return;
670 670

	
671 671
    _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
672 672
      mycoords(_coords,_negY);
673 673

	
674 674
    os << "%!PS-Adobe-2.0 EPSF-2.0\n";
675 675
    if(_title.size()>0) os << "%%Title: " << _title << '\n';
676 676
     if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
677 677
    os << "%%Creator: LEMON, graphToEps()\n";
678 678

	
679 679
    {
680 680
      os << "%%CreationDate: ";
681 681
#ifndef WIN32
682 682
      timeval tv;
683 683
      gettimeofday(&tv, 0);
684 684

	
685 685
      char cbuf[26];
686 686
      ctime_r(&tv.tv_sec,cbuf);
687 687
      os << cbuf;
688 688
#else
689 689
      os << bits::getWinFormattedDate();
690 690
      os << std::endl;
691 691
#endif
692 692
    }
693 693

	
694 694
    if (_autoArcWidthScale) {
695 695
      double max_w=0;
696 696
      for(ArcIt e(g);e!=INVALID;++e)
697 697
        max_w=std::max(double(_arcWidths[e]),max_w);
698 698
      if(max_w>EPSILON) {
699 699
        _arcWidthScale/=max_w;
700 700
      }
701 701
    }
702 702

	
703 703
    if (_autoNodeScale) {
704 704
      double max_s=0;
705 705
      for(NodeIt n(g);n!=INVALID;++n)
706 706
        max_s=std::max(double(_nodeSizes[n]),max_s);
707 707
      if(max_s>EPSILON) {
708 708
        _nodeScale/=max_s;
709 709
      }
710 710
    }
711 711

	
712 712
    double diag_len = 1;
713 713
    if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
714 714
      dim2::Box<double> bb;
715 715
      for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]);
716 716
      if (bb.empty()) {
717 717
        bb = dim2::Box<double>(dim2::Point<double>(0,0));
718 718
      }
719 719
      diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare());
720 720
      if(diag_len<EPSILON) diag_len = 1;
721 721
      if(!_absoluteNodeSizes) _nodeScale*=diag_len;
722 722
      if(!_absoluteArcWidths) _arcWidthScale*=diag_len;
723 723
    }
724 724

	
725 725
    dim2::Box<double> bb;
726 726
    for(NodeIt n(g);n!=INVALID;++n) {
727 727
      double ns=_nodeSizes[n]*_nodeScale;
728 728
      dim2::Point<double> p(ns,ns);
729 729
      switch(_nodeShapes[n]) {
730 730
      case CIRCLE:
731 731
      case SQUARE:
732 732
      case DIAMOND:
733 733
        bb.add(p+mycoords[n]);
734 734
        bb.add(-p+mycoords[n]);
735 735
        break;
736 736
      case MALE:
737 737
        bb.add(-p+mycoords[n]);
738 738
        bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]);
739 739
        break;
740 740
      case FEMALE:
741 741
        bb.add(p+mycoords[n]);
742 742
        bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]);
743 743
        break;
744 744
      }
745 745
    }
746 746
    if (bb.empty()) {
747 747
      bb = dim2::Box<double>(dim2::Point<double>(0,0));
748 748
    }
749 749

	
750 750
    if(_scaleToA4)
751 751
      os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n";
752 752
    else {
753 753
      if(_preScale) {
754 754
        //Rescale so that BoundingBox won't be neither to big nor too small.
755 755
        while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10;
756 756
        while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10;
757 757
      }
758 758

	
759 759
      os << "%%BoundingBox: "
760 760
         << int(floor(bb.left()   * _scale - _xBorder)) << ' '
761 761
         << int(floor(bb.bottom() * _scale - _yBorder)) << ' '
762 762
         << int(ceil(bb.right()  * _scale + _xBorder)) << ' '
763 763
         << int(ceil(bb.top()    * _scale + _yBorder)) << '\n';
764 764
    }
765 765

	
766 766
    os << "%%EndComments\n";
767 767

	
768 768
    //x1 y1 x2 y2 x3 y3 cr cg cb w
769 769
    os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
770 770
       << "      4 2 roll 1 index 1 index curveto stroke } bind def\n";
771 771
    os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
772 772
       << " bind def\n";
773 773
    //x y r
774 774
    os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
775 775
       << " bind def\n";
776 776
    //x y r
777 777
    os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
778 778
       << "      2 index 1 index sub 2 index 2 index add lineto\n"
779 779
       << "      2 index 1 index sub 2 index 2 index sub lineto\n"
780 780
       << "      2 index 1 index add 2 index 2 index sub lineto\n"
781 781
       << "      closepath pop pop pop} bind def\n";
782 782
    //x y r
783 783
    os << "/di { newpath 2 index 1 index add 2 index moveto\n"
784 784
       << "      2 index             2 index 2 index add lineto\n"
785 785
       << "      2 index 1 index sub 2 index             lineto\n"
786 786
       << "      2 index             2 index 2 index sub lineto\n"
787 787
       << "      closepath pop pop pop} bind def\n";
788 788
    // x y r cr cg cb
789 789
    os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
790 790
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
791 791
       << "   } bind def\n";
792 792
    os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
793 793
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n"
794 794
       << "   } bind def\n";
795 795
    os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
796 796
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n"
797 797
       << "   } bind def\n";
798 798
    os << "/nfemale { 0 0 0 setrgbcolor 3 index "
799 799
       << _nodeBorderQuotient/(1+_nodeBorderQuotient)
800 800
       << " 1.5 mul mul setlinewidth\n"
801 801
       << "  newpath 5 index 5 index moveto "
802 802
       << "5 index 5 index 5 index 3.01 mul sub\n"
803 803
       << "  lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub"
804 804
       << " moveto\n"
805 805
       << "  5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto "
806 806
       << "stroke\n"
807 807
       << "  5 index 5 index 5 index c fill\n"
808 808
       << "  setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
809 809
       << "  } bind def\n";
810 810
    os << "/nmale {\n"
811 811
       << "  0 0 0 setrgbcolor 3 index "
812 812
       << _nodeBorderQuotient/(1+_nodeBorderQuotient)
813 813
       <<" 1.5 mul mul setlinewidth\n"
814 814
       << "  newpath 5 index 5 index moveto\n"
815 815
       << "  5 index 4 index 1 mul 1.5 mul add\n"
816 816
       << "  5 index 5 index 3 sqrt 1.5 mul mul add\n"
817 817
       << "  1 index 1 index lineto\n"
818 818
       << "  1 index 1 index 7 index sub moveto\n"
819 819
       << "  1 index 1 index lineto\n"
820 820
       << "  exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub"
821 821
       << " lineto\n"
822 822
       << "  stroke\n"
823 823
       << "  5 index 5 index 5 index c fill\n"
824 824
       << "  setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
825 825
       << "  } bind def\n";
826 826

	
827 827

	
828 828
    os << "/arrl " << _arrowLength << " def\n";
829 829
    os << "/arrw " << _arrowWidth << " def\n";
830 830
    // l dx_norm dy_norm
831 831
    os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
832 832
    //len w dx_norm dy_norm x1 y1 cr cg cb
833 833
    os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
834 834
       << "exch def\n"
835 835
       << "       /w exch def /len exch def\n"
836 836
      //<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke"
837 837
       << "       newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n"
838 838
       << "       len w sub arrl sub dx dy lrl\n"
839 839
       << "       arrw dy dx neg lrl\n"
840 840
       << "       dx arrl w add mul dy w 2 div arrw add mul sub\n"
841 841
       << "       dy arrl w add mul dx w 2 div arrw add mul add rlineto\n"
842 842
       << "       dx arrl w add mul neg dy w 2 div arrw add mul sub\n"
843 843
       << "       dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n"
844 844
       << "       arrw dy dx neg lrl\n"
845 845
       << "       len w sub arrl sub neg dx dy lrl\n"
846 846
       << "       closepath fill } bind def\n";
847 847
    os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
848 848
       << "         neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n";
849 849

	
850 850
    os << "\ngsave\n";
851 851
    if(_scaleToA4)
852 852
      if(bb.height()>bb.width()) {
853 853
        double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(),
854 854
                  (A4WIDTH-2*A4BORDER)/bb.width());
855 855
        os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' '
856 856
           << ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER
857 857
           << " translate\n"
858 858
           << sc << " dup scale\n"
859 859
           << -bb.left() << ' ' << -bb.bottom() << " translate\n";
860 860
      }
861 861
      else {
862 862
        double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(),
863 863
                  (A4WIDTH-2*A4BORDER)/bb.height());
864 864
        os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' '
865 865
           << ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER
866 866
           << " translate\n"
867 867
           << sc << " dup scale\n90 rotate\n"
868 868
           << -bb.left() << ' ' << -bb.top() << " translate\n";
869 869
        }
870 870
    else if(_scale!=1.0) os << _scale << " dup scale\n";
871 871

	
872 872
    if(_showArcs) {
873 873
      os << "%Arcs:\ngsave\n";
874 874
      if(_enableParallel) {
875 875
        std::vector<Arc> el;
876 876
        for(ArcIt e(g);e!=INVALID;++e)
877 877
          if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
878 878
             &&g.source(e)!=g.target(e))
879 879
            el.push_back(e);
880 880
        std::sort(el.begin(),el.end(),arcLess(g));
881 881

	
882 882
        typename std::vector<Arc>::iterator j;
883 883
        for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
884 884
          for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ;
885 885

	
886 886
          double sw=0;
887 887
          for(typename std::vector<Arc>::iterator e=i;e!=j;++e)
888 888
            sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist;
889 889
          sw-=_parArcDist;
890 890
          sw/=-2.0;
891 891
          dim2::Point<double>
892 892
            dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]);
893 893
          double l=std::sqrt(dvec.normSquare());
894 894
          dim2::Point<double> d(dvec/std::max(l,EPSILON));
895 895
          dim2::Point<double> m;
896 896
//           m=dim2::Point<double>(mycoords[g.target(*i)]+
897 897
//                                 mycoords[g.source(*i)])/2.0;
898 898

	
899 899
//            m=dim2::Point<double>(mycoords[g.source(*i)])+
900 900
//             dvec*(double(_nodeSizes[g.source(*i)])/
901 901
//                (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)]));
902 902

	
903 903
          m=dim2::Point<double>(mycoords[g.source(*i)])+
904 904
            d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0;
905 905

	
906 906
          for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
907 907
            sw+=_arcWidths[*e]*_arcWidthScale/2.0;
908 908
            dim2::Point<double> mm=m+rot90(d)*sw/.75;
909 909
            if(_drawArrows) {
910 910
              int node_shape;
911 911
              dim2::Point<double> s=mycoords[g.source(*e)];
912 912
              dim2::Point<double> t=mycoords[g.target(*e)];
913 913
              double rn=_nodeSizes[g.target(*e)]*_nodeScale;
914 914
              node_shape=_nodeShapes[g.target(*e)];
915 915
              dim2::Bezier3 bez(s,mm,mm,t);
916 916
              double t1=0,t2=1;
917 917
              for(int ii=0;ii<INTERPOL_PREC;++ii)
918 918
                if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2;
919 919
                else t1=(t1+t2)/2;
920 920
              dim2::Point<double> apoint=bez((t1+t2)/2);
921 921
              rn = _arrowLength+_arcWidths[*e]*_arcWidthScale;
922 922
              rn*=rn;
923 923
              t2=(t1+t2)/2;t1=0;
924 924
              for(int ii=0;ii<INTERPOL_PREC;++ii)
925 925
                if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2;
926 926
                else t2=(t1+t2)/2;
927 927
              dim2::Point<double> linend=bez((t1+t2)/2);
928 928
              bez=bez.before((t1+t2)/2);
929 929
//               rn=_nodeSizes[g.source(*e)]*_nodeScale;
930 930
//               node_shape=_nodeShapes[g.source(*e)];
931 931
//               t1=0;t2=1;
932 932
//               for(int i=0;i<INTERPOL_PREC;++i)
933 933
//                 if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape))
934 934
//                   t1=(t1+t2)/2;
935 935
//                 else t2=(t1+t2)/2;
936 936
//               bez=bez.after((t1+t2)/2);
937 937
              os << _arcWidths[*e]*_arcWidthScale << " setlinewidth "
938 938
                 << _arcColors[*e].red() << ' '
939 939
                 << _arcColors[*e].green() << ' '
940 940
                 << _arcColors[*e].blue() << " setrgbcolor newpath\n"
941 941
                 << bez.p1.x << ' ' <<  bez.p1.y << " moveto\n"
942 942
                 << bez.p2.x << ' ' << bez.p2.y << ' '
943 943
                 << bez.p3.x << ' ' << bez.p3.y << ' '
944 944
                 << bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n";
945 945
              dim2::Point<double> dd(rot90(linend-apoint));
946 946
              dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/
947 947
                std::sqrt(dd.normSquare());
948 948
              os << "newpath " << psOut(apoint) << " moveto "
949 949
                 << psOut(linend+dd) << " lineto "
950 950
                 << psOut(linend-dd) << " lineto closepath fill\n";
951 951
            }
952 952
            else {
953 953
              os << mycoords[g.source(*e)].x << ' '
954 954
                 << mycoords[g.source(*e)].y << ' '
955 955
                 << mm.x << ' ' << mm.y << ' '
956 956
                 << mycoords[g.target(*e)].x << ' '
957 957
                 << mycoords[g.target(*e)].y << ' '
958 958
                 << _arcColors[*e].red() << ' '
959 959
                 << _arcColors[*e].green() << ' '
960 960
                 << _arcColors[*e].blue() << ' '
961 961
                 << _arcWidths[*e]*_arcWidthScale << " lb\n";
962 962
            }
963 963
            sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist;
964 964
          }
965 965
        }
966 966
      }
967 967
      else for(ArcIt e(g);e!=INVALID;++e)
968 968
        if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
969 969
           &&g.source(e)!=g.target(e)) {
970 970
          if(_drawArrows) {
971 971
            dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]);
972 972
            double rn=_nodeSizes[g.target(e)]*_nodeScale;
973 973
            int node_shape=_nodeShapes[g.target(e)];
974 974
            double t1=0,t2=1;
975 975
            for(int i=0;i<INTERPOL_PREC;++i)
976 976
              if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2;
977 977
              else t2=(t1+t2)/2;
978 978
            double l=std::sqrt(d.normSquare());
979 979
            d/=l;
980 980

	
981 981
            os << l*(1-(t1+t2)/2) << ' '
982 982
               << _arcWidths[e]*_arcWidthScale << ' '
983 983
               << d.x << ' ' << d.y << ' '
984 984
               << mycoords[g.source(e)].x << ' '
985 985
               << mycoords[g.source(e)].y << ' '
986 986
               << _arcColors[e].red() << ' '
987 987
               << _arcColors[e].green() << ' '
988 988
               << _arcColors[e].blue() << " arr\n";
989 989
          }
990 990
          else os << mycoords[g.source(e)].x << ' '
991 991
                  << mycoords[g.source(e)].y << ' '
992 992
                  << mycoords[g.target(e)].x << ' '
993 993
                  << mycoords[g.target(e)].y << ' '
994 994
                  << _arcColors[e].red() << ' '
995 995
                  << _arcColors[e].green() << ' '
996 996
                  << _arcColors[e].blue() << ' '
997 997
                  << _arcWidths[e]*_arcWidthScale << " l\n";
998 998
        }
999 999
      os << "grestore\n";
1000 1000
    }
1001 1001
    if(_showNodes) {
1002 1002
      os << "%Nodes:\ngsave\n";
1003 1003
      for(NodeIt n(g);n!=INVALID;++n) {
1004 1004
        os << mycoords[n].x << ' ' << mycoords[n].y << ' '
1005 1005
           << _nodeSizes[n]*_nodeScale << ' '
1006 1006
           << _nodeColors[n].red() << ' '
1007 1007
           << _nodeColors[n].green() << ' '
1008 1008
           << _nodeColors[n].blue() << ' ';
1009 1009
        switch(_nodeShapes[n]) {
1010 1010
        case CIRCLE:
1011 1011
          os<< "nc";break;
1012 1012
        case SQUARE:
1013 1013
          os<< "nsq";break;
1014 1014
        case DIAMOND:
1015 1015
          os<< "ndi";break;
1016 1016
        case MALE:
1017 1017
          os<< "nmale";break;
1018 1018
        case FEMALE:
1019 1019
          os<< "nfemale";break;
1020 1020
        }
1021 1021
        os<<'\n';
1022 1022
      }
1023 1023
      os << "grestore\n";
1024 1024
    }
1025 1025
    if(_showNodeText) {
1026 1026
      os << "%Node texts:\ngsave\n";
1027 1027
      os << "/fosi " << _nodeTextSize << " def\n";
1028 1028
      os << "(Helvetica) findfont fosi scalefont setfont\n";
1029 1029
      for(NodeIt n(g);n!=INVALID;++n) {
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup lemon_io
20 20
///\file
21 21
///\brief \ref lgf-format "LEMON Graph Format" writer.
22 22

