0
24
0
1
1
1
1
1
1
1
1
1
1
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\dir demo |
21 | 21 |
\brief A collection of demo applications. |
22 | 22 |
|
23 | 23 |
This directory contains several simple demo applications, mainly |
24 | 24 |
for educational purposes. |
25 | 25 |
*/ |
26 | 26 |
|
27 | 27 |
/** |
28 | 28 |
\dir doc |
29 | 29 |
\brief Auxiliary (and the whole generated) documentation. |
30 | 30 |
|
31 | 31 |
This directory contains some auxiliary pages and the whole generated |
32 | 32 |
documentation. |
33 | 33 |
*/ |
34 | 34 |
|
35 | 35 |
/** |
36 | 36 |
\dir test |
37 | 37 |
\brief Test programs. |
38 | 38 |
|
39 | 39 |
This directory contains several test programs that check the consistency |
40 | 40 |
of the code. |
41 | 41 |
*/ |
42 | 42 |
|
43 | 43 |
/** |
44 | 44 |
\dir tools |
45 | 45 |
\brief Some useful executables. |
46 | 46 |
|
47 | 47 |
This directory contains the sources of some useful complete executables. |
48 | 48 |
*/ |
49 | 49 |
|
50 | 50 |
/** |
51 | 51 |
\dir lemon |
52 | 52 |
\brief Base include directory of LEMON. |
53 | 53 |
|
54 | 54 |
This is the base directory of LEMON includes, so each include file must be |
55 | 55 |
prefixed with this, e.g. |
56 | 56 |
\code |
57 | 57 |
#include<lemon/list_graph.h> |
58 | 58 |
#include<lemon/dijkstra.h> |
59 | 59 |
\endcode |
60 | 60 |
*/ |
61 | 61 |
|
62 | 62 |
/** |
63 | 63 |
\dir concepts |
64 | 64 |
\brief Concept descriptors and checking classes. |
65 | 65 |
|
66 | 66 |
This directory contains the concept descriptors and concept checking tools. |
67 | 67 |
For more information see the \ref concept "Concepts" module. |
68 | 68 |
*/ |
69 | 69 |
|
70 | 70 |
/** |
71 | 71 |
\dir bits |
72 | 72 |
\brief Auxiliary tools for implementation. |
73 | 73 |
|
74 | 74 |
This directory contains some auxiliary classes for implementing graphs, |
75 | 75 |
maps and some other classes. |
76 | 76 |
As a user you typically don't have to deal with these files. |
77 | 77 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
@defgroup datas Data Structures |
21 | 21 |
This group describes the several data structures implemented in LEMON. |
22 | 22 |
*/ |
23 | 23 |
|
24 | 24 |
/** |
25 | 25 |
@defgroup graphs Graph Structures |
26 | 26 |
@ingroup datas |
27 | 27 |
\brief Graph structures implemented in LEMON. |
28 | 28 |
|
29 | 29 |
The implementation of combinatorial algorithms heavily relies on |
30 | 30 |
efficient graph implementations. LEMON offers data structures which are |
31 | 31 |
planned to be easily used in an experimental phase of implementation studies, |
32 | 32 |
and thereafter the program code can be made efficient by small modifications. |
33 | 33 |
|
34 | 34 |
The most efficient implementation of diverse applications require the |
35 | 35 |
usage of different physical graph implementations. These differences |
36 | 36 |
appear in the size of graph we require to handle, memory or time usage |
37 | 37 |
limitations or in the set of operations through which the graph can be |
38 | 38 |
accessed. LEMON provides several physical graph structures to meet |
39 | 39 |
the diverging requirements of the possible users. In order to save on |
40 | 40 |
running time or on memory usage, some structures may fail to provide |
41 | 41 |
some graph features like arc/edge or node deletion. |
42 | 42 |
|
43 | 43 |
You are free to use the graph structure that fit your requirements |
44 | 44 |
the best, most graph algorithms and auxiliary data structures can be used |
45 | 45 |
with any graph structure. |
46 | 46 |
|
47 | 47 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
48 | 48 |
*/ |
49 | 49 |
|
50 | 50 |
/** |
51 | 51 |
@defgroup maps Maps |
52 | 52 |
@ingroup datas |
53 | 53 |
\brief Map structures implemented in LEMON. |
54 | 54 |
|
55 | 55 |
This group describes the map structures implemented in LEMON. |
56 | 56 |
|
57 | 57 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
58 | 58 |
new maps from existing ones. |
59 | 59 |
|
60 | 60 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
61 | 61 |
*/ |
62 | 62 |
|
63 | 63 |
/** |
64 | 64 |
@defgroup graph_maps Graph Maps |
65 | 65 |
@ingroup maps |
66 | 66 |
\brief Special graph-related maps. |
67 | 67 |
|
68 | 68 |
This group describes maps that are specifically designed to assign |
69 | 69 |
values to the nodes and arcs of graphs. |
70 | 70 |
*/ |
71 | 71 |
|
72 | 72 |
/** |
73 | 73 |
\defgroup map_adaptors Map Adaptors |
74 | 74 |
\ingroup maps |
75 | 75 |
\brief Tools to create new maps from existing ones |
76 | 76 |
|
77 | 77 |
This group describes map adaptors that are used to create "implicit" |
78 | 78 |
maps from other maps. |
79 | 79 |
|
80 | 80 |
Most of them are \ref lemon::concepts::ReadMap "read-only maps". |
81 | 81 |
They can make arithmetic and logical operations between one or two maps |
82 | 82 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
83 | 83 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
84 | 84 |
|
85 | 85 |
The typical usage of this classes is passing implicit maps to |
86 | 86 |
algorithms. If a function type algorithm is called then the function |
87 | 87 |
type map adaptors can be used comfortable. For example let's see the |
88 | 88 |
usage of map adaptors with the \c graphToEps() function. |
89 | 89 |
\code |
90 | 90 |
Color nodeColor(int deg) { |
91 | 91 |
if (deg >= 2) { |
92 | 92 |
return Color(0.5, 0.0, 0.5); |
93 | 93 |
} else if (deg == 1) { |
94 | 94 |
return Color(1.0, 0.5, 1.0); |
95 | 95 |
} else { |
96 | 96 |
return Color(0.0, 0.0, 0.0); |
97 | 97 |
} |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
Digraph::NodeMap<int> degree_map(graph); |
101 | 101 |
|
102 | 102 |
graphToEps(graph, "graph.eps") |
103 | 103 |
.coords(coords).scaleToA4().undirected() |
104 | 104 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
105 | 105 |
.run(); |
106 | 106 |
\endcode |
107 | 107 |
The \c functorToMap() function makes an \c int to \c Color map from the |
108 | 108 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
109 | 109 |
and the previously created map. The composed map is a proper function to |
110 | 110 |
get the color of each node. |
111 | 111 |
|
112 | 112 |
The usage with class type algorithms is little bit harder. In this |
113 | 113 |
case the function type map adaptors can not be used, because the |
114 | 114 |
function map adaptors give back temporary objects. |
115 | 115 |
\code |
116 | 116 |
Digraph graph; |
117 | 117 |
|
118 | 118 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
119 | 119 |
DoubleArcMap length(graph); |
120 | 120 |
DoubleArcMap speed(graph); |
121 | 121 |
|
122 | 122 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
123 | 123 |
TimeMap time(length, speed); |
124 | 124 |
|
125 | 125 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
126 | 126 |
dijkstra.run(source, target); |
127 | 127 |
\endcode |
128 | 128 |
We have a length map and a maximum speed map on the arcs of a digraph. |
129 | 129 |
The minimum time to pass the arc can be calculated as the division of |
130 | 130 |
the two maps which can be done implicitly with the \c DivMap template |
131 | 131 |
class. We use the implicit minimum time map as the length map of the |
132 | 132 |
\c Dijkstra algorithm. |
133 | 133 |
*/ |
134 | 134 |
|
135 | 135 |
/** |
136 | 136 |
@defgroup paths Path Structures |
137 | 137 |
@ingroup datas |
138 | 138 |
\brief %Path structures implemented in LEMON. |
139 | 139 |
|
140 | 140 |
This group describes the path structures implemented in LEMON. |
141 | 141 |
|
142 | 142 |
LEMON provides flexible data structures to work with paths. |
143 | 143 |
All of them have similar interfaces and they can be copied easily with |
144 | 144 |
assignment operators and copy constructors. This makes it easy and |
145 | 145 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
146 | 146 |
any kind of path structure. |
147 | 147 |
|
148 | 148 |
\sa lemon::concepts::Path |
149 | 149 |
*/ |
150 | 150 |
|
151 | 151 |
/** |
152 | 152 |
@defgroup auxdat Auxiliary Data Structures |
153 | 153 |
@ingroup datas |
154 | 154 |
\brief Auxiliary data structures implemented in LEMON. |
155 | 155 |
|
156 | 156 |
This group describes some data structures implemented in LEMON in |
157 | 157 |
order to make it easier to implement combinatorial algorithms. |
158 | 158 |
*/ |
159 | 159 |
|
160 | 160 |
/** |
161 | 161 |
@defgroup algs Algorithms |
162 | 162 |
\brief This group describes the several algorithms |
163 | 163 |
implemented in LEMON. |
164 | 164 |
|
165 | 165 |
This group describes the several algorithms |
166 | 166 |
implemented in LEMON. |
167 | 167 |
*/ |
168 | 168 |
|
169 | 169 |
/** |
170 | 170 |
@defgroup search Graph Search |
171 | 171 |
@ingroup algs |
172 | 172 |
\brief Common graph search algorithms. |
173 | 173 |
|
174 | 174 |
This group describes the common graph search algorithms like |
175 | 175 |
Breadth-First Search (BFS) and Depth-First Search (DFS). |
176 | 176 |
*/ |
177 | 177 |
|
178 | 178 |
/** |
179 | 179 |
@defgroup shortest_path Shortest Path Algorithms |
180 | 180 |
@ingroup algs |
181 | 181 |
\brief Algorithms for finding shortest paths. |
182 | 182 |
|
183 | 183 |
This group describes the algorithms for finding shortest paths in graphs. |
184 | 184 |
*/ |
185 | 185 |
|
186 | 186 |
/** |
187 | 187 |
@defgroup spantree Minimum Spanning Tree Algorithms |
188 | 188 |
@ingroup algs |
189 | 189 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
190 | 190 |
|
191 | 191 |
This group describes the algorithms for finding a minimum cost spanning |
192 | 192 |
tree in a graph |
193 | 193 |
*/ |
194 | 194 |
|
195 | 195 |
/** |
196 | 196 |
@defgroup utils Tools and Utilities |
197 | 197 |
\brief Tools and utilities for programming in LEMON |
198 | 198 |
|
199 | 199 |
Tools and utilities for programming in LEMON. |
200 | 200 |
*/ |
201 | 201 |
|
202 | 202 |
/** |
203 | 203 |
@defgroup gutils Basic Graph Utilities |
204 | 204 |
@ingroup utils |
205 | 205 |
\brief Simple basic graph utilities. |
206 | 206 |
|
207 | 207 |
This group describes some simple basic graph utilities. |
208 | 208 |
*/ |
209 | 209 |
|
210 | 210 |
/** |
211 | 211 |
@defgroup misc Miscellaneous Tools |
212 | 212 |
@ingroup utils |
213 | 213 |
\brief Tools for development, debugging and testing. |
214 | 214 |
|
215 | 215 |
This group describes several useful tools for development, |
216 | 216 |
debugging and testing. |
217 | 217 |
*/ |
218 | 218 |
|
219 | 219 |
/** |
220 | 220 |
@defgroup timecount Time Measuring and Counting |
221 | 221 |
@ingroup misc |
222 | 222 |
\brief Simple tools for measuring the performance of algorithms. |
223 | 223 |
|
224 | 224 |
This group describes simple tools for measuring the performance |
225 | 225 |
of algorithms. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup exceptions Exceptions |
230 | 230 |
@ingroup utils |
231 | 231 |
\brief Exceptions defined in LEMON. |
232 | 232 |
|
233 | 233 |
This group describes the exceptions defined in LEMON. |
234 | 234 |
*/ |
235 | 235 |
|
236 | 236 |
/** |
237 | 237 |
@defgroup io_group Input-Output |
238 | 238 |
\brief Graph Input-Output methods |
239 | 239 |
|
240 | 240 |
This group describes the tools for importing and exporting graphs |
241 | 241 |
and graph related data. Now it supports the LEMON format |
242 | 242 |
and the encapsulated postscript (EPS) format. |
243 | 243 |
postscript (EPS) format. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup lemon_io LEMON Input-Output |
248 | 248 |
@ingroup io_group |
249 | 249 |
\brief Reading and writing LEMON Graph Format. |
250 | 250 |
|
251 | 251 |
This group describes methods for reading and writing |
252 | 252 |
\ref lgf-format "LEMON Graph Format". |
253 | 253 |
*/ |
254 | 254 |
|
255 | 255 |
/** |
256 | 256 |
@defgroup eps_io Postscript Exporting |
257 | 257 |
@ingroup io_group |
258 | 258 |
\brief General \c EPS drawer and graph exporter |
259 | 259 |
|
260 | 260 |
This group describes general \c EPS drawing methods and special |
261 | 261 |
graph exporting tools. |
262 | 262 |
*/ |
263 | 263 |
|
264 | 264 |
/** |
265 | 265 |
@defgroup concept Concepts |
266 | 266 |
\brief Skeleton classes and concept checking classes |
267 | 267 |
|
268 | 268 |
This group describes the data/algorithm skeletons and concept checking |
269 | 269 |
classes implemented in LEMON. |
270 | 270 |
|
271 | 271 |
The purpose of the classes in this group is fourfold. |
272 | 272 |
|
273 | 273 |
- These classes contain the documentations of the %concepts. In order |
274 | 274 |
to avoid document multiplications, an implementation of a concept |
275 | 275 |
simply refers to the corresponding concept class. |
276 | 276 |
|
277 | 277 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
278 | 278 |
implementation of the %concepts should provide, however completely |
279 | 279 |
without implementations and real data structures behind the |
280 | 280 |
interface. On the other hand they should provide nothing else. All |
281 | 281 |
the algorithms working on a data structure meeting a certain concept |
282 | 282 |
should compile with these classes. (Though it will not run properly, |
283 | 283 |
of course.) In this way it is easily to check if an algorithm |
284 | 284 |
doesn't use any extra feature of a certain implementation. |
285 | 285 |
|
286 | 286 |
- The concept descriptor classes also provide a <em>checker class</em> |
287 | 287 |
that makes it possible to check whether a certain implementation of a |
288 | 288 |
concept indeed provides all the required features. |
289 | 289 |
|
290 | 290 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
291 | 291 |
*/ |
292 | 292 |
|
293 | 293 |
/** |
294 | 294 |
@defgroup graph_concepts Graph Structure Concepts |
295 | 295 |
@ingroup concept |
296 | 296 |
\brief Skeleton and concept checking classes for graph structures |
297 | 297 |
|
298 | 298 |
This group describes the skeletons and concept checking classes of LEMON's |
299 | 299 |
graph structures and helper classes used to implement these. |
300 | 300 |
*/ |
301 | 301 |
|
302 | 302 |
/** |
303 | 303 |
@defgroup map_concepts Map Concepts |
304 | 304 |
@ingroup concept |
305 | 305 |
\brief Skeleton and concept checking classes for maps |
306 | 306 |
|
307 | 307 |
This group describes the skeletons and concept checking classes of maps. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
\anchor demoprograms |
312 | 312 |
|
313 | 313 |
@defgroup demos Demo programs |
314 | 314 |
|
315 | 315 |
Some demo programs are listed here. Their full source codes can be found in |
316 | 316 |
the \c demo subdirectory of the source tree. |
317 | 317 |
|
318 | 318 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
319 | 319 |
build the library. |
320 | 320 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
|
23 | 23 |
|
24 | 24 |
\page lgf-format LEMON Graph Format (LGF) |
25 | 25 |
|
26 | 26 |
The \e LGF is a <em>column oriented</em> |
27 | 27 |
file format for storing graphs and associated data like |
28 | 28 |
node and edge maps. |
29 | 29 |
|
30 | 30 |
Each line with \c '#' first non-whitespace |
31 | 31 |
character is considered as a comment line. |
32 | 32 |
|
33 | 33 |
Otherwise the file consists of sections starting with |
34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
36 | 36 |
\@arcs and \c \@edges |
37 | 37 |
and \@attributes. Each header line may also have an optional |
38 | 38 |
\e name, which can be use to distinguish the sections of the same |
39 | 39 |
type. |
40 | 40 |
|
41 | 41 |
The standard sections are column oriented, each line consists of |
42 | 42 |
<em>token</em>s separated by whitespaces. A token can be \e plain or |
43 | 43 |
\e quoted. A plain token is just a sequence of non-whitespace characters, |
44 | 44 |
while a quoted token is a |
45 | 45 |
character sequence surrounded by double quotes, and it can also |
46 | 46 |
contain whitespaces and escape sequences. |
47 | 47 |
|
48 | 48 |
The \c \@nodes section describes a set of nodes and associated |
49 | 49 |
maps. The first is a header line, its columns are the names of the |
50 | 50 |
maps appearing in the following lines. |
51 | 51 |
One of the maps must be called \c |
52 | 52 |
"label", which plays special role in the file. |
53 | 53 |
The following |
54 | 54 |
non-empty lines until the next section describes nodes of the |
55 | 55 |
graph. Each line contains the values of the node maps |
56 | 56 |
associated to the current node. |
57 | 57 |
|
58 | 58 |
\code |
59 | 59 |
@nodes |
60 | 60 |
label coordinates size title |
61 | 61 |
1 (10,20) 10 "First node" |
62 | 62 |
2 (80,80) 8 "Second node" |
63 | 63 |
3 (40,10) 10 "Third node" |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
The \c \@arcs section is very similar to the \c \@nodes section, it |
67 | 67 |
again starts with a header line describing the names of the maps, but |
68 | 68 |
the \c "label" map is not obligatory here. The following lines |
69 | 69 |
describe the arcs. The first two tokens of each line are the source |
70 | 70 |
and the target node of the arc, respectively, then come the map |
71 | 71 |
values. The source and target tokens must be node labels. |
72 | 72 |
|
73 | 73 |
\code |
74 | 74 |
@arcs |
75 | 75 |
capacity |
76 | 76 |
1 2 16 |
77 | 77 |
1 3 12 |
78 | 78 |
2 3 18 |
79 | 79 |
\endcode |
80 | 80 |
|
81 | 81 |
If there is no map in the \c \@arcs section at all, then it must be |
82 | 82 |
indicated by a sole '-' sign in the first line. |
83 | 83 |
|
84 | 84 |
\code |
85 | 85 |
@arcs |
86 | 86 |
- |
87 | 87 |
1 2 |
88 | 88 |
1 3 |
89 | 89 |
2 3 |
90 | 90 |
\endcode |
91 | 91 |
|
92 | 92 |
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can |
93 | 93 |
also store the edge set of an undirected graph. In such case there is |
94 | 94 |
a conventional method for store arc maps in the file, if two columns |
95 | 95 |
have the same caption with \c '+' and \c '-' prefix, then these columns |
96 | 96 |
can be regarded as the values of an arc map. |
97 | 97 |
|
98 | 98 |
The \c \@attributes section contains key-value pairs, each line |
99 | 99 |
consists of two tokens, an attribute name, and then an attribute |
100 | 100 |
value. The value of the attribute could be also a label value of a |
101 | 101 |
node or an edge, or even an edge label prefixed with \c '+' or \c '-', |
102 | 102 |
which regards to the forward or backward directed arc of the |
103 | 103 |
corresponding edge. |
104 | 104 |
|
105 | 105 |
\code |
106 | 106 |
@attributes |
107 | 107 |
source 1 |
108 | 108 |
target 3 |
109 | 109 |
caption "LEMON test digraph" |
110 | 110 |
\endcode |
111 | 111 |
|
112 | 112 |
The \e LGF can contain extra sections, but there is no restriction on |
113 | 113 |
the format of such sections. |
114 | 114 |
|
115 | 115 |
*/ |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
// LocalWords: whitespace whitespaces |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/tolerance.h> |
23 | 23 |
#include<lemon/core.h> |
24 | 24 |
namespace lemon { |
25 | 25 |
|
26 | 26 |
float Tolerance<float>::def_epsilon = static_cast<float>(1e-4); |
27 | 27 |
double Tolerance<double>::def_epsilon = 1e-10; |
28 | 28 |
long double Tolerance<long double>::def_epsilon = 1e-14; |
29 | 29 |
|
30 | 30 |
#ifndef LEMON_ONLY_TEMPLATES |
31 | 31 |
const Invalid INVALID = Invalid(); |
32 | 32 |
#endif |
33 | 33 |
|
34 | 34 |
} //namespace lemon |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
21 | 21 |
|
22 | 22 |
#include <lemon/config.h> |
23 | 23 |
#include <lemon/bits/array_map.h> |
24 | 24 |
#include <lemon/bits/vector_map.h> |
25 | 25 |
//#include <lemon/bits/debug_map.h> |
26 | 26 |
|
27 | 27 |
//\ingroup graphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Graph maps that construct and destruct their elements dynamically. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
35 | 35 |
|
36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
37 | 37 |
struct DefaultMapSelector { |
38 | 38 |
typedef ArrayMap<_Graph, _Item, _Value> Map; |
39 | 39 |
}; |
40 | 40 |
|
41 | 41 |
// bool |
42 | 42 |
template <typename _Graph, typename _Item> |
43 | 43 |
struct DefaultMapSelector<_Graph, _Item, bool> { |
44 | 44 |
typedef VectorMap<_Graph, _Item, bool> Map; |
45 | 45 |
}; |
46 | 46 |
|
47 | 47 |
// char |
48 | 48 |
template <typename _Graph, typename _Item> |
49 | 49 |
struct DefaultMapSelector<_Graph, _Item, char> { |
50 | 50 |
typedef VectorMap<_Graph, _Item, char> Map; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
template <typename _Graph, typename _Item> |
54 | 54 |
struct DefaultMapSelector<_Graph, _Item, signed char> { |
55 | 55 |
typedef VectorMap<_Graph, _Item, signed char> Map; |
56 | 56 |
}; |
57 | 57 |
|
58 | 58 |
template <typename _Graph, typename _Item> |
59 | 59 |
struct DefaultMapSelector<_Graph, _Item, unsigned char> { |
60 | 60 |
typedef VectorMap<_Graph, _Item, unsigned char> Map; |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
|
64 | 64 |
// int |
65 | 65 |
template <typename _Graph, typename _Item> |
66 | 66 |
struct DefaultMapSelector<_Graph, _Item, signed int> { |
67 | 67 |
typedef VectorMap<_Graph, _Item, signed int> Map; |
68 | 68 |
}; |
69 | 69 |
|
70 | 70 |
template <typename _Graph, typename _Item> |
71 | 71 |
struct DefaultMapSelector<_Graph, _Item, unsigned int> { |
72 | 72 |
typedef VectorMap<_Graph, _Item, unsigned int> Map; |
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
// short |
77 | 77 |
template <typename _Graph, typename _Item> |
78 | 78 |
struct DefaultMapSelector<_Graph, _Item, signed short> { |
79 | 79 |
typedef VectorMap<_Graph, _Item, signed short> Map; |
80 | 80 |
}; |
81 | 81 |
|
82 | 82 |
template <typename _Graph, typename _Item> |
83 | 83 |
struct DefaultMapSelector<_Graph, _Item, unsigned short> { |
84 | 84 |
typedef VectorMap<_Graph, _Item, unsigned short> Map; |
85 | 85 |
}; |
86 | 86 |
|
87 | 87 |
|
88 | 88 |
// long |
89 | 89 |
template <typename _Graph, typename _Item> |
90 | 90 |
struct DefaultMapSelector<_Graph, _Item, signed long> { |
91 | 91 |
typedef VectorMap<_Graph, _Item, signed long> Map; |
92 | 92 |
}; |
93 | 93 |
|
94 | 94 |
template <typename _Graph, typename _Item> |
95 | 95 |
struct DefaultMapSelector<_Graph, _Item, unsigned long> { |
96 | 96 |
typedef VectorMap<_Graph, _Item, unsigned long> Map; |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
#if defined LEMON_HAVE_LONG_LONG |
101 | 101 |
|
102 | 102 |
// long long |
103 | 103 |
template <typename _Graph, typename _Item> |
104 | 104 |
struct DefaultMapSelector<_Graph, _Item, signed long long> { |
105 | 105 |
typedef VectorMap<_Graph, _Item, signed long long> Map; |
106 | 106 |
}; |
107 | 107 |
|
108 | 108 |
template <typename _Graph, typename _Item> |
109 | 109 |
struct DefaultMapSelector<_Graph, _Item, unsigned long long> { |
110 | 110 |
typedef VectorMap<_Graph, _Item, unsigned long long> Map; |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
#endif |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
// float |
117 | 117 |
template <typename _Graph, typename _Item> |
118 | 118 |
struct DefaultMapSelector<_Graph, _Item, float> { |
119 | 119 |
typedef VectorMap<_Graph, _Item, float> Map; |
120 | 120 |
}; |
121 | 121 |
|
122 | 122 |
|
123 | 123 |
// double |
124 | 124 |
template <typename _Graph, typename _Item> |
125 | 125 |
struct DefaultMapSelector<_Graph, _Item, double> { |
126 | 126 |
typedef VectorMap<_Graph, _Item, double> Map; |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
|
130 | 130 |
// long double |
131 | 131 |
template <typename _Graph, typename _Item> |
132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> { |
133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
|
137 | 137 |
// pointer |
138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> { |
140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
141 | 141 |
}; |
142 | 142 |
|
143 | 143 |
// #else |
144 | 144 |
|
145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
146 | 146 |
// struct DefaultMapSelector { |
147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
148 | 148 |
// }; |
149 | 149 |
|
150 | 150 |
// #endif |
151 | 151 |
|
152 | 152 |
// DefaultMap class |
153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 154 |
class DefaultMap |
155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 | 156 |
public: |
157 | 157 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
158 | 158 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
159 | 159 |
|
160 | 160 |
typedef typename Parent::Graph Graph; |
161 | 161 |
typedef typename Parent::Value Value; |
162 | 162 |
|
163 | 163 |
explicit DefaultMap(const Graph& graph) : Parent(graph) {} |
164 | 164 |
DefaultMap(const Graph& graph, const Value& value) |
165 | 165 |
: Parent(graph, value) {} |
166 | 166 |
|
167 | 167 |
DefaultMap& operator=(const DefaultMap& cmap) { |
168 | 168 |
return operator=<DefaultMap>(cmap); |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
template <typename CMap> |
172 | 172 |
DefaultMap& operator=(const CMap& cmap) { |
173 | 173 |
Parent::operator=(cmap); |
174 | 174 |
return *this; |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
}; |
178 | 178 |
|
179 | 179 |
} |
180 | 180 |
|
181 | 181 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
//\file |
30 | 30 |
//\brief Extenders for iterable maps. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
// \ingroup graphbits |
35 | 35 |
// |
36 | 36 |
// \brief Extender for maps |
37 | 37 |
template <typename _Map> |
38 | 38 |
class MapExtender : public _Map { |
39 | 39 |
public: |
40 | 40 |
|
41 | 41 |
typedef _Map Parent; |
42 | 42 |
typedef MapExtender Map; |
43 | 43 |
|
44 | 44 |
|
45 | 45 |
typedef typename Parent::Graph Graph; |
46 | 46 |
typedef typename Parent::Key Item; |
47 | 47 |
|
48 | 48 |
typedef typename Parent::Key Key; |
49 | 49 |
typedef typename Parent::Value Value; |
50 | 50 |
|
51 | 51 |
class MapIt; |
52 | 52 |
class ConstMapIt; |
53 | 53 |
|
54 | 54 |
friend class MapIt; |
55 | 55 |
friend class ConstMapIt; |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
MapExtender(const Graph& graph) |
60 | 60 |
: Parent(graph) {} |
61 | 61 |
|
62 | 62 |
MapExtender(const Graph& graph, const Value& value) |
63 | 63 |
: Parent(graph, value) {} |
64 | 64 |
|
65 | 65 |
private: |
66 | 66 |
MapExtender& operator=(const MapExtender& cmap) { |
67 | 67 |
return operator=<MapExtender>(cmap); |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
template <typename CMap> |
71 | 71 |
MapExtender& operator=(const CMap& cmap) { |
72 | 72 |
Parent::operator=(cmap); |
73 | 73 |
return *this; |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
public: |
77 | 77 |
class MapIt : public Item { |
78 | 78 |
public: |
79 | 79 |
|
80 | 80 |
typedef Item Parent; |
81 | 81 |
typedef typename Map::Value Value; |
82 | 82 |
|
83 | 83 |
MapIt() : map(NULL) {} |
84 | 84 |
|
85 | 85 |
MapIt(Invalid i) : Parent(i), map(NULL) {} |
86 | 86 |
|
87 | 87 |
explicit MapIt(Map& _map) : map(&_map) { |
88 | 88 |
map->notifier()->first(*this); |
89 | 89 |
} |
90 | 90 |
|
91 | 91 |
MapIt(const Map& _map, const Item& item) |
92 | 92 |
: Parent(item), map(&_map) {} |
93 | 93 |
|
94 | 94 |
MapIt& operator++() { |
95 | 95 |
map->notifier()->next(*this); |
96 | 96 |
return *this; |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
100 | 100 |
return (*map)[*this]; |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
typename MapTraits<Map>::ReturnValue operator*() { |
104 | 104 |
return (*map)[*this]; |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
void set(const Value& value) { |
108 | 108 |
map->set(*this, value); |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
protected: |
112 | 112 |
Map* map; |
113 | 113 |
|
114 | 114 |
}; |
115 | 115 |
|
116 | 116 |
class ConstMapIt : public Item { |
117 | 117 |
public: |
118 | 118 |
|
119 | 119 |
typedef Item Parent; |
120 | 120 |
|
121 | 121 |
typedef typename Map::Value Value; |
122 | 122 |
|
123 | 123 |
ConstMapIt() : map(NULL) {} |
124 | 124 |
|
125 | 125 |
ConstMapIt(Invalid i) : Parent(i), map(NULL) {} |
126 | 126 |
|
127 | 127 |
explicit ConstMapIt(Map& _map) : map(&_map) { |
128 | 128 |
map->notifier()->first(*this); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
ConstMapIt(const Map& _map, const Item& item) |
132 | 132 |
: Parent(item), map(_map) {} |
133 | 133 |
|
134 | 134 |
ConstMapIt& operator++() { |
135 | 135 |
map->notifier()->next(*this); |
136 | 136 |
return *this; |
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
140 | 140 |
return map[*this]; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
protected: |
144 | 144 |
const Map* map; |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
class ItemIt : public Item { |
148 | 148 |
public: |
149 | 149 |
|
150 | 150 |
typedef Item Parent; |
151 | 151 |
|
152 | 152 |
ItemIt() : map(NULL) {} |
153 | 153 |
|
154 | 154 |
ItemIt(Invalid i) : Parent(i), map(NULL) {} |
155 | 155 |
|
156 | 156 |
explicit ItemIt(Map& _map) : map(&_map) { |
157 | 157 |
map->notifier()->first(*this); |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
ItemIt(const Map& _map, const Item& item) |
161 | 161 |
: Parent(item), map(&_map) {} |
162 | 162 |
|
163 | 163 |
ItemIt& operator++() { |
164 | 164 |
map->notifier()->next(*this); |
165 | 165 |
return *this; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
protected: |
169 | 169 |
const Map* map; |
170 | 170 |
|
171 | 171 |
}; |
172 | 172 |
}; |
173 | 173 |
|
174 | 174 |
// \ingroup graphbits |
175 | 175 |
// |
176 | 176 |
// \brief Extender for maps which use a subset of the items. |
177 | 177 |
template <typename _Graph, typename _Map> |
178 | 178 |
class SubMapExtender : public _Map { |
179 | 179 |
public: |
180 | 180 |
|
181 | 181 |
typedef _Map Parent; |
182 | 182 |
typedef SubMapExtender Map; |
183 | 183 |
|
184 | 184 |
typedef _Graph Graph; |
185 | 185 |
|
186 | 186 |
typedef typename Parent::Key Item; |
187 | 187 |
|
188 | 188 |
typedef typename Parent::Key Key; |
189 | 189 |
typedef typename Parent::Value Value; |
190 | 190 |
|
191 | 191 |
class MapIt; |
192 | 192 |
class ConstMapIt; |
193 | 193 |
|
194 | 194 |
friend class MapIt; |
195 | 195 |
friend class ConstMapIt; |
196 | 196 |
|
197 | 197 |
public: |
198 | 198 |
|
199 | 199 |
SubMapExtender(const Graph& _graph) |
200 | 200 |
: Parent(_graph), graph(_graph) {} |
201 | 201 |
|
202 | 202 |
SubMapExtender(const Graph& _graph, const Value& _value) |
203 | 203 |
: Parent(_graph, _value), graph(_graph) {} |
204 | 204 |
|
205 | 205 |
private: |
206 | 206 |
SubMapExtender& operator=(const SubMapExtender& cmap) { |
207 | 207 |
return operator=<MapExtender>(cmap); |
208 | 208 |
} |
209 | 209 |
|
210 | 210 |
template <typename CMap> |
211 | 211 |
SubMapExtender& operator=(const CMap& cmap) { |
212 | 212 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
213 | 213 |
Item it; |
214 | 214 |
for (graph.first(it); it != INVALID; graph.next(it)) { |
215 | 215 |
Parent::set(it, cmap[it]); |
216 | 216 |
} |
217 | 217 |
return *this; |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
public: |
221 | 221 |
class MapIt : public Item { |
222 | 222 |
public: |
223 | 223 |
|
224 | 224 |
typedef Item Parent; |
225 | 225 |
typedef typename Map::Value Value; |
226 | 226 |
|
227 | 227 |
MapIt() : map(NULL) {} |
228 | 228 |
|
229 | 229 |
MapIt(Invalid i) : Parent(i), map(NULL) { } |
230 | 230 |
|
231 | 231 |
explicit MapIt(Map& _map) : map(&_map) { |
232 | 232 |
map->graph.first(*this); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
MapIt(const Map& _map, const Item& item) |
236 | 236 |
: Parent(item), map(&_map) {} |
237 | 237 |
|
238 | 238 |
MapIt& operator++() { |
239 | 239 |
map->graph.next(*this); |
240 | 240 |
return *this; |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
244 | 244 |
return (*map)[*this]; |
245 | 245 |
} |
246 | 246 |
|
247 | 247 |
typename MapTraits<Map>::ReturnValue operator*() { |
248 | 248 |
return (*map)[*this]; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
void set(const Value& value) { |
252 | 252 |
map->set(*this, value); |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
protected: |
256 | 256 |
Map* map; |
257 | 257 |
|
258 | 258 |
}; |
259 | 259 |
|
260 | 260 |
class ConstMapIt : public Item { |
261 | 261 |
public: |
262 | 262 |
|
263 | 263 |
typedef Item Parent; |
264 | 264 |
|
265 | 265 |
typedef typename Map::Value Value; |
266 | 266 |
|
267 | 267 |
ConstMapIt() : map(NULL) {} |
268 | 268 |
|
269 | 269 |
ConstMapIt(Invalid i) : Parent(i), map(NULL) { } |
270 | 270 |
|
271 | 271 |
explicit ConstMapIt(Map& _map) : map(&_map) { |
272 | 272 |
map->graph.first(*this); |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
ConstMapIt(const Map& _map, const Item& item) |
276 | 276 |
: Parent(item), map(&_map) {} |
277 | 277 |
|
278 | 278 |
ConstMapIt& operator++() { |
279 | 279 |
map->graph.next(*this); |
280 | 280 |
return *this; |
281 | 281 |
} |
282 | 282 |
|
283 | 283 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
284 | 284 |
return (*map)[*this]; |
285 | 285 |
} |
286 | 286 |
|
287 | 287 |
protected: |
288 | 288 |
const Map* map; |
289 | 289 |
}; |
290 | 290 |
|
291 | 291 |
class ItemIt : public Item { |
292 | 292 |
public: |
293 | 293 |
|
294 | 294 |
typedef Item Parent; |
295 | 295 |
|
296 | 296 |
ItemIt() : map(NULL) {} |
297 | 297 |
|
298 | 298 |
ItemIt(Invalid i) : Parent(i), map(NULL) { } |
299 | 299 |
|
300 | 300 |
explicit ItemIt(Map& _map) : map(&_map) { |
301 | 301 |
map->graph.first(*this); |
302 | 302 |
} |
303 | 303 |
|
304 | 304 |
ItemIt(const Map& _map, const Item& item) |
305 | 305 |
: Parent(item), map(&_map) {} |
306 | 306 |
|
307 | 307 |
ItemIt& operator++() { |
308 | 308 |
map->graph.next(*this); |
309 | 309 |
return *this; |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
protected: |
313 | 313 |
const Map* map; |
314 | 314 |
|
315 | 315 |
}; |
316 | 316 |
|
317 | 317 |
private: |
318 | 318 |
|
319 | 319 |
const Graph& graph; |
320 | 320 |
|
321 | 321 |
}; |
322 | 322 |
|
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_PRED_MAP_PATH_H |
20 | 20 |
#define LEMON_BITS_PRED_MAP_PATH_H |
21 | 21 |
|
22 | 22 |
namespace lemon { |
23 | 23 |
|
24 | 24 |
template <typename _Digraph, typename _PredMap> |
25 | 25 |
class PredMapPath { |
26 | 26 |
public: |
27 | 27 |
typedef True RevPathTag; |
28 | 28 |
|
29 | 29 |
typedef _Digraph Digraph; |
30 | 30 |
typedef typename Digraph::Arc Arc; |
31 | 31 |
typedef _PredMap PredMap; |
32 | 32 |
|
33 | 33 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
34 | 34 |
typename Digraph::Node _target) |
35 | 35 |
: digraph(_digraph), predMap(_predMap), target(_target) {} |
36 | 36 |
|
37 | 37 |
int length() const { |
38 | 38 |
int len = 0; |
39 | 39 |
typename Digraph::Node node = target; |
40 | 40 |
typename Digraph::Arc arc; |
41 | 41 |
while ((arc = predMap[node]) != INVALID) { |
42 | 42 |
node = digraph.source(arc); |
43 | 43 |
++len; |
44 | 44 |
} |
45 | 45 |
return len; |
46 | 46 |
} |
47 | 47 |
|
48 | 48 |
bool empty() const { |
49 | 49 |
return predMap[target] == INVALID; |
50 | 50 |
} |
51 | 51 |
|
52 | 52 |
class RevArcIt { |
53 | 53 |
public: |
54 | 54 |
RevArcIt() {} |
55 | 55 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
56 | 56 |
RevArcIt(const PredMapPath& _path) |
57 | 57 |
: path(&_path), current(_path.target) { |
58 | 58 |
if (path->predMap[current] == INVALID) current = INVALID; |
59 | 59 |
} |
60 | 60 |
|
61 | 61 |
operator const typename Digraph::Arc() const { |
62 | 62 |
return path->predMap[current]; |
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
RevArcIt& operator++() { |
66 | 66 |
current = path->digraph.source(path->predMap[current]); |
67 | 67 |
if (path->predMap[current] == INVALID) current = INVALID; |
68 | 68 |
return *this; |
69 | 69 |
} |
70 | 70 |
|
71 | 71 |
bool operator==(const RevArcIt& e) const { |
72 | 72 |
return current == e.current; |
73 | 73 |
} |
74 | 74 |
|
75 | 75 |
bool operator!=(const RevArcIt& e) const { |
76 | 76 |
return current != e.current; |
77 | 77 |
} |
78 | 78 |
|
79 | 79 |
bool operator<(const RevArcIt& e) const { |
80 | 80 |
return current < e.current; |
81 | 81 |
} |
82 | 82 |
|
83 | 83 |
private: |
84 | 84 |
const PredMapPath* path; |
85 | 85 |
typename Digraph::Node current; |
86 | 86 |
}; |
87 | 87 |
|
88 | 88 |
private: |
89 | 89 |
const Digraph& digraph; |
90 | 90 |
const PredMap& predMap; |
91 | 91 |
typename Digraph::Node target; |
92 | 92 |
}; |
93 | 93 |
|
94 | 94 |
|
95 | 95 |
template <typename _Digraph, typename _PredMatrixMap> |
96 | 96 |
class PredMatrixMapPath { |
97 | 97 |
public: |
98 | 98 |
typedef True RevPathTag; |
99 | 99 |
|
100 | 100 |
typedef _Digraph Digraph; |
101 | 101 |
typedef typename Digraph::Arc Arc; |
102 | 102 |
typedef _PredMatrixMap PredMatrixMap; |
103 | 103 |
|
104 | 104 |
PredMatrixMapPath(const Digraph& _digraph, |
105 | 105 |
const PredMatrixMap& _predMatrixMap, |
106 | 106 |
typename Digraph::Node _source, |
107 | 107 |
typename Digraph::Node _target) |
108 | 108 |
: digraph(_digraph), predMatrixMap(_predMatrixMap), |
109 | 109 |
source(_source), target(_target) {} |
110 | 110 |
|
111 | 111 |
int length() const { |
112 | 112 |
int len = 0; |
113 | 113 |
typename Digraph::Node node = target; |
114 | 114 |
typename Digraph::Arc arc; |
115 | 115 |
while ((arc = predMatrixMap(source, node)) != INVALID) { |
116 | 116 |
node = digraph.source(arc); |
117 | 117 |
++len; |
118 | 118 |
} |
119 | 119 |
return len; |
120 | 120 |
} |
121 | 121 |
|
122 | 122 |
bool empty() const { |
123 | 123 |
return predMatrixMap(source, target) == INVALID; |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
class RevArcIt { |
127 | 127 |
public: |
128 | 128 |
RevArcIt() {} |
129 | 129 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
130 | 130 |
RevArcIt(const PredMatrixMapPath& _path) |
131 | 131 |
: path(&_path), current(_path.target) { |
132 | 132 |
if (path->predMatrixMap(path->source, current) == INVALID) |
133 | 133 |
current = INVALID; |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
operator const typename Digraph::Arc() const { |
137 | 137 |
return path->predMatrixMap(path->source, current); |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
RevArcIt& operator++() { |
141 | 141 |
current = |
142 | 142 |
path->digraph.source(path->predMatrixMap(path->source, current)); |
143 | 143 |
if (path->predMatrixMap(path->source, current) == INVALID) |
144 | 144 |
current = INVALID; |
145 | 145 |
return *this; |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
bool operator==(const RevArcIt& e) const { |
149 | 149 |
return current == e.current; |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
bool operator!=(const RevArcIt& e) const { |
153 | 153 |
return current != e.current; |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
bool operator<(const RevArcIt& e) const { |
157 | 157 |
return current < e.current; |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
private: |
161 | 161 |
const PredMatrixMapPath* path; |
162 | 162 |
typename Digraph::Node current; |
163 | 163 |
}; |
164 | 164 |
|
165 | 165 |
private: |
166 | 166 |
const Digraph& digraph; |
167 | 167 |
const PredMatrixMap& predMatrixMap; |
168 | 168 |
typename Digraph::Node source; |
169 | 169 |
typename Digraph::Node target; |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/bits/windows.h> |
23 | 23 |
|
24 | 24 |
#ifdef WIN32 |
25 | 25 |
#ifndef WIN32_LEAN_AND_MEAN |
26 | 26 |
#define WIN32_LEAN_AND_MEAN |
27 | 27 |
#endif |
28 | 28 |
#ifndef NOMINMAX |
29 | 29 |
#define NOMINMAX |
30 | 30 |
#endif |
31 | 31 |
#ifdef UNICODE |
32 | 32 |
#undef UNICODE |
33 | 33 |
#endif |
34 | 34 |
#include <windows.h> |
35 | 35 |
#ifdef LOCALE_INVARIANT |
36 | 36 |
#define MY_LOCALE LOCALE_INVARIANT |
37 | 37 |
#else |
38 | 38 |
#define MY_LOCALE LOCALE_NEUTRAL |
39 | 39 |
#endif |
40 | 40 |
#else |
41 | 41 |
#include <unistd.h> |
42 | 42 |
#include <ctime> |
43 | 43 |
#include <sys/times.h> |
44 | 44 |
#include <sys/time.h> |
45 | 45 |
#endif |
46 | 46 |
|
47 | 47 |
#include <cmath> |
48 | 48 |
#include <sstream> |
49 | 49 |
|
50 | 50 |
namespace lemon { |
51 | 51 |
namespace bits { |
52 | 52 |
void getWinProcTimes(double &rtime, |
53 | 53 |
double &utime, double &stime, |
54 | 54 |
double &cutime, double &cstime) |
55 | 55 |
{ |
56 | 56 |
#ifdef WIN32 |
57 | 57 |
static const double ch = 4294967296.0e-7; |
58 | 58 |
static const double cl = 1.0e-7; |
59 | 59 |
|
60 | 60 |
FILETIME system; |
61 | 61 |
GetSystemTimeAsFileTime(&system); |
62 | 62 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
63 | 63 |
|
64 | 64 |
FILETIME create, exit, kernel, user; |
65 | 65 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { |
66 | 66 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
67 | 67 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
68 | 68 |
cutime = 0; |
69 | 69 |
cstime = 0; |
70 | 70 |
} else { |
71 | 71 |
rtime = 0; |
72 | 72 |
utime = 0; |
73 | 73 |
stime = 0; |
74 | 74 |
cutime = 0; |
75 | 75 |
cstime = 0; |
76 | 76 |
} |
77 | 77 |
#else |
78 | 78 |
timeval tv; |
79 | 79 |
gettimeofday(&tv, 0); |
80 | 80 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
81 | 81 |
|
82 | 82 |
tms ts; |
83 | 83 |
double tck=sysconf(_SC_CLK_TCK); |
84 | 84 |
times(&ts); |
85 | 85 |
utime=ts.tms_utime/tck; |
86 | 86 |
stime=ts.tms_stime/tck; |
87 | 87 |
cutime=ts.tms_cutime/tck; |
88 | 88 |
cstime=ts.tms_cstime/tck; |
89 | 89 |
#endif |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
std::string getWinFormattedDate() |
93 | 93 |
{ |
94 | 94 |
std::ostringstream os; |
95 | 95 |
#ifdef WIN32 |
96 | 96 |
SYSTEMTIME time; |
97 | 97 |
GetSystemTime(&time); |
98 | 98 |
char buf1[11], buf2[9], buf3[5]; |
99 | 99 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
100 | 100 |
("ddd MMM dd"), buf1, 11) && |
101 | 101 |
GetTimeFormat(MY_LOCALE, 0, &time, |
102 | 102 |
("HH':'mm':'ss"), buf2, 9) && |
103 | 103 |
GetDateFormat(MY_LOCALE, 0, &time, |
104 | 104 |
("yyyy"), buf3, 5)) { |
105 | 105 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
106 | 106 |
} |
107 | 107 |
else os << "unknown"; |
108 | 108 |
#else |
109 | 109 |
timeval tv; |
110 | 110 |
gettimeofday(&tv, 0); |
111 | 111 |
|
112 | 112 |
char cbuf[26]; |
113 | 113 |
ctime_r(&tv.tv_sec,cbuf); |
114 | 114 |
os << cbuf; |
115 | 115 |
#endif |
116 | 116 |
return os.str(); |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
int getWinRndSeed() |
120 | 120 |
{ |
121 | 121 |
#ifdef WIN32 |
122 | 122 |
FILETIME time; |
123 | 123 |
GetSystemTimeAsFileTime(&time); |
124 | 124 |
return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime; |
125 | 125 |
#else |
126 | 126 |
timeval tv; |
127 | 127 |
gettimeofday(&tv, 0); |
128 | 128 |
return getpid() + tv.tv_sec + tv.tv_usec; |
129 | 129 |
#endif |
130 | 130 |
} |
131 | 131 |
} |
132 | 132 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CORE_H |
20 | 20 |
#define LEMON_CORE_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/config.h> |
26 | 26 |
#include <lemon/bits/enable_if.h> |
27 | 27 |
#include <lemon/bits/traits.h> |
28 | 28 |
#include <lemon/assert.h> |
29 | 29 |
|
30 | 30 |
///\file |
31 | 31 |
///\brief LEMON core utilities. |
32 | 32 |
/// |
33 | 33 |
///This header file contains core utilities for LEMON. |
34 | 34 |
///It is automatically included by all graph types, therefore it usually |
35 | 35 |
///do not have to be included directly. |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Dummy type to make it easier to create invalid iterators. |
40 | 40 |
/// |
41 | 41 |
/// Dummy type to make it easier to create invalid iterators. |
42 | 42 |
/// See \ref INVALID for the usage. |
43 | 43 |
struct Invalid { |
44 | 44 |
public: |
45 | 45 |
bool operator==(Invalid) { return true; } |
46 | 46 |
bool operator!=(Invalid) { return false; } |
47 | 47 |
bool operator< (Invalid) { return false; } |
48 | 48 |
}; |
49 | 49 |
|
50 | 50 |
/// \brief Invalid iterators. |
51 | 51 |
/// |
52 | 52 |
/// \ref Invalid is a global type that converts to each iterator |
53 | 53 |
/// in such a way that the value of the target iterator will be invalid. |
54 | 54 |
#ifdef LEMON_ONLY_TEMPLATES |
55 | 55 |
const Invalid INVALID = Invalid(); |
56 | 56 |
#else |
57 | 57 |
extern const Invalid INVALID; |
58 | 58 |
#endif |
59 | 59 |
|
60 | 60 |
/// \addtogroup gutils |
61 | 61 |
/// @{ |
62 | 62 |
|
63 | 63 |
///Create convenience typedefs for the digraph types and iterators |
64 | 64 |
|
65 | 65 |
///This \c \#define creates convenient type definitions for the following |
66 | 66 |
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
67 | 67 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
68 | 68 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
69 | 69 |
/// |
70 | 70 |
///\note If the graph type is a dependent type, ie. the graph type depend |
71 | 71 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
72 | 72 |
///macro. |
73 | 73 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
74 | 74 |
typedef Digraph::Node Node; \ |
75 | 75 |
typedef Digraph::NodeIt NodeIt; \ |
76 | 76 |
typedef Digraph::Arc Arc; \ |
77 | 77 |
typedef Digraph::ArcIt ArcIt; \ |
78 | 78 |
typedef Digraph::InArcIt InArcIt; \ |
79 | 79 |
typedef Digraph::OutArcIt OutArcIt; \ |
80 | 80 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
81 | 81 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
82 | 82 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
83 | 83 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
84 | 84 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
85 | 85 |
typedef Digraph::ArcMap<double> DoubleArcMap |
86 | 86 |
|
87 | 87 |
///Create convenience typedefs for the digraph types and iterators |
88 | 88 |
|
89 | 89 |
///\see DIGRAPH_TYPEDEFS |
90 | 90 |
/// |
91 | 91 |
///\note Use this macro, if the graph type is a dependent type, |
92 | 92 |
///ie. the graph type depend on a template parameter. |
93 | 93 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
94 | 94 |
typedef typename Digraph::Node Node; \ |
95 | 95 |
typedef typename Digraph::NodeIt NodeIt; \ |
96 | 96 |
typedef typename Digraph::Arc Arc; \ |
97 | 97 |
typedef typename Digraph::ArcIt ArcIt; \ |
98 | 98 |
typedef typename Digraph::InArcIt InArcIt; \ |
99 | 99 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
100 | 100 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
101 | 101 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
102 | 102 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
103 | 103 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
104 | 104 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
105 | 105 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
106 | 106 |
|
107 | 107 |
///Create convenience typedefs for the graph types and iterators |
108 | 108 |
|
109 | 109 |
///This \c \#define creates the same convenient type definitions as defined |
110 | 110 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
111 | 111 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
112 | 112 |
///\c DoubleEdgeMap. |
113 | 113 |
/// |
114 | 114 |
///\note If the graph type is a dependent type, ie. the graph type depend |
115 | 115 |
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
116 | 116 |
///macro. |
117 | 117 |
#define GRAPH_TYPEDEFS(Graph) \ |
118 | 118 |
DIGRAPH_TYPEDEFS(Graph); \ |
119 | 119 |
typedef Graph::Edge Edge; \ |
120 | 120 |
typedef Graph::EdgeIt EdgeIt; \ |
121 | 121 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
122 | 122 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
123 | 123 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
124 | 124 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
125 | 125 |
|
126 | 126 |
///Create convenience typedefs for the graph types and iterators |
127 | 127 |
|
128 | 128 |
///\see GRAPH_TYPEDEFS |
129 | 129 |
/// |
130 | 130 |
///\note Use this macro, if the graph type is a dependent type, |
131 | 131 |
///ie. the graph type depend on a template parameter. |
132 | 132 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
133 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
134 | 134 |
typedef typename Graph::Edge Edge; \ |
135 | 135 |
typedef typename Graph::EdgeIt EdgeIt; \ |
136 | 136 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
137 | 137 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
138 | 138 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
139 | 139 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
140 | 140 |
|
141 | 141 |
/// \brief Function to count the items in a graph. |
142 | 142 |
/// |
143 | 143 |
/// This function counts the items (nodes, arcs etc.) in a graph. |
144 | 144 |
/// The complexity of the function is linear because |
145 | 145 |
/// it iterates on all of the items. |
146 | 146 |
template <typename Graph, typename Item> |
147 | 147 |
inline int countItems(const Graph& g) { |
148 | 148 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
149 | 149 |
int num = 0; |
150 | 150 |
for (ItemIt it(g); it != INVALID; ++it) { |
151 | 151 |
++num; |
152 | 152 |
} |
153 | 153 |
return num; |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
// Node counting: |
157 | 157 |
|
158 | 158 |
namespace _core_bits { |
159 | 159 |
|
160 | 160 |
template <typename Graph, typename Enable = void> |
161 | 161 |
struct CountNodesSelector { |
162 | 162 |
static int count(const Graph &g) { |
163 | 163 |
return countItems<Graph, typename Graph::Node>(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
template <typename Graph> |
168 | 168 |
struct CountNodesSelector< |
169 | 169 |
Graph, typename |
170 | 170 |
enable_if<typename Graph::NodeNumTag, void>::type> |
171 | 171 |
{ |
172 | 172 |
static int count(const Graph &g) { |
173 | 173 |
return g.nodeNum(); |
174 | 174 |
} |
175 | 175 |
}; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
/// \brief Function to count the nodes in the graph. |
179 | 179 |
/// |
180 | 180 |
/// This function counts the nodes in the graph. |
181 | 181 |
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
182 | 182 |
/// graph structures it is specialized to run in <em>O</em>(1). |
183 | 183 |
/// |
184 | 184 |
/// \note If the graph contains a \c nodeNum() member function and a |
185 | 185 |
/// \c NodeNumTag tag then this function calls directly the member |
186 | 186 |
/// function to query the cardinality of the node set. |
187 | 187 |
template <typename Graph> |
188 | 188 |
inline int countNodes(const Graph& g) { |
189 | 189 |
return _core_bits::CountNodesSelector<Graph>::count(g); |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
// Arc counting: |
193 | 193 |
|
194 | 194 |
namespace _core_bits { |
195 | 195 |
|
196 | 196 |
template <typename Graph, typename Enable = void> |
197 | 197 |
struct CountArcsSelector { |
198 | 198 |
static int count(const Graph &g) { |
199 | 199 |
return countItems<Graph, typename Graph::Arc>(g); |
200 | 200 |
} |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
template <typename Graph> |
204 | 204 |
struct CountArcsSelector< |
205 | 205 |
Graph, |
206 | 206 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
207 | 207 |
{ |
208 | 208 |
static int count(const Graph &g) { |
209 | 209 |
return g.arcNum(); |
210 | 210 |
} |
211 | 211 |
}; |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
/// \brief Function to count the arcs in the graph. |
215 | 215 |
/// |
216 | 216 |
/// This function counts the arcs in the graph. |
217 | 217 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
218 | 218 |
/// graph structures it is specialized to run in <em>O</em>(1). |
219 | 219 |
/// |
220 | 220 |
/// \note If the graph contains a \c arcNum() member function and a |
221 | 221 |
/// \c ArcNumTag tag then this function calls directly the member |
222 | 222 |
/// function to query the cardinality of the arc set. |
223 | 223 |
template <typename Graph> |
224 | 224 |
inline int countArcs(const Graph& g) { |
225 | 225 |
return _core_bits::CountArcsSelector<Graph>::count(g); |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
// Edge counting: |
229 | 229 |
|
230 | 230 |
namespace _core_bits { |
231 | 231 |
|
232 | 232 |
template <typename Graph, typename Enable = void> |
233 | 233 |
struct CountEdgesSelector { |
234 | 234 |
static int count(const Graph &g) { |
235 | 235 |
return countItems<Graph, typename Graph::Edge>(g); |
236 | 236 |
} |
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <typename Graph> |
240 | 240 |
struct CountEdgesSelector< |
241 | 241 |
Graph, |
242 | 242 |
typename enable_if<typename Graph::EdgeNumTag, void>::type> |
243 | 243 |
{ |
244 | 244 |
static int count(const Graph &g) { |
245 | 245 |
return g.edgeNum(); |
246 | 246 |
} |
247 | 247 |
}; |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
/// \brief Function to count the edges in the graph. |
251 | 251 |
/// |
252 | 252 |
/// This function counts the edges in the graph. |
253 | 253 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
254 | 254 |
/// graph structures it is specialized to run in <em>O</em>(1). |
255 | 255 |
/// |
256 | 256 |
/// \note If the graph contains a \c edgeNum() member function and a |
257 | 257 |
/// \c EdgeNumTag tag then this function calls directly the member |
258 | 258 |
/// function to query the cardinality of the edge set. |
259 | 259 |
template <typename Graph> |
260 | 260 |
inline int countEdges(const Graph& g) { |
261 | 261 |
return _core_bits::CountEdgesSelector<Graph>::count(g); |
262 | 262 |
|
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
|
266 | 266 |
template <typename Graph, typename DegIt> |
267 | 267 |
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
268 | 268 |
int num = 0; |
269 | 269 |
for (DegIt it(_g, _n); it != INVALID; ++it) { |
270 | 270 |
++num; |
271 | 271 |
} |
272 | 272 |
return num; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
/// \brief Function to count the number of the out-arcs from node \c n. |
276 | 276 |
/// |
277 | 277 |
/// This function counts the number of the out-arcs from node \c n |
278 | 278 |
/// in the graph \c g. |
279 | 279 |
template <typename Graph> |
280 | 280 |
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) { |
281 | 281 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n); |
282 | 282 |
} |
283 | 283 |
|
284 | 284 |
/// \brief Function to count the number of the in-arcs to node \c n. |
285 | 285 |
/// |
286 | 286 |
/// This function counts the number of the in-arcs to node \c n |
287 | 287 |
/// in the graph \c g. |
288 | 288 |
template <typename Graph> |
289 | 289 |
inline int countInArcs(const Graph& g, const typename Graph::Node& n) { |
290 | 290 |
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n); |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
/// \brief Function to count the number of the inc-edges to node \c n. |
294 | 294 |
/// |
295 | 295 |
/// This function counts the number of the inc-edges to node \c n |
296 | 296 |
/// in the undirected graph \c g. |
297 | 297 |
template <typename Graph> |
298 | 298 |
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) { |
299 | 299 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n); |
300 | 300 |
} |
301 | 301 |
|
302 | 302 |
namespace _core_bits { |
303 | 303 |
|
304 | 304 |
template <typename Digraph, typename Item, typename RefMap> |
305 | 305 |
class MapCopyBase { |
306 | 306 |
public: |
307 | 307 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
308 | 308 |
|
309 | 309 |
virtual ~MapCopyBase() {} |
310 | 310 |
}; |
311 | 311 |
|
312 | 312 |
template <typename Digraph, typename Item, typename RefMap, |
313 | 313 |
typename FromMap, typename ToMap> |
314 | 314 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
315 | 315 |
public: |
316 | 316 |
|
317 | 317 |
MapCopy(const FromMap& map, ToMap& tmap) |
318 | 318 |
: _map(map), _tmap(tmap) {} |
319 | 319 |
|
320 | 320 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
321 | 321 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
322 | 322 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
323 | 323 |
_tmap.set(refMap[it], _map[it]); |
324 | 324 |
} |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
private: |
328 | 328 |
const FromMap& _map; |
329 | 329 |
ToMap& _tmap; |
330 | 330 |
}; |
331 | 331 |
|
332 | 332 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
333 | 333 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> { |
334 | 334 |
public: |
335 | 335 |
|
336 | 336 |
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {} |
337 | 337 |
|
338 | 338 |
virtual void copy(const Digraph&, const RefMap& refMap) { |
339 | 339 |
_it = refMap[_item]; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
private: |
343 | 343 |
Item _item; |
344 | 344 |
It& _it; |
345 | 345 |
}; |
346 | 346 |
|
347 | 347 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
348 | 348 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
349 | 349 |
public: |
350 | 350 |
|
351 | 351 |
RefCopy(Ref& map) : _map(map) {} |
352 | 352 |
|
353 | 353 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
354 | 354 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
355 | 355 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
356 | 356 |
_map.set(it, refMap[it]); |
357 | 357 |
} |
358 | 358 |
} |
359 | 359 |
|
360 | 360 |
private: |
361 | 361 |
Ref& _map; |
362 | 362 |
}; |
363 | 363 |
|
364 | 364 |
template <typename Digraph, typename Item, typename RefMap, |
365 | 365 |
typename CrossRef> |