	
23 23

	
24 24
#ifndef LEMON_LGF_WRITER_H
25 25
#define LEMON_LGF_WRITER_H
26 26

	
27 27
#include <iostream>
28 28
#include <fstream>
29 29
#include <sstream>
30 30

	
31 31
#include <algorithm>
32 32

	
33 33
#include <vector>
34 34
#include <functional>
35 35

	
36 36
#include <lemon/core.h>
37 37
#include <lemon/maps.h>
38 38

	
39 39
#include <lemon/concept_check.h>
40 40
#include <lemon/concepts/maps.h>
41 41

	
42 42
namespace lemon {
43 43

	
44 44
  namespace _writer_bits {
45 45

	
46 46
    template <typename Value>
47 47
    struct DefaultConverter {
48 48
      std::string operator()(const Value& value) {
49 49
        std::ostringstream os;
50 50
        os << value;
51 51
        return os.str();
52 52
      }
53 53
    };
54 54

	
55 55
    template <typename T>
56 56
    bool operator<(const T&, const T&) {
57 57
      throw FormatError("Label map is not comparable");
58 58
    }
59 59

	
60 60
    template <typename _Map>
61 61
    class MapLess {
62 62
    public:
63 63
      typedef _Map Map;
64 64
      typedef typename Map::Key Item;
65 65

	
66 66
    private:
67 67
      const Map& _map;
68 68

	
69 69
    public:
70 70
      MapLess(const Map& map) : _map(map) {}
71 71

	
72 72
      bool operator()(const Item& left, const Item& right) {
73 73
        return _map[left] < _map[right];
74 74
      }
75 75
    };
76 76

	
77 77
    template <typename _Graph, bool _dir, typename _Map>
78 78
    class GraphArcMapLess {
79 79
    public:
80 80
      typedef _Map Map;
81 81
      typedef _Graph Graph;
82 82
      typedef typename Graph::Edge Item;
83 83

	
84 84
    private:
85 85
      const Graph& _graph;
86 86
      const Map& _map;
87 87

	
88 88
    public:
89 89
      GraphArcMapLess(const Graph& graph, const Map& map)
90 90
        : _graph(graph), _map(map) {}
91 91

	
92 92
      bool operator()(const Item& left, const Item& right) {
93 93
        return _map[_graph.direct(left, _dir)] <
94 94
          _map[_graph.direct(right, _dir)];
95 95
      }
96 96
    };
97 97

	
98 98
    template <typename _Item>
99 99
    class MapStorageBase {
100 100
    public:
101 101
      typedef _Item Item;
102 102

	
103 103
    public:
104 104
      MapStorageBase() {}
105 105
      virtual ~MapStorageBase() {}
106 106

	
107 107
      virtual std::string get(const Item& item) = 0;
108 108
      virtual void sort(std::vector<Item>&) = 0;
109 109
    };
110 110

	
111 111
    template <typename _Item, typename _Map,
112 112
              typename _Converter = DefaultConverter<typename _Map::Value> >
113 113
    class MapStorage : public MapStorageBase<_Item> {
114 114
    public:
115 115
      typedef _Map Map;
116 116
      typedef _Converter Converter;
117 117
      typedef _Item Item;
118 118

	
119 119
    private:
120 120
      const Map& _map;
121 121
      Converter _converter;
122 122

	
123 123
    public:
124 124
      MapStorage(const Map& map, const Converter& converter = Converter())
125 125
        : _map(map), _converter(converter) {}
126 126
      virtual ~MapStorage() {}
127 127

	
128 128
      virtual std::string get(const Item& item) {
129 129
        return _converter(_map[item]);
130 130
      }
131 131
      virtual void sort(std::vector<Item>& items) {
132 132
        MapLess<Map> less(_map);
133 133
        std::sort(items.begin(), items.end(), less);
134 134
      }
135 135
    };
136 136

	
137 137
    template <typename _Graph, bool _dir, typename _Map,
138 138
              typename _Converter = DefaultConverter<typename _Map::Value> >
139 139
    class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> {
140 140
    public:
141 141
      typedef _Map Map;
142 142
      typedef _Converter Converter;
143 143
      typedef _Graph Graph;
144 144
      typedef typename Graph::Edge Item;
145 145
      static const bool dir = _dir;
146 146

	
147 147
    private:
148 148
      const Graph& _graph;
149 149
      const Map& _map;
150 150
      Converter _converter;
151 151

	
152 152
    public:
153 153
      GraphArcMapStorage(const Graph& graph, const Map& map,
154 154
                         const Converter& converter = Converter())
155 155
        : _graph(graph), _map(map), _converter(converter) {}
156 156
      virtual ~GraphArcMapStorage() {}
157 157

	
158 158
      virtual std::string get(const Item& item) {
159 159
        return _converter(_map[_graph.direct(item, dir)]);
160 160
      }
161 161
      virtual void sort(std::vector<Item>& items) {
162 162
        GraphArcMapLess<Graph, dir, Map> less(_graph, _map);
163 163
        std::sort(items.begin(), items.end(), less);
164 164
      }
165 165
    };
166 166

	
167 167
    class ValueStorageBase {
168 168
    public:
169 169
      ValueStorageBase() {}
170 170
      virtual ~ValueStorageBase() {}
171 171

	
172 172
      virtual std::string get() = 0;
173 173
    };
174 174

	
175 175
    template <typename _Value, typename _Converter = DefaultConverter<_Value> >
176 176
    class ValueStorage : public ValueStorageBase {
177 177
    public:
178 178
      typedef _Value Value;
179 179
      typedef _Converter Converter;
180 180

	
181 181
    private:
182 182
      const Value& _value;
183 183
      Converter _converter;
184 184

	
185 185
    public:
186 186
      ValueStorage(const Value& value, const Converter& converter = Converter())
187 187
        : _value(value), _converter(converter) {}
188 188

	
189 189
      virtual std::string get() {
190 190
        return _converter(_value);
191 191
      }
192 192
    };
193 193

	
194 194
    template <typename Value>
195 195
    struct MapLookUpConverter {
196 196
      const std::map<Value, std::string>& _map;
197 197

	
198 198
      MapLookUpConverter(const std::map<Value, std::string>& map)
199 199
        : _map(map) {}
200 200

	
201 201
      std::string operator()(const Value& str) {
202 202
        typename std::map<Value, std::string>::const_iterator it =
203 203
          _map.find(str);
204 204
        if (it == _map.end()) {
205 205
          throw FormatError("Item not found");
206 206
        }
207 207
        return it->second;
208 208
      }
209 209
    };
210 210

	
211 211
    template <typename Graph>
212 212
    struct GraphArcLookUpConverter {
213 213
      const Graph& _graph;
214 214
      const std::map<typename Graph::Edge, std::string>& _map;
215 215

	
216 216
      GraphArcLookUpConverter(const Graph& graph,
217 217
                              const std::map<typename Graph::Edge,
218 218
                                             std::string>& map)
219 219
        : _graph(graph), _map(map) {}
220 220

	
221 221
      std::string operator()(const typename Graph::Arc& val) {
222 222
        typename std::map<typename Graph::Edge, std::string>
223 223
          ::const_iterator it = _map.find(val);
224 224
        if (it == _map.end()) {
225 225
          throw FormatError("Item not found");
226 226
        }
227 227
        return (_graph.direction(val) ? '+' : '-') + it->second;
228 228
      }
229 229
    };
230 230

	
231 231
    inline bool isWhiteSpace(char c) {
232 232
      return c == ' ' || c == '\t' || c == '\v' ||
233 233
        c == '\n' || c == '\r' || c == '\f';
234 234
    }
235 235

	
236 236
    inline bool isEscaped(char c) {
237 237
      return c == '\\' || c == '\"' || c == '\'' ||
238 238
        c == '\a' || c == '\b';
239 239
    }
240 240

	
241 241
    inline static void writeEscape(std::ostream& os, char c) {
242 242
      switch (c) {
243 243
      case '\\':
244 244
        os << "\\\\";
245 245
        return;
246 246
      case '\"':
247 247
        os << "\\\"";
248 248
        return;
249 249
      case '\a':
250 250
        os << "\\a";
251 251
        return;
252 252
      case '\b':
253 253
        os << "\\b";
254 254
        return;
255 255
      case '\f':
256 256
        os << "\\f";
257 257
        return;
258 258
      case '\r':
259 259
        os << "\\r";
260 260
        return;
261 261
      case '\n':
262 262
        os << "\\n";
263 263
        return;
264 264
      case '\t':
265 265
        os << "\\t";
266 266
        return;
267 267
      case '\v':
268 268
        os << "\\v";
269 269
        return;
270 270
      default:
271 271
        if (c < 0x20) {
272 272
          std::ios::fmtflags flags = os.flags();
273 273
          os << '\\' << std::oct << static_cast<int>(c);
274 274
          os.flags(flags);
275 275
        } else {
276 276
          os << c;
277 277
        }
278 278
        return;
279 279
      }
280 280
    }
281 281

	
282 282
    inline bool requireEscape(const std::string& str) {
283 283
      if (str.empty() || str[0] == '@') return true;
284 284
      std::istringstream is(str);
285 285
      char c;
286 286
      while (is.get(c)) {
287 287
        if (isWhiteSpace(c) || isEscaped(c)) {
288 288
          return true;
289 289
        }
290 290
      }
291 291
      return false;
292 292
    }
293 293

	
294 294
    inline std::ostream& writeToken(std::ostream& os, const std::string& str) {
295 295

	
296 296
      if (requireEscape(str)) {
297 297
        os << '\"';
298 298
        for (std::string::const_iterator it = str.begin();
299 299
             it != str.end(); ++it) {
300 300
          writeEscape(os, *it);
301 301
        }
302 302
        os << '\"';
303 303
      } else {
304 304
        os << str;
305 305
      }
306 306
      return os;
307 307
    }
308 308

	
309 309
    class Section {
310 310
    public:
311 311
      virtual ~Section() {}
312 312
      virtual void process(std::ostream& os) = 0;
313 313
    };
314 314

	
315 315
    template <typename Functor>
316 316
    class LineSection : public Section {
317 317
    private:
318 318

	
319 319
      Functor _functor;
320 320

	
321 321
    public:
322 322

	
323 323
      LineSection(const Functor& functor) : _functor(functor) {}
324 324
      virtual ~LineSection() {}
325 325

	
326 326
      virtual void process(std::ostream& os) {
327 327
        std::string line;
328 328
        while (!(line = _functor()).empty()) os << line << std::endl;
329 329
      }
330 330
    };
331 331

	
332 332
    template <typename Functor>
333 333
    class StreamSection : public Section {
334 334
    private:
335 335

	
336 336
      Functor _functor;
337 337

	
338 338
    public:
339 339

	
340 340
      StreamSection(const Functor& functor) : _functor(functor) {}
341 341
      virtual ~StreamSection() {}
342 342

	
343 343
      virtual void process(std::ostream& os) {
344 344
        _functor(os);
345 345
      }
346 346
    };
347 347

	
348 348
  }
349 349

	
350 350
  template <typename Digraph>
351 351
  class DigraphWriter;
352 352

	
353 353
  template <typename Digraph>
354 354
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
355 355
                                       std::ostream& os = std::cout);
356 356
  template <typename Digraph>
357 357
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
358 358
                                       const std::string& fn);
359 359

	
360 360
  template <typename Digraph>
361 361
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
362 362
                                       const char* fn);
363 363

	
364 364

	
365 365
  /// \ingroup lemon_io
366 366
  ///
367 367
  /// \brief \ref lgf-format "LGF" writer for directed graphs
368 368
  ///
369 369
  /// This utility writes an \ref lgf-format "LGF" file.
370 370
  ///
371 371
  /// The writing method does a batch processing. The user creates a
372 372
  /// writer object, then various writing rules can be added to the
373 373
  /// writer, and eventually the writing is executed with the \c run()
374 374
  /// member function. A map writing rule can be added to the writer
375 375
  /// with the \c nodeMap() or \c arcMap() members. An optional
376 376
  /// converter parameter can also be added as a standard functor
377 377
  /// converting from the value type of the map to \c std::string. If it
378 378
  /// is set, it will determine how the value type of the map is written to
379 379
  /// the output stream. If the functor is not set, then a default
380 380
  /// conversion will be used. The \c attribute(), \c node() and \c
381 381
  /// arc() functions are used to add attribute writing rules.
382 382
  ///
383 383
  ///\code
384 384
  /// DigraphWriter<Digraph>(digraph, std::cout).
385 385
  ///   nodeMap("coordinates", coord_map).
386 386
  ///   nodeMap("size", size).
387 387
  ///   nodeMap("title", title).
388 388
  ///   arcMap("capacity", cap_map).
389 389
  ///   node("source", src).
390 390
  ///   node("target", trg).
391 391
  ///   attribute("caption", caption).
392 392
  ///   run();
393 393
  ///\endcode
394 394
  ///
395 395
  ///
396 396
  /// By default, the writer does not write additional captions to the
397 397
  /// sections, but they can be give as an optional parameter of
398 398
  /// the \c nodes(), \c arcs() or \c
399 399
  /// attributes() functions.
400 400
  ///
401 401
  /// The \c skipNodes() and \c skipArcs() functions forbid the
402 402
  /// writing of the sections. If two arc sections should be written
403 403
  /// to the output, it can be done in two passes, the first pass
404 404
  /// writes the node section and the first arc section, then the
405 405
  /// second pass skips the node section and writes just the arc
406 406
  /// section to the stream. The output stream can be retrieved with
407 407
  /// the \c ostream() function, hence the second pass can append its
408 408
  /// output to the output of the first pass.
409 409
  template <typename _Digraph>
410 410
  class DigraphWriter {
411 411
  public:
412 412

	
413 413
    typedef _Digraph Digraph;
414 414
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
415 415

	
416 416
  private:
417 417

	
418 418

	
419 419
    std::ostream* _os;
420 420
    bool local_os;
421 421

	
422 422
    const Digraph& _digraph;
423 423

	
424 424
    std::string _nodes_caption;
425 425
    std::string _arcs_caption;
426 426
    std::string _attributes_caption;
427 427

	
428 428
    typedef std::map<Node, std::string> NodeIndex;
429 429
    NodeIndex _node_index;
430 430
    typedef std::map<Arc, std::string> ArcIndex;
431 431
    ArcIndex _arc_index;
432 432

	
433 433
    typedef std::vector<std::pair<std::string,
434 434
      _writer_bits::MapStorageBase<Node>* > > NodeMaps;
435 435
    NodeMaps _node_maps;
436 436

	
437 437
    typedef std::vector<std::pair<std::string,
438 438
      _writer_bits::MapStorageBase<Arc>* > >ArcMaps;
439 439
    ArcMaps _arc_maps;
440 440

	
441 441
    typedef std::vector<std::pair<std::string,
442 442
      _writer_bits::ValueStorageBase*> > Attributes;
443 443
    Attributes _attributes;
444 444

	
445 445
    bool _skip_nodes;
446 446
    bool _skip_arcs;
447 447

	
448 448
  public:
449 449

	
450 450
    /// \brief Constructor
451 451
    ///
452 452
    /// Construct a directed graph writer, which writes to the given
453 453
    /// output stream.
454 454
    DigraphWriter(const Digraph& digraph, std::ostream& os = std::cout)
455 455
      : _os(&os), local_os(false), _digraph(digraph),
456 456
        _skip_nodes(false), _skip_arcs(false) {}
457 457

	
458 458
    /// \brief Constructor
459 459
    ///
460 460
    /// Construct a directed graph writer, which writes to the given
461 461
    /// output file.
462 462
    DigraphWriter(const Digraph& digraph, const std::string& fn)
463 463
      : _os(new std::ofstream(fn.c_str())), local_os(true), _digraph(digraph),
464 464
        _skip_nodes(false), _skip_arcs(false) {
465 465
      if (!(*_os)) {
466 466
        delete _os;
467 467
        throw IoError("Cannot write file", fn);
468 468
      }
469 469
    }
470 470

	
471 471
    /// \brief Constructor
472 472
    ///
473 473
    /// Construct a directed graph writer, which writes to the given
474 474
    /// output file.
475 475
    DigraphWriter(const Digraph& digraph, const char* fn)
476 476
      : _os(new std::ofstream(fn)), local_os(true), _digraph(digraph),
477 477
        _skip_nodes(false), _skip_arcs(false) {
478 478
      if (!(*_os)) {
479 479
        delete _os;
480 480
        throw IoError("Cannot write file", fn);
481 481
      }
482 482
    }
483 483

	
484 484
    /// \brief Destructor
485 485
    ~DigraphWriter() {
486 486
      for (typename NodeMaps::iterator it = _node_maps.begin();
487 487
           it != _node_maps.end(); ++it) {
488 488
        delete it->second;
489 489
      }
490 490

	
491 491
      for (typename ArcMaps::iterator it = _arc_maps.begin();
492 492
           it != _arc_maps.end(); ++it) {
493 493
        delete it->second;
494 494
      }
495 495

	
496 496
      for (typename Attributes::iterator it = _attributes.begin();
497 497
           it != _attributes.end(); ++it) {
498 498
        delete it->second;
499 499
      }
500 500

	
501 501
      if (local_os) {
502 502
        delete _os;
503 503
      }
504 504
    }
505 505

	
506 506
  private:
507 507

	
508 508
    template <typename DGR>
509 509
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, 
510 510
                                            std::ostream& os);
511 511
    template <typename DGR>
512 512
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph,
513 513
                                            const std::string& fn);
514 514
    template <typename DGR>
515 515
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph,
516 516
                                            const char *fn);
517 517

	
518 518
    DigraphWriter(DigraphWriter& other)
519 519
      : _os(other._os), local_os(other.local_os), _digraph(other._digraph),
520 520
        _skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) {
521 521

	
522 522
      other._os = 0;
523 523
      other.local_os = false;
524 524

	
525 525
      _node_index.swap(other._node_index);
526 526
      _arc_index.swap(other._arc_index);
527 527

	
528 528
      _node_maps.swap(other._node_maps);
529 529
      _arc_maps.swap(other._arc_maps);
530 530
      _attributes.swap(other._attributes);
531 531

	
532 532
      _nodes_caption = other._nodes_caption;
533 533
      _arcs_caption = other._arcs_caption;
534 534
      _attributes_caption = other._attributes_caption;
535 535
    }
536 536

	
537 537
    DigraphWriter& operator=(const DigraphWriter&);
538 538

	
539 539
  public:
540 540

	
541 541
    /// \name Writing rules
542 542
    /// @{
543 543

	
544 544
    /// \brief Node map writing rule
545 545
    ///
546 546
    /// Add a node map writing rule to the writer.
547 547
    template <typename Map>
548 548
    DigraphWriter& nodeMap(const std::string& caption, const Map& map) {
549 549
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
550 550
      _writer_bits::MapStorageBase<Node>* storage =
551 551
        new _writer_bits::MapStorage<Node, Map>(map);
552 552
      _node_maps.push_back(std::make_pair(caption, storage));
553 553
      return *this;
554 554
    }
555 555

	
556 556
    /// \brief Node map writing rule
557 557
    ///
558 558
    /// Add a node map writing rule with specialized converter to the
559 559
    /// writer.
560 560
    template <typename Map, typename Converter>
561 561
    DigraphWriter& nodeMap(const std::string& caption, const Map& map,
562 562
                           const Converter& converter = Converter()) {
563 563
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
564 564
      _writer_bits::MapStorageBase<Node>* storage =
565 565
        new _writer_bits::MapStorage<Node, Map, Converter>(map, converter);
566 566
      _node_maps.push_back(std::make_pair(caption, storage));
567 567
      return *this;
568 568
    }
569 569

	
570 570
    /// \brief Arc map writing rule
571 571
    ///
572 572
    /// Add an arc map writing rule to the writer.
573 573
    template <typename Map>
574 574
    DigraphWriter& arcMap(const std::string& caption, const Map& map) {
575 575
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
576 576
      _writer_bits::MapStorageBase<Arc>* storage =
577 577
        new _writer_bits::MapStorage<Arc, Map>(map);
578 578
      _arc_maps.push_back(std::make_pair(caption, storage));
579 579
      return *this;
580 580
    }
581 581

	
582 582
    /// \brief Arc map writing rule
583 583
    ///
584 584
    /// Add an arc map writing rule with specialized converter to the
585 585
    /// writer.
586 586
    template <typename Map, typename Converter>
587 587
    DigraphWriter& arcMap(const std::string& caption, const Map& map,
588 588
                          const Converter& converter = Converter()) {
589 589
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
590 590
      _writer_bits::MapStorageBase<Arc>* storage =
591 591
        new _writer_bits::MapStorage<Arc, Map, Converter>(map, converter);
592 592
      _arc_maps.push_back(std::make_pair(caption, storage));
593 593
      return *this;
594 594
    }
595 595

	
596 596
    /// \brief Attribute writing rule
597 597
    ///
598 598
    /// Add an attribute writing rule to the writer.
599 599
    template <typename Value>
600 600
    DigraphWriter& attribute(const std::string& caption, const Value& value) {
601 601
      _writer_bits::ValueStorageBase* storage =
602 602
        new _writer_bits::ValueStorage<Value>(value);
603 603
      _attributes.push_back(std::make_pair(caption, storage));
604 604
      return *this;
605 605
    }
606 606

	
607 607
    /// \brief Attribute writing rule
608 608
    ///
609 609
    /// Add an attribute writing rule with specialized converter to the
610 610
    /// writer.
611 611
    template <typename Value, typename Converter>
612 612
    DigraphWriter& attribute(const std::string& caption, const Value& value,
613 613
                             const Converter& converter = Converter()) {
614 614
      _writer_bits::ValueStorageBase* storage =
615 615
        new _writer_bits::ValueStorage<Value, Converter>(value, converter);
616 616
      _attributes.push_back(std::make_pair(caption, storage));
617 617
      return *this;
618 618
    }
619 619

	
620 620
    /// \brief Node writing rule
621 621
    ///
622 622
    /// Add a node writing rule to the writer.
623 623
    DigraphWriter& node(const std::string& caption, const Node& node) {
624 624
      typedef _writer_bits::MapLookUpConverter<Node> Converter;
625 625
      Converter converter(_node_index);
626 626
      _writer_bits::ValueStorageBase* storage =
627 627
        new _writer_bits::ValueStorage<Node, Converter>(node, converter);
628 628
      _attributes.push_back(std::make_pair(caption, storage));
629 629
      return *this;
630 630
    }
631 631

	
632 632
    /// \brief Arc writing rule
633 633
    ///
634 634
    /// Add an arc writing rule to writer.
635 635
    DigraphWriter& arc(const std::string& caption, const Arc& arc) {
636 636
      typedef _writer_bits::MapLookUpConverter<Arc> Converter;
637 637
      Converter converter(_arc_index);
638 638
      _writer_bits::ValueStorageBase* storage =
639 639
        new _writer_bits::ValueStorage<Arc, Converter>(arc, converter);
640 640
      _attributes.push_back(std::make_pair(caption, storage));
641 641
      return *this;
642 642
    }
643 643

	
644 644
    /// \name Section captions
645 645
    /// @{
646 646

	
647 647
    /// \brief Add an additional caption to the \c \@nodes section
648 648
    ///
649 649
    /// Add an additional caption to the \c \@nodes section.
650 650
    DigraphWriter& nodes(const std::string& caption) {
651 651
      _nodes_caption = caption;
652 652
      return *this;
653 653
    }
654 654

	
655 655
    /// \brief Add an additional caption to the \c \@arcs section
656 656
    ///
657 657
    /// Add an additional caption to the \c \@arcs section.
658 658
    DigraphWriter& arcs(const std::string& caption) {
659 659
      _arcs_caption = caption;
660 660
      return *this;
661 661
    }
662 662

	
663 663
    /// \brief Add an additional caption to the \c \@attributes section
664 664
    ///
665 665
    /// Add an additional caption to the \c \@attributes section.
666 666
    DigraphWriter& attributes(const std::string& caption) {
667 667
      _attributes_caption = caption;
668 668
      return *this;
669 669
    }
670 670

	
671 671
    /// \name Skipping section
672 672
    /// @{
673 673

	
674 674
    /// \brief Skip writing the node set
675 675
    ///
676 676
    /// The \c \@nodes section will not be written to the stream.
677 677
    DigraphWriter& skipNodes() {
678 678
      LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member");
679 679
      _skip_nodes = true;
680 680
      return *this;
681 681
    }
682 682

	
683 683
    /// \brief Skip writing arc set
684 684
    ///
685 685
    /// The \c \@arcs section will not be written to the stream.
686 686
    DigraphWriter& skipArcs() {
687 687
      LEMON_ASSERT(!_skip_arcs, "Multiple usage of skipArcs() member");
688 688
      _skip_arcs = true;
689 689
      return *this;
690 690
    }
691 691

	
692 692
    /// @}
693 693

	
694 694
  private:
695 695

	
696 696
    void writeNodes() {
697 697
      _writer_bits::MapStorageBase<Node>* label = 0;
698 698
      for (typename NodeMaps::iterator it = _node_maps.begin();
699 699
           it != _node_maps.end(); ++it) {
700 700
        if (it->first == "label") {
701 701
          label = it->second;
702 702
          break;
703 703
        }
704 704
      }
705 705

	
706 706
      *_os << "@nodes";
707 707
      if (!_nodes_caption.empty()) {
708 708
        _writer_bits::writeToken(*_os << ' ', _nodes_caption);
709 709
      }
710 710
      *_os << std::endl;
711 711

	
712 712
      if (label == 0) {
713 713
        *_os << "label" << '\t';
714 714
      }
715 715
      for (typename NodeMaps::iterator it = _node_maps.begin();
716 716
           it != _node_maps.end(); ++it) {
717 717
        _writer_bits::writeToken(*_os, it->first) << '\t';
718 718
      }
719 719
      *_os << std::endl;
720 720

	
721 721
      std::vector<Node> nodes;
722 722
      for (NodeIt n(_digraph); n != INVALID; ++n) {
723 723
        nodes.push_back(n);
724 724
      }
725 725

	
726 726
      if (label == 0) {
727 727
        IdMap<Digraph, Node> id_map(_digraph);
728 728
        _writer_bits::MapLess<IdMap<Digraph, Node> > id_less(id_map);
729 729
        std::sort(nodes.begin(), nodes.end(), id_less);
730 730
      } else {
731 731
        label->sort(nodes);
732 732
      }
733 733

	
734 734
      for (int i = 0; i < static_cast<int>(nodes.size()); ++i) {
735 735
        Node n = nodes[i];
736 736
        if (label == 0) {
737 737
          std::ostringstream os;
738 738
          os << _digraph.id(n);
739 739
          _writer_bits::writeToken(*_os, os.str());
740 740
          *_os << '\t';
741 741
          _node_index.insert(std::make_pair(n, os.str()));
742 742
        }
743 743
        for (typename NodeMaps::iterator it = _node_maps.begin();
744 744
             it != _node_maps.end(); ++it) {
745 745
          std::string value = it->second->get(n);
746 746
          _writer_bits::writeToken(*_os, value);
747 747
          if (it->first == "label") {
748 748
            _node_index.insert(std::make_pair(n, value));
749 749
          }
750 750
          *_os << '\t';
751 751
        }
752 752
        *_os << std::endl;
753 753
      }
754 754
    }
755 755

	
756 756
    void createNodeIndex() {
757 757
      _writer_bits::MapStorageBase<Node>* label = 0;
758 758
      for (typename NodeMaps::iterator it = _node_maps.begin();
759 759
           it != _node_maps.end(); ++it) {
760 760
        if (it->first == "label") {
761 761
          label = it->second;
762 762
          break;
763 763
        }
764 764
      }
765 765

	
766 766
      if (label == 0) {
767 767
        for (NodeIt n(_digraph); n != INVALID; ++n) {
768 768
          std::ostringstream os;
769 769
          os << _digraph.id(n);
770 770
          _node_index.insert(std::make_pair(n, os.str()));
771 771
        }
772 772
      } else {
773 773
        for (NodeIt n(_digraph); n != INVALID; ++n) {
774 774
          std::string value = label->get(n);
775 775
          _node_index.insert(std::make_pair(n, value));
776 776
        }
777 777
      }
778 778
    }
779 779

	
780 780
    void writeArcs() {
781 781
      _writer_bits::MapStorageBase<Arc>* label = 0;
782 782
      for (typename ArcMaps::iterator it = _arc_maps.begin();
783 783
           it != _arc_maps.end(); ++it) {
784 784
        if (it->first == "label") {
785 785
          label = it->second;
786 786
          break;
787 787
        }
788 788
      }
789 789

	
790 790
      *_os << "@arcs";
791 791
      if (!_arcs_caption.empty()) {
792 792
        _writer_bits::writeToken(*_os << ' ', _arcs_caption);
793 793
      }
794 794
      *_os << std::endl;
795 795

	
796 796
      *_os << '\t' << '\t';
797 797
      if (label == 0) {
798 798
        *_os << "label" << '\t';
799 799
      }
800 800
      for (typename ArcMaps::iterator it = _arc_maps.begin();
801 801
           it != _arc_maps.end(); ++it) {
802 802
        _writer_bits::writeToken(*_os, it->first) << '\t';
803 803
      }
804 804
      *_os << std::endl;
805 805

	
806 806
      std::vector<Arc> arcs;
807 807
      for (ArcIt n(_digraph); n != INVALID; ++n) {
808 808
        arcs.push_back(n);
809 809
      }
810 810

	
811 811
      if (label == 0) {
812 812
        IdMap<Digraph, Arc> id_map(_digraph);
813 813
        _writer_bits::MapLess<IdMap<Digraph, Arc> > id_less(id_map);
814 814
        std::sort(arcs.begin(), arcs.end(), id_less);
815 815
      } else {
816 816
        label->sort(arcs);
817 817
      }
818 818