366 | 366 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
367 | 367 |
public: |
368 | 368 |
|
369 | 369 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
370 | 370 |
|
371 | 371 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
372 | 372 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
373 | 373 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
374 | 374 |
_cmap.set(refMap[it], it); |
375 | 375 |
} |
376 | 376 |
} |
377 | 377 |
|
378 | 378 |
private: |
379 | 379 |
CrossRef& _cmap; |
380 | 380 |
}; |
381 | 381 |
|
382 | 382 |
template <typename Digraph, typename Enable = void> |
383 | 383 |
struct DigraphCopySelector { |
384 | 384 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
385 | 385 |
static void copy(const From& from, Digraph &to, |
386 | 386 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
387 | 387 |
to.clear(); |
388 | 388 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
389 | 389 |
nodeRefMap[it] = to.addNode(); |
390 | 390 |
} |
391 | 391 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
392 | 392 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
393 | 393 |
nodeRefMap[from.target(it)]); |
394 | 394 |
} |
395 | 395 |
} |
396 | 396 |
}; |
397 | 397 |
|
398 | 398 |
template <typename Digraph> |
399 | 399 |
struct DigraphCopySelector< |
400 | 400 |
Digraph, |
401 | 401 |
typename enable_if<typename Digraph::BuildTag, void>::type> |
402 | 402 |
{ |
403 | 403 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
404 | 404 |
static void copy(const From& from, Digraph &to, |
405 | 405 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
406 | 406 |
to.build(from, nodeRefMap, arcRefMap); |
407 | 407 |
} |
408 | 408 |
}; |
409 | 409 |
|
410 | 410 |
template <typename Graph, typename Enable = void> |
411 | 411 |
struct GraphCopySelector { |
412 | 412 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
413 | 413 |
static void copy(const From& from, Graph &to, |
414 | 414 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
415 | 415 |
to.clear(); |
416 | 416 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
417 | 417 |
nodeRefMap[it] = to.addNode(); |
418 | 418 |
} |
419 | 419 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
420 | 420 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
421 | 421 |
nodeRefMap[from.v(it)]); |
422 | 422 |
} |
423 | 423 |
} |
424 | 424 |
}; |
425 | 425 |
|
426 | 426 |
template <typename Graph> |
427 | 427 |
struct GraphCopySelector< |
428 | 428 |
Graph, |
429 | 429 |
typename enable_if<typename Graph::BuildTag, void>::type> |
430 | 430 |
{ |
431 | 431 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
432 | 432 |
static void copy(const From& from, Graph &to, |
433 | 433 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
434 | 434 |
to.build(from, nodeRefMap, edgeRefMap); |
435 | 435 |
} |
436 | 436 |
}; |
437 | 437 |
|
438 | 438 |
} |
439 | 439 |
|
440 | 440 |
/// \brief Class to copy a digraph. |
441 | 441 |
/// |
442 | 442 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
443 | 443 |
/// simplest way of using it is through the \c digraphCopy() function. |
444 | 444 |
/// |
445 | 445 |
/// This class not only make a copy of a digraph, but it can create |
446 | 446 |
/// references and cross references between the nodes and arcs of |
447 | 447 |
/// the two digraphs, and it can copy maps to use with the newly created |
448 | 448 |
/// digraph. |
449 | 449 |
/// |
450 | 450 |
/// To make a copy from a digraph, first an instance of DigraphCopy |
451 | 451 |
/// should be created, then the data belongs to the digraph should |
452 | 452 |
/// assigned to copy. In the end, the \c run() member should be |
453 | 453 |
/// called. |
454 | 454 |
/// |
455 | 455 |
/// The next code copies a digraph with several data: |
456 | 456 |
///\code |
457 | 457 |
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
458 | 458 |
/// // Create references for the nodes |
459 | 459 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
460 | 460 |
/// cg.nodeRef(nr); |
461 | 461 |
/// // Create cross references (inverse) for the arcs |
462 | 462 |
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
463 | 463 |
/// cg.arcCrossRef(acr); |
464 | 464 |
/// // Copy an arc map |
465 | 465 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
466 | 466 |
/// NewGraph::ArcMap<double> namap(new_graph); |
467 | 467 |
/// cg.arcMap(oamap, namap); |
468 | 468 |
/// // Copy a node |
469 | 469 |
/// OrigGraph::Node on; |
470 | 470 |
/// NewGraph::Node nn; |
471 | 471 |
/// cg.node(on, nn); |
472 | 472 |
/// // Execute copying |
473 | 473 |
/// cg.run(); |
474 | 474 |
///\endcode |
475 | 475 |
template <typename From, typename To> |
476 | 476 |
class DigraphCopy { |
477 | 477 |
private: |
478 | 478 |
|
479 | 479 |
typedef typename From::Node Node; |
480 | 480 |
typedef typename From::NodeIt NodeIt; |
481 | 481 |
typedef typename From::Arc Arc; |
482 | 482 |
typedef typename From::ArcIt ArcIt; |
483 | 483 |
|
484 | 484 |
typedef typename To::Node TNode; |
485 | 485 |
typedef typename To::Arc TArc; |
486 | 486 |
|
487 | 487 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
488 | 488 |
typedef typename From::template ArcMap<TArc> ArcRefMap; |
489 | 489 |
|
490 | 490 |
public: |
491 | 491 |
|
492 | 492 |
/// \brief Constructor of DigraphCopy. |
493 | 493 |
/// |
494 | 494 |
/// Constructor of DigraphCopy for copying the content of the |
495 | 495 |
/// \c from digraph into the \c to digraph. |
496 | 496 |
DigraphCopy(const From& from, To& to) |
497 | 497 |
: _from(from), _to(to) {} |
498 | 498 |
|
499 | 499 |
/// \brief Destructor of DigraphCopy |
500 | 500 |
/// |
501 | 501 |
/// Destructor of DigraphCopy. |
502 | 502 |
~DigraphCopy() { |
503 | 503 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
504 | 504 |
delete _node_maps[i]; |
505 | 505 |
} |
506 | 506 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
507 | 507 |
delete _arc_maps[i]; |
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
} |
511 | 511 |
|
512 | 512 |
/// \brief Copy the node references into the given map. |
513 | 513 |
/// |
514 | 514 |
/// This function copies the node references into the given map. |
515 | 515 |
/// The parameter should be a map, whose key type is the Node type of |
516 | 516 |
/// the source digraph, while the value type is the Node type of the |
517 | 517 |
/// destination digraph. |
518 | 518 |
template <typename NodeRef> |
519 | 519 |
DigraphCopy& nodeRef(NodeRef& map) { |
520 | 520 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
521 | 521 |
NodeRefMap, NodeRef>(map)); |
522 | 522 |
return *this; |
523 | 523 |
} |
524 | 524 |
|
525 | 525 |
/// \brief Copy the node cross references into the given map. |
526 | 526 |
/// |
527 | 527 |
/// This function copies the node cross references (reverse references) |
528 | 528 |
/// into the given map. The parameter should be a map, whose key type |
529 | 529 |
/// is the Node type of the destination digraph, while the value type is |
530 | 530 |
/// the Node type of the source digraph. |
531 | 531 |
template <typename NodeCrossRef> |
532 | 532 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) { |
533 | 533 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
534 | 534 |
NodeRefMap, NodeCrossRef>(map)); |
535 | 535 |
return *this; |
536 | 536 |
} |
537 | 537 |
|
538 | 538 |
/// \brief Make a copy of the given node map. |
539 | 539 |
/// |
540 | 540 |
/// This function makes a copy of the given node map for the newly |
541 | 541 |
/// created digraph. |
542 | 542 |
/// The key type of the new map \c tmap should be the Node type of the |
543 | 543 |
/// destination digraph, and the key type of the original map \c map |
544 | 544 |
/// should be the Node type of the source digraph. |
545 | 545 |
template <typename FromMap, typename ToMap> |
546 | 546 |
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
547 | 547 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
548 | 548 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
549 | 549 |
return *this; |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
/// \brief Make a copy of the given node. |
553 | 553 |
/// |
554 | 554 |
/// This function makes a copy of the given node. |
555 | 555 |
DigraphCopy& node(const Node& node, TNode& tnode) { |
556 | 556 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
557 | 557 |
NodeRefMap, TNode>(node, tnode)); |
558 | 558 |
return *this; |
559 | 559 |
} |
560 | 560 |
|
561 | 561 |
/// \brief Copy the arc references into the given map. |
562 | 562 |
/// |
563 | 563 |
/// This function copies the arc references into the given map. |
564 | 564 |
/// The parameter should be a map, whose key type is the Arc type of |
565 | 565 |
/// the source digraph, while the value type is the Arc type of the |
566 | 566 |
/// destination digraph. |
567 | 567 |
template <typename ArcRef> |
568 | 568 |
DigraphCopy& arcRef(ArcRef& map) { |
569 | 569 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
570 | 570 |
ArcRefMap, ArcRef>(map)); |
571 | 571 |
return *this; |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
/// \brief Copy the arc cross references into the given map. |
575 | 575 |
/// |
576 | 576 |
/// This function copies the arc cross references (reverse references) |
577 | 577 |
/// into the given map. The parameter should be a map, whose key type |
578 | 578 |
/// is the Arc type of the destination digraph, while the value type is |
579 | 579 |
/// the Arc type of the source digraph. |
580 | 580 |
template <typename ArcCrossRef> |
581 | 581 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) { |
582 | 582 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
583 | 583 |
ArcRefMap, ArcCrossRef>(map)); |
584 | 584 |
return *this; |
585 | 585 |
} |
586 | 586 |
|
587 | 587 |
/// \brief Make a copy of the given arc map. |
588 | 588 |
/// |
589 | 589 |
/// This function makes a copy of the given arc map for the newly |
590 | 590 |
/// created digraph. |
591 | 591 |
/// The key type of the new map \c tmap should be the Arc type of the |
592 | 592 |
/// destination digraph, and the key type of the original map \c map |
593 | 593 |
/// should be the Arc type of the source digraph. |
594 | 594 |
template <typename FromMap, typename ToMap> |
595 | 595 |
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
596 | 596 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
597 | 597 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
598 | 598 |
return *this; |
599 | 599 |
} |
600 | 600 |
|
601 | 601 |
/// \brief Make a copy of the given arc. |
602 | 602 |
/// |
603 | 603 |
/// This function makes a copy of the given arc. |
604 | 604 |
DigraphCopy& arc(const Arc& arc, TArc& tarc) { |
605 | 605 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
606 | 606 |
ArcRefMap, TArc>(arc, tarc)); |
607 | 607 |
return *this; |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
/// \brief Execute copying. |
611 | 611 |
/// |
612 | 612 |
/// This function executes the copying of the digraph along with the |
613 | 613 |
/// copying of the assigned data. |
614 | 614 |
void run() { |
615 | 615 |
NodeRefMap nodeRefMap(_from); |
616 | 616 |
ArcRefMap arcRefMap(_from); |
617 | 617 |
_core_bits::DigraphCopySelector<To>:: |
618 | 618 |
copy(_from, _to, nodeRefMap, arcRefMap); |
619 | 619 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
620 | 620 |
_node_maps[i]->copy(_from, nodeRefMap); |
621 | 621 |
} |
622 | 622 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
623 | 623 |
_arc_maps[i]->copy(_from, arcRefMap); |
624 | 624 |
} |
625 | 625 |
} |
626 | 626 |
|
627 | 627 |
protected: |
628 | 628 |
|
629 | 629 |
const From& _from; |
630 | 630 |
To& _to; |
631 | 631 |
|
632 | 632 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
633 | 633 |
_node_maps; |
634 | 634 |
|
635 | 635 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
636 | 636 |
_arc_maps; |
637 | 637 |
|
638 | 638 |
}; |
639 | 639 |
|
640 | 640 |
/// \brief Copy a digraph to another digraph. |
641 | 641 |
/// |
642 | 642 |
/// This function copies a digraph to another digraph. |
643 | 643 |
/// The complete usage of it is detailed in the DigraphCopy class, but |
644 | 644 |
/// a short example shows a basic work: |
645 | 645 |
///\code |
646 | 646 |
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run(); |
647 | 647 |
///\endcode |
648 | 648 |
/// |
649 | 649 |
/// After the copy the \c nr map will contain the mapping from the |
650 | 650 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and |
651 | 651 |
/// \c acr will contain the mapping from the arcs of the \c to digraph |
652 | 652 |
/// to the arcs of the \c from digraph. |
653 | 653 |
/// |
654 | 654 |
/// \see DigraphCopy |
655 | 655 |
template <typename From, typename To> |
656 | 656 |
DigraphCopy<From, To> digraphCopy(const From& from, To& to) { |
657 | 657 |
return DigraphCopy<From, To>(from, to); |
658 | 658 |
} |
659 | 659 |
|
660 | 660 |
/// \brief Class to copy a graph. |
661 | 661 |
/// |
662 | 662 |
/// Class to copy a graph to another graph (duplicate a graph). The |
663 | 663 |
/// simplest way of using it is through the \c graphCopy() function. |
664 | 664 |
/// |
665 | 665 |
/// This class not only make a copy of a graph, but it can create |
666 | 666 |
/// references and cross references between the nodes, edges and arcs of |
667 | 667 |
/// the two graphs, and it can copy maps for using with the newly created |
668 | 668 |
/// graph. |
669 | 669 |
/// |
670 | 670 |
/// To make a copy from a graph, first an instance of GraphCopy |
671 | 671 |
/// should be created, then the data belongs to the graph should |
672 | 672 |
/// assigned to copy. In the end, the \c run() member should be |
673 | 673 |
/// called. |
674 | 674 |
/// |
675 | 675 |
/// The next code copies a graph with several data: |
676 | 676 |
///\code |
677 | 677 |
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
678 | 678 |
/// // Create references for the nodes |
679 | 679 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
680 | 680 |
/// cg.nodeRef(nr); |
681 | 681 |
/// // Create cross references (inverse) for the edges |
682 | 682 |
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph); |
683 | 683 |
/// cg.edgeCrossRef(ecr); |
684 | 684 |
/// // Copy an edge map |
685 | 685 |
/// OrigGraph::EdgeMap<double> oemap(orig_graph); |
686 | 686 |
/// NewGraph::EdgeMap<double> nemap(new_graph); |
687 | 687 |
/// cg.edgeMap(oemap, nemap); |
688 | 688 |
/// // Copy a node |
689 | 689 |
/// OrigGraph::Node on; |
690 | 690 |
/// NewGraph::Node nn; |
691 | 691 |
/// cg.node(on, nn); |
692 | 692 |
/// // Execute copying |
693 | 693 |
/// cg.run(); |
694 | 694 |
///\endcode |
695 | 695 |
template <typename From, typename To> |
696 | 696 |
class GraphCopy { |
697 | 697 |
private: |
698 | 698 |
|
699 | 699 |
typedef typename From::Node Node; |
700 | 700 |
typedef typename From::NodeIt NodeIt; |
701 | 701 |
typedef typename From::Arc Arc; |
702 | 702 |
typedef typename From::ArcIt ArcIt; |
703 | 703 |
typedef typename From::Edge Edge; |
704 | 704 |
typedef typename From::EdgeIt EdgeIt; |
705 | 705 |
|
706 | 706 |
typedef typename To::Node TNode; |
707 | 707 |
typedef typename To::Arc TArc; |
708 | 708 |
typedef typename To::Edge TEdge; |
709 | 709 |
|
710 | 710 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
711 | 711 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
712 | 712 |
|
713 | 713 |
struct ArcRefMap { |
714 | 714 |
ArcRefMap(const From& from, const To& to, |
715 | 715 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
716 | 716 |
: _from(from), _to(to), |
717 | 717 |
_edge_ref(edge_ref), _node_ref(node_ref) {} |
718 | 718 |
|
719 | 719 |
typedef typename From::Arc Key; |
720 | 720 |
typedef typename To::Arc Value; |
721 | 721 |
|
722 | 722 |
Value operator[](const Key& key) const { |
723 | 723 |
bool forward = _from.u(key) != _from.v(key) ? |
724 | 724 |
_node_ref[_from.source(key)] == |
725 | 725 |
_to.source(_to.direct(_edge_ref[key], true)) : |
726 | 726 |
_from.direction(key); |
727 | 727 |
return _to.direct(_edge_ref[key], forward); |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
const From& _from; |
731 | 731 |
const To& _to; |
732 | 732 |
const EdgeRefMap& _edge_ref; |
733 | 733 |
const NodeRefMap& _node_ref; |
734 | 734 |
}; |
735 | 735 |
|
736 | 736 |
public: |
737 | 737 |
|
738 | 738 |
/// \brief Constructor of GraphCopy. |
739 | 739 |
/// |
740 | 740 |
/// Constructor of GraphCopy for copying the content of the |
741 | 741 |
/// \c from graph into the \c to graph. |
742 | 742 |
GraphCopy(const From& from, To& to) |
743 | 743 |
: _from(from), _to(to) {} |
744 | 744 |
|
745 | 745 |
/// \brief Destructor of GraphCopy |
746 | 746 |
/// |
747 | 747 |
/// Destructor of GraphCopy. |
748 | 748 |
~GraphCopy() { |
749 | 749 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
750 | 750 |
delete _node_maps[i]; |
751 | 751 |
} |
752 | 752 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
753 | 753 |
delete _arc_maps[i]; |
754 | 754 |
} |
755 | 755 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
756 | 756 |
delete _edge_maps[i]; |
757 | 757 |
} |
758 | 758 |
} |
759 | 759 |
|
760 | 760 |
/// \brief Copy the node references into the given map. |
761 | 761 |
/// |
762 | 762 |
/// This function copies the node references into the given map. |
763 | 763 |
/// The parameter should be a map, whose key type is the Node type of |
764 | 764 |
/// the source graph, while the value type is the Node type of the |
765 | 765 |
/// destination graph. |
766 | 766 |
template <typename NodeRef> |
767 | 767 |
GraphCopy& nodeRef(NodeRef& map) { |
768 | 768 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
769 | 769 |
NodeRefMap, NodeRef>(map)); |
770 | 770 |
return *this; |
771 | 771 |
} |
772 | 772 |
|
773 | 773 |
/// \brief Copy the node cross references into the given map. |
774 | 774 |
/// |
775 | 775 |
/// This function copies the node cross references (reverse references) |
776 | 776 |
/// into the given map. The parameter should be a map, whose key type |
777 | 777 |
/// is the Node type of the destination graph, while the value type is |
778 | 778 |
/// the Node type of the source graph. |
779 | 779 |
template <typename NodeCrossRef> |
780 | 780 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
781 | 781 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
782 | 782 |
NodeRefMap, NodeCrossRef>(map)); |
783 | 783 |
return *this; |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
/// \brief Make a copy of the given node map. |
787 | 787 |
/// |
788 | 788 |
/// This function makes a copy of the given node map for the newly |
789 | 789 |
/// created graph. |
790 | 790 |
/// The key type of the new map \c tmap should be the Node type of the |
791 | 791 |
/// destination graph, and the key type of the original map \c map |
792 | 792 |
/// should be the Node type of the source graph. |
793 | 793 |
template <typename FromMap, typename ToMap> |
794 | 794 |
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
795 | 795 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
796 | 796 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
797 | 797 |
return *this; |
798 | 798 |
} |
799 | 799 |
|
800 | 800 |
/// \brief Make a copy of the given node. |
801 | 801 |
/// |
802 | 802 |
/// This function makes a copy of the given node. |
803 | 803 |
GraphCopy& node(const Node& node, TNode& tnode) { |
804 | 804 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
805 | 805 |
NodeRefMap, TNode>(node, tnode)); |
806 | 806 |
return *this; |
807 | 807 |
} |
808 | 808 |
|
809 | 809 |
/// \brief Copy the arc references into the given map. |
810 | 810 |
/// |
811 | 811 |
/// This function copies the arc references into the given map. |
812 | 812 |
/// The parameter should be a map, whose key type is the Arc type of |
813 | 813 |
/// the source graph, while the value type is the Arc type of the |
814 | 814 |
/// destination graph. |
815 | 815 |
template <typename ArcRef> |
816 | 816 |
GraphCopy& arcRef(ArcRef& map) { |
817 | 817 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
818 | 818 |
ArcRefMap, ArcRef>(map)); |
819 | 819 |
return *this; |
820 | 820 |
} |
821 | 821 |
|
822 | 822 |
/// \brief Copy the arc cross references into the given map. |
823 | 823 |
/// |
824 | 824 |
/// This function copies the arc cross references (reverse references) |
825 | 825 |
/// into the given map. The parameter should be a map, whose key type |
826 | 826 |
/// is the Arc type of the destination graph, while the value type is |
827 | 827 |
/// the Arc type of the source graph. |
828 | 828 |
template <typename ArcCrossRef> |
829 | 829 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
830 | 830 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
831 | 831 |
ArcRefMap, ArcCrossRef>(map)); |
832 | 832 |
return *this; |
833 | 833 |
} |
834 | 834 |
|
835 | 835 |
/// \brief Make a copy of the given arc map. |
836 | 836 |
/// |
837 | 837 |
/// This function makes a copy of the given arc map for the newly |
838 | 838 |
/// created graph. |
839 | 839 |
/// The key type of the new map \c tmap should be the Arc type of the |
840 | 840 |
/// destination graph, and the key type of the original map \c map |
841 | 841 |
/// should be the Arc type of the source graph. |
842 | 842 |
template <typename FromMap, typename ToMap> |
843 | 843 |
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
844 | 844 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
845 | 845 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
846 | 846 |
return *this; |
847 | 847 |
} |
848 | 848 |
|
849 | 849 |
/// \brief Make a copy of the given arc. |
850 | 850 |
/// |
851 | 851 |
/// This function makes a copy of the given arc. |
852 | 852 |
GraphCopy& arc(const Arc& arc, TArc& tarc) { |
853 | 853 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
854 | 854 |
ArcRefMap, TArc>(arc, tarc)); |
855 | 855 |
return *this; |
856 | 856 |
} |
857 | 857 |
|
858 | 858 |
/// \brief Copy the edge references into the given map. |
859 | 859 |
/// |
860 | 860 |
/// This function copies the edge references into the given map. |
861 | 861 |
/// The parameter should be a map, whose key type is the Edge type of |
862 | 862 |
/// the source graph, while the value type is the Edge type of the |
863 | 863 |
/// destination graph. |
864 | 864 |
template <typename EdgeRef> |
865 | 865 |
GraphCopy& edgeRef(EdgeRef& map) { |
866 | 866 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
867 | 867 |
EdgeRefMap, EdgeRef>(map)); |
868 | 868 |
return *this; |
869 | 869 |
} |
870 | 870 |
|
871 | 871 |
/// \brief Copy the edge cross references into the given map. |
872 | 872 |
/// |
873 | 873 |
/// This function copies the edge cross references (reverse references) |
874 | 874 |
/// into the given map. The parameter should be a map, whose key type |
875 | 875 |
/// is the Edge type of the destination graph, while the value type is |
876 | 876 |
/// the Edge type of the source graph. |
877 | 877 |
template <typename EdgeCrossRef> |
878 | 878 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
879 | 879 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
880 | 880 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
881 | 881 |
return *this; |
882 | 882 |
} |
883 | 883 |
|
884 | 884 |
/// \brief Make a copy of the given edge map. |
885 | 885 |
/// |
886 | 886 |
/// This function makes a copy of the given edge map for the newly |
887 | 887 |
/// created graph. |
888 | 888 |
/// The key type of the new map \c tmap should be the Edge type of the |
889 | 889 |
/// destination graph, and the key type of the original map \c map |
890 | 890 |
/// should be the Edge type of the source graph. |
891 | 891 |
template <typename FromMap, typename ToMap> |
892 | 892 |
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
893 | 893 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
894 | 894 |
EdgeRefMap, FromMap, ToMap>(map, tmap)); |
895 | 895 |
return *this; |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
/// \brief Make a copy of the given edge. |
899 | 899 |
/// |
900 | 900 |
/// This function makes a copy of the given edge. |
901 | 901 |
GraphCopy& edge(const Edge& edge, TEdge& tedge) { |
902 | 902 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
903 | 903 |
EdgeRefMap, TEdge>(edge, tedge)); |
904 | 904 |
return *this; |
905 | 905 |
} |
906 | 906 |
|
907 | 907 |
/// \brief Execute copying. |
908 | 908 |
/// |
909 | 909 |
/// This function executes the copying of the graph along with the |
910 | 910 |
/// copying of the assigned data. |
911 | 911 |
void run() { |
912 | 912 |
NodeRefMap nodeRefMap(_from); |
913 | 913 |
EdgeRefMap edgeRefMap(_from); |
914 | 914 |
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
915 | 915 |
_core_bits::GraphCopySelector<To>:: |
916 | 916 |
copy(_from, _to, nodeRefMap, edgeRefMap); |
917 | 917 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
918 | 918 |
_node_maps[i]->copy(_from, nodeRefMap); |
919 | 919 |
} |
920 | 920 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
921 | 921 |
_edge_maps[i]->copy(_from, edgeRefMap); |
922 | 922 |
} |
923 | 923 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
924 | 924 |
_arc_maps[i]->copy(_from, arcRefMap); |
925 | 925 |
} |
926 | 926 |
} |
927 | 927 |
|
928 | 928 |
private: |
929 | 929 |
|
930 | 930 |
const From& _from; |
931 | 931 |
To& _to; |
932 | 932 |
|
933 | 933 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
934 | 934 |
_node_maps; |
935 | 935 |
|
936 | 936 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
937 | 937 |
_arc_maps; |
938 | 938 |
|
939 | 939 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
940 | 940 |
_edge_maps; |
941 | 941 |
|
942 | 942 |
}; |
943 | 943 |
|
944 | 944 |
/// \brief Copy a graph to another graph. |
945 | 945 |
/// |
946 | 946 |
/// This function copies a graph to another graph. |
947 | 947 |
/// The complete usage of it is detailed in the GraphCopy class, |
948 | 948 |
/// but a short example shows a basic work: |
949 | 949 |
///\code |
950 | 950 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
951 | 951 |
///\endcode |
952 | 952 |
/// |
953 | 953 |
/// After the copy the \c nr map will contain the mapping from the |
954 | 954 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
955 | 955 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
956 | 956 |
/// to the edges of the \c from graph. |
957 | 957 |
/// |
958 | 958 |
/// \see GraphCopy |
959 | 959 |
template <typename From, typename To> |
960 | 960 |
GraphCopy<From, To> |
961 | 961 |
graphCopy(const From& from, To& to) { |
962 | 962 |
return GraphCopy<From, To>(from, to); |
963 | 963 |
} |
964 | 964 |
|
965 | 965 |
namespace _core_bits { |
966 | 966 |
|
967 | 967 |
template <typename Graph, typename Enable = void> |
968 | 968 |
struct FindArcSelector { |
969 | 969 |
typedef typename Graph::Node Node; |
970 | 970 |
typedef typename Graph::Arc Arc; |
971 | 971 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
972 | 972 |
if (e == INVALID) { |
973 | 973 |
g.firstOut(e, u); |
974 | 974 |
} else { |
975 | 975 |
g.nextOut(e); |
976 | 976 |
} |
977 | 977 |
while (e != INVALID && g.target(e) != v) { |
978 | 978 |
g.nextOut(e); |
979 | 979 |
} |
980 | 980 |
return e; |
981 | 981 |
} |
982 | 982 |
}; |
983 | 983 |
|
984 | 984 |
template <typename Graph> |
985 | 985 |
struct FindArcSelector< |
986 | 986 |
Graph, |
987 | 987 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
988 | 988 |
{ |
989 | 989 |
typedef typename Graph::Node Node; |
990 | 990 |
typedef typename Graph::Arc Arc; |
991 | 991 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
992 | 992 |
return g.findArc(u, v, prev); |
993 | 993 |
} |
994 | 994 |
}; |
995 | 995 |
} |
996 | 996 |
|
997 | 997 |
/// \brief Find an arc between two nodes of a digraph. |
998 | 998 |
/// |
999 | 999 |
/// This function finds an arc from node \c u to node \c v in the |
1000 | 1000 |
/// digraph \c g. |
1001 | 1001 |
/// |
1002 | 1002 |
/// If \c prev is \ref INVALID (this is the default value), then |
1003 | 1003 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
1004 | 1004 |
/// the next arc from \c u to \c v after \c prev. |
1005 | 1005 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
1006 | 1006 |
/// |
1007 | 1007 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
1008 | 1008 |
///\code |
1009 | 1009 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
1010 | 1010 |
/// ... |
1011 | 1011 |
/// } |
1012 | 1012 |
///\endcode |
1013 | 1013 |
/// |
1014 | 1014 |
/// \note \ref ConArcIt provides iterator interface for the same |
1015 | 1015 |
/// functionality. |
1016 | 1016 |
/// |
1017 | 1017 |
///\sa ConArcIt |
1018 | 1018 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1019 | 1019 |
template <typename Graph> |
1020 | 1020 |
inline typename Graph::Arc |
1021 | 1021 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1022 | 1022 |
typename Graph::Arc prev = INVALID) { |
1023 | 1023 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
1024 | 1024 |
} |
1025 | 1025 |
|
1026 | 1026 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
1027 | 1027 |
/// |
1028 | 1028 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
1029 | 1029 |
/// a higher level interface for the \ref findArc() function. You can |
1030 | 1030 |
/// use it the following way: |
1031 | 1031 |
///\code |
1032 | 1032 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
1033 | 1033 |
/// ... |
1034 | 1034 |
/// } |
1035 | 1035 |
///\endcode |
1036 | 1036 |
/// |
1037 | 1037 |
///\sa findArc() |
1038 | 1038 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1039 | 1039 |
template <typename _Graph> |
1040 | 1040 |
class ConArcIt : public _Graph::Arc { |
1041 | 1041 |
public: |
1042 | 1042 |
|
1043 | 1043 |
typedef _Graph Graph; |
1044 | 1044 |
typedef typename Graph::Arc Parent; |
1045 | 1045 |
|
1046 | 1046 |
typedef typename Graph::Arc Arc; |
1047 | 1047 |
typedef typename Graph::Node Node; |
1048 | 1048 |
|
1049 | 1049 |
/// \brief Constructor. |
1050 | 1050 |
/// |
1051 | 1051 |
/// Construct a new ConArcIt iterating on the arcs that |
1052 | 1052 |
/// connects nodes \c u and \c v. |
1053 | 1053 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
1054 | 1054 |
Parent::operator=(findArc(_graph, u, v)); |
1055 | 1055 |
} |
1056 | 1056 |
|
1057 | 1057 |
/// \brief Constructor. |
1058 | 1058 |
/// |
1059 | 1059 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1060 | 1060 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
1061 | 1061 |
|
1062 | 1062 |
/// \brief Increment operator. |
1063 | 1063 |
/// |
1064 | 1064 |
/// It increments the iterator and gives back the next arc. |
1065 | 1065 |
ConArcIt& operator++() { |
1066 | 1066 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1067 | 1067 |
_graph.target(*this), *this)); |
1068 | 1068 |
return *this; |
1069 | 1069 |
} |
1070 | 1070 |
private: |
1071 | 1071 |
const Graph& _graph; |
1072 | 1072 |
}; |
1073 | 1073 |
|
1074 | 1074 |
namespace _core_bits { |
1075 | 1075 |
|
1076 | 1076 |
template <typename Graph, typename Enable = void> |
1077 | 1077 |
struct FindEdgeSelector { |
1078 | 1078 |
typedef typename Graph::Node Node; |
1079 | 1079 |
typedef typename Graph::Edge Edge; |
1080 | 1080 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1081 | 1081 |
bool b; |
1082 | 1082 |
if (u != v) { |
1083 | 1083 |
if (e == INVALID) { |
1084 | 1084 |
g.firstInc(e, b, u); |
1085 | 1085 |
} else { |
1086 | 1086 |
b = g.u(e) == u; |
1087 | 1087 |
g.nextInc(e, b); |
1088 | 1088 |
} |
1089 | 1089 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1090 | 1090 |
g.nextInc(e, b); |
1091 | 1091 |
} |
1092 | 1092 |
} else { |
1093 | 1093 |
if (e == INVALID) { |
1094 | 1094 |
g.firstInc(e, b, u); |
1095 | 1095 |
} else { |
1096 | 1096 |
b = true; |
1097 | 1097 |
g.nextInc(e, b); |
1098 | 1098 |
} |
1099 | 1099 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1100 | 1100 |
g.nextInc(e, b); |
1101 | 1101 |
} |
1102 | 1102 |
} |
1103 | 1103 |
return e; |
1104 | 1104 |
} |
1105 | 1105 |
}; |
1106 | 1106 |
|
1107 | 1107 |
template <typename Graph> |
1108 | 1108 |
struct FindEdgeSelector< |
1109 | 1109 |
Graph, |
1110 | 1110 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1111 | 1111 |
{ |
1112 | 1112 |
typedef typename Graph::Node Node; |
1113 | 1113 |
typedef typename Graph::Edge Edge; |
1114 | 1114 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1115 | 1115 |
return g.findEdge(u, v, prev); |
1116 | 1116 |
} |
1117 | 1117 |
}; |
1118 | 1118 |
} |
1119 | 1119 |
|
1120 | 1120 |
/// \brief Find an edge between two nodes of a graph. |
1121 | 1121 |
/// |
1122 | 1122 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1123 | 1123 |
/// If node \c u and node \c v is equal then each loop edge |
1124 | 1124 |
/// will be enumerated once. |
1125 | 1125 |
/// |
1126 | 1126 |
/// If \c prev is \ref INVALID (this is the default value), then |
1127 | 1127 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1128 | 1128 |
/// the next edge from \c u to \c v after \c prev. |
1129 | 1129 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1130 | 1130 |
/// |
1131 | 1131 |
/// Thus you can iterate through each edge between \c u and \c v |
1132 | 1132 |
/// as it follows. |
1133 | 1133 |
///\code |
1134 | 1134 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1135 | 1135 |
/// ... |
1136 | 1136 |
/// } |
1137 | 1137 |
///\endcode |
1138 | 1138 |
/// |
1139 | 1139 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1140 | 1140 |
/// functionality. |
1141 | 1141 |
/// |
1142 | 1142 |
///\sa ConEdgeIt |
1143 | 1143 |
template <typename Graph> |
1144 | 1144 |
inline typename Graph::Edge |
1145 | 1145 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1146 | 1146 |
typename Graph::Edge p = INVALID) { |
1147 | 1147 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1148 | 1148 |
} |
1149 | 1149 |
|
1150 | 1150 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1151 | 1151 |
/// |
1152 | 1152 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1153 | 1153 |
/// It is a higher level interface for the findEdge() function. You can |
1154 | 1154 |
/// use it the following way: |
1155 | 1155 |
///\code |
1156 | 1156 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1157 | 1157 |
/// ... |
1158 | 1158 |
/// } |
1159 | 1159 |
///\endcode |
1160 | 1160 |
/// |
1161 | 1161 |
///\sa findEdge() |
1162 | 1162 |
template <typename _Graph> |
1163 | 1163 |
class ConEdgeIt : public _Graph::Edge { |
1164 | 1164 |
public: |
1165 | 1165 |
|
1166 | 1166 |
typedef _Graph Graph; |
1167 | 1167 |
typedef typename Graph::Edge Parent; |
1168 | 1168 |
|
1169 | 1169 |
typedef typename Graph::Edge Edge; |
1170 | 1170 |
typedef typename Graph::Node Node; |
1171 | 1171 |
|
1172 | 1172 |
/// \brief Constructor. |
1173 | 1173 |
/// |
1174 | 1174 |
/// Construct a new ConEdgeIt iterating on the edges that |
1175 | 1175 |
/// connects nodes \c u and \c v. |
1176 | 1176 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
1177 | 1177 |
Parent::operator=(findEdge(_graph, _u, _v)); |
1178 | 1178 |
} |
1179 | 1179 |
|
1180 | 1180 |
/// \brief Constructor. |
1181 | 1181 |
/// |
1182 | 1182 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1183 | 1183 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
1184 | 1184 |
|
1185 | 1185 |
/// \brief Increment operator. |
1186 | 1186 |
/// |
1187 | 1187 |
/// It increments the iterator and gives back the next edge. |
1188 | 1188 |
ConEdgeIt& operator++() { |
1189 | 1189 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
1190 | 1190 |
return *this; |
1191 | 1191 |
} |
1192 | 1192 |
private: |
1193 | 1193 |
const Graph& _graph; |
1194 | 1194 |
Node _u, _v; |
1195 | 1195 |
}; |
1196 | 1196 |
|
1197 | 1197 |
|
1198 | 1198 |
///Dynamic arc look-up between given endpoints. |
1199 | 1199 |
|
1200 | 1200 |
///Using this class, you can find an arc in a digraph from a given |
1201 | 1201 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1202 | 1202 |
///where <em>d</em> is the out-degree of the source node. |
1203 | 1203 |
/// |
1204 | 1204 |
///It is possible to find \e all parallel arcs between two nodes with |
1205 | 1205 |
///the \c operator() member. |
1206 | 1206 |
/// |
1207 | 1207 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1208 | 1208 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1209 | 1209 |
/// |
1210 | 1210 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1211 | 1211 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1212 | 1212 |
///time bound for arc look-ups. This class also guarantees the |
1213 | 1213 |
///optimal time bound in a constant factor for any distribution of |
1214 | 1214 |
///queries. |
1215 | 1215 |
/// |
1216 | 1216 |
///\tparam G The type of the underlying digraph. |
1217 | 1217 |
/// |
1218 | 1218 |
///\sa ArcLookUp |
1219 | 1219 |
///\sa AllArcLookUp |
1220 | 1220 |
template<class G> |
1221 | 1221 |
class DynArcLookUp |
1222 | 1222 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
1223 | 1223 |
{ |
1224 | 1224 |
public: |
1225 | 1225 |
typedef typename ItemSetTraits<G, typename G::Arc> |
1226 | 1226 |
::ItemNotifier::ObserverBase Parent; |
1227 | 1227 |
|
1228 | 1228 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1229 | 1229 |
typedef G Digraph; |
1230 | 1230 |
|
1231 | 1231 |
protected: |
1232 | 1232 |
|
1233 | 1233 |
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type { |
1234 | 1234 |
public: |
1235 | 1235 |
|
1236 | 1236 |
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent; |
1237 | 1237 |
|
1238 | 1238 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
1239 | 1239 |
|
1240 | 1240 |
virtual void add(const Node& node) { |
1241 | 1241 |
Parent::add(node); |
1242 | 1242 |
Parent::set(node, INVALID); |
1243 | 1243 |
} |
1244 | 1244 |
|
1245 | 1245 |
virtual void add(const std::vector<Node>& nodes) { |
1246 | 1246 |
Parent::add(nodes); |
1247 | 1247 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1248 | 1248 |
Parent::set(nodes[i], INVALID); |
1249 | 1249 |
} |
1250 | 1250 |
} |
1251 | 1251 |
|
1252 | 1252 |
virtual void build() { |
1253 | 1253 |
Parent::build(); |
1254 | 1254 |
Node it; |
1255 | 1255 |
typename Parent::Notifier* nf = Parent::notifier(); |
1256 | 1256 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1257 | 1257 |
Parent::set(it, INVALID); |
1258 | 1258 |
} |
1259 | 1259 |
} |
1260 | 1260 |
}; |
1261 | 1261 |
|
1262 | 1262 |
const Digraph &_g; |
1263 | 1263 |
AutoNodeMap _head; |
1264 | 1264 |
typename Digraph::template ArcMap<Arc> _parent; |
1265 | 1265 |
typename Digraph::template ArcMap<Arc> _left; |
1266 | 1266 |
typename Digraph::template ArcMap<Arc> _right; |
1267 | 1267 |
|
1268 | 1268 |
class ArcLess { |
1269 | 1269 |
const Digraph &g; |
1270 | 1270 |
public: |
1271 | 1271 |
ArcLess(const Digraph &_g) : g(_g) {} |
1272 | 1272 |
bool operator()(Arc a,Arc b) const |
1273 | 1273 |
{ |
1274 | 1274 |
return g.target(a)<g.target(b); |
1275 | 1275 |
} |
1276 | 1276 |
}; |
1277 | 1277 |
|
1278 | 1278 |
public: |
1279 | 1279 |
|
1280 | 1280 |
///Constructor |
1281 | 1281 |
|
1282 | 1282 |
///Constructor. |
1283 | 1283 |
/// |
1284 | 1284 |
///It builds up the search database. |
1285 | 1285 |
DynArcLookUp(const Digraph &g) |
1286 | 1286 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1287 | 1287 |
{ |
1288 | 1288 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1289 | 1289 |
refresh(); |
1290 | 1290 |
} |
1291 | 1291 |
|
1292 | 1292 |
protected: |
1293 | 1293 |
|
1294 | 1294 |
virtual void add(const Arc& arc) { |
1295 | 1295 |
insert(arc); |
1296 | 1296 |
} |
1297 | 1297 |
|
1298 | 1298 |
virtual void add(const std::vector<Arc>& arcs) { |
1299 | 1299 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1300 | 1300 |
insert(arcs[i]); |
1301 | 1301 |
} |
1302 | 1302 |
} |
1303 | 1303 |
|
1304 | 1304 |
virtual void erase(const Arc& arc) { |
1305 | 1305 |
remove(arc); |
1306 | 1306 |
} |
1307 | 1307 |
|
1308 | 1308 |
virtual void erase(const std::vector<Arc>& arcs) { |
1309 | 1309 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1310 | 1310 |
remove(arcs[i]); |
1311 | 1311 |
} |
1312 | 1312 |
} |
1313 | 1313 |
|
1314 | 1314 |
virtual void build() { |
1315 | 1315 |
refresh(); |
1316 | 1316 |
} |
1317 | 1317 |
|
1318 | 1318 |
virtual void clear() { |
1319 | 1319 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1320 | 1320 |
_head.set(n, INVALID); |
1321 | 1321 |
} |
1322 | 1322 |
} |
1323 | 1323 |
|
1324 | 1324 |
void insert(Arc arc) { |
1325 | 1325 |
Node s = _g.source(arc); |
1326 | 1326 |
Node t = _g.target(arc); |
1327 | 1327 |
_left.set(arc, INVALID); |
1328 | 1328 |
_right.set(arc, INVALID); |
1329 | 1329 |
|
1330 | 1330 |
Arc e = _head[s]; |
1331 | 1331 |
if (e == INVALID) { |
1332 | 1332 |
_head.set(s, arc); |
1333 | 1333 |
_parent.set(arc, INVALID); |
1334 | 1334 |
return; |
1335 | 1335 |
} |
1336 | 1336 |
while (true) { |
1337 | 1337 |
if (t < _g.target(e)) { |
1338 | 1338 |
if (_left[e] == INVALID) { |
1339 | 1339 |
_left.set(e, arc); |
1340 | 1340 |
_parent.set(arc, e); |
1341 | 1341 |
splay(arc); |
1342 | 1342 |
return; |
1343 | 1343 |
} else { |
1344 | 1344 |
e = _left[e]; |
1345 | 1345 |
} |
1346 | 1346 |
} else { |
1347 | 1347 |
if (_right[e] == INVALID) { |
1348 | 1348 |
_right.set(e, arc); |
1349 | 1349 |
_parent.set(arc, e); |
1350 | 1350 |
splay(arc); |
1351 | 1351 |
return; |
1352 | 1352 |
} else { |
1353 | 1353 |
e = _right[e]; |
1354 | 1354 |
} |
1355 | 1355 |
} |
1356 | 1356 |
} |
1357 | 1357 |
} |
1358 | 1358 |
|
1359 | 1359 |
void remove(Arc arc) { |
1360 | 1360 |
if (_left[arc] == INVALID) { |
1361 | 1361 |
if (_right[arc] != INVALID) { |
1362 | 1362 |
_parent.set(_right[arc], _parent[arc]); |
1363 | 1363 |
} |
1364 | 1364 |
if (_parent[arc] != INVALID) { |
1365 | 1365 |
if (_left[_parent[arc]] == arc) { |
1366 | 1366 |
_left.set(_parent[arc], _right[arc]); |
1367 | 1367 |
} else { |
1368 | 1368 |
_right.set(_parent[arc], _right[arc]); |
1369 | 1369 |
} |
1370 | 1370 |
} else { |
1371 | 1371 |
_head.set(_g.source(arc), _right[arc]); |
1372 | 1372 |
} |
1373 | 1373 |
} else if (_right[arc] == INVALID) { |
1374 | 1374 |
_parent.set(_left[arc], _parent[arc]); |
1375 | 1375 |
if (_parent[arc] != INVALID) { |
1376 | 1376 |
if (_left[_parent[arc]] == arc) { |
1377 | 1377 |
_left.set(_parent[arc], _left[arc]); |
1378 | 1378 |
} else { |
1379 | 1379 |
_right.set(_parent[arc], _left[arc]); |
1380 | 1380 |
} |
1381 | 1381 |
} else { |
1382 | 1382 |
_head.set(_g.source(arc), _left[arc]); |
1383 | 1383 |
} |
1384 | 1384 |
} else { |
1385 | 1385 |
Arc e = _left[arc]; |
1386 | 1386 |
if (_right[e] != INVALID) { |
1387 | 1387 |
e = _right[e]; |
1388 | 1388 |
while (_right[e] != INVALID) { |
1389 | 1389 |
e = _right[e]; |
1390 | 1390 |
} |
1391 | 1391 |
Arc s = _parent[e]; |
1392 | 1392 |
_right.set(_parent[e], _left[e]); |
1393 | 1393 |
if (_left[e] != INVALID) { |
1394 | 1394 |
_parent.set(_left[e], _parent[e]); |
1395 | 1395 |
} |
1396 | 1396 |
|
1397 | 1397 |
_left.set(e, _left[arc]); |
1398 | 1398 |
_parent.set(_left[arc], e); |
1399 | 1399 |
_right.set(e, _right[arc]); |
1400 | 1400 |
_parent.set(_right[arc], e); |
1401 | 1401 |
|
1402 | 1402 |
_parent.set(e, _parent[arc]); |
1403 | 1403 |
if (_parent[arc] != INVALID) { |
1404 | 1404 |
if (_left[_parent[arc]] == arc) { |
1405 | 1405 |
_left.set(_parent[arc], e); |
1406 | 1406 |
} else { |
1407 | 1407 |
_right.set(_parent[arc], e); |
1408 | 1408 |
} |
1409 | 1409 |
} |
1410 | 1410 |
splay(s); |
1411 | 1411 |
} else { |
1412 | 1412 |
_right.set(e, _right[arc]); |
1413 | 1413 |
_parent.set(_right[arc], e); |
1414 | 1414 |
_parent.set(e, _parent[arc]); |
1415 | 1415 |
|
1416 | 1416 |
if (_parent[arc] != INVALID) { |
1417 | 1417 |
if (_left[_parent[arc]] == arc) { |
1418 | 1418 |
_left.set(_parent[arc], e); |
1419 | 1419 |
} else { |
1420 | 1420 |
_right.set(_parent[arc], e); |
1421 | 1421 |
} |
1422 | 1422 |
} else { |
1423 | 1423 |
_head.set(_g.source(arc), e); |
1424 | 1424 |
} |
1425 | 1425 |
} |
1426 | 1426 |
} |
1427 | 1427 |
} |
1428 | 1428 |
|
1429 | 1429 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1430 | 1430 |
{ |
1431 | 1431 |
int m=(a+b)/2; |
1432 | 1432 |
Arc me=v[m]; |
1433 | 1433 |
if (a < m) { |
1434 | 1434 |
Arc left = refreshRec(v,a,m-1); |
1435 | 1435 |
_left.set(me, left); |
1436 | 1436 |
_parent.set(left, me); |
1437 | 1437 |
} else { |
1438 | 1438 |
_left.set(me, INVALID); |
1439 | 1439 |
} |
1440 | 1440 |
if (m < b) { |
1441 | 1441 |
Arc right = refreshRec(v,m+1,b); |
1442 | 1442 |
_right.set(me, right); |
1443 | 1443 |
_parent.set(right, me); |
1444 | 1444 |
} else { |
1445 | 1445 |
_right.set(me, INVALID); |
1446 | 1446 |
} |
1447 | 1447 |
return me; |
1448 | 1448 |
} |
1449 | 1449 |
|
1450 | 1450 |
void refresh() { |
1451 | 1451 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1452 | 1452 |
std::vector<Arc> v; |
1453 | 1453 |
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
1454 | 1454 |
if (!v.empty()) { |
1455 | 1455 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1456 | 1456 |
Arc head = refreshRec(v,0,v.size()-1); |
1457 | 1457 |
_head.set(n, head); |
1458 | 1458 |
_parent.set(head, INVALID); |
1459 | 1459 |
} |
1460 | 1460 |
else _head.set(n, INVALID); |
1461 | 1461 |
} |
1462 | 1462 |
} |
1463 | 1463 |
|
1464 | 1464 |
void zig(Arc v) { |
1465 | 1465 |
Arc w = _parent[v]; |
1466 | 1466 |
_parent.set(v, _parent[w]); |
1467 | 1467 |
_parent.set(w, v); |
1468 | 1468 |
_left.set(w, _right[v]); |
1469 | 1469 |
_right.set(v, w); |
1470 | 1470 |
if (_parent[v] != INVALID) { |
1471 | 1471 |
if (_right[_parent[v]] == w) { |
1472 | 1472 |
_right.set(_parent[v], v); |
1473 | 1473 |
} else { |
1474 | 1474 |
_left.set(_parent[v], v); |
1475 | 1475 |
} |
1476 | 1476 |
} |
1477 | 1477 |
if (_left[w] != INVALID){ |
1478 | 1478 |
_parent.set(_left[w], w); |
1479 | 1479 |
} |
1480 | 1480 |
} |
1481 | 1481 |
|
1482 | 1482 |
void zag(Arc v) { |
1483 | 1483 |
Arc w = _parent[v]; |
1484 | 1484 |
_parent.set(v, _parent[w]); |
1485 | 1485 |
_parent.set(w, v); |
1486 | 1486 |
_right.set(w, _left[v]); |
1487 | 1487 |
_left.set(v, w); |
1488 | 1488 |
if (_parent[v] != INVALID){ |
1489 | 1489 |
if (_left[_parent[v]] == w) { |
1490 | 1490 |
_left.set(_parent[v], v); |
1491 | 1491 |
} else { |
1492 | 1492 |
_right.set(_parent[v], v); |
1493 | 1493 |
} |
1494 | 1494 |
} |
1495 | 1495 |
if (_right[w] != INVALID){ |
1496 | 1496 |
_parent.set(_right[w], w); |
1497 | 1497 |
} |
1498 | 1498 |
} |
1499 | 1499 |
|
1500 | 1500 |
void splay(Arc v) { |
1501 | 1501 |
while (_parent[v] != INVALID) { |
1502 | 1502 |
if (v == _left[_parent[v]]) { |
1503 | 1503 |
if (_parent[_parent[v]] == INVALID) { |
1504 | 1504 |
zig(v); |
1505 | 1505 |
} else { |
1506 | 1506 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1507 | 1507 |
zig(_parent[v]); |
1508 | 1508 |
zig(v); |
1509 | 1509 |
} else { |
1510 | 1510 |
zig(v); |
1511 | 1511 |
zag(v); |
1512 | 1512 |
} |
1513 | 1513 |
} |
1514 | 1514 |
} else { |
1515 | 1515 |
if (_parent[_parent[v]] == INVALID) { |
1516 | 1516 |
zag(v); |
1517 | 1517 |
} else { |
1518 | 1518 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1519 | 1519 |
zag(v); |
1520 | 1520 |
zig(v); |
1521 | 1521 |
} else { |
1522 | 1522 |
zag(_parent[v]); |
1523 | 1523 |
zag(v); |
1524 | 1524 |
} |
1525 | 1525 |
} |
1526 | 1526 |
} |
1527 | 1527 |
} |
1528 | 1528 |
_head[_g.source(v)] = v; |
1529 | 1529 |
} |
1530 | 1530 |
|
1531 | 1531 |
|
1532 | 1532 |
public: |
1533 | 1533 |
|
1534 | 1534 |
///Find an arc between two nodes. |
1535 | 1535 |
|
1536 | 1536 |
///Find an arc between two nodes. |
1537 | 1537 |
///\param s The source node. |
1538 | 1538 |
///\param t The target node. |
1539 | 1539 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
1540 | 1540 |
///not given, the operator finds the first appropriate arc. |
1541 | 1541 |
///\return An arc from \c s to \c t after \c p or |
1542 | 1542 |
///\ref INVALID if there is no more. |
1543 | 1543 |
/// |
1544 | 1544 |
///For example, you can count the number of arcs from \c u to \c v in the |
1545 | 1545 |
///following way. |
1546 | 1546 |
///\code |
1547 | 1547 |
///DynArcLookUp<ListDigraph> ae(g); |
1548 | 1548 |
///... |
1549 | 1549 |
///int n = 0; |
1550 | 1550 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
1551 | 1551 |
///\endcode |
1552 | 1552 |
/// |
1553 | 1553 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
1554 | 1554 |
///amortized time, specifically, the time complexity of the lookups |
1555 | 1555 |
///is equal to the optimal search tree implementation for the |
1556 | 1556 |
///current query distribution in a constant factor. |
1557 | 1557 |
/// |
1558 | 1558 |
///\note This is a dynamic data structure, therefore the data |
1559 | 1559 |
///structure is updated after each graph alteration. Thus although |
1560 | 1560 |
///this data structure is theoretically faster than \ref ArcLookUp |
1561 | 1561 |
///and \ref AllArcLookUp, it often provides worse performance than |
1562 | 1562 |
///them. |
1563 | 1563 |
Arc operator()(Node s, Node t, Arc p = INVALID) const { |
1564 | 1564 |
if (p == INVALID) { |
1565 | 1565 |
Arc a = _head[s]; |
1566 | 1566 |
if (a == INVALID) return INVALID; |
1567 | 1567 |
Arc r = INVALID; |
1568 | 1568 |
while (true) { |
1569 | 1569 |
if (_g.target(a) < t) { |
1570 | 1570 |
if (_right[a] == INVALID) { |
1571 | 1571 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1572 | 1572 |
return r; |
1573 | 1573 |
} else { |
1574 | 1574 |
a = _right[a]; |
1575 | 1575 |
} |
1576 | 1576 |
} else { |
1577 | 1577 |
if (_g.target(a) == t) { |
1578 | 1578 |
r = a; |
1579 | 1579 |
} |
1580 | 1580 |
if (_left[a] == INVALID) { |
1581 | 1581 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1582 | 1582 |
return r; |
1583 | 1583 |
} else { |
1584 | 1584 |
a = _left[a]; |
1585 | 1585 |
} |
1586 | 1586 |
} |
1587 | 1587 |
} |
1588 | 1588 |
} else { |
1589 | 1589 |
Arc a = p; |
1590 | 1590 |
if (_right[a] != INVALID) { |
1591 | 1591 |
a = _right[a]; |
1592 | 1592 |
while (_left[a] != INVALID) { |
1593 | 1593 |
a = _left[a]; |
1594 | 1594 |
} |
1595 | 1595 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1596 | 1596 |
} else { |
1597 | 1597 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
1598 | 1598 |
a = _parent[a]; |
1599 | 1599 |
} |
1600 | 1600 |
if (_parent[a] == INVALID) { |
1601 | 1601 |
return INVALID; |
1602 | 1602 |
} else { |
1603 | 1603 |
a = _parent[a]; |
1604 | 1604 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1605 | 1605 |
} |
1606 | 1606 |
} |
1607 | 1607 |
if (_g.target(a) == t) return a; |
1608 | 1608 |
else return INVALID; |
1609 | 1609 |
} |
1610 | 1610 |
} |
1611 | 1611 |
|
1612 | 1612 |
}; |
1613 | 1613 |
|
1614 | 1614 |
///Fast arc look-up between given endpoints. |
1615 | 1615 |
|
1616 | 1616 |
///Using this class, you can find an arc in a digraph from a given |
1617 | 1617 |
///source to a given target in time <em>O</em>(log<em>d</em>), |
1618 | 1618 |
///where <em>d</em> is the out-degree of the source node. |
1619 | 1619 |
/// |
1620 | 1620 |
///It is not possible to find \e all parallel arcs between two nodes. |
1621 | 1621 |
///Use \ref AllArcLookUp for this purpose. |
1622 | 1622 |
/// |
1623 | 1623 |
///\warning This class is static, so you should call refresh() (or at |
1624 | 1624 |
///least refresh(Node)) to refresh this data structure whenever the |
1625 | 1625 |
///digraph changes. This is a time consuming (superlinearly proportional |
1626 | 1626 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1627 | 1627 |
/// |
1628 | 1628 |
///\tparam G The type of the underlying digraph. |
1629 | 1629 |
/// |
1630 | 1630 |
///\sa DynArcLookUp |
1631 | 1631 |
///\sa AllArcLookUp |
1632 | 1632 |
template<class G> |
1633 | 1633 |
class ArcLookUp |
1634 | 1634 |
{ |
1635 | 1635 |
public: |
1636 | 1636 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1637 | 1637 |
typedef G Digraph; |
1638 | 1638 |
|
1639 | 1639 |
protected: |
1640 | 1640 |
const Digraph &_g; |
1641 | 1641 |
typename Digraph::template NodeMap<Arc> _head; |
1642 | 1642 |
typename Digraph::template ArcMap<Arc> _left; |
1643 | 1643 |
typename Digraph::template ArcMap<Arc> _right; |
1644 | 1644 |
|
1645 | 1645 |
class ArcLess { |
1646 | 1646 |
const Digraph &g; |
1647 | 1647 |
public: |
1648 | 1648 |
ArcLess(const Digraph &_g) : g(_g) {} |
1649 | 1649 |
bool operator()(Arc a,Arc b) const |
1650 | 1650 |
{ |
1651 | 1651 |
return g.target(a)<g.target(b); |
1652 | 1652 |
} |
1653 | 1653 |
}; |
1654 | 1654 |
|
1655 | 1655 |
public: |
1656 | 1656 |
|
1657 | 1657 |
///Constructor |
1658 | 1658 |
|
1659 | 1659 |
///Constructor. |
1660 | 1660 |
/// |
1661 | 1661 |
///It builds up the search database, which remains valid until the digraph |
1662 | 1662 |
///changes. |
1663 | 1663 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
1664 | 1664 |
|
1665 | 1665 |
private: |
1666 | 1666 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1667 | 1667 |
{ |
1668 | 1668 |
int m=(a+b)/2; |
1669 | 1669 |
Arc me=v[m]; |
1670 | 1670 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
1671 | 1671 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
1672 | 1672 |
return me; |
1673 | 1673 |
} |
1674 | 1674 |
public: |
1675 | 1675 |
///Refresh the search data structure at a node. |
1676 | 1676 |
|
1677 | 1677 |
///Build up the search database of node \c n. |
1678 | 1678 |
/// |
1679 | 1679 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
1680 | 1680 |
///is the number of the outgoing arcs of \c n. |
1681 | 1681 |
void refresh(Node n) |
1682 | 1682 |
{ |
1683 | 1683 |
std::vector<Arc> v; |
1684 | 1684 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
1685 | 1685 |
if(v.size()) { |
1686 | 1686 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1687 | 1687 |
_head[n]=refreshRec(v,0,v.size()-1); |
1688 | 1688 |
} |
1689 | 1689 |
else _head[n]=INVALID; |
1690 | 1690 |
} |
1691 | 1691 |
///Refresh the full data structure. |
1692 | 1692 |
|
1693 | 1693 |
///Build up the full search database. In fact, it simply calls |
1694 | 1694 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1695 | 1695 |
/// |
1696 | 1696 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1697 | 1697 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1698 | 1698 |
///out-degree of the digraph. |
1699 | 1699 |
void refresh() |
1700 | 1700 |
{ |
1701 | 1701 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
1702 | 1702 |
} |
1703 | 1703 |
|
1704 | 1704 |
///Find an arc between two nodes. |
1705 | 1705 |
|
1706 | 1706 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
1707 | 1707 |
///where <em>d</em> is the number of outgoing arcs of \c s. |
1708 | 1708 |
///\param s The source node. |
1709 | 1709 |
///\param t The target node. |
1710 | 1710 |
///\return An arc from \c s to \c t if there exists, |
1711 | 1711 |
///\ref INVALID otherwise. |
1712 | 1712 |
/// |
1713 | 1713 |
///\warning If you change the digraph, refresh() must be called before using |
1714 | 1714 |
///this operator. If you change the outgoing arcs of |
1715 | 1715 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1716 | 1716 |
Arc operator()(Node s, Node t) const |
1717 | 1717 |
{ |
1718 | 1718 |
Arc e; |
1719 | 1719 |
for(e=_head[s]; |
1720 | 1720 |
e!=INVALID&&_g.target(e)!=t; |
1721 | 1721 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
1722 | 1722 |
return e; |
1723 | 1723 |
} |
1724 | 1724 |
|
1725 | 1725 |
}; |
1726 | 1726 |
|
1727 | 1727 |
///Fast look-up of all arcs between given endpoints. |
1728 | 1728 |
|
1729 | 1729 |
///This class is the same as \ref ArcLookUp, with the addition |
1730 | 1730 |
///that it makes it possible to find all parallel arcs between given |
1731 | 1731 |
///endpoints. |
1732 | 1732 |
/// |
1733 | 1733 |
///\warning This class is static, so you should call refresh() (or at |
1734 | 1734 |
///least refresh(Node)) to refresh this data structure whenever the |
1735 | 1735 |
///digraph changes. This is a time consuming (superlinearly proportional |
1736 | 1736 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1737 | 1737 |
/// |
1738 | 1738 |
///\tparam G The type of the underlying digraph. |
1739 | 1739 |
/// |
1740 | 1740 |
///\sa DynArcLookUp |
1741 | 1741 |
///\sa ArcLookUp |
1742 | 1742 |
template<class G> |
1743 | 1743 |
class AllArcLookUp : public ArcLookUp<G> |
1744 | 1744 |
{ |
1745 | 1745 |
using ArcLookUp<G>::_g; |
1746 | 1746 |
using ArcLookUp<G>::_right; |
1747 | 1747 |
using ArcLookUp<G>::_left; |
1748 | 1748 |
using ArcLookUp<G>::_head; |
1749 | 1749 |
|
1750 | 1750 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1751 | 1751 |
typedef G Digraph; |
1752 | 1752 |
|
1753 | 1753 |
typename Digraph::template ArcMap<Arc> _next; |
1754 | 1754 |
|
1755 | 1755 |
Arc refreshNext(Arc head,Arc next=INVALID) |
1756 | 1756 |
{ |
1757 | 1757 |
if(head==INVALID) return next; |
1758 | 1758 |
else { |
1759 | 1759 |
next=refreshNext(_right[head],next); |
1760 | 1760 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
1761 | 1761 |
? next : INVALID; |
1762 | 1762 |
return refreshNext(_left[head],head); |
1763 | 1763 |
} |
1764 | 1764 |
} |
1765 | 1765 |
|
1766 | 1766 |
void refreshNext() |
1767 | 1767 |
{ |
1768 | 1768 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
1769 | 1769 |
} |
1770 | 1770 |
|
1771 | 1771 |
public: |
1772 | 1772 |
///Constructor |
1773 | 1773 |
|
1774 | 1774 |