	
819 819
      for (int i = 0; i < static_cast<int>(arcs.size()); ++i) {
820 820
        Arc a = arcs[i];
821 821
        _writer_bits::writeToken(*_os, _node_index.
822 822
                                 find(_digraph.source(a))->second);
823 823
        *_os << '\t';
824 824
        _writer_bits::writeToken(*_os, _node_index.
825 825
                                 find(_digraph.target(a))->second);
826 826
        *_os << '\t';
827 827
        if (label == 0) {
828 828
          std::ostringstream os;
829 829
          os << _digraph.id(a);
830 830
          _writer_bits::writeToken(*_os, os.str());
831 831
          *_os << '\t';
832 832
          _arc_index.insert(std::make_pair(a, os.str()));
833 833
        }
834 834
        for (typename ArcMaps::iterator it = _arc_maps.begin();
835 835
             it != _arc_maps.end(); ++it) {
836 836
          std::string value = it->second->get(a);
837 837
          _writer_bits::writeToken(*_os, value);
838 838
          if (it->first == "label") {
839 839
            _arc_index.insert(std::make_pair(a, value));
840 840
          }
841 841
          *_os << '\t';
842 842
        }
843 843
        *_os << std::endl;
844 844
      }
845 845
    }
846 846

	
847 847
    void createArcIndex() {
848 848
      _writer_bits::MapStorageBase<Arc>* label = 0;
849 849
      for (typename ArcMaps::iterator it = _arc_maps.begin();
850 850
           it != _arc_maps.end(); ++it) {
851 851
        if (it->first == "label") {
852 852
          label = it->second;
853 853
          break;
854 854
        }
855 855
      }
856 856

	
857 857
      if (label == 0) {
858 858
        for (ArcIt a(_digraph); a != INVALID; ++a) {
859 859
          std::ostringstream os;
860 860
          os << _digraph.id(a);
861 861
          _arc_index.insert(std::make_pair(a, os.str()));
862 862
        }
863 863
      } else {
864 864
        for (ArcIt a(_digraph); a != INVALID; ++a) {
865 865
          std::string value = label->get(a);
866 866
          _arc_index.insert(std::make_pair(a, value));
867 867
        }
868 868
      }
869 869
    }
870 870

	
871 871
    void writeAttributes() {
872 872
      if (_attributes.empty()) return;
873 873
      *_os << "@attributes";
874 874
      if (!_attributes_caption.empty()) {
875 875
        _writer_bits::writeToken(*_os << ' ', _attributes_caption);
876 876
      }
877 877
      *_os << std::endl;
878 878
      for (typename Attributes::iterator it = _attributes.begin();
879 879
           it != _attributes.end(); ++it) {
880 880
        _writer_bits::writeToken(*_os, it->first) << ' ';
881 881
        _writer_bits::writeToken(*_os, it->second->get());
882 882
        *_os << std::endl;
883 883
      }
884 884
    }
885 885

	
886 886
  public:
887 887

	
888 888
    /// \name Execution of the writer
889 889
    /// @{
890 890

	
891 891
    /// \brief Start the batch processing
892 892
    ///
893 893
    /// This function starts the batch processing.
894 894
    void run() {
895 895
      if (!_skip_nodes) {
896 896
        writeNodes();
897 897
      } else {
898 898
        createNodeIndex();
899 899
      }
900 900
      if (!_skip_arcs) {
901 901
        writeArcs();
902 902
      } else {
903 903
        createArcIndex();
904 904
      }
905 905
      writeAttributes();
906 906
    }
907 907

	
908 908
    /// \brief Give back the stream of the writer
909 909
    ///
910 910
    /// Give back the stream of the writer.
911 911
    std::ostream& ostream() {
912 912
      return *_os;
913 913
    }
914 914

	
915 915
    /// @}
916 916
  };
917 917

	
918 918
  /// \brief Return a \ref DigraphWriter class
919 919
  ///
920 920
  /// This function just returns a \ref DigraphWriter class.
921 921
  /// \relates DigraphWriter
922 922
  template <typename Digraph>
923 923
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
924 924
                                       std::ostream& os) {
925 925
    DigraphWriter<Digraph> tmp(digraph, os);
926 926
    return tmp;
927 927
  }
928 928

	
929 929
  /// \brief Return a \ref DigraphWriter class
930 930
  ///
931 931
  /// This function just returns a \ref DigraphWriter class.
932 932
  /// \relates DigraphWriter
933 933
  template <typename Digraph>
934 934
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
935 935
                                       const std::string& fn) {
936 936
    DigraphWriter<Digraph> tmp(digraph, fn);
937 937
    return tmp;
938 938
  }
939 939

	
940 940
  /// \brief Return a \ref DigraphWriter class
941 941
  ///
942 942
  /// This function just returns a \ref DigraphWriter class.
943 943
  /// \relates DigraphWriter
944 944
  template <typename Digraph>
945 945
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
946 946
                                       const char* fn) {
947 947
    DigraphWriter<Digraph> tmp(digraph, fn);
948 948
    return tmp;
949 949
  }
950 950

	
951 951
  template <typename Graph>
952 952
  class GraphWriter;
953 953

	
954 954
  template <typename Graph>
955 955
  GraphWriter<Graph> graphWriter(const Graph& graph,
956 956
                                 std::ostream& os = std::cout);
957 957
  template <typename Graph>
958 958
  GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn);
959 959
  template <typename Graph>
960 960
  GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn);
961 961

	
962 962
  /// \ingroup lemon_io
963 963
  ///
964 964
  /// \brief \ref lgf-format "LGF" writer for directed graphs
965 965
  ///
966 966
  /// This utility writes an \ref lgf-format "LGF" file.
967 967
  ///
968 968
  /// It can be used almost the same way as \c DigraphWriter.
969 969
  /// The only difference is that this class can handle edges and
970 970
  /// edge maps as well as arcs and arc maps.
971 971
  ///
972 972
  /// The arc maps are written into the file as two columns, the
973 973
  /// caption of the columns are the name of the map prefixed with \c
974 974
  /// '+' and \c '-'. The arcs are written into the \c \@attributes
975 975
  /// section as a \c '+' or a \c '-' prefix (depends on the direction
976 976
  /// of the arc) and the label of corresponding edge.
977 977
  template <typename _Graph>
978 978
  class GraphWriter {
979 979
  public:
980 980

	
981 981
    typedef _Graph Graph;
982 982
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
983 983

	
984 984
  private:
985 985

	
986 986

	
987 987
    std::ostream* _os;
988 988
    bool local_os;
989 989

	
990 990
    const Graph& _graph;
991 991

	
992 992
    std::string _nodes_caption;
993 993
    std::string _edges_caption;
994 994
    std::string _attributes_caption;
995 995

	
996 996
    typedef std::map<Node, std::string> NodeIndex;
997 997
    NodeIndex _node_index;
998 998
    typedef std::map<Edge, std::string> EdgeIndex;
999 999
    EdgeIndex _edge_index;
1000 1000

	
1001 1001
    typedef std::vector<std::pair<std::string,
1002 1002
      _writer_bits::MapStorageBase<Node>* > > NodeMaps;
1003 1003
    NodeMaps _node_maps;
1004 1004

	
1005 1005
    typedef std::vector<std::pair<std::string,
1006 1006
      _writer_bits::MapStorageBase<Edge>* > >EdgeMaps;
1007 1007
    EdgeMaps _edge_maps;
1008 1008

	
1009 1009
    typedef std::vector<std::pair<std::string,
1010 1010
      _writer_bits::ValueStorageBase*> > Attributes;
1011 1011
    Attributes _attributes;
1012 1012

	
1013 1013
    bool _skip_nodes;
1014 1014
    bool _skip_edges;
1015 1015

	
1016 1016
  public:
1017 1017

	
1018 1018
    /// \brief Constructor
1019 1019
    ///
1020 1020
    /// Construct a directed graph writer, which writes to the given
1021 1021
    /// output stream.
1022 1022
    GraphWriter(const Graph& graph, std::ostream& os = std::cout)
1023 1023
      : _os(&os), local_os(false), _graph(graph),
1024 1024
        _skip_nodes(false), _skip_edges(false) {}
1025 1025

	
1026 1026
    /// \brief Constructor
1027 1027
    ///
1028 1028
    /// Construct a directed graph writer, which writes to the given
1029 1029
    /// output file.
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LIST_GRAPH_H
20 20
#define LEMON_LIST_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24 24
///\brief ListDigraph, ListGraph classes.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/error.h>
28 28
#include <lemon/bits/graph_extender.h>
29 29

	
30 30
#include <vector>
31 31
#include <list>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  class ListDigraphBase {
36 36

	
37 37
  protected:
38 38
    struct NodeT {
39 39
      int first_in, first_out;
40 40
      int prev, next;
41 41
    };
42 42

	
43 43
    struct ArcT {
44 44
      int target, source;
45 45
      int prev_in, prev_out;
46 46
      int next_in, next_out;
47 47
    };
48 48

	
49 49
    std::vector<NodeT> nodes;
50 50

	
51 51
    int first_node;
52 52

	
53 53
    int first_free_node;
54 54

	
55 55
    std::vector<ArcT> arcs;
56 56

	
57 57
    int first_free_arc;
58 58

	
59 59
  public:
60 60

	
61 61
    typedef ListDigraphBase Digraph;
62 62

	
63 63
    class Node {
64 64
      friend class ListDigraphBase;
65 65
    protected:
66 66

	
67 67
      int id;
68 68
      explicit Node(int pid) { id = pid;}
69 69

	
70 70
    public:
71 71
      Node() {}
72 72
      Node (Invalid) { id = -1; }
73 73
      bool operator==(const Node& node) const {return id == node.id;}
74 74
      bool operator!=(const Node& node) const {return id != node.id;}
75 75
      bool operator<(const Node& node) const {return id < node.id;}
76 76
    };
77 77

	
78 78
    class Arc {
79 79
      friend class ListDigraphBase;
80 80
    protected:
81 81

	
82 82
      int id;
83 83
      explicit Arc(int pid) { id = pid;}
84 84

	
85 85
    public:
86 86
      Arc() {}
87 87
      Arc (Invalid) { id = -1; }
88 88
      bool operator==(const Arc& arc) const {return id == arc.id;}
89 89
      bool operator!=(const Arc& arc) const {return id != arc.id;}
90 90
      bool operator<(const Arc& arc) const {return id < arc.id;}
91 91
    };
92 92

	
93 93

	
94 94

	
95 95
    ListDigraphBase()
96 96
      : nodes(), first_node(-1),
97 97
        first_free_node(-1), arcs(), first_free_arc(-1) {}
98 98

	
99 99

	
100 100
    int maxNodeId() const { return nodes.size()-1; }
101 101
    int maxArcId() const { return arcs.size()-1; }
102 102

	
103 103
    Node source(Arc e) const { return Node(arcs[e.id].source); }
104 104
    Node target(Arc e) const { return Node(arcs[e.id].target); }
105 105

	
106 106

	
107 107
    void first(Node& node) const {
108 108
      node.id = first_node;
109 109
    }
110 110

	
111 111
    void next(Node& node) const {
112 112
      node.id = nodes[node.id].next;
113 113
    }
114 114

	
115 115

	
116 116
    void first(Arc& arc) const {
117 117
      int n;
118 118
      for(n = first_node;
119 119
          n!=-1 && nodes[n].first_in == -1;
120 120
          n = nodes[n].next) {}
121 121
      arc.id = (n == -1) ? -1 : nodes[n].first_in;
122 122
    }
123 123

	
124 124
    void next(Arc& arc) const {
125 125
      if (arcs[arc.id].next_in != -1) {
126 126
        arc.id = arcs[arc.id].next_in;
127 127
      } else {
128 128
        int n;
129 129
        for(n = nodes[arcs[arc.id].target].next;
130 130
            n!=-1 && nodes[n].first_in == -1;
131 131
            n = nodes[n].next) {}
132 132
        arc.id = (n == -1) ? -1 : nodes[n].first_in;
133 133
      }
134 134
    }
135 135

	
136 136
    void firstOut(Arc &e, const Node& v) const {
137 137
      e.id = nodes[v.id].first_out;
138 138
    }
139 139
    void nextOut(Arc &e) const {
140 140
      e.id=arcs[e.id].next_out;
141 141
    }
142 142

	
143 143
    void firstIn(Arc &e, const Node& v) const {
144 144
      e.id = nodes[v.id].first_in;
145 145
    }
146 146
    void nextIn(Arc &e) const {
147 147
      e.id=arcs[e.id].next_in;
148 148
    }
149 149

	
150 150

	
151 151
    static int id(Node v) { return v.id; }
152 152
    static int id(Arc e) { return e.id; }
153 153

	
154 154
    static Node nodeFromId(int id) { return Node(id);}
155 155
    static Arc arcFromId(int id) { return Arc(id);}
156 156

	
157 157
    bool valid(Node n) const {
158 158
      return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
159 159
        nodes[n.id].prev != -2;
160 160
    }
161 161

	
162 162
    bool valid(Arc a) const {
163 163
      return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
164 164
        arcs[a.id].prev_in != -2;
165 165
    }
166 166

	
167 167
    Node addNode() {
168 168
      int n;
169 169

	
170 170
      if(first_free_node==-1) {
171 171
        n = nodes.size();
172 172
        nodes.push_back(NodeT());
173 173
      } else {
174 174
        n = first_free_node;
175 175
        first_free_node = nodes[n].next;
176 176
      }
177 177

	
178 178
      nodes[n].next = first_node;
179 179
      if(first_node != -1) nodes[first_node].prev = n;
180 180
      first_node = n;
181 181
      nodes[n].prev = -1;
182 182

	
183 183
      nodes[n].first_in = nodes[n].first_out = -1;
184 184

	
185 185
      return Node(n);
186 186
    }
187 187

	
188 188
    Arc addArc(Node u, Node v) {
189 189
      int n;
190 190

	
191 191
      if (first_free_arc == -1) {
192 192
        n = arcs.size();
193 193
        arcs.push_back(ArcT());
194 194
      } else {
195 195
        n = first_free_arc;
196 196
        first_free_arc = arcs[n].next_in;
197 197
      }
198 198

	
199 199
      arcs[n].source = u.id;
200 200
      arcs[n].target = v.id;
201 201

	
202 202
      arcs[n].next_out = nodes[u.id].first_out;
203 203
      if(nodes[u.id].first_out != -1) {
204 204
        arcs[nodes[u.id].first_out].prev_out = n;
205 205
      }
206 206

	
207 207
      arcs[n].next_in = nodes[v.id].first_in;
208 208
      if(nodes[v.id].first_in != -1) {
209 209
        arcs[nodes[v.id].first_in].prev_in = n;
210 210
      }
211 211

	
212 212
      arcs[n].prev_in = arcs[n].prev_out = -1;
213 213

	
214 214
      nodes[u.id].first_out = nodes[v.id].first_in = n;
215 215

	
216 216
      return Arc(n);
217 217
    }
218 218

	
219 219
    void erase(const Node& node) {
220 220
      int n = node.id;
221 221

	
222 222
      if(nodes[n].next != -1) {
223 223
        nodes[nodes[n].next].prev = nodes[n].prev;
224 224
      }
225 225

	
226 226
      if(nodes[n].prev != -1) {
227 227
        nodes[nodes[n].prev].next = nodes[n].next;
228 228
      } else {
229 229
        first_node = nodes[n].next;
230 230
      }
231 231

	
232 232
      nodes[n].next = first_free_node;
233 233
      first_free_node = n;
234 234
      nodes[n].prev = -2;
235 235

	
236 236
    }
237 237

	
238 238
    void erase(const Arc& arc) {
239 239
      int n = arc.id;
240 240

	
241 241
      if(arcs[n].next_in!=-1) {
242 242
        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
243 243
      }
244 244

	
245 245
      if(arcs[n].prev_in!=-1) {
246 246
        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
247 247
      } else {
248 248
        nodes[arcs[n].target].first_in = arcs[n].next_in;
249 249
      }
250 250

	
251 251

	
252 252
      if(arcs[n].next_out!=-1) {
253 253
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
254 254
      }
255 255

	
256 256
      if(arcs[n].prev_out!=-1) {
257 257
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
258 258
      } else {
259 259
        nodes[arcs[n].source].first_out = arcs[n].next_out;
260 260
      }
261 261

	
262 262
      arcs[n].next_in = first_free_arc;
263 263
      first_free_arc = n;
264 264
      arcs[n].prev_in = -2;
265 265
    }
266 266

	
267 267
    void clear() {
268 268
      arcs.clear();
269 269
      nodes.clear();
270 270
      first_node = first_free_node = first_free_arc = -1;
271 271
    }
272 272

	
273 273
  protected:
274 274
    void changeTarget(Arc e, Node n)
275 275
    {
276 276
      if(arcs[e.id].next_in != -1)
277 277
        arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
278 278
      if(arcs[e.id].prev_in != -1)
279 279
        arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
280 280
      else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
281 281
      if (nodes[n.id].first_in != -1) {
282 282
        arcs[nodes[n.id].first_in].prev_in = e.id;
283 283
      }
284 284
      arcs[e.id].target = n.id;
285 285
      arcs[e.id].prev_in = -1;
286 286
      arcs[e.id].next_in = nodes[n.id].first_in;
287 287
      nodes[n.id].first_in = e.id;
288 288
    }
289 289
    void changeSource(Arc e, Node n)
290 290
    {
291 291
      if(arcs[e.id].next_out != -1)
292 292
        arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
293 293
      if(arcs[e.id].prev_out != -1)
294 294
        arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
295 295
      else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
296 296
      if (nodes[n.id].first_out != -1) {
297 297
        arcs[nodes[n.id].first_out].prev_out = e.id;
298 298
      }
299 299
      arcs[e.id].source = n.id;
300 300
      arcs[e.id].prev_out = -1;
301 301
      arcs[e.id].next_out = nodes[n.id].first_out;
302 302
      nodes[n.id].first_out = e.id;
303 303
    }
304 304

	
305 305
  };
306 306

	
307 307
  typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
308 308

	
309 309
  /// \addtogroup graphs
310 310
  /// @{
311 311

	
312 312
  ///A general directed graph structure.
313 313

	
314 314
  ///\ref ListDigraph is a simple and fast <em>directed graph</em>
315 315
  ///implementation based on static linked lists that are stored in
316 316
  ///\c std::vector structures.
317 317
  ///
318 318
  ///It conforms to the \ref concepts::Digraph "Digraph concept" and it
319 319
  ///also provides several useful additional functionalities.
320 320
  ///Most of the member functions and nested classes are documented
321 321
  ///only in the concept class.
322 322
  ///
323 323
  ///An important extra feature of this digraph implementation is that
324 324
  ///its maps are real \ref concepts::ReferenceMap "reference map"s.
325 325
  ///
326 326
  ///\sa concepts::Digraph
327 327

	
328 328
  class ListDigraph : public ExtendedListDigraphBase {
329 329
  private:
330 330
    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
331 331

	
332 332
    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
333 333
    ///
334 334
    ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
335 335
    ///\brief Assignment of ListDigraph to another one is \e not allowed.
336 336
    ///Use copyDigraph() instead.
337 337

	
338 338
    ///Assignment of ListDigraph to another one is \e not allowed.
339 339
    ///Use copyDigraph() instead.
340 340
    void operator=(const ListDigraph &) {}
341 341
  public:
342 342

	
343 343
    typedef ExtendedListDigraphBase Parent;
344 344

	
345 345
    /// Constructor
346 346

	
347 347
    /// Constructor.
348 348
    ///
349 349
    ListDigraph() {}
350 350

	
351 351
    ///Add a new node to the digraph.
352 352

	
353 353
    ///Add a new node to the digraph.
354 354
    ///\return the new node.
355 355
    Node addNode() { return Parent::addNode(); }
356 356

	
357 357
    ///Add a new arc to the digraph.
358 358

	
359 359
    ///Add a new arc to the digraph with source node \c s
360 360
    ///and target node \c t.
361 361
    ///\return the new arc.
362 362
    Arc addArc(const Node& s, const Node& t) {
363 363
      return Parent::addArc(s, t);
364 364
    }
365 365

	
366 366
    ///\brief Erase a node from the digraph.
367 367
    ///
368 368
    ///Erase a node from the digraph.
369 369
    ///
370 370
    void erase(const Node& n) { Parent::erase(n); }
371 371

	
372 372
    ///\brief Erase an arc from the digraph.
373 373
    ///
374 374
    ///Erase an arc from the digraph.
375 375
    ///
376 376
    void erase(const Arc& a) { Parent::erase(a); }
377 377

	
378 378
    /// Node validity check
379 379

	
380 380
    /// This function gives back true if the given node is valid,
381 381
    /// ie. it is a real node of the graph.
382 382
    ///
383 383
    /// \warning A Node pointing to a removed item
384 384
    /// could become valid again later if new nodes are
385 385
    /// added to the graph.
386 386
    bool valid(Node n) const { return Parent::valid(n); }
387 387

	
388 388
    /// Arc validity check
389 389

	
390 390
    /// This function gives back true if the given arc is valid,
391 391
    /// ie. it is a real arc of the graph.
392 392
    ///
393 393
    /// \warning An Arc pointing to a removed item
394 394
    /// could become valid again later if new nodes are
395 395
    /// added to the graph.
396 396
    bool valid(Arc a) const { return Parent::valid(a); }
397 397

	
398 398
    /// Change the target of \c a to \c n
399 399

	
400 400
    /// Change the target of \c a to \c n
401 401
    ///
402 402
    ///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing
403 403
    ///the changed arc remain valid. However <tt>InArcIt</tt>s are
404 404
    ///invalidated.
405 405
    ///
406 406
    ///\warning This functionality cannot be used together with the Snapshot
407 407
    ///feature.
408 408
    void changeTarget(Arc a, Node n) {
409 409
      Parent::changeTarget(a,n);
410 410
    }
411 411
    /// Change the source of \c a to \c n
412 412

	
413 413
    /// Change the source of \c a to \c n
414 414
    ///
415 415
    ///\note The <tt>InArcIt</tt>s referencing the changed arc remain
416 416
    ///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are
417 417
    ///invalidated.
418 418
    ///
419 419
    ///\warning This functionality cannot be used together with the Snapshot
420 420
    ///feature.
421 421
    void changeSource(Arc a, Node n) {
422 422
      Parent::changeSource(a,n);
423 423
    }
424 424

	
425 425
    /// Invert the direction of an arc.
426 426

	
427 427
    ///\note The <tt>ArcIt</tt>s referencing the changed arc remain
428 428
    ///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are
429 429
    ///invalidated.
430 430
    ///
431 431
    ///\warning This functionality cannot be used together with the Snapshot
432 432
    ///feature.
433 433
    void reverseArc(Arc e) {
434 434
      Node t=target(e);
435 435
      changeTarget(e,source(e));
436 436
      changeSource(e,t);
437 437
    }
438 438

	
439 439
    /// Reserve memory for nodes.
440 440

	
441 441
    /// Using this function it is possible to avoid the superfluous memory
442 442
    /// allocation: if you know that the digraph you want to build will
443 443
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
444 444
    /// then it is worth reserving space for this amount before starting
445 445
    /// to build the digraph.
446 446
    /// \sa reserveArc
447 447
    void reserveNode(int n) { nodes.reserve(n); };
448 448

	
449 449
    /// Reserve memory for arcs.
450 450

	
451 451
    /// Using this function it is possible to avoid the superfluous memory
452 452
    /// allocation: if you know that the digraph you want to build will
453 453
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
454 454
    /// then it is worth reserving space for this amount before starting
455 455
    /// to build the digraph.
456 456
    /// \sa reserveNode
457 457
    void reserveArc(int m) { arcs.reserve(m); };
458 458

	
459 459
    ///Contract two nodes.
460 460

	
461 461
    ///This function contracts two nodes.
462 462
    ///Node \p b will be removed but instead of deleting
463 463
    ///incident arcs, they will be joined to \p a.
464 464
    ///The last parameter \p r controls whether to remove loops. \c true
465 465
    ///means that loops will be removed.
466 466
    ///
467 467
    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
468 468
    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s
469 469
    ///may be invalidated.
470 470
    ///
471 471
    ///\warning This functionality cannot be used together with the Snapshot
472 472
    ///feature.
473 473
    void contract(Node a, Node b, bool r = true)
474 474
    {
475 475
      for(OutArcIt e(*this,b);e!=INVALID;) {
476 476
        OutArcIt f=e;
477 477
        ++f;
478 478
        if(r && target(e)==a) erase(e);
479 479
        else changeSource(e,a);
480 480
        e=f;
481 481
      }
482 482
      for(InArcIt e(*this,b);e!=INVALID;) {
483 483
        InArcIt f=e;
484 484
        ++f;
485 485
        if(r && source(e)==a) erase(e);
486 486
        else changeTarget(e,a);
487 487
        e=f;
488 488
      }
489 489
      erase(b);
490 490
    }
491 491

	
492 492
    ///Split a node.
493 493

	
494 494
    ///This function splits a node. First a new node is added to the digraph,
495 495
    ///then the source of each outgoing arc of \c n is moved to this new node.
496 496
    ///If \c connect is \c true (this is the default value), then a new arc
497 497
    ///from \c n to the newly created node is also added.
498 498
    ///\return The newly created node.
499 499
    ///
500 500
    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
501 501
    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may
502 502
    ///be invalidated.
503 503
    ///
504 504
    ///\warning This functionality cannot be used in conjunction with the
505 505
    ///Snapshot feature.
506 506
    Node split(Node n, bool connect = true) {
507 507
      Node b = addNode();
508 508
      for(OutArcIt e(*this,n);e!=INVALID;) {
509 509
        OutArcIt f=e;
510 510
        ++f;
511 511
        changeSource(e,b);
512 512
        e=f;
513 513
      }
514 514
      if (connect) addArc(n,b);
515 515
      return b;
516 516
    }
517 517

	
518 518
    ///Split an arc.
519 519

	
520 520
    ///This function splits an arc. First a new node \c b is added to
521 521
    ///the digraph, then the original arc is re-targeted to \c
522 522
    ///b. Finally an arc from \c b to the original target is added.
523 523
    ///
524 524
    ///\return The newly created node.
525 525
    ///
526 526
    ///\warning This functionality cannot be used together with the
527 527
    ///Snapshot feature.
528 528
    Node split(Arc e) {
529 529
      Node b = addNode();
530 530
      addArc(b,target(e));
531 531
      changeTarget(e,b);
532 532
      return b;
533 533
    }
534 534

	
535 535
    /// \brief Class to make a snapshot of the digraph and restore
536 536
    /// it later.
537 537
    ///
538 538
    /// Class to make a snapshot of the digraph and restore it later.
539 539
    ///
540 540
    /// The newly added nodes and arcs can be removed using the
541 541
    /// restore() function.
542 542
    ///
543 543
    /// \warning Arc and node deletions and other modifications (e.g.
544 544
    /// contracting, splitting, reversing arcs or nodes) cannot be
545 545
    /// restored. These events invalidate the snapshot.
546 546
    class Snapshot {
547 547
    protected:
548 548

	
549 549
      typedef Parent::NodeNotifier NodeNotifier;
550 550

	
551 551
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
552 552
      public:
553 553

	
554 554
        NodeObserverProxy(Snapshot& _snapshot)
555 555
          : snapshot(_snapshot) {}
556 556

	
557 557
        using NodeNotifier::ObserverBase::attach;
558 558
        using NodeNotifier::ObserverBase::detach;
559 559
        using NodeNotifier::ObserverBase::attached;
560 560

	
561 561
      protected:
562 562

	
563 563
        virtual void add(const Node& node) {
564 564
          snapshot.addNode(node);
565 565
        }
566 566
        virtual void add(const std::vector<Node>& nodes) {
567 567
          for (int i = nodes.size() - 1; i >= 0; ++i) {
568 568
            snapshot.addNode(nodes[i]);
569 569
          }
570 570
        }
571 571
        virtual void erase(const Node& node) {
572 572
          snapshot.eraseNode(node);
573 573
        }
574 574
        virtual void erase(const std::vector<Node>& nodes) {
575 575
          for (int i = 0; i < int(nodes.size()); ++i) {
576 576
            snapshot.eraseNode(nodes[i]);
577 577
          }
578 578
        }
579 579
        virtual void build() {
580 580
          Node node;
581 581
          std::vector<Node> nodes;
582 582
          for (notifier()->first(node); node != INVALID;
583 583
               notifier()->next(node)) {
584 584
            nodes.push_back(node);
585 585
          }
586 586
          for (int i = nodes.size() - 1; i >= 0; --i) {
587 587
            snapshot.addNode(nodes[i]);
588 588
          }
589 589
        }
590 590
        virtual void clear() {
591 591
          Node node;
592 592
          for (notifier()->first(node); node != INVALID;
593 593
               notifier()->next(node)) {
594 594
            snapshot.eraseNode(node);
595 595
          }
596 596
        }
597 597

	
598 598
        Snapshot& snapshot;
599 599
      };
600 600

	
601 601
      class ArcObserverProxy : public ArcNotifier::ObserverBase {
602 602
      public:
603 603

	
604 604
        ArcObserverProxy(Snapshot& _snapshot)
605 605
          : snapshot(_snapshot) {}
606 606

	
607 607
        using ArcNotifier::ObserverBase::attach;
608 608
        using ArcNotifier::ObserverBase::detach;
609 609
        using ArcNotifier::ObserverBase::attached;
610 610

	
611 611
      protected:
612 612

	
613 613
        virtual void add(const Arc& arc) {
614 614
          snapshot.addArc(arc);
615 615
        }
616 616
        virtual void add(const std::vector<Arc>& arcs) {
617 617
          for (int i = arcs.size() - 1; i >= 0; ++i) {
618 618
            snapshot.addArc(arcs[i]);
619 619
          }
620 620
        }
621 621
        virtual void erase(const Arc& arc) {
622 622
          snapshot.eraseArc(arc);
623 623
        }
624 624
        virtual void erase(const std::vector<Arc>& arcs) {
625 625
          for (int i = 0; i < int(arcs.size()); ++i) {
626 626
            snapshot.eraseArc(arcs[i]);
627 627
          }
628 628
        }
629 629
        virtual void build() {
630 630
          Arc arc;
631 631
          std::vector<Arc> arcs;
632 632
          for (notifier()->first(arc); arc != INVALID;
633 633
               notifier()->next(arc)) {
634 634
            arcs.push_back(arc);
635 635
          }
636 636
          for (int i = arcs.size() - 1; i >= 0; --i) {
637 637
            snapshot.addArc(arcs[i]);
638 638
          }
639 639
        }
640 640
        virtual void clear() {
641 641
          Arc arc;
642 642
          for (notifier()->first(arc); arc != INVALID;
643 643
               notifier()->next(arc)) {
644 644
            snapshot.eraseArc(arc);
645 645
          }
646 646
        }
647 647

	
648 648
        Snapshot& snapshot;
649 649
      };
650 650

	
651 651
      ListDigraph *digraph;
652 652

	
653 653
      NodeObserverProxy node_observer_proxy;
654 654
      ArcObserverProxy arc_observer_proxy;
655 655

	
656 656
      std::list<Node> added_nodes;
657 657
      std::list<Arc> added_arcs;
658 658

	
659 659

	
660 660
      void addNode(const Node& node) {
661 661
        added_nodes.push_front(node);
662 662
      }
663 663
      void eraseNode(const Node& node) {
664 664
        std::list<Node>::iterator it =
665 665
          std::find(added_nodes.begin(), added_nodes.end(), node);
666 666
        if (it == added_nodes.end()) {
667 667
          clear();
668 668
          arc_observer_proxy.detach();
669 669
          throw NodeNotifier::ImmediateDetach();
670 670
        } else {
671 671
          added_nodes.erase(it);
672 672
        }
673 673
      }
674 674