///Constructor. |
1775 | 1775 |
/// |
1776 | 1776 |
///It builds up the search database, which remains valid until the digraph |
1777 | 1777 |
///changes. |
1778 | 1778 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
1779 | 1779 |
|
1780 | 1780 |
///Refresh the data structure at a node. |
1781 | 1781 |
|
1782 | 1782 |
///Build up the search database of node \c n. |
1783 | 1783 |
/// |
1784 | 1784 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
1785 | 1785 |
///the number of the outgoing arcs of \c n. |
1786 | 1786 |
void refresh(Node n) |
1787 | 1787 |
{ |
1788 | 1788 |
ArcLookUp<G>::refresh(n); |
1789 | 1789 |
refreshNext(_head[n]); |
1790 | 1790 |
} |
1791 | 1791 |
|
1792 | 1792 |
///Refresh the full data structure. |
1793 | 1793 |
|
1794 | 1794 |
///Build up the full search database. In fact, it simply calls |
1795 | 1795 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1796 | 1796 |
/// |
1797 | 1797 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1798 | 1798 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1799 | 1799 |
///out-degree of the digraph. |
1800 | 1800 |
void refresh() |
1801 | 1801 |
{ |
1802 | 1802 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
1803 | 1803 |
} |
1804 | 1804 |
|
1805 | 1805 |
///Find an arc between two nodes. |
1806 | 1806 |
|
1807 | 1807 |
///Find an arc between two nodes. |
1808 | 1808 |
///\param s The source node. |
1809 | 1809 |
///\param t The target node. |
1810 | 1810 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
1811 | 1811 |
///not given, the operator finds the first appropriate arc. |
1812 | 1812 |
///\return An arc from \c s to \c t after \c prev or |
1813 | 1813 |
///\ref INVALID if there is no more. |
1814 | 1814 |
/// |
1815 | 1815 |
///For example, you can count the number of arcs from \c u to \c v in the |
1816 | 1816 |
///following way. |
1817 | 1817 |
///\code |
1818 | 1818 |
///AllArcLookUp<ListDigraph> ae(g); |
1819 | 1819 |
///... |
1820 | 1820 |
///int n = 0; |
1821 | 1821 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
1822 | 1822 |
///\endcode |
1823 | 1823 |
/// |
1824 | 1824 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
1825 | 1825 |
///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
1826 | 1826 |
///consecutive arcs are found in constant time. |
1827 | 1827 |
/// |
1828 | 1828 |
///\warning If you change the digraph, refresh() must be called before using |
1829 | 1829 |
///this operator. If you change the outgoing arcs of |
1830 | 1830 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1831 | 1831 |
/// |
1832 | 1832 |
#ifdef DOXYGEN |
1833 | 1833 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
1834 | 1834 |
#else |
1835 | 1835 |
using ArcLookUp<G>::operator() ; |
1836 | 1836 |
Arc operator()(Node s, Node t, Arc prev) const |
1837 | 1837 |
{ |
1838 | 1838 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
1839 | 1839 |
} |
1840 | 1840 |
#endif |
1841 | 1841 |
|
1842 | 1842 |
}; |
1843 | 1843 |
|
1844 | 1844 |
/// @} |
1845 | 1845 |
|
1846 | 1846 |
} //namespace lemon |
1847 | 1847 |
|
1848 | 1848 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 67 |
///Instantiates a ProcessedMap. |
68 | 68 |
|
69 | 69 |
///This function instantiates a ProcessedMap. |
70 | 70 |
///\param g is the digraph, to which |
71 | 71 |
///we would like to define the ProcessedMap |
72 | 72 |
#ifdef DOXYGEN |
73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 74 |
#else |
75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 76 |
#endif |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 | 83 |
///The type of the map that indicates which nodes are reached. |
84 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
85 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 86 |
///Instantiates a ReachedMap. |
87 | 87 |
|
88 | 88 |
///This function instantiates a ReachedMap. |
89 | 89 |
///\param g is the digraph, to which |
90 | 90 |
///we would like to define the ReachedMap. |
91 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 92 |
{ |
93 | 93 |
return new ReachedMap(g); |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
///The type of the map that stores the distances of the nodes. |
97 | 97 |
|
98 | 98 |
///The type of the map that stores the distances of the nodes. |
99 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
100 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 101 |
///Instantiates a DistMap. |
102 | 102 |
|
103 | 103 |
///This function instantiates a DistMap. |
104 | 104 |
///\param g is the digraph, to which we would like to define the |
105 | 105 |
///DistMap. |
106 | 106 |
static DistMap *createDistMap(const Digraph &g) |
107 | 107 |
{ |
108 | 108 |
return new DistMap(g); |
109 | 109 |
} |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
///%DFS algorithm class. |
113 | 113 |
|
114 | 114 |
///\ingroup search |
115 | 115 |
///This class provides an efficient implementation of the %DFS algorithm. |
116 | 116 |
/// |
117 | 117 |
///There is also a \ref dfs() "function-type interface" for the DFS |
118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 119 |
///used easier. |
120 | 120 |
/// |
121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 122 |
///The default value is \ref ListDigraph. The value of GR is not used |
123 | 123 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
124 | 124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
125 | 125 |
///The default traits class is |
126 | 126 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
127 | 127 |
///See \ref DfsDefaultTraits for the documentation of |
128 | 128 |
///a Dfs traits class. |
129 | 129 |
#ifdef DOXYGEN |
130 | 130 |
template <typename GR, |
131 | 131 |
typename TR> |
132 | 132 |
#else |
133 | 133 |
template <typename GR=ListDigraph, |
134 | 134 |
typename TR=DfsDefaultTraits<GR> > |
135 | 135 |
#endif |
136 | 136 |
class Dfs { |
137 | 137 |
public: |
138 | 138 |
|
139 | 139 |
///The type of the digraph the algorithm runs on. |
140 | 140 |
typedef typename TR::Digraph Digraph; |
141 | 141 |
|
142 | 142 |
///\brief The type of the map that stores the predecessor arcs of the |
143 | 143 |
///DFS paths. |
144 | 144 |
typedef typename TR::PredMap PredMap; |
145 | 145 |
///The type of the map that stores the distances of the nodes. |
146 | 146 |
typedef typename TR::DistMap DistMap; |
147 | 147 |
///The type of the map that indicates which nodes are reached. |
148 | 148 |
typedef typename TR::ReachedMap ReachedMap; |
149 | 149 |
///The type of the map that indicates which nodes are processed. |
150 | 150 |
typedef typename TR::ProcessedMap ProcessedMap; |
151 | 151 |
///The type of the paths. |
152 | 152 |
typedef PredMapPath<Digraph, PredMap> Path; |
153 | 153 |
|
154 | 154 |
///The traits class. |
155 | 155 |
typedef TR Traits; |
156 | 156 |
|
157 | 157 |
private: |
158 | 158 |
|
159 | 159 |
typedef typename Digraph::Node Node; |
160 | 160 |
typedef typename Digraph::NodeIt NodeIt; |
161 | 161 |
typedef typename Digraph::Arc Arc; |
162 | 162 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 163 |
|
164 | 164 |
//Pointer to the underlying digraph. |
165 | 165 |
const Digraph *G; |
166 | 166 |
//Pointer to the map of predecessor arcs. |
167 | 167 |
PredMap *_pred; |
168 | 168 |
//Indicates if _pred is locally allocated (true) or not. |
169 | 169 |
bool local_pred; |
170 | 170 |
//Pointer to the map of distances. |
171 | 171 |
DistMap *_dist; |
172 | 172 |
//Indicates if _dist is locally allocated (true) or not. |
173 | 173 |
bool local_dist; |
174 | 174 |
//Pointer to the map of reached status of the nodes. |
175 | 175 |
ReachedMap *_reached; |
176 | 176 |
//Indicates if _reached is locally allocated (true) or not. |
177 | 177 |
bool local_reached; |
178 | 178 |
//Pointer to the map of processed status of the nodes. |
179 | 179 |
ProcessedMap *_processed; |
180 | 180 |
//Indicates if _processed is locally allocated (true) or not. |
181 | 181 |
bool local_processed; |
182 | 182 |
|
183 | 183 |
std::vector<typename Digraph::OutArcIt> _stack; |
184 | 184 |
int _stack_head; |
185 | 185 |
|
186 | 186 |
//Creates the maps if necessary. |
187 | 187 |
void create_maps() |
188 | 188 |
{ |
189 | 189 |
if(!_pred) { |
190 | 190 |
local_pred = true; |
191 | 191 |
_pred = Traits::createPredMap(*G); |
192 | 192 |
} |
193 | 193 |
if(!_dist) { |
194 | 194 |
local_dist = true; |
195 | 195 |
_dist = Traits::createDistMap(*G); |
196 | 196 |
} |
197 | 197 |
if(!_reached) { |
198 | 198 |
local_reached = true; |
199 | 199 |
_reached = Traits::createReachedMap(*G); |
200 | 200 |
} |
201 | 201 |
if(!_processed) { |
202 | 202 |
local_processed = true; |
203 | 203 |
_processed = Traits::createProcessedMap(*G); |
204 | 204 |
} |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
protected: |
208 | 208 |
|
209 | 209 |
Dfs() {} |
210 | 210 |
|
211 | 211 |
public: |
212 | 212 |
|
213 | 213 |
typedef Dfs Create; |
214 | 214 |
|
215 | 215 |
///\name Named template parameters |
216 | 216 |
|
217 | 217 |
///@{ |
218 | 218 |
|
219 | 219 |
template <class T> |
220 | 220 |
struct SetPredMapTraits : public Traits { |
221 | 221 |
typedef T PredMap; |
222 | 222 |
static PredMap *createPredMap(const Digraph &) |
223 | 223 |
{ |
224 | 224 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
225 | 225 |
return 0; // ignore warnings |
226 | 226 |
} |
227 | 227 |
}; |
228 | 228 |
///\brief \ref named-templ-param "Named parameter" for setting |
229 | 229 |
///PredMap type. |
230 | 230 |
/// |
231 | 231 |
///\ref named-templ-param "Named parameter" for setting |
232 | 232 |
///PredMap type. |
233 | 233 |
template <class T> |
234 | 234 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
235 | 235 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
236 | 236 |
}; |
237 | 237 |
|
238 | 238 |
template <class T> |
239 | 239 |
struct SetDistMapTraits : public Traits { |
240 | 240 |
typedef T DistMap; |
241 | 241 |
static DistMap *createDistMap(const Digraph &) |
242 | 242 |
{ |
243 | 243 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
244 | 244 |
return 0; // ignore warnings |
245 | 245 |
} |
246 | 246 |
}; |
247 | 247 |
///\brief \ref named-templ-param "Named parameter" for setting |
248 | 248 |
///DistMap type. |
249 | 249 |
/// |
250 | 250 |
///\ref named-templ-param "Named parameter" for setting |
251 | 251 |
///DistMap type. |
252 | 252 |
template <class T> |
253 | 253 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
254 | 254 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
255 | 255 |
}; |
256 | 256 |
|
257 | 257 |
template <class T> |
258 | 258 |
struct SetReachedMapTraits : public Traits { |
259 | 259 |
typedef T ReachedMap; |
260 | 260 |
static ReachedMap *createReachedMap(const Digraph &) |
261 | 261 |
{ |
262 | 262 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
263 | 263 |
return 0; // ignore warnings |
264 | 264 |
} |
265 | 265 |
}; |
266 | 266 |
///\brief \ref named-templ-param "Named parameter" for setting |
267 | 267 |
///ReachedMap type. |
268 | 268 |
/// |
269 | 269 |
///\ref named-templ-param "Named parameter" for setting |
270 | 270 |
///ReachedMap type. |
271 | 271 |
template <class T> |
272 | 272 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
273 | 273 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
274 | 274 |
}; |
275 | 275 |
|
276 | 276 |
template <class T> |
277 | 277 |
struct SetProcessedMapTraits : public Traits { |
278 | 278 |
typedef T ProcessedMap; |
279 | 279 |
static ProcessedMap *createProcessedMap(const Digraph &) |
280 | 280 |
{ |
281 | 281 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
282 | 282 |
return 0; // ignore warnings |
283 | 283 |
} |
284 | 284 |
}; |
285 | 285 |
///\brief \ref named-templ-param "Named parameter" for setting |
286 | 286 |
///ProcessedMap type. |
287 | 287 |
/// |
288 | 288 |
///\ref named-templ-param "Named parameter" for setting |
289 | 289 |
///ProcessedMap type. |
290 | 290 |
template <class T> |
291 | 291 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
292 | 292 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
293 | 293 |
}; |
294 | 294 |
|
295 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
296 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
297 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
298 | 298 |
{ |
299 | 299 |
return new ProcessedMap(g); |
300 | 300 |
} |
301 | 301 |
}; |
302 | 302 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 303 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
304 | 304 |
/// |
305 | 305 |
///\ref named-templ-param "Named parameter" for setting |
306 | 306 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
307 | 307 |
///If you don't set it explicitly, it will be automatically allocated. |
308 | 308 |
struct SetStandardProcessedMap : |
309 | 309 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
310 | 310 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
311 | 311 |
}; |
312 | 312 |
|
313 | 313 |
///@} |
314 | 314 |
|
315 | 315 |
public: |
316 | 316 |
|
317 | 317 |
///Constructor. |
318 | 318 |
|
319 | 319 |
///Constructor. |
320 | 320 |
///\param g The digraph the algorithm runs on. |
321 | 321 |
Dfs(const Digraph &g) : |
322 | 322 |
G(&g), |
323 | 323 |
_pred(NULL), local_pred(false), |
324 | 324 |
_dist(NULL), local_dist(false), |
325 | 325 |
_reached(NULL), local_reached(false), |
326 | 326 |
_processed(NULL), local_processed(false) |
327 | 327 |
{ } |
328 | 328 |
|
329 | 329 |
///Destructor. |
330 | 330 |
~Dfs() |
331 | 331 |
{ |
332 | 332 |
if(local_pred) delete _pred; |
333 | 333 |
if(local_dist) delete _dist; |
334 | 334 |
if(local_reached) delete _reached; |
335 | 335 |
if(local_processed) delete _processed; |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
///Sets the map that stores the predecessor arcs. |
339 | 339 |
|
340 | 340 |
///Sets the map that stores the predecessor arcs. |
341 | 341 |
///If you don't use this function before calling \ref run(), |
342 | 342 |
///it will allocate one. The destructor deallocates this |
343 | 343 |
///automatically allocated map, of course. |
344 | 344 |
///\return <tt> (*this) </tt> |
345 | 345 |
Dfs &predMap(PredMap &m) |
346 | 346 |
{ |
347 | 347 |
if(local_pred) { |
348 | 348 |
delete _pred; |
349 | 349 |
local_pred=false; |
350 | 350 |
} |
351 | 351 |
_pred = &m; |
352 | 352 |
return *this; |
353 | 353 |
} |
354 | 354 |
|
355 | 355 |
///Sets the map that indicates which nodes are reached. |
356 | 356 |
|
357 | 357 |
///Sets the map that indicates which nodes are reached. |
358 | 358 |
///If you don't use this function before calling \ref run(), |
359 | 359 |
///it will allocate one. The destructor deallocates this |
360 | 360 |
///automatically allocated map, of course. |
361 | 361 |
///\return <tt> (*this) </tt> |
362 | 362 |
Dfs &reachedMap(ReachedMap &m) |
363 | 363 |
{ |
364 | 364 |
if(local_reached) { |
365 | 365 |
delete _reached; |
366 | 366 |
local_reached=false; |
367 | 367 |
} |
368 | 368 |
_reached = &m; |
369 | 369 |
return *this; |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
///Sets the map that indicates which nodes are processed. |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 | 375 |
///If you don't use this function before calling \ref run(), |
376 | 376 |
///it will allocate one. The destructor deallocates this |
377 | 377 |
///automatically allocated map, of course. |
378 | 378 |
///\return <tt> (*this) </tt> |
379 | 379 |
Dfs &processedMap(ProcessedMap &m) |
380 | 380 |
{ |
381 | 381 |
if(local_processed) { |
382 | 382 |
delete _processed; |
383 | 383 |
local_processed=false; |
384 | 384 |
} |
385 | 385 |
_processed = &m; |
386 | 386 |
return *this; |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
///Sets the map that stores the distances of the nodes. |
390 | 390 |
|
391 | 391 |
///Sets the map that stores the distances of the nodes calculated by |
392 | 392 |
///the algorithm. |
393 | 393 |
///If you don't use this function before calling \ref run(), |
394 | 394 |
///it will allocate one. The destructor deallocates this |
395 | 395 |
///automatically allocated map, of course. |
396 | 396 |
///\return <tt> (*this) </tt> |
397 | 397 |
Dfs &distMap(DistMap &m) |
398 | 398 |
{ |
399 | 399 |
if(local_dist) { |
400 | 400 |
delete _dist; |
401 | 401 |
local_dist=false; |
402 | 402 |
} |
403 | 403 |
_dist = &m; |
404 | 404 |
return *this; |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
public: |
408 | 408 |
|
409 | 409 |
///\name Execution control |
410 | 410 |
///The simplest way to execute the algorithm is to use |
411 | 411 |
///one of the member functions called \ref lemon::Dfs::run() "run()". |
412 | 412 |
///\n |
413 | 413 |
///If you need more control on the execution, first you must call |
414 | 414 |
///\ref lemon::Dfs::init() "init()", then you can add a source node |
415 | 415 |
///with \ref lemon::Dfs::addSource() "addSource()". |
416 | 416 |
///Finally \ref lemon::Dfs::start() "start()" will perform the |
417 | 417 |
///actual path computation. |
418 | 418 |
|
419 | 419 |
///@{ |
420 | 420 |
|
421 | 421 |
///Initializes the internal data structures. |
422 | 422 |
|
423 | 423 |
///Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
void init() |
426 | 426 |
{ |
427 | 427 |
create_maps(); |
428 | 428 |
_stack.resize(countNodes(*G)); |
429 | 429 |
_stack_head=-1; |
430 | 430 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 431 |
_pred->set(u,INVALID); |
432 | 432 |
_reached->set(u,false); |
433 | 433 |
_processed->set(u,false); |
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Adds a new source node. |
438 | 438 |
|
439 | 439 |
///Adds a new source node to the set of nodes to be processed. |
440 | 440 |
/// |
441 | 441 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
442 | 442 |
///false results.) |
443 | 443 |
/// |
444 | 444 |
///\warning Distances will be wrong (or at least strange) in case of |
445 | 445 |
///multiple sources. |
446 | 446 |
void addSource(Node s) |
447 | 447 |
{ |
448 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
449 | 449 |
if(!(*_reached)[s]) |
450 | 450 |
{ |
451 | 451 |
_reached->set(s,true); |
452 | 452 |
_pred->set(s,INVALID); |
453 | 453 |
OutArcIt e(*G,s); |
454 | 454 |
if(e!=INVALID) { |
455 | 455 |
_stack[++_stack_head]=e; |
456 | 456 |
_dist->set(s,_stack_head); |
457 | 457 |
} |
458 | 458 |
else { |
459 | 459 |
_processed->set(s,true); |
460 | 460 |
_dist->set(s,0); |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
///Processes the next arc. |
466 | 466 |
|
467 | 467 |
///Processes the next arc. |
468 | 468 |
/// |
469 | 469 |
///\return The processed arc. |
470 | 470 |
/// |
471 | 471 |
///\pre The stack must not be empty. |
472 | 472 |
Arc processNextArc() |
473 | 473 |
{ |
474 | 474 |
Node m; |
475 | 475 |
Arc e=_stack[_stack_head]; |
476 | 476 |
if(!(*_reached)[m=G->target(e)]) { |
477 | 477 |
_pred->set(m,e); |
478 | 478 |
_reached->set(m,true); |
479 | 479 |
++_stack_head; |
480 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
481 | 481 |
_dist->set(m,_stack_head); |
482 | 482 |
} |
483 | 483 |
else { |
484 | 484 |
m=G->source(e); |
485 | 485 |
++_stack[_stack_head]; |
486 | 486 |
} |
487 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
488 | 488 |
_processed->set(m,true); |
489 | 489 |
--_stack_head; |
490 | 490 |
if(_stack_head>=0) { |
491 | 491 |
m=G->source(_stack[_stack_head]); |
492 | 492 |
++_stack[_stack_head]; |
493 | 493 |
} |
494 | 494 |
} |
495 | 495 |
return e; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
///Next arc to be processed. |
499 | 499 |
|
500 | 500 |
///Next arc to be processed. |
501 | 501 |
/// |
502 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
503 | 503 |
///is empty. |
504 | 504 |
OutArcIt nextArc() const |
505 | 505 |
{ |
506 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
///\brief Returns \c false if there are nodes |
510 | 510 |
///to be processed. |
511 | 511 |
/// |
512 | 512 |
///Returns \c false if there are nodes |
513 | 513 |
///to be processed in the queue (stack). |
514 | 514 |
bool emptyQueue() const { return _stack_head<0; } |
515 | 515 |
|
516 | 516 |
///Returns the number of the nodes to be processed. |
517 | 517 |
|
518 | 518 |
///Returns the number of the nodes to be processed in the queue (stack). |
519 | 519 |
int queueSize() const { return _stack_head+1; } |
520 | 520 |
|
521 | 521 |
///Executes the algorithm. |
522 | 522 |
|
523 | 523 |
///Executes the algorithm. |
524 | 524 |
/// |
525 | 525 |
///This method runs the %DFS algorithm from the root node |
526 | 526 |
///in order to compute the DFS path to each node. |
527 | 527 |
/// |
528 | 528 |
/// The algorithm computes |
529 | 529 |
///- the %DFS tree, |
530 | 530 |
///- the distance of each node from the root in the %DFS tree. |
531 | 531 |
/// |
532 | 532 |
///\pre init() must be called and a root node should be |
533 | 533 |
///added with addSource() before using this function. |
534 | 534 |
/// |
535 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
536 | 536 |
///\code |
537 | 537 |
/// while ( !d.emptyQueue() ) { |
538 | 538 |
/// d.processNextArc(); |
539 | 539 |
/// } |
540 | 540 |
///\endcode |
541 | 541 |
void start() |
542 | 542 |
{ |
543 | 543 |
while ( !emptyQueue() ) processNextArc(); |
544 | 544 |
} |
545 | 545 |
|
546 | 546 |
///Executes the algorithm until the given target node is reached. |
547 | 547 |
|
548 | 548 |
///Executes the algorithm until the given target node is reached. |
549 | 549 |
/// |
550 | 550 |
///This method runs the %DFS algorithm from the root node |
551 | 551 |
///in order to compute the DFS path to \c t. |
552 | 552 |
/// |
553 | 553 |
///The algorithm computes |
554 | 554 |
///- the %DFS path to \c t, |
555 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
556 | 556 |
/// |
557 | 557 |
///\pre init() must be called and a root node should be |
558 | 558 |
///added with addSource() before using this function. |
559 | 559 |
void start(Node t) |
560 | 560 |
{ |
561 | 561 |
while ( !emptyQueue() && !(*_reached)[t] ) |
562 | 562 |
processNextArc(); |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
///Executes the algorithm until a condition is met. |
566 | 566 |
|
567 | 567 |
///Executes the algorithm until a condition is met. |
568 | 568 |
/// |
569 | 569 |
///This method runs the %DFS algorithm from the root node |
570 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
571 | 571 |
/// |
572 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
573 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
574 | 574 |
/// |
575 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
576 | 576 |
///\c INVALID if no such arc was found. |
577 | 577 |
/// |
578 | 578 |
///\pre init() must be called and a root node should be |
579 | 579 |
///added with addSource() before using this function. |
580 | 580 |
/// |
581 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
582 | 582 |
///not a node map. |
583 | 583 |
template<class ArcBoolMap> |
584 | 584 |
Arc start(const ArcBoolMap &am) |
585 | 585 |
{ |
586 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
587 | 587 |
processNextArc(); |
588 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
///Runs the algorithm from the given source node. |
592 | 592 |
|
593 | 593 |
///This method runs the %DFS algorithm from node \c s |
594 | 594 |
///in order to compute the DFS path to each node. |
595 | 595 |
/// |
596 | 596 |
///The algorithm computes |
597 | 597 |
///- the %DFS tree, |
598 | 598 |
///- the distance of each node from the root in the %DFS tree. |
599 | 599 |
/// |
600 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
601 | 601 |
///\code |
602 | 602 |
/// d.init(); |
603 | 603 |
/// d.addSource(s); |
604 | 604 |
/// d.start(); |
605 | 605 |
///\endcode |
606 | 606 |
void run(Node s) { |
607 | 607 |
init(); |
608 | 608 |
addSource(s); |
609 | 609 |
start(); |
610 | 610 |
} |
611 | 611 |
|
612 | 612 |
///Finds the %DFS path between \c s and \c t. |
613 | 613 |
|
614 | 614 |
///This method runs the %DFS algorithm from node \c s |
615 | 615 |
///in order to compute the DFS path to node \c t |
616 | 616 |
///(it stops searching when \c t is processed) |
617 | 617 |
/// |
618 | 618 |
///\return \c true if \c t is reachable form \c s. |
619 | 619 |
/// |
620 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
621 | 621 |
///just a shortcut of the following code. |
622 | 622 |
///\code |
623 | 623 |
/// d.init(); |
624 | 624 |
/// d.addSource(s); |
625 | 625 |
/// d.start(t); |
626 | 626 |
///\endcode |
627 | 627 |
bool run(Node s,Node t) { |
628 | 628 |
init(); |
629 | 629 |
addSource(s); |
630 | 630 |
start(t); |
631 | 631 |
return reached(t); |
632 | 632 |
} |
633 | 633 |
|
634 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
635 | 635 |
|
636 | 636 |
///This method runs the %DFS algorithm in order to compute the |
637 | 637 |
///%DFS path to each node. |
638 | 638 |
/// |
639 | 639 |
///The algorithm computes |
640 | 640 |
///- the %DFS tree, |
641 | 641 |
///- the distance of each node from the root in the %DFS tree. |
642 | 642 |
/// |
643 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
644 | 644 |
///\code |
645 | 645 |
/// d.init(); |
646 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
647 | 647 |
/// if (!d.reached(n)) { |
648 | 648 |
/// d.addSource(n); |
649 | 649 |
/// d.start(); |
650 | 650 |
/// } |
651 | 651 |
/// } |
652 | 652 |
///\endcode |
653 | 653 |
void run() { |
654 | 654 |
init(); |
655 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) { |
656 | 656 |
if (!reached(it)) { |
657 | 657 |
addSource(it); |
658 | 658 |
start(); |
659 | 659 |
} |
660 | 660 |
} |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
///@} |
664 | 664 |
|
665 | 665 |
///\name Query Functions |
666 | 666 |
///The result of the %DFS algorithm can be obtained using these |
667 | 667 |
///functions.\n |
668 | 668 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
669 | 669 |
///"start()" must be called before using them. |
670 | 670 |
|
671 | 671 |
///@{ |
672 | 672 |
|
673 | 673 |
///The DFS path to a node. |
674 | 674 |
|
675 | 675 |
///Returns the DFS path to a node. |
676 | 676 |
/// |
677 | 677 |
///\warning \c t should be reachable from the root. |
678 | 678 |
/// |
679 | 679 |
///\pre Either \ref run() or \ref start() must be called before |
680 | 680 |
///using this function. |
681 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
682 | 682 |
|
683 | 683 |
///The distance of a node from the root. |
684 | 684 |
|
685 | 685 |
///Returns the distance of a node from the root. |
686 | 686 |
/// |
687 | 687 |
///\warning If node \c v is not reachable from the root, then |
688 | 688 |
///the return value of this function is undefined. |
689 | 689 |
/// |
690 | 690 |
///\pre Either \ref run() or \ref start() must be called before |
691 | 691 |
///using this function. |
692 | 692 |
int dist(Node v) const { return (*_dist)[v]; } |
693 | 693 |
|
694 | 694 |
///Returns the 'previous arc' of the %DFS tree for a node. |
695 | 695 |
|
696 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
697 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
698 | 698 |
///root to \c v. It is \c INVALID |
699 | 699 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
700 | 700 |
/// |
701 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
702 | 702 |
///\ref predNode(). |
703 | 703 |
/// |
704 | 704 |
///\pre Either \ref run() or \ref start() must be called before using |
705 | 705 |
///this function. |
706 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];} |
707 | 707 |
|
708 | 708 |
///Returns the 'previous node' of the %DFS tree. |
709 | 709 |
|
710 | 710 |
///This function returns the 'previous node' of the %DFS |
711 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
712 | 712 |
///from a %DFS path from the root to \c v. It is \c INVALID |
713 | 713 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
714 | 714 |
/// |
715 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
716 | 716 |
///\ref predArc(). |
717 | 717 |
/// |
718 | 718 |
///\pre Either \ref run() or \ref start() must be called before |
719 | 719 |
///using this function. |
720 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
721 | 721 |
G->source((*_pred)[v]); } |
722 | 722 |
|
723 | 723 |
///\brief Returns a const reference to the node map that stores the |
724 | 724 |
///distances of the nodes. |
725 | 725 |
/// |
726 | 726 |
///Returns a const reference to the node map that stores the |
727 | 727 |
///distances of the nodes calculated by the algorithm. |
728 | 728 |
/// |
729 | 729 |
///\pre Either \ref run() or \ref init() |
730 | 730 |
///must be called before using this function. |
731 | 731 |
const DistMap &distMap() const { return *_dist;} |
732 | 732 |
|
733 | 733 |
///\brief Returns a const reference to the node map that stores the |
734 | 734 |
///predecessor arcs. |
735 | 735 |
/// |
736 | 736 |
///Returns a const reference to the node map that stores the predecessor |
737 | 737 |
///arcs, which form the DFS tree. |
738 | 738 |
/// |
739 | 739 |
///\pre Either \ref run() or \ref init() |
740 | 740 |
///must be called before using this function. |
741 | 741 |
const PredMap &predMap() const { return *_pred;} |
742 | 742 |
|
743 | 743 |
///Checks if a node is reachable from the root(s). |
744 | 744 |
|
745 | 745 |
///Returns \c true if \c v is reachable from the root(s). |
746 | 746 |
///\pre Either \ref run() or \ref start() |
747 | 747 |
///must be called before using this function. |
748 | 748 |
bool reached(Node v) const { return (*_reached)[v]; } |
749 | 749 |
|
750 | 750 |
///@} |
751 | 751 |
}; |
752 | 752 |
|
753 | 753 |
///Default traits class of dfs() function. |
754 | 754 |
|
755 | 755 |
///Default traits class of dfs() function. |
756 | 756 |
///\tparam GR Digraph type. |
757 | 757 |
template<class GR> |
758 | 758 |
struct DfsWizardDefaultTraits |
759 | 759 |
{ |
760 | 760 |
///The type of the digraph the algorithm runs on. |
761 | 761 |
typedef GR Digraph; |
762 | 762 |
|
763 | 763 |
///\brief The type of the map that stores the predecessor |
764 | 764 |
///arcs of the %DFS paths. |
765 | 765 |
/// |
766 | 766 |
///The type of the map that stores the predecessor |
767 | 767 |
///arcs of the %DFS paths. |
768 | 768 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
769 | 769 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
770 | 770 |
///Instantiates a PredMap. |
771 | 771 |
|
772 | 772 |
///This function instantiates a PredMap. |
773 | 773 |
///\param g is the digraph, to which we would like to define the |
774 | 774 |
///PredMap. |
775 | 775 |
static PredMap *createPredMap(const Digraph &g) |
776 | 776 |
{ |
777 | 777 |
return new PredMap(g); |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
///The type of the map that indicates which nodes are processed. |
781 | 781 |
|
782 | 782 |
///The type of the map that indicates which nodes are processed. |
783 | 783 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
784 | 784 |
///By default it is a NullMap. |
785 | 785 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
786 | 786 |
///Instantiates a ProcessedMap. |
787 | 787 |
|
788 | 788 |
///This function instantiates a ProcessedMap. |
789 | 789 |
///\param g is the digraph, to which |
790 | 790 |
///we would like to define the ProcessedMap. |
791 | 791 |
#ifdef DOXYGEN |
792 | 792 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
793 | 793 |
#else |
794 | 794 |
static ProcessedMap *createProcessedMap(const Digraph &) |
795 | 795 |
#endif |
796 | 796 |
{ |
797 | 797 |
return new ProcessedMap(); |
798 | 798 |
} |
799 | 799 |
|
800 | 800 |
///The type of the map that indicates which nodes are reached. |
801 | 801 |
|
802 | 802 |
///The type of the map that indicates which nodes are reached. |
803 | 803 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
804 | 804 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
805 | 805 |
///Instantiates a ReachedMap. |
806 | 806 |
|
807 | 807 |
///This function instantiates a ReachedMap. |
808 | 808 |
///\param g is the digraph, to which |
809 | 809 |
///we would like to define the ReachedMap. |
810 | 810 |
static ReachedMap *createReachedMap(const Digraph &g) |
811 | 811 |
{ |
812 | 812 |
return new ReachedMap(g); |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
///The type of the map that stores the distances of the nodes. |
816 | 816 |
|
817 | 817 |
///The type of the map that stores the distances of the nodes. |
818 | 818 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
819 | 819 |
typedef typename Digraph::template NodeMap<int> DistMap; |
820 | 820 |
///Instantiates a DistMap. |
821 | 821 |
|
822 | 822 |
///This function instantiates a DistMap. |
823 | 823 |
///\param g is the digraph, to which we would like to define |
824 | 824 |
///the DistMap |
825 | 825 |
static DistMap *createDistMap(const Digraph &g) |
826 | 826 |
{ |
827 | 827 |
return new DistMap(g); |
828 | 828 |
} |
829 | 829 |
|
830 | 830 |
///The type of the DFS paths. |
831 | 831 |
|
832 | 832 |
///The type of the DFS paths. |
833 | 833 |
///It must meet the \ref concepts::Path "Path" concept. |
834 | 834 |
typedef lemon::Path<Digraph> Path; |
835 | 835 |
}; |
836 | 836 |
|
837 | 837 |
/// Default traits class used by DfsWizard |
838 | 838 |
|
839 | 839 |
/// To make it easier to use Dfs algorithm |
840 | 840 |
/// we have created a wizard class. |
841 | 841 |
/// This \ref DfsWizard class needs default traits, |
842 | 842 |
/// as well as the \ref Dfs class. |
843 | 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
844 | 844 |
/// \ref DfsWizard class. |
845 | 845 |
template<class GR> |
846 | 846 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
847 | 847 |
{ |
848 | 848 |
|
849 | 849 |
typedef DfsWizardDefaultTraits<GR> Base; |
850 | 850 |
protected: |
851 | 851 |
//The type of the nodes in the digraph. |
852 | 852 |
typedef typename Base::Digraph::Node Node; |
853 | 853 |
|
854 | 854 |
//Pointer to the digraph the algorithm runs on. |
855 | 855 |
void *_g; |
856 | 856 |
//Pointer to the map of reached nodes. |
857 | 857 |
void *_reached; |
858 | 858 |
//Pointer to the map of processed nodes. |
859 | 859 |
void *_processed; |
860 | 860 |
//Pointer to the map of predecessors arcs. |
861 | 861 |
void *_pred; |
862 | 862 |
//Pointer to the map of distances. |
863 | 863 |
void *_dist; |
864 | 864 |
//Pointer to the DFS path to the target node. |
865 | 865 |
void *_path; |
866 | 866 |
//Pointer to the distance of the target node. |
867 | 867 |
int *_di; |
868 | 868 |
|
869 | 869 |
public: |
870 | 870 |
/// Constructor. |
871 | 871 |
|
872 | 872 |
/// This constructor does not require parameters, therefore it initiates |
873 | 873 |
/// all of the attributes to \c 0. |
874 | 874 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 875 |
_dist(0), _path(0), _di(0) {} |
876 | 876 |
|
877 | 877 |
/// Constructor. |
878 | 878 |
|
879 | 879 |
/// This constructor requires one parameter, |
880 | 880 |
/// others are initiated to \c 0. |
881 | 881 |
/// \param g The digraph the algorithm runs on. |
882 | 882 |
DfsWizardBase(const GR &g) : |
883 | 883 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
884 | 884 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
885 | 885 |
|
886 | 886 |
}; |
887 | 887 |
|
888 | 888 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
889 | 889 |
|
890 | 890 |
/// This auxiliary class is created to implement the |
891 | 891 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
892 | 892 |
/// It does not have own \ref run() method, it uses the functions |
893 | 893 |
/// and features of the plain \ref Dfs. |
894 | 894 |
/// |
895 | 895 |
/// This class should only be used through the \ref dfs() function, |
896 | 896 |
/// which makes it easier to use the algorithm. |
897 | 897 |
template<class TR> |
898 | 898 |
class DfsWizard : public TR |
899 | 899 |
{ |
900 | 900 |
typedef TR Base; |
901 | 901 |
|
902 | 902 |
///The type of the digraph the algorithm runs on. |
903 | 903 |
typedef typename TR::Digraph Digraph; |
904 | 904 |
|
905 | 905 |
typedef typename Digraph::Node Node; |
906 | 906 |
typedef typename Digraph::NodeIt NodeIt; |
907 | 907 |
typedef typename Digraph::Arc Arc; |
908 | 908 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 909 |
|
910 | 910 |
///\brief The type of the map that stores the predecessor |
911 | 911 |
///arcs of the DFS paths. |
912 | 912 |
typedef typename TR::PredMap PredMap; |
913 | 913 |
///\brief The type of the map that stores the distances of the nodes. |
914 | 914 |
typedef typename TR::DistMap DistMap; |
915 | 915 |
///\brief The type of the map that indicates which nodes are reached. |
916 | 916 |
typedef typename TR::ReachedMap ReachedMap; |
917 | 917 |
///\brief The type of the map that indicates which nodes are processed. |
918 | 918 |
typedef typename TR::ProcessedMap ProcessedMap; |
919 | 919 |
///The type of the DFS paths |
920 | 920 |
typedef typename TR::Path Path; |
921 | 921 |
|
922 | 922 |
public: |
923 | 923 |
|
924 | 924 |
/// Constructor. |
925 | 925 |
DfsWizard() : TR() {} |
926 | 926 |
|
927 | 927 |
/// Constructor that requires parameters. |
928 | 928 |
|
929 | 929 |
/// Constructor that requires parameters. |
930 | 930 |
/// These parameters will be the default values for the traits class. |
931 | 931 |
/// \param g The digraph the algorithm runs on. |
932 | 932 |
DfsWizard(const Digraph &g) : |
933 | 933 |
TR(g) {} |
934 | 934 |
|
935 | 935 |
///Copy constructor |
936 | 936 |
DfsWizard(const TR &b) : TR(b) {} |
937 | 937 |
|
938 | 938 |
~DfsWizard() {} |
939 | 939 |
|
940 | 940 |
///Runs DFS algorithm from the given source node. |
941 | 941 |
|
942 | 942 |
///This method runs DFS algorithm from node \c s |
943 | 943 |
///in order to compute the DFS path to each node. |
944 | 944 |
void run(Node s) |
945 | 945 |
{ |
946 | 946 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
947 | 947 |
if (Base::_pred) |
948 | 948 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
949 | 949 |
if (Base::_dist) |
950 | 950 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
951 | 951 |
if (Base::_reached) |
952 | 952 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
953 | 953 |
if (Base::_processed) |
954 | 954 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
955 | 955 |
if (s!=INVALID) |
956 | 956 |
alg.run(s); |
957 | 957 |
else |
958 | 958 |
alg.run(); |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
///Finds the DFS path between \c s and \c t. |
962 | 962 |
|
963 | 963 |
///This method runs DFS algorithm from node \c s |
964 | 964 |
///in order to compute the DFS path to node \c t |
965 | 965 |
///(it stops searching when \c t is processed). |
966 | 966 |
/// |
967 | 967 |
///\return \c true if \c t is reachable form \c s. |
968 | 968 |
bool run(Node s, Node t) |
969 | 969 |
{ |
970 | 970 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
971 | 971 |
if (Base::_pred) |
972 | 972 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
973 | 973 |
if (Base::_dist) |
974 | 974 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
975 | 975 |
if (Base::_reached) |
976 | 976 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
977 | 977 |
if (Base::_processed) |
978 | 978 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
979 | 979 |
alg.run(s,t); |
980 | 980 |
if (Base::_path) |
981 | 981 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
982 | 982 |
if (Base::_di) |
983 | 983 |
*Base::_di = alg.dist(t); |
984 | 984 |
return alg.reached(t); |
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
///Runs DFS algorithm to visit all nodes in the digraph. |
988 | 988 |
|
989 | 989 |
///This method runs DFS algorithm in order to compute |
990 | 990 |
///the DFS path to each node. |
991 | 991 |
void run() |
992 | 992 |
{ |
993 | 993 |
run(INVALID); |
994 | 994 |
} |
995 | 995 |
|
996 | 996 |
template<class T> |
997 | 997 |
struct SetPredMapBase : public Base { |
998 | 998 |
typedef T PredMap; |
999 | 999 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1000 | 1000 |
SetPredMapBase(const TR &b) : TR(b) {} |
1001 | 1001 |
}; |
1002 | 1002 |
///\brief \ref named-func-param "Named parameter" |
1003 | 1003 |
///for setting PredMap object. |
1004 | 1004 |
/// |
1005 | 1005 |
///\ref named-func-param "Named parameter" |
1006 | 1006 |
///for setting PredMap object. |
1007 | 1007 |
template<class T> |
1008 | 1008 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1009 | 1009 |
{ |
1010 | 1010 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1011 | 1011 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1012 | 1012 |
} |
1013 | 1013 |
|
1014 | 1014 |
template<class T> |
1015 | 1015 |
struct SetReachedMapBase : public Base { |
1016 | 1016 |
typedef T ReachedMap; |
1017 | 1017 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1018 | 1018 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1019 | 1019 |
}; |
1020 | 1020 |
///\brief \ref named-func-param "Named parameter" |
1021 | 1021 |
///for setting ReachedMap object. |
1022 | 1022 |
/// |
1023 | 1023 |
/// \ref named-func-param "Named parameter" |
1024 | 1024 |
///for setting ReachedMap object. |
1025 | 1025 |
template<class T> |
1026 | 1026 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1027 | 1027 |
{ |
1028 | 1028 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1029 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1030 | 1030 |
} |
1031 | 1031 |
|
1032 | 1032 |
template<class T> |
1033 | 1033 |
struct SetDistMapBase : public Base { |
1034 | 1034 |
typedef T DistMap; |
1035 | 1035 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1036 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1037 |
}; |
1038 | 1038 |
///\brief \ref named-func-param "Named parameter" |
1039 | 1039 |
///for setting DistMap object. |
1040 | 1040 |
/// |
1041 | 1041 |
/// \ref named-func-param "Named parameter" |
1042 | 1042 |
///for setting DistMap object. |
1043 | 1043 |
template<class T> |
1044 | 1044 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1045 | 1045 |
{ |
1046 | 1046 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1047 | 1047 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1048 | 1048 |
} |
1049 | 1049 |
|
1050 | 1050 |
template<class T> |
1051 | 1051 |
struct SetProcessedMapBase : public Base { |
1052 | 1052 |
typedef T ProcessedMap; |
1053 | 1053 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1054 | 1054 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1055 | 1055 |
}; |
1056 | 1056 |
///\brief \ref named-func-param "Named parameter" |
1057 | 1057 |
///for setting ProcessedMap object. |
1058 | 1058 |
/// |
1059 | 1059 |
/// \ref named-func-param "Named parameter" |
1060 | 1060 |
///for setting ProcessedMap object. |
1061 | 1061 |
template<class T> |
1062 | 1062 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1063 | 1063 |
{ |
1064 | 1064 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1065 | 1065 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1066 | 1066 |
} |
1067 | 1067 |
|
1068 | 1068 |
template<class T> |
1069 | 1069 |
struct SetPathBase : public Base { |
1070 | 1070 |
typedef T Path; |
1071 | 1071 |
SetPathBase(const TR &b) : TR(b) {} |
1072 | 1072 |
}; |
1073 | 1073 |
///\brief \ref named-func-param "Named parameter" |
1074 | 1074 |
///for getting the DFS path to the target node. |
1075 | 1075 |
/// |
1076 | 1076 |
///\ref named-func-param "Named parameter" |
1077 | 1077 |
///for getting the DFS path to the target node. |
1078 | 1078 |
template<class T> |
1079 | 1079 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1080 | 1080 |
{ |
1081 | 1081 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 | 1082 |
return DfsWizard<SetPathBase<T> >(*this); |
1083 | 1083 |
} |
1084 | 1084 |
|
1085 | 1085 |
///\brief \ref named-func-param "Named parameter" |
1086 | 1086 |
///for getting the distance of the target node. |
1087 | 1087 |
/// |
1088 | 1088 |
///\ref named-func-param "Named parameter" |
1089 | 1089 |
///for getting the distance of the target node. |
1090 | 1090 |
DfsWizard dist(const int &d) |
1091 | 1091 |
{ |
1092 | 1092 |
Base::_di=const_cast<int*>(&d); |
1093 | 1093 |
return *this; |
1094 | 1094 |
} |
1095 | 1095 |
|
1096 | 1096 |
}; |
1097 | 1097 |
|
1098 | 1098 |
///Function-type interface for DFS algorithm. |
1099 | 1099 |
|
1100 | 1100 |
///\ingroup search |
1101 | 1101 |
///Function-type interface for DFS algorithm. |
1102 | 1102 |
/// |
1103 | 1103 |
///This function also has several \ref named-func-param "named parameters", |
1104 | 1104 |
///they are declared as the members of class \ref DfsWizard. |
1105 | 1105 |
///The following examples show how to use these parameters. |
1106 | 1106 |
///\code |
1107 | 1107 |
/// // Compute the DFS tree |
1108 | 1108 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1109 | 1109 |
/// |
1110 | 1110 |
/// // Compute the DFS path from s to t |
1111 | 1111 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1112 | 1112 |
///\endcode |
1113 | 1113 |
|
1114 | 1114 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1115 | 1115 |
///to the end of the parameter list. |
1116 | 1116 |
///\sa DfsWizard |
1117 | 1117 |
///\sa Dfs |
1118 | 1118 |
template<class GR> |
1119 | 1119 |
DfsWizard<DfsWizardBase<GR> > |
1120 | 1120 |
dfs(const GR &digraph) |
1121 | 1121 |
{ |
1122 | 1122 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1123 | 1123 |
} |
1124 | 1124 |
|
1125 | 1125 |
#ifdef DOXYGEN |
1126 | 1126 |
/// \brief Visitor class for DFS. |
1127 | 1127 |
/// |
1128 | 1128 |
/// This class defines the interface of the DfsVisit events, and |
1129 | 1129 |
/// it could be the base of a real visitor class. |
1130 | 1130 |
template <typename _Digraph> |
1131 | 1131 |
struct DfsVisitor { |
1132 | 1132 |
typedef _Digraph Digraph; |
1133 | 1133 |
typedef typename Digraph::Arc Arc; |
1134 | 1134 |
typedef typename Digraph::Node Node; |
1135 | 1135 |
/// \brief Called for the source node of the DFS. |
1136 | 1136 |
/// |
1137 | 1137 |
/// This function is called for the source node of the DFS. |
1138 | 1138 |
void start(const Node& node) {} |
1139 | 1139 |
/// \brief Called when the source node is leaved. |
1140 | 1140 |
/// |
1141 | 1141 |
/// This function is called when the source node is leaved. |
1142 | 1142 |
void stop(const Node& node) {} |
1143 | 1143 |
/// \brief Called when a node is reached first time. |
1144 | 1144 |
/// |
1145 | 1145 |
/// This function is called when a node is reached first time. |
1146 | 1146 |
void reach(const Node& node) {} |
1147 | 1147 |
/// \brief Called when an arc reaches a new node. |
1148 | 1148 |
/// |
1149 | 1149 |
/// This function is called when the DFS finds an arc whose target node |
1150 | 1150 |
/// is not reached yet. |
1151 | 1151 |
void discover(const Arc& arc) {} |
1152 | 1152 |
/// \brief Called when an arc is examined but its target node is |
1153 | 1153 |
/// already discovered. |
1154 | 1154 |
/// |
1155 | 1155 |
/// This function is called when an arc is examined but its target node is |
1156 | 1156 |
/// already discovered. |
1157 | 1157 |
void examine(const Arc& arc) {} |
1158 | 1158 |
/// \brief Called when the DFS steps back from a node. |
1159 | 1159 |
/// |
1160 | 1160 |
/// This function is called when the DFS steps back from a node. |
1161 | 1161 |
void leave(const Node& node) {} |
1162 | 1162 |
/// \brief Called when the DFS steps back on an arc. |
1163 | 1163 |
/// |
1164 | 1164 |
/// This function is called when the DFS steps back on an arc. |
1165 | 1165 |
void backtrack(const Arc& arc) {} |
1166 | 1166 |
}; |
1167 | 1167 |
#else |
1168 | 1168 |
template <typename _Digraph> |
1169 | 1169 |
struct DfsVisitor { |
1170 | 1170 |
typedef _Digraph Digraph; |
1171 | 1171 |
typedef typename Digraph::Arc Arc; |
1172 | 1172 |
typedef typename Digraph::Node Node; |
1173 | 1173 |
void start(const Node&) {} |
1174 | 1174 |
void stop(const Node&) {} |
1175 | 1175 |
void reach(const Node&) {} |
1176 | 1176 |
void discover(const Arc&) {} |
1177 | 1177 |
void examine(const Arc&) {} |
1178 | 1178 |
void leave(const Node&) {} |
1179 | 1179 |
void backtrack(const Arc&) {} |
1180 | 1180 |
|
1181 | 1181 |
template <typename _Visitor> |
1182 | 1182 |
struct Constraints { |
1183 | 1183 |
void constraints() { |
1184 | 1184 |
Arc arc; |
1185 | 1185 |
Node node; |
1186 | 1186 |
visitor.start(node); |
1187 | 1187 |
visitor.stop(arc); |
1188 | 1188 |
visitor.reach(node); |
1189 | 1189 |
visitor.discover(arc); |
1190 | 1190 |
visitor.examine(arc); |
1191 | 1191 |
visitor.leave(node); |
1192 | 1192 |
visitor.backtrack(arc); |
1193 | 1193 |
} |
1194 | 1194 |
_Visitor& visitor; |
1195 | 1195 |
}; |
1196 | 1196 |
}; |
1197 | 1197 |
#endif |
1198 | 1198 |
|
1199 | 1199 |
/// \brief Default traits class of DfsVisit class. |
1200 | 1200 |
/// |
1201 | 1201 |
/// Default traits class of DfsVisit class. |
1202 | 1202 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1203 | 1203 |
template<class _Digraph> |
1204 | 1204 |
struct DfsVisitDefaultTraits { |
1205 | 1205 |
|
1206 | 1206 |
/// \brief The type of the digraph the algorithm runs on. |
1207 | 1207 |
typedef _Digraph Digraph; |
1208 | 1208 |
|
1209 | 1209 |
/// \brief The type of the map that indicates which nodes are reached. |
1210 | 1210 |
/// |
1211 | 1211 |
/// The type of the map that indicates which nodes are reached. |
1212 | 1212 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1213 | 1213 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1214 | 1214 |
|
1215 | 1215 |
/// \brief Instantiates a ReachedMap. |
1216 | 1216 |
/// |
1217 | 1217 |
/// This function instantiates a ReachedMap. |
1218 | 1218 |
/// \param digraph is the digraph, to which |
1219 | 1219 |
/// we would like to define the ReachedMap. |
1220 | 1220 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1221 | 1221 |
return new ReachedMap(digraph); |
1222 | 1222 |
} |
1223 | 1223 |
|
1224 | 1224 |
}; |
1225 | 1225 |
|
1226 | 1226 |
/// \ingroup search |
1227 | 1227 |
/// |
1228 | 1228 |
/// \brief %DFS algorithm class with visitor interface. |
1229 | 1229 |
/// |
1230 | 1230 |
/// This class provides an efficient implementation of the %DFS algorithm |
1231 | 1231 |
/// with visitor interface. |
1232 | 1232 |
/// |
1233 | 1233 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1234 | 1234 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1235 | 1235 |
/// the member functions of the \c Visitor class on every DFS event. |
1236 | 1236 |
/// |
1237 | 1237 |
/// This interface of the DFS algorithm should be used in special cases |
1238 | 1238 |
/// when extra actions have to be performed in connection with certain |
1239 | 1239 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1240 | 1240 |
/// instead. |
1241 | 1241 |
/// |
1242 | 1242 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1243 | 1243 |
/// The default value is |
1244 | 1244 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1245 | 1245 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
1246 | 1246 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1247 | 1247 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
1248 | 1248 |
/// does not observe the DFS events. If you want to observe the DFS |
1249 | 1249 |
/// events, you should implement your own visitor class. |
1250 | 1250 |
/// \tparam _Traits Traits class to set various data types used by the |
1251 | 1251 |
/// algorithm. The default traits class is |
1252 | 1252 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1253 | 1253 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1254 | 1254 |
/// a DFS visit traits class. |
1255 | 1255 |
#ifdef DOXYGEN |
1256 | 1256 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1257 | 1257 |
#else |
1258 | 1258 |
template <typename _Digraph = ListDigraph, |
1259 | 1259 |
typename _Visitor = DfsVisitor<_Digraph>, |
1260 | 1260 |
typename _Traits = DfsVisitDefaultTraits<_Digraph> > |
1261 | 1261 |
#endif |
1262 | 1262 |
class DfsVisit { |
1263 | 1263 |
public: |
1264 | 1264 |
|
1265 | 1265 |
///The traits class. |
1266 | 1266 |
typedef _Traits Traits; |
1267 | 1267 |
|
1268 | 1268 |
///The type of the digraph the algorithm runs on. |
1269 | 1269 |
typedef typename Traits::Digraph Digraph; |
1270 | 1270 |
|
1271 | 1271 |
///The visitor type used by the algorithm. |
1272 | 1272 |
typedef _Visitor Visitor; |
1273 | 1273 |
|
1274 | 1274 |
///The type of the map that indicates which nodes are reached. |
1275 | 1275 |
typedef typename Traits::ReachedMap ReachedMap; |
1276 | 1276 |
|
1277 | 1277 |
private: |
1278 | 1278 |
|
1279 | 1279 |
typedef typename Digraph::Node Node; |
1280 | 1280 |
typedef typename Digraph::NodeIt NodeIt; |
1281 | 1281 |
typedef typename Digraph::Arc Arc; |
1282 | 1282 |
typedef typename Digraph::OutArcIt OutArcIt; |
1283 | 1283 |
|
1284 | 1284 |
//Pointer to the underlying digraph. |
1285 | 1285 |
const Digraph *_digraph; |
1286 | 1286 |
//Pointer to the visitor object. |
1287 | 1287 |
Visitor *_visitor; |
1288 | 1288 |
//Pointer to the map of reached status of the nodes. |
1289 | 1289 |
ReachedMap *_reached; |
1290 | 1290 |
//Indicates if _reached is locally allocated (true) or not. |
1291 | 1291 |
bool local_reached; |
1292 | 1292 |
|
1293 | 1293 |
std::vector<typename Digraph::Arc> _stack; |
1294 | 1294 |
int _stack_head; |
1295 | 1295 |
|
1296 | 1296 |
//Creates the maps if necessary. |
1297 | 1297 |
void create_maps() { |
1298 | 1298 |
if(!_reached) { |
1299 | 1299 |
local_reached = true; |
1300 | 1300 |
_reached = Traits::createReachedMap(*_digraph); |
1301 | 1301 |
} |
1302 | 1302 |
} |
1303 | 1303 |
|
1304 | 1304 |
protected: |
1305 | 1305 |
|
1306 | 1306 |
DfsVisit() {} |
1307 | 1307 |
|
1308 | 1308 |
public: |
1309 | 1309 |
|
1310 | 1310 |
typedef DfsVisit Create; |
1311 | 1311 |
|
1312 | 1312 |
/// \name Named template parameters |
1313 | 1313 |
|
1314 | 1314 |
///@{ |
1315 | 1315 |
template <class T> |
1316 | 1316 |
struct SetReachedMapTraits : public Traits { |
1317 | 1317 |
typedef T ReachedMap; |
1318 | 1318 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1319 | 1319 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1320 | 1320 |
return 0; // ignore warnings |
1321 | 1321 |
} |
1322 | 1322 |
}; |
1323 | 1323 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1324 | 1324 |
/// ReachedMap type. |
1325 | 1325 |
/// |
1326 | 1326 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1327 | 1327 |
template <class T> |
1328 | 1328 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1329 | 1329 |
SetReachedMapTraits<T> > { |
1330 | 1330 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1331 | 1331 |
}; |
1332 | 1332 |
///@} |
1333 | 1333 |
|
1334 | 1334 |
public: |
1335 | 1335 |
|
1336 | 1336 |
/// \brief Constructor. |
1337 | 1337 |
/// |
1338 | 1338 |
/// Constructor. |
1339 | 1339 |
/// |
1340 | 1340 |
/// \param digraph The digraph the algorithm runs on. |
1341 | 1341 |
/// \param visitor The visitor object of the algorithm. |
1342 | 1342 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1343 | 1343 |
: _digraph(&digraph), _visitor(&visitor), |
1344 | 1344 |
_reached(0), local_reached(false) {} |
1345 | 1345 |
|
1346 | 1346 |
/// \brief Destructor. |
1347 | 1347 |
~DfsVisit() { |
1348 | 1348 |
if(local_reached) delete _reached; |
1349 | 1349 |
} |
1350 | 1350 |
|
1351 | 1351 |
/// \brief Sets the map that indicates which nodes are reached. |
1352 | 1352 |
/// |
1353 | 1353 |
/// Sets the map that indicates which nodes are reached. |
1354 | 1354 |
/// If you don't use this function before calling \ref run(), |
1355 | 1355 |
/// it will allocate one. The destructor deallocates this |
1356 | 1356 |
/// automatically allocated map, of course. |
1357 | 1357 |
/// \return <tt> (*this) </tt> |
1358 | 1358 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1359 |
if(local_reached) { |
1360 | 1360 |
delete _reached; |
1361 | 1361 |
local_reached=false; |
1362 | 1362 |
} |
1363 | 1363 |
_reached = &m; |
1364 | 1364 |
return *this; |
1365 | 1365 |
} |
1366 | 1366 |
|
1367 | 1367 |
public: |
1368 | 1368 |
|
1369 | 1369 |
/// \name Execution control |
1370 | 1370 |
/// The simplest way to execute the algorithm is to use |
1371 | 1371 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
1372 | 1372 |
/// "run()". |
1373 | 1373 |
/// \n |
1374 | 1374 |
/// If you need more control on the execution, first you must call |
1375 | 1375 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
1376 | 1376 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
1377 | 1377 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
1378 | 1378 |
/// actual path computation. |
1379 | 1379 |
|
1380 | 1380 |
/// @{ |
1381 | 1381 |
|
1382 | 1382 |
/// \brief Initializes the internal data structures. |
1383 | 1383 |
/// |
1384 | 1384 |
/// Initializes the internal data structures. |
1385 | 1385 |
void init() { |
1386 | 1386 |
create_maps(); |
1387 | 1387 |
_stack.resize(countNodes(*_digraph)); |
1388 | 1388 |
_stack_head = -1; |
1389 | 1389 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1390 | 1390 |
_reached->set(u, false); |
1391 | 1391 |
} |
1392 | 1392 |
} |
1393 | 1393 |
|
1394 | 1394 |
///Adds a new source node. |
1395 | 1395 |
|
1396 | 1396 |
///Adds a new source node to the set of nodes to be processed. |
1397 | 1397 |
/// |
1398 | 1398 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
1399 | 1399 |