	
675 675
      void addArc(const Arc& arc) {
676 676
        added_arcs.push_front(arc);
677 677
      }
678 678
      void eraseArc(const Arc& arc) {
679 679
        std::list<Arc>::iterator it =
680 680
          std::find(added_arcs.begin(), added_arcs.end(), arc);
681 681
        if (it == added_arcs.end()) {
682 682
          clear();
683 683
          node_observer_proxy.detach();
684 684
          throw ArcNotifier::ImmediateDetach();
685 685
        } else {
686 686
          added_arcs.erase(it);
687 687
        }
688 688
      }
689 689

	
690 690
      void attach(ListDigraph &_digraph) {
691 691
        digraph = &_digraph;
692 692
        node_observer_proxy.attach(digraph->notifier(Node()));
693 693
        arc_observer_proxy.attach(digraph->notifier(Arc()));
694 694
      }
695 695

	
696 696
      void detach() {
697 697
        node_observer_proxy.detach();
698 698
        arc_observer_proxy.detach();
699 699
      }
700 700

	
701 701
      bool attached() const {
702 702
        return node_observer_proxy.attached();
703 703
      }
704 704

	
705 705
      void clear() {
706 706
        added_nodes.clear();
707 707
        added_arcs.clear();
708 708
      }
709 709

	
710 710
    public:
711 711

	
712 712
      /// \brief Default constructor.
713 713
      ///
714 714
      /// Default constructor.
715 715
      /// To actually make a snapshot you must call save().
716 716
      Snapshot()
717 717
        : digraph(0), node_observer_proxy(*this),
718 718
          arc_observer_proxy(*this) {}
719 719

	
720 720
      /// \brief Constructor that immediately makes a snapshot.
721 721
      ///
722 722
      /// This constructor immediately makes a snapshot of the digraph.
723 723
      /// \param _digraph The digraph we make a snapshot of.
724 724
      Snapshot(ListDigraph &_digraph)
725 725
        : node_observer_proxy(*this),
726 726
          arc_observer_proxy(*this) {
727 727
        attach(_digraph);
728 728
      }
729 729

	
730 730
      /// \brief Make a snapshot.
731 731
      ///
732 732
      /// Make a snapshot of the digraph.
733 733
      ///
734 734
      /// This function can be called more than once. In case of a repeated
735 735
      /// call, the previous snapshot gets lost.
736 736
      /// \param _digraph The digraph we make the snapshot of.
737 737
      void save(ListDigraph &_digraph) {
738 738
        if (attached()) {
739 739
          detach();
740 740
          clear();
741 741
        }
742 742
        attach(_digraph);
743 743
      }
744 744

	
745 745
      /// \brief Undo the changes until the last snapshot.
746 746
      //
747 747
      /// Undo the changes until the last snapshot created by save().
748 748
      void restore() {
749 749
        detach();
750 750
        for(std::list<Arc>::iterator it = added_arcs.begin();
751 751
            it != added_arcs.end(); ++it) {
752 752
          digraph->erase(*it);
753 753
        }
754 754
        for(std::list<Node>::iterator it = added_nodes.begin();
755 755
            it != added_nodes.end(); ++it) {
756 756
          digraph->erase(*it);
757 757
        }
758 758
        clear();
759 759
      }
760 760

	
761 761
      /// \brief Gives back true when the snapshot is valid.
762 762
      ///
763 763
      /// Gives back true when the snapshot is valid.
764 764
      bool valid() const {
765 765
        return attached();
766 766
      }
767 767
    };
768 768

	
769 769
  };
770 770

	
771 771
  ///@}
772 772

	
773 773
  class ListGraphBase {
774 774

	
775 775
  protected:
776 776

	
777 777
    struct NodeT {
778 778
      int first_out;
779 779
      int prev, next;
780 780
    };
781 781

	
782 782
    struct ArcT {
783 783
      int target;
784 784
      int prev_out, next_out;
785 785
    };
786 786

	
787 787
    std::vector<NodeT> nodes;
788 788

	
789 789
    int first_node;
790 790

	
791 791
    int first_free_node;
792 792

	
793 793
    std::vector<ArcT> arcs;
794 794

	
795 795
    int first_free_arc;
796 796

	
797 797
  public:
798 798

	
799 799
    typedef ListGraphBase Digraph;
800 800

	
801 801
    class Node;
802 802
    class Arc;
803 803
    class Edge;
804 804

	
805 805
    class Node {
806 806
      friend class ListGraphBase;
807 807
    protected:
808 808

	
809 809
      int id;
810 810
      explicit Node(int pid) { id = pid;}
811 811

	
812 812
    public:
813 813
      Node() {}
814 814
      Node (Invalid) { id = -1; }
815 815
      bool operator==(const Node& node) const {return id == node.id;}
816 816
      bool operator!=(const Node& node) const {return id != node.id;}
817 817
      bool operator<(const Node& node) const {return id < node.id;}
818 818
    };
819 819

	
820 820
    class Edge {
821 821
      friend class ListGraphBase;
822 822
    protected:
823 823

	
824 824
      int id;
825 825
      explicit Edge(int pid) { id = pid;}
826 826

	
827 827
    public:
828 828
      Edge() {}
829 829
      Edge (Invalid) { id = -1; }
830 830
      bool operator==(const Edge& edge) const {return id == edge.id;}
831 831
      bool operator!=(const Edge& edge) const {return id != edge.id;}
832 832
      bool operator<(const Edge& edge) const {return id < edge.id;}
833 833
    };
834 834

	
835 835
    class Arc {
836 836
      friend class ListGraphBase;
837 837
    protected:
838 838

	
839 839
      int id;
840 840
      explicit Arc(int pid) { id = pid;}
841 841

	
842 842
    public:
843 843
      operator Edge() const { 
844 844
        return id != -1 ? edgeFromId(id / 2) : INVALID; 
845 845
      }
846 846

	
847 847
      Arc() {}
848 848
      Arc (Invalid) { id = -1; }
849 849
      bool operator==(const Arc& arc) const {return id == arc.id;}
850 850
      bool operator!=(const Arc& arc) const {return id != arc.id;}
851 851
      bool operator<(const Arc& arc) const {return id < arc.id;}
852 852
    };
853 853

	
854 854

	
855 855

	
856 856
    ListGraphBase()
857 857
      : nodes(), first_node(-1),
858 858
        first_free_node(-1), arcs(), first_free_arc(-1) {}
859 859

	
860 860

	
861 861
    int maxNodeId() const { return nodes.size()-1; }
862 862
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
863 863
    int maxArcId() const { return arcs.size()-1; }
864 864

	
865 865
    Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
866 866
    Node target(Arc e) const { return Node(arcs[e.id].target); }
867 867

	
868 868
    Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
869 869
    Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
870 870

	
871 871
    static bool direction(Arc e) {
872 872
      return (e.id & 1) == 1;
873 873
    }
874 874

	
875 875
    static Arc direct(Edge e, bool d) {
876 876
      return Arc(e.id * 2 + (d ? 1 : 0));
877 877
    }
878 878

	
879 879
    void first(Node& node) const {
880 880
      node.id = first_node;
881 881
    }
882 882

	
883 883
    void next(Node& node) const {
884 884
      node.id = nodes[node.id].next;
885 885
    }
886 886

	
887 887
    void first(Arc& e) const {
888 888
      int n = first_node;
889 889
      while (n != -1 && nodes[n].first_out == -1) {
890 890
        n = nodes[n].next;
891 891
      }
892 892
      e.id = (n == -1) ? -1 : nodes[n].first_out;
893 893
    }
894 894

	
895 895
    void next(Arc& e) const {
896 896
      if (arcs[e.id].next_out != -1) {
897 897
        e.id = arcs[e.id].next_out;
898 898
      } else {
899 899
        int n = nodes[arcs[e.id ^ 1].target].next;
900 900
        while(n != -1 && nodes[n].first_out == -1) {
901 901
          n = nodes[n].next;
902 902
        }
903 903
        e.id = (n == -1) ? -1 : nodes[n].first_out;
904 904
      }
905 905
    }
906 906

	
907 907
    void first(Edge& e) const {
908 908
      int n = first_node;
909 909
      while (n != -1) {
910 910
        e.id = nodes[n].first_out;
911 911
        while ((e.id & 1) != 1) {
912 912
          e.id = arcs[e.id].next_out;
913 913
        }
914 914
        if (e.id != -1) {
915 915
          e.id /= 2;
916 916
          return;
917 917
        }
918 918
        n = nodes[n].next;
919 919
      }
920 920
      e.id = -1;
921 921
    }
922 922

	
923 923
    void next(Edge& e) const {
924 924
      int n = arcs[e.id * 2].target;
925 925
      e.id = arcs[(e.id * 2) | 1].next_out;
926 926
      while ((e.id & 1) != 1) {
927 927
        e.id = arcs[e.id].next_out;
928 928
      }
929 929
      if (e.id != -1) {
930 930
        e.id /= 2;
931 931
        return;
932 932
      }
933 933
      n = nodes[n].next;
934 934
      while (n != -1) {
935 935
        e.id = nodes[n].first_out;
936 936
        while ((e.id & 1) != 1) {
937 937
          e.id = arcs[e.id].next_out;
938 938
        }
939 939
        if (e.id != -1) {
940 940
          e.id /= 2;
941 941
          return;
942 942
        }
943 943
        n = nodes[n].next;
944 944
      }
945 945
      e.id = -1;
946 946
    }
947 947

	
948 948
    void firstOut(Arc &e, const Node& v) const {
949 949
      e.id = nodes[v.id].first_out;
950 950
    }
951 951
    void nextOut(Arc &e) const {
952 952
      e.id = arcs[e.id].next_out;
953 953
    }
954 954

	
955 955
    void firstIn(Arc &e, const Node& v) const {
956 956
      e.id = ((nodes[v.id].first_out) ^ 1);
957 957
      if (e.id == -2) e.id = -1;
958 958
    }
959 959
    void nextIn(Arc &e) const {
960 960
      e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
961 961
      if (e.id == -2) e.id = -1;
962 962
    }
963 963

	
964 964
    void firstInc(Edge &e, bool& d, const Node& v) const {
965 965
      int a = nodes[v.id].first_out;
966 966
      if (a != -1 ) {
967 967
        e.id = a / 2;
968 968
        d = ((a & 1) == 1);
969 969
      } else {
970 970
        e.id = -1;
971 971
        d = true;
972 972
      }
973 973
    }
974 974
    void nextInc(Edge &e, bool& d) const {
975 975
      int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
976 976
      if (a != -1 ) {
977 977
        e.id = a / 2;
978 978
        d = ((a & 1) == 1);
979 979
      } else {
980 980
        e.id = -1;
981 981
        d = true;
982 982
      }
983 983
    }
984 984

	
985 985
    static int id(Node v) { return v.id; }
986 986
    static int id(Arc e) { return e.id; }
987 987
    static int id(Edge e) { return e.id; }
988 988

	
989 989
    static Node nodeFromId(int id) { return Node(id);}
990 990
    static Arc arcFromId(int id) { return Arc(id);}
991 991
    static Edge edgeFromId(int id) { return Edge(id);}
992 992

	
993 993
    bool valid(Node n) const {
994 994
      return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
995 995
        nodes[n.id].prev != -2;
996 996
    }
997 997

	
998 998
    bool valid(Arc a) const {
999 999
      return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
1000 1000
        arcs[a.id].prev_out != -2;
1001 1001
    }
1002 1002

	
1003 1003
    bool valid(Edge e) const {
1004 1004
      return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
1005 1005
        arcs[2 * e.id].prev_out != -2;
1006 1006
    }
1007 1007

	
1008 1008
    Node addNode() {
1009 1009
      int n;
1010 1010

	
1011 1011
      if(first_free_node==-1) {
1012 1012
        n = nodes.size();
1013 1013
        nodes.push_back(NodeT());
1014 1014
      } else {
1015 1015
        n = first_free_node;
1016 1016
        first_free_node = nodes[n].next;
1017 1017
      }
1018 1018

	
1019 1019
      nodes[n].next = first_node;
1020 1020
      if (first_node != -1) nodes[first_node].prev = n;
1021 1021
      first_node = n;
1022 1022
      nodes[n].prev = -1;
1023 1023

	
1024 1024
      nodes[n].first_out = -1;
1025 1025

	
1026 1026
      return Node(n);
1027 1027
    }
1028 1028

	
1029 1029
    Edge addEdge(Node u, Node v) {
Show white space 2048 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup paths
20 20
///\file
21 21
///\brief Classes for representing paths in digraphs.
22 22
///
23 23

	
24 24
#ifndef LEMON_PATH_H
25 25
#define LEMON_PATH_H
26 26

	
27 27
#include <vector>
28 28
#include <algorithm>
29 29

	
30 30
#include <lemon/error.h>
31 31
#include <lemon/core.h>
32 32
#include <lemon/concepts/path.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup paths
37 37
  /// @{
38 38

	
39 39

	
40 40
  /// \brief A structure for representing directed paths in a digraph.
41 41
  ///
42 42
  /// A structure for representing directed path in a digraph.
43 43
  /// \tparam _Digraph The digraph type in which the path is.
44 44
  ///
45 45
  /// In a sense, the path can be treated as a list of arcs. The
46 46
  /// lemon path type stores just this list. As a consequence, it
47 47
  /// cannot enumerate the nodes of the path and the source node of
48 48
  /// a zero length path is undefined.
49 49
  ///
50 50
  /// This implementation is a back and front insertable and erasable
51 51
  /// path type. It can be indexed in O(1) time. The front and back
52 52
  /// insertion and erase is done in O(1) (amortized) time. The
53 53
  /// implementation uses two vectors for storing the front and back
54 54
  /// insertions.
55 55
  template <typename _Digraph>
56 56
  class Path {
57 57
  public:
58 58

	
59 59
    typedef _Digraph Digraph;
60 60
    typedef typename Digraph::Arc Arc;
61 61

	
62 62
    /// \brief Default constructor
63 63
    ///
64 64
    /// Default constructor
65 65
    Path() {}
66 66

	
67 67
    /// \brief Template copy constructor
68 68
    ///
69 69
    /// This constuctor initializes the path from any other path type.
70 70
    /// It simply makes a copy of the given path.
71 71
    template <typename CPath>
72 72
    Path(const CPath& cpath) {
73 73
      pathCopy(cpath, *this);
74 74
    }
75 75

	
76 76
    /// \brief Template copy assignment
77 77
    ///
78 78
    /// This operator makes a copy of a path of any other type.
79 79
    template <typename CPath>
80 80
    Path& operator=(const CPath& cpath) {
81 81
      pathCopy(cpath, *this);
82 82
      return *this;
83 83
    }
84 84

	
85 85
    /// \brief LEMON style iterator for path arcs
86 86
    ///
87 87
    /// This class is used to iterate on the arcs of the paths.
88 88
    class ArcIt {
89 89
      friend class Path;
90 90
    public:
91 91
      /// \brief Default constructor
92 92
      ArcIt() {}
93 93
      /// \brief Invalid constructor
94 94
      ArcIt(Invalid) : path(0), idx(-1) {}
95 95
      /// \brief Initializate the iterator to the first arc of path
96 96
      ArcIt(const Path &_path)
97 97
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
98 98

	
99 99
    private:
100 100

	
101 101
      ArcIt(const Path &_path, int _idx)
102 102
        : path(&_path), idx(_idx) {}
103 103

	
104 104
    public:
105 105

	
106 106
      /// \brief Conversion to Arc
107 107
      operator const Arc&() const {
108 108
        return path->nth(idx);
109 109
      }
110 110