///false results.) |
1400 | 1400 |
/// |
1401 | 1401 |
///\warning Distances will be wrong (or at least strange) in case of |
1402 | 1402 |
///multiple sources. |
1403 | 1403 |
void addSource(Node s) |
1404 | 1404 |
{ |
1405 | 1405 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1406 | 1406 |
if(!(*_reached)[s]) { |
1407 | 1407 |
_reached->set(s,true); |
1408 | 1408 |
_visitor->start(s); |
1409 | 1409 |
_visitor->reach(s); |
1410 | 1410 |
Arc e; |
1411 | 1411 |
_digraph->firstOut(e, s); |
1412 | 1412 |
if (e != INVALID) { |
1413 | 1413 |
_stack[++_stack_head] = e; |
1414 | 1414 |
} else { |
1415 | 1415 |
_visitor->leave(s); |
1416 | 1416 |
_visitor->stop(s); |
1417 | 1417 |
} |
1418 | 1418 |
} |
1419 | 1419 |
} |
1420 | 1420 |
|
1421 | 1421 |
/// \brief Processes the next arc. |
1422 | 1422 |
/// |
1423 | 1423 |
/// Processes the next arc. |
1424 | 1424 |
/// |
1425 | 1425 |
/// \return The processed arc. |
1426 | 1426 |
/// |
1427 | 1427 |
/// \pre The stack must not be empty. |
1428 | 1428 |
Arc processNextArc() { |
1429 | 1429 |
Arc e = _stack[_stack_head]; |
1430 | 1430 |
Node m = _digraph->target(e); |
1431 | 1431 |
if(!(*_reached)[m]) { |
1432 | 1432 |
_visitor->discover(e); |
1433 | 1433 |
_visitor->reach(m); |
1434 | 1434 |
_reached->set(m, true); |
1435 | 1435 |
_digraph->firstOut(_stack[++_stack_head], m); |
1436 | 1436 |
} else { |
1437 | 1437 |
_visitor->examine(e); |
1438 | 1438 |
m = _digraph->source(e); |
1439 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
1440 | 1440 |
} |
1441 | 1441 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1442 | 1442 |
_visitor->leave(m); |
1443 | 1443 |
--_stack_head; |
1444 | 1444 |
if (_stack_head >= 0) { |
1445 | 1445 |
_visitor->backtrack(_stack[_stack_head]); |
1446 | 1446 |
m = _digraph->source(_stack[_stack_head]); |
1447 | 1447 |
_digraph->nextOut(_stack[_stack_head]); |
1448 | 1448 |
} else { |
1449 | 1449 |
_visitor->stop(m); |
1450 | 1450 |
} |
1451 | 1451 |
} |
1452 | 1452 |
return e; |
1453 | 1453 |
} |
1454 | 1454 |
|
1455 | 1455 |
/// \brief Next arc to be processed. |
1456 | 1456 |
/// |
1457 | 1457 |
/// Next arc to be processed. |
1458 | 1458 |
/// |
1459 | 1459 |
/// \return The next arc to be processed or INVALID if the stack is |
1460 | 1460 |
/// empty. |
1461 | 1461 |
Arc nextArc() const { |
1462 | 1462 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1463 | 1463 |
} |
1464 | 1464 |
|
1465 | 1465 |
/// \brief Returns \c false if there are nodes |
1466 | 1466 |
/// to be processed. |
1467 | 1467 |
/// |
1468 | 1468 |
/// Returns \c false if there are nodes |
1469 | 1469 |
/// to be processed in the queue (stack). |
1470 | 1470 |
bool emptyQueue() const { return _stack_head < 0; } |
1471 | 1471 |
|
1472 | 1472 |
/// \brief Returns the number of the nodes to be processed. |
1473 | 1473 |
/// |
1474 | 1474 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1475 | 1475 |
int queueSize() const { return _stack_head + 1; } |
1476 | 1476 |
|
1477 | 1477 |
/// \brief Executes the algorithm. |
1478 | 1478 |
/// |
1479 | 1479 |
/// Executes the algorithm. |
1480 | 1480 |
/// |
1481 | 1481 |
/// This method runs the %DFS algorithm from the root node |
1482 | 1482 |
/// in order to compute the %DFS path to each node. |
1483 | 1483 |
/// |
1484 | 1484 |
/// The algorithm computes |
1485 | 1485 |
/// - the %DFS tree, |
1486 | 1486 |
/// - the distance of each node from the root in the %DFS tree. |
1487 | 1487 |
/// |
1488 | 1488 |
/// \pre init() must be called and a root node should be |
1489 | 1489 |
/// added with addSource() before using this function. |
1490 | 1490 |
/// |
1491 | 1491 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1492 | 1492 |
/// \code |
1493 | 1493 |
/// while ( !d.emptyQueue() ) { |
1494 | 1494 |
/// d.processNextArc(); |
1495 | 1495 |
/// } |
1496 | 1496 |
/// \endcode |
1497 | 1497 |
void start() { |
1498 | 1498 |
while ( !emptyQueue() ) processNextArc(); |
1499 | 1499 |
} |
1500 | 1500 |
|
1501 | 1501 |
/// \brief Executes the algorithm until the given target node is reached. |
1502 | 1502 |
/// |
1503 | 1503 |
/// Executes the algorithm until the given target node is reached. |
1504 | 1504 |
/// |
1505 | 1505 |
/// This method runs the %DFS algorithm from the root node |
1506 | 1506 |
/// in order to compute the DFS path to \c t. |
1507 | 1507 |
/// |
1508 | 1508 |
/// The algorithm computes |
1509 | 1509 |
/// - the %DFS path to \c t, |
1510 | 1510 |
/// - the distance of \c t from the root in the %DFS tree. |
1511 | 1511 |
/// |
1512 | 1512 |
/// \pre init() must be called and a root node should be added |
1513 | 1513 |
/// with addSource() before using this function. |
1514 | 1514 |
void start(Node t) { |
1515 | 1515 |
while ( !emptyQueue() && !(*_reached)[t] ) |
1516 | 1516 |
processNextArc(); |
1517 | 1517 |
} |
1518 | 1518 |
|
1519 | 1519 |
/// \brief Executes the algorithm until a condition is met. |
1520 | 1520 |
/// |
1521 | 1521 |
/// Executes the algorithm until a condition is met. |
1522 | 1522 |
/// |
1523 | 1523 |
/// This method runs the %DFS algorithm from the root node |
1524 | 1524 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1525 | 1525 |
/// |
1526 | 1526 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1527 | 1527 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1528 | 1528 |
/// |
1529 | 1529 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1530 | 1530 |
/// \c INVALID if no such arc was found. |
1531 | 1531 |
/// |
1532 | 1532 |
/// \pre init() must be called and a root node should be added |
1533 | 1533 |
/// with addSource() before using this function. |
1534 | 1534 |
/// |
1535 | 1535 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1536 | 1536 |
/// not a node map. |
1537 | 1537 |
template <typename AM> |
1538 | 1538 |
Arc start(const AM &am) { |
1539 | 1539 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1540 | 1540 |
processNextArc(); |
1541 | 1541 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1542 | 1542 |
} |
1543 | 1543 |
|
1544 | 1544 |
/// \brief Runs the algorithm from the given source node. |
1545 | 1545 |
/// |
1546 | 1546 |
/// This method runs the %DFS algorithm from node \c s. |
1547 | 1547 |
/// in order to compute the DFS path to each node. |
1548 | 1548 |
/// |
1549 | 1549 |
/// The algorithm computes |
1550 | 1550 |
/// - the %DFS tree, |
1551 | 1551 |
/// - the distance of each node from the root in the %DFS tree. |
1552 | 1552 |
/// |
1553 | 1553 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1554 | 1554 |
///\code |
1555 | 1555 |
/// d.init(); |
1556 | 1556 |
/// d.addSource(s); |
1557 | 1557 |
/// d.start(); |
1558 | 1558 |
///\endcode |
1559 | 1559 |
void run(Node s) { |
1560 | 1560 |
init(); |
1561 | 1561 |
addSource(s); |
1562 | 1562 |
start(); |
1563 | 1563 |
} |
1564 | 1564 |
|
1565 | 1565 |
/// \brief Finds the %DFS path between \c s and \c t. |
1566 | 1566 |
|
1567 | 1567 |
/// This method runs the %DFS algorithm from node \c s |
1568 | 1568 |
/// in order to compute the DFS path to node \c t |
1569 | 1569 |
/// (it stops searching when \c t is processed). |
1570 | 1570 |
/// |
1571 | 1571 |
/// \return \c true if \c t is reachable form \c s. |
1572 | 1572 |
/// |
1573 | 1573 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1574 | 1574 |
/// just a shortcut of the following code. |
1575 | 1575 |
///\code |
1576 | 1576 |
/// d.init(); |
1577 | 1577 |
/// d.addSource(s); |
1578 | 1578 |
/// d.start(t); |
1579 | 1579 |
///\endcode |
1580 | 1580 |
bool run(Node s,Node t) { |
1581 | 1581 |
init(); |
1582 | 1582 |
addSource(s); |
1583 | 1583 |
start(t); |
1584 | 1584 |
return reached(t); |
1585 | 1585 |
} |
1586 | 1586 |
|
1587 | 1587 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1588 | 1588 |
|
1589 | 1589 |
/// This method runs the %DFS algorithm in order to |
1590 | 1590 |
/// compute the %DFS path to each node. |
1591 | 1591 |
/// |
1592 | 1592 |
/// The algorithm computes |
1593 | 1593 |
/// - the %DFS tree, |
1594 | 1594 |
/// - the distance of each node from the root in the %DFS tree. |
1595 | 1595 |
/// |
1596 | 1596 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1597 | 1597 |
///\code |
1598 | 1598 |
/// d.init(); |
1599 | 1599 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1600 | 1600 |
/// if (!d.reached(n)) { |
1601 | 1601 |
/// d.addSource(n); |
1602 | 1602 |
/// d.start(); |
1603 | 1603 |
/// } |
1604 | 1604 |
/// } |
1605 | 1605 |
///\endcode |
1606 | 1606 |
void run() { |
1607 | 1607 |
init(); |
1608 | 1608 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1609 | 1609 |
if (!reached(it)) { |
1610 | 1610 |
addSource(it); |
1611 | 1611 |
start(); |
1612 | 1612 |
} |
1613 | 1613 |
} |
1614 | 1614 |
} |
1615 | 1615 |
|
1616 | 1616 |
///@} |
1617 | 1617 |
|
1618 | 1618 |
/// \name Query Functions |
1619 | 1619 |
/// The result of the %DFS algorithm can be obtained using these |
1620 | 1620 |
/// functions.\n |
1621 | 1621 |
/// Either \ref lemon::DfsVisit::run() "run()" or |
1622 | 1622 |
/// \ref lemon::DfsVisit::start() "start()" must be called before |
1623 | 1623 |
/// using them. |
1624 | 1624 |
///@{ |
1625 | 1625 |
|
1626 | 1626 |
/// \brief Checks if a node is reachable from the root(s). |
1627 | 1627 |
/// |
1628 | 1628 |
/// Returns \c true if \c v is reachable from the root(s). |
1629 | 1629 |
/// \pre Either \ref run() or \ref start() |
1630 | 1630 |
/// must be called before using this function. |
1631 | 1631 |
bool reached(Node v) { return (*_reached)[v]; } |
1632 | 1632 |
|
1633 | 1633 |
///@} |
1634 | 1634 |
|
1635 | 1635 |
}; |
1636 | 1636 |
|
1637 | 1637 |
} //END OF NAMESPACE LEMON |
1638 | 1638 |
|
1639 | 1639 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#include<lemon/bits/windows.h> |
33 | 33 |
#endif |
34 | 34 |
|
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
#include<lemon/core.h> |
37 | 37 |
#include<lemon/dim2.h> |
38 | 38 |
#include<lemon/maps.h> |
39 | 39 |
#include<lemon/color.h> |
40 | 40 |
#include<lemon/bits/bezier.h> |
41 | 41 |
#include<lemon/error.h> |
42 | 42 |
|
43 | 43 |
|
44 | 44 |
///\ingroup eps_io |
45 | 45 |
///\file |
46 | 46 |
///\brief A well configurable tool for visualizing graphs |
47 | 47 |
|
48 | 48 |
namespace lemon { |
49 | 49 |
|
50 | 50 |
namespace _graph_to_eps_bits { |
51 | 51 |
template<class MT> |
52 | 52 |
class _NegY { |
53 | 53 |
public: |
54 | 54 |
typedef typename MT::Key Key; |
55 | 55 |
typedef typename MT::Value Value; |
56 | 56 |
const MT ↦ |
57 | 57 |
int yscale; |
58 | 58 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
59 | 59 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
60 | 60 |
}; |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
///Default traits class of GraphToEps |
64 | 64 |
|
65 | 65 |
///Default traits class of \ref GraphToEps. |
66 | 66 |
/// |
67 | 67 |
///\c G is the type of the underlying graph. |
68 | 68 |
template<class G> |
69 | 69 |
struct DefaultGraphToEpsTraits |
70 | 70 |
{ |
71 | 71 |
typedef G Graph; |
72 | 72 |
typedef typename Graph::Node Node; |
73 | 73 |
typedef typename Graph::NodeIt NodeIt; |
74 | 74 |
typedef typename Graph::Arc Arc; |
75 | 75 |
typedef typename Graph::ArcIt ArcIt; |
76 | 76 |
typedef typename Graph::InArcIt InArcIt; |
77 | 77 |
typedef typename Graph::OutArcIt OutArcIt; |
78 | 78 |
|
79 | 79 |
|
80 | 80 |
const Graph &g; |
81 | 81 |
|
82 | 82 |
std::ostream& os; |
83 | 83 |
|
84 | 84 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
85 | 85 |
CoordsMapType _coords; |
86 | 86 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
87 | 87 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
88 | 88 |
|
89 | 89 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
90 | 90 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
91 | 91 |
|
92 | 92 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
93 | 93 |
|
94 | 94 |
double _arcWidthScale; |
95 | 95 |
|
96 | 96 |
double _nodeScale; |
97 | 97 |
double _xBorder, _yBorder; |
98 | 98 |
double _scale; |
99 | 99 |
double _nodeBorderQuotient; |
100 | 100 |
|
101 | 101 |
bool _drawArrows; |
102 | 102 |
double _arrowLength, _arrowWidth; |
103 | 103 |
|
104 | 104 |
bool _showNodes, _showArcs; |
105 | 105 |
|
106 | 106 |
bool _enableParallel; |
107 | 107 |
double _parArcDist; |
108 | 108 |
|
109 | 109 |
bool _showNodeText; |
110 | 110 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
111 | 111 |
double _nodeTextSize; |
112 | 112 |
|
113 | 113 |
bool _showNodePsText; |
114 | 114 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
115 | 115 |
char *_nodePsTextsPreamble; |
116 | 116 |
|
117 | 117 |
bool _undirected; |
118 | 118 |
|
119 | 119 |
bool _pleaseRemoveOsStream; |
120 | 120 |
|
121 | 121 |
bool _scaleToA4; |
122 | 122 |
|
123 | 123 |
std::string _title; |
124 | 124 |
std::string _copyright; |
125 | 125 |
|
126 | 126 |
enum NodeTextColorType |
127 | 127 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
128 | 128 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
129 | 129 |
|
130 | 130 |
bool _autoNodeScale; |
131 | 131 |
bool _autoArcWidthScale; |
132 | 132 |
|
133 | 133 |
bool _absoluteNodeSizes; |
134 | 134 |
bool _absoluteArcWidths; |
135 | 135 |
|
136 | 136 |
bool _negY; |
137 | 137 |
|
138 | 138 |
bool _preScale; |
139 | 139 |
///Constructor |
140 | 140 |
|
141 | 141 |
///Constructor |
142 | 142 |
///\param _g Reference to the graph to be printed. |
143 | 143 |
///\param _os Reference to the output stream. |
144 | 144 |
///\param _os Reference to the output stream. |
145 | 145 |
///By default it is <tt>std::cout</tt>. |
146 | 146 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
147 | 147 |
///will be explicitly deallocated by the destructor. |
148 | 148 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
149 | 149 |
bool _pros=false) : |
150 | 150 |
g(_g), os(_os), |
151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
152 | 152 |
_nodeColors(WHITE), _arcColors(BLACK), |
153 | 153 |
_arcWidths(1.0), _arcWidthScale(0.003), |
154 | 154 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
155 | 155 |
_nodeBorderQuotient(.1), |
156 | 156 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
157 | 157 |
_showNodes(true), _showArcs(true), |
158 | 158 |
_enableParallel(false), _parArcDist(1), |
159 | 159 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
160 | 160 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
161 | 161 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
162 | 162 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
163 | 163 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
164 | 164 |
_autoNodeScale(false), |
165 | 165 |
_autoArcWidthScale(false), |
166 | 166 |
_absoluteNodeSizes(false), |
167 | 167 |
_absoluteArcWidths(false), |
168 | 168 |
_negY(false), |
169 | 169 |
_preScale(true) |
170 | 170 |
{} |
171 | 171 |
}; |
172 | 172 |
|
173 | 173 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
174 | 174 |
|
175 | 175 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
176 | 176 |
/// |
177 | 177 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
178 | 178 |
template<class T> class GraphToEps : public T |
179 | 179 |
{ |
180 | 180 |
// Can't believe it is required by the C++ standard |
181 | 181 |
using T::g; |
182 | 182 |
using T::os; |
183 | 183 |
|
184 | 184 |
using T::_coords; |
185 | 185 |
using T::_nodeSizes; |
186 | 186 |
using T::_nodeShapes; |
187 | 187 |
using T::_nodeColors; |
188 | 188 |
using T::_arcColors; |
189 | 189 |
using T::_arcWidths; |
190 | 190 |
|
191 | 191 |
using T::_arcWidthScale; |
192 | 192 |
using T::_nodeScale; |
193 | 193 |
using T::_xBorder; |
194 | 194 |
using T::_yBorder; |
195 | 195 |
using T::_scale; |
196 | 196 |
using T::_nodeBorderQuotient; |
197 | 197 |
|
198 | 198 |
using T::_drawArrows; |
199 | 199 |
using T::_arrowLength; |
200 | 200 |
using T::_arrowWidth; |
201 | 201 |
|
202 | 202 |
using T::_showNodes; |
203 | 203 |
using T::_showArcs; |
204 | 204 |
|
205 | 205 |
using T::_enableParallel; |
206 | 206 |
using T::_parArcDist; |
207 | 207 |
|
208 | 208 |
using T::_showNodeText; |
209 | 209 |
using T::_nodeTexts; |
210 | 210 |
using T::_nodeTextSize; |
211 | 211 |
|
212 | 212 |
using T::_showNodePsText; |
213 | 213 |
using T::_nodePsTexts; |
214 | 214 |
using T::_nodePsTextsPreamble; |
215 | 215 |
|
216 | 216 |
using T::_undirected; |
217 | 217 |
|
218 | 218 |
using T::_pleaseRemoveOsStream; |
219 | 219 |
|
220 | 220 |
using T::_scaleToA4; |
221 | 221 |
|
222 | 222 |
using T::_title; |
223 | 223 |
using T::_copyright; |
224 | 224 |
|
225 | 225 |
using T::NodeTextColorType; |
226 | 226 |
using T::CUST_COL; |
227 | 227 |
using T::DIST_COL; |
228 | 228 |
using T::DIST_BW; |
229 | 229 |
using T::_nodeTextColorType; |
230 | 230 |
using T::_nodeTextColors; |
231 | 231 |
|
232 | 232 |
using T::_autoNodeScale; |
233 | 233 |
using T::_autoArcWidthScale; |
234 | 234 |
|
235 | 235 |
using T::_absoluteNodeSizes; |
236 | 236 |
using T::_absoluteArcWidths; |
237 | 237 |
|
238 | 238 |
|
239 | 239 |
using T::_negY; |
240 | 240 |
using T::_preScale; |
241 | 241 |
|
242 | 242 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
243 | 243 |
|
244 | 244 |
typedef typename T::Graph Graph; |
245 | 245 |
typedef typename Graph::Node Node; |
246 | 246 |
typedef typename Graph::NodeIt NodeIt; |
247 | 247 |
typedef typename Graph::Arc Arc; |
248 | 248 |
typedef typename Graph::ArcIt ArcIt; |
249 | 249 |
typedef typename Graph::InArcIt InArcIt; |
250 | 250 |
typedef typename Graph::OutArcIt OutArcIt; |
251 | 251 |
|
252 | 252 |
static const int INTERPOL_PREC; |
253 | 253 |
static const double A4HEIGHT; |
254 | 254 |
static const double A4WIDTH; |
255 | 255 |
static const double A4BORDER; |
256 | 256 |
|
257 | 257 |
bool dontPrint; |
258 | 258 |
|
259 | 259 |
public: |
260 | 260 |
///Node shapes |
261 | 261 |
|
262 | 262 |
///Node shapes. |
263 | 263 |
/// |
264 | 264 |
enum NodeShapes { |
265 | 265 |
/// = 0 |
266 | 266 |
///\image html nodeshape_0.png |
267 | 267 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
268 | 268 |
CIRCLE=0, |
269 | 269 |
/// = 1 |
270 | 270 |
///\image html nodeshape_1.png |
271 | 271 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
272 | 272 |
/// |
273 | 273 |
SQUARE=1, |
274 | 274 |
/// = 2 |
275 | 275 |
///\image html nodeshape_2.png |
276 | 276 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
277 | 277 |
/// |
278 | 278 |
DIAMOND=2, |
279 | 279 |
/// = 3 |
280 | 280 |
///\image html nodeshape_3.png |
281 | 281 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
282 | 282 |
/// |
283 | 283 |
MALE=3, |
284 | 284 |
/// = 4 |
285 | 285 |
///\image html nodeshape_4.png |
286 | 286 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
287 | 287 |
/// |
288 | 288 |
FEMALE=4 |
289 | 289 |
}; |
290 | 290 |
|
291 | 291 |
private: |
292 | 292 |
class arcLess { |
293 | 293 |
const Graph &g; |
294 | 294 |
public: |
295 | 295 |
arcLess(const Graph &_g) : g(_g) {} |
296 | 296 |
bool operator()(Arc a,Arc b) const |
297 | 297 |
{ |
298 | 298 |
Node ai=std::min(g.source(a),g.target(a)); |
299 | 299 |
Node aa=std::max(g.source(a),g.target(a)); |
300 | 300 |
Node bi=std::min(g.source(b),g.target(b)); |
301 | 301 |
Node ba=std::max(g.source(b),g.target(b)); |
302 | 302 |
return ai<bi || |
303 | 303 |
(ai==bi && (aa < ba || |
304 | 304 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
305 | 305 |
} |
306 | 306 |
}; |
307 | 307 |
bool isParallel(Arc e,Arc f) const |
308 | 308 |
{ |
309 | 309 |
return (g.source(e)==g.source(f)&& |
310 | 310 |
g.target(e)==g.target(f)) || |
311 | 311 |
(g.source(e)==g.target(f)&& |
312 | 312 |
g.target(e)==g.source(f)); |
313 | 313 |
} |
314 | 314 |
template<class TT> |
315 | 315 |
static std::string psOut(const dim2::Point<TT> &p) |
316 | 316 |
{ |
317 | 317 |
std::ostringstream os; |
318 | 318 |
os << p.x << ' ' << p.y; |
319 | 319 |
return os.str(); |
320 | 320 |
} |
321 | 321 |
static std::string psOut(const Color &c) |
322 | 322 |
{ |
323 | 323 |
std::ostringstream os; |
324 | 324 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
325 | 325 |
return os.str(); |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
public: |
329 | 329 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
330 | 330 |
|
331 | 331 |
template<class X> struct CoordsTraits : public T { |
332 | 332 |
typedef X CoordsMapType; |
333 | 333 |
const X &_coords; |
334 | 334 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
335 | 335 |
}; |
336 | 336 |
///Sets the map of the node coordinates |
337 | 337 |
|
338 | 338 |
///Sets the map of the node coordinates. |
339 | 339 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
340 | 340 |
///\ref dim2::Point "dim2::Point<int>" values. |
341 | 341 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
342 | 342 |
dontPrint=true; |
343 | 343 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
344 | 344 |
} |
345 | 345 |
template<class X> struct NodeSizesTraits : public T { |
346 | 346 |
const X &_nodeSizes; |
347 | 347 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
348 | 348 |
}; |
349 | 349 |
///Sets the map of the node sizes |
350 | 350 |
|
351 | 351 |
///Sets the map of the node sizes. |
352 | 352 |
///\param x must be a node map with \c double (or convertible) values. |
353 | 353 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
354 | 354 |
{ |
355 | 355 |
dontPrint=true; |
356 | 356 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
357 | 357 |
} |
358 | 358 |
template<class X> struct NodeShapesTraits : public T { |
359 | 359 |
const X &_nodeShapes; |
360 | 360 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
361 | 361 |
}; |
362 | 362 |
///Sets the map of the node shapes |
363 | 363 |
|
364 | 364 |
///Sets the map of the node shapes. |
365 | 365 |
///The available shape values |
366 | 366 |
///can be found in \ref NodeShapes "enum NodeShapes". |
367 | 367 |
///\param x must be a node map with \c int (or convertible) values. |
368 | 368 |
///\sa NodeShapes |
369 | 369 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
370 | 370 |
{ |
371 | 371 |
dontPrint=true; |
372 | 372 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
373 | 373 |
} |
374 | 374 |
template<class X> struct NodeTextsTraits : public T { |
375 | 375 |
const X &_nodeTexts; |
376 | 376 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
377 | 377 |
}; |
378 | 378 |
///Sets the text printed on the nodes |
379 | 379 |
|
380 | 380 |
///Sets the text printed on the nodes. |
381 | 381 |
///\param x must be a node map with type that can be pushed to a standard |
382 | 382 |
///\c ostream. |
383 | 383 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
384 | 384 |
{ |
385 | 385 |
dontPrint=true; |
386 | 386 |
_showNodeText=true; |
387 | 387 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
388 | 388 |
} |
389 | 389 |
template<class X> struct NodePsTextsTraits : public T { |
390 | 390 |
const X &_nodePsTexts; |
391 | 391 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
392 | 392 |
}; |
393 | 393 |
///Inserts a PostScript block to the nodes |
394 | 394 |
|
395 | 395 |
///With this command it is possible to insert a verbatim PostScript |
396 | 396 |
///block to the nodes. |
397 | 397 |
///The PS current point will be moved to the center of the node before |
398 | 398 |
///the PostScript block inserted. |
399 | 399 |
/// |
400 | 400 |
///Before and after the block a newline character is inserted so you |
401 | 401 |
///don't have to bother with the separators. |
402 | 402 |
/// |
403 | 403 |
///\param x must be a node map with type that can be pushed to a standard |
404 | 404 |
///\c ostream. |
405 | 405 |
/// |
406 | 406 |
///\sa nodePsTextsPreamble() |
407 | 407 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
408 | 408 |
{ |
409 | 409 |
dontPrint=true; |
410 | 410 |
_showNodePsText=true; |
411 | 411 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
412 | 412 |
} |
413 | 413 |
template<class X> struct ArcWidthsTraits : public T { |
414 | 414 |
const X &_arcWidths; |
415 | 415 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
416 | 416 |
}; |
417 | 417 |
///Sets the map of the arc widths |
418 | 418 |
|
419 | 419 |
///Sets the map of the arc widths. |
420 | 420 |
///\param x must be an arc map with \c double (or convertible) values. |
421 | 421 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
422 | 422 |
{ |
423 | 423 |
dontPrint=true; |
424 | 424 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
425 | 425 |
} |
426 | 426 |
|
427 | 427 |
template<class X> struct NodeColorsTraits : public T { |
428 | 428 |
const X &_nodeColors; |
429 | 429 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
430 | 430 |
}; |
431 | 431 |
///Sets the map of the node colors |
432 | 432 |
|
433 | 433 |
///Sets the map of the node colors. |
434 | 434 |
///\param x must be a node map with \ref Color values. |
435 | 435 |
/// |
436 | 436 |
///\sa Palette |
437 | 437 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
438 | 438 |
nodeColors(const X &x) |
439 | 439 |
{ |
440 | 440 |
dontPrint=true; |
441 | 441 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
442 | 442 |
} |
443 | 443 |
template<class X> struct NodeTextColorsTraits : public T { |
444 | 444 |
const X &_nodeTextColors; |
445 | 445 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
446 | 446 |
}; |
447 | 447 |
///Sets the map of the node text colors |
448 | 448 |
|
449 | 449 |
///Sets the map of the node text colors. |
450 | 450 |
///\param x must be a node map with \ref Color values. |
451 | 451 |
/// |
452 | 452 |
///\sa Palette |
453 | 453 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
454 | 454 |
nodeTextColors(const X &x) |
455 | 455 |
{ |
456 | 456 |
dontPrint=true; |
457 | 457 |
_nodeTextColorType=CUST_COL; |
458 | 458 |
return GraphToEps<NodeTextColorsTraits<X> > |
459 | 459 |
(NodeTextColorsTraits<X>(*this,x)); |
460 | 460 |
} |
461 | 461 |
template<class X> struct ArcColorsTraits : public T { |
462 | 462 |
const X &_arcColors; |
463 | 463 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
464 | 464 |
}; |
465 | 465 |
///Sets the map of the arc colors |
466 | 466 |
|
467 | 467 |
///Sets the map of the arc colors. |
468 | 468 |
///\param x must be an arc map with \ref Color values. |
469 | 469 |
/// |
470 | 470 |
///\sa Palette |
471 | 471 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
472 | 472 |
arcColors(const X &x) |
473 | 473 |
{ |
474 | 474 |
dontPrint=true; |
475 | 475 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
476 | 476 |
} |
477 | 477 |
///Sets a global scale factor for node sizes |
478 | 478 |
|
479 | 479 |
///Sets a global scale factor for node sizes. |
480 | 480 |
/// |
481 | 481 |
/// If nodeSizes() is not given, this function simply sets the node |
482 | 482 |
/// sizes to \c d. If nodeSizes() is given, but |
483 | 483 |
/// autoNodeScale() is not, then the node size given by |
484 | 484 |
/// nodeSizes() will be multiplied by the value \c d. |
485 | 485 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
486 | 486 |
/// node sizes will be scaled in such a way that the greatest size will be |
487 | 487 |
/// equal to \c d. |
488 | 488 |
/// \sa nodeSizes() |
489 | 489 |
/// \sa autoNodeScale() |
490 | 490 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
491 | 491 |
///Turns on/off the automatic node size scaling. |
492 | 492 |
|
493 | 493 |
///Turns on/off the automatic node size scaling. |
494 | 494 |
/// |
495 | 495 |
///\sa nodeScale() |
496 | 496 |
/// |
497 | 497 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
498 | 498 |
_autoNodeScale=b;return *this; |
499 | 499 |
} |
500 | 500 |
|
501 | 501 |
///Turns on/off the absolutematic node size scaling. |
502 | 502 |
|
503 | 503 |
///Turns on/off the absolutematic node size scaling. |
504 | 504 |
/// |
505 | 505 |
///\sa nodeScale() |
506 | 506 |
/// |
507 | 507 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
508 | 508 |
_absoluteNodeSizes=b;return *this; |
509 | 509 |
} |
510 | 510 |
|
511 | 511 |
///Negates the Y coordinates. |
512 | 512 |
GraphToEps<T> &negateY(bool b=true) { |
513 | 513 |
_negY=b;return *this; |
514 | 514 |
} |
515 | 515 |
|
516 | 516 |
///Turn on/off pre-scaling |
517 | 517 |
|
518 | 518 |
///By default graphToEps() rescales the whole image in order to avoid |
519 | 519 |
///very big or very small bounding boxes. |
520 | 520 |
/// |
521 | 521 |
///This (p)rescaling can be turned off with this function. |
522 | 522 |
/// |
523 | 523 |
GraphToEps<T> &preScale(bool b=true) { |
524 | 524 |
_preScale=b;return *this; |
525 | 525 |
} |
526 | 526 |
|
527 | 527 |
///Sets a global scale factor for arc widths |
528 | 528 |
|
529 | 529 |
/// Sets a global scale factor for arc widths. |
530 | 530 |
/// |
531 | 531 |
/// If arcWidths() is not given, this function simply sets the arc |
532 | 532 |
/// widths to \c d. If arcWidths() is given, but |
533 | 533 |
/// autoArcWidthScale() is not, then the arc withs given by |
534 | 534 |
/// arcWidths() will be multiplied by the value \c d. |
535 | 535 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
536 | 536 |
/// arc withs will be scaled in such a way that the greatest width will be |
537 | 537 |
/// equal to \c d. |
538 | 538 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
539 | 539 |
///Turns on/off the automatic arc width scaling. |
540 | 540 |
|
541 | 541 |
///Turns on/off the automatic arc width scaling. |
542 | 542 |
/// |
543 | 543 |
///\sa arcWidthScale() |
544 | 544 |
/// |
545 | 545 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
546 | 546 |
_autoArcWidthScale=b;return *this; |
547 | 547 |
} |
548 | 548 |
///Turns on/off the absolutematic arc width scaling. |
549 | 549 |
|
550 | 550 |
///Turns on/off the absolutematic arc width scaling. |
551 | 551 |
/// |
552 | 552 |
///\sa arcWidthScale() |
553 | 553 |
/// |
554 | 554 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
555 | 555 |
_absoluteArcWidths=b;return *this; |
556 | 556 |
} |
557 | 557 |
///Sets a global scale factor for the whole picture |
558 | 558 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
559 | 559 |
///Sets the width of the border around the picture |
560 | 560 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
561 | 561 |
///Sets the width of the border around the picture |
562 | 562 |
GraphToEps<T> &border(double x, double y) { |
563 | 563 |
_xBorder=x;_yBorder=y;return *this; |
564 | 564 |
} |
565 | 565 |
///Sets whether to draw arrows |
566 | 566 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
567 | 567 |
///Sets the length of the arrowheads |
568 | 568 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
569 | 569 |
///Sets the width of the arrowheads |
570 | 570 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
571 | 571 |
|
572 | 572 |
///Scales the drawing to fit to A4 page |
573 | 573 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
574 | 574 |
|
575 | 575 |
///Enables parallel arcs |
576 | 576 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
577 | 577 |
|
578 | 578 |
///Sets the distance between parallel arcs |
579 | 579 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
580 | 580 |
|
581 | 581 |
///Hides the arcs |
582 | 582 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
583 | 583 |
///Hides the nodes |
584 | 584 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
585 | 585 |
|
586 | 586 |
///Sets the size of the node texts |
587 | 587 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
588 | 588 |
|
589 | 589 |
///Sets the color of the node texts to be different from the node color |
590 | 590 |
|
591 | 591 |
///Sets the color of the node texts to be as different from the node color |
592 | 592 |
///as it is possible. |
593 | 593 |
GraphToEps<T> &distantColorNodeTexts() |
594 | 594 |
{_nodeTextColorType=DIST_COL;return *this;} |
595 | 595 |
///Sets the color of the node texts to be black or white and always visible. |
596 | 596 |
|
597 | 597 |
///Sets the color of the node texts to be black or white according to |
598 | 598 |
///which is more different from the node color. |
599 | 599 |
GraphToEps<T> &distantBWNodeTexts() |
600 | 600 |
{_nodeTextColorType=DIST_BW;return *this;} |
601 | 601 |
|
602 | 602 |
///Gives a preamble block for node Postscript block. |
603 | 603 |
|
604 | 604 |
///Gives a preamble block for node Postscript block. |
605 | 605 |
/// |
606 | 606 |
///\sa nodePsTexts() |
607 | 607 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
608 | 608 |
_nodePsTextsPreamble=str ;return *this; |
609 | 609 |
} |
610 | 610 |
///Sets whether the graph is undirected |
611 | 611 |
|
612 | 612 |
///Sets whether the graph is undirected. |
613 | 613 |
/// |
614 | 614 |
///This setting is the default for undirected graphs. |
615 | 615 |
/// |
616 | 616 |
///\sa directed() |
617 | 617 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
618 | 618 |
|
619 | 619 |
///Sets whether the graph is directed |
620 | 620 |
|
621 | 621 |
///Sets whether the graph is directed. |
622 | 622 |
///Use it to show the edges as a pair of directed ones. |
623 | 623 |
/// |
624 | 624 |
///This setting is the default for digraphs. |
625 | 625 |
/// |
626 | 626 |
///\sa undirected() |
627 | 627 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
628 | 628 |
|
629 | 629 |
///Sets the title. |
630 | 630 |
|
631 | 631 |
///Sets the title of the generated image, |
632 | 632 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
633 | 633 |
///the EPS file. |
634 | 634 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
635 | 635 |
///Sets the copyright statement. |
636 | 636 |
|
637 | 637 |
///Sets the copyright statement of the generated image, |
638 | 638 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
639 | 639 |
///the EPS file. |
640 | 640 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
641 | 641 |
|
642 | 642 |
protected: |
643 | 643 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
644 | 644 |
{ |
645 | 645 |
switch(t) { |
646 | 646 |
case CIRCLE: |
647 | 647 |
case MALE: |
648 | 648 |
case FEMALE: |
649 | 649 |
return p.normSquare()<=r*r; |
650 | 650 |
case SQUARE: |
651 | 651 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
652 | 652 |
case DIAMOND: |
653 | 653 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
654 | 654 |
} |
655 | 655 |
return false; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
public: |
659 | 659 |
~GraphToEps() { } |
660 | 660 |
|
661 | 661 |
///Draws the graph. |
662 | 662 |
|
663 | 663 |
///Like other functions using |
664 | 664 |
///\ref named-templ-func-param "named template parameters", |
665 | 665 |
///this function calls the algorithm itself, i.e. in this case |
666 | 666 |
///it draws the graph. |
667 | 667 |
void run() { |
668 | 668 |
const double EPSILON=1e-9; |
669 | 669 |
if(dontPrint) return; |
670 | 670 |
|
671 | 671 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
672 | 672 |
mycoords(_coords,_negY); |
673 | 673 |
|
674 | 674 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
675 | 675 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
676 | 676 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
677 | 677 |
os << "%%Creator: LEMON, graphToEps()\n"; |
678 | 678 |
|
679 | 679 |
{ |
680 | 680 |
os << "%%CreationDate: "; |
681 | 681 |
#ifndef WIN32 |
682 | 682 |
timeval tv; |
683 | 683 |
gettimeofday(&tv, 0); |
684 | 684 |
|
685 | 685 |
char cbuf[26]; |
686 | 686 |
ctime_r(&tv.tv_sec,cbuf); |
687 | 687 |
os << cbuf; |
688 | 688 |
#else |
689 | 689 |
os << bits::getWinFormattedDate(); |
690 | 690 |
os << std::endl; |
691 | 691 |
#endif |
692 | 692 |
} |
693 | 693 |
|
694 | 694 |
if (_autoArcWidthScale) { |
695 | 695 |
double max_w=0; |
696 | 696 |
for(ArcIt e(g);e!=INVALID;++e) |
697 | 697 |
max_w=std::max(double(_arcWidths[e]),max_w); |
698 | 698 |
if(max_w>EPSILON) { |
699 | 699 |
_arcWidthScale/=max_w; |
700 | 700 |
} |
701 | 701 |
} |
702 | 702 |
|
703 | 703 |
if (_autoNodeScale) { |
704 | 704 |
double max_s=0; |
705 | 705 |
for(NodeIt n(g);n!=INVALID;++n) |
706 | 706 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
707 | 707 |
if(max_s>EPSILON) { |
708 | 708 |
_nodeScale/=max_s; |
709 | 709 |
} |
710 | 710 |
} |
711 | 711 |
|
712 | 712 |
double diag_len = 1; |
713 | 713 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
714 | 714 |
dim2::Box<double> bb; |
715 | 715 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
716 | 716 |
if (bb.empty()) { |
717 | 717 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
718 | 718 |
} |
719 | 719 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
720 | 720 |
if(diag_len<EPSILON) diag_len = 1; |
721 | 721 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
722 | 722 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
723 | 723 |
} |
724 | 724 |
|
725 | 725 |
dim2::Box<double> bb; |
726 | 726 |
for(NodeIt n(g);n!=INVALID;++n) { |
727 | 727 |
double ns=_nodeSizes[n]*_nodeScale; |
728 | 728 |
dim2::Point<double> p(ns,ns); |
729 | 729 |
switch(_nodeShapes[n]) { |
730 | 730 |
case CIRCLE: |
731 | 731 |
case SQUARE: |
732 | 732 |
case DIAMOND: |
733 | 733 |
bb.add(p+mycoords[n]); |
734 | 734 |
bb.add(-p+mycoords[n]); |
735 | 735 |
break; |
736 | 736 |
case MALE: |
737 | 737 |
bb.add(-p+mycoords[n]); |
738 | 738 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
739 | 739 |
break; |
740 | 740 |
case FEMALE: |
741 | 741 |
bb.add(p+mycoords[n]); |
742 | 742 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
743 | 743 |
break; |
744 | 744 |
} |
745 | 745 |
} |
746 | 746 |
if (bb.empty()) { |
747 | 747 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
748 | 748 |
} |
749 | 749 |
|
750 | 750 |
if(_scaleToA4) |
751 | 751 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
752 | 752 |
else { |
753 | 753 |
if(_preScale) { |
754 | 754 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
755 | 755 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
756 | 756 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
757 | 757 |
} |
758 | 758 |
|
759 | 759 |
os << "%%BoundingBox: " |
760 | 760 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
761 | 761 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
762 | 762 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
763 | 763 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
764 | 764 |
} |
765 | 765 |
|
766 | 766 |
os << "%%EndComments\n"; |
767 | 767 |
|
768 | 768 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
769 | 769 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
770 | 770 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
771 | 771 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }" |
772 | 772 |
<< " bind def\n"; |
773 | 773 |
//x y r |
774 | 774 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" |
775 | 775 |
<< " bind def\n"; |
776 | 776 |
//x y r |
777 | 777 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
778 | 778 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
779 | 779 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
780 | 780 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
781 | 781 |
<< " closepath pop pop pop} bind def\n"; |
782 | 782 |
//x y r |
783 | 783 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
784 | 784 |
<< " 2 index 2 index 2 index add lineto\n" |
785 | 785 |
<< " 2 index 1 index sub 2 index lineto\n" |
786 | 786 |
<< " 2 index 2 index 2 index sub lineto\n" |
787 | 787 |
<< " closepath pop pop pop} bind def\n"; |
788 | 788 |
// x y r cr cg cb |
789 | 789 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
790 | 790 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
791 | 791 |
<< " } bind def\n"; |
792 | 792 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
793 | 793 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
794 | 794 |
<< " } bind def\n"; |
795 | 795 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
796 | 796 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
797 | 797 |
<< " } bind def\n"; |
798 | 798 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
799 | 799 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
800 | 800 |
<< " 1.5 mul mul setlinewidth\n" |
801 | 801 |
<< " newpath 5 index 5 index moveto " |
802 | 802 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
803 | 803 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
804 | 804 |
<< " moveto\n" |
805 | 805 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
806 | 806 |
<< "stroke\n" |
807 | 807 |
<< " 5 index 5 index 5 index c fill\n" |
808 | 808 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
809 | 809 |
<< " } bind def\n"; |
810 | 810 |
os << "/nmale {\n" |
811 | 811 |
<< " 0 0 0 setrgbcolor 3 index " |
812 | 812 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
813 | 813 |
<<" 1.5 mul mul setlinewidth\n" |
814 | 814 |
<< " newpath 5 index 5 index moveto\n" |
815 | 815 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
816 | 816 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
817 | 817 |
<< " 1 index 1 index lineto\n" |
818 | 818 |
<< " 1 index 1 index 7 index sub moveto\n" |
819 | 819 |
<< " 1 index 1 index lineto\n" |
820 | 820 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
821 | 821 |
<< " lineto\n" |
822 | 822 |
<< " stroke\n" |
823 | 823 |
<< " 5 index 5 index 5 index c fill\n" |
824 | 824 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
825 | 825 |
<< " } bind def\n"; |
826 | 826 |
|
827 | 827 |
|
828 | 828 |
os << "/arrl " << _arrowLength << " def\n"; |
829 | 829 |
os << "/arrw " << _arrowWidth << " def\n"; |
830 | 830 |
// l dx_norm dy_norm |
831 | 831 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n"; |
832 | 832 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
833 | 833 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx " |
834 | 834 |
<< "exch def\n" |
835 | 835 |
<< " /w exch def /len exch def\n" |
836 | 836 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
837 | 837 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
838 | 838 |
<< " len w sub arrl sub dx dy lrl\n" |
839 | 839 |
<< " arrw dy dx neg lrl\n" |
840 | 840 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
841 | 841 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
842 | 842 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
843 | 843 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
844 | 844 |
<< " arrw dy dx neg lrl\n" |
845 | 845 |
<< " len w sub arrl sub neg dx dy lrl\n" |
846 | 846 |
<< " closepath fill } bind def\n"; |
847 | 847 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n" |
848 | 848 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
849 | 849 |
|
850 | 850 |
os << "\ngsave\n"; |
851 | 851 |
if(_scaleToA4) |
852 | 852 |
if(bb.height()>bb.width()) { |
853 | 853 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
854 | 854 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
855 | 855 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
856 | 856 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
857 | 857 |
<< " translate\n" |
858 | 858 |
<< sc << " dup scale\n" |
859 | 859 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
860 | 860 |
} |
861 | 861 |
else { |
862 | 862 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
863 | 863 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
864 | 864 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
865 | 865 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
866 | 866 |
<< " translate\n" |
867 | 867 |
<< sc << " dup scale\n90 rotate\n" |
868 | 868 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
869 | 869 |
} |
870 | 870 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
871 | 871 |
|
872 | 872 |
if(_showArcs) { |
873 | 873 |
os << "%Arcs:\ngsave\n"; |
874 | 874 |
if(_enableParallel) { |
875 | 875 |
std::vector<Arc> el; |
876 | 876 |
for(ArcIt e(g);e!=INVALID;++e) |
877 | 877 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
878 | 878 |
&&g.source(e)!=g.target(e)) |
879 | 879 |
el.push_back(e); |
880 | 880 |
std::sort(el.begin(),el.end(),arcLess(g)); |
881 | 881 |
|
882 | 882 |
typename std::vector<Arc>::iterator j; |
883 | 883 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) { |
884 | 884 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
885 | 885 |
|
886 | 886 |
double sw=0; |
887 | 887 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
888 | 888 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
889 | 889 |
sw-=_parArcDist; |
890 | 890 |
sw/=-2.0; |
891 | 891 |
dim2::Point<double> |
892 | 892 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
893 | 893 |
double l=std::sqrt(dvec.normSquare()); |
894 | 894 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
895 | 895 |
dim2::Point<double> m; |
896 | 896 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
897 | 897 |
// mycoords[g.source(*i)])/2.0; |
898 | 898 |
|
899 | 899 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
900 | 900 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
901 | 901 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
902 | 902 |
|
903 | 903 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
904 | 904 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
905 | 905 |
|
906 | 906 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) { |
907 | 907 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
908 | 908 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
909 | 909 |
if(_drawArrows) { |
910 | 910 |
int node_shape; |
911 | 911 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
912 | 912 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
913 | 913 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
914 | 914 |
node_shape=_nodeShapes[g.target(*e)]; |
915 | 915 |
dim2::Bezier3 bez(s,mm,mm,t); |
916 | 916 |
double t1=0,t2=1; |
917 | 917 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
918 | 918 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
919 | 919 |
else t1=(t1+t2)/2; |
920 | 920 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
921 | 921 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
922 | 922 |
rn*=rn; |
923 | 923 |
t2=(t1+t2)/2;t1=0; |
924 | 924 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
925 | 925 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
926 | 926 |
else t2=(t1+t2)/2; |
927 | 927 |
dim2::Point<double> linend=bez((t1+t2)/2); |
928 | 928 |
bez=bez.before((t1+t2)/2); |
929 | 929 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
930 | 930 |
// node_shape=_nodeShapes[g.source(*e)]; |
931 | 931 |
// t1=0;t2=1; |
932 | 932 |
// for(int i=0;i<INTERPOL_PREC;++i) |
933 | 933 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
934 | 934 |
// t1=(t1+t2)/2; |
935 | 935 |
// else t2=(t1+t2)/2; |
936 | 936 |
// bez=bez.after((t1+t2)/2); |
937 | 937 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
938 | 938 |
<< _arcColors[*e].red() << ' ' |
939 | 939 |
<< _arcColors[*e].green() << ' ' |
940 | 940 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
941 | 941 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
942 | 942 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
943 | 943 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
944 | 944 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
945 | 945 |
dim2::Point<double> dd(rot90(linend-apoint)); |
946 | 946 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
947 | 947 |
std::sqrt(dd.normSquare()); |
948 | 948 |
os << "newpath " << psOut(apoint) << " moveto " |
949 | 949 |
<< psOut(linend+dd) << " lineto " |
950 | 950 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
951 | 951 |
} |
952 | 952 |
else { |
953 | 953 |
os << mycoords[g.source(*e)].x << ' ' |
954 | 954 |
<< mycoords[g.source(*e)].y << ' ' |
955 | 955 |
<< mm.x << ' ' << mm.y << ' ' |
956 | 956 |
<< mycoords[g.target(*e)].x << ' ' |
957 | 957 |
<< mycoords[g.target(*e)].y << ' ' |
958 | 958 |
<< _arcColors[*e].red() << ' ' |
959 | 959 |
<< _arcColors[*e].green() << ' ' |
960 | 960 |
<< _arcColors[*e].blue() << ' ' |
961 | 961 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
962 | 962 |
} |
963 | 963 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
964 | 964 |
} |
965 | 965 |
} |
966 | 966 |
} |
967 | 967 |
else for(ArcIt e(g);e!=INVALID;++e) |
968 | 968 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
969 | 969 |
&&g.source(e)!=g.target(e)) { |
970 | 970 |
if(_drawArrows) { |
971 | 971 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
972 | 972 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
973 | 973 |
int node_shape=_nodeShapes[g.target(e)]; |
974 | 974 |
double t1=0,t2=1; |
975 | 975 |
for(int i=0;i<INTERPOL_PREC;++i) |
976 | 976 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
977 | 977 |
else t2=(t1+t2)/2; |
978 | 978 |
double l=std::sqrt(d.normSquare()); |
979 | 979 |
d/=l; |
980 | 980 |
|
981 | 981 |
os << l*(1-(t1+t2)/2) << ' ' |
982 | 982 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
983 | 983 |
<< d.x << ' ' << d.y << ' ' |
984 | 984 |
<< mycoords[g.source(e)].x << ' ' |
985 | 985 |
<< mycoords[g.source(e)].y << ' ' |
986 | 986 |
<< _arcColors[e].red() << ' ' |
987 | 987 |
<< _arcColors[e].green() << ' ' |
988 | 988 |
<< _arcColors[e].blue() << " arr\n"; |
989 | 989 |
} |
990 | 990 |
else os << mycoords[g.source(e)].x << ' ' |
991 | 991 |
<< mycoords[g.source(e)].y << ' ' |
992 | 992 |
<< mycoords[g.target(e)].x << ' ' |
993 | 993 |
<< mycoords[g.target(e)].y << ' ' |
994 | 994 |
<< _arcColors[e].red() << ' ' |
995 | 995 |
<< _arcColors[e].green() << ' ' |
996 | 996 |
<< _arcColors[e].blue() << ' ' |
997 | 997 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
998 | 998 |
} |
999 | 999 |
os << "grestore\n"; |
1000 | 1000 |
} |
1001 | 1001 |
if(_showNodes) { |
1002 | 1002 |
os << "%Nodes:\ngsave\n"; |
1003 | 1003 |
for(NodeIt n(g);n!=INVALID;++n) { |
1004 | 1004 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
1005 | 1005 |
<< _nodeSizes[n]*_nodeScale << ' ' |
1006 | 1006 |
<< _nodeColors[n].red() << ' ' |
1007 | 1007 |
<< _nodeColors[n].green() << ' ' |
1008 | 1008 |
<< _nodeColors[n].blue() << ' '; |
1009 | 1009 |
switch(_nodeShapes[n]) { |
1010 | 1010 |
case CIRCLE: |
1011 | 1011 |
os<< "nc";break; |
1012 | 1012 |
case SQUARE: |
1013 | 1013 |
os<< "nsq";break; |
1014 | 1014 |
case DIAMOND: |
1015 | 1015 |
os<< "ndi";break; |
1016 | 1016 |
case MALE: |
1017 | 1017 |
os<< "nmale";break; |
1018 | 1018 |
case FEMALE: |
1019 | 1019 |
os<< "nfemale";break; |
1020 | 1020 |
} |
1021 | 1021 |
os<<'\n'; |
1022 | 1022 |
} |
1023 | 1023 |
os << "grestore\n"; |
1024 | 1024 |
} |
1025 | 1025 |
if(_showNodeText) { |
1026 | 1026 |
os << "%Node texts:\ngsave\n"; |
1027 | 1027 |
os << "/fosi " << _nodeTextSize << " def\n"; |
1028 | 1028 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
1029 | 1029 |
for(NodeIt n(g);n!=INVALID;++n) { |
1030 | 1030 |
switch(_nodeTextColorType) { |
1031 | 1031 |
case DIST_COL: |
1032 | 1032 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
1033 | 1033 |
break; |
1034 | 1034 |
case DIST_BW: |
1035 | 1035 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
1036 | 1036 |
break; |
1037 | 1037 |
case CUST_COL: |
1038 | 1038 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
1039 | 1039 |
break; |
1040 | 1040 |
default: |
1041 | 1041 |
os << "0 0 0 setrgbcolor\n"; |
1042 | 1042 |
} |
1043 | 1043 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1044 | 1044 |
<< " (" << _nodeTexts[n] << ") cshow\n"; |
1045 | 1045 |
} |
1046 | 1046 |
os << "grestore\n"; |
1047 | 1047 |
} |
1048 | 1048 |
if(_showNodePsText) { |
1049 | 1049 |
os << "%Node PS blocks:\ngsave\n"; |
1050 | 1050 |
for(NodeIt n(g);n!=INVALID;++n) |
1051 | 1051 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1052 | 1052 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
1053 | 1053 |
os << "grestore\n"; |
1054 | 1054 |
} |
1055 | 1055 |
|
1056 | 1056 |
os << "grestore\nshowpage\n"; |
1057 | 1057 |
|
1058 | 1058 |
//CleanUp: |
1059 | 1059 |
if(_pleaseRemoveOsStream) {delete &os;} |
1060 | 1060 |
} |
1061 | 1061 |
|
1062 | 1062 |
///\name Aliases |
1063 | 1063 |
///These are just some aliases to other parameter setting functions. |
1064 | 1064 |
|
1065 | 1065 |
///@{ |
1066 | 1066 |
|
1067 | 1067 |
///An alias for arcWidths() |
1068 | 1068 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
1069 | 1069 |
{ |
1070 | 1070 |
return arcWidths(x); |
1071 | 1071 |
} |
1072 | 1072 |
|
1073 | 1073 |
///An alias for arcColors() |
1074 | 1074 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
1075 | 1075 |
edgeColors(const X &x) |
1076 | 1076 |
{ |
1077 | 1077 |
return arcColors(x); |
1078 | 1078 |
} |
1079 | 1079 |
|
1080 | 1080 |
///An alias for arcWidthScale() |
1081 | 1081 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);} |
1082 | 1082 |
|
1083 | 1083 |
///An alias for autoArcWidthScale() |
1084 | 1084 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
1085 | 1085 |
{ |
1086 | 1086 |
return autoArcWidthScale(b); |
1087 | 1087 |
} |
1088 | 1088 |
|
1089 | 1089 |
///An alias for absoluteArcWidths() |
1090 | 1090 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
1091 | 1091 |
{ |
1092 | 1092 |
return absoluteArcWidths(b); |
1093 | 1093 |
} |
1094 | 1094 |
|
1095 | 1095 |
///An alias for parArcDist() |
1096 | 1096 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1097 | 1097 |
|
1098 | 1098 |
///An alias for hideArcs() |
1099 | 1099 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1100 | 1100 |
|
1101 | 1101 |
///@} |
1102 | 1102 |
}; |
1103 | 1103 |
|
1104 | 1104 |
template<class T> |
1105 | 1105 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1106 | 1106 |
template<class T> |
1107 | 1107 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1108 | 1108 |
template<class T> |
1109 | 1109 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1110 | 1110 |
template<class T> |
1111 | 1111 |
const double GraphToEps<T>::A4BORDER = 15; |
1112 | 1112 |
|
1113 | 1113 |
|
1114 | 1114 |
///Generates an EPS file from a graph |
1115 | 1115 |
|
1116 | 1116 |
///\ingroup eps_io |
1117 | 1117 |
///Generates an EPS file from a graph. |
1118 | 1118 |
///\param g Reference to the graph to be printed. |
1119 | 1119 |
///\param os Reference to the output stream. |
1120 | 1120 |
///By default it is <tt>std::cout</tt>. |
1121 | 1121 |
/// |
1122 | 1122 |
///This function also has a lot of |
1123 | 1123 |
///\ref named-templ-func-param "named parameters", |
1124 | 1124 |
///they are declared as the members of class \ref GraphToEps. The following |
1125 | 1125 |
///example shows how to use these parameters. |
1126 | 1126 |
///\code |
1127 | 1127 |
/// graphToEps(g,os).scale(10).coords(coords) |
1128 | 1128 |
/// .nodeScale(2).nodeSizes(sizes) |
1129 | 1129 |
/// .arcWidthScale(.4).run(); |
1130 | 1130 |
///\endcode |
1131 | 1131 |
/// |
1132 | 1132 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
1133 | 1133 |
/// |
1134 | 1134 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1135 | 1135 |
///to the end of the parameter list. |
1136 | 1136 |
///\sa GraphToEps |
1137 | 1137 |
///\sa graphToEps(G &g, const char *file_name) |
1138 | 1138 |
template<class G> |
1139 | 1139 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1140 | 1140 |
graphToEps(G &g, std::ostream& os=std::cout) |
1141 | 1141 |
{ |
1142 | 1142 |
return |
1143 | 1143 |
GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os)); |
1144 | 1144 |
} |
1145 | 1145 |
|
1146 | 1146 |
///Generates an EPS file from a graph |
1147 | 1147 |
|
1148 | 1148 |
///\ingroup eps_io |
1149 | 1149 |
///This function does the same as |
1150 | 1150 |
///\ref graphToEps(G &g,std::ostream& os) |
1151 | 1151 |
///but it writes its output into the file \c file_name |
1152 | 1152 |
///instead of a stream. |
1153 | 1153 |
///\sa graphToEps(G &g, std::ostream& os) |
1154 | 1154 |
template<class G> |
1155 | 1155 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1156 | 1156 |
graphToEps(G &g,const char *file_name) |
1157 | 1157 |
{ |
1158 | 1158 |
std::ostream* os = new std::ofstream(file_name); |
1159 | 1159 |
if (!(*os)) { |
1160 | 1160 |
delete os; |
1161 | 1161 |
throw IoError("Cannot write file", file_name); |
1162 | 1162 |
} |
1163 | 1163 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1164 | 1164 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
1165 | 1165 |
} |
1166 | 1166 |
|
1167 | 1167 |
///Generates an EPS file from a graph |
1168 | 1168 |
|
1169 | 1169 |
///\ingroup eps_io |
1170 | 1170 |
///This function does the same as |
1171 | 1171 |
///\ref graphToEps(G &g,std::ostream& os) |
1172 | 1172 |
///but it writes its output into the file \c file_name |
1173 | 1173 |
///instead of a stream. |
1174 | 1174 |
///\sa graphToEps(G &g, std::ostream& os) |
1175 | 1175 |
template<class G> |
1176 | 1176 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1177 | 1177 |
graphToEps(G &g,const std::string& file_name) |
1178 | 1178 |
{ |
1179 | 1179 |
std::ostream* os = new std::ofstream(file_name.c_str()); |
1180 | 1180 |
if (!(*os)) { |
1181 | 1181 |
delete os; |
1182 | 1182 |
throw IoError("Cannot write file", file_name); |
1183 | 1183 |
} |
1184 | 1184 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1185 | 1185 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
1186 | 1186 |
} |
1187 | 1187 |
|
1188 | 1188 |
} //END OF NAMESPACE LEMON |
1189 | 1189 |
|
1190 | 1190 |
#endif // LEMON_GRAPH_TO_EPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup lemon_io |
20 | 20 |
///\file |
21 | 21 |