	
111 111
      /// \brief Next arc
112 112
      ArcIt& operator++() {
113 113
        ++idx;
114 114
        if (idx >= path->length()) idx = -1;
115 115
        return *this;
116 116
      }
117 117

	
118 118
      /// \brief Comparison operator
119 119
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
120 120
      /// \brief Comparison operator
121 121
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
122 122
      /// \brief Comparison operator
123 123
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
124 124

	
125 125
    private:
126 126
      const Path *path;
127 127
      int idx;
128 128
    };
129 129

	
130 130
    /// \brief Length of the path.
131 131
    int length() const { return head.size() + tail.size(); }
132 132
    /// \brief Return whether the path is empty.
133 133
    bool empty() const { return head.empty() && tail.empty(); }
134 134

	
135 135
    /// \brief Reset the path to an empty one.
136 136
    void clear() { head.clear(); tail.clear(); }
137 137

	
138 138
    /// \brief The nth arc.
139 139
    ///
140 140
    /// \pre n is in the [0..length() - 1] range
141 141
    const Arc& nth(int n) const {
142 142
      return n < int(head.size()) ? *(head.rbegin() + n) :
143 143
        *(tail.begin() + (n - head.size()));
144 144
    }
145 145

	
146 146
    /// \brief Initialize arc iterator to point to the nth arc
147 147
    ///
148 148
    /// \pre n is in the [0..length() - 1] range
149 149
    ArcIt nthIt(int n) const {
150 150
      return ArcIt(*this, n);
151 151
    }
152 152

	
153 153
    /// \brief The first arc of the path
154 154
    const Arc& front() const {
155 155
      return head.empty() ? tail.front() : head.back();
156 156
    }
157 157

	
158 158
    /// \brief Add a new arc before the current path
159 159
    void addFront(const Arc& arc) {
160 160
      head.push_back(arc);
161 161
    }
162 162

	
163 163
    /// \brief Erase the first arc of the path
164 164
    void eraseFront() {
165 165
      if (!head.empty()) {
166 166
        head.pop_back();
167 167
      } else {
168 168
        head.clear();
169 169
        int halfsize = tail.size() / 2;
170 170
        head.resize(halfsize);
171 171
        std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
172 172
                  head.rbegin());
173 173
        std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
174 174
        tail.resize(tail.size() - halfsize - 1);
175 175
      }
176 176
    }
177 177

	
178 178
    /// \brief The last arc of the path
179 179
    const Arc& back() const {
180 180
      return tail.empty() ? head.front() : tail.back();
181 181
    }
182 182

	
183 183
    /// \brief Add a new arc behind the current path
184 184
    void addBack(const Arc& arc) {
185 185
      tail.push_back(arc);
186 186
    }
187 187

	
188 188
    /// \brief Erase the last arc of the path
189 189
    void eraseBack() {
190 190
      if (!tail.empty()) {
191 191
        tail.pop_back();
192 192
      } else {
193 193
        int halfsize = head.size() / 2;
194 194
        tail.resize(halfsize);
195 195
        std::copy(head.begin() + 1, head.begin() + halfsize + 1,
196 196
                  tail.rbegin());
197 197
        std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
198 198
        head.resize(head.size() - halfsize - 1);
199 199
      }
200 200
    }
201 201

	
202 202
    typedef True BuildTag;
203 203

	
204 204
    template <typename CPath>
205 205
    void build(const CPath& path) {
206 206
      int len = path.length();
207 207
      tail.reserve(len);
208 208
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
209 209
        tail.push_back(it);
210 210
      }
211 211
    }
212 212

	
213 213
    template <typename CPath>
214 214
    void buildRev(const CPath& path) {
215 215
      int len = path.length();
216 216
      head.reserve(len);
217 217
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
218 218
        head.push_back(it);
219 219
      }
220 220
    }
221 221

	
222 222
  protected:
223 223
    typedef std::vector<Arc> Container;
224 224
    Container head, tail;
225 225

	
226 226
  };
227 227

	
228 228
  /// \brief A structure for representing directed paths in a digraph.
229 229
  ///
230 230
  /// A structure for representing directed path in a digraph.
231 231
  /// \tparam _Digraph The digraph type in which the path is.
232 232
  ///
233 233
  /// In a sense, the path can be treated as a list of arcs. The
234 234
  /// lemon path type stores just this list. As a consequence it
235 235
  /// cannot enumerate the nodes in the path and the zero length paths
236 236
  /// cannot store the source.
237 237
  ///
238 238
  /// This implementation is a just back insertable and erasable path
239 239
  /// type. It can be indexed in O(1) time. The back insertion and
240 240
  /// erasure is amortized O(1) time. This implementation is faster
241 241
  /// then the \c Path type because it use just one vector for the
242 242
  /// arcs.
243 243
  template <typename _Digraph>
244 244
  class SimplePath {
245 245
  public:
246 246

	
247 247
    typedef _Digraph Digraph;
248 248
    typedef typename Digraph::Arc Arc;
249 249

	
250 250
    /// \brief Default constructor
251 251
    ///
252 252
    /// Default constructor
253 253
    SimplePath() {}
254 254

	
255 255
    /// \brief Template copy constructor
256 256
    ///
257 257
    /// This path can be initialized with any other path type. It just
258 258
    /// makes a copy of the given path.
259 259
    template <typename CPath>
260 260
    SimplePath(const CPath& cpath) {
261 261
      pathCopy(cpath, *this);
262 262
    }
263 263

	
264 264
    /// \brief Template copy assignment
265 265
    ///
266 266
    /// This path can be initialized with any other path type. It just
267 267
    /// makes a copy of the given path.
268 268
    template <typename CPath>
269 269
    SimplePath& operator=(const CPath& cpath) {
270 270
      pathCopy(cpath, *this);
271 271
      return *this;
272 272
    }
273 273

	
274 274
    /// \brief Iterator class to iterate on the arcs of the paths
275 275
    ///
276 276
    /// This class is used to iterate on the arcs of the paths
277 277
    ///
278 278
    /// Of course it converts to Digraph::Arc
279 279
    class ArcIt {
280 280
      friend class SimplePath;
281 281
    public:
282 282
      /// Default constructor
283 283
      ArcIt() {}
284 284
      /// Invalid constructor
285 285
      ArcIt(Invalid) : path(0), idx(-1) {}
286 286
      /// \brief Initializate the constructor to the first arc of path
287 287
      ArcIt(const SimplePath &_path)
288 288
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
289 289

	
290 290
    private:
291 291

	
292 292
      /// Constructor with starting point
293 293
      ArcIt(const SimplePath &_path, int _idx)
294 294
        : idx(_idx), path(&_path) {}
295 295

	
296 296
    public:
297 297

	
298 298
      ///Conversion to Digraph::Arc
299 299
      operator const Arc&() const {
300 300
        return path->nth(idx);
301 301
      }
302 302

	
303 303
      /// Next arc
304 304
      ArcIt& operator++() {
305 305
        ++idx;
306 306
        if (idx >= path->length()) idx = -1;
307 307
        return *this;
308 308
      }
309 309

	
310 310
      /// Comparison operator
311 311
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
312 312
      /// Comparison operator
313 313
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
314 314
      /// Comparison operator
315 315
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
316 316

	
317 317
    private:
318 318
      const SimplePath *path;
319 319
      int idx;
320 320
    };
321 321

	
322 322
    /// \brief Length of the path.
323 323
    int length() const { return data.size(); }
324 324
    /// \brief Return true if the path is empty.
325 325
    bool empty() const { return data.empty(); }
326 326

	
327 327
    /// \brief Reset the path to an empty one.
328 328
    void clear() { data.clear(); }
329 329

	
330 330
    /// \brief The nth arc.
331 331
    ///
332 332
    /// \pre n is in the [0..length() - 1] range
333 333
    const Arc& nth(int n) const {
334 334
      return data[n];
335 335
    }
336 336

	
337 337
    /// \brief  Initializes arc iterator to point to the nth arc.
338 338
    ArcIt nthIt(int n) const {
339 339
      return ArcIt(*this, n);
340 340
    }
341 341

	
342 342
    /// \brief The first arc of the path.
343 343
    const Arc& front() const {
344 344
      return data.front();
345 345
    }
346 346

	
347 347
    /// \brief The last arc of the path.
348 348
    const Arc& back() const {
349 349
      return data.back();
350 350
    }
351 351

	
352 352
    /// \brief Add a new arc behind the current path.
353 353
    void addBack(const Arc& arc) {
354 354
      data.push_back(arc);
355 355
    }
356 356

	
357 357
    /// \brief Erase the last arc of the path
358 358
    void eraseBack() {
359 359
      data.pop_back();
360 360
    }
361 361

	
362 362
    typedef True BuildTag;
363 363

	
364 364
    template <typename CPath>
365 365
    void build(const CPath& path) {
366 366
      int len = path.length();
367 367
      data.resize(len);
368 368
      int index = 0;
369 369
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
370 370
        data[index] = it;;
371 371
        ++index;
372 372
      }
373 373
    }
374 374

	
375 375
    template <typename CPath>
376 376
    void buildRev(const CPath& path) {
377 377
      int len = path.length();
378 378
      data.resize(len);
379 379
      int index = len;
380 380
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
381 381
        --index;
382 382
        data[index] = it;;
383 383
      }
384 384
    }
385 385

	
386 386
  protected:
387 387
    typedef std::vector<Arc> Container;
388 388
    Container data;
389 389

	
390 390
  };
391 391

	
392 392
  /// \brief A structure for representing directed paths in a digraph.
393 393
  ///
394 394
  /// A structure for representing directed path in a digraph.
395 395
  /// \tparam _Digraph The digraph type in which the path is.
396 396
  ///
397 397
  /// In a sense, the path can be treated as a list of arcs. The
398 398
  /// lemon path type stores just this list. As a consequence it
399 399
  /// cannot enumerate the nodes in the path and the zero length paths
400 400
  /// cannot store the source.
401 401
  ///
402 402
  /// This implementation is a back and front insertable and erasable
403 403
  /// path type. It can be indexed in O(k) time, where k is the rank
404 404
  /// of the arc in the path. The length can be computed in O(n)
405 405
  /// time. The front and back insertion and erasure is O(1) time
406 406
  /// and it can be splited and spliced in O(1) time.
407 407
  template <typename _Digraph>
408 408
  class ListPath {
409 409
  public:
410 410

	
411 411
    typedef _Digraph Digraph;
412 412
    typedef typename Digraph::Arc Arc;
413 413

	
414 414
  protected:
415 415

	
416 416
    // the std::list<> is incompatible
417 417
    // hard to create invalid iterator
418 418
    struct Node {
419 419
      Arc arc;
420 420
      Node *next, *prev;
421 421
    };
422 422

	
423 423
    Node *first, *last;
424 424

	
425 425
    std::allocator<Node> alloc;
426 426

	
427 427
  public:
428 428

	
429 429
    /// \brief Default constructor
430 430
    ///
431 431
    /// Default constructor
432 432
    ListPath() : first(0), last(0) {}
433 433

	
434 434
    /// \brief Template copy constructor
435 435
    ///
436 436
    /// This path can be initialized with any other path type. It just
437 437
    /// makes a copy of the given path.
438 438
    template <typename CPath>
439 439
    ListPath(const CPath& cpath) : first(0), last(0) {
440 440
      pathCopy(cpath, *this);
441 441
    }
442 442

	
443 443
    /// \brief Destructor of the path
444 444
    ///
445 445
    /// Destructor of the path
446 446
    ~ListPath() {
447 447
      clear();
448 448
    }
449 449

	
450 450
    /// \brief Template copy assignment
451 451
    ///
452 452
    /// This path can be initialized with any other path type. It just
453 453
    /// makes a copy of the given path.
454 454
    template <typename CPath>
455 455
    ListPath& operator=(const CPath& cpath) {
456 456
      pathCopy(cpath, *this);
457 457
      return *this;
458 458
    }
459 459

	
460 460
    /// \brief Iterator class to iterate on the arcs of the paths
461 461
    ///
462 462
    /// This class is used to iterate on the arcs of the paths
463 463
    ///
464 464
    /// Of course it converts to Digraph::Arc
465 465
    class ArcIt {
466 466
      friend class ListPath;
467 467
    public:
468 468
      /// Default constructor
469 469
      ArcIt() {}
470 470
      /// Invalid constructor
471 471
      ArcIt(Invalid) : path(0), node(0) {}
472 472
      /// \brief Initializate the constructor to the first arc of path
473 473
      ArcIt(const ListPath &_path)
474 474
        : path(&_path), node(_path.first) {}
475 475

	
476 476
    protected:
477 477

	
478 478
      ArcIt(const ListPath &_path, Node *_node)
479 479
        : path(&_path), node(_node) {}
480 480

	
481 481

	
482 482
    public:
483 483

	
484 484
      ///Conversion to Digraph::Arc
485 485
      operator const Arc&() const {
486 486
        return node->arc;
487 487
      }
488 488

	
489 489
      /// Next arc
490 490
      ArcIt& operator++() {
491 491
        node = node->next;
492 492
        return *this;
493 493
      }
494 494

	
495 495
      /// Comparison operator
496 496
      bool operator==(const ArcIt& e) const { return node==e.node; }
497 497
      /// Comparison operator
498 498
      bool operator!=(const ArcIt& e) const { return node!=e.node; }
499 499
      /// Comparison operator
500 500
      bool operator<(const ArcIt& e) const { return node<e.node; }
501 501

	
502 502
    private:
503 503
      const ListPath *path;
504 504
      Node *node;
505 505
    };
506 506

	
507 507
    /// \brief The nth arc.
508 508
    ///
509 509
    /// This function looks for the nth arc in O(n) time.
510 510
    /// \pre n is in the [0..length() - 1] range
511 511
    const Arc& nth(int n) const {
512 512
      Node *node = first;
513 513
      for (int i = 0; i < n; ++i) {
514 514
        node = node->next;
515 515
      }
516 516
      return node->arc;
517 517
    }
518 518

	
519 519
    /// \brief Initializes arc iterator to point to the nth arc.
520 520
    ArcIt nthIt(int n) const {
521 521
      Node *node = first;
522 522
      for (int i = 0; i < n; ++i) {
523 523
        node = node->next;
524 524
      }
525 525
      return ArcIt(*this, node);
526 526
    }
527 527

	
528 528
    /// \brief Length of the path.
529 529
    int length() const {
530 530
      int len = 0;
531 531
      Node *node = first;
532 532
      while (node != 0) {
533 533
        node = node->next;
534 534
        ++len;
535 535
      }
536 536
      return len;
537 537
    }
538 538

	
539 539
    /// \brief Return true if the path is empty.
540 540
    bool empty() const { return first == 0; }
541 541

	
542 542
    /// \brief Reset the path to an empty one.
543 543
    void clear() {
544 544
      while (first != 0) {
545 545
        last = first->next;
546 546
        alloc.destroy(first);
547 547
        alloc.deallocate(first, 1);
548 548
        first = last;
549 549
      }
550 550
    }
551 551

	
552 552
    /// \brief The first arc of the path
553 553
    const Arc& front() const {
554 554
      return first->arc;
555 555
    }
556 556

	
557 557
    /// \brief Add a new arc before the current path
558 558
    void addFront(const Arc& arc) {
559 559
      Node *node = alloc.allocate(1);
560 560
      alloc.construct(node, Node());
561 561
      node->prev = 0;
562 562
      node->next = first;
563 563
      node->arc = arc;
564 564
      if (first) {
565 565
        first->prev = node;
566 566
        first = node;
567 567
      } else {
568 568
        first = last = node;
569 569
      }
570 570
    }
571 571

	
572 572
    /// \brief Erase the first arc of the path
573 573
    void eraseFront() {
574 574
      Node *node = first;
575 575
      first = first->next;
576 576
      if (first) {
577 577
        first->prev = 0;
578 578
      } else {
579 579
        last = 0;
580 580
      }
581 581
      alloc.destroy(node);
582 582
      alloc.deallocate(node, 1);
583 583
    }
584 584

	
585 585
    /// \brief The last arc of the path.
586 586
    const Arc& back() const {
587 587
      return last->arc;
588 588
    }
589 589

	
590 590
    /// \brief Add a new arc behind the current path.
591 591
    void addBack(const Arc& arc) {
592 592
      Node *node = alloc.allocate(1);
593 593
      alloc.construct(node, Node());
594 594
      node->next = 0;
595 595
      node->prev = last;
596 596
      node->arc = arc;
597 597
      if (last) {
598 598
        last->next = node;
599 599
        last = node;
600 600
      } else {
601 601
        last = first = node;
602 602
      }
603 603
    }
604 604

	
605 605
    /// \brief Erase the last arc of the path
606 606
    void eraseBack() {
607 607
      Node *node = last;
608 608
      last = last->prev;
609 609
      if (last) {
610 610
        last->next = 0;
611 611
      } else {
612 612
        first = 0;
613 613
      }
614 614
      alloc.destroy(node);
615 615
      alloc.deallocate(node, 1);
616 616
    }
617 617

	
618 618
    /// \brief Splice a path to the back of the current path.
619 619
    ///
620 620
    /// It splices \c tpath to the back of the current path and \c
621 621
    /// tpath becomes empty. The time complexity of this function is
622 622
    /// O(1).
623 623
    void spliceBack(ListPath& tpath) {
624 624
      if (first) {
625 625
        if (tpath.first) {
626 626
          last->next = tpath.first;
627 627
          tpath.first->prev = last;
628 628
          last = tpath.last;
629 629
        }
630 630
      } else {
631 631
        first = tpath.first;
632 632
        last = tpath.last;
633 633
      }
634 634
      tpath.first = tpath.last = 0;
635 635
    }
636 636

	
637 637
    /// \brief Splice a path to the front of the current path.
638 638
    ///
639 639
    /// It splices \c tpath before the current path and \c tpath
640 640
    /// becomes empty. The time complexity of this function
641 641
    /// is O(1).
642 642
    void spliceFront(ListPath& tpath) {
643 643
      if (first) {
644 644
        if (tpath.first) {
645 645
          first->prev = tpath.last;
646 646
          tpath.last->next = first;
647 647
          first = tpath.first;
648 648
        }
649 649
      } else {
650 650
        first = tpath.first;
651 651
        last = tpath.last;
652 652
      }
653 653
      tpath.first = tpath.last = 0;
654 654
    }
655 655

	
656 656
    /// \brief Splice a path into the current path.
657 657
    ///
658 658
    /// It splices the \c tpath into the current path before the
659 659
    /// position of \c it iterator and \c tpath becomes empty. The
660 660
    /// time complexity of this function is O(1). If the \c it is
661 661
    /// \c INVALID then it will splice behind the current path.
662 662
    void splice(ArcIt it, ListPath& tpath) {
663 663
      if (it.node) {
664 664
        if (tpath.first) {
665 665
          tpath.first->prev = it.node->prev;
666 666
          if (it.node->prev) {
667 667
            it.node->prev->next = tpath.first;
668 668
          } else {
669 669
            first = tpath.first;
670 670
          }
671 671
          it.node->prev = tpath.last;
672 672
          tpath.last->next = it.node;
673 673
        }
674 674
      } else {
675 675
        if (first) {
676 676
          if (tpath.first) {
677 677
            last->next = tpath.first;
678 678
            tpath.first->prev = last;
679 679
            last = tpath.last;
680 680
          }
681 681
        } else {
682 682
          first = tpath.first;
683 683
          last = tpath.last;
684 684
        }
685 685
      }
686 686
      tpath.first = tpath.last = 0;
687 687
    }
688 688

	
689 689
    /// \brief Split the current path.
690 690
    ///
691 691
    /// It splits the current path into two parts. The part before
692 692
    /// the iterator \c it will remain in the current path and the part
693 693
    /// starting with
694 694
    /// \c it will put into \c tpath. If \c tpath have arcs
695 695
    /// before the operation they are removed first.  The time
696 696
    /// complexity of this function is O(1) plus the the time of emtying
697 697
    /// \c tpath. If \c it is \c INVALID then it just clears \c tpath
698 698
    void split(ArcIt it, ListPath& tpath) {
699 699
      tpath.clear();
700 700
      if (it.node) {
701 701
        tpath.first = it.node;
702 702
        tpath.last = last;
703 703
        if (it.node->prev) {
704 704
          last = it.node->prev;
705 705
          last->next = 0;
706 706
        } else {
707 707
          first = last = 0;
708 708
        }
709 709
        it.node->prev = 0;
710 710
      }
711 711
    }
712 712

	
713 713

	
714 714
    typedef True BuildTag;
715 715

	
716 716
    template <typename CPath>
717 717
    void build(const CPath& path) {
718 718
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
719 719
        addBack(it);
720 720
      }
721 721
    }
722 722

	
723 723
    template <typename CPath>
724 724
    void buildRev(const CPath& path) {
725 725
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
726 726
        addFront(it);
727 727
      }
728 728
    }
729 729

	
730 730
  };
731 731

	
732 732
  /// \brief A structure for representing directed paths in a digraph.
733 733
  ///
734 734
  /// A structure for representing directed path in a digraph.
735 735
  /// \tparam _Digraph The digraph type in which the path is.
736 736
  ///
737 737
  /// In a sense, the path can be treated as a list of arcs. The
738 738
  /// lemon path type stores just this list. As a consequence it
739 739
  /// cannot enumerate the nodes in the path and the source node of
740 740
  /// a zero length path is undefined.
741 741
  ///
742 742
  /// This implementation is completly static, i.e. it can be copy constucted
743 743
  /// or copy assigned from another path, but otherwise it cannot be
744 744
  /// modified.
745 745
  ///
746 746
  /// Being the the most memory efficient path type in LEMON,
747 747
  /// it is intented to be
748 748
  /// used when you want to store a large number of paths.
749 749
  template <typename _Digraph>
750 750
  class StaticPath {
751 751
  public:
752 752

	
753 753
    typedef _Digraph Digraph;
754 754
    typedef typename Digraph::Arc Arc;
755 755

	
756 756
    /// \brief Default constructor
757 757
    ///
758 758
    /// Default constructor
759 759
    StaticPath() : len(0), arcs(0) {}
760 760

	
761 761
    /// \brief Template copy constructor
762 762
    ///
763 763
    /// This path can be initialized from any other path type.
764 764
    template <typename CPath>
765 765
    StaticPath(const CPath& cpath) : arcs(0) {
766 766
      pathCopy(cpath, *this);
767 767
    }
768 768

	
769 769
    /// \brief Destructor of the path
770 770
    ///
771 771
    /// Destructor of the path
772 772
    ~StaticPath() {
773 773
      if (arcs) delete[] arcs;
774 774
    }
775 775

	
776 776
    /// \brief Template copy assignment
777 777
    ///
778 778
    /// This path can be made equal to any other path type. It simply
779 779
    /// makes a copy of the given path.
780 780
    template <typename CPath>
781 781
    StaticPath& operator=(const CPath& cpath) {
782 782
      pathCopy(cpath, *this);
783 783
      return *this;
784 784
    }
785 785

	
786 786
    /// \brief Iterator class to iterate on the arcs of the paths
787 787
    ///
788 788
    /// This class is used to iterate on the arcs of the paths
789 789
    ///
790 790
    /// Of course it converts to Digraph::Arc
791 791
    class ArcIt {
792 792
      friend class StaticPath;
793 793
    public:
794 794
      /// Default constructor
795 795
      ArcIt() {}
796 796
      /// Invalid constructor
797 797
      ArcIt(Invalid) : path(0), idx(-1) {}
798 798
      /// Initializate the constructor to the first arc of path
799 799
      ArcIt(const StaticPath &_path)
800 800
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
801 801

	
802 802
    private:
803 803

	
804 804
      /// Constructor with starting point
805 805
      ArcIt(const StaticPath &_path, int _idx)
806 806
        : idx(_idx), path(&_path) {}
807 807

	
808 808
    public:
809 809

	
810 810
      ///Conversion to Digraph::Arc
811 811
      operator const Arc&() const {
812 812
        return path->nth(idx);
813 813
      }
814 814

	
815 815
      /// Next arc
816 816
      ArcIt& operator++() {
817 817
        ++idx;
818 818
        if (idx >= path->length()) idx = -1;
819 819
        return *this;
820 820
      }
821 821

	
822 822
      /// Comparison operator
823 823
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
824 824
      /// Comparison operator
825 825
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
826 826
      /// Comparison operator
827 827
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
828 828

	
829 829
    private:
830 830
      const StaticPath *path;
831 831
      int idx;
832 832
    };
833 833

	
834 834
    /// \brief The nth arc.
835 835
    ///
836 836
    /// \pre n is in the [0..length() - 1] range
837 837
    const Arc& nth(int n) const {
838 838
      return arcs[n];
839 839
    }
840 840

	
841 841
    /// \brief The arc iterator pointing to the nth arc.
842 842
    ArcIt nthIt(int n) const {
843 843
      return ArcIt(*this, n);
844 844
    }
845 845

	
846 846
    /// \brief The length of the path.
847 847
    int length() const { return len; }
848 848

	
849 849
    /// \brief Return true when the path is empty.
850 850
    int empty() const { return len == 0; }
851 851

	
852 852
    /// \brief Erase all arcs in the digraph.
853 853
    void clear() {
854 854
      len = 0;
855 855
      if (arcs) delete[] arcs;
856 856
      arcs = 0;
857 857
    }
858 858

	
859 859
    /// \brief The first arc of the path.
860 860
    const Arc& front() const {
861 861
      return arcs[0];
862 862
    }
863 863

	
864 864
    /// \brief The last arc of the path.
865 865
    const Arc& back() const {
866 866
      return arcs[len - 1];
867 867
    }
868 868

	
869 869

	
870 870
    typedef True BuildTag;
871 871

	
872 872
    template <typename CPath>
873 873
    void build(const CPath& path) {
874 874
      len = path.length();
875 875
      arcs = new Arc[len];
876 876
      int index = 0;
877 877
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
878 878
        arcs[index] = it;
879 879
        ++index;
880 880
      }
881 881
    }
882 882

	
883 883
    template <typename CPath>
884 884
    void buildRev(const CPath& path) {
885 885
      len = path.length();
886 886
      arcs = new Arc[len];
887 887
      int index = len;
888 888
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
889 889
        --index;
890 890
        arcs[index] = it;
891 891
      }
892 892
    }
893 893

	
894 894
  private:
895 895
    int len;
896 896
    Arc* arcs;
897 897
  };
898 898

	
899 899
  ///////////////////////////////////////////////////////////////////////
900 900
  // Additional utilities
901 901
  ///////////////////////////////////////////////////////////////////////
902 902

	
903 903
  namespace _path_bits {
904 904

	
905 905
    template <typename Path, typename Enable = void>
906 906
    struct RevPathTagIndicator {
907 907
      static const bool value = false;
908 908
    };
909 909

	
910 910
    template <typename Path>
911 911
    struct RevPathTagIndicator<
912 912
      Path,
913 913
      typename enable_if<typename Path::RevPathTag, void>::type
914 914
      > {
915 915
      static const bool value = true;
916 916
    };
917 917

	
918 918
    template <typename Path, typename Enable = void>
919 919
    struct BuildTagIndicator {
920 920
      static const bool value = false;
921 921
    };
922 922

	
923 923
    template <typename Path>
924 924
    struct BuildTagIndicator<
925 925
      Path,
926 926
      typename enable_if<typename Path::BuildTag, void>::type
927 927
    > {
928 928
      static const bool value = true;
929 929
    };
930 930

	
931 931
    template <typename From, typename To,
932 932
              bool buildEnable = BuildTagIndicator<To>::value>
933 933
    struct PathCopySelectorForward {
934 934
      static void copy(const From& from, To& to) {
935 935
        to.clear();
936 936
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
937 937
          to.addBack(it);
938 938
        }
939 939
      }
940 940
    };
941 941

	
942 942
    template <typename From, typename To>
943 943
    struct PathCopySelectorForward<From, To, true> {
944 944
      static void copy(const From& from, To& to) {
945 945
        to.clear();
946 946
        to.build(from);
947 947
      }
948 948
    };
949 949

	
950 950
    template <typename From, typename To,
951 951
              bool buildEnable = BuildTagIndicator<To>::value>
952 952
    struct PathCopySelectorBackward {
953 953
      static void copy(const From& from, To& to) {
954 954
        to.clear();
955 955
        for (typename From::RevArcIt it(from); it != INVALID; ++it) {
956 956
          to.addFront(it);
957 957
        }
958 958
      }
959 959
    };
960 960

	
961 961
    template <typename From, typename To>
962 962
    struct PathCopySelectorBackward<From, To, true> {
963 963
      static void copy(const From& from, To& to) {
964 964
        to.clear();
965 965
        to.buildRev(from);
966 966
      }
967 967
    };
968 968

	
969 969
    
970 970
    template <typename From, typename To,
971 971
              bool revEnable = RevPathTagIndicator<From>::value>
972 972
    struct PathCopySelector {
973 973
      static void copy(const From& from, To& to) {
974 974
        PathCopySelectorForward<From, To>::copy(from, to);
975 975
      }      
976 976
    };
977 977

	
978 978
    template <typename From, typename To>
979 979
    struct PathCopySelector<From, To, true> {
980 980
      static void copy(const From& from, To& to) {
981 981
        PathCopySelectorBackward<From, To>::copy(from, to);
982 982
      }      
983 983
    };
984 984

	
985 985
  }
986 986

	
987 987

	
988 988
  /// \brief Make a copy of a path.
989 989
  ///
990 990
  /// This function makes a copy of a path.
991 991
  template <typename From, typename To>
992 992
  void pathCopy(const From& from, To& to) {
993 993
    checkConcept<concepts::PathDumper<typename From::Digraph>, From>();
994 994
    _path_bits::PathCopySelector<From, To>::copy(from, to);
995 995
  }
996 996

	
997 997
  /// \brief Deprecated version of \ref pathCopy().
998 998
  ///
999 999
  /// Deprecated version of \ref pathCopy() (only for reverse compatibility).
1000 1000
  template <typename To, typename From>
1001 1001
  void copyPath(To& to, const From& from) {
1002 1002
    pathCopy(from, to);
1003 1003
  }
1004 1004

	
1005 1005
  /// \brief Check the consistency of a path.
1006 1006
  ///
1007 1007
  /// This function checks that the target of each arc is the same
1008 1008
  /// as the source of the next one.
1009 1009
  ///
1010 1010
  template <typename Digraph, typename Path>
1011 1011
  bool checkPath(const Digraph& digraph, const Path& path) {
1012 1012
    typename Path::ArcIt it(path);
1013 1013
    if (it == INVALID) return true;
1014 1014
    typename Digraph::Node node = digraph.target(it);
1015 1015
    ++it;
1016 1016
    while (it != INVALID) {
1017 1017
      if (digraph.source(it) != node) return false;
1018 1018
      node = digraph.target(it);
1019 1019
      ++it;
1020 1020
    }
1021 1021
    return true;
1022 1022
  }
1023 1023

	
1024 1024
  /// \brief The source of a path
1025 1025
  ///
1026 1026
  /// This function returns the source node of the given path.
1027 1027
  /// If the path is empty, then it returns \c INVALID.
1028 1028
  template <typename Digraph, typename Path>
1029 1029
  typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)