///\brief \ref lgf-format "LEMON Graph Format" writer. |
22 | 22 |
|
23 | 23 |
|
24 | 24 |
#ifndef LEMON_LGF_WRITER_H |
25 | 25 |
#define LEMON_LGF_WRITER_H |
26 | 26 |
|
27 | 27 |
#include <iostream> |
28 | 28 |
#include <fstream> |
29 | 29 |
#include <sstream> |
30 | 30 |
|
31 | 31 |
#include <algorithm> |
32 | 32 |
|
33 | 33 |
#include <vector> |
34 | 34 |
#include <functional> |
35 | 35 |
|
36 | 36 |
#include <lemon/core.h> |
37 | 37 |
#include <lemon/maps.h> |
38 | 38 |
|
39 | 39 |
#include <lemon/concept_check.h> |
40 | 40 |
#include <lemon/concepts/maps.h> |
41 | 41 |
|
42 | 42 |
namespace lemon { |
43 | 43 |
|
44 | 44 |
namespace _writer_bits { |
45 | 45 |
|
46 | 46 |
template <typename Value> |
47 | 47 |
struct DefaultConverter { |
48 | 48 |
std::string operator()(const Value& value) { |
49 | 49 |
std::ostringstream os; |
50 | 50 |
os << value; |
51 | 51 |
return os.str(); |
52 | 52 |
} |
53 | 53 |
}; |
54 | 54 |
|
55 | 55 |
template <typename T> |
56 | 56 |
bool operator<(const T&, const T&) { |
57 | 57 |
throw FormatError("Label map is not comparable"); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
template <typename _Map> |
61 | 61 |
class MapLess { |
62 | 62 |
public: |
63 | 63 |
typedef _Map Map; |
64 | 64 |
typedef typename Map::Key Item; |
65 | 65 |
|
66 | 66 |
private: |
67 | 67 |
const Map& _map; |
68 | 68 |
|
69 | 69 |
public: |
70 | 70 |
MapLess(const Map& map) : _map(map) {} |
71 | 71 |
|
72 | 72 |
bool operator()(const Item& left, const Item& right) { |
73 | 73 |
return _map[left] < _map[right]; |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
template <typename _Graph, bool _dir, typename _Map> |
78 | 78 |
class GraphArcMapLess { |
79 | 79 |
public: |
80 | 80 |
typedef _Map Map; |
81 | 81 |
typedef _Graph Graph; |
82 | 82 |
typedef typename Graph::Edge Item; |
83 | 83 |
|
84 | 84 |
private: |
85 | 85 |
const Graph& _graph; |
86 | 86 |
const Map& _map; |
87 | 87 |
|
88 | 88 |
public: |
89 | 89 |
GraphArcMapLess(const Graph& graph, const Map& map) |
90 | 90 |
: _graph(graph), _map(map) {} |
91 | 91 |
|
92 | 92 |
bool operator()(const Item& left, const Item& right) { |
93 | 93 |
return _map[_graph.direct(left, _dir)] < |
94 | 94 |
_map[_graph.direct(right, _dir)]; |
95 | 95 |
} |
96 | 96 |
}; |
97 | 97 |
|
98 | 98 |
template <typename _Item> |
99 | 99 |
class MapStorageBase { |
100 | 100 |
public: |
101 | 101 |
typedef _Item Item; |
102 | 102 |
|
103 | 103 |
public: |
104 | 104 |
MapStorageBase() {} |
105 | 105 |
virtual ~MapStorageBase() {} |
106 | 106 |
|
107 | 107 |
virtual std::string get(const Item& item) = 0; |
108 | 108 |
virtual void sort(std::vector<Item>&) = 0; |
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
template <typename _Item, typename _Map, |
112 | 112 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
113 | 113 |
class MapStorage : public MapStorageBase<_Item> { |
114 | 114 |
public: |
115 | 115 |
typedef _Map Map; |
116 | 116 |
typedef _Converter Converter; |
117 | 117 |
typedef _Item Item; |
118 | 118 |
|
119 | 119 |
private: |
120 | 120 |
const Map& _map; |
121 | 121 |
Converter _converter; |
122 | 122 |
|
123 | 123 |
public: |
124 | 124 |
MapStorage(const Map& map, const Converter& converter = Converter()) |
125 | 125 |
: _map(map), _converter(converter) {} |
126 | 126 |
virtual ~MapStorage() {} |
127 | 127 |
|
128 | 128 |
virtual std::string get(const Item& item) { |
129 | 129 |
return _converter(_map[item]); |
130 | 130 |
} |
131 | 131 |
virtual void sort(std::vector<Item>& items) { |
132 | 132 |
MapLess<Map> less(_map); |
133 | 133 |
std::sort(items.begin(), items.end(), less); |
134 | 134 |
} |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
template <typename _Graph, bool _dir, typename _Map, |
138 | 138 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
139 | 139 |
class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> { |
140 | 140 |
public: |
141 | 141 |
typedef _Map Map; |
142 | 142 |
typedef _Converter Converter; |
143 | 143 |
typedef _Graph Graph; |
144 | 144 |
typedef typename Graph::Edge Item; |
145 | 145 |
static const bool dir = _dir; |
146 | 146 |
|
147 | 147 |
private: |
148 | 148 |
const Graph& _graph; |
149 | 149 |
const Map& _map; |
150 | 150 |
Converter _converter; |
151 | 151 |
|
152 | 152 |
public: |
153 | 153 |
GraphArcMapStorage(const Graph& graph, const Map& map, |
154 | 154 |
const Converter& converter = Converter()) |
155 | 155 |
: _graph(graph), _map(map), _converter(converter) {} |
156 | 156 |
virtual ~GraphArcMapStorage() {} |
157 | 157 |
|
158 | 158 |
virtual std::string get(const Item& item) { |
159 | 159 |
return _converter(_map[_graph.direct(item, dir)]); |
160 | 160 |
} |
161 | 161 |
virtual void sort(std::vector<Item>& items) { |
162 | 162 |
GraphArcMapLess<Graph, dir, Map> less(_graph, _map); |
163 | 163 |
std::sort(items.begin(), items.end(), less); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
class ValueStorageBase { |
168 | 168 |
public: |
169 | 169 |
ValueStorageBase() {} |
170 | 170 |
virtual ~ValueStorageBase() {} |
171 | 171 |
|
172 | 172 |
virtual std::string get() = 0; |
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
template <typename _Value, typename _Converter = DefaultConverter<_Value> > |
176 | 176 |
class ValueStorage : public ValueStorageBase { |
177 | 177 |
public: |
178 | 178 |
typedef _Value Value; |
179 | 179 |
typedef _Converter Converter; |
180 | 180 |
|
181 | 181 |
private: |
182 | 182 |
const Value& _value; |
183 | 183 |
Converter _converter; |
184 | 184 |
|
185 | 185 |
public: |
186 | 186 |
ValueStorage(const Value& value, const Converter& converter = Converter()) |
187 | 187 |
: _value(value), _converter(converter) {} |
188 | 188 |
|
189 | 189 |
virtual std::string get() { |
190 | 190 |
return _converter(_value); |
191 | 191 |
} |
192 | 192 |
}; |
193 | 193 |
|
194 | 194 |
template <typename Value> |
195 | 195 |
struct MapLookUpConverter { |
196 | 196 |
const std::map<Value, std::string>& _map; |
197 | 197 |
|
198 | 198 |
MapLookUpConverter(const std::map<Value, std::string>& map) |
199 | 199 |
: _map(map) {} |
200 | 200 |
|
201 | 201 |
std::string operator()(const Value& str) { |
202 | 202 |
typename std::map<Value, std::string>::const_iterator it = |
203 | 203 |
_map.find(str); |
204 | 204 |
if (it == _map.end()) { |
205 | 205 |
throw FormatError("Item not found"); |
206 | 206 |
} |
207 | 207 |
return it->second; |
208 | 208 |
} |
209 | 209 |
}; |
210 | 210 |
|
211 | 211 |
template <typename Graph> |
212 | 212 |
struct GraphArcLookUpConverter { |
213 | 213 |
const Graph& _graph; |
214 | 214 |
const std::map<typename Graph::Edge, std::string>& _map; |
215 | 215 |
|
216 | 216 |
GraphArcLookUpConverter(const Graph& graph, |
217 | 217 |
const std::map<typename Graph::Edge, |
218 | 218 |
std::string>& map) |
219 | 219 |
: _graph(graph), _map(map) {} |
220 | 220 |
|
221 | 221 |
std::string operator()(const typename Graph::Arc& val) { |
222 | 222 |
typename std::map<typename Graph::Edge, std::string> |
223 | 223 |
::const_iterator it = _map.find(val); |
224 | 224 |
if (it == _map.end()) { |
225 | 225 |
throw FormatError("Item not found"); |
226 | 226 |
} |
227 | 227 |
return (_graph.direction(val) ? '+' : '-') + it->second; |
228 | 228 |
} |
229 | 229 |
}; |
230 | 230 |
|
231 | 231 |
inline bool isWhiteSpace(char c) { |
232 | 232 |
return c == ' ' || c == '\t' || c == '\v' || |
233 | 233 |
c == '\n' || c == '\r' || c == '\f'; |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
inline bool isEscaped(char c) { |
237 | 237 |
return c == '\\' || c == '\"' || c == '\'' || |
238 | 238 |
c == '\a' || c == '\b'; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
inline static void writeEscape(std::ostream& os, char c) { |
242 | 242 |
switch (c) { |
243 | 243 |
case '\\': |
244 | 244 |
os << "\\\\"; |
245 | 245 |
return; |
246 | 246 |
case '\"': |
247 | 247 |
os << "\\\""; |
248 | 248 |
return; |
249 | 249 |
case '\a': |
250 | 250 |
os << "\\a"; |
251 | 251 |
return; |
252 | 252 |
case '\b': |
253 | 253 |
os << "\\b"; |
254 | 254 |
return; |
255 | 255 |
case '\f': |
256 | 256 |
os << "\\f"; |
257 | 257 |
return; |
258 | 258 |
case '\r': |
259 | 259 |
os << "\\r"; |
260 | 260 |
return; |
261 | 261 |
case '\n': |
262 | 262 |
os << "\\n"; |
263 | 263 |
return; |
264 | 264 |
case '\t': |
265 | 265 |
os << "\\t"; |
266 | 266 |
return; |
267 | 267 |
case '\v': |
268 | 268 |
os << "\\v"; |
269 | 269 |
return; |
270 | 270 |
default: |
271 | 271 |
if (c < 0x20) { |
272 | 272 |
std::ios::fmtflags flags = os.flags(); |
273 | 273 |
os << '\\' << std::oct << static_cast<int>(c); |
274 | 274 |
os.flags(flags); |
275 | 275 |
} else { |
276 | 276 |
os << c; |
277 | 277 |
} |
278 | 278 |
return; |
279 | 279 |
} |
280 | 280 |
} |
281 | 281 |
|
282 | 282 |
inline bool requireEscape(const std::string& str) { |
283 | 283 |
if (str.empty() || str[0] == '@') return true; |
284 | 284 |
std::istringstream is(str); |
285 | 285 |
char c; |
286 | 286 |
while (is.get(c)) { |
287 | 287 |
if (isWhiteSpace(c) || isEscaped(c)) { |
288 | 288 |
return true; |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
return false; |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
inline std::ostream& writeToken(std::ostream& os, const std::string& str) { |
295 | 295 |
|
296 | 296 |
if (requireEscape(str)) { |
297 | 297 |
os << '\"'; |
298 | 298 |
for (std::string::const_iterator it = str.begin(); |
299 | 299 |
it != str.end(); ++it) { |
300 | 300 |
writeEscape(os, *it); |
301 | 301 |
} |
302 | 302 |
os << '\"'; |
303 | 303 |
} else { |
304 | 304 |
os << str; |
305 | 305 |
} |
306 | 306 |
return os; |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
class Section { |
310 | 310 |
public: |
311 | 311 |
virtual ~Section() {} |
312 | 312 |
virtual void process(std::ostream& os) = 0; |
313 | 313 |
}; |
314 | 314 |
|
315 | 315 |
template <typename Functor> |
316 | 316 |
class LineSection : public Section { |
317 | 317 |
private: |
318 | 318 |
|
319 | 319 |
Functor _functor; |
320 | 320 |
|
321 | 321 |
public: |
322 | 322 |
|
323 | 323 |
LineSection(const Functor& functor) : _functor(functor) {} |
324 | 324 |
virtual ~LineSection() {} |
325 | 325 |
|
326 | 326 |
virtual void process(std::ostream& os) { |
327 | 327 |
std::string line; |
328 | 328 |
while (!(line = _functor()).empty()) os << line << std::endl; |
329 | 329 |
} |
330 | 330 |
}; |
331 | 331 |
|
332 | 332 |
template <typename Functor> |
333 | 333 |
class StreamSection : public Section { |
334 | 334 |
private: |
335 | 335 |
|
336 | 336 |
Functor _functor; |
337 | 337 |
|
338 | 338 |
public: |
339 | 339 |
|
340 | 340 |
StreamSection(const Functor& functor) : _functor(functor) {} |
341 | 341 |
virtual ~StreamSection() {} |
342 | 342 |
|
343 | 343 |
virtual void process(std::ostream& os) { |
344 | 344 |
_functor(os); |
345 | 345 |
} |
346 | 346 |
}; |
347 | 347 |
|
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
template <typename Digraph> |
351 | 351 |
class DigraphWriter; |
352 | 352 |
|
353 | 353 |
template <typename Digraph> |
354 | 354 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
355 | 355 |
std::ostream& os = std::cout); |
356 | 356 |
template <typename Digraph> |
357 | 357 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
358 | 358 |
const std::string& fn); |
359 | 359 |
|
360 | 360 |
template <typename Digraph> |
361 | 361 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
362 | 362 |
const char* fn); |
363 | 363 |
|
364 | 364 |
|
365 | 365 |
/// \ingroup lemon_io |
366 | 366 |
/// |
367 | 367 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
368 | 368 |
/// |
369 | 369 |
/// This utility writes an \ref lgf-format "LGF" file. |
370 | 370 |
/// |
371 | 371 |
/// The writing method does a batch processing. The user creates a |
372 | 372 |
/// writer object, then various writing rules can be added to the |
373 | 373 |
/// writer, and eventually the writing is executed with the \c run() |
374 | 374 |
/// member function. A map writing rule can be added to the writer |
375 | 375 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
376 | 376 |
/// converter parameter can also be added as a standard functor |
377 | 377 |
/// converting from the value type of the map to \c std::string. If it |
378 | 378 |
/// is set, it will determine how the value type of the map is written to |
379 | 379 |
/// the output stream. If the functor is not set, then a default |
380 | 380 |
/// conversion will be used. The \c attribute(), \c node() and \c |
381 | 381 |
/// arc() functions are used to add attribute writing rules. |
382 | 382 |
/// |
383 | 383 |
///\code |
384 | 384 |
/// DigraphWriter<Digraph>(digraph, std::cout). |
385 | 385 |
/// nodeMap("coordinates", coord_map). |
386 | 386 |
/// nodeMap("size", size). |
387 | 387 |
/// nodeMap("title", title). |
388 | 388 |
/// arcMap("capacity", cap_map). |
389 | 389 |
/// node("source", src). |
390 | 390 |
/// node("target", trg). |
391 | 391 |
/// attribute("caption", caption). |
392 | 392 |
/// run(); |
393 | 393 |
///\endcode |
394 | 394 |
/// |
395 | 395 |
/// |
396 | 396 |
/// By default, the writer does not write additional captions to the |
397 | 397 |
/// sections, but they can be give as an optional parameter of |
398 | 398 |
/// the \c nodes(), \c arcs() or \c |
399 | 399 |
/// attributes() functions. |
400 | 400 |
/// |
401 | 401 |
/// The \c skipNodes() and \c skipArcs() functions forbid the |
402 | 402 |
/// writing of the sections. If two arc sections should be written |
403 | 403 |
/// to the output, it can be done in two passes, the first pass |
404 | 404 |
/// writes the node section and the first arc section, then the |
405 | 405 |
/// second pass skips the node section and writes just the arc |
406 | 406 |
/// section to the stream. The output stream can be retrieved with |
407 | 407 |
/// the \c ostream() function, hence the second pass can append its |
408 | 408 |
/// output to the output of the first pass. |
409 | 409 |
template <typename _Digraph> |
410 | 410 |
class DigraphWriter { |
411 | 411 |
public: |
412 | 412 |
|
413 | 413 |
typedef _Digraph Digraph; |
414 | 414 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
415 | 415 |
|
416 | 416 |
private: |
417 | 417 |
|
418 | 418 |
|
419 | 419 |
std::ostream* _os; |
420 | 420 |
bool local_os; |
421 | 421 |
|
422 | 422 |
const Digraph& _digraph; |
423 | 423 |
|
424 | 424 |
std::string _nodes_caption; |
425 | 425 |
std::string _arcs_caption; |
426 | 426 |
std::string _attributes_caption; |
427 | 427 |
|
428 | 428 |
typedef std::map<Node, std::string> NodeIndex; |
429 | 429 |
NodeIndex _node_index; |
430 | 430 |
typedef std::map<Arc, std::string> ArcIndex; |
431 | 431 |
ArcIndex _arc_index; |
432 | 432 |
|
433 | 433 |
typedef std::vector<std::pair<std::string, |
434 | 434 |
_writer_bits::MapStorageBase<Node>* > > NodeMaps; |
435 | 435 |
NodeMaps _node_maps; |
436 | 436 |
|
437 | 437 |
typedef std::vector<std::pair<std::string, |
438 | 438 |
_writer_bits::MapStorageBase<Arc>* > >ArcMaps; |
439 | 439 |
ArcMaps _arc_maps; |
440 | 440 |
|
441 | 441 |
typedef std::vector<std::pair<std::string, |
442 | 442 |
_writer_bits::ValueStorageBase*> > Attributes; |
443 | 443 |
Attributes _attributes; |
444 | 444 |
|
445 | 445 |
bool _skip_nodes; |
446 | 446 |
bool _skip_arcs; |
447 | 447 |
|
448 | 448 |
public: |
449 | 449 |
|
450 | 450 |
/// \brief Constructor |
451 | 451 |
/// |
452 | 452 |
/// Construct a directed graph writer, which writes to the given |
453 | 453 |
/// output stream. |
454 | 454 |
DigraphWriter(const Digraph& digraph, std::ostream& os = std::cout) |
455 | 455 |
: _os(&os), local_os(false), _digraph(digraph), |
456 | 456 |
_skip_nodes(false), _skip_arcs(false) {} |
457 | 457 |
|
458 | 458 |
/// \brief Constructor |
459 | 459 |
/// |
460 | 460 |
/// Construct a directed graph writer, which writes to the given |
461 | 461 |
/// output file. |
462 | 462 |
DigraphWriter(const Digraph& digraph, const std::string& fn) |
463 | 463 |
: _os(new std::ofstream(fn.c_str())), local_os(true), _digraph(digraph), |
464 | 464 |
_skip_nodes(false), _skip_arcs(false) { |
465 | 465 |
if (!(*_os)) { |
466 | 466 |
delete _os; |
467 | 467 |
throw IoError("Cannot write file", fn); |
468 | 468 |
} |
469 | 469 |
} |
470 | 470 |
|
471 | 471 |
/// \brief Constructor |
472 | 472 |
/// |
473 | 473 |
/// Construct a directed graph writer, which writes to the given |
474 | 474 |
/// output file. |
475 | 475 |
DigraphWriter(const Digraph& digraph, const char* fn) |
476 | 476 |
: _os(new std::ofstream(fn)), local_os(true), _digraph(digraph), |
477 | 477 |
_skip_nodes(false), _skip_arcs(false) { |
478 | 478 |
if (!(*_os)) { |
479 | 479 |
delete _os; |
480 | 480 |
throw IoError("Cannot write file", fn); |
481 | 481 |
} |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
/// \brief Destructor |
485 | 485 |
~DigraphWriter() { |
486 | 486 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
487 | 487 |
it != _node_maps.end(); ++it) { |
488 | 488 |
delete it->second; |
489 | 489 |
} |
490 | 490 |
|
491 | 491 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
492 | 492 |
it != _arc_maps.end(); ++it) { |
493 | 493 |
delete it->second; |
494 | 494 |
} |
495 | 495 |
|
496 | 496 |
for (typename Attributes::iterator it = _attributes.begin(); |
497 | 497 |
it != _attributes.end(); ++it) { |
498 | 498 |
delete it->second; |
499 | 499 |
} |
500 | 500 |
|
501 | 501 |
if (local_os) { |
502 | 502 |
delete _os; |
503 | 503 |
} |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
private: |
507 | 507 |
|
508 | 508 |
template <typename DGR> |
509 | 509 |
friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, |
510 | 510 |
std::ostream& os); |
511 | 511 |
template <typename DGR> |
512 | 512 |
friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, |
513 | 513 |
const std::string& fn); |
514 | 514 |
template <typename DGR> |
515 | 515 |
friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, |
516 | 516 |
const char *fn); |
517 | 517 |
|
518 | 518 |
DigraphWriter(DigraphWriter& other) |
519 | 519 |
: _os(other._os), local_os(other.local_os), _digraph(other._digraph), |
520 | 520 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
521 | 521 |
|
522 | 522 |
other._os = 0; |
523 | 523 |
other.local_os = false; |
524 | 524 |
|
525 | 525 |
_node_index.swap(other._node_index); |
526 | 526 |
_arc_index.swap(other._arc_index); |
527 | 527 |
|
528 | 528 |
_node_maps.swap(other._node_maps); |
529 | 529 |
_arc_maps.swap(other._arc_maps); |
530 | 530 |
_attributes.swap(other._attributes); |
531 | 531 |
|
532 | 532 |
_nodes_caption = other._nodes_caption; |
533 | 533 |
_arcs_caption = other._arcs_caption; |
534 | 534 |
_attributes_caption = other._attributes_caption; |
535 | 535 |
} |
536 | 536 |
|
537 | 537 |
DigraphWriter& operator=(const DigraphWriter&); |
538 | 538 |
|
539 | 539 |
public: |
540 | 540 |
|
541 | 541 |
/// \name Writing rules |
542 | 542 |
/// @{ |
543 | 543 |
|
544 | 544 |
/// \brief Node map writing rule |
545 | 545 |
/// |
546 | 546 |
/// Add a node map writing rule to the writer. |
547 | 547 |
template <typename Map> |
548 | 548 |
DigraphWriter& nodeMap(const std::string& caption, const Map& map) { |
549 | 549 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
550 | 550 |
_writer_bits::MapStorageBase<Node>* storage = |
551 | 551 |
new _writer_bits::MapStorage<Node, Map>(map); |
552 | 552 |
_node_maps.push_back(std::make_pair(caption, storage)); |
553 | 553 |
return *this; |
554 | 554 |
} |
555 | 555 |
|
556 | 556 |
/// \brief Node map writing rule |
557 | 557 |
/// |
558 | 558 |
/// Add a node map writing rule with specialized converter to the |
559 | 559 |
/// writer. |
560 | 560 |
template <typename Map, typename Converter> |
561 | 561 |
DigraphWriter& nodeMap(const std::string& caption, const Map& map, |
562 | 562 |
const Converter& converter = Converter()) { |
563 | 563 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
564 | 564 |
_writer_bits::MapStorageBase<Node>* storage = |
565 | 565 |
new _writer_bits::MapStorage<Node, Map, Converter>(map, converter); |
566 | 566 |
_node_maps.push_back(std::make_pair(caption, storage)); |
567 | 567 |
return *this; |
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
/// \brief Arc map writing rule |
571 | 571 |
/// |
572 | 572 |
/// Add an arc map writing rule to the writer. |
573 | 573 |
template <typename Map> |
574 | 574 |
DigraphWriter& arcMap(const std::string& caption, const Map& map) { |
575 | 575 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
576 | 576 |
_writer_bits::MapStorageBase<Arc>* storage = |
577 | 577 |
new _writer_bits::MapStorage<Arc, Map>(map); |
578 | 578 |
_arc_maps.push_back(std::make_pair(caption, storage)); |
579 | 579 |
return *this; |
580 | 580 |
} |
581 | 581 |
|
582 | 582 |
/// \brief Arc map writing rule |
583 | 583 |
/// |
584 | 584 |
/// Add an arc map writing rule with specialized converter to the |
585 | 585 |
/// writer. |
586 | 586 |
template <typename Map, typename Converter> |
587 | 587 |
DigraphWriter& arcMap(const std::string& caption, const Map& map, |
588 | 588 |
const Converter& converter = Converter()) { |
589 | 589 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
590 | 590 |
_writer_bits::MapStorageBase<Arc>* storage = |
591 | 591 |
new _writer_bits::MapStorage<Arc, Map, Converter>(map, converter); |
592 | 592 |
_arc_maps.push_back(std::make_pair(caption, storage)); |
593 | 593 |
return *this; |
594 | 594 |
} |
595 | 595 |
|
596 | 596 |
/// \brief Attribute writing rule |
597 | 597 |
/// |
598 | 598 |
/// Add an attribute writing rule to the writer. |
599 | 599 |
template <typename Value> |
600 | 600 |
DigraphWriter& attribute(const std::string& caption, const Value& value) { |
601 | 601 |
_writer_bits::ValueStorageBase* storage = |
602 | 602 |
new _writer_bits::ValueStorage<Value>(value); |
603 | 603 |
_attributes.push_back(std::make_pair(caption, storage)); |
604 | 604 |
return *this; |
605 | 605 |
} |
606 | 606 |
|
607 | 607 |
/// \brief Attribute writing rule |
608 | 608 |
/// |
609 | 609 |
/// Add an attribute writing rule with specialized converter to the |
610 | 610 |
/// writer. |
611 | 611 |
template <typename Value, typename Converter> |
612 | 612 |
DigraphWriter& attribute(const std::string& caption, const Value& value, |
613 | 613 |
const Converter& converter = Converter()) { |
614 | 614 |
_writer_bits::ValueStorageBase* storage = |
615 | 615 |
new _writer_bits::ValueStorage<Value, Converter>(value, converter); |
616 | 616 |
_attributes.push_back(std::make_pair(caption, storage)); |
617 | 617 |
return *this; |
618 | 618 |
} |
619 | 619 |
|
620 | 620 |
/// \brief Node writing rule |
621 | 621 |
/// |
622 | 622 |
/// Add a node writing rule to the writer. |
623 | 623 |
DigraphWriter& node(const std::string& caption, const Node& node) { |
624 | 624 |
typedef _writer_bits::MapLookUpConverter<Node> Converter; |
625 | 625 |
Converter converter(_node_index); |
626 | 626 |
_writer_bits::ValueStorageBase* storage = |
627 | 627 |
new _writer_bits::ValueStorage<Node, Converter>(node, converter); |
628 | 628 |
_attributes.push_back(std::make_pair(caption, storage)); |
629 | 629 |
return *this; |
630 | 630 |
} |
631 | 631 |
|
632 | 632 |
/// \brief Arc writing rule |
633 | 633 |
/// |
634 | 634 |
/// Add an arc writing rule to writer. |
635 | 635 |
DigraphWriter& arc(const std::string& caption, const Arc& arc) { |
636 | 636 |
typedef _writer_bits::MapLookUpConverter<Arc> Converter; |
637 | 637 |
Converter converter(_arc_index); |
638 | 638 |
_writer_bits::ValueStorageBase* storage = |
639 | 639 |
new _writer_bits::ValueStorage<Arc, Converter>(arc, converter); |
640 | 640 |
_attributes.push_back(std::make_pair(caption, storage)); |
641 | 641 |
return *this; |
642 | 642 |
} |
643 | 643 |
|
644 | 644 |
/// \name Section captions |
645 | 645 |
/// @{ |
646 | 646 |
|
647 | 647 |
/// \brief Add an additional caption to the \c \@nodes section |
648 | 648 |
/// |
649 | 649 |
/// Add an additional caption to the \c \@nodes section. |
650 | 650 |
DigraphWriter& nodes(const std::string& caption) { |
651 | 651 |
_nodes_caption = caption; |
652 | 652 |
return *this; |
653 | 653 |
} |
654 | 654 |
|
655 | 655 |
/// \brief Add an additional caption to the \c \@arcs section |
656 | 656 |
/// |
657 | 657 |
/// Add an additional caption to the \c \@arcs section. |
658 | 658 |
DigraphWriter& arcs(const std::string& caption) { |
659 | 659 |
_arcs_caption = caption; |
660 | 660 |
return *this; |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
/// \brief Add an additional caption to the \c \@attributes section |
664 | 664 |
/// |
665 | 665 |
/// Add an additional caption to the \c \@attributes section. |
666 | 666 |
DigraphWriter& attributes(const std::string& caption) { |
667 | 667 |
_attributes_caption = caption; |
668 | 668 |
return *this; |
669 | 669 |
} |
670 | 670 |
|
671 | 671 |
/// \name Skipping section |
672 | 672 |
/// @{ |
673 | 673 |
|
674 | 674 |
/// \brief Skip writing the node set |
675 | 675 |
/// |
676 | 676 |
/// The \c \@nodes section will not be written to the stream. |
677 | 677 |
DigraphWriter& skipNodes() { |
678 | 678 |
LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member"); |
679 | 679 |
_skip_nodes = true; |
680 | 680 |
return *this; |
681 | 681 |
} |
682 | 682 |
|
683 | 683 |
/// \brief Skip writing arc set |
684 | 684 |
/// |
685 | 685 |
/// The \c \@arcs section will not be written to the stream. |
686 | 686 |
DigraphWriter& skipArcs() { |
687 | 687 |
LEMON_ASSERT(!_skip_arcs, "Multiple usage of skipArcs() member"); |
688 | 688 |
_skip_arcs = true; |
689 | 689 |
return *this; |
690 | 690 |
} |
691 | 691 |
|
692 | 692 |
/// @} |
693 | 693 |
|
694 | 694 |
private: |
695 | 695 |
|
696 | 696 |
void writeNodes() { |
697 | 697 |
_writer_bits::MapStorageBase<Node>* label = 0; |
698 | 698 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
699 | 699 |
it != _node_maps.end(); ++it) { |
700 | 700 |
if (it->first == "label") { |
701 | 701 |
label = it->second; |
702 | 702 |
break; |
703 | 703 |
} |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
*_os << "@nodes"; |
707 | 707 |
if (!_nodes_caption.empty()) { |
708 | 708 |
_writer_bits::writeToken(*_os << ' ', _nodes_caption); |
709 | 709 |
} |
710 | 710 |
*_os << std::endl; |
711 | 711 |
|
712 | 712 |
if (label == 0) { |
713 | 713 |
*_os << "label" << '\t'; |
714 | 714 |
} |
715 | 715 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
716 | 716 |
it != _node_maps.end(); ++it) { |
717 | 717 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
718 | 718 |
} |
719 | 719 |
*_os << std::endl; |
720 | 720 |
|
721 | 721 |
std::vector<Node> nodes; |
722 | 722 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
723 | 723 |
nodes.push_back(n); |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
if (label == 0) { |
727 | 727 |
IdMap<Digraph, Node> id_map(_digraph); |
728 | 728 |
_writer_bits::MapLess<IdMap<Digraph, Node> > id_less(id_map); |
729 | 729 |
std::sort(nodes.begin(), nodes.end(), id_less); |
730 | 730 |
} else { |
731 | 731 |
label->sort(nodes); |
732 | 732 |
} |
733 | 733 |
|
734 | 734 |
for (int i = 0; i < static_cast<int>(nodes.size()); ++i) { |
735 | 735 |
Node n = nodes[i]; |
736 | 736 |
if (label == 0) { |
737 | 737 |
std::ostringstream os; |
738 | 738 |
os << _digraph.id(n); |
739 | 739 |
_writer_bits::writeToken(*_os, os.str()); |
740 | 740 |
*_os << '\t'; |
741 | 741 |
_node_index.insert(std::make_pair(n, os.str())); |
742 | 742 |
} |
743 | 743 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
744 | 744 |
it != _node_maps.end(); ++it) { |
745 | 745 |
std::string value = it->second->get(n); |
746 | 746 |
_writer_bits::writeToken(*_os, value); |
747 | 747 |
if (it->first == "label") { |
748 | 748 |
_node_index.insert(std::make_pair(n, value)); |
749 | 749 |
} |
750 | 750 |
*_os << '\t'; |
751 | 751 |
} |
752 | 752 |
*_os << std::endl; |
753 | 753 |
} |
754 | 754 |
} |
755 | 755 |
|
756 | 756 |
void createNodeIndex() { |
757 | 757 |
_writer_bits::MapStorageBase<Node>* label = 0; |
758 | 758 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
759 | 759 |
it != _node_maps.end(); ++it) { |
760 | 760 |
if (it->first == "label") { |
761 | 761 |
label = it->second; |
762 | 762 |
break; |
763 | 763 |
} |
764 | 764 |
} |
765 | 765 |
|
766 | 766 |
if (label == 0) { |
767 | 767 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
768 | 768 |
std::ostringstream os; |
769 | 769 |
os << _digraph.id(n); |
770 | 770 |
_node_index.insert(std::make_pair(n, os.str())); |
771 | 771 |
} |
772 | 772 |
} else { |
773 | 773 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
774 | 774 |
std::string value = label->get(n); |
775 | 775 |
_node_index.insert(std::make_pair(n, value)); |
776 | 776 |
} |
777 | 777 |
} |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
void writeArcs() { |
781 | 781 |
_writer_bits::MapStorageBase<Arc>* label = 0; |
782 | 782 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
783 | 783 |
it != _arc_maps.end(); ++it) { |
784 | 784 |
if (it->first == "label") { |
785 | 785 |
label = it->second; |
786 | 786 |
break; |
787 | 787 |
} |
788 | 788 |
} |
789 | 789 |
|
790 | 790 |
*_os << "@arcs"; |
791 | 791 |
if (!_arcs_caption.empty()) { |
792 | 792 |
_writer_bits::writeToken(*_os << ' ', _arcs_caption); |
793 | 793 |
} |
794 | 794 |
*_os << std::endl; |
795 | 795 |
|
796 | 796 |
*_os << '\t' << '\t'; |
797 | 797 |
if (label == 0) { |
798 | 798 |
*_os << "label" << '\t'; |
799 | 799 |
} |
800 | 800 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
801 | 801 |
it != _arc_maps.end(); ++it) { |
802 | 802 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
803 | 803 |
} |
804 | 804 |
*_os << std::endl; |
805 | 805 |
|
806 | 806 |
std::vector<Arc> arcs; |
807 | 807 |
for (ArcIt n(_digraph); n != INVALID; ++n) { |
808 | 808 |
arcs.push_back(n); |
809 | 809 |
} |
810 | 810 |
|
811 | 811 |
if (label == 0) { |
812 | 812 |
IdMap<Digraph, Arc> id_map(_digraph); |
813 | 813 |
_writer_bits::MapLess<IdMap<Digraph, Arc> > id_less(id_map); |
814 | 814 |
std::sort(arcs.begin(), arcs.end(), id_less); |
815 | 815 |
} else { |
816 | 816 |
label->sort(arcs); |
817 | 817 |
} |
818 | 818 |
|
819 | 819 |
for (int i = 0; i < static_cast<int>(arcs.size()); ++i) { |
820 | 820 |
Arc a = arcs[i]; |
821 | 821 |
_writer_bits::writeToken(*_os, _node_index. |
822 | 822 |
find(_digraph.source(a))->second); |
823 | 823 |
*_os << '\t'; |
824 | 824 |
_writer_bits::writeToken(*_os, _node_index. |
825 | 825 |
find(_digraph.target(a))->second); |
826 | 826 |
*_os << '\t'; |
827 | 827 |
if (label == 0) { |
828 | 828 |
std::ostringstream os; |
829 | 829 |
os << _digraph.id(a); |
830 | 830 |
_writer_bits::writeToken(*_os, os.str()); |
831 | 831 |
*_os << '\t'; |
832 | 832 |
_arc_index.insert(std::make_pair(a, os.str())); |
833 | 833 |
} |
834 | 834 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
835 | 835 |
it != _arc_maps.end(); ++it) { |
836 | 836 |
std::string value = it->second->get(a); |
837 | 837 |
_writer_bits::writeToken(*_os, value); |
838 | 838 |
if (it->first == "label") { |
839 | 839 |
_arc_index.insert(std::make_pair(a, value)); |
840 | 840 |
} |
841 | 841 |
*_os << '\t'; |
842 | 842 |
} |
843 | 843 |
*_os << std::endl; |
844 | 844 |
} |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
void createArcIndex() { |
848 | 848 |
_writer_bits::MapStorageBase<Arc>* label = 0; |
849 | 849 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
850 | 850 |
it != _arc_maps.end(); ++it) { |
851 | 851 |
if (it->first == "label") { |
852 | 852 |
label = it->second; |
853 | 853 |
break; |
854 | 854 |
} |
855 | 855 |
} |
856 | 856 |
|
857 | 857 |
if (label == 0) { |
858 | 858 |
for (ArcIt a(_digraph); a != INVALID; ++a) { |
859 | 859 |
std::ostringstream os; |
860 | 860 |
os << _digraph.id(a); |
861 | 861 |
_arc_index.insert(std::make_pair(a, os.str())); |
862 | 862 |
} |
863 | 863 |
} else { |
864 | 864 |
for (ArcIt a(_digraph); a != INVALID; ++a) { |
865 | 865 |
std::string value = label->get(a); |
866 | 866 |
_arc_index.insert(std::make_pair(a, value)); |
867 | 867 |
} |
868 | 868 |
} |
869 | 869 |
} |
870 | 870 |
|
871 | 871 |
void writeAttributes() { |
872 | 872 |
if (_attributes.empty()) return; |
873 | 873 |
*_os << "@attributes"; |
874 | 874 |
if (!_attributes_caption.empty()) { |
875 | 875 |
_writer_bits::writeToken(*_os << ' ', _attributes_caption); |
876 | 876 |
} |
877 | 877 |
*_os << std::endl; |
878 | 878 |
for (typename Attributes::iterator it = _attributes.begin(); |
879 | 879 |
it != _attributes.end(); ++it) { |
880 | 880 |
_writer_bits::writeToken(*_os, it->first) << ' '; |
881 | 881 |
_writer_bits::writeToken(*_os, it->second->get()); |
882 | 882 |
*_os << std::endl; |
883 | 883 |
} |
884 | 884 |
} |
885 | 885 |
|
886 | 886 |
public: |
887 | 887 |
|
888 | 888 |
/// \name Execution of the writer |
889 | 889 |
/// @{ |
890 | 890 |
|
891 | 891 |
/// \brief Start the batch processing |
892 | 892 |
/// |
893 | 893 |
/// This function starts the batch processing. |
894 | 894 |
void run() { |
895 | 895 |
if (!_skip_nodes) { |
896 | 896 |
writeNodes(); |
897 | 897 |
} else { |
898 | 898 |
createNodeIndex(); |
899 | 899 |
} |
900 | 900 |
if (!_skip_arcs) { |
901 | 901 |
writeArcs(); |
902 | 902 |
} else { |
903 | 903 |
createArcIndex(); |
904 | 904 |
} |
905 | 905 |
writeAttributes(); |
906 | 906 |
} |
907 | 907 |
|
908 | 908 |
/// \brief Give back the stream of the writer |
909 | 909 |
/// |
910 | 910 |
/// Give back the stream of the writer. |
911 | 911 |
std::ostream& ostream() { |
912 | 912 |
return *_os; |
913 | 913 |
} |
914 | 914 |
|
915 | 915 |
/// @} |
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
/// \brief Return a \ref DigraphWriter class |
919 | 919 |
/// |
920 | 920 |
/// This function just returns a \ref DigraphWriter class. |
921 | 921 |
/// \relates DigraphWriter |
922 | 922 |
template <typename Digraph> |
923 | 923 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
924 | 924 |
std::ostream& os) { |
925 | 925 |
DigraphWriter<Digraph> tmp(digraph, os); |
926 | 926 |
return tmp; |
927 | 927 |
} |
928 | 928 |
|
929 | 929 |
/// \brief Return a \ref DigraphWriter class |
930 | 930 |
/// |
931 | 931 |
/// This function just returns a \ref DigraphWriter class. |
932 | 932 |
/// \relates DigraphWriter |
933 | 933 |
template <typename Digraph> |
934 | 934 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
935 | 935 |
const std::string& fn) { |
936 | 936 |
DigraphWriter<Digraph> tmp(digraph, fn); |
937 | 937 |
return tmp; |
938 | 938 |
} |
939 | 939 |
|
940 | 940 |
/// \brief Return a \ref DigraphWriter class |
941 | 941 |
/// |
942 | 942 |
/// This function just returns a \ref DigraphWriter class. |
943 | 943 |
/// \relates DigraphWriter |
944 | 944 |
template <typename Digraph> |
945 | 945 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
946 | 946 |
const char* fn) { |
947 | 947 |
DigraphWriter<Digraph> tmp(digraph, fn); |
948 | 948 |
return tmp; |
949 | 949 |
} |
950 | 950 |
|
951 | 951 |
template <typename Graph> |
952 | 952 |
class GraphWriter; |
953 | 953 |
|
954 | 954 |
template <typename Graph> |
955 | 955 |
GraphWriter<Graph> graphWriter(const Graph& graph, |
956 | 956 |
std::ostream& os = std::cout); |
957 | 957 |
template <typename Graph> |
958 | 958 |
GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn); |
959 | 959 |
template <typename Graph> |
960 | 960 |
GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn); |
961 | 961 |
|
962 | 962 |
/// \ingroup lemon_io |
963 | 963 |
/// |
964 | 964 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
965 | 965 |
/// |
966 | 966 |
/// This utility writes an \ref lgf-format "LGF" file. |
967 | 967 |
/// |
968 | 968 |
/// It can be used almost the same way as \c DigraphWriter. |
969 | 969 |
/// The only difference is that this class can handle edges and |
970 | 970 |
/// edge maps as well as arcs and arc maps. |
971 | 971 |
/// |
972 | 972 |
/// The arc maps are written into the file as two columns, the |
973 | 973 |
/// caption of the columns are the name of the map prefixed with \c |
974 | 974 |
/// '+' and \c '-'. The arcs are written into the \c \@attributes |
975 | 975 |
/// section as a \c '+' or a \c '-' prefix (depends on the direction |
976 | 976 |
/// of the arc) and the label of corresponding edge. |
977 | 977 |
template <typename _Graph> |
978 | 978 |
class GraphWriter { |
979 | 979 |
public: |
980 | 980 |
|
981 | 981 |
typedef _Graph Graph; |
982 | 982 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
983 | 983 |
|
984 | 984 |
private: |
985 | 985 |
|
986 | 986 |
|
987 | 987 |
std::ostream* _os; |
988 | 988 |
bool local_os; |
989 | 989 |
|
990 | 990 |
const Graph& _graph; |
991 | 991 |
|
992 | 992 |
std::string _nodes_caption; |
993 | 993 |
std::string _edges_caption; |
994 | 994 |
std::string _attributes_caption; |
995 | 995 |
|
996 | 996 |
typedef std::map<Node, std::string> NodeIndex; |
997 | 997 |
NodeIndex _node_index; |
998 | 998 |
typedef std::map<Edge, std::string> EdgeIndex; |
999 | 999 |
EdgeIndex _edge_index; |
1000 | 1000 |
|
1001 | 1001 |
typedef std::vector<std::pair<std::string, |
1002 | 1002 |
_writer_bits::MapStorageBase<Node>* > > NodeMaps; |
1003 | 1003 |
NodeMaps _node_maps; |
1004 | 1004 |
|
1005 | 1005 |
typedef std::vector<std::pair<std::string, |
1006 | 1006 |
_writer_bits::MapStorageBase<Edge>* > >EdgeMaps; |
1007 | 1007 |
EdgeMaps _edge_maps; |
1008 | 1008 |
|
1009 | 1009 |
typedef std::vector<std::pair<std::string, |
1010 | 1010 |
_writer_bits::ValueStorageBase*> > Attributes; |
1011 | 1011 |
Attributes _attributes; |
1012 | 1012 |
|
1013 | 1013 |
bool _skip_nodes; |
1014 | 1014 |
bool _skip_edges; |
1015 | 1015 |
|
1016 | 1016 |
public: |
1017 | 1017 |
|
1018 | 1018 |
/// \brief Constructor |
1019 | 1019 |
/// |
1020 | 1020 |
/// Construct a directed graph writer, which writes to the given |
1021 | 1021 |
/// output stream. |
1022 | 1022 |
GraphWriter(const Graph& graph, std::ostream& os = std::cout) |
1023 | 1023 |
: _os(&os), local_os(false), _graph(graph), |
1024 | 1024 |
_skip_nodes(false), _skip_edges(false) {} |
1025 | 1025 |
|
1026 | 1026 |
/// \brief Constructor |
1027 | 1027 |
/// |
1028 | 1028 |
/// Construct a directed graph writer, which writes to the given |
1029 | 1029 |
/// output file. |
1030 | 1030 |
GraphWriter(const Graph& graph, const std::string& fn) |
1031 | 1031 |
: _os(new std::ofstream(fn.c_str())), local_os(true), _graph(graph), |
1032 | 1032 |
_skip_nodes(false), _skip_edges(false) { |
1033 | 1033 |
if (!(*_os)) { |
1034 | 1034 |
delete _os; |
1035 | 1035 |
throw IoError("Cannot write file", fn); |
1036 | 1036 |
} |
1037 | 1037 |
} |
1038 | 1038 |
|
1039 | 1039 |
/// \brief Constructor |
1040 | 1040 |
/// |
1041 | 1041 |
/// Construct a directed graph writer, which writes to the given |
1042 | 1042 |
/// output file. |
1043 | 1043 |
GraphWriter(const Graph& graph, const char* fn) |
1044 | 1044 |
: _os(new std::ofstream(fn)), local_os(true), _graph(graph), |
1045 | 1045 |
_skip_nodes(false), _skip_edges(false) { |
1046 | 1046 |
if (!(*_os)) { |
1047 | 1047 |
delete _os; |
1048 | 1048 |
throw IoError("Cannot write file", fn); |
1049 | 1049 |
} |
1050 | 1050 |
} |
1051 | 1051 |
|
1052 | 1052 |
/// \brief Destructor |
1053 | 1053 |
~GraphWriter() { |
1054 | 1054 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1055 | 1055 |
it != _node_maps.end(); ++it) { |
1056 | 1056 |
delete it->second; |
1057 | 1057 |
} |
1058 | 1058 |
|
1059 | 1059 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1060 | 1060 |
it != _edge_maps.end(); ++it) { |
1061 | 1061 |
delete it->second; |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
for (typename Attributes::iterator it = _attributes.begin(); |
1065 | 1065 |
it != _attributes.end(); ++it) { |
1066 | 1066 |
delete it->second; |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
if (local_os) { |
1070 | 1070 |
delete _os; |
1071 | 1071 |
} |
1072 | 1072 |
} |
1073 | 1073 |
|
1074 | 1074 |
private: |
1075 | 1075 |
|
1076 | 1076 |
template <typename GR> |
1077 | 1077 |
friend GraphWriter<GR> graphWriter(const GR& graph, |
1078 | 1078 |
std::ostream& os); |
1079 | 1079 |
template <typename GR> |
1080 | 1080 |
friend GraphWriter<GR> graphWriter(const GR& graph, |
1081 | 1081 |
const std::string& fn); |
1082 | 1082 |
template <typename GR> |
1083 | 1083 |
friend GraphWriter<GR> graphWriter(const GR& graph, |
1084 | 1084 |
const char *fn); |
1085 | 1085 |
|
1086 | 1086 |
GraphWriter(GraphWriter& other) |
1087 | 1087 |
: _os(other._os), local_os(other.local_os), _graph(other._graph), |
1088 | 1088 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1089 | 1089 |
|
1090 | 1090 |
other._os = 0; |
1091 | 1091 |
other.local_os = false; |
1092 | 1092 |
|
1093 | 1093 |
_node_index.swap(other._node_index); |
1094 | 1094 |
_edge_index.swap(other._edge_index); |
1095 | 1095 |
|
1096 | 1096 |
_node_maps.swap(other._node_maps); |
1097 | 1097 |
_edge_maps.swap(other._edge_maps); |
1098 | 1098 |
_attributes.swap(other._attributes); |
1099 | 1099 |
|
1100 | 1100 |
_nodes_caption = other._nodes_caption; |
1101 | 1101 |
_edges_caption = other._edges_caption; |
1102 | 1102 |
_attributes_caption = other._attributes_caption; |
1103 | 1103 |
} |
1104 | 1104 |
|
1105 | 1105 |
GraphWriter& operator=(const GraphWriter&); |
1106 | 1106 |
|
1107 | 1107 |
public: |
1108 | 1108 |
|
1109 | 1109 |
/// \name Writing rules |
1110 | 1110 |
/// @{ |
1111 | 1111 |
|
1112 | 1112 |
/// \brief Node map writing rule |
1113 | 1113 |
/// |
1114 | 1114 |
/// Add a node map writing rule to the writer. |
1115 | 1115 |
template <typename Map> |
1116 | 1116 |
GraphWriter& nodeMap(const std::string& caption, const Map& map) { |
1117 | 1117 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1118 | 1118 |
_writer_bits::MapStorageBase<Node>* storage = |
1119 | 1119 |
new _writer_bits::MapStorage<Node, Map>(map); |
1120 | 1120 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1121 | 1121 |
return *this; |
1122 | 1122 |
} |
1123 | 1123 |
|
1124 | 1124 |
/// \brief Node map writing rule |
1125 | 1125 |
/// |
1126 | 1126 |
/// Add a node map writing rule with specialized converter to the |
1127 | 1127 |
/// writer. |
1128 | 1128 |
template <typename Map, typename Converter> |
1129 | 1129 |
GraphWriter& nodeMap(const std::string& caption, const Map& map, |
1130 | 1130 |
const Converter& converter = Converter()) { |
1131 | 1131 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1132 | 1132 |
_writer_bits::MapStorageBase<Node>* storage = |
1133 | 1133 |
new _writer_bits::MapStorage<Node, Map, Converter>(map, converter); |
1134 | 1134 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1135 | 1135 |
return *this; |
1136 | 1136 |
} |
1137 | 1137 |
|
1138 | 1138 |
/// \brief Edge map writing rule |
1139 | 1139 |
/// |
1140 | 1140 |
/// Add an edge map writing rule to the writer. |
1141 | 1141 |
template <typename Map> |
1142 | 1142 |
GraphWriter& edgeMap(const std::string& caption, const Map& map) { |
1143 | 1143 |
checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>(); |
1144 | 1144 |
_writer_bits::MapStorageBase<Edge>* storage = |
1145 | 1145 |
new _writer_bits::MapStorage<Edge, Map>(map); |
1146 | 1146 |
_edge_maps.push_back(std::make_pair(caption, storage)); |
1147 | 1147 |
return *this; |
1148 | 1148 |
} |
1149 | 1149 |
|
1150 | 1150 |
/// \brief Edge map writing rule |
1151 | 1151 |
/// |
1152 | 1152 |
/// Add an edge map writing rule with specialized converter to the |
1153 | 1153 |
/// writer. |
1154 | 1154 |
template <typename Map, typename Converter> |
1155 | 1155 |
GraphWriter& edgeMap(const std::string& caption, const Map& map, |
1156 | 1156 |
const Converter& converter = Converter()) { |
1157 | 1157 |
checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>(); |
1158 | 1158 |
_writer_bits::MapStorageBase<Edge>* storage = |
1159 | 1159 |
new _writer_bits::MapStorage<Edge, Map, Converter>(map, converter); |
1160 | 1160 |
_edge_maps.push_back(std::make_pair(caption, storage)); |
1161 | 1161 |
return *this; |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
/// \brief Arc map writing rule |
1165 | 1165 |
/// |
1166 | 1166 |
/// Add an arc map writing rule to the writer. |
1167 | 1167 |
template <typename Map> |
1168 | 1168 |
GraphWriter& arcMap(const std::string& caption, const Map& map) { |
1169 | 1169 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
1170 | 1170 |
_writer_bits::MapStorageBase<Edge>* forward_storage = |
1171 | 1171 |
new _writer_bits::GraphArcMapStorage<Graph, true, Map>(_graph, map); |
1172 | 1172 |
_edge_maps.push_back(std::make_pair('+' + caption, forward_storage)); |
1173 | 1173 |
_writer_bits::MapStorageBase<Edge>* backward_storage = |
1174 | 1174 |
new _writer_bits::GraphArcMapStorage<Graph, false, Map>(_graph, map); |
1175 | 1175 |
_edge_maps.push_back(std::make_pair('-' + caption, backward_storage)); |
1176 | 1176 |
return *this; |
1177 | 1177 |
} |
1178 | 1178 |
|
1179 | 1179 |
/// \brief Arc map writing rule |
1180 | 1180 |
/// |
1181 | 1181 |
/// Add an arc map writing rule with specialized converter to the |
1182 | 1182 |
/// writer. |
1183 | 1183 |
template <typename Map, typename Converter> |
1184 | 1184 |
GraphWriter& arcMap(const std::string& caption, const Map& map, |
1185 | 1185 |
const Converter& converter = Converter()) { |
1186 | 1186 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
1187 | 1187 |
_writer_bits::MapStorageBase<Edge>* forward_storage = |
1188 | 1188 |
new _writer_bits::GraphArcMapStorage<Graph, true, Map, Converter> |
1189 | 1189 |
(_graph, map, converter); |
1190 | 1190 |
_edge_maps.push_back(std::make_pair('+' + caption, forward_storage)); |
1191 | 1191 |
_writer_bits::MapStorageBase<Edge>* backward_storage = |
1192 | 1192 |
new _writer_bits::GraphArcMapStorage<Graph, false, Map, Converter> |
1193 | 1193 |
(_graph, map, converter); |
1194 | 1194 |
_edge_maps.push_back(std::make_pair('-' + caption, backward_storage)); |
1195 | 1195 |
return *this; |
1196 | 1196 |
} |
1197 | 1197 |
|
1198 | 1198 |
/// \brief Attribute writing rule |
1199 | 1199 |
/// |
1200 | 1200 |
/// Add an attribute writing rule to the writer. |
1201 | 1201 |
template <typename Value> |
1202 | 1202 |
GraphWriter& attribute(const std::string& caption, const Value& value) { |
1203 | 1203 |
_writer_bits::ValueStorageBase* storage = |
1204 | 1204 |
new _writer_bits::ValueStorage<Value>(value); |
1205 | 1205 |
_attributes.push_back(std::make_pair(caption, storage)); |
1206 | 1206 |
return *this; |
1207 | 1207 |
} |
1208 | 1208 |
|
1209 | 1209 |
/// \brief Attribute writing rule |
1210 | 1210 |
/// |
1211 | 1211 |
/// Add an attribute writing rule with specialized converter to the |
1212 | 1212 |
/// writer. |
1213 | 1213 |
template <typename Value, typename Converter> |
1214 | 1214 |
GraphWriter& attribute(const std::string& caption, const Value& value, |
1215 | 1215 |
const Converter& converter = Converter()) { |
1216 | 1216 |
_writer_bits::ValueStorageBase* storage = |
1217 | 1217 |
new _writer_bits::ValueStorage<Value, Converter>(value, converter); |
1218 | 1218 |
_attributes.push_back(std::make_pair(caption, storage)); |
1219 | 1219 |
return *this; |
1220 | 1220 |
} |
1221 | 1221 |
|
1222 | 1222 |
/// \brief Node writing rule |
1223 | 1223 |
/// |
1224 | 1224 |
/// Add a node writing rule to the writer. |
1225 | 1225 |
GraphWriter& node(const std::string& caption, const Node& node) { |
1226 | 1226 |
typedef _writer_bits::MapLookUpConverter<Node> Converter; |
1227 | 1227 |
Converter converter(_node_index); |
1228 | 1228 |
_writer_bits::ValueStorageBase* storage = |
1229 | 1229 |
new _writer_bits::ValueStorage<Node, Converter>(node, converter); |
1230 | 1230 |
_attributes.push_back(std::make_pair(caption, storage)); |
1231 | 1231 |
return *this; |
1232 | 1232 |
} |
1233 | 1233 |
|
1234 | 1234 |
/// \brief Edge writing rule |
1235 | 1235 |
/// |
1236 | 1236 |
/// Add an edge writing rule to writer. |
1237 | 1237 |
GraphWriter& edge(const std::string& caption, const Edge& edge) { |
1238 | 1238 |
typedef _writer_bits::MapLookUpConverter<Edge> Converter; |
1239 | 1239 |
Converter converter(_edge_index); |
1240 | 1240 |
_writer_bits::ValueStorageBase* storage = |
1241 | 1241 |
new _writer_bits::ValueStorage<Edge, Converter>(edge, converter); |
1242 | 1242 |
_attributes.push_back(std::make_pair(caption, storage)); |
1243 | 1243 |
return *this; |
1244 | 1244 |
} |
1245 | 1245 |
|
1246 | 1246 |
/// \brief Arc writing rule |
1247 | 1247 |
/// |
1248 | 1248 |
/// Add an arc writing rule to writer. |
1249 | 1249 |
GraphWriter& arc(const std::string& caption, const Arc& arc) { |
1250 | 1250 |
typedef _writer_bits::GraphArcLookUpConverter<Graph> Converter; |
1251 | 1251 |
Converter converter(_graph, _edge_index); |
1252 | 1252 |
_writer_bits::ValueStorageBase* storage = |
1253 | 1253 |
new _writer_bits::ValueStorage<Arc, Converter>(arc, converter); |
1254 | 1254 |
_attributes.push_back(std::make_pair(caption, storage)); |
1255 | 1255 |
return *this; |
1256 | 1256 |
} |
1257 | 1257 |
|
1258 | 1258 |
/// \name Section captions |
1259 | 1259 |
/// @{ |
1260 | 1260 |
|
1261 | 1261 |
/// \brief Add an additional caption to the \c \@nodes section |
1262 | 1262 |
/// |
1263 | 1263 |
/// Add an additional caption to the \c \@nodes section. |
1264 | 1264 |
GraphWriter& nodes(const std::string& caption) { |
1265 | 1265 |
_nodes_caption = caption; |
1266 | 1266 |
return *this; |
1267 | 1267 |
} |
1268 | 1268 |
|
1269 | 1269 |
/// \brief Add an additional caption to the \c \@arcs section |
1270 | 1270 |
/// |
1271 | 1271 |
/// Add an additional caption to the \c \@arcs section. |
1272 | 1272 |
GraphWriter& edges(const std::string& caption) { |
1273 | 1273 |
_edges_caption = caption; |
1274 | 1274 |
return *this; |
1275 | 1275 |
} |
1276 | 1276 |
|
1277 | 1277 |
/// \brief Add an additional caption to the \c \@attributes section |
1278 | 1278 |
/// |
1279 | 1279 |
/// Add an additional caption to the \c \@attributes section. |
1280 | 1280 |
GraphWriter& attributes(const std::string& caption) { |
1281 | 1281 |
_attributes_caption = caption; |
1282 | 1282 |
return *this; |
1283 | 1283 |
} |
1284 | 1284 |
|
1285 | 1285 |
/// \name Skipping section |
1286 | 1286 |
/// @{ |
1287 | 1287 |
|
1288 | 1288 |
/// \brief Skip writing the node set |
1289 | 1289 |
/// |
1290 | 1290 |
/// The \c \@nodes section will not be written to the stream. |
1291 | 1291 |
GraphWriter& skipNodes() { |
1292 | 1292 |
LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member"); |
1293 | 1293 |
_skip_nodes = true; |
1294 | 1294 |
return *this; |
1295 | 1295 |
} |
1296 | 1296 |
|
1297 | 1297 |
/// \brief Skip writing edge set |
1298 | 1298 |
/// |
1299 | 1299 |
/// The \c \@edges section will not be written to the stream. |
1300 | 1300 |
GraphWriter& skipEdges() { |
1301 | 1301 |
LEMON_ASSERT(!_skip_edges, "Multiple usage of skipEdges() member"); |
1302 | 1302 |
_skip_edges = true; |
1303 | 1303 |
return *this; |
1304 | 1304 |
} |
1305 | 1305 |
|
1306 | 1306 |
/// @} |
1307 | 1307 |
|
1308 | 1308 |
private: |
1309 | 1309 |
|
1310 | 1310 |
void writeNodes() { |
1311 | 1311 |
_writer_bits::MapStorageBase<Node>* label = 0; |
1312 | 1312 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1313 | 1313 |
it != _node_maps.end(); ++it) { |
1314 | 1314 |
if (it->first == "label") { |
1315 | 1315 |
label = it->second; |
1316 | 1316 |
break; |
1317 | 1317 |
} |
1318 | 1318 |
} |
1319 | 1319 |
|
1320 | 1320 |
*_os << "@nodes"; |
1321 | 1321 |
if (!_nodes_caption.empty()) { |
1322 | 1322 |
_writer_bits::writeToken(*_os << ' ', _nodes_caption); |
1323 | 1323 |
} |
1324 | 1324 |
*_os << std::endl; |
1325 | 1325 |
|
1326 | 1326 |
if (label == 0) { |
1327 | 1327 |
*_os << "label" << '\t'; |
1328 | 1328 |
} |
1329 | 1329 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1330 | 1330 |
it != _node_maps.end(); ++it) { |
1331 | 1331 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
1332 | 1332 |
} |
1333 | 1333 |
*_os << std::endl; |
1334 | 1334 |
|
1335 | 1335 |
std::vector<Node> nodes; |
1336 | 1336 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1337 | 1337 |
nodes.push_back(n); |
1338 | 1338 |
} |
1339 | 1339 |
|
1340 | 1340 |
if (label == 0) { |
1341 | 1341 |
IdMap<Graph, Node> id_map(_graph); |
1342 | 1342 |
_writer_bits::MapLess<IdMap<Graph, Node> > id_less(id_map); |
1343 | 1343 |
std::sort(nodes.begin(), nodes.end(), id_less); |
1344 | 1344 |
} else { |
1345 | 1345 |
label->sort(nodes); |
1346 | 1346 |
} |
1347 | 1347 |
|
1348 | 1348 |
for (int i = 0; i < static_cast<int>(nodes.size()); ++i) { |
1349 | 1349 |
Node n = nodes[i]; |
1350 | 1350 |
if (label == 0) { |
1351 | 1351 |
std::ostringstream os; |
1352 | 1352 |
os << _graph.id(n); |
1353 | 1353 |
_writer_bits::writeToken(*_os, os.str()); |
1354 | 1354 |
*_os << '\t'; |
1355 | 1355 |
_node_index.insert(std::make_pair(n, os.str())); |
1356 | 1356 |
} |
1357 | 1357 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1358 | 1358 |
it != _node_maps.end(); ++it) { |
1359 | 1359 |
std::string value = it->second->get(n); |
1360 | 1360 |
_writer_bits::writeToken(*_os, value); |
1361 | 1361 |
if (it->first == "label") { |
1362 | 1362 |
_node_index.insert(std::make_pair(n, value)); |
1363 | 1363 |
} |
1364 | 1364 |
*_os << '\t'; |
1365 | 1365 |
} |
1366 | 1366 |
*_os << std::endl; |
1367 | 1367 |
} |
1368 | 1368 |
} |
1369 | 1369 |
|
1370 | 1370 |
void createNodeIndex() { |
1371 | 1371 |
_writer_bits::MapStorageBase<Node>* label = 0; |
1372 | 1372 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1373 | 1373 |
it != _node_maps.end(); ++it) { |
1374 | 1374 |
if (it->first == "label") { |
1375 | 1375 |
label = it->second; |
1376 | 1376 |
break; |
1377 | 1377 |
} |
1378 | 1378 |
} |
1379 | 1379 |
|
1380 | 1380 |
if (label == 0) { |
1381 | 1381 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1382 | 1382 |
std::ostringstream os; |
1383 | 1383 |
os << _graph.id(n); |
1384 | 1384 |
_node_index.insert(std::make_pair(n, os.str())); |
1385 | 1385 |
} |
1386 | 1386 |
} else { |
1387 | 1387 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1388 | 1388 |
std::string value = label->get(n); |
1389 | 1389 |
_node_index.insert(std::make_pair(n, value)); |
1390 | 1390 |
} |
1391 | 1391 |
} |
1392 | 1392 |
} |
1393 | 1393 |
|
1394 | 1394 |
void writeEdges() { |
1395 | 1395 |
_writer_bits::MapStorageBase<Edge>* label = 0; |
1396 | 1396 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1397 | 1397 |
it != _edge_maps.end(); ++it) { |
1398 | 1398 |
if (it->first == "label") { |
1399 | 1399 |
label = it->second; |
1400 | 1400 |
break; |
1401 | 1401 |
} |
1402 | 1402 |
} |
1403 | 1403 |
|
1404 | 1404 |
*_os << "@edges"; |
1405 | 1405 |
if (!_edges_caption.empty()) { |
1406 | 1406 |
_writer_bits::writeToken(*_os << ' ', _edges_caption); |
1407 | 1407 |
} |
1408 | 1408 |
*_os << std::endl; |
1409 | 1409 |
|
1410 | 1410 |
*_os << '\t' << '\t'; |
1411 | 1411 |
if (label == 0) { |
1412 | 1412 |
*_os << "label" << '\t'; |
1413 | 1413 |
} |
1414 | 1414 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1415 | 1415 |
it != _edge_maps.end(); ++it) { |
1416 | 1416 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
1417 | 1417 |
} |
1418 | 1418 |
*_os << std::endl; |
1419 | 1419 |
|
1420 | 1420 |
std::vector<Edge> edges; |
1421 | 1421 |
for (EdgeIt n(_graph); n != INVALID; ++n) { |
1422 | 1422 |
edges.push_back(n); |
1423 | 1423 |
} |
1424 | 1424 |
|
1425 | 1425 |
if (label == 0) { |
1426 | 1426 |
IdMap<Graph, Edge> id_map(_graph); |
1427 | 1427 |
_writer_bits::MapLess<IdMap<Graph, Edge> > id_less(id_map); |
1428 | 1428 |
std::sort(edges.begin(), edges.end(), id_less); |
1429 | 1429 |
} else { |
1430 | 1430 |
label->sort(edges); |
1431 | 1431 |
} |
1432 | 1432 |
|
1433 | 1433 |
for (int i = 0; i < static_cast<int>(edges.size()); ++i) { |
1434 | 1434 |
Edge e = edges[i]; |
1435 | 1435 |
_writer_bits::writeToken(*_os, _node_index. |
1436 | 1436 |
find(_graph.u(e))->second); |
1437 | 1437 |
*_os << '\t'; |
1438 | 1438 |
_writer_bits::writeToken(*_os, _node_index. |
1439 | 1439 |
find(_graph.v(e))->second); |
1440 | 1440 |
*_os << '\t'; |
1441 | 1441 |
if (label == 0) { |
1442 | 1442 |
std::ostringstream os; |
1443 | 1443 |
os << _graph.id(e); |
1444 | 1444 |
_writer_bits::writeToken(*_os, os.str()); |
1445 | 1445 |
*_os << '\t'; |
1446 | 1446 |
_edge_index.insert(std::make_pair(e, os.str())); |
1447 | 1447 |
} |
1448 | 1448 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1449 | 1449 |
it != _edge_maps.end(); ++it) { |
1450 | 1450 |
std::string value = it->second->get(e); |
1451 | 1451 |
_writer_bits::writeToken(*_os, value); |
1452 | 1452 |
if (it->first == "label") { |
1453 | 1453 |
_edge_index.insert(std::make_pair(e, value)); |
1454 | 1454 |
} |
1455 | 1455 |
*_os << '\t'; |
1456 | 1456 |
} |
1457 | 1457 |
*_os << std::endl; |
1458 | 1458 |
} |
1459 | 1459 |
} |
1460 | 1460 |
|
1461 | 1461 |
void createEdgeIndex() { |
1462 | 1462 |
_writer_bits::MapStorageBase<Edge>* label = 0; |
1463 | 1463 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1464 | 1464 |
it != _edge_maps.end(); ++it) { |
1465 | 1465 |
if (it->first == "label") { |
1466 | 1466 |
label = it->second; |
1467 | 1467 |
break; |
1468 | 1468 |
} |
1469 | 1469 |
} |
1470 | 1470 |
|
1471 | 1471 |
if (label == 0) { |
1472 | 1472 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1473 | 1473 |
std::ostringstream os; |
1474 | 1474 |
os << _graph.id(e); |
1475 | 1475 |
_edge_index.insert(std::make_pair(e, os.str())); |
1476 | 1476 |
} |
1477 | 1477 |
} else { |
1478 | 1478 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1479 | 1479 |
std::string value = label->get(e); |
1480 | 1480 |
_edge_index.insert(std::make_pair(e, value)); |
1481 | 1481 |
} |
1482 | 1482 |
} |
1483 | 1483 |
} |
1484 | 1484 |
|
1485 | 1485 |
void writeAttributes() { |
1486 | 1486 |
if (_attributes.empty()) return; |
1487 | 1487 |
*_os << "@attributes"; |
1488 | 1488 |
if (!_attributes_caption.empty()) { |
1489 | 1489 |
_writer_bits::writeToken(*_os << ' ', _attributes_caption); |
1490 | 1490 |
} |
1491 | 1491 |
*_os << std::endl; |
1492 | 1492 |
for (typename Attributes::iterator it = _attributes.begin(); |
1493 | 1493 |
it != _attributes.end(); ++it) { |
1494 | 1494 |
_writer_bits::writeToken(*_os, it->first) << ' '; |
1495 | 1495 |
_writer_bits::writeToken(*_os, it->second->get()); |
1496 | 1496 |
*_os << std::endl; |
1497 | 1497 |
} |
1498 | 1498 |
} |
1499 | 1499 |
|
1500 | 1500 |
public: |
1501 | 1501 |
|
1502 | 1502 |
/// \name Execution of the writer |
1503 | 1503 |
/// @{ |
1504 | 1504 |
|
1505 | 1505 |
/// \brief Start the batch processing |
1506 | 1506 |
/// |
1507 | 1507 |
/// This function starts the batch processing. |
1508 | 1508 |
void run() { |
1509 | 1509 |
if (!_skip_nodes) { |
1510 | 1510 |
writeNodes(); |
1511 | 1511 |
} else { |
1512 | 1512 |
createNodeIndex(); |
1513 | 1513 |
} |
1514 | 1514 |
if (!_skip_edges) { |
1515 | 1515 |
writeEdges(); |
1516 | 1516 |
} else { |
1517 | 1517 |
createEdgeIndex(); |
1518 | 1518 |
} |
1519 | 1519 |
writeAttributes(); |
1520 | 1520 |
} |
1521 | 1521 |
|
1522 | 1522 |
/// \brief Give back the stream of the writer |
1523 | 1523 |
/// |
1524 | 1524 |
/// Give back the stream of the writer |
1525 | 1525 |
std::ostream& ostream() { |
1526 | 1526 |
return *_os; |
1527 | 1527 |
} |
1528 | 1528 |
|
1529 | 1529 |
/// @} |
1530 | 1530 |
}; |
1531 | 1531 |
|
1532 | 1532 |
/// \brief Return a \ref GraphWriter class |
1533 | 1533 |
/// |
1534 | 1534 |
/// This function just returns a \ref GraphWriter class. |
1535 | 1535 |
/// \relates GraphWriter |
1536 | 1536 |
template <typename Graph> |
1537 | 1537 |
GraphWriter<Graph> graphWriter(const Graph& graph, |
1538 | 1538 |
std::ostream& os) { |
1539 | 1539 |
GraphWriter<Graph> tmp(graph, os); |
1540 | 1540 |
return tmp; |
1541 | 1541 |
} |
1542 | 1542 |
|
1543 | 1543 |
/// \brief Return a \ref GraphWriter class |
1544 | 1544 |
/// |
1545 | 1545 |
/// This function just returns a \ref GraphWriter class. |
1546 | 1546 |
/// \relates GraphWriter |
1547 | 1547 |
template <typename Graph> |
1548 | 1548 |
GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn) { |
1549 | 1549 |
GraphWriter<Graph> tmp(graph, fn); |
1550 | 1550 |
return tmp; |
1551 | 1551 |
} |
1552 | 1552 |
|
1553 | 1553 |
/// \brief Return a \ref GraphWriter class |
1554 | 1554 |
/// |
1555 | 1555 |
/// This function just returns a \ref GraphWriter class. |
1556 | 1556 |
/// \relates GraphWriter |
1557 | 1557 |
template <typename Graph> |
1558 | 1558 |
GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn) { |
1559 | 1559 |
GraphWriter<Graph> tmp(graph, fn); |
1560 | 1560 |
return tmp; |
1561 | 1561 |
} |
1562 | 1562 |
|
1563 | 1563 |
class SectionWriter; |
1564 | 1564 |
|
1565 | 1565 |
SectionWriter sectionWriter(std::istream& is); |
1566 | 1566 |
SectionWriter sectionWriter(const std::string& fn); |
1567 | 1567 |
SectionWriter sectionWriter(const char* fn); |
1568 | 1568 |
|
1569 | 1569 |
/// \ingroup lemon_io |
1570 | 1570 |
/// |
1571 | 1571 |
/// \brief Section writer class |
1572 | 1572 |
/// |
1573 | 1573 |
/// In the \ref lgf-format "LGF" file extra sections can be placed, |
1574 | 1574 |
/// which contain any data in arbitrary format. Such sections can be |
1575 | 1575 |
/// written with this class. A writing rule can be added to the |
1576 | 1576 |
/// class with two different functions. With the \c sectionLines() |
1577 | 1577 |
/// function a generator can write the section line-by-line, while |
1578 | 1578 |
/// with the \c sectionStream() member the section can be written to |
1579 | 1579 |
/// an output stream. |
1580 | 1580 |
class SectionWriter { |
1581 | 1581 |
private: |
1582 | 1582 |
|
1583 | 1583 |
std::ostream* _os; |
1584 | 1584 |
bool local_os; |
1585 | 1585 |
|
1586 | 1586 |
typedef std::vector<std::pair<std::string, _writer_bits::Section*> > |
1587 | 1587 |
Sections; |
1588 | 1588 |
|
1589 | 1589 |
Sections _sections; |
1590 | 1590 |
|
1591 | 1591 |
public: |
1592 | 1592 |
|
1593 | 1593 |
/// \brief Constructor |
1594 | 1594 |
/// |
1595 | 1595 |
/// Construct a section writer, which writes to the given output |
1596 | 1596 |
/// stream. |
1597 | 1597 |
SectionWriter(std::ostream& os) |
1598 | 1598 |
: _os(&os), local_os(false) {} |
1599 | 1599 |
|
1600 | 1600 |
/// \brief Constructor |
1601 | 1601 |
/// |
1602 | 1602 |
/// Construct a section writer, which writes into the given file. |
1603 | 1603 |
SectionWriter(const std::string& fn) |
1604 | 1604 |
: _os(new std::ofstream(fn.c_str())), local_os(true) { |
1605 | 1605 |
if (!(*_os)) { |
1606 | 1606 |
delete _os; |
1607 | 1607 |
throw IoError("Cannot write file", fn); |
1608 | 1608 |
} |
1609 | 1609 |
} |
1610 | 1610 |
|
1611 | 1611 |
/// \brief Constructor |
1612 | 1612 |
/// |
1613 | 1613 |
/// Construct a section writer, which writes into the given file. |
1614 | 1614 |
SectionWriter(const char* fn) |
1615 | 1615 |
: _os(new std::ofstream(fn)), local_os(true) { |
1616 | 1616 |
if (!(*_os)) { |
1617 | 1617 |
delete _os; |
1618 | 1618 |
throw IoError("Cannot write file", fn); |
1619 | 1619 |
} |
1620 | 1620 |
} |
1621 | 1621 |
|
1622 | 1622 |
/// \brief Destructor |
1623 | 1623 |
~SectionWriter() { |
1624 | 1624 |
for (Sections::iterator it = _sections.begin(); |
1625 | 1625 |
it != _sections.end(); ++it) { |
1626 | 1626 |
delete it->second; |
1627 | 1627 |
} |
1628 | 1628 |
|
1629 | 1629 |
if (local_os) { |
1630 | 1630 |
delete _os; |
1631 | 1631 |
} |
1632 | 1632 |
|
1633 | 1633 |
} |
1634 | 1634 |
|
1635 | 1635 |
private: |
1636 | 1636 |
|
1637 | 1637 |
friend SectionWriter sectionWriter(std::ostream& os); |
1638 | 1638 |
friend SectionWriter sectionWriter(const std::string& fn); |
1639 | 1639 |
friend SectionWriter sectionWriter(const char* fn); |
1640 | 1640 |
|
1641 | 1641 |
SectionWriter(SectionWriter& other) |
1642 | 1642 |
: _os(other._os), local_os(other.local_os) { |
1643 | 1643 |
|
1644 | 1644 |
other._os = 0; |
1645 | 1645 |
other.local_os = false; |
1646 | 1646 |
|
1647 | 1647 |
_sections.swap(other._sections); |
1648 | 1648 |
} |
1649 | 1649 |
|
1650 | 1650 |
SectionWriter& operator=(const SectionWriter&); |
1651 | 1651 |
|
1652 | 1652 |
public: |
1653 | 1653 |
|
1654 | 1654 |
/// \name Section writers |
1655 | 1655 |
/// @{ |
1656 | 1656 |
|
1657 | 1657 |
/// \brief Add a section writer with line oriented writing |
1658 | 1658 |
/// |
1659 | 1659 |
/// The first parameter is the type descriptor of the section, the |
1660 | 1660 |
/// second is a generator with std::string values. At the writing |
1661 | 1661 |
/// process, the returned \c std::string will be written into the |
1662 | 1662 |
/// output file until it is an empty string. |
1663 | 1663 |
/// |
1664 | 1664 |
/// For example, an integer vector is written into a section. |
1665 | 1665 |
///\code |
1666 | 1666 |
/// @numbers |
1667 | 1667 |
/// 12 45 23 78 |
1668 | 1668 |
/// 4 28 38 28 |
1669 | 1669 |
/// 23 6 16 |
1670 | 1670 |
///\endcode |
1671 | 1671 |
/// |
1672 | 1672 |
/// The generator is implemented as a struct. |
1673 | 1673 |
///\code |
1674 | 1674 |
/// struct NumberSection { |
1675 | 1675 |
/// std::vector<int>::const_iterator _it, _end; |
1676 | 1676 |
/// NumberSection(const std::vector<int>& data) |
1677 | 1677 |
/// : _it(data.begin()), _end(data.end()) {} |
1678 | 1678 |
/// std::string operator()() { |
1679 | 1679 |
/// int rem_in_line = 4; |
1680 | 1680 |
/// std::ostringstream ls; |
1681 | 1681 |
/// while (rem_in_line > 0 && _it != _end) { |
1682 | 1682 |
/// ls << *(_it++) << ' '; |
1683 | 1683 |
/// --rem_in_line; |
1684 | 1684 |
/// } |
1685 | 1685 |
/// return ls.str(); |
1686 | 1686 |
/// } |
1687 | 1687 |
/// }; |
1688 | 1688 |
/// |
1689 | 1689 |
/// // ... |
1690 | 1690 |
/// |
1691 | 1691 |
/// writer.sectionLines("numbers", NumberSection(vec)); |
1692 | 1692 |
///\endcode |
1693 | 1693 |
template <typename Functor> |
1694 | 1694 |
SectionWriter& sectionLines(const std::string& type, Functor functor) { |
1695 | 1695 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
1696 | 1696 |
_sections.push_back(std::make_pair(type, |
1697 | 1697 |
new _writer_bits::LineSection<Functor>(functor))); |
1698 | 1698 |
return *this; |
1699 | 1699 |
} |
1700 | 1700 |
|
1701 | 1701 |
|
1702 | 1702 |
/// \brief Add a section writer with stream oriented writing |
1703 | 1703 |
/// |
1704 | 1704 |
/// The first parameter is the type of the section, the second is |
1705 | 1705 |
/// a functor, which takes a \c std::ostream& parameter. The |
1706 | 1706 |
/// functor writes the section to the output stream. |
1707 | 1707 |
/// \warning The last line must be closed with end-line character. |
1708 | 1708 |
template <typename Functor> |
1709 | 1709 |
SectionWriter& sectionStream(const std::string& type, Functor functor) { |
1710 | 1710 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
1711 | 1711 |
_sections.push_back(std::make_pair(type, |
1712 | 1712 |
new _writer_bits::StreamSection<Functor>(functor))); |
1713 | 1713 |
return *this; |
1714 | 1714 |
} |
1715 | 1715 |
|
1716 | 1716 |
/// @} |
1717 | 1717 |
|
1718 | 1718 |
public: |
1719 | 1719 |
|
1720 | 1720 |
|
1721 | 1721 |
/// \name Execution of the writer |
1722 | 1722 |
/// @{ |
1723 | 1723 |
|
1724 | 1724 |
/// \brief Start the batch processing |
1725 | 1725 |
/// |
1726 | 1726 |
/// This function starts the batch processing. |
1727 | 1727 |
void run() { |
1728 | 1728 |
|
1729 | 1729 |
LEMON_ASSERT(_os != 0, "This writer is assigned to an other writer"); |
1730 | 1730 |
|
1731 | 1731 |
for (Sections::iterator it = _sections.begin(); |
1732 | 1732 |
it != _sections.end(); ++it) { |
1733 | 1733 |
(*_os) << '@' << it->first << std::endl; |
1734 | 1734 |
it->second->process(*_os); |
1735 | 1735 |
} |
1736 | 1736 |
} |
1737 | 1737 |
|
1738 | 1738 |
/// \brief Give back the stream of the writer |
1739 | 1739 |
/// |
1740 | 1740 |
/// Returns the stream of the writer |
1741 | 1741 |
std::ostream& ostream() { |
1742 | 1742 |
return *_os; |
1743 | 1743 |
} |
1744 | 1744 |
|
1745 | 1745 |
/// @} |
1746 | 1746 |
|
1747 | 1747 |
}; |
1748 | 1748 |
|
1749 | 1749 |
/// \brief Return a \ref SectionWriter class |
1750 | 1750 |
/// |
1751 | 1751 |
/// This function just returns a \ref SectionWriter class. |
1752 | 1752 |
/// \relates SectionWriter |
1753 | 1753 |
inline SectionWriter sectionWriter(std::ostream& os) { |
1754 | 1754 |
SectionWriter tmp(os); |
1755 | 1755 |
return tmp; |
1756 | 1756 |
} |
1757 | 1757 |
|
1758 | 1758 |
/// \brief Return a \ref SectionWriter class |
1759 | 1759 |
/// |
1760 | 1760 |
/// This function just returns a \ref SectionWriter class. |
1761 | 1761 |
/// \relates SectionWriter |
1762 | 1762 |
inline SectionWriter sectionWriter(const std::string& fn) { |
1763 | 1763 |
SectionWriter tmp(fn); |
1764 | 1764 |
return tmp; |
1765 | 1765 |
} |
1766 | 1766 |
|
1767 | 1767 |
/// \brief Return a \ref SectionWriter class |
1768 | 1768 |
/// |
1769 | 1769 |
/// This function just returns a \ref SectionWriter class. |
1770 | 1770 |
/// \relates SectionWriter |
1771 | 1771 |
inline SectionWriter sectionWriter(const char* fn) { |
1772 | 1772 |
SectionWriter tmp(fn); |
1773 | 1773 |
return tmp; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph, ListGraph classes. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
#include <lemon/bits/graph_extender.h> |
29 | 29 |
|
30 | 30 |
#include <vector> |
31 | 31 |
#include <list> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
class ListDigraphBase { |
36 | 36 |
|
37 | 37 |
protected: |
38 | 38 |
struct NodeT { |
39 | 39 |
int first_in, first_out; |
40 | 40 |
int prev, next; |
41 | 41 |
}; |
42 | 42 |
|
43 | 43 |
struct ArcT { |
44 | 44 |
int target, source; |
45 | 45 |
int prev_in, prev_out; |
46 | 46 |
int next_in, next_out; |
47 | 47 |
}; |
48 | 48 |
|
49 | 49 |
std::vector<NodeT> nodes; |
50 | 50 |
|
51 | 51 |
int first_node; |
52 | 52 |
|
53 | 53 |
int first_free_node; |
54 | 54 |
|
55 | 55 |
std::vector<ArcT> arcs; |
56 | 56 |
|
57 | 57 |
int first_free_arc; |
58 | 58 |
|
59 | 59 |
public: |
60 | 60 |
|
61 | 61 |
typedef ListDigraphBase Digraph; |
62 | 62 |
|
63 | 63 |
class Node { |
64 | 64 |
friend class ListDigraphBase; |
65 | 65 |
protected: |
66 | 66 |
|
67 | 67 |
int id; |
68 | 68 |
explicit Node(int pid) { id = pid;} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
Node() {} |
72 | 72 |
Node (Invalid) { id = -1; } |
73 | 73 |
bool operator==(const Node& node) const {return id == node.id;} |
74 | 74 |
bool operator!=(const Node& node) const {return id != node.id;} |
75 | 75 |
bool operator<(const Node& node) const {return id < node.id;} |
76 | 76 |
}; |
77 | 77 |
|
78 | 78 |
class Arc { |
79 | 79 |
friend class ListDigraphBase; |
80 | 80 |
protected: |
81 | 81 |
|
82 | 82 |
int id; |
83 | 83 |
explicit Arc(int pid) { id = pid;} |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
Arc() {} |
87 | 87 |
Arc (Invalid) { id = -1; } |
88 | 88 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
89 | 89 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
90 | 90 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
91 | 91 |
}; |
92 | 92 |
|
93 | 93 |
|
94 | 94 |
|
95 | 95 |
ListDigraphBase() |
96 | 96 |
: nodes(), first_node(-1), |
97 | 97 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
int maxNodeId() const { return nodes.size()-1; } |
101 | 101 |
int maxArcId() const { return arcs.size()-1; } |
102 | 102 |
|
103 | 103 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
104 | 104 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
void first(Node& node) const { |
108 | 108 |
node.id = first_node; |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
void next(Node& node) const { |
112 | 112 |
node.id = nodes[node.id].next; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
void first(Arc& arc) const { |
117 | 117 |
int n; |
118 | 118 |
for(n = first_node; |
119 | 119 |
n!=-1 && nodes[n].first_in == -1; |
120 | 120 |
n = nodes[n].next) {} |
121 | 121 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
void next(Arc& arc) const { |
125 | 125 |
if (arcs[arc.id].next_in != -1) { |
126 | 126 |
arc.id = arcs[arc.id].next_in; |
127 | 127 |
} else { |
128 | 128 |
int n; |
129 | 129 |
for(n = nodes[arcs[arc.id].target].next; |
130 | 130 |
n!=-1 && nodes[n].first_in == -1; |
131 | 131 |
n = nodes[n].next) {} |
132 | 132 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
133 | 133 |
} |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
void firstOut(Arc &e, const Node& v) const { |
137 | 137 |
e.id = nodes[v.id].first_out; |
138 | 138 |
} |
139 | 139 |
void nextOut(Arc &e) const { |
140 | 140 |
e.id=arcs[e.id].next_out; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
void firstIn(Arc &e, const Node& v) const { |
144 | 144 |
e.id = nodes[v.id].first_in; |
145 | 145 |
} |
146 | 146 |
void nextIn(Arc &e) const { |
147 | 147 |
e.id=arcs[e.id].next_in; |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
static int id(Node v) { return v.id; } |
152 | 152 |
static int id(Arc e) { return e.id; } |
153 | 153 |
|
154 | 154 |
static Node nodeFromId(int id) { return Node(id);} |
155 | 155 |
static Arc arcFromId(int id) { return Arc(id);} |
156 | 156 |
|
157 | 157 |
bool valid(Node n) const { |
158 | 158 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
159 | 159 |
nodes[n.id].prev != -2; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
bool valid(Arc a) const { |
163 | 163 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
164 | 164 |
arcs[a.id].prev_in != -2; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
Node addNode() { |
168 | 168 |
int n; |
169 | 169 |
|
170 | 170 |
if(first_free_node==-1) { |
171 | 171 |
n = nodes.size(); |
172 | 172 |
nodes.push_back(NodeT()); |
173 | 173 |
} else { |
174 | 174 |
n = first_free_node; |
175 | 175 |
first_free_node = nodes[n].next; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
nodes[n].next = first_node; |
179 | 179 |
if(first_node != -1) nodes[first_node].prev = n; |
180 | 180 |
first_node = n; |
181 | 181 |
nodes[n].prev = -1; |
182 | 182 |
|
183 | 183 |
nodes[n].first_in = nodes[n].first_out = -1; |
184 | 184 |
|
185 | 185 |
return Node(n); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
Arc addArc(Node u, Node v) { |
189 | 189 |
int n; |
190 | 190 |
|
191 | 191 |
if (first_free_arc == -1) { |
192 | 192 |
n = arcs.size(); |
193 | 193 |
arcs.push_back(ArcT()); |
194 | 194 |
} else { |
195 | 195 |
n = first_free_arc; |
196 | 196 |
first_free_arc = arcs[n].next_in; |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
arcs[n].source = u.id; |
200 | 200 |
arcs[n].target = v.id; |
201 | 201 |
|
202 | 202 |
arcs[n].next_out = nodes[u.id].first_out; |
203 | 203 |
if(nodes[u.id].first_out != -1) { |
204 | 204 |
arcs[nodes[u.id].first_out].prev_out = n; |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
arcs[n].next_in = nodes[v.id].first_in; |
208 | 208 |
if(nodes[v.id].first_in != -1) { |
209 | 209 |
arcs[nodes[v.id].first_in].prev_in = n; |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
213 | 213 |
|
214 | 214 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
215 | 215 |
|
216 | 216 |
return Arc(n); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
void erase(const Node& node) { |
220 | 220 |
int n = node.id; |
221 | 221 |
|
222 | 222 |
if(nodes[n].next != -1) { |
223 | 223 |
nodes[nodes[n].next].prev = nodes[n].prev; |
224 | 224 |
} |
225 | 225 |
|
226 | 226 |
if(nodes[n].prev != -1) { |
227 | 227 |
nodes[nodes[n].prev].next = nodes[n].next; |
228 | 228 |
} else { |
229 | 229 |
first_node = nodes[n].next; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
nodes[n].next = first_free_node; |
233 | 233 |
first_free_node = n; |
234 | 234 |
nodes[n].prev = -2; |
235 | 235 |
|
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
void erase(const Arc& arc) { |
239 | 239 |
int n = arc.id; |
240 | 240 |
|
241 | 241 |
if(arcs[n].next_in!=-1) { |
242 | 242 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
if(arcs[n].prev_in!=-1) { |
246 | 246 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
247 | 247 |
} else { |
248 | 248 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
|
252 | 252 |
if(arcs[n].next_out!=-1) { |
253 | 253 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
if(arcs[n].prev_out!=-1) { |
257 | 257 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
258 | 258 |
} else { |
259 | 259 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
arcs[n].next_in = first_free_arc; |
263 | 263 |
first_free_arc = n; |
264 | 264 |
arcs[n].prev_in = -2; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
void clear() { |
268 | 268 |
arcs.clear(); |
269 | 269 |
nodes.clear(); |
270 | 270 |
first_node = first_free_node = first_free_arc = -1; |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
protected: |
274 | 274 |
void changeTarget(Arc e, Node n) |
275 | 275 |
{ |
276 | 276 |
if(arcs[e.id].next_in != -1) |
277 | 277 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
278 | 278 |
if(arcs[e.id].prev_in != -1) |
279 | 279 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
280 | 280 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
281 | 281 |
if (nodes[n.id].first_in != -1) { |
282 | 282 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
283 | 283 |
} |
284 | 284 |
arcs[e.id].target = n.id; |
285 | 285 |
arcs[e.id].prev_in = -1; |
286 | 286 |
arcs[e.id].next_in = nodes[n.id].first_in; |
287 | 287 |
nodes[n.id].first_in = e.id; |
288 | 288 |
} |
289 | 289 |
void changeSource(Arc e, Node n) |
290 | 290 |
{ |
291 | 291 |
if(arcs[e.id].next_out != -1) |
292 | 292 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
293 | 293 |
if(arcs[e.id].prev_out != -1) |
294 | 294 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
295 | 295 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
296 | 296 |
if (nodes[n.id].first_out != -1) { |
297 | 297 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
298 | 298 |
} |
299 | 299 |
arcs[e.id].source = n.id; |
300 | 300 |
arcs[e.id].prev_out = -1; |
301 | 301 |
arcs[e.id].next_out = nodes[n.id].first_out; |
302 | 302 |
nodes[n.id].first_out = e.id; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
}; |
306 | 306 |
|
307 | 307 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
308 | 308 |
|
309 | 309 |
/// \addtogroup graphs |
310 | 310 |
/// @{ |
311 | 311 |
|
312 | 312 |
///A general directed graph structure. |
313 | 313 |
|
314 | 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
315 | 315 |
///implementation based on static linked lists that are stored in |
316 | 316 |
///\c std::vector structures. |
317 | 317 |
/// |
318 | 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
319 | 319 |
///also provides several useful additional functionalities. |
320 | 320 |
///Most of the member functions and nested classes are documented |
321 | 321 |
///only in the concept class. |
322 | 322 |
/// |
323 | 323 |
///An important extra feature of this digraph implementation is that |
324 | 324 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
325 | 325 |
/// |
326 | 326 |
///\sa concepts::Digraph |
327 | 327 |
|
328 | 328 |
class ListDigraph : public ExtendedListDigraphBase { |
329 | 329 |
private: |
330 | 330 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
331 | 331 |
|
332 | 332 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
333 | 333 |
/// |
334 | 334 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
335 | 335 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
336 | 336 |
///Use copyDigraph() instead. |
337 | 337 |
|
338 | 338 |
///Assignment of ListDigraph to another one is \e not allowed. |
339 | 339 |
///Use copyDigraph() instead. |
340 | 340 |
void operator=(const ListDigraph &) {} |
341 | 341 |
public: |
342 | 342 |
|
343 | 343 |
typedef ExtendedListDigraphBase Parent; |
344 | 344 |
|
345 | 345 |
/// Constructor |
346 | 346 |
|
347 | 347 |
/// Constructor. |
348 | 348 |
/// |
349 | 349 |
ListDigraph() {} |
350 | 350 |
|
351 | 351 |
///Add a new node to the digraph. |
352 | 352 |
|
353 | 353 |
///Add a new node to the digraph. |
354 | 354 |
///\return the new node. |
355 | 355 |
Node addNode() { return Parent::addNode(); } |
356 | 356 |
|
357 | 357 |
///Add a new arc to the digraph. |
358 | 358 |
|
359 | 359 |
///Add a new arc to the digraph with source node \c s |
360 | 360 |
///and target node \c t. |
361 | 361 |
///\return the new arc. |
362 | 362 |
Arc addArc(const Node& s, const Node& t) { |
363 | 363 |
return Parent::addArc(s, t); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
///\brief Erase a node from the digraph. |
367 | 367 |
/// |
368 | 368 |
///Erase a node from the digraph. |
369 | 369 |
/// |
370 | 370 |
void erase(const Node& n) { Parent::erase(n); } |
371 | 371 |
|
372 | 372 |
///\brief Erase an arc from the digraph. |
373 | 373 |
/// |
374 | 374 |
///Erase an arc from the digraph. |
375 | 375 |
/// |
376 | 376 |
void erase(const Arc& a) { Parent::erase(a); } |
377 | 377 |
|
378 | 378 |
/// Node validity check |
379 | 379 |
|
380 | 380 |
/// This function gives back true if the given node is valid, |
381 | 381 |
/// ie. it is a real node of the graph. |
382 | 382 |
/// |
383 | 383 |
/// \warning A Node pointing to a removed item |
384 | 384 |
/// could become valid again later if new nodes are |
385 | 385 |
/// added to the graph. |
386 | 386 |
bool valid(Node n) const { return Parent::valid(n); } |
387 | 387 |
|
388 | 388 |
/// Arc validity check |
389 | 389 |
|
390 | 390 |
/// This function gives back true if the given arc is valid, |
391 | 391 |
/// ie. it is a real arc of the graph. |
392 | 392 |
/// |
393 | 393 |
/// \warning An Arc pointing to a removed item |
394 | 394 |
/// could become valid again later if new nodes are |
395 | 395 |
/// added to the graph. |
396 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
397 | 397 |
|
398 | 398 |
/// Change the target of \c a to \c n |
399 | 399 |
|
400 | 400 |
/// Change the target of \c a to \c n |
401 | 401 |
/// |
402 | 402 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
403 | 403 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
404 | 404 |
///invalidated. |
405 | 405 |
/// |
406 | 406 |
///\warning This functionality cannot be used together with the Snapshot |
407 | 407 |
///feature. |
408 | 408 |
void changeTarget(Arc a, Node n) { |
409 | 409 |
Parent::changeTarget(a,n); |
410 | 410 |
} |
411 | 411 |
/// Change the source of \c a to \c n |
412 | 412 |
|
413 | 413 |
/// Change the source of \c a to \c n |
414 | 414 |
/// |
415 | 415 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
416 | 416 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
417 | 417 |
///invalidated. |
418 | 418 |
/// |
419 | 419 |
///\warning This functionality cannot be used together with the Snapshot |
420 | 420 |
///feature. |
421 | 421 |
void changeSource(Arc a, Node n) { |
422 | 422 |
Parent::changeSource(a,n); |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
/// Invert the direction of an arc. |
426 | 426 |
|
427 | 427 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
428 | 428 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
429 | 429 |
///invalidated. |
430 | 430 |
/// |
431 | 431 |
///\warning This functionality cannot be used together with the Snapshot |
432 | 432 |
///feature. |
433 | 433 |
void reverseArc(Arc e) { |
434 | 434 |
Node t=target(e); |
435 | 435 |
changeTarget(e,source(e)); |
436 | 436 |
changeSource(e,t); |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
/// Reserve memory for nodes. |
440 | 440 |
|
441 | 441 |
/// Using this function it is possible to avoid the superfluous memory |
442 | 442 |
/// allocation: if you know that the digraph you want to build will |
443 | 443 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
444 | 444 |
/// then it is worth reserving space for this amount before starting |
445 | 445 |
/// to build the digraph. |
446 | 446 |
/// \sa reserveArc |
447 | 447 |
void reserveNode(int n) { nodes.reserve(n); }; |
448 | 448 |
|
449 | 449 |
/// Reserve memory for arcs. |
450 | 450 |
|
451 | 451 |
/// Using this function it is possible to avoid the superfluous memory |
452 | 452 |
/// allocation: if you know that the digraph you want to build will |
453 | 453 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
454 | 454 |
/// then it is worth reserving space for this amount before starting |
455 | 455 |
/// to build the digraph. |
456 | 456 |
/// \sa reserveNode |
457 | 457 |
void reserveArc(int m) { arcs.reserve(m); }; |
458 | 458 |
|
459 | 459 |
///Contract two nodes. |
460 | 460 |
|
461 | 461 |
///This function contracts two nodes. |
462 | 462 |
///Node \p b will be removed but instead of deleting |
463 | 463 |
///incident arcs, they will be joined to \p a. |
464 | 464 |
///The last parameter \p r controls whether to remove loops. \c true |
465 | 465 |
///means that loops will be removed. |
466 | 466 |
/// |
467 | 467 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
468 | 468 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
469 | 469 |
///may be invalidated. |
470 | 470 |
/// |
471 | 471 |
///\warning This functionality cannot be used together with the Snapshot |
472 | 472 |
///feature. |
473 | 473 |
void contract(Node a, Node b, bool r = true) |
474 | 474 |
{ |
475 | 475 |
for(OutArcIt e(*this,b);e!=INVALID;) { |
476 | 476 |
OutArcIt f=e; |
477 | 477 |
++f; |
478 | 478 |
if(r && target(e)==a) erase(e); |
479 | 479 |
else changeSource(e,a); |
480 | 480 |
e=f; |
481 | 481 |
} |
482 | 482 |
for(InArcIt e(*this,b);e!=INVALID;) { |
483 | 483 |
InArcIt f=e; |
484 | 484 |
++f; |
485 | 485 |
if(r && source(e)==a) erase(e); |
486 | 486 |
else changeTarget(e,a); |
487 | 487 |
e=f; |
488 | 488 |
} |
489 | 489 |
erase(b); |
490 | 490 |
} |
491 | 491 |
|
492 | 492 |
///Split a node. |
493 | 493 |
|
494 | 494 |
///This function splits a node. First a new node is added to the digraph, |
495 | 495 |
///then the source of each outgoing arc of \c n is moved to this new node. |
496 | 496 |
///If \c connect is \c true (this is the default value), then a new arc |
497 | 497 |
///from \c n to the newly created node is also added. |
498 | 498 |
///\return The newly created node. |
499 | 499 |
/// |
500 | 500 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
501 | 501 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
502 | 502 |
///be invalidated. |
503 | 503 |
/// |
504 | 504 |
///\warning This functionality cannot be used in conjunction with the |
505 | 505 |
///Snapshot feature. |
506 | 506 |
Node split(Node n, bool connect = true) { |
507 | 507 |
Node b = addNode(); |
508 | 508 |
for(OutArcIt e(*this,n);e!=INVALID;) { |
509 | 509 |
OutArcIt f=e; |
510 | 510 |
++f; |
511 | 511 |
changeSource(e,b); |
512 | 512 |
e=f; |
513 | 513 |
} |
514 | 514 |
if (connect) addArc(n,b); |
515 | 515 |
return b; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Split an arc. |
519 | 519 |
|
520 | 520 |
///This function splits an arc. First a new node \c b is added to |
521 | 521 |
///the digraph, then the original arc is re-targeted to \c |
522 | 522 |
///b. Finally an arc from \c b to the original target is added. |
523 | 523 |
/// |
524 | 524 |
///\return The newly created node. |
525 | 525 |
/// |
526 | 526 |
///\warning This functionality cannot be used together with the |
527 | 527 |
///Snapshot feature. |
528 | 528 |
Node split(Arc e) { |
529 | 529 |
Node b = addNode(); |
530 | 530 |
addArc(b,target(e)); |
531 | 531 |
changeTarget(e,b); |
532 | 532 |
return b; |
533 | 533 |
} |
534 | 534 |
|
535 | 535 |
/// \brief Class to make a snapshot of the digraph and restore |
536 | 536 |
/// it later. |
537 | 537 |
/// |
538 | 538 |
/// Class to make a snapshot of the digraph and restore it later. |
539 | 539 |
/// |
540 | 540 |
/// The newly added nodes and arcs can be removed using the |
541 | 541 |
/// restore() function. |
542 | 542 |
/// |
543 | 543 |
/// \warning Arc and node deletions and other modifications (e.g. |
544 | 544 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
545 | 545 |
/// restored. These events invalidate the snapshot. |
546 | 546 |
class Snapshot { |
547 | 547 |
protected: |
548 | 548 |
|
549 | 549 |
typedef Parent::NodeNotifier NodeNotifier; |
550 | 550 |
|
551 | 551 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
552 | 552 |
public: |
553 | 553 |
|
554 | 554 |
NodeObserverProxy(Snapshot& _snapshot) |
555 | 555 |
: snapshot(_snapshot) {} |
556 | 556 |
|
557 | 557 |
using NodeNotifier::ObserverBase::attach; |
558 | 558 |
using NodeNotifier::ObserverBase::detach; |
559 | 559 |
using NodeNotifier::ObserverBase::attached; |
560 | 560 |
|
561 | 561 |
protected: |
562 | 562 |
|
563 | 563 |
virtual void add(const Node& node) { |
564 | 564 |
snapshot.addNode(node); |
565 | 565 |
} |
566 | 566 |
virtual void add(const std::vector<Node>& nodes) { |
567 | 567 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
568 | 568 |
snapshot.addNode(nodes[i]); |
569 | 569 |
} |
570 | 570 |
} |
571 | 571 |
virtual void erase(const Node& node) { |
572 | 572 |
snapshot.eraseNode(node); |
573 | 573 |
} |
574 | 574 |
virtual void erase(const std::vector<Node>& nodes) { |
575 | 575 |
for (int i = 0; i < int(nodes.size()); ++i) { |
576 | 576 |
snapshot.eraseNode(nodes[i]); |
577 | 577 |
} |
578 | 578 |
} |
579 | 579 |
virtual void build() { |
580 | 580 |
Node node; |
581 | 581 |
std::vector<Node> nodes; |
582 | 582 |
for (notifier()->first(node); node != INVALID; |
583 | 583 |
notifier()->next(node)) { |
584 | 584 |
nodes.push_back(node); |
585 | 585 |
} |
586 | 586 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
587 | 587 |
snapshot.addNode(nodes[i]); |
588 | 588 |
} |
589 | 589 |
} |
590 | 590 |
virtual void clear() { |
591 | 591 |
Node node; |
592 | 592 |
for (notifier()->first(node); node != INVALID; |
593 | 593 |
notifier()->next(node)) { |
594 | 594 |
snapshot.eraseNode(node); |
595 | 595 |
} |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
Snapshot& snapshot; |
599 | 599 |
}; |
600 | 600 |
|
601 | 601 |
class ArcObserverProxy : public ArcNotifier::ObserverBase { |
602 | 602 |
public: |
603 | 603 |
|
604 | 604 |
ArcObserverProxy(Snapshot& _snapshot) |
605 | 605 |
: snapshot(_snapshot) {} |
606 | 606 |
|
607 | 607 |
using ArcNotifier::ObserverBase::attach; |
608 | 608 |
using ArcNotifier::ObserverBase::detach; |
609 | 609 |
using ArcNotifier::ObserverBase::attached; |
610 | 610 |
|
611 | 611 |
protected: |
612 | 612 |
|
613 | 613 |
virtual void add(const Arc& arc) { |
614 | 614 |
snapshot.addArc(arc); |
615 | 615 |
} |
616 | 616 |
virtual void add(const std::vector<Arc>& arcs) { |
617 | 617 |
for (int i = arcs.size() - 1; i >= 0; ++i) { |
618 | 618 |
snapshot.addArc(arcs[i]); |
619 | 619 |
} |
620 | 620 |
} |
621 | 621 |
virtual void erase(const Arc& arc) { |
622 | 622 |
snapshot.eraseArc(arc); |
623 | 623 |
} |
624 | 624 |
virtual void erase(const std::vector<Arc>& arcs) { |
625 | 625 |
for (int i = 0; i < int(arcs.size()); ++i) { |
626 | 626 |
snapshot.eraseArc(arcs[i]); |
627 | 627 |
} |
628 | 628 |
} |
629 | 629 |
virtual void build() { |
630 | 630 |
Arc arc; |
631 | 631 |
std::vector<Arc> arcs; |
632 | 632 |
for (notifier()->first(arc); arc != INVALID; |
633 | 633 |
notifier()->next(arc)) { |
634 | 634 |
arcs.push_back(arc); |
635 | 635 |
} |
636 | 636 |
for (int i = arcs.size() - 1; i >= 0; --i) { |
637 | 637 |
snapshot.addArc(arcs[i]); |
638 | 638 |
} |
639 | 639 |
} |
640 | 640 |
virtual void clear() { |
641 | 641 |
Arc arc; |
642 | 642 |
for (notifier()->first(arc); arc != INVALID; |
643 | 643 |
notifier()->next(arc)) { |
644 | 644 |
snapshot.eraseArc(arc); |
645 | 645 |
} |
646 | 646 |
} |
647 | 647 |
|
648 | 648 |
Snapshot& snapshot; |
649 | 649 |
}; |
650 | 650 |
|
651 | 651 |
ListDigraph *digraph; |
652 | 652 |
|
653 | 653 |
NodeObserverProxy node_observer_proxy; |
654 | 654 |
ArcObserverProxy arc_observer_proxy; |
655 | 655 |
|
656 | 656 |
std::list<Node> added_nodes; |
657 | 657 |
std::list<Arc> added_arcs; |
658 | 658 |
|
659 | 659 |
|
660 | 660 |
void addNode(const Node& node) { |
661 | 661 |
added_nodes.push_front(node); |
662 | 662 |
} |
663 | 663 |
void eraseNode(const Node& node) { |
664 | 664 |
std::list<Node>::iterator it = |
665 | 665 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
666 | 666 |
if (it == added_nodes.end()) { |
667 | 667 |
clear(); |
668 | 668 |
arc_observer_proxy.detach(); |
669 | 669 |
throw NodeNotifier::ImmediateDetach(); |
670 | 670 |
} else { |
671 | 671 |
added_nodes.erase(it); |
672 | 672 |
} |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
void addArc(const Arc& arc) { |
676 | 676 |
added_arcs.push_front(arc); |
677 | 677 |
} |
678 | 678 |
void eraseArc(const Arc& arc) { |
679 | 679 |
std::list<Arc>::iterator it = |
680 | 680 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
681 | 681 |
if (it == added_arcs.end()) { |
682 | 682 |
clear(); |
683 | 683 |
node_observer_proxy.detach(); |
684 | 684 |
throw ArcNotifier::ImmediateDetach(); |
685 | 685 |
} else { |
686 | 686 |
added_arcs.erase(it); |
687 | 687 |
} |
688 | 688 |
} |
689 | 689 |
|
690 | 690 |
void attach(ListDigraph &_digraph) { |
691 | 691 |
digraph = &_digraph; |
692 | 692 |
node_observer_proxy.attach(digraph->notifier(Node())); |
693 | 693 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
void detach() { |
697 | 697 |
node_observer_proxy.detach(); |
698 | 698 |
arc_observer_proxy.detach(); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
bool attached() const { |
702 | 702 |
return node_observer_proxy.attached(); |
703 | 703 |
} |
704 | 704 |
|
705 | 705 |
void clear() { |
706 | 706 |
added_nodes.clear(); |
707 | 707 |
added_arcs.clear(); |
708 | 708 |
} |
709 | 709 |
|
710 | 710 |
public: |
711 | 711 |
|
712 | 712 |
/// \brief Default constructor. |
713 | 713 |
/// |
714 | 714 |
/// Default constructor. |
715 | 715 |
/// To actually make a snapshot you must call save(). |
716 | 716 |
Snapshot() |
717 | 717 |
: digraph(0), node_observer_proxy(*this), |
718 | 718 |
arc_observer_proxy(*this) {} |
719 | 719 |
|
720 | 720 |
/// \brief Constructor that immediately makes a snapshot. |
721 | 721 |
/// |
722 | 722 |
/// This constructor immediately makes a snapshot of the digraph. |
723 | 723 |
/// \param _digraph The digraph we make a snapshot of. |
724 | 724 |
Snapshot(ListDigraph &_digraph) |
725 | 725 |
: node_observer_proxy(*this), |
726 | 726 |
arc_observer_proxy(*this) { |
727 | 727 |
attach(_digraph); |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
/// \brief Make a snapshot. |
731 | 731 |
/// |
732 | 732 |
/// Make a snapshot of the digraph. |
733 | 733 |
/// |
734 | 734 |
/// This function can be called more than once. In case of a repeated |
735 | 735 |
/// call, the previous snapshot gets lost. |
736 | 736 |
/// \param _digraph The digraph we make the snapshot of. |
737 | 737 |
void save(ListDigraph &_digraph) { |
738 | 738 |
if (attached()) { |
739 | 739 |
detach(); |
740 | 740 |
clear(); |
741 | 741 |
} |
742 | 742 |
attach(_digraph); |
743 | 743 |
} |
744 | 744 |
|
745 | 745 |
/// \brief Undo the changes until the last snapshot. |
746 | 746 |
// |
747 | 747 |
/// Undo the changes until the last snapshot created by save(). |
748 | 748 |
void restore() { |
749 | 749 |
detach(); |
750 | 750 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
751 | 751 |
it != added_arcs.end(); ++it) { |
752 | 752 |
digraph->erase(*it); |
753 | 753 |
} |
754 | 754 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
755 | 755 |
it != added_nodes.end(); ++it) { |
756 | 756 |
digraph->erase(*it); |
757 | 757 |
} |
758 | 758 |
clear(); |
759 | 759 |
} |
760 | 760 |
|
761 | 761 |
/// \brief Gives back true when the snapshot is valid. |
762 | 762 |
/// |
763 | 763 |
/// Gives back true when the snapshot is valid. |
764 | 764 |
bool valid() const { |
765 | 765 |
return attached(); |
766 | 766 |
} |
767 | 767 |
}; |
768 | 768 |
|
769 | 769 |
}; |
770 | 770 |
|
771 | 771 |
///@} |
772 | 772 |
|
773 | 773 |
class ListGraphBase { |
774 | 774 |
|
775 | 775 |
protected: |
776 | 776 |
|
777 | 777 |
struct NodeT { |
778 | 778 |
int first_out; |
779 | 779 |
int prev, next; |
780 | 780 |
}; |
781 | 781 |
|
782 | 782 |
struct ArcT { |
783 | 783 |
int target; |
784 | 784 |
int prev_out, next_out; |
785 | 785 |
}; |
786 | 786 |
|
787 | 787 |
std::vector<NodeT> nodes; |
788 | 788 |
|
789 | 789 |
int first_node; |
790 | 790 |
|
791 | 791 |
int first_free_node; |
792 | 792 |
|
793 | 793 |
std::vector<ArcT> arcs; |
794 | 794 |
|
795 | 795 |
int first_free_arc; |
796 | 796 |
|
797 | 797 |
public: |
798 | 798 |
|
799 | 799 |
typedef ListGraphBase Digraph; |
800 | 800 |
|
801 | 801 |
class Node; |
802 | 802 |
class Arc; |
803 | 803 |
class Edge; |
804 | 804 |
|
805 | 805 |
class Node { |
806 | 806 |
friend class ListGraphBase; |
807 | 807 |
protected: |
808 | 808 |
|
809 | 809 |
int id; |
810 | 810 |
explicit Node(int pid) { id = pid;} |
811 | 811 |
|
812 | 812 |
public: |
813 | 813 |
Node() {} |
814 | 814 |
Node (Invalid) { id = -1; } |
815 | 815 |
bool operator==(const Node& node) const {return id == node.id;} |
816 | 816 |
bool operator!=(const Node& node) const {return id != node.id;} |
817 | 817 |
bool operator<(const Node& node) const {return id < node.id;} |
818 | 818 |
}; |
819 | 819 |
|
820 | 820 |
class Edge { |
821 | 821 |
friend class ListGraphBase; |
822 | 822 |
protected: |
823 | 823 |
|
824 | 824 |
int id; |
825 | 825 |
explicit Edge(int pid) { id = pid;} |
826 | 826 |
|
827 | 827 |
public: |
828 | 828 |
Edge() {} |
829 | 829 |
Edge (Invalid) { id = -1; } |
830 | 830 |
bool operator==(const Edge& edge) const {return id == edge.id;} |
831 | 831 |
bool operator!=(const Edge& edge) const {return id != edge.id;} |
832 | 832 |
bool operator<(const Edge& edge) const {return id < edge.id;} |
833 | 833 |
}; |
834 | 834 |
|
835 | 835 |
class Arc { |
836 | 836 |
friend class ListGraphBase; |
837 | 837 |
protected: |
838 | 838 |
|
839 | 839 |
int id; |
840 | 840 |
explicit Arc(int pid) { id = pid;} |
841 | 841 |
|
842 | 842 |
public: |
843 | 843 |
operator Edge() const { |
844 | 844 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
Arc() {} |
848 | 848 |
Arc (Invalid) { id = -1; } |
849 | 849 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
850 | 850 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
851 | 851 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
852 | 852 |
}; |
853 | 853 |
|
854 | 854 |
|
855 | 855 |
|
856 | 856 |
ListGraphBase() |
857 | 857 |
: nodes(), first_node(-1), |
858 | 858 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
859 | 859 |
|
860 | 860 |
|
861 | 861 |
int maxNodeId() const { return nodes.size()-1; } |
862 | 862 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
863 | 863 |
int maxArcId() const { return arcs.size()-1; } |
864 | 864 |
|
865 | 865 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } |
866 | 866 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
867 | 867 |
|
868 | 868 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); } |
869 | 869 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); } |
870 | 870 |
|
871 | 871 |
static bool direction(Arc e) { |
872 | 872 |
return (e.id & 1) == 1; |
873 | 873 |
} |
874 | 874 |
|
875 | 875 |
static Arc direct(Edge e, bool d) { |
876 | 876 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
877 | 877 |
} |
878 | 878 |
|
879 | 879 |
void first(Node& node) const { |
880 | 880 |
node.id = first_node; |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
void next(Node& node) const { |
884 | 884 |
node.id = nodes[node.id].next; |
885 | 885 |
} |
886 | 886 |
|
887 | 887 |
void first(Arc& e) const { |
888 | 888 |
int n = first_node; |
889 | 889 |
while (n != -1 && nodes[n].first_out == -1) { |
890 | 890 |
n = nodes[n].next; |
891 | 891 |
} |
892 | 892 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
893 | 893 |
} |
894 | 894 |
|
895 | 895 |
void next(Arc& e) const { |
896 | 896 |
if (arcs[e.id].next_out != -1) { |
897 | 897 |
e.id = arcs[e.id].next_out; |
898 | 898 |
} else { |
899 | 899 |
int n = nodes[arcs[e.id ^ 1].target].next; |
900 | 900 |
while(n != -1 && nodes[n].first_out == -1) { |
901 | 901 |
n = nodes[n].next; |
902 | 902 |
} |
903 | 903 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
904 | 904 |
} |
905 | 905 |
} |
906 | 906 |
|
907 | 907 |
void first(Edge& e) const { |
908 | 908 |
int n = first_node; |
909 | 909 |
while (n != -1) { |
910 | 910 |
e.id = nodes[n].first_out; |
911 | 911 |
while ((e.id & 1) != 1) { |
912 | 912 |
e.id = arcs[e.id].next_out; |
913 | 913 |
} |
914 | 914 |
if (e.id != -1) { |
915 | 915 |
e.id /= 2; |
916 | 916 |
return; |
917 | 917 |
} |
918 | 918 |
n = nodes[n].next; |
919 | 919 |
} |
920 | 920 |
e.id = -1; |
921 | 921 |
} |
922 | 922 |
|
923 | 923 |
void next(Edge& e) const { |
924 | 924 |
int n = arcs[e.id * 2].target; |
925 | 925 |
e.id = arcs[(e.id * 2) | 1].next_out; |
926 | 926 |
while ((e.id & 1) != 1) { |
927 | 927 |
e.id = arcs[e.id].next_out; |
928 | 928 |
} |
929 | 929 |
if (e.id != -1) { |
930 | 930 |
e.id /= 2; |
931 | 931 |
return; |
932 | 932 |
} |
933 | 933 |
n = nodes[n].next; |
934 | 934 |
while (n != -1) { |
935 | 935 |
e.id = nodes[n].first_out; |
936 | 936 |
while ((e.id & 1) != 1) { |
937 | 937 |
e.id = arcs[e.id].next_out; |
938 | 938 |
} |
939 | 939 |
if (e.id != -1) { |
940 | 940 |
e.id /= 2; |
941 | 941 |
return; |
942 | 942 |
} |
943 | 943 |
n = nodes[n].next; |
944 | 944 |
} |
945 | 945 |
e.id = -1; |
946 | 946 |
} |
947 | 947 |
|
948 | 948 |
void firstOut(Arc &e, const Node& v) const { |
949 | 949 |
e.id = nodes[v.id].first_out; |
950 | 950 |
} |
951 | 951 |
void nextOut(Arc &e) const { |
952 | 952 |
e.id = arcs[e.id].next_out; |
953 | 953 |
} |
954 | 954 |
|
955 | 955 |
void firstIn(Arc &e, const Node& v) const { |
956 | 956 |
e.id = ((nodes[v.id].first_out) ^ 1); |
957 | 957 |
if (e.id == -2) e.id = -1; |
958 | 958 |
} |
959 | 959 |
void nextIn(Arc &e) const { |
960 | 960 |
e.id = ((arcs[e.id ^ 1].next_out) ^ 1); |
961 | 961 |
if (e.id == -2) e.id = -1; |
962 | 962 |
} |
963 | 963 |
|
964 | 964 |
void firstInc(Edge &e, bool& d, const Node& v) const { |
965 | 965 |
int a = nodes[v.id].first_out; |
966 | 966 |
if (a != -1 ) { |
967 | 967 |
e.id = a / 2; |
968 | 968 |
d = ((a & 1) == 1); |
969 | 969 |
} else { |
970 | 970 |
e.id = -1; |
971 | 971 |
d = true; |
972 | 972 |
} |
973 | 973 |
} |
974 | 974 |
void nextInc(Edge &e, bool& d) const { |
975 | 975 |
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); |
976 | 976 |
if (a != -1 ) { |
977 | 977 |
e.id = a / 2; |
978 | 978 |
d = ((a & 1) == 1); |
979 | 979 |
} else { |
980 | 980 |
e.id = -1; |
981 | 981 |
d = true; |
982 | 982 |
} |
983 | 983 |
} |
984 | 984 |
|
985 | 985 |
static int id(Node v) { return v.id; } |
986 | 986 |
static int id(Arc e) { return e.id; } |
987 | 987 |
static int id(Edge e) { return e.id; } |
988 | 988 |
|
989 | 989 |
static Node nodeFromId(int id) { return Node(id);} |
990 | 990 |
static Arc arcFromId(int id) { return Arc(id);} |
991 | 991 |
static Edge edgeFromId(int id) { return Edge(id);} |
992 | 992 |
|
993 | 993 |
bool valid(Node n) const { |
994 | 994 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
995 | 995 |
nodes[n.id].prev != -2; |
996 | 996 |
} |
997 | 997 |
|
998 | 998 |
bool valid(Arc a) const { |
999 | 999 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
1000 | 1000 |
arcs[a.id].prev_out != -2; |
1001 | 1001 |
} |
1002 | 1002 |
|
1003 | 1003 |
bool valid(Edge e) const { |
1004 | 1004 |
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) && |
1005 | 1005 |
arcs[2 * e.id].prev_out != -2; |
1006 | 1006 |
} |
1007 | 1007 |
|
1008 | 1008 |
Node addNode() { |
1009 | 1009 |
int n; |
1010 | 1010 |
|
1011 | 1011 |
if(first_free_node==-1) { |
1012 | 1012 |
n = nodes.size(); |
1013 | 1013 |
nodes.push_back(NodeT()); |
1014 | 1014 |
} else { |
1015 | 1015 |
n = first_free_node; |
1016 | 1016 |
first_free_node = nodes[n].next; |
1017 | 1017 |
} |
1018 | 1018 |
|
1019 | 1019 |
nodes[n].next = first_node; |
1020 | 1020 |
if (first_node != -1) nodes[first_node].prev = n; |
1021 | 1021 |
first_node = n; |
1022 | 1022 |
nodes[n].prev = -1; |
1023 | 1023 |
|
1024 | 1024 |
nodes[n].first_out = -1; |
1025 | 1025 |
|
1026 | 1026 |
return Node(n); |
1027 | 1027 |
} |
1028 | 1028 |
|
1029 | 1029 |
Edge addEdge(Node u, Node v) { |
1030 | 1030 |
int n; |
1031 | 1031 |
|
1032 | 1032 |
if (first_free_arc == -1) { |
1033 | 1033 |
n = arcs.size(); |
1034 | 1034 |
arcs.push_back(ArcT()); |
1035 | 1035 |
arcs.push_back(ArcT()); |
1036 | 1036 |
} else { |
1037 | 1037 |
n = first_free_arc; |
1038 | 1038 |
first_free_arc = arcs[n].next_out; |
1039 | 1039 |
} |
1040 | 1040 |
|
1041 | 1041 |
arcs[n].target = u.id; |
1042 | 1042 |
arcs[n | 1].target = v.id; |
1043 | 1043 |
|
1044 | 1044 |
arcs[n].next_out = nodes[v.id].first_out; |
1045 | 1045 |
if (nodes[v.id].first_out != -1) { |
1046 | 1046 |
arcs[nodes[v.id].first_out].prev_out = n; |
1047 | 1047 |
} |
1048 | 1048 |
arcs[n].prev_out = -1; |
1049 | 1049 |
nodes[v.id].first_out = n; |
1050 | 1050 |
|
1051 | 1051 |
arcs[n | 1].next_out = nodes[u.id].first_out; |
1052 | 1052 |
if (nodes[u.id].first_out != -1) { |
1053 | 1053 |
arcs[nodes[u.id].first_out].prev_out = (n | 1); |
1054 | 1054 |
} |
1055 | 1055 |
arcs[n | 1].prev_out = -1; |
1056 | 1056 |
nodes[u.id].first_out = (n | 1); |
1057 | 1057 |
|
1058 | 1058 |
return Edge(n / 2); |
1059 | 1059 |
} |
1060 | 1060 |
|
1061 | 1061 |
void erase(const Node& node) { |
1062 | 1062 |
int n = node.id; |
1063 | 1063 |
|
1064 | 1064 |
if(nodes[n].next != -1) { |
1065 | 1065 |
nodes[nodes[n].next].prev = nodes[n].prev; |
1066 | 1066 |
} |
1067 | 1067 |
|
1068 | 1068 |
if(nodes[n].prev != -1) { |
1069 | 1069 |
nodes[nodes[n].prev].next = nodes[n].next; |
1070 | 1070 |
} else { |
1071 | 1071 |
first_node = nodes[n].next; |
1072 | 1072 |
} |
1073 | 1073 |
|
1074 | 1074 |
nodes[n].next = first_free_node; |
1075 | 1075 |
first_free_node = n; |
1076 | 1076 |
nodes[n].prev = -2; |
1077 | 1077 |
} |
1078 | 1078 |
|
1079 | 1079 |
void erase(const Edge& edge) { |
1080 | 1080 |
int n = edge.id * 2; |
1081 | 1081 |
|
1082 | 1082 |
if (arcs[n].next_out != -1) { |
1083 | 1083 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
if (arcs[n].prev_out != -1) { |
1087 | 1087 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
1088 | 1088 |
} else { |
1089 | 1089 |
nodes[arcs[n | 1].target].first_out = arcs[n].next_out; |
1090 | 1090 |
} |
1091 | 1091 |
|
1092 | 1092 |
if (arcs[n | 1].next_out != -1) { |
1093 | 1093 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
1094 | 1094 |
} |
1095 | 1095 |
|
1096 | 1096 |
if (arcs[n | 1].prev_out != -1) { |
1097 | 1097 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
1098 | 1098 |
} else { |
1099 | 1099 |
nodes[arcs[n].target].first_out = arcs[n | 1].next_out; |
1100 | 1100 |
} |
1101 | 1101 |
|
1102 | 1102 |
arcs[n].next_out = first_free_arc; |
1103 | 1103 |
first_free_arc = n; |
1104 | 1104 |
arcs[n].prev_out = -2; |
1105 | 1105 |
arcs[n | 1].prev_out = -2; |
1106 | 1106 |
|
1107 | 1107 |
} |
1108 | 1108 |
|
1109 | 1109 |
void clear() { |
1110 | 1110 |
arcs.clear(); |
1111 | 1111 |
nodes.clear(); |
1112 | 1112 |
first_node = first_free_node = first_free_arc = -1; |
1113 | 1113 |
} |
1114 | 1114 |
|
1115 | 1115 |
protected: |
1116 | 1116 |
|
1117 | 1117 |
void changeV(Edge e, Node n) { |
1118 | 1118 |
if(arcs[2 * e.id].next_out != -1) { |
1119 | 1119 |
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; |
1120 | 1120 |
} |
1121 | 1121 |
if(arcs[2 * e.id].prev_out != -1) { |
1122 | 1122 |
arcs[arcs[2 * e.id].prev_out].next_out = |
1123 | 1123 |
arcs[2 * e.id].next_out; |
1124 | 1124 |
} else { |
1125 | 1125 |
nodes[arcs[(2 * e.id) | 1].target].first_out = |
1126 | 1126 |
arcs[2 * e.id].next_out; |
1127 | 1127 |
} |
1128 | 1128 |
|
1129 | 1129 |
if (nodes[n.id].first_out != -1) { |
1130 | 1130 |
arcs[nodes[n.id].first_out].prev_out = 2 * e.id; |
1131 | 1131 |
} |
1132 | 1132 |
arcs[(2 * e.id) | 1].target = n.id; |
1133 | 1133 |
arcs[2 * e.id].prev_out = -1; |
1134 | 1134 |
arcs[2 * e.id].next_out = nodes[n.id].first_out; |
1135 | 1135 |
nodes[n.id].first_out = 2 * e.id; |
1136 | 1136 |
} |
1137 | 1137 |
|
1138 | 1138 |
void changeU(Edge e, Node n) { |
1139 | 1139 |
if(arcs[(2 * e.id) | 1].next_out != -1) { |
1140 | 1140 |
arcs[arcs[(2 * e.id) | 1].next_out].prev_out = |
1141 | 1141 |
arcs[(2 * e.id) | 1].prev_out; |
1142 | 1142 |
} |
1143 | 1143 |
if(arcs[(2 * e.id) | 1].prev_out != -1) { |
1144 | 1144 |
arcs[arcs[(2 * e.id) | 1].prev_out].next_out = |
1145 | 1145 |
arcs[(2 * e.id) | 1].next_out; |
1146 | 1146 |
} else { |
1147 | 1147 |
nodes[arcs[2 * e.id].target].first_out = |
1148 | 1148 |
arcs[(2 * e.id) | 1].next_out; |
1149 | 1149 |
} |
1150 | 1150 |
|
1151 | 1151 |
if (nodes[n.id].first_out != -1) { |
1152 | 1152 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
1153 | 1153 |
} |
1154 | 1154 |
arcs[2 * e.id].target = n.id; |
1155 | 1155 |
arcs[(2 * e.id) | 1].prev_out = -1; |
1156 | 1156 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
1157 | 1157 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
1158 | 1158 |
} |
1159 | 1159 |
|
1160 | 1160 |
}; |
1161 | 1161 |
|
1162 | 1162 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
1163 | 1163 |
|
1164 | 1164 |
|
1165 | 1165 |
/// \addtogroup graphs |
1166 | 1166 |
/// @{ |
1167 | 1167 |
|
1168 | 1168 |
///A general undirected graph structure. |
1169 | 1169 |
|
1170 | 1170 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
1171 | 1171 |
///implementation based on static linked lists that are stored in |
1172 | 1172 |
///\c std::vector structures. |
1173 | 1173 |
/// |
1174 | 1174 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
1175 | 1175 |
///also provides several useful additional functionalities. |
1176 | 1176 |
///Most of the member functions and nested classes are documented |
1177 | 1177 |
///only in the concept class. |
1178 | 1178 |
/// |
1179 | 1179 |
///An important extra feature of this graph implementation is that |
1180 | 1180 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
1181 | 1181 |
/// |
1182 | 1182 |
///\sa concepts::Graph |
1183 | 1183 |
|
1184 | 1184 |
class ListGraph : public ExtendedListGraphBase { |
1185 | 1185 |
private: |
1186 | 1186 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
1187 | 1187 |
|
1188 | 1188 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
1189 | 1189 |
/// |
1190 | 1190 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; |
1191 | 1191 |
///\brief Assignment of ListGraph to another one is \e not allowed. |
1192 | 1192 |
///Use copyGraph() instead. |
1193 | 1193 |
|
1194 | 1194 |
///Assignment of ListGraph to another one is \e not allowed. |
1195 | 1195 |
///Use copyGraph() instead. |
1196 | 1196 |
void operator=(const ListGraph &) {} |
1197 | 1197 |
public: |
1198 | 1198 |
/// Constructor |
1199 | 1199 |
|
1200 | 1200 |
/// Constructor. |
1201 | 1201 |
/// |
1202 | 1202 |
ListGraph() {} |
1203 | 1203 |
|
1204 | 1204 |
typedef ExtendedListGraphBase Parent; |
1205 | 1205 |
|
1206 | 1206 |
typedef Parent::OutArcIt IncEdgeIt; |
1207 | 1207 |
|
1208 | 1208 |
/// \brief Add a new node to the graph. |
1209 | 1209 |
/// |
1210 | 1210 |
/// Add a new node to the graph. |
1211 | 1211 |
/// \return the new node. |
1212 | 1212 |
Node addNode() { return Parent::addNode(); } |
1213 | 1213 |
|
1214 | 1214 |
/// \brief Add a new edge to the graph. |
1215 | 1215 |
/// |
1216 | 1216 |
/// Add a new edge to the graph with source node \c s |
1217 | 1217 |
/// and target node \c t. |
1218 | 1218 |
/// \return the new edge. |
1219 | 1219 |
Edge addEdge(const Node& s, const Node& t) { |
1220 | 1220 |
return Parent::addEdge(s, t); |
1221 | 1221 |
} |
1222 | 1222 |
|
1223 | 1223 |
/// \brief Erase a node from the graph. |
1224 | 1224 |
/// |
1225 | 1225 |
/// Erase a node from the graph. |
1226 | 1226 |
/// |
1227 | 1227 |
void erase(const Node& n) { Parent::erase(n); } |
1228 | 1228 |
|
1229 | 1229 |
/// \brief Erase an edge from the graph. |
1230 | 1230 |
/// |
1231 | 1231 |
/// Erase an edge from the graph. |
1232 | 1232 |
/// |
1233 | 1233 |
void erase(const Edge& e) { Parent::erase(e); } |
1234 | 1234 |
/// Node validity check |
1235 | 1235 |
|
1236 | 1236 |
/// This function gives back true if the given node is valid, |
1237 | 1237 |
/// ie. it is a real node of the graph. |
1238 | 1238 |
/// |
1239 | 1239 |
/// \warning A Node pointing to a removed item |
1240 | 1240 |
/// could become valid again later if new nodes are |
1241 | 1241 |
/// added to the graph. |
1242 | 1242 |
bool valid(Node n) const { return Parent::valid(n); } |
1243 | 1243 |
/// Arc validity check |
1244 | 1244 |
|
1245 | 1245 |
/// This function gives back true if the given arc is valid, |
1246 | 1246 |
/// ie. it is a real arc of the graph. |
1247 | 1247 |
/// |
1248 | 1248 |
/// \warning An Arc pointing to a removed item |
1249 | 1249 |
/// could become valid again later if new edges are |
1250 | 1250 |
/// added to the graph. |
1251 | 1251 |
bool valid(Arc a) const { return Parent::valid(a); } |
1252 | 1252 |
/// Edge validity check |
1253 | 1253 |
|
1254 | 1254 |
/// This function gives back true if the given edge is valid, |
1255 | 1255 |
/// ie. it is a real arc of the graph. |
1256 | 1256 |
/// |
1257 | 1257 |
/// \warning A Edge pointing to a removed item |
1258 | 1258 |
/// could become valid again later if new edges are |
1259 | 1259 |
/// added to the graph. |
1260 | 1260 |
bool valid(Edge e) const { return Parent::valid(e); } |
1261 | 1261 |
/// \brief Change the end \c u of \c e to \c n |
1262 | 1262 |
/// |
1263 | 1263 |
/// This function changes the end \c u of \c e to node \c n. |
1264 | 1264 |
/// |
1265 | 1265 |
///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the |
1266 | 1266 |
///changed edge are invalidated and if the changed node is the |
1267 | 1267 |
///base node of an iterator then this iterator is also |
1268 | 1268 |
///invalidated. |
1269 | 1269 |
/// |
1270 | 1270 |
///\warning This functionality cannot be used together with the |
1271 | 1271 |
///Snapshot feature. |
1272 | 1272 |
void changeU(Edge e, Node n) { |
1273 | 1273 |
Parent::changeU(e,n); |
1274 | 1274 |
} |
1275 | 1275 |
/// \brief Change the end \c v of \c e to \c n |
1276 | 1276 |
/// |
1277 | 1277 |
/// This function changes the end \c v of \c e to \c n. |
1278 | 1278 |
/// |
1279 | 1279 |
///\note The <tt>EdgeIt</tt>s referencing the changed edge remain |
1280 | 1280 |
///valid, however <tt>ArcIt</tt>s and if the changed node is the |
1281 | 1281 |
///base node of an iterator then this iterator is invalidated. |
1282 | 1282 |
/// |
1283 | 1283 |
///\warning This functionality cannot be used together with the |
1284 | 1284 |
///Snapshot feature. |
1285 | 1285 |
void changeV(Edge e, Node n) { |
1286 | 1286 |
Parent::changeV(e,n); |
1287 | 1287 |
} |
1288 | 1288 |
/// \brief Contract two nodes. |
1289 | 1289 |
/// |
1290 | 1290 |
/// This function contracts two nodes. |
1291 | 1291 |
/// Node \p b will be removed but instead of deleting |
1292 | 1292 |
/// its neighboring arcs, they will be joined to \p a. |
1293 | 1293 |
/// The last parameter \p r controls whether to remove loops. \c true |
1294 | 1294 |
/// means that loops will be removed. |
1295 | 1295 |
/// |
1296 | 1296 |
/// \note The <tt>ArcIt</tt>s referencing a moved arc remain |
1297 | 1297 |
/// valid. |
1298 | 1298 |
/// |
1299 | 1299 |
///\warning This functionality cannot be used together with the |
1300 | 1300 |
///Snapshot feature. |
1301 | 1301 |
void contract(Node a, Node b, bool r = true) { |
1302 | 1302 |
for(IncEdgeIt e(*this, b); e!=INVALID;) { |
1303 | 1303 |
IncEdgeIt f = e; ++f; |
1304 | 1304 |
if (r && runningNode(e) == a) { |
1305 | 1305 |
erase(e); |
1306 | 1306 |
} else if (u(e) == b) { |
1307 | 1307 |
changeU(e, a); |
1308 | 1308 |
} else { |
1309 | 1309 |
changeV(e, a); |
1310 | 1310 |
} |
1311 | 1311 |
e = f; |
1312 | 1312 |
} |
1313 | 1313 |
erase(b); |
1314 | 1314 |
} |
1315 | 1315 |
|
1316 | 1316 |
|
1317 | 1317 |
/// \brief Class to make a snapshot of the graph and restore |
1318 | 1318 |
/// it later. |
1319 | 1319 |
/// |
1320 | 1320 |
/// Class to make a snapshot of the graph and restore it later. |
1321 | 1321 |
/// |
1322 | 1322 |
/// The newly added nodes and edges can be removed |
1323 | 1323 |
/// using the restore() function. |
1324 | 1324 |
/// |
1325 | 1325 |
/// \warning Edge and node deletions and other modifications |
1326 | 1326 |
/// (e.g. changing nodes of edges, contracting nodes) cannot be |
1327 | 1327 |
/// restored. These events invalidate the snapshot. |
1328 | 1328 |
class Snapshot { |
1329 | 1329 |
protected: |
1330 | 1330 |
|
1331 | 1331 |
typedef Parent::NodeNotifier NodeNotifier; |
1332 | 1332 |
|
1333 | 1333 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
1334 | 1334 |
public: |
1335 | 1335 |
|
1336 | 1336 |
NodeObserverProxy(Snapshot& _snapshot) |
1337 | 1337 |
: snapshot(_snapshot) {} |
1338 | 1338 |
|
1339 | 1339 |
using NodeNotifier::ObserverBase::attach; |
1340 | 1340 |
using NodeNotifier::ObserverBase::detach; |
1341 | 1341 |
using NodeNotifier::ObserverBase::attached; |
1342 | 1342 |
|
1343 | 1343 |
protected: |
1344 | 1344 |
|
1345 | 1345 |
virtual void add(const Node& node) { |
1346 | 1346 |
snapshot.addNode(node); |
1347 | 1347 |
} |
1348 | 1348 |
virtual void add(const std::vector<Node>& nodes) { |
1349 | 1349 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
1350 | 1350 |
snapshot.addNode(nodes[i]); |
1351 | 1351 |
} |
1352 | 1352 |
} |
1353 | 1353 |
virtual void erase(const Node& node) { |
1354 | 1354 |
snapshot.eraseNode(node); |
1355 | 1355 |
} |
1356 | 1356 |
virtual void erase(const std::vector<Node>& nodes) { |
1357 | 1357 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1358 | 1358 |
snapshot.eraseNode(nodes[i]); |
1359 | 1359 |
} |
1360 | 1360 |
} |
1361 | 1361 |
virtual void build() { |
1362 | 1362 |
Node node; |
1363 | 1363 |
std::vector<Node> nodes; |
1364 | 1364 |
for (notifier()->first(node); node != INVALID; |
1365 | 1365 |
notifier()->next(node)) { |
1366 | 1366 |
nodes.push_back(node); |
1367 | 1367 |
} |
1368 | 1368 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
1369 | 1369 |
snapshot.addNode(nodes[i]); |
1370 | 1370 |
} |
1371 | 1371 |
} |
1372 | 1372 |
virtual void clear() { |
1373 | 1373 |
Node node; |
1374 | 1374 |
for (notifier()->first(node); node != INVALID; |
1375 | 1375 |
notifier()->next(node)) { |
1376 | 1376 |
snapshot.eraseNode(node); |
1377 | 1377 |
} |
1378 | 1378 |
} |
1379 | 1379 |
|
1380 | 1380 |
Snapshot& snapshot; |
1381 | 1381 |
}; |
1382 | 1382 |
|
1383 | 1383 |
class EdgeObserverProxy : public EdgeNotifier::ObserverBase { |
1384 | 1384 |
public: |
1385 | 1385 |
|
1386 | 1386 |
EdgeObserverProxy(Snapshot& _snapshot) |
1387 | 1387 |
: snapshot(_snapshot) {} |
1388 | 1388 |
|
1389 | 1389 |
using EdgeNotifier::ObserverBase::attach; |
1390 | 1390 |
using EdgeNotifier::ObserverBase::detach; |
1391 | 1391 |
using EdgeNotifier::ObserverBase::attached; |
1392 | 1392 |
|
1393 | 1393 |
protected: |
1394 | 1394 |
|
1395 | 1395 |
virtual void add(const Edge& edge) { |
1396 | 1396 |
snapshot.addEdge(edge); |
1397 | 1397 |
} |
1398 | 1398 |
virtual void add(const std::vector<Edge>& edges) { |
1399 | 1399 |
for (int i = edges.size() - 1; i >= 0; ++i) { |
1400 | 1400 |
snapshot.addEdge(edges[i]); |
1401 | 1401 |
} |
1402 | 1402 |
} |
1403 | 1403 |
virtual void erase(const Edge& edge) { |
1404 | 1404 |
snapshot.eraseEdge(edge); |
1405 | 1405 |
} |
1406 | 1406 |
virtual void erase(const std::vector<Edge>& edges) { |
1407 | 1407 |
for (int i = 0; i < int(edges.size()); ++i) { |
1408 | 1408 |
snapshot.eraseEdge(edges[i]); |
1409 | 1409 |
} |
1410 | 1410 |
} |
1411 | 1411 |
virtual void build() { |
1412 | 1412 |
Edge edge; |
1413 | 1413 |
std::vector<Edge> edges; |
1414 | 1414 |
for (notifier()->first(edge); edge != INVALID; |
1415 | 1415 |
notifier()->next(edge)) { |
1416 | 1416 |
edges.push_back(edge); |
1417 | 1417 |
} |
1418 | 1418 |
for (int i = edges.size() - 1; i >= 0; --i) { |
1419 | 1419 |
snapshot.addEdge(edges[i]); |
1420 | 1420 |
} |
1421 | 1421 |
} |
1422 | 1422 |
virtual void clear() { |
1423 | 1423 |
Edge edge; |
1424 | 1424 |
for (notifier()->first(edge); edge != INVALID; |
1425 | 1425 |
notifier()->next(edge)) { |
1426 | 1426 |
snapshot.eraseEdge(edge); |
1427 | 1427 |
} |
1428 | 1428 |
} |
1429 | 1429 |
|
1430 | 1430 |
Snapshot& snapshot; |
1431 | 1431 |
}; |
1432 | 1432 |
|
1433 | 1433 |
ListGraph *graph; |
1434 | 1434 |
|
1435 | 1435 |
NodeObserverProxy node_observer_proxy; |
1436 | 1436 |
EdgeObserverProxy edge_observer_proxy; |
1437 | 1437 |
|
1438 | 1438 |
std::list<Node> added_nodes; |
1439 | 1439 |
std::list<Edge> added_edges; |
1440 | 1440 |
|
1441 | 1441 |
|
1442 | 1442 |
void addNode(const Node& node) { |
1443 | 1443 |
added_nodes.push_front(node); |
1444 | 1444 |
} |
1445 | 1445 |
void eraseNode(const Node& node) { |
1446 | 1446 |
std::list<Node>::iterator it = |
1447 | 1447 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
1448 | 1448 |
if (it == added_nodes.end()) { |
1449 | 1449 |
clear(); |
1450 | 1450 |
edge_observer_proxy.detach(); |
1451 | 1451 |
throw NodeNotifier::ImmediateDetach(); |
1452 | 1452 |
} else { |
1453 | 1453 |
added_nodes.erase(it); |
1454 | 1454 |
} |
1455 | 1455 |
} |
1456 | 1456 |
|
1457 | 1457 |
void addEdge(const Edge& edge) { |
1458 | 1458 |
added_edges.push_front(edge); |
1459 | 1459 |
} |
1460 | 1460 |
void eraseEdge(const Edge& edge) { |
1461 | 1461 |
std::list<Edge>::iterator it = |
1462 | 1462 |
std::find(added_edges.begin(), added_edges.end(), edge); |
1463 | 1463 |
if (it == added_edges.end()) { |
1464 | 1464 |
clear(); |
1465 | 1465 |
node_observer_proxy.detach(); |
1466 | 1466 |
throw EdgeNotifier::ImmediateDetach(); |
1467 | 1467 |
} else { |
1468 | 1468 |
added_edges.erase(it); |
1469 | 1469 |
} |
1470 | 1470 |
} |
1471 | 1471 |
|
1472 | 1472 |
void attach(ListGraph &_graph) { |
1473 | 1473 |
graph = &_graph; |
1474 | 1474 |
node_observer_proxy.attach(graph->notifier(Node())); |
1475 | 1475 |
edge_observer_proxy.attach(graph->notifier(Edge())); |
1476 | 1476 |
} |
1477 | 1477 |
|
1478 | 1478 |
void detach() { |
1479 | 1479 |
node_observer_proxy.detach(); |
1480 | 1480 |
edge_observer_proxy.detach(); |
1481 | 1481 |
} |
1482 | 1482 |
|
1483 | 1483 |
bool attached() const { |
1484 | 1484 |
return node_observer_proxy.attached(); |
1485 | 1485 |
} |
1486 | 1486 |
|
1487 | 1487 |
void clear() { |
1488 | 1488 |
added_nodes.clear(); |
1489 | 1489 |
added_edges.clear(); |
1490 | 1490 |
} |
1491 | 1491 |
|
1492 | 1492 |
public: |
1493 | 1493 |
|
1494 | 1494 |
/// \brief Default constructor. |
1495 | 1495 |
/// |
1496 | 1496 |
/// Default constructor. |
1497 | 1497 |
/// To actually make a snapshot you must call save(). |
1498 | 1498 |
Snapshot() |
1499 | 1499 |
: graph(0), node_observer_proxy(*this), |
1500 | 1500 |
edge_observer_proxy(*this) {} |
1501 | 1501 |
|
1502 | 1502 |
/// \brief Constructor that immediately makes a snapshot. |
1503 | 1503 |
/// |
1504 | 1504 |
/// This constructor immediately makes a snapshot of the graph. |
1505 | 1505 |
/// \param _graph The graph we make a snapshot of. |
1506 | 1506 |
Snapshot(ListGraph &_graph) |
1507 | 1507 |
: node_observer_proxy(*this), |
1508 | 1508 |
edge_observer_proxy(*this) { |
1509 | 1509 |
attach(_graph); |
1510 | 1510 |
} |
1511 | 1511 |
|
1512 | 1512 |
/// \brief Make a snapshot. |
1513 | 1513 |
/// |
1514 | 1514 |
/// Make a snapshot of the graph. |
1515 | 1515 |
/// |
1516 | 1516 |
/// This function can be called more than once. In case of a repeated |
1517 | 1517 |
/// call, the previous snapshot gets lost. |
1518 | 1518 |
/// \param _graph The graph we make the snapshot of. |
1519 | 1519 |
void save(ListGraph &_graph) { |
1520 | 1520 |
if (attached()) { |
1521 | 1521 |
detach(); |
1522 | 1522 |
clear(); |
1523 | 1523 |
} |
1524 | 1524 |
attach(_graph); |
1525 | 1525 |
} |
1526 | 1526 |
|
1527 | 1527 |
/// \brief Undo the changes until the last snapshot. |
1528 | 1528 |
// |
1529 | 1529 |
/// Undo the changes until the last snapshot created by save(). |
1530 | 1530 |
void restore() { |
1531 | 1531 |
detach(); |
1532 | 1532 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
1533 | 1533 |
it != added_edges.end(); ++it) { |
1534 | 1534 |
graph->erase(*it); |
1535 | 1535 |
} |
1536 | 1536 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
1537 | 1537 |
it != added_nodes.end(); ++it) { |
1538 | 1538 |
graph->erase(*it); |
1539 | 1539 |
} |
1540 | 1540 |
clear(); |
1541 | 1541 |
} |
1542 | 1542 |
|
1543 | 1543 |
/// \brief Gives back true when the snapshot is valid. |
1544 | 1544 |
/// |
1545 | 1545 |
/// Gives back true when the snapshot is valid. |
1546 | 1546 |
bool valid() const { |
1547 | 1547 |
return attached(); |
1548 | 1548 |
} |
1549 | 1549 |
}; |
1550 | 1550 |
}; |
1551 | 1551 |
|
1552 | 1552 |
/// @} |
1553 | 1553 |
} //namespace lemon |
1554 | 1554 |
|
1555 | 1555 |
|
1556 | 1556 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup paths |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_PATH_H |
25 | 25 |
#define LEMON_PATH_H |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <algorithm> |
29 | 29 |
|
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/concepts/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup paths |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
|
40 | 40 |
/// \brief A structure for representing directed paths in a digraph. |
41 | 41 |
/// |
42 | 42 |
/// A structure for representing directed path in a digraph. |
43 | 43 |
/// \tparam _Digraph The digraph type in which the path is. |
44 | 44 |
/// |
45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
46 | 46 |
/// lemon path type stores just this list. As a consequence, it |
47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
48 | 48 |
/// a zero length path is undefined. |
49 | 49 |
/// |
50 | 50 |
/// This implementation is a back and front insertable and erasable |
51 | 51 |
/// path type. It can be indexed in O(1) time. The front and back |
52 | 52 |
/// insertion and erase is done in O(1) (amortized) time. The |
53 | 53 |
/// implementation uses two vectors for storing the front and back |
54 | 54 |
/// insertions. |
55 | 55 |
template <typename _Digraph> |
56 | 56 |
class Path { |
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
typedef _Digraph Digraph; |
60 | 60 |
typedef typename Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
/// \brief Default constructor |
63 | 63 |
/// |
64 | 64 |
/// Default constructor |
65 | 65 |
Path() {} |
66 | 66 |
|
67 | 67 |
/// \brief Template copy constructor |
68 | 68 |
/// |
69 | 69 |
/// This constuctor initializes the path from any other path type. |
70 | 70 |
/// It simply makes a copy of the given path. |
71 | 71 |
template <typename CPath> |
72 | 72 |
Path(const CPath& cpath) { |
73 | 73 |
pathCopy(cpath, *this); |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
/// \brief Template copy assignment |
77 | 77 |
/// |
78 | 78 |
/// This operator makes a copy of a path of any other type. |
79 | 79 |
template <typename CPath> |
80 | 80 |
Path& operator=(const CPath& cpath) { |
81 | 81 |
pathCopy(cpath, *this); |
82 | 82 |
return *this; |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
/// \brief LEMON style iterator for path arcs |
86 | 86 |
/// |
87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
88 | 88 |
class ArcIt { |
89 | 89 |
friend class Path; |
90 | 90 |
public: |
91 | 91 |
/// \brief Default constructor |
92 | 92 |
ArcIt() {} |
93 | 93 |
/// \brief Invalid constructor |
94 | 94 |
ArcIt(Invalid) : path(0), idx(-1) {} |
95 | 95 |
/// \brief Initializate the iterator to the first arc of path |
96 | 96 |
ArcIt(const Path &_path) |
97 | 97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
98 | 98 |
|
99 | 99 |
private: |
100 | 100 |
|
101 | 101 |
ArcIt(const Path &_path, int _idx) |
102 | 102 |
: path(&_path), idx(_idx) {} |
103 | 103 |
|
104 | 104 |
public: |
105 | 105 |
|
106 | 106 |
/// \brief Conversion to Arc |
107 | 107 |
operator const Arc&() const { |
108 | 108 |
return path->nth(idx); |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
/// \brief Next arc |
112 | 112 |
ArcIt& operator++() { |
113 | 113 |
++idx; |
114 | 114 |
if (idx >= path->length()) idx = -1; |
115 | 115 |
return *this; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
/// \brief Comparison operator |
119 | 119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
120 | 120 |
/// \brief Comparison operator |
121 | 121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
122 | 122 |
/// \brief Comparison operator |
123 | 123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
124 | 124 |
|
125 | 125 |
private: |
126 | 126 |
const Path *path; |
127 | 127 |
int idx; |
128 | 128 |
}; |
129 | 129 |
|
130 | 130 |
/// \brief Length of the path. |
131 | 131 |
int length() const { return head.size() + tail.size(); } |
132 | 132 |
/// \brief Return whether the path is empty. |
133 | 133 |
bool empty() const { return head.empty() && tail.empty(); } |
134 | 134 |
|
135 | 135 |
/// \brief Reset the path to an empty one. |
136 | 136 |
void clear() { head.clear(); tail.clear(); } |
137 | 137 |
|
138 | 138 |
/// \brief The nth arc. |
139 | 139 |
/// |
140 | 140 |
/// \pre n is in the [0..length() - 1] range |
141 | 141 |
const Arc& nth(int n) const { |
142 | 142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
143 | 143 |
*(tail.begin() + (n - head.size())); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
/// \brief Initialize arc iterator to point to the nth arc |
147 | 147 |
/// |
148 | 148 |
/// \pre n is in the [0..length() - 1] range |
149 | 149 |
ArcIt nthIt(int n) const { |
150 | 150 |
return ArcIt(*this, n); |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
/// \brief The first arc of the path |
154 | 154 |
const Arc& front() const { |
155 | 155 |
return head.empty() ? tail.front() : head.back(); |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
/// \brief Add a new arc before the current path |
159 | 159 |
void addFront(const Arc& arc) { |
160 | 160 |
head.push_back(arc); |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
/// \brief Erase the first arc of the path |
164 | 164 |
void eraseFront() { |
165 | 165 |
if (!head.empty()) { |
166 | 166 |
head.pop_back(); |
167 | 167 |
} else { |
168 | 168 |
head.clear(); |
169 | 169 |
int halfsize = tail.size() / 2; |
170 | 170 |
head.resize(halfsize); |
171 | 171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
172 | 172 |
head.rbegin()); |
173 | 173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
174 | 174 |
tail.resize(tail.size() - halfsize - 1); |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
/// \brief The last arc of the path |
179 | 179 |
const Arc& back() const { |
180 | 180 |
return tail.empty() ? head.front() : tail.back(); |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
/// \brief Add a new arc behind the current path |
184 | 184 |
void addBack(const Arc& arc) { |
185 | 185 |
tail.push_back(arc); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
/// \brief Erase the last arc of the path |
189 | 189 |
void eraseBack() { |
190 | 190 |
if (!tail.empty()) { |
191 | 191 |
tail.pop_back(); |
192 | 192 |
} else { |
193 | 193 |
int halfsize = head.size() / 2; |
194 | 194 |
tail.resize(halfsize); |
195 | 195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
196 | 196 |
tail.rbegin()); |
197 | 197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
198 | 198 |
head.resize(head.size() - halfsize - 1); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
typedef True BuildTag; |
203 | 203 |
|
204 | 204 |
template <typename CPath> |
205 | 205 |
void build(const CPath& path) { |
206 | 206 |
int len = path.length(); |
207 | 207 |
tail.reserve(len); |
208 | 208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
209 | 209 |
tail.push_back(it); |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
template <typename CPath> |
214 | 214 |
void buildRev(const CPath& path) { |
215 | 215 |
int len = path.length(); |
216 | 216 |
head.reserve(len); |
217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
218 | 218 |
head.push_back(it); |
219 | 219 |
} |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
protected: |
223 | 223 |
typedef std::vector<Arc> Container; |
224 | 224 |
Container head, tail; |
225 | 225 |
|
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
229 | 229 |
/// |
230 | 230 |
/// A structure for representing directed path in a digraph. |
231 | 231 |
/// \tparam _Digraph The digraph type in which the path is. |
232 | 232 |
/// |
233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
234 | 234 |
/// lemon path type stores just this list. As a consequence it |
235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
236 | 236 |
/// cannot store the source. |
237 | 237 |
/// |
238 | 238 |
/// This implementation is a just back insertable and erasable path |
239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
241 | 241 |
/// then the \c Path type because it use just one vector for the |
242 | 242 |
/// arcs. |
243 | 243 |
template <typename _Digraph> |
244 | 244 |
class SimplePath { |
245 | 245 |
public: |
246 | 246 |
|
247 | 247 |
typedef _Digraph Digraph; |
248 | 248 |
typedef typename Digraph::Arc Arc; |
249 | 249 |
|
250 | 250 |
/// \brief Default constructor |
251 | 251 |
/// |
252 | 252 |
/// Default constructor |
253 | 253 |
SimplePath() {} |
254 | 254 |
|
255 | 255 |
/// \brief Template copy constructor |
256 | 256 |
/// |
257 | 257 |
/// This path can be initialized with any other path type. It just |
258 | 258 |
/// makes a copy of the given path. |
259 | 259 |
template <typename CPath> |
260 | 260 |
SimplePath(const CPath& cpath) { |
261 | 261 |
pathCopy(cpath, *this); |
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
/// \brief Template copy assignment |
265 | 265 |
/// |
266 | 266 |
/// This path can be initialized with any other path type. It just |
267 | 267 |
/// makes a copy of the given path. |
268 | 268 |
template <typename CPath> |
269 | 269 |
SimplePath& operator=(const CPath& cpath) { |
270 | 270 |
pathCopy(cpath, *this); |
271 | 271 |
return *this; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
275 | 275 |
/// |
276 | 276 |
/// This class is used to iterate on the arcs of the paths |
277 | 277 |
/// |
278 | 278 |
/// Of course it converts to Digraph::Arc |
279 | 279 |
class ArcIt { |
280 | 280 |
friend class SimplePath; |
281 | 281 |
public: |
282 | 282 |
/// Default constructor |
283 | 283 |
ArcIt() {} |
284 | 284 |
/// Invalid constructor |
285 | 285 |
ArcIt(Invalid) : path(0), idx(-1) {} |
286 | 286 |
/// \brief Initializate the constructor to the first arc of path |
287 | 287 |
ArcIt(const SimplePath &_path) |
288 | 288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
289 | 289 |
|
290 | 290 |
private: |
291 | 291 |
|
292 | 292 |
/// Constructor with starting point |
293 | 293 |
ArcIt(const SimplePath &_path, int _idx) |
294 | 294 |
: idx(_idx), path(&_path) {} |
295 | 295 |
|
296 | 296 |
public: |
297 | 297 |
|
298 | 298 |
///Conversion to Digraph::Arc |
299 | 299 |
operator const Arc&() const { |
300 | 300 |
return path->nth(idx); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// Next arc |
304 | 304 |
ArcIt& operator++() { |
305 | 305 |
++idx; |
306 | 306 |
if (idx >= path->length()) idx = -1; |
307 | 307 |
return *this; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
/// Comparison operator |
311 | 311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
312 | 312 |
/// Comparison operator |
313 | 313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
314 | 314 |
/// Comparison operator |
315 | 315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
316 | 316 |
|
317 | 317 |
private: |
318 | 318 |
const SimplePath *path; |
319 | 319 |
int idx; |
320 | 320 |
}; |
321 | 321 |
|
322 | 322 |
/// \brief Length of the path. |
323 | 323 |
int length() const { return data.size(); } |
324 | 324 |
/// \brief Return true if the path is empty. |
325 | 325 |
bool empty() const { return data.empty(); } |
326 | 326 |
|
327 | 327 |
/// \brief Reset the path to an empty one. |
328 | 328 |
void clear() { data.clear(); } |
329 | 329 |
|
330 | 330 |
/// \brief The nth arc. |
331 | 331 |
/// |
332 | 332 |
/// \pre n is in the [0..length() - 1] range |
333 | 333 |
const Arc& nth(int n) const { |
334 | 334 |
return data[n]; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
/// \brief Initializes arc iterator to point to the nth arc. |
338 | 338 |
ArcIt nthIt(int n) const { |
339 | 339 |
return ArcIt(*this, n); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
/// \brief The first arc of the path. |
343 | 343 |
const Arc& front() const { |
344 | 344 |
return data.front(); |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief The last arc of the path. |
348 | 348 |
const Arc& back() const { |
349 | 349 |
return data.back(); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
/// \brief Add a new arc behind the current path. |
353 | 353 |
void addBack(const Arc& arc) { |
354 | 354 |
data.push_back(arc); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Erase the last arc of the path |
358 | 358 |
void eraseBack() { |
359 | 359 |
data.pop_back(); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
typedef True BuildTag; |
363 | 363 |
|
364 | 364 |
template <typename CPath> |
365 | 365 |
void build(const CPath& path) { |
366 | 366 |
int len = path.length(); |
367 | 367 |
data.resize(len); |
368 | 368 |
int index = 0; |
369 | 369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
370 | 370 |
data[index] = it;; |
371 | 371 |
++index; |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
template <typename CPath> |
376 | 376 |
void buildRev(const CPath& path) { |
377 | 377 |
int len = path.length(); |
378 | 378 |
data.resize(len); |
379 | 379 |
int index = len; |
380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
381 | 381 |
--index; |
382 | 382 |
data[index] = it;; |
383 | 383 |
} |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
protected: |
387 | 387 |
typedef std::vector<Arc> Container; |
388 | 388 |
Container data; |
389 | 389 |
|
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
393 | 393 |
/// |
394 | 394 |
/// A structure for representing directed path in a digraph. |
395 | 395 |
/// \tparam _Digraph The digraph type in which the path is. |
396 | 396 |
/// |
397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
398 | 398 |
/// lemon path type stores just this list. As a consequence it |
399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
400 | 400 |
/// cannot store the source. |
401 | 401 |
/// |
402 | 402 |
/// This implementation is a back and front insertable and erasable |
403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
406 | 406 |
/// and it can be splited and spliced in O(1) time. |
407 | 407 |
template <typename _Digraph> |
408 | 408 |
class ListPath { |
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
typedef _Digraph Digraph; |
412 | 412 |
typedef typename Digraph::Arc Arc; |
413 | 413 |
|
414 | 414 |
protected: |
415 | 415 |
|
416 | 416 |
// the std::list<> is incompatible |
417 | 417 |
// hard to create invalid iterator |
418 | 418 |
struct Node { |
419 | 419 |
Arc arc; |
420 | 420 |
Node *next, *prev; |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
Node *first, *last; |
424 | 424 |
|
425 | 425 |
std::allocator<Node> alloc; |
426 | 426 |
|
427 | 427 |
public: |
428 | 428 |
|
429 | 429 |
/// \brief Default constructor |
430 | 430 |
/// |
431 | 431 |
/// Default constructor |
432 | 432 |
ListPath() : first(0), last(0) {} |
433 | 433 |
|
434 | 434 |
/// \brief Template copy constructor |
435 | 435 |
/// |
436 | 436 |
/// This path can be initialized with any other path type. It just |
437 | 437 |
/// makes a copy of the given path. |
438 | 438 |
template <typename CPath> |
439 | 439 |
ListPath(const CPath& cpath) : first(0), last(0) { |
440 | 440 |
pathCopy(cpath, *this); |
441 | 441 |
} |
442 | 442 |
|
443 | 443 |
/// \brief Destructor of the path |
444 | 444 |
/// |
445 | 445 |
/// Destructor of the path |
446 | 446 |
~ListPath() { |
447 | 447 |
clear(); |
448 | 448 |
} |
449 | 449 |
|
450 | 450 |
/// \brief Template copy assignment |
451 | 451 |
/// |
452 | 452 |
/// This path can be initialized with any other path type. It just |
453 | 453 |
/// makes a copy of the given path. |
454 | 454 |
template <typename CPath> |
455 | 455 |
ListPath& operator=(const CPath& cpath) { |
456 | 456 |
pathCopy(cpath, *this); |
457 | 457 |
return *this; |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
/// \brief Iterator class to iterate on the arcs of the paths |
461 | 461 |
/// |
462 | 462 |
/// This class is used to iterate on the arcs of the paths |
463 | 463 |
/// |
464 | 464 |
/// Of course it converts to Digraph::Arc |
465 | 465 |
class ArcIt { |
466 | 466 |
friend class ListPath; |
467 | 467 |
public: |
468 | 468 |
/// Default constructor |
469 | 469 |
ArcIt() {} |
470 | 470 |
/// Invalid constructor |
471 | 471 |
ArcIt(Invalid) : path(0), node(0) {} |
472 | 472 |
/// \brief Initializate the constructor to the first arc of path |
473 | 473 |
ArcIt(const ListPath &_path) |
474 | 474 |
: path(&_path), node(_path.first) {} |
475 | 475 |
|
476 | 476 |
protected: |
477 | 477 |
|
478 | 478 |
ArcIt(const ListPath &_path, Node *_node) |
479 | 479 |
: path(&_path), node(_node) {} |
480 | 480 |
|
481 | 481 |
|
482 | 482 |
public: |
483 | 483 |
|
484 | 484 |
///Conversion to Digraph::Arc |
485 | 485 |
operator const Arc&() const { |
486 | 486 |
return node->arc; |
487 | 487 |
} |
488 | 488 |
|
489 | 489 |
/// Next arc |
490 | 490 |
ArcIt& operator++() { |
491 | 491 |
node = node->next; |
492 | 492 |
return *this; |
493 | 493 |
} |
494 | 494 |
|
495 | 495 |
/// Comparison operator |
496 | 496 |
bool operator==(const ArcIt& e) const { return node==e.node; } |
497 | 497 |
/// Comparison operator |
498 | 498 |
bool operator!=(const ArcIt& e) const { return node!=e.node; } |
499 | 499 |
/// Comparison operator |
500 | 500 |
bool operator<(const ArcIt& e) const { return node<e.node; } |
501 | 501 |
|
502 | 502 |
private: |
503 | 503 |
const ListPath *path; |
504 | 504 |
Node *node; |
505 | 505 |
}; |
506 | 506 |
|
507 | 507 |
/// \brief The nth arc. |
508 | 508 |
/// |
509 | 509 |
/// This function looks for the nth arc in O(n) time. |
510 | 510 |
/// \pre n is in the [0..length() - 1] range |
511 | 511 |
const Arc& nth(int n) const { |
512 | 512 |
Node *node = first; |
513 | 513 |
for (int i = 0; i < n; ++i) { |
514 | 514 |
node = node->next; |
515 | 515 |
} |
516 | 516 |
return node->arc; |
517 | 517 |
} |
518 | 518 |
|
519 | 519 |
/// \brief Initializes arc iterator to point to the nth arc. |
520 | 520 |
ArcIt nthIt(int n) const { |
521 | 521 |
Node *node = first; |
522 | 522 |
for (int i = 0; i < n; ++i) { |
523 | 523 |
node = node->next; |
524 | 524 |
} |
525 | 525 |
return ArcIt(*this, node); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
/// \brief Length of the path. |
529 | 529 |
int length() const { |
530 | 530 |
int len = 0; |
531 | 531 |
Node *node = first; |
532 | 532 |
while (node != 0) { |
533 | 533 |
node = node->next; |
534 | 534 |
++len; |
535 | 535 |
} |
536 | 536 |
return len; |
537 | 537 |
} |
538 | 538 |
|
539 | 539 |
/// \brief Return true if the path is empty. |
540 | 540 |
bool empty() const { return first == 0; } |
541 | 541 |
|
542 | 542 |
/// \brief Reset the path to an empty one. |
543 | 543 |
void clear() { |
544 | 544 |
while (first != 0) { |
545 | 545 |
last = first->next; |
546 | 546 |
alloc.destroy(first); |
547 | 547 |
alloc.deallocate(first, 1); |
548 | 548 |
first = last; |
549 | 549 |
} |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
/// \brief The first arc of the path |
553 | 553 |
const Arc& front() const { |
554 | 554 |
return first->arc; |
555 | 555 |
} |
556 | 556 |
|
557 | 557 |
/// \brief Add a new arc before the current path |
558 | 558 |
void addFront(const Arc& arc) { |
559 | 559 |
Node *node = alloc.allocate(1); |
560 | 560 |
alloc.construct(node, Node()); |
561 | 561 |
node->prev = 0; |
562 | 562 |
node->next = first; |
563 | 563 |
node->arc = arc; |
564 | 564 |
if (first) { |
565 | 565 |
first->prev = node; |
566 | 566 |
first = node; |
567 | 567 |
} else { |
568 | 568 |
first = last = node; |
569 | 569 |
} |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
/// \brief Erase the first arc of the path |
573 | 573 |
void eraseFront() { |
574 | 574 |
Node *node = first; |
575 | 575 |
first = first->next; |
576 | 576 |
if (first) { |
577 | 577 |
first->prev = 0; |
578 | 578 |
} else { |
579 | 579 |
last = 0; |
580 | 580 |
} |
581 | 581 |
alloc.destroy(node); |
582 | 582 |
alloc.deallocate(node, 1); |
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
/// \brief The last arc of the path. |
586 | 586 |
const Arc& back() const { |
587 | 587 |
return last->arc; |
588 | 588 |
} |
589 | 589 |
|
590 | 590 |
/// \brief Add a new arc behind the current path. |
591 | 591 |
void addBack(const Arc& arc) { |
592 | 592 |
Node *node = alloc.allocate(1); |
593 | 593 |
alloc.construct(node, Node()); |
594 | 594 |
node->next = 0; |
595 | 595 |
node->prev = last; |
596 | 596 |
node->arc = arc; |
597 | 597 |
if (last) { |
598 | 598 |
last->next = node; |
599 | 599 |
last = node; |
600 | 600 |
} else { |
601 | 601 |
last = first = node; |
602 | 602 |
} |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
/// \brief Erase the last arc of the path |
606 | 606 |
void eraseBack() { |
607 | 607 |
Node *node = last; |
608 | 608 |
last = last->prev; |
609 | 609 |
if (last) { |
610 | 610 |
last->next = 0; |
611 | 611 |
} else { |
612 | 612 |
first = 0; |
613 | 613 |
} |
614 | 614 |
alloc.destroy(node); |
615 | 615 |
alloc.deallocate(node, 1); |
616 | 616 |
} |
617 | 617 |
|
618 | 618 |
/// \brief Splice a path to the back of the current path. |
619 | 619 |
/// |
620 | 620 |
/// It splices \c tpath to the back of the current path and \c |
621 | 621 |
/// tpath becomes empty. The time complexity of this function is |
622 | 622 |
/// O(1). |
623 | 623 |
void spliceBack(ListPath& tpath) { |
624 | 624 |
if (first) { |
625 | 625 |
if (tpath.first) { |
626 | 626 |
last->next = tpath.first; |
627 | 627 |
tpath.first->prev = last; |
628 | 628 |
last = tpath.last; |
629 | 629 |
} |
630 | 630 |
} else { |
631 | 631 |
first = tpath.first; |
632 | 632 |
last = tpath.last; |
633 | 633 |
} |
634 | 634 |
tpath.first = tpath.last = 0; |
635 | 635 |
} |
636 | 636 |
|
637 | 637 |
/// \brief Splice a path to the front of the current path. |
638 | 638 |
/// |
639 | 639 |
/// It splices \c tpath before the current path and \c tpath |
640 | 640 |
/// becomes empty. The time complexity of this function |
641 | 641 |
/// is O(1). |
642 | 642 |
void spliceFront(ListPath& tpath) { |
643 | 643 |
if (first) { |
644 | 644 |
if (tpath.first) { |
645 | 645 |
first->prev = tpath.last; |
646 | 646 |
tpath.last->next = first; |
647 | 647 |
first = tpath.first; |
648 | 648 |
} |
649 | 649 |
} else { |
650 | 650 |
first = tpath.first; |
651 | 651 |
last = tpath.last; |
652 | 652 |
} |
653 | 653 |
tpath.first = tpath.last = 0; |
654 | 654 |
} |
655 | 655 |
|
656 | 656 |
/// \brief Splice a path into the current path. |
657 | 657 |
/// |
658 | 658 |
/// It splices the \c tpath into the current path before the |
659 | 659 |
/// position of \c it iterator and \c tpath becomes empty. The |
660 | 660 |
/// time complexity of this function is O(1). If the \c it is |
661 | 661 |
/// \c INVALID then it will splice behind the current path. |
662 | 662 |
void splice(ArcIt it, ListPath& tpath) { |
663 | 663 |
if (it.node) { |
664 | 664 |
if (tpath.first) { |
665 | 665 |
tpath.first->prev = it.node->prev; |
666 | 666 |
if (it.node->prev) { |
667 | 667 |
it.node->prev->next = tpath.first; |
668 | 668 |
} else { |
669 | 669 |
first = tpath.first; |
670 | 670 |
} |
671 | 671 |
it.node->prev = tpath.last; |
672 | 672 |
tpath.last->next = it.node; |
673 | 673 |
} |
674 | 674 |
} else { |
675 | 675 |
if (first) { |
676 | 676 |
if (tpath.first) { |
677 | 677 |
last->next = tpath.first; |
678 | 678 |
tpath.first->prev = last; |
679 | 679 |
last = tpath.last; |
680 | 680 |
} |
681 | 681 |
} else { |
682 | 682 |
first = tpath.first; |
683 | 683 |
last = tpath.last; |
684 | 684 |
} |
685 | 685 |
} |
686 | 686 |
tpath.first = tpath.last = 0; |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
/// \brief Split the current path. |
690 | 690 |
/// |
691 | 691 |
/// It splits the current path into two parts. The part before |
692 | 692 |
/// the iterator \c it will remain in the current path and the part |
693 | 693 |
/// starting with |
694 | 694 |
/// \c it will put into \c tpath. If \c tpath have arcs |
695 | 695 |
/// before the operation they are removed first. The time |
696 | 696 |
/// complexity of this function is O(1) plus the the time of emtying |
697 | 697 |
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath |
698 | 698 |
void split(ArcIt it, ListPath& tpath) { |
699 | 699 |
tpath.clear(); |
700 | 700 |
if (it.node) { |
701 | 701 |
tpath.first = it.node; |
702 | 702 |
tpath.last = last; |
703 | 703 |
if (it.node->prev) { |
704 | 704 |
last = it.node->prev; |
705 | 705 |
last->next = 0; |
706 | 706 |
} else { |
707 | 707 |
first = last = 0; |
708 | 708 |
} |
709 | 709 |
it.node->prev = 0; |
710 | 710 |
} |
711 | 711 |
} |
712 | 712 |
|
713 | 713 |
|
714 | 714 |
typedef True BuildTag; |
715 | 715 |
|
716 | 716 |
template <typename CPath> |
717 | 717 |
void build(const CPath& path) { |
718 | 718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
719 | 719 |
addBack(it); |
720 | 720 |
} |
721 | 721 |
} |
722 | 722 |
|
723 | 723 |
template <typename CPath> |
724 | 724 |
void buildRev(const CPath& path) { |
725 | 725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
726 | 726 |
addFront(it); |
727 | 727 |
} |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// \brief A structure for representing directed paths in a digraph. |
733 | 733 |
/// |
734 | 734 |
/// A structure for representing directed path in a digraph. |
735 | 735 |
/// \tparam _Digraph The digraph type in which the path is. |
736 | 736 |
/// |
737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
738 | 738 |
/// lemon path type stores just this list. As a consequence it |
739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
740 | 740 |
/// a zero length path is undefined. |
741 | 741 |
/// |
742 | 742 |
/// This implementation is completly static, i.e. it can be copy constucted |
743 | 743 |
/// or copy assigned from another path, but otherwise it cannot be |
744 | 744 |
/// modified. |
745 | 745 |
/// |
746 | 746 |
/// Being the the most memory efficient path type in LEMON, |
747 | 747 |
/// it is intented to be |
748 | 748 |
/// used when you want to store a large number of paths. |
749 | 749 |
template <typename _Digraph> |
750 | 750 |
class StaticPath { |
751 | 751 |
public: |
752 | 752 |
|
753 | 753 |
typedef _Digraph Digraph; |
754 | 754 |
typedef typename Digraph::Arc Arc; |
755 | 755 |
|
756 | 756 |
/// \brief Default constructor |
757 | 757 |
/// |
758 | 758 |
/// Default constructor |
759 | 759 |
StaticPath() : len(0), arcs(0) {} |
760 | 760 |
|
761 | 761 |
/// \brief Template copy constructor |
762 | 762 |
/// |
763 | 763 |
/// This path can be initialized from any other path type. |
764 | 764 |
template <typename CPath> |
765 | 765 |
StaticPath(const CPath& cpath) : arcs(0) { |
766 | 766 |
pathCopy(cpath, *this); |
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
/// \brief Destructor of the path |
770 | 770 |
/// |
771 | 771 |
/// Destructor of the path |
772 | 772 |
~StaticPath() { |
773 | 773 |
if (arcs) delete[] arcs; |
774 | 774 |
} |
775 | 775 |
|
776 | 776 |
/// \brief Template copy assignment |
777 | 777 |
/// |
778 | 778 |
/// This path can be made equal to any other path type. It simply |
779 | 779 |
/// makes a copy of the given path. |
780 | 780 |
template <typename CPath> |
781 | 781 |
StaticPath& operator=(const CPath& cpath) { |
782 | 782 |
pathCopy(cpath, *this); |
783 | 783 |
return *this; |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
/// \brief Iterator class to iterate on the arcs of the paths |
787 | 787 |
/// |
788 | 788 |
/// This class is used to iterate on the arcs of the paths |
789 | 789 |
/// |
790 | 790 |
/// Of course it converts to Digraph::Arc |
791 | 791 |
class ArcIt { |
792 | 792 |
friend class StaticPath; |
793 | 793 |
public: |
794 | 794 |
/// Default constructor |
795 | 795 |
ArcIt() {} |
796 | 796 |
/// Invalid constructor |
797 | 797 |
ArcIt(Invalid) : path(0), idx(-1) {} |
798 | 798 |
/// Initializate the constructor to the first arc of path |
799 | 799 |
ArcIt(const StaticPath &_path) |
800 | 800 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
801 | 801 |
|
802 | 802 |
private: |
803 | 803 |
|
804 | 804 |
/// Constructor with starting point |
805 | 805 |
ArcIt(const StaticPath &_path, int _idx) |
806 | 806 |
: idx(_idx), path(&_path) {} |
807 | 807 |
|
808 | 808 |
public: |
809 | 809 |
|
810 | 810 |
///Conversion to Digraph::Arc |
811 | 811 |
operator const Arc&() const { |
812 | 812 |
return path->nth(idx); |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
/// Next arc |
816 | 816 |
ArcIt& operator++() { |
817 | 817 |
++idx; |
818 | 818 |
if (idx >= path->length()) idx = -1; |
819 | 819 |
return *this; |
820 | 820 |
} |
821 | 821 |
|
822 | 822 |
/// Comparison operator |
823 | 823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
824 | 824 |
/// Comparison operator |
825 | 825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
826 | 826 |
/// Comparison operator |
827 | 827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
828 | 828 |
|
829 | 829 |
private: |
830 | 830 |
const StaticPath *path; |
831 | 831 |
int idx; |
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
/// \brief The nth arc. |
835 | 835 |
/// |
836 | 836 |
/// \pre n is in the [0..length() - 1] range |
837 | 837 |
const Arc& nth(int n) const { |
838 | 838 |
return arcs[n]; |
839 | 839 |
} |
840 | 840 |
|
841 | 841 |
/// \brief The arc iterator pointing to the nth arc. |
842 | 842 |
ArcIt nthIt(int n) const { |
843 | 843 |
return ArcIt(*this, n); |
844 | 844 |
} |
845 | 845 |
|
846 | 846 |
/// \brief The length of the path. |
847 | 847 |
int length() const { return len; } |
848 | 848 |
|
849 | 849 |
/// \brief Return true when the path is empty. |
850 | 850 |
int empty() const { return len == 0; } |
851 | 851 |
|
852 | 852 |
/// \brief Erase all arcs in the digraph. |
853 | 853 |
void clear() { |
854 | 854 |
len = 0; |
855 | 855 |
if (arcs) delete[] arcs; |
856 | 856 |
arcs = 0; |
857 | 857 |
} |
858 | 858 |
|
859 | 859 |
/// \brief The first arc of the path. |
860 | 860 |
const Arc& front() const { |
861 | 861 |
return arcs[0]; |
862 | 862 |
} |
863 | 863 |
|
864 | 864 |
/// \brief The last arc of the path. |
865 | 865 |
const Arc& back() const { |
866 | 866 |
return arcs[len - 1]; |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
|
870 | 870 |
typedef True BuildTag; |
871 | 871 |
|
872 | 872 |
template <typename CPath> |
873 | 873 |
void build(const CPath& path) { |
874 | 874 |
len = path.length(); |
875 | 875 |
arcs = new Arc[len]; |
876 | 876 |
int index = 0; |
877 | 877 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
878 | 878 |
arcs[index] = it; |
879 | 879 |
++index; |
880 | 880 |
} |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
template <typename CPath> |
884 | 884 |
void buildRev(const CPath& path) { |
885 | 885 |
len = path.length(); |
886 | 886 |
arcs = new Arc[len]; |
887 | 887 |
int index = len; |
888 | 888 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
889 | 889 |
--index; |
890 | 890 |
arcs[index] = it; |
891 | 891 |
} |
892 | 892 |
} |
893 | 893 |
|
894 | 894 |
private: |
895 | 895 |
int len; |
896 | 896 |
Arc* arcs; |
897 | 897 |
}; |
898 | 898 |
|
899 | 899 |
/////////////////////////////////////////////////////////////////////// |
900 | 900 |
// Additional utilities |
901 | 901 |
/////////////////////////////////////////////////////////////////////// |
902 | 902 |
|
903 | 903 |
namespace _path_bits { |
904 | 904 |
|
905 | 905 |
template <typename Path, typename Enable = void> |
906 | 906 |
struct RevPathTagIndicator { |
907 | 907 |
static const bool value = false; |
908 | 908 |
}; |
909 | 909 |
|
910 | 910 |
template <typename Path> |
911 | 911 |
struct RevPathTagIndicator< |
912 | 912 |
Path, |
913 | 913 |
typename enable_if<typename Path::RevPathTag, void>::type |
914 | 914 |
> { |
915 | 915 |
static const bool value = true; |
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
template <typename Path, typename Enable = void> |
919 | 919 |
struct BuildTagIndicator { |
920 | 920 |
static const bool value = false; |
921 | 921 |
}; |
922 | 922 |
|
923 | 923 |
template <typename Path> |
924 | 924 |
struct BuildTagIndicator< |
925 | 925 |
Path, |
926 | 926 |
typename enable_if<typename Path::BuildTag, void>::type |
927 | 927 |
> { |
928 | 928 |
static const bool value = true; |
929 | 929 |
}; |
930 | 930 |
|
931 | 931 |
template <typename From, typename To, |
932 | 932 |
bool buildEnable = BuildTagIndicator<To>::value> |
933 | 933 |
struct PathCopySelectorForward { |
934 | 934 |
static void copy(const From& from, To& to) { |
935 | 935 |
to.clear(); |
936 | 936 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
937 | 937 |
to.addBack(it); |
938 | 938 |
} |
939 | 939 |
} |
940 | 940 |
}; |
941 | 941 |
|
942 | 942 |
template <typename From, typename To> |
943 | 943 |
struct PathCopySelectorForward<From, To, true> { |
944 | 944 |
static void copy(const From& from, To& to) { |
945 | 945 |
to.clear(); |
946 | 946 |
to.build(from); |
947 | 947 |
} |
948 | 948 |
}; |
949 | 949 |
|
950 | 950 |
template <typename From, typename To, |
951 | 951 |
bool buildEnable = BuildTagIndicator<To>::value> |
952 | 952 |
struct PathCopySelectorBackward { |
953 | 953 |
static void copy(const From& from, To& to) { |
954 | 954 |
to.clear(); |
955 | 955 |
for (typename From::RevArcIt it(from); it != INVALID; ++it) { |
956 | 956 |
to.addFront(it); |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
}; |
960 | 960 |
|
961 | 961 |
template <typename From, typename To> |
962 | 962 |
struct PathCopySelectorBackward<From, To, true> { |
963 | 963 |
static void copy(const From& from, To& to) { |
964 | 964 |
to.clear(); |
965 | 965 |
to.buildRev(from); |
966 | 966 |
} |
967 | 967 |
}; |
968 | 968 |
|
969 | 969 |
|
970 | 970 |
template <typename From, typename To, |
971 | 971 |
bool revEnable = RevPathTagIndicator<From>::value> |
972 | 972 |
struct PathCopySelector { |
973 | 973 |
static void copy(const From& from, To& to) { |
974 | 974 |
PathCopySelectorForward<From, To>::copy(from, to); |
975 | 975 |
} |
976 | 976 |
}; |
977 | 977 |
|
978 | 978 |
template <typename From, typename To> |
979 | 979 |
struct PathCopySelector<From, To, true> { |
980 | 980 |
static void copy(const From& from, To& to) { |
981 | 981 |
PathCopySelectorBackward<From, To>::copy(from, to); |
982 | 982 |
} |
983 | 983 |
}; |
984 | 984 |
|
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
|
988 | 988 |
/// \brief Make a copy of a path. |
989 | 989 |
/// |
990 | 990 |
/// This function makes a copy of a path. |
991 | 991 |
template <typename From, typename To> |
992 | 992 |
void pathCopy(const From& from, To& to) { |
993 | 993 |
checkConcept<concepts::PathDumper<typename From::Digraph>, From>(); |
994 | 994 |
_path_bits::PathCopySelector<From, To>::copy(from, to); |
995 | 995 |
} |
996 | 996 |
|
997 | 997 |
/// \brief Deprecated version of \ref pathCopy(). |
998 | 998 |
/// |
999 | 999 |
/// Deprecated version of \ref pathCopy() (only for reverse compatibility). |
1000 | 1000 |
template <typename To, typename From> |
1001 | 1001 |
void copyPath(To& to, const From& from) { |
1002 | 1002 |
pathCopy(from, to); |
1003 | 1003 |
} |
1004 | 1004 |
|
1005 | 1005 |
/// \brief Check the consistency of a path. |
1006 | 1006 |
/// |
1007 | 1007 |
/// This function checks that the target of each arc is the same |
1008 | 1008 |
/// as the source of the next one. |
1009 | 1009 |
/// |
1010 | 1010 |
template <typename Digraph, typename Path> |
1011 | 1011 |
bool checkPath(const Digraph& digraph, const Path& path) { |
1012 | 1012 |
typename Path::ArcIt it(path); |
1013 | 1013 |
if (it == INVALID) return true; |
1014 | 1014 |
typename Digraph::Node node = digraph.target(it); |
1015 | 1015 |
++it; |
1016 | 1016 |
while (it != INVALID) { |
1017 | 1017 |
if (digraph.source(it) != node) return false; |
1018 | 1018 |
node = digraph.target(it); |
1019 | 1019 |
++it; |
1020 | 1020 |
} |
1021 | 1021 |
return true; |
1022 | 1022 |
} |
1023 | 1023 |
|
1024 | 1024 |
/// \brief The source of a path |
1025 | 1025 |
/// |
1026 | 1026 |
/// This function returns the source node of the given path. |
1027 | 1027 |
/// If the path is empty, then it returns \c INVALID. |
1028 | 1028 |
template <typename Digraph, typename Path> |
1029 | 1029 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) { |
1030 | 1030 |
return path.empty() ? INVALID : digraph.source(path.front()); |
1031 | 1031 |
} |
1032 | 1032 |
|
1033 | 1033 |
/// \brief The target of a path |
1034 | 1034 |
/// |
1035 | 1035 |
/// This function returns the target node of the given path. |
1036 | 1036 |
/// If the path is empty, then it returns \c INVALID. |
1037 | 1037 |
template <typename Digraph, typename Path> |
1038 | 1038 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) { |
1039 | 1039 |
return path.empty() ? INVALID : digraph.target(path.back()); |
1040 | 1040 |
} |
1041 | 1041 |
|
1042 | 1042 |
/// \brief Class which helps to iterate through the nodes of a path |
1043 | 1043 |
/// |
1044 | 1044 |
/// In a sense, the path can be treated as a list of arcs. The |
1045 | 1045 |
/// lemon path type stores only this list. As a consequence, it |
1046 | 1046 |
/// cannot enumerate the nodes in the path and the zero length paths |
1047 | 1047 |
/// cannot have a source node. |
1048 | 1048 |
/// |
1049 | 1049 |
/// This class implements the node iterator of a path structure. To |
1050 | 1050 |
/// provide this feature, the underlying digraph should be passed to |
1051 | 1051 |
/// the constructor of the iterator. |
1052 | 1052 |
template <typename Path> |
1053 | 1053 |
class PathNodeIt { |
1054 | 1054 |
private: |
1055 | 1055 |
const typename Path::Digraph *_digraph; |
1056 | 1056 |
typename Path::ArcIt _it; |
1057 | 1057 |
typename Path::Digraph::Node _nd; |
1058 | 1058 |
|
1059 | 1059 |
public: |
1060 | 1060 |
|
1061 | 1061 |
typedef typename Path::Digraph Digraph; |
1062 | 1062 |
typedef typename Digraph::Node Node; |
1063 | 1063 |
|
1064 | 1064 |
/// Default constructor |
1065 | 1065 |
PathNodeIt() {} |
1066 | 1066 |
/// Invalid constructor |
1067 | 1067 |
PathNodeIt(Invalid) |
1068 | 1068 |
: _digraph(0), _it(INVALID), _nd(INVALID) {} |
1069 | 1069 |
/// Constructor |
1070 | 1070 |
PathNodeIt(const Digraph& digraph, const Path& path) |
1071 | 1071 |
: _digraph(&digraph), _it(path) { |
1072 | 1072 |
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID); |
1073 | 1073 |
} |
1074 | 1074 |
/// Constructor |
1075 | 1075 |
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) |
1076 | 1076 |
: _digraph(&digraph), _it(path), _nd(src) {} |
1077 | 1077 |
|
1078 | 1078 |
///Conversion to Digraph::Node |
1079 | 1079 |
operator Node() const { |
1080 | 1080 |
return _nd; |
1081 | 1081 |
} |
1082 | 1082 |
|
1083 | 1083 |
/// Next node |
1084 | 1084 |
PathNodeIt& operator++() { |
1085 | 1085 |
if (_it == INVALID) _nd = INVALID; |
1086 | 1086 |
else { |
1087 | 1087 |
_nd = _digraph->target(_it); |
1088 | 1088 |
++_it; |
1089 | 1089 |
} |
1090 | 1090 |
return *this; |
1091 | 1091 |
} |
1092 | 1092 |
|
1093 | 1093 |
/// Comparison operator |
1094 | 1094 |
bool operator==(const PathNodeIt& n) const { |
1095 | 1095 |
return _it == n._it && _nd == n._nd; |
1096 | 1096 |
} |
1097 | 1097 |
/// Comparison operator |
1098 | 1098 |
bool operator!=(const PathNodeIt& n) const { |
1099 | 1099 |
return _it != n._it || _nd != n._nd; |
1100 | 1100 |
} |
1101 | 1101 |
/// Comparison operator |
1102 | 1102 |
bool operator<(const PathNodeIt& n) const { |
1103 | 1103 |
return (_it < n._it && _nd != INVALID); |
1104 | 1104 |
} |
1105 | 1105 |
|
1106 | 1106 |
}; |
1107 | 1107 |
|
1108 | 1108 |
///@} |
1109 | 1109 |
|
1110 | 1110 |
} // namespace lemon |
1111 | 1111 |
|
1112 | 1112 |
#endif // LEMON_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/* |
20 | 20 |
* This file contains the reimplemented version of the Mersenne Twister |
21 | 21 |
* Generator of Matsumoto and Nishimura. |
22 | 22 |
* |
23 | 23 |
* See the appropriate copyright notice below. |
24 | 24 |
* |
25 | 25 |
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, |
26 | 26 |
* All rights reserved. |
27 | 27 |
* |
28 | 28 |
* Redistribution and use in source and binary forms, with or without |
29 | 29 |
* modification, are permitted provided that the following conditions |
30 | 30 |
* are met: |
31 | 31 |
* |
32 | 32 |
* 1. Redistributions of source code must retain the above copyright |
33 | 33 |
* notice, this list of conditions and the following disclaimer. |
34 | 34 |
* |
35 | 35 |
* 2. Redistributions in binary form must reproduce the above copyright |
36 | 36 |
* notice, this list of conditions and the following disclaimer in the |
37 | 37 |
* documentation and/or other materials provided with the distribution. |
38 | 38 |
* |
39 | 39 |
* 3. The names of its contributors may not be used to endorse or promote |
40 | 40 |
* products derived from this software without specific prior written |
41 | 41 |
* permission. |
42 | 42 |
* |
43 | 43 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
44 | 44 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
45 | 45 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
46 | 46 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
47 | 47 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
48 | 48 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
49 | 49 |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
50 | 50 |
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
51 | 51 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
52 | 52 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
53 | 53 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
54 | 54 |
* OF THE POSSIBILITY OF SUCH DAMAGE. |
55 | 55 |
* |
56 | 56 |
* |
57 | 57 |
* Any feedback is very welcome. |
58 | 58 |
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
59 | 59 |
* email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) |
60 | 60 |
*/ |
61 | 61 |
|
62 | 62 |
#ifndef LEMON_RANDOM_H |
63 | 63 |
#define LEMON_RANDOM_H |
64 | 64 |
|
65 | 65 |
#include <algorithm> |
66 | 66 |
#include <iterator> |
67 | 67 |
#include <vector> |
68 | 68 |
#include <limits> |
69 | 69 |
#include <fstream> |
70 | 70 |
|
71 | 71 |
#include <lemon/math.h> |
72 | 72 |
#include <lemon/dim2.h> |
73 | 73 |
|
74 | 74 |
#ifndef WIN32 |
75 | 75 |
#include <sys/time.h> |
76 | 76 |
#include <ctime> |
77 | 77 |
#include <sys/types.h> |
78 | 78 |
#include <unistd.h> |
79 | 79 |
#else |
80 | 80 |
#include <lemon/bits/windows.h> |
81 | 81 |
#endif |
82 | 82 |
|
83 | 83 |
///\ingroup misc |
84 | 84 |
///\file |
85 | 85 |
///\brief Mersenne Twister random number generator |
86 | 86 |
|
87 | 87 |
namespace lemon { |
88 | 88 |
|
89 | 89 |
namespace _random_bits { |
90 | 90 |
|
91 | 91 |
template <typename _Word, int _bits = std::numeric_limits<_Word>::digits> |
92 | 92 |
struct RandomTraits {}; |
93 | 93 |
|
94 | 94 |
template <typename _Word> |
95 | 95 |
struct RandomTraits<_Word, 32> { |
96 | 96 |
|
97 | 97 |
typedef _Word Word; |
98 | 98 |
static const int bits = 32; |
99 | 99 |
|
100 | 100 |
static const int length = 624; |
101 | 101 |
static const int shift = 397; |
102 | 102 |
|
103 | 103 |
static const Word mul = 0x6c078965u; |
104 | 104 |
static const Word arrayInit = 0x012BD6AAu; |
105 | 105 |
static const Word arrayMul1 = 0x0019660Du; |
106 | 106 |
static const Word arrayMul2 = 0x5D588B65u; |
107 | 107 |
|
108 | 108 |
static const Word mask = 0x9908B0DFu; |
109 | 109 |
static const Word loMask = (1u << 31) - 1; |
110 | 110 |
static const Word hiMask = ~loMask; |
111 | 111 |
|
112 | 112 |
|
113 | 113 |
static Word tempering(Word rnd) { |
114 | 114 |
rnd ^= (rnd >> 11); |
115 | 115 |
rnd ^= (rnd << 7) & 0x9D2C5680u; |
116 | 116 |
rnd ^= (rnd << 15) & 0xEFC60000u; |
117 | 117 |
rnd ^= (rnd >> 18); |
118 | 118 |
return rnd; |
119 | 119 |
} |
120 | 120 |
|
121 | 121 |
}; |
122 | 122 |
|
123 | 123 |
template <typename _Word> |
124 | 124 |
struct RandomTraits<_Word, 64> { |
125 | 125 |
|
126 | 126 |
typedef _Word Word; |
127 | 127 |
static const int bits = 64; |
128 | 128 |
|
129 | 129 |
static const int length = 312; |
130 | 130 |
static const int shift = 156; |
131 | 131 |
|
132 | 132 |
static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du); |
133 | 133 |
static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu); |
134 | 134 |
static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u); |
135 | 135 |
static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu); |
136 | 136 |
|
137 | 137 |
static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u); |
138 | 138 |
static const Word loMask = (Word(1u) << 31) - 1; |
139 | 139 |
static const Word hiMask = ~loMask; |
140 | 140 |
|
141 | 141 |
static Word tempering(Word rnd) { |
142 | 142 |
rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u)); |
143 | 143 |
rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u)); |
144 | 144 |
rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u)); |
145 | 145 |
rnd ^= (rnd >> 43); |
146 | 146 |
return rnd; |
147 | 147 |
} |
148 | 148 |
|
149 | 149 |
}; |
150 | 150 |
|
151 | 151 |
template <typename _Word> |
152 | 152 |
class RandomCore { |
153 | 153 |
public: |
154 | 154 |
|
155 | 155 |
typedef _Word Word; |
156 | 156 |
|
157 | 157 |
private: |
158 | 158 |
|
159 | 159 |
static const int bits = RandomTraits<Word>::bits; |
160 | 160 |
|
161 | 161 |
static const int length = RandomTraits<Word>::length; |
162 | 162 |
static const int shift = RandomTraits<Word>::shift; |
163 | 163 |
|
164 | 164 |
public: |
165 | 165 |
|
166 | 166 |
void initState() { |
167 | 167 |
static const Word seedArray[4] = { |
168 | 168 |
0x12345u, 0x23456u, 0x34567u, 0x45678u |
169 | 169 |
}; |
170 | 170 |
|
171 | 171 |
initState(seedArray, seedArray + 4); |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
void initState(Word seed) { |
175 | 175 |
|
176 | 176 |
static const Word mul = RandomTraits<Word>::mul; |
177 | 177 |
|
178 | 178 |
current = state; |
179 | 179 |
|
180 | 180 |
Word *curr = state + length - 1; |
181 | 181 |
curr[0] = seed; --curr; |
182 | 182 |
for (int i = 1; i < length; ++i) { |
183 | 183 |
curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i); |
184 | 184 |
--curr; |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
template <typename Iterator> |
189 | 189 |
void initState(Iterator begin, Iterator end) { |
190 | 190 |
|
191 | 191 |
static const Word init = RandomTraits<Word>::arrayInit; |
192 | 192 |
static const Word mul1 = RandomTraits<Word>::arrayMul1; |
193 | 193 |
static const Word mul2 = RandomTraits<Word>::arrayMul2; |
194 | 194 |
|
195 | 195 |
|
196 | 196 |
Word *curr = state + length - 1; --curr; |
197 | 197 |
Iterator it = begin; int cnt = 0; |
198 | 198 |
int num; |
199 | 199 |
|
200 | 200 |
initState(init); |
201 | 201 |
|
202 | 202 |
num = length > end - begin ? length : end - begin; |
203 | 203 |
while (num--) { |
204 | 204 |
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1)) |
205 | 205 |
+ *it + cnt; |
206 | 206 |
++it; ++cnt; |
207 | 207 |
if (it == end) { |
208 | 208 |
it = begin; cnt = 0; |
209 | 209 |
} |
210 | 210 |
if (curr == state) { |
211 | 211 |
curr = state + length - 1; curr[0] = state[0]; |
212 | 212 |
} |
213 | 213 |
--curr; |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
num = length - 1; cnt = length - (curr - state) - 1; |
217 | 217 |
while (num--) { |
218 | 218 |
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2)) |
219 | 219 |
- cnt; |
220 | 220 |
--curr; ++cnt; |
221 | 221 |
if (curr == state) { |
222 | 222 |
curr = state + length - 1; curr[0] = state[0]; --curr; |
223 | 223 |
cnt = 1; |
224 | 224 |
} |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
state[length - 1] = Word(1) << (bits - 1); |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
void copyState(const RandomCore& other) { |
231 | 231 |
std::copy(other.state, other.state + length, state); |
232 | 232 |
current = state + (other.current - other.state); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
Word operator()() { |
236 | 236 |
if (current == state) fillState(); |
237 | 237 |
--current; |
238 | 238 |
Word rnd = *current; |
239 | 239 |
return RandomTraits<Word>::tempering(rnd); |
240 | 240 |
} |
241 | 241 |
|
242 | 242 |
private: |
243 | 243 |
|
244 | 244 |
|
245 | 245 |
void fillState() { |
246 | 246 |
static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask }; |
247 | 247 |
static const Word loMask = RandomTraits<Word>::loMask; |
248 | 248 |
static const Word hiMask = RandomTraits<Word>::hiMask; |
249 | 249 |
|
250 | 250 |
current = state + length; |
251 | 251 |
|
252 | 252 |
register Word *curr = state + length - 1; |
253 | 253 |
register long num; |
254 | 254 |
|
255 | 255 |
num = length - shift; |
256 | 256 |
while (num--) { |
257 | 257 |
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^ |
258 | 258 |
curr[- shift] ^ mask[curr[-1] & 1ul]; |
259 | 259 |
--curr; |
260 | 260 |
} |
261 | 261 |
num = shift - 1; |
262 | 262 |
while (num--) { |
263 | 263 |
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^ |
264 | 264 |
curr[length - shift] ^ mask[curr[-1] & 1ul]; |
265 | 265 |
--curr; |
266 | 266 |
} |
267 | 267 |
state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^ |
268 | 268 |
curr[length - shift] ^ mask[curr[length - 1] & 1ul]; |
269 | 269 |
|
270 | 270 |
} |
271 | 271 |
|
272 | 272 |
|
273 | 273 |
Word *current; |
274 | 274 |
Word state[length]; |
275 | 275 |
|
276 | 276 |
}; |
277 | 277 |
|
278 | 278 |
|
279 | 279 |
template <typename Result, |
280 | 280 |
int shift = (std::numeric_limits<Result>::digits + 1) / 2> |
281 | 281 |
struct Masker { |
282 | 282 |
static Result mask(const Result& result) { |
283 | 283 |
return Masker<Result, (shift + 1) / 2>:: |
284 | 284 |
mask(static_cast<Result>(result | (result >> shift))); |
285 | 285 |
} |
286 | 286 |
}; |
287 | 287 |
|
288 | 288 |
template <typename Result> |
289 | 289 |
struct Masker<Result, 1> { |
290 | 290 |
static Result mask(const Result& result) { |
291 | 291 |
return static_cast<Result>(result | (result >> 1)); |
292 | 292 |
} |
293 | 293 |
}; |
294 | 294 |
|
295 | 295 |
template <typename Result, typename Word, |
296 | 296 |
int rest = std::numeric_limits<Result>::digits, int shift = 0, |
297 | 297 |
bool last = rest <= std::numeric_limits<Word>::digits> |
298 | 298 |
struct IntConversion { |
299 | 299 |
static const int bits = std::numeric_limits<Word>::digits; |
300 | 300 |
|
301 | 301 |
static Result convert(RandomCore<Word>& rnd) { |
302 | 302 |
return static_cast<Result>(rnd() >> (bits - rest)) << shift; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
}; |
306 | 306 |
|
307 | 307 |
template <typename Result, typename Word, int rest, int shift> |
308 | 308 |
struct IntConversion<Result, Word, rest, shift, false> { |
309 | 309 |
static const int bits = std::numeric_limits<Word>::digits; |
310 | 310 |
|
311 | 311 |
static Result convert(RandomCore<Word>& rnd) { |
312 | 312 |
return (static_cast<Result>(rnd()) << shift) | |
313 | 313 |
IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd); |
314 | 314 |
} |
315 | 315 |
}; |
316 | 316 |
|
317 | 317 |
|
318 | 318 |
template <typename Result, typename Word, |
319 | 319 |
bool one_word = (std::numeric_limits<Word>::digits < |
320 | 320 |
std::numeric_limits<Result>::digits) > |
321 | 321 |
struct Mapping { |
322 | 322 |
static Result map(RandomCore<Word>& rnd, const Result& bound) { |
323 | 323 |
Word max = Word(bound - 1); |
324 | 324 |
Result mask = Masker<Result>::mask(bound - 1); |
325 | 325 |
Result num; |
326 | 326 |
do { |
327 | 327 |
num = IntConversion<Result, Word>::convert(rnd) & mask; |
328 | 328 |
} while (num > max); |
329 | 329 |
return num; |
330 | 330 |
} |
331 | 331 |
}; |
332 | 332 |
|
333 | 333 |
template <typename Result, typename Word> |
334 | 334 |
struct Mapping<Result, Word, false> { |
335 | 335 |
static Result map(RandomCore<Word>& rnd, const Result& bound) { |
336 | 336 |
Word max = Word(bound - 1); |
337 | 337 |
Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2> |
338 | 338 |
::mask(max); |
339 | 339 |
Word num; |
340 | 340 |
do { |
341 | 341 |
num = rnd() & mask; |
342 | 342 |
} while (num > max); |
343 | 343 |
return num; |
344 | 344 |
} |
345 | 345 |
}; |
346 | 346 |
|
347 | 347 |
template <typename Result, int exp> |
348 | 348 |
struct ShiftMultiplier { |
349 | 349 |
static const Result multiplier() { |
350 | 350 |
Result res = ShiftMultiplier<Result, exp / 2>::multiplier(); |
351 | 351 |
res *= res; |
352 | 352 |
if ((exp & 1) == 1) res *= static_cast<Result>(0.5); |
353 | 353 |
return res; |
354 | 354 |
} |
355 | 355 |
}; |
356 | 356 |
|
357 | 357 |
template <typename Result> |
358 | 358 |
struct ShiftMultiplier<Result, 0> { |
359 | 359 |
static const Result multiplier() { |
360 | 360 |
return static_cast<Result>(1.0); |
361 | 361 |
} |
362 | 362 |
}; |
363 | 363 |
|
364 | 364 |
template <typename Result> |
365 | 365 |
struct ShiftMultiplier<Result, 20> { |
366 | 366 |
static const Result multiplier() { |
367 | 367 |
return static_cast<Result>(1.0/1048576.0); |
368 | 368 |
} |
369 | 369 |
}; |
370 | 370 |
|
371 | 371 |
template <typename Result> |
372 | 372 |
struct ShiftMultiplier<Result, 32> { |
373 | 373 |
static const Result multiplier() { |
374 | 374 |
return static_cast<Result>(1.0/4294967296.0); |
375 | 375 |
} |
376 | 376 |
}; |
377 | 377 |
|
378 | 378 |
template <typename Result> |
379 | 379 |
struct ShiftMultiplier<Result, 53> { |
380 | 380 |
static const Result multiplier() { |
381 | 381 |
return static_cast<Result>(1.0/9007199254740992.0); |
382 | 382 |
} |
383 | 383 |
}; |
384 | 384 |
|
385 | 385 |
template <typename Result> |
386 | 386 |
struct ShiftMultiplier<Result, 64> { |
387 | 387 |
static const Result multiplier() { |
388 | 388 |
return static_cast<Result>(1.0/18446744073709551616.0); |
389 | 389 |
} |
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
template <typename Result, int exp> |
393 | 393 |
struct Shifting { |
394 | 394 |
static Result shift(const Result& result) { |
395 | 395 |
return result * ShiftMultiplier<Result, exp>::multiplier(); |
396 | 396 |
} |
397 | 397 |
}; |
398 | 398 |
|
399 | 399 |
template <typename Result, typename Word, |
400 | 400 |
int rest = std::numeric_limits<Result>::digits, int shift = 0, |
401 | 401 |
bool last = rest <= std::numeric_limits<Word>::digits> |
402 | 402 |
struct RealConversion{ |
403 | 403 |
static const int bits = std::numeric_limits<Word>::digits; |
404 | 404 |
|
405 | 405 |
static Result convert(RandomCore<Word>& rnd) { |
406 | 406 |
return Shifting<Result, shift + rest>:: |
407 | 407 |
shift(static_cast<Result>(rnd() >> (bits - rest))); |
408 | 408 |
} |
409 | 409 |
}; |
410 | 410 |
|
411 | 411 |
template <typename Result, typename Word, int rest, int shift> |
412 | 412 |
struct RealConversion<Result, Word, rest, shift, false> { |
413 | 413 |
static const int bits = std::numeric_limits<Word>::digits; |
414 | 414 |
|
415 | 415 |
static Result convert(RandomCore<Word>& rnd) { |
416 | 416 |
return Shifting<Result, shift + bits>:: |
417 | 417 |
shift(static_cast<Result>(rnd())) + |
418 | 418 |
RealConversion<Result, Word, rest-bits, shift + bits>:: |
419 | 419 |
convert(rnd); |
420 | 420 |
} |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
template <typename Result, typename Word> |
424 | 424 |
struct Initializer { |
425 | 425 |
|
426 | 426 |
template <typename Iterator> |
427 | 427 |
static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) { |
428 | 428 |
std::vector<Word> ws; |
429 | 429 |
for (Iterator it = begin; it != end; ++it) { |
430 | 430 |
ws.push_back(Word(*it)); |
431 | 431 |
} |
432 | 432 |
rnd.initState(ws.begin(), ws.end()); |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
static void init(RandomCore<Word>& rnd, Result seed) { |
436 | 436 |
rnd.initState(seed); |
437 | 437 |
} |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <typename Word> |
441 | 441 |
struct BoolConversion { |
442 | 442 |
static bool convert(RandomCore<Word>& rnd) { |
443 | 443 |
return (rnd() & 1) == 1; |
444 | 444 |
} |
445 | 445 |
}; |
446 | 446 |
|
447 | 447 |
template <typename Word> |
448 | 448 |
struct BoolProducer { |
449 | 449 |
Word buffer; |
450 | 450 |
int num; |
451 | 451 |
|
452 | 452 |
BoolProducer() : num(0) {} |
453 | 453 |
|
454 | 454 |
bool convert(RandomCore<Word>& rnd) { |
455 | 455 |
if (num == 0) { |
456 | 456 |
buffer = rnd(); |
457 | 457 |
num = RandomTraits<Word>::bits; |
458 | 458 |
} |
459 | 459 |
bool r = (buffer & 1); |
460 | 460 |
buffer >>= 1; |
461 | 461 |
--num; |
462 | 462 |
return r; |
463 | 463 |
} |
464 | 464 |
}; |
465 | 465 |
|
466 | 466 |
} |
467 | 467 |
|
468 | 468 |
/// \ingroup misc |
469 | 469 |
/// |
470 | 470 |
/// \brief Mersenne Twister random number generator |
471 | 471 |
/// |
472 | 472 |
/// The Mersenne Twister is a twisted generalized feedback |
473 | 473 |
/// shift-register generator of Matsumoto and Nishimura. The period |
474 | 474 |
/// of this generator is \f$ 2^{19937} - 1 \f$ and it is |
475 | 475 |
/// equi-distributed in 623 dimensions for 32-bit numbers. The time |
476 | 476 |
/// performance of this generator is comparable to the commonly used |
477 | 477 |
/// generators. |
478 | 478 |
/// |
479 | 479 |
/// This implementation is specialized for both 32-bit and 64-bit |
480 | 480 |
/// architectures. The generators differ sligthly in the |
481 | 481 |
/// initialization and generation phase so they produce two |
482 | 482 |
/// completly different sequences. |
483 | 483 |
/// |
484 | 484 |
/// The generator gives back random numbers of serveral types. To |
485 | 485 |
/// get a random number from a range of a floating point type you |
486 | 486 |
/// can use one form of the \c operator() or the \c real() member |
487 | 487 |
/// function. If you want to get random number from the {0, 1, ..., |
488 | 488 |
/// n-1} integer range use the \c operator[] or the \c integer() |
489 | 489 |
/// method. And to get random number from the whole range of an |
490 | 490 |
/// integer type you can use the argumentless \c integer() or \c |
491 | 491 |
/// uinteger() functions. After all you can get random bool with |
492 | 492 |
/// equal chance of true and false or given probability of true |
493 | 493 |
/// result with the \c boolean() member functions. |
494 | 494 |
/// |
495 | 495 |
///\code |
496 | 496 |
/// // The commented code is identical to the other |
497 | 497 |
/// double a = rnd(); // [0.0, 1.0) |
498 | 498 |
/// // double a = rnd.real(); // [0.0, 1.0) |
499 | 499 |
/// double b = rnd(100.0); // [0.0, 100.0) |
500 | 500 |
/// // double b = rnd.real(100.0); // [0.0, 100.0) |
501 | 501 |
/// double c = rnd(1.0, 2.0); // [1.0, 2.0) |
502 | 502 |
/// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0) |
503 | 503 |
/// int d = rnd[100000]; // 0..99999 |
504 | 504 |
/// // int d = rnd.integer(100000); // 0..99999 |
505 | 505 |
/// int e = rnd[6] + 1; // 1..6 |
506 | 506 |
/// // int e = rnd.integer(1, 1 + 6); // 1..6 |
507 | 507 |
/// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1 |
508 | 508 |
/// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1 |
509 | 509 |
/// bool g = rnd.boolean(); // P(g = true) = 0.5 |
510 | 510 |
/// bool h = rnd.boolean(0.8); // P(h = true) = 0.8 |
511 | 511 |
///\endcode |
512 | 512 |
/// |
513 | 513 |
/// LEMON provides a global instance of the random number |
514 | 514 |
/// generator which name is \ref lemon::rnd "rnd". Usually it is a |
515 | 515 |
/// good programming convenience to use this global generator to get |
516 | 516 |
/// random numbers. |
517 | 517 |
class Random { |
518 | 518 |
private: |
519 | 519 |
|
520 | 520 |
// Architecture word |
521 | 521 |
typedef unsigned long Word; |
522 | 522 |
|
523 | 523 |
_random_bits::RandomCore<Word> core; |
524 | 524 |
_random_bits::BoolProducer<Word> bool_producer; |
525 | 525 |
|
526 | 526 |
|
527 | 527 |
public: |
528 | 528 |
|
529 | 529 |
///\name Initialization |
530 | 530 |
/// |
531 | 531 |
/// @{ |
532 | 532 |
|
533 | 533 |
///\name Initialization |
534 | 534 |
/// |
535 | 535 |
/// @{ |
536 | 536 |
|
537 | 537 |
/// \brief Default constructor |
538 | 538 |
/// |
539 | 539 |
/// Constructor with constant seeding. |
540 | 540 |
Random() { core.initState(); } |
541 | 541 |
|
542 | 542 |
/// \brief Constructor with seed |
543 | 543 |
/// |
544 | 544 |
/// Constructor with seed. The current number type will be converted |
545 | 545 |
/// to the architecture word type. |
546 | 546 |
template <typename Number> |
547 | 547 |
Random(Number seed) { |
548 | 548 |
_random_bits::Initializer<Number, Word>::init(core, seed); |
549 | 549 |
} |
550 | 550 |
|
551 | 551 |
/// \brief Constructor with array seeding |
552 | 552 |
/// |
553 | 553 |
/// Constructor with array seeding. The given range should contain |
554 | 554 |
/// any number type and the numbers will be converted to the |
555 | 555 |
/// architecture word type. |
556 | 556 |
template <typename Iterator> |
557 | 557 |
Random(Iterator begin, Iterator end) { |
558 | 558 |
typedef typename std::iterator_traits<Iterator>::value_type Number; |
559 | 559 |
_random_bits::Initializer<Number, Word>::init(core, begin, end); |
560 | 560 |
} |
561 | 561 |
|
562 | 562 |
/// \brief Copy constructor |
563 | 563 |
/// |
564 | 564 |
/// Copy constructor. The generated sequence will be identical to |
565 | 565 |
/// the other sequence. It can be used to save the current state |
566 | 566 |
/// of the generator and later use it to generate the same |
567 | 567 |
/// sequence. |
568 | 568 |
Random(const Random& other) { |
569 | 569 |
core.copyState(other.core); |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
/// \brief Assign operator |
573 | 573 |
/// |
574 | 574 |
/// Assign operator. The generated sequence will be identical to |
575 | 575 |
/// the other sequence. It can be used to save the current state |
576 | 576 |
/// of the generator and later use it to generate the same |
577 | 577 |
/// sequence. |
578 | 578 |
Random& operator=(const Random& other) { |
579 | 579 |
if (&other != this) { |
580 | 580 |
core.copyState(other.core); |
581 | 581 |
} |
582 | 582 |
return *this; |
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
/// \brief Seeding random sequence |
586 | 586 |
/// |
587 | 587 |
/// Seeding the random sequence. The current number type will be |
588 | 588 |
/// converted to the architecture word type. |
589 | 589 |
template <typename Number> |
590 | 590 |
void seed(Number seed) { |
591 | 591 |
_random_bits::Initializer<Number, Word>::init(core, seed); |
592 | 592 |
} |
593 | 593 |
|
594 | 594 |
/// \brief Seeding random sequence |
595 | 595 |
/// |
596 | 596 |
/// Seeding the random sequence. The given range should contain |
597 | 597 |
/// any number type and the numbers will be converted to the |
598 | 598 |
/// architecture word type. |
599 | 599 |
template <typename Iterator> |
600 | 600 |
void seed(Iterator begin, Iterator end) { |
601 | 601 |
typedef typename std::iterator_traits<Iterator>::value_type Number; |
602 | 602 |
_random_bits::Initializer<Number, Word>::init(core, begin, end); |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
/// \brief Seeding from file or from process id and time |
606 | 606 |
/// |
607 | 607 |
/// By default, this function calls the \c seedFromFile() member |
608 | 608 |
/// function with the <tt>/dev/urandom</tt> file. If it does not success, |
609 | 609 |
/// it uses the \c seedFromTime(). |
610 | 610 |
/// \return Currently always true. |
611 | 611 |
bool seed() { |
612 | 612 |
#ifndef WIN32 |
613 | 613 |
if (seedFromFile("/dev/urandom", 0)) return true; |
614 | 614 |
#endif |
615 | 615 |
if (seedFromTime()) return true; |
616 | 616 |
return false; |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
/// \brief Seeding from file |
620 | 620 |
/// |
621 | 621 |
/// Seeding the random sequence from file. The linux kernel has two |
622 | 622 |
/// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which |
623 | 623 |
/// could give good seed values for pseudo random generators (The |
624 | 624 |
/// difference between two devices is that the <tt>random</tt> may |
625 | 625 |
/// block the reading operation while the kernel can give good |
626 | 626 |
/// source of randomness, while the <tt>urandom</tt> does not |
627 | 627 |
/// block the input, but it could give back bytes with worse |
628 | 628 |
/// entropy). |
629 | 629 |
/// \param file The source file |
630 | 630 |
/// \param offset The offset, from the file read. |
631 | 631 |
/// \return True when the seeding successes. |
632 | 632 |
#ifndef WIN32 |
633 | 633 |
bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0) |
634 | 634 |
#else |
635 | 635 |
bool seedFromFile(const std::string& file = "", int offset = 0) |
636 | 636 |
#endif |
637 | 637 |
{ |
638 | 638 |
std::ifstream rs(file.c_str()); |
639 | 639 |
const int size = 4; |
640 | 640 |
Word buf[size]; |
641 | 641 |
if (offset != 0 && !rs.seekg(offset)) return false; |
642 | 642 |
if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false; |
643 | 643 |
seed(buf, buf + size); |
644 | 644 |
return true; |
645 | 645 |
} |
646 | 646 |
|
647 | 647 |
/// \brief Seding from process id and time |
648 | 648 |
/// |
649 | 649 |
/// Seding from process id and time. This function uses the |
650 | 650 |
/// current process id and the current time for initialize the |
651 | 651 |
/// random sequence. |
652 | 652 |
/// \return Currently always true. |
653 | 653 |
bool seedFromTime() { |
654 | 654 |
#ifndef WIN32 |
655 | 655 |
timeval tv; |
656 | 656 |
gettimeofday(&tv, 0); |
657 | 657 |
seed(getpid() + tv.tv_sec + tv.tv_usec); |
658 | 658 |
#else |
659 | 659 |
seed(bits::getWinRndSeed()); |
660 | 660 |
#endif |
661 | 661 |
return true; |
662 | 662 |
} |
663 | 663 |
|
664 | 664 |
/// @} |
665 | 665 |
|
666 | 666 |
///\name Uniform distributions |
667 | 667 |
/// |
668 | 668 |
/// @{ |
669 | 669 |
|
670 | 670 |
/// \brief Returns a random real number from the range [0, 1) |
671 | 671 |
/// |
672 | 672 |
/// It returns a random real number from the range [0, 1). The |
673 | 673 |
/// default Number type is \c double. |
674 | 674 |
template <typename Number> |
675 | 675 |
Number real() { |
676 | 676 |
return _random_bits::RealConversion<Number, Word>::convert(core); |
677 | 677 |
} |
678 | 678 |
|
679 | 679 |
double real() { |
680 | 680 |
return real<double>(); |
681 | 681 |
} |
682 | 682 |
|
683 | 683 |
/// @} |
684 | 684 |
|
685 | 685 |
///\name Uniform distributions |
686 | 686 |
/// |
687 | 687 |
/// @{ |
688 | 688 |
|
689 | 689 |
/// \brief Returns a random real number from the range [0, 1) |
690 | 690 |
/// |
691 | 691 |
/// It returns a random double from the range [0, 1). |
692 | 692 |
double operator()() { |
693 | 693 |
return real<double>(); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
/// \brief Returns a random real number from the range [0, b) |
697 | 697 |
/// |
698 | 698 |
/// It returns a random real number from the range [0, b). |
699 | 699 |
double operator()(double b) { |
700 | 700 |
return real<double>() * b; |
701 | 701 |
} |
702 | 702 |
|
703 | 703 |
/// \brief Returns a random real number from the range [a, b) |
704 | 704 |
/// |
705 | 705 |
/// It returns a random real number from the range [a, b). |
706 | 706 |
double operator()(double a, double b) { |
707 | 707 |
return real<double>() * (b - a) + a; |
708 | 708 |
} |
709 | 709 |
|
710 | 710 |
/// \brief Returns a random integer from a range |
711 | 711 |
/// |
712 | 712 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
713 | 713 |
template <typename Number> |
714 | 714 |
Number integer(Number b) { |
715 | 715 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
716 | 716 |
} |
717 | 717 |
|
718 | 718 |
/// \brief Returns a random integer from a range |
719 | 719 |
/// |
720 | 720 |
/// It returns a random integer from the range {a, a + 1, ..., b - 1}. |
721 | 721 |
template <typename Number> |
722 | 722 |
Number integer(Number a, Number b) { |
723 | 723 |
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a; |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
/// \brief Returns a random integer from a range |
727 | 727 |
/// |
728 | 728 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
729 | 729 |
template <typename Number> |
730 | 730 |
Number operator[](Number b) { |
731 | 731 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
732 | 732 |
} |
733 | 733 |
|
734 | 734 |
/// \brief Returns a random non-negative integer |
735 | 735 |
/// |
736 | 736 |
/// It returns a random non-negative integer uniformly from the |
737 | 737 |
/// whole range of the current \c Number type. The default result |
738 | 738 |
/// type of this function is <tt>unsigned int</tt>. |
739 | 739 |
template <typename Number> |
740 | 740 |
Number uinteger() { |
741 | 741 |
return _random_bits::IntConversion<Number, Word>::convert(core); |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
/// @} |
745 | 745 |
|
746 | 746 |
unsigned int uinteger() { |
747 | 747 |
return uinteger<unsigned int>(); |
748 | 748 |
} |
749 | 749 |
|
750 | 750 |
/// \brief Returns a random integer |
751 | 751 |
/// |
752 | 752 |
/// It returns a random integer uniformly from the whole range of |
753 | 753 |
/// the current \c Number type. The default result type of this |
754 | 754 |
/// function is \c int. |
755 | 755 |
template <typename Number> |
756 | 756 |
Number integer() { |
757 | 757 |
static const int nb = std::numeric_limits<Number>::digits + |
758 | 758 |
(std::numeric_limits<Number>::is_signed ? 1 : 0); |
759 | 759 |
return _random_bits::IntConversion<Number, Word, nb>::convert(core); |
760 | 760 |
} |
761 | 761 |
|
762 | 762 |
int integer() { |
763 | 763 |
return integer<int>(); |
764 | 764 |
} |
765 | 765 |
|
766 | 766 |
/// \brief Returns a random bool |
767 | 767 |
/// |
768 | 768 |
/// It returns a random bool. The generator holds a buffer for |
769 | 769 |
/// random bits. Every time when it become empty the generator makes |
770 | 770 |
/// a new random word and fill the buffer up. |
771 | 771 |
bool boolean() { |
772 | 772 |
return bool_producer.convert(core); |
773 | 773 |
} |
774 | 774 |
|
775 | 775 |
/// @} |
776 | 776 |
|
777 | 777 |
///\name Non-uniform distributions |
778 | 778 |
/// |
779 | 779 |
|
780 | 780 |
///@{ |
781 | 781 |
|
782 | 782 |
/// \brief Returns a random bool |
783 | 783 |
/// |
784 | 784 |
/// It returns a random bool with given probability of true result. |
785 | 785 |
bool boolean(double p) { |
786 | 786 |
return operator()() < p; |
787 | 787 |
} |
788 | 788 |
|
789 | 789 |
/// Standard Gauss distribution |
790 | 790 |
|
791 | 791 |
/// Standard Gauss distribution. |
792 | 792 |
/// \note The Cartesian form of the Box-Muller |
793 | 793 |
/// transformation is used to generate a random normal distribution. |
794 | 794 |
double gauss() |
795 | 795 |
{ |
796 | 796 |
double V1,V2,S; |
797 | 797 |
do { |
798 | 798 |
V1=2*real<double>()-1; |
799 | 799 |
V2=2*real<double>()-1; |
800 | 800 |
S=V1*V1+V2*V2; |
801 | 801 |
} while(S>=1); |
802 | 802 |
return std::sqrt(-2*std::log(S)/S)*V1; |
803 | 803 |
} |
804 | 804 |
/// Gauss distribution with given mean and standard deviation |
805 | 805 |
|
806 | 806 |
/// Gauss distribution with given mean and standard deviation. |
807 | 807 |
/// \sa gauss() |
808 | 808 |
double gauss(double mean,double std_dev) |
809 | 809 |
{ |
810 | 810 |
return gauss()*std_dev+mean; |
811 | 811 |
} |
812 | 812 |
|
813 | 813 |
/// Exponential distribution with given mean |
814 | 814 |
|
815 | 815 |
/// This function generates an exponential distribution random number |
816 | 816 |
/// with mean <tt>1/lambda</tt>. |
817 | 817 |
/// |
818 | 818 |
double exponential(double lambda=1.0) |
819 | 819 |
{ |
820 | 820 |
return -std::log(1.0-real<double>())/lambda; |
821 | 821 |
} |
822 | 822 |
|
823 | 823 |
/// Gamma distribution with given integer shape |
824 | 824 |
|
825 | 825 |
/// This function generates a gamma distribution random number. |
826 | 826 |
/// |
827 | 827 |
///\param k shape parameter (<tt>k>0</tt> integer) |
828 | 828 |
double gamma(int k) |
829 | 829 |
{ |
830 | 830 |
double s = 0; |
831 | 831 |
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>()); |
832 | 832 |
return s; |
833 | 833 |
} |
834 | 834 |
|
835 | 835 |
/// Gamma distribution with given shape and scale parameter |
836 | 836 |
|
837 | 837 |
/// This function generates a gamma distribution random number. |
838 | 838 |
/// |
839 | 839 |
///\param k shape parameter (<tt>k>0</tt>) |
840 | 840 |
///\param theta scale parameter |
841 | 841 |
/// |
842 | 842 |
double gamma(double k,double theta=1.0) |
843 | 843 |
{ |
844 | 844 |
double xi,nu; |
845 | 845 |
const double delta = k-std::floor(k); |
846 | 846 |
const double v0=E/(E-delta); |
847 | 847 |
do { |
848 | 848 |
double V0=1.0-real<double>(); |
849 | 849 |
double V1=1.0-real<double>(); |
850 | 850 |
double V2=1.0-real<double>(); |
851 | 851 |
if(V2<=v0) |
852 | 852 |
{ |
853 | 853 |
xi=std::pow(V1,1.0/delta); |
854 | 854 |
nu=V0*std::pow(xi,delta-1.0); |
855 | 855 |
} |
856 | 856 |
else |
857 | 857 |
{ |
858 | 858 |
xi=1.0-std::log(V1); |
859 | 859 |
nu=V0*std::exp(-xi); |
860 | 860 |
} |
861 | 861 |
} while(nu>std::pow(xi,delta-1.0)*std::exp(-xi)); |
862 | 862 |
return theta*(xi+gamma(int(std::floor(k)))); |
863 | 863 |
} |
864 | 864 |
|
865 | 865 |
/// Weibull distribution |
866 | 866 |
|
867 | 867 |
/// This function generates a Weibull distribution random number. |
868 | 868 |
/// |
869 | 869 |
///\param k shape parameter (<tt>k>0</tt>) |
870 | 870 |
///\param lambda scale parameter (<tt>lambda>0</tt>) |
871 | 871 |
/// |
872 | 872 |
double weibull(double k,double lambda) |
873 | 873 |
{ |
874 | 874 |
return lambda*pow(-std::log(1.0-real<double>()),1.0/k); |
875 | 875 |
} |
876 | 876 |
|
877 | 877 |
/// Pareto distribution |
878 | 878 |
|
879 | 879 |
/// This function generates a Pareto distribution random number. |
880 | 880 |
/// |
881 | 881 |
///\param k shape parameter (<tt>k>0</tt>) |
882 | 882 |
///\param x_min location parameter (<tt>x_min>0</tt>) |
883 | 883 |
/// |
884 | 884 |
double pareto(double k,double x_min) |
885 | 885 |
{ |
886 | 886 |
return exponential(gamma(k,1.0/x_min))+x_min; |
887 | 887 |
} |
888 | 888 |
|
889 | 889 |
/// Poisson distribution |
890 | 890 |
|
891 | 891 |
/// This function generates a Poisson distribution random number with |
892 | 892 |
/// parameter \c lambda. |
893 | 893 |
/// |
894 | 894 |
/// The probability mass function of this distribusion is |
895 | 895 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f] |
896 | 896 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled |
897 | 897 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the |
898 | 898 |
/// return value. |
899 | 899 |
|
900 | 900 |
int poisson(double lambda) |
901 | 901 |
{ |
902 | 902 |
const double l = std::exp(-lambda); |
903 | 903 |
int k=0; |
904 | 904 |
double p = 1.0; |
905 | 905 |
do { |
906 | 906 |
k++; |
907 | 907 |
p*=real<double>(); |
908 | 908 |
} while (p>=l); |
909 | 909 |
return k-1; |
910 | 910 |
} |
911 | 911 |
|
912 | 912 |
///@} |
913 | 913 |
|
914 | 914 |
///\name Two dimensional distributions |
915 | 915 |
/// |
916 | 916 |
|
917 | 917 |
///@{ |
918 | 918 |
|
919 | 919 |
/// Uniform distribution on the full unit circle |
920 | 920 |
|
921 | 921 |
/// Uniform distribution on the full unit circle. |
922 | 922 |
/// |
923 | 923 |
dim2::Point<double> disc() |
924 | 924 |
{ |
925 | 925 |
double V1,V2; |
926 | 926 |
do { |
927 | 927 |
V1=2*real<double>()-1; |
928 | 928 |
V2=2*real<double>()-1; |
929 | 929 |
|
930 | 930 |
} while(V1*V1+V2*V2>=1); |
931 | 931 |
return dim2::Point<double>(V1,V2); |
932 | 932 |
} |
933 | 933 |
/// A kind of two dimensional Gauss distribution |
934 | 934 |
|
935 | 935 |
/// This function provides a turning symmetric two-dimensional distribution. |
936 | 936 |
/// Both coordinates are of standard normal distribution, but they are not |
937 | 937 |
/// independent. |
938 | 938 |
/// |
939 | 939 |
/// \note The coordinates are the two random variables provided by |
940 | 940 |
/// the Box-Muller method. |
941 | 941 |
dim2::Point<double> gauss2() |
942 | 942 |
{ |
943 | 943 |
double V1,V2,S; |
944 | 944 |
do { |
945 | 945 |
V1=2*real<double>()-1; |
946 | 946 |
V2=2*real<double>()-1; |
947 | 947 |
S=V1*V1+V2*V2; |
948 | 948 |
} while(S>=1); |
949 | 949 |
double W=std::sqrt(-2*std::log(S)/S); |
950 | 950 |
return dim2::Point<double>(W*V1,W*V2); |
951 | 951 |
} |
952 | 952 |
/// A kind of two dimensional exponential distribution |
953 | 953 |
|
954 | 954 |
/// This function provides a turning symmetric two-dimensional distribution. |
955 | 955 |
/// The x-coordinate is of conditionally exponential distribution |
956 | 956 |
/// with the condition that x is positive and y=0. If x is negative and |
957 | 957 |
/// y=0 then, -x is of exponential distribution. The same is true for the |
958 | 958 |
/// y-coordinate. |
959 | 959 |
dim2::Point<double> exponential2() |
960 | 960 |
{ |
961 | 961 |
double V1,V2,S; |
962 | 962 |
do { |
963 | 963 |
V1=2*real<double>()-1; |
964 | 964 |
V2=2*real<double>()-1; |
965 | 965 |
S=V1*V1+V2*V2; |
966 | 966 |
} while(S>=1); |
967 | 967 |
double W=-std::log(S)/S; |
968 | 968 |
return dim2::Point<double>(W*V1,W*V2); |
969 | 969 |
} |
970 | 970 |
|
971 | 971 |
///@} |
972 | 972 |
}; |
973 | 973 |
|
974 | 974 |
|
975 | 975 |
extern Random rnd; |
976 | 976 |
|
977 | 977 |
} |
978 | 978 |
|
979 | 979 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
20 | 20 |
#define LEMON_SMART_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/bits/graph_extender.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
class SmartDigraph; |
35 | 35 |
///Base of SmartDigraph |
36 | 36 |
|
37 | 37 |
///Base of SmartDigraph |
38 | 38 |
/// |
39 | 39 |
class SmartDigraphBase { |
40 | 40 |
protected: |
41 | 41 |
|
42 | 42 |
struct NodeT |
43 | 43 |
{ |
44 | 44 |
int first_in, first_out; |
45 | 45 |
NodeT() {} |
46 | 46 |
}; |
47 | 47 |
struct ArcT |
48 | 48 |
{ |
49 | 49 |
int target, source, next_in, next_out; |
50 | 50 |
ArcT() {} |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
std::vector<NodeT> nodes; |
54 | 54 |
std::vector<ArcT> arcs; |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
typedef SmartDigraphBase Graph; |
59 | 59 |
|
60 | 60 |
class Node; |
61 | 61 |
class Arc; |
62 | 62 |
|
63 | 63 |
public: |
64 | 64 |
|
65 | 65 |
SmartDigraphBase() : nodes(), arcs() { } |
66 | 66 |
SmartDigraphBase(const SmartDigraphBase &_g) |
67 | 67 |
: nodes(_g.nodes), arcs(_g.arcs) { } |
68 | 68 |
|
69 | 69 |
typedef True NodeNumTag; |
70 | 70 |
typedef True EdgeNumTag; |
71 | 71 |
|
72 | 72 |
int nodeNum() const { return nodes.size(); } |
73 | 73 |
int arcNum() const { return arcs.size(); } |
74 | 74 |
|
75 | 75 |
int maxNodeId() const { return nodes.size()-1; } |
76 | 76 |
int maxArcId() const { return arcs.size()-1; } |
77 | 77 |
|
78 | 78 |
Node addNode() { |
79 | 79 |
int n = nodes.size(); |
80 | 80 |
nodes.push_back(NodeT()); |
81 | 81 |
nodes[n].first_in = -1; |
82 | 82 |
nodes[n].first_out = -1; |
83 | 83 |
return Node(n); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
Arc addArc(Node u, Node v) { |
87 | 87 |
int n = arcs.size(); |
88 | 88 |
arcs.push_back(ArcT()); |
89 | 89 |
arcs[n].source = u._id; |
90 | 90 |
arcs[n].target = v._id; |
91 | 91 |
arcs[n].next_out = nodes[u._id].first_out; |
92 | 92 |
arcs[n].next_in = nodes[v._id].first_in; |
93 | 93 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
94 | 94 |
|
95 | 95 |
return Arc(n); |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
void clear() { |
99 | 99 |
arcs.clear(); |
100 | 100 |
nodes.clear(); |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
Node source(Arc a) const { return Node(arcs[a._id].source); } |
104 | 104 |
Node target(Arc a) const { return Node(arcs[a._id].target); } |
105 | 105 |
|
106 | 106 |
static int id(Node v) { return v._id; } |
107 | 107 |
static int id(Arc a) { return a._id; } |
108 | 108 |
|
109 | 109 |
static Node nodeFromId(int id) { return Node(id);} |
110 | 110 |
static Arc arcFromId(int id) { return Arc(id);} |
111 | 111 |
|
112 | 112 |
bool valid(Node n) const { |
113 | 113 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
114 | 114 |
} |
115 | 115 |
bool valid(Arc a) const { |
116 | 116 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
class Node { |
120 | 120 |
friend class SmartDigraphBase; |
121 | 121 |
friend class SmartDigraph; |
122 | 122 |
|
123 | 123 |
protected: |
124 | 124 |
int _id; |
125 | 125 |
explicit Node(int id) : _id(id) {} |
126 | 126 |
public: |
127 | 127 |
Node() {} |
128 | 128 |
Node (Invalid) : _id(-1) {} |
129 | 129 |
bool operator==(const Node i) const {return _id == i._id;} |
130 | 130 |
bool operator!=(const Node i) const {return _id != i._id;} |
131 | 131 |
bool operator<(const Node i) const {return _id < i._id;} |
132 | 132 |
}; |
133 | 133 |
|
134 | 134 |
|
135 | 135 |
class Arc { |
136 | 136 |
friend class SmartDigraphBase; |
137 | 137 |
friend class SmartDigraph; |
138 | 138 |
|
139 | 139 |
protected: |
140 | 140 |
int _id; |
141 | 141 |
explicit Arc(int id) : _id(id) {} |
142 | 142 |
public: |
143 | 143 |
Arc() { } |
144 | 144 |
Arc (Invalid) : _id(-1) {} |
145 | 145 |
bool operator==(const Arc i) const {return _id == i._id;} |
146 | 146 |
bool operator!=(const Arc i) const {return _id != i._id;} |
147 | 147 |
bool operator<(const Arc i) const {return _id < i._id;} |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
void first(Node& node) const { |
151 | 151 |
node._id = nodes.size() - 1; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
static void next(Node& node) { |
155 | 155 |
--node._id; |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
void first(Arc& arc) const { |
159 | 159 |
arc._id = arcs.size() - 1; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
static void next(Arc& arc) { |
163 | 163 |
--arc._id; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
void firstOut(Arc& arc, const Node& node) const { |
167 | 167 |
arc._id = nodes[node._id].first_out; |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
void nextOut(Arc& arc) const { |
171 | 171 |
arc._id = arcs[arc._id].next_out; |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
void firstIn(Arc& arc, const Node& node) const { |
175 | 175 |
arc._id = nodes[node._id].first_in; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
void nextIn(Arc& arc) const { |
179 | 179 |
arc._id = arcs[arc._id].next_in; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
185 | 185 |
|
186 | 186 |
///\ingroup graphs |
187 | 187 |
/// |
188 | 188 |
///\brief A smart directed graph class. |
189 | 189 |
/// |
190 | 190 |
///This is a simple and fast digraph implementation. |
191 | 191 |
///It is also quite memory efficient, but at the price |
192 | 192 |
///that <b> it does support only limited (only stack-like) |
193 | 193 |
///node and arc deletions</b>. |
194 | 194 |
///It conforms to the \ref concepts::Digraph "Digraph concept" with |
195 | 195 |
///an important extra feature that its maps are real \ref |
196 | 196 |
///concepts::ReferenceMap "reference map"s. |
197 | 197 |
/// |
198 | 198 |
///\sa concepts::Digraph. |
199 | 199 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
200 | 200 |
public: |
201 | 201 |
|
202 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
203 | 203 |
|
204 | 204 |
private: |
205 | 205 |
|
206 | 206 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
207 | 207 |
|
208 | 208 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
209 | 209 |
/// |
210 | 210 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
211 | 211 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
212 | 212 |
///Use DigraphCopy() instead. |
213 | 213 |
|
214 | 214 |
///Assignment of SmartDigraph to another one is \e not allowed. |
215 | 215 |
///Use DigraphCopy() instead. |
216 | 216 |
void operator=(const SmartDigraph &) {} |
217 | 217 |
|
218 | 218 |
public: |
219 | 219 |
|
220 | 220 |
/// Constructor |
221 | 221 |
|
222 | 222 |
/// Constructor. |
223 | 223 |
/// |
224 | 224 |
SmartDigraph() {}; |
225 | 225 |
|
226 | 226 |
///Add a new node to the digraph. |
227 | 227 |
|
228 | 228 |
/// \return the new node. |
229 | 229 |
/// |
230 | 230 |
Node addNode() { return Parent::addNode(); } |
231 | 231 |
|
232 | 232 |
///Add a new arc to the digraph. |
233 | 233 |
|
234 | 234 |
///Add a new arc to the digraph with source node \c s |
235 | 235 |
///and target node \c t. |
236 | 236 |
///\return the new arc. |
237 | 237 |
Arc addArc(const Node& s, const Node& t) { |
238 | 238 |
return Parent::addArc(s, t); |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
/// \brief Using this it is possible to avoid the superfluous memory |
242 | 242 |
/// allocation. |
243 | 243 |
|
244 | 244 |
/// Using this it is possible to avoid the superfluous memory |
245 | 245 |
/// allocation: if you know that the digraph you want to build will |
246 | 246 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
247 | 247 |
/// then it is worth reserving space for this amount before starting |
248 | 248 |
/// to build the digraph. |
249 | 249 |
/// \sa reserveArc |
250 | 250 |
void reserveNode(int n) { nodes.reserve(n); }; |
251 | 251 |
|
252 | 252 |
/// \brief Using this it is possible to avoid the superfluous memory |
253 | 253 |
/// allocation. |
254 | 254 |
|
255 | 255 |
/// Using this it is possible to avoid the superfluous memory |
256 | 256 |
/// allocation: if you know that the digraph you want to build will |
257 | 257 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
258 | 258 |
/// then it is worth reserving space for this amount before starting |
259 | 259 |
/// to build the digraph. |
260 | 260 |
/// \sa reserveNode |
261 | 261 |
void reserveArc(int m) { arcs.reserve(m); }; |
262 | 262 |
|
263 | 263 |
/// \brief Node validity check |
264 | 264 |
/// |
265 | 265 |
/// This function gives back true if the given node is valid, |
266 | 266 |
/// ie. it is a real node of the graph. |
267 | 267 |
/// |
268 | 268 |
/// \warning A removed node (using Snapshot) could become valid again |
269 | 269 |
/// when new nodes are added to the graph. |
270 | 270 |
bool valid(Node n) const { return Parent::valid(n); } |
271 | 271 |
|
272 | 272 |
/// \brief Arc validity check |
273 | 273 |
/// |
274 | 274 |
/// This function gives back true if the given arc is valid, |
275 | 275 |
/// ie. it is a real arc of the graph. |
276 | 276 |
/// |
277 | 277 |
/// \warning A removed arc (using Snapshot) could become valid again |
278 | 278 |
/// when new arcs are added to the graph. |
279 | 279 |
bool valid(Arc a) const { return Parent::valid(a); } |
280 | 280 |
|
281 | 281 |
///Clear the digraph. |
282 | 282 |
|
283 | 283 |
///Erase all the nodes and arcs from the digraph. |
284 | 284 |
/// |
285 | 285 |
void clear() { |
286 | 286 |
Parent::clear(); |
287 | 287 |
} |
288 | 288 |
|
289 | 289 |
///Split a node. |
290 | 290 |
|
291 | 291 |
///This function splits a node. First a new node is added to the digraph, |
292 | 292 |
///then the source of each outgoing arc of \c n is moved to this new node. |
293 | 293 |
///If \c connect is \c true (this is the default value), then a new arc |
294 | 294 |
///from \c n to the newly created node is also added. |
295 | 295 |
///\return The newly created node. |
296 | 296 |
/// |
297 | 297 |
///\note The <tt>Arc</tt>s |
298 | 298 |
///referencing a moved arc remain |
299 | 299 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
300 | 300 |
///may be invalidated. |
301 | 301 |
///\warning This functionality cannot be used together with the Snapshot |
302 | 302 |
///feature. |
303 | 303 |
Node split(Node n, bool connect = true) |
304 | 304 |
{ |
305 | 305 |
Node b = addNode(); |
306 | 306 |
nodes[b._id].first_out=nodes[n._id].first_out; |
307 | 307 |
nodes[n._id].first_out=-1; |
308 | 308 |
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) { |
309 | 309 |
arcs[i].source=b._id; |
310 | 310 |
} |
311 | 311 |
if(connect) addArc(n,b); |
312 | 312 |
return b; |
313 | 313 |
} |
314 | 314 |
|
315 | 315 |
public: |
316 | 316 |
|
317 | 317 |
class Snapshot; |
318 | 318 |
|
319 | 319 |
protected: |
320 | 320 |
|
321 | 321 |
void restoreSnapshot(const Snapshot &s) |
322 | 322 |
{ |
323 | 323 |
while(s.arc_num<arcs.size()) { |
324 | 324 |
Arc arc = arcFromId(arcs.size()-1); |
325 | 325 |
Parent::notifier(Arc()).erase(arc); |
326 | 326 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
327 | 327 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
328 | 328 |
arcs.pop_back(); |
329 | 329 |
} |
330 | 330 |
while(s.node_num<nodes.size()) { |
331 | 331 |
Node node = nodeFromId(nodes.size()-1); |
332 | 332 |
Parent::notifier(Node()).erase(node); |
333 | 333 |
nodes.pop_back(); |
334 | 334 |
} |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
public: |
338 | 338 |
|
339 | 339 |
///Class to make a snapshot of the digraph and to restrore to it later. |
340 | 340 |
|
341 | 341 |
///Class to make a snapshot of the digraph and to restrore to it later. |
342 | 342 |
/// |
343 | 343 |
///The newly added nodes and arcs can be removed using the |
344 | 344 |
///restore() function. |
345 | 345 |
///\note After you restore a state, you cannot restore |
346 | 346 |
///a later state, in other word you cannot add again the arcs deleted |
347 | 347 |
///by restore() using another one Snapshot instance. |
348 | 348 |
/// |
349 | 349 |
///\warning If you do not use correctly the snapshot that can cause |
350 | 350 |
///either broken program, invalid state of the digraph, valid but |
351 | 351 |
///not the restored digraph or no change. Because the runtime performance |
352 | 352 |
///the validity of the snapshot is not stored. |
353 | 353 |
class Snapshot |
354 | 354 |
{ |
355 | 355 |
SmartDigraph *_graph; |
356 | 356 |
protected: |
357 | 357 |
friend class SmartDigraph; |
358 | 358 |
unsigned int node_num; |
359 | 359 |
unsigned int arc_num; |
360 | 360 |
public: |
361 | 361 |
///Default constructor. |
362 | 362 |
|
363 | 363 |
///Default constructor. |
364 | 364 |
///To actually make a snapshot you must call save(). |
365 | 365 |
/// |
366 | 366 |
Snapshot() : _graph(0) {} |
367 | 367 |
///Constructor that immediately makes a snapshot |
368 | 368 |
|
369 | 369 |
///This constructor immediately makes a snapshot of the digraph. |
370 | 370 |
///\param graph The digraph we make a snapshot of. |
371 | 371 |
Snapshot(SmartDigraph &graph) : _graph(&graph) { |
372 | 372 |
node_num=_graph->nodes.size(); |
373 | 373 |
arc_num=_graph->arcs.size(); |
374 | 374 |
} |
375 | 375 |
|
376 | 376 |
///Make a snapshot. |
377 | 377 |
|
378 | 378 |
///Make a snapshot of the digraph. |
379 | 379 |
/// |
380 | 380 |
///This function can be called more than once. In case of a repeated |
381 | 381 |
///call, the previous snapshot gets lost. |
382 | 382 |
///\param graph The digraph we make the snapshot of. |
383 | 383 |
void save(SmartDigraph &graph) |
384 | 384 |
{ |
385 | 385 |
_graph=&graph; |
386 | 386 |
node_num=_graph->nodes.size(); |
387 | 387 |
arc_num=_graph->arcs.size(); |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
///Undo the changes until a snapshot. |
391 | 391 |
|
392 | 392 |
///Undo the changes until a snapshot created by save(). |
393 | 393 |
/// |
394 | 394 |
///\note After you restored a state, you cannot restore |
395 | 395 |
///a later state, in other word you cannot add again the arcs deleted |
396 | 396 |
///by restore(). |
397 | 397 |
void restore() |
398 | 398 |
{ |
399 | 399 |
_graph->restoreSnapshot(*this); |
400 | 400 |
} |
401 | 401 |
}; |
402 | 402 |
}; |
403 | 403 |
|
404 | 404 |
|
405 | 405 |
class SmartGraphBase { |
406 | 406 |
|
407 | 407 |
protected: |
408 | 408 |
|
409 | 409 |
struct NodeT { |
410 | 410 |
int first_out; |
411 | 411 |
}; |
412 | 412 |
|
413 | 413 |
struct ArcT { |
414 | 414 |
int target; |
415 | 415 |
int next_out; |
416 | 416 |
}; |
417 | 417 |
|
418 | 418 |
std::vector<NodeT> nodes; |
419 | 419 |
std::vector<ArcT> arcs; |
420 | 420 |
|
421 | 421 |
int first_free_arc; |
422 | 422 |
|
423 | 423 |
public: |
424 | 424 |
|
425 | 425 |
typedef SmartGraphBase Digraph; |
426 | 426 |
|
427 | 427 |
class Node; |
428 | 428 |
class Arc; |
429 | 429 |
class Edge; |
430 | 430 |
|
431 | 431 |
class Node { |
432 | 432 |
friend class SmartGraphBase; |
433 | 433 |
protected: |
434 | 434 |
|
435 | 435 |
int _id; |
436 | 436 |
explicit Node(int id) { _id = id;} |
437 | 437 |
|
438 | 438 |
public: |
439 | 439 |
Node() {} |
440 | 440 |
Node (Invalid) { _id = -1; } |
441 | 441 |
bool operator==(const Node& node) const {return _id == node._id;} |
442 | 442 |
bool operator!=(const Node& node) const {return _id != node._id;} |
443 | 443 |
bool operator<(const Node& node) const {return _id < node._id;} |
444 | 444 |
}; |
445 | 445 |
|
446 | 446 |
class Edge { |
447 | 447 |
friend class SmartGraphBase; |
448 | 448 |
protected: |
449 | 449 |
|
450 | 450 |
int _id; |
451 | 451 |
explicit Edge(int id) { _id = id;} |
452 | 452 |
|
453 | 453 |
public: |
454 | 454 |
Edge() {} |
455 | 455 |
Edge (Invalid) { _id = -1; } |
456 | 456 |
bool operator==(const Edge& arc) const {return _id == arc._id;} |
457 | 457 |
bool operator!=(const Edge& arc) const {return _id != arc._id;} |
458 | 458 |
bool operator<(const Edge& arc) const {return _id < arc._id;} |
459 | 459 |
}; |
460 | 460 |
|
461 | 461 |
class Arc { |
462 | 462 |
friend class SmartGraphBase; |
463 | 463 |
protected: |
464 | 464 |
|
465 | 465 |
int _id; |
466 | 466 |
explicit Arc(int id) { _id = id;} |
467 | 467 |
|
468 | 468 |
public: |
469 | 469 |
operator Edge() const { |
470 | 470 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
Arc() {} |
474 | 474 |
Arc (Invalid) { _id = -1; } |
475 | 475 |
bool operator==(const Arc& arc) const {return _id == arc._id;} |
476 | 476 |
bool operator!=(const Arc& arc) const {return _id != arc._id;} |
477 | 477 |
bool operator<(const Arc& arc) const {return _id < arc._id;} |
478 | 478 |
}; |
479 | 479 |
|
480 | 480 |
|
481 | 481 |
|
482 | 482 |
SmartGraphBase() |
483 | 483 |
: nodes(), arcs() {} |
484 | 484 |
|
485 | 485 |
|
486 | 486 |
int maxNodeId() const { return nodes.size()-1; } |
487 | 487 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
488 | 488 |
int maxArcId() const { return arcs.size()-1; } |
489 | 489 |
|
490 | 490 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); } |
491 | 491 |
Node target(Arc e) const { return Node(arcs[e._id].target); } |
492 | 492 |
|
493 | 493 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); } |
494 | 494 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); } |
495 | 495 |
|
496 | 496 |
static bool direction(Arc e) { |
497 | 497 |
return (e._id & 1) == 1; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
static Arc direct(Edge e, bool d) { |
501 | 501 |
return Arc(e._id * 2 + (d ? 1 : 0)); |
502 | 502 |
} |
503 | 503 |
|
504 | 504 |
void first(Node& node) const { |
505 | 505 |
node._id = nodes.size() - 1; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
void next(Node& node) const { |
509 | 509 |
--node._id; |
510 | 510 |
} |
511 | 511 |
|
512 | 512 |
void first(Arc& arc) const { |
513 | 513 |
arc._id = arcs.size() - 1; |
514 | 514 |
} |
515 | 515 |
|
516 | 516 |
void next(Arc& arc) const { |
517 | 517 |
--arc._id; |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
void first(Edge& arc) const { |
521 | 521 |
arc._id = arcs.size() / 2 - 1; |
522 | 522 |
} |
523 | 523 |
|
524 | 524 |
void next(Edge& arc) const { |
525 | 525 |
--arc._id; |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
void firstOut(Arc &arc, const Node& v) const { |
529 | 529 |
arc._id = nodes[v._id].first_out; |
530 | 530 |
} |
531 | 531 |
void nextOut(Arc &arc) const { |
532 | 532 |
arc._id = arcs[arc._id].next_out; |
533 | 533 |
} |
534 | 534 |
|
535 | 535 |
void firstIn(Arc &arc, const Node& v) const { |
536 | 536 |
arc._id = ((nodes[v._id].first_out) ^ 1); |
537 | 537 |
if (arc._id == -2) arc._id = -1; |
538 | 538 |
} |
539 | 539 |
void nextIn(Arc &arc) const { |
540 | 540 |
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1); |
541 | 541 |
if (arc._id == -2) arc._id = -1; |
542 | 542 |
} |
543 | 543 |
|
544 | 544 |
void firstInc(Edge &arc, bool& d, const Node& v) const { |
545 | 545 |
int de = nodes[v._id].first_out; |
546 | 546 |
if (de != -1) { |
547 | 547 |
arc._id = de / 2; |
548 | 548 |
d = ((de & 1) == 1); |
549 | 549 |
} else { |
550 | 550 |
arc._id = -1; |
551 | 551 |
d = true; |
552 | 552 |
} |
553 | 553 |
} |
554 | 554 |
void nextInc(Edge &arc, bool& d) const { |
555 | 555 |
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out); |
556 | 556 |
if (de != -1) { |
557 | 557 |
arc._id = de / 2; |
558 | 558 |
d = ((de & 1) == 1); |
559 | 559 |
} else { |
560 | 560 |
arc._id = -1; |
561 | 561 |
d = true; |
562 | 562 |
} |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
static int id(Node v) { return v._id; } |
566 | 566 |
static int id(Arc e) { return e._id; } |
567 | 567 |
static int id(Edge e) { return e._id; } |
568 | 568 |
|
569 | 569 |
static Node nodeFromId(int id) { return Node(id);} |
570 | 570 |
static Arc arcFromId(int id) { return Arc(id);} |
571 | 571 |
static Edge edgeFromId(int id) { return Edge(id);} |
572 | 572 |
|
573 | 573 |
bool valid(Node n) const { |
574 | 574 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
575 | 575 |
} |
576 | 576 |
bool valid(Arc a) const { |
577 | 577 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
578 | 578 |
} |
579 | 579 |
bool valid(Edge e) const { |
580 | 580 |
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size()); |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
Node addNode() { |
584 | 584 |
int n = nodes.size(); |
585 | 585 |
nodes.push_back(NodeT()); |
586 | 586 |
nodes[n].first_out = -1; |
587 | 587 |
|
588 | 588 |
return Node(n); |
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
Edge addEdge(Node u, Node v) { |
592 | 592 |
int n = arcs.size(); |
593 | 593 |
arcs.push_back(ArcT()); |
594 | 594 |
arcs.push_back(ArcT()); |
595 | 595 |
|
596 | 596 |
arcs[n].target = u._id; |
597 | 597 |
arcs[n | 1].target = v._id; |
598 | 598 |
|
599 | 599 |
arcs[n].next_out = nodes[v._id].first_out; |
600 | 600 |
nodes[v._id].first_out = n; |
601 | 601 |
|
602 | 602 |
arcs[n | 1].next_out = nodes[u._id].first_out; |
603 | 603 |
nodes[u._id].first_out = (n | 1); |
604 | 604 |
|
605 | 605 |
return Edge(n / 2); |
606 | 606 |
} |
607 | 607 |
|
608 | 608 |
void clear() { |
609 | 609 |
arcs.clear(); |
610 | 610 |
nodes.clear(); |
611 | 611 |
} |
612 | 612 |
|
613 | 613 |
}; |
614 | 614 |
|
615 | 615 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
616 | 616 |
|
617 | 617 |
/// \ingroup graphs |
618 | 618 |
/// |
619 | 619 |
/// \brief A smart undirected graph class. |
620 | 620 |
/// |
621 | 621 |
/// This is a simple and fast graph implementation. |
622 | 622 |
/// It is also quite memory efficient, but at the price |
623 | 623 |
/// that <b> it does support only limited (only stack-like) |
624 | 624 |
/// node and arc deletions</b>. |
625 | 625 |
/// Except from this it conforms to |
626 | 626 |
/// the \ref concepts::Graph "Graph concept". |
627 | 627 |
/// |
628 | 628 |
/// It also has an |
629 | 629 |
/// important extra feature that |
630 | 630 |
/// its maps are real \ref concepts::ReferenceMap "reference map"s. |
631 | 631 |
/// |
632 | 632 |
/// \sa concepts::Graph. |
633 | 633 |
/// |
634 | 634 |
class SmartGraph : public ExtendedSmartGraphBase { |
635 | 635 |
private: |
636 | 636 |
|
637 | 637 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
638 | 638 |
|
639 | 639 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
640 | 640 |
/// |
641 | 641 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {}; |
642 | 642 |
|
643 | 643 |
///\brief Assignment of SmartGraph to another one is \e not allowed. |
644 | 644 |
///Use GraphCopy() instead. |
645 | 645 |
|
646 | 646 |
///Assignment of SmartGraph to another one is \e not allowed. |
647 | 647 |
///Use GraphCopy() instead. |
648 | 648 |
void operator=(const SmartGraph &) {} |
649 | 649 |
|
650 | 650 |
public: |
651 | 651 |
|
652 | 652 |
typedef ExtendedSmartGraphBase Parent; |
653 | 653 |
|
654 | 654 |
/// Constructor |
655 | 655 |
|
656 | 656 |
/// Constructor. |
657 | 657 |
/// |
658 | 658 |
SmartGraph() {} |
659 | 659 |
|
660 | 660 |
///Add a new node to the graph. |
661 | 661 |
|
662 | 662 |
/// \return the new node. |
663 | 663 |
/// |
664 | 664 |
Node addNode() { return Parent::addNode(); } |
665 | 665 |
|
666 | 666 |
///Add a new edge to the graph. |
667 | 667 |
|
668 | 668 |
///Add a new edge to the graph with node \c s |
669 | 669 |
///and \c t. |
670 | 670 |
///\return the new edge. |
671 | 671 |
Edge addEdge(const Node& s, const Node& t) { |
672 | 672 |
return Parent::addEdge(s, t); |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
/// \brief Node validity check |
676 | 676 |
/// |
677 | 677 |
/// This function gives back true if the given node is valid, |
678 | 678 |
/// ie. it is a real node of the graph. |
679 | 679 |
/// |
680 | 680 |
/// \warning A removed node (using Snapshot) could become valid again |
681 | 681 |
/// when new nodes are added to the graph. |
682 | 682 |
bool valid(Node n) const { return Parent::valid(n); } |
683 | 683 |
|
684 | 684 |
/// \brief Arc validity check |
685 | 685 |
/// |
686 | 686 |
/// This function gives back true if the given arc is valid, |
687 | 687 |
/// ie. it is a real arc of the graph. |
688 | 688 |
/// |
689 | 689 |
/// \warning A removed arc (using Snapshot) could become valid again |
690 | 690 |
/// when new edges are added to the graph. |
691 | 691 |
bool valid(Arc a) const { return Parent::valid(a); } |
692 | 692 |
|
693 | 693 |
/// \brief Edge validity check |
694 | 694 |
/// |
695 | 695 |
/// This function gives back true if the given edge is valid, |
696 | 696 |
/// ie. it is a real edge of the graph. |
697 | 697 |
/// |
698 | 698 |
/// \warning A removed edge (using Snapshot) could become valid again |
699 | 699 |
/// when new edges are added to the graph. |
700 | 700 |
bool valid(Edge e) const { return Parent::valid(e); } |
701 | 701 |
|
702 | 702 |
///Clear the graph. |
703 | 703 |
|
704 | 704 |
///Erase all the nodes and edges from the graph. |
705 | 705 |
/// |
706 | 706 |
void clear() { |
707 | 707 |
Parent::clear(); |
708 | 708 |
} |
709 | 709 |
|
710 | 710 |
public: |
711 | 711 |
|
712 | 712 |
class Snapshot; |
713 | 713 |
|
714 | 714 |
protected: |
715 | 715 |
|
716 | 716 |
void saveSnapshot(Snapshot &s) |
717 | 717 |
{ |
718 | 718 |
s._graph = this; |
719 | 719 |
s.node_num = nodes.size(); |
720 | 720 |
s.arc_num = arcs.size(); |
721 | 721 |
} |
722 | 722 |
|
723 | 723 |
void restoreSnapshot(const Snapshot &s) |
724 | 724 |
{ |
725 | 725 |
while(s.arc_num<arcs.size()) { |
726 | 726 |
int n=arcs.size()-1; |
727 | 727 |
Edge arc=edgeFromId(n/2); |
728 | 728 |
Parent::notifier(Edge()).erase(arc); |
729 | 729 |
std::vector<Arc> dir; |
730 | 730 |
dir.push_back(arcFromId(n)); |
731 | 731 |
dir.push_back(arcFromId(n-1)); |
732 | 732 |
Parent::notifier(Arc()).erase(dir); |
733 | 733 |
nodes[arcs[n-1].target].first_out=arcs[n].next_out; |
734 | 734 |
nodes[arcs[n].target].first_out=arcs[n-1].next_out; |
735 | 735 |
arcs.pop_back(); |
736 | 736 |
arcs.pop_back(); |
737 | 737 |
} |
738 | 738 |
while(s.node_num<nodes.size()) { |
739 | 739 |
int n=nodes.size()-1; |
740 | 740 |
Node node = nodeFromId(n); |
741 | 741 |
Parent::notifier(Node()).erase(node); |
742 | 742 |
nodes.pop_back(); |
743 | 743 |
} |
744 | 744 |
} |
745 | 745 |
|
746 | 746 |
public: |
747 | 747 |
|
748 | 748 |
///Class to make a snapshot of the digraph and to restrore to it later. |
749 | 749 |
|
750 | 750 |
///Class to make a snapshot of the digraph and to restrore to it later. |
751 | 751 |
/// |
752 | 752 |
///The newly added nodes and arcs can be removed using the |
753 | 753 |
///restore() function. |
754 | 754 |
/// |
755 | 755 |
///\note After you restore a state, you cannot restore |
756 | 756 |
///a later state, in other word you cannot add again the arcs deleted |
757 | 757 |
///by restore() using another one Snapshot instance. |
758 | 758 |
/// |
759 | 759 |
///\warning If you do not use correctly the snapshot that can cause |
760 | 760 |
///either broken program, invalid state of the digraph, valid but |
761 | 761 |
///not the restored digraph or no change. Because the runtime performance |
762 | 762 |
///the validity of the snapshot is not stored. |
763 | 763 |
class Snapshot |
764 | 764 |
{ |
765 | 765 |
SmartGraph *_graph; |
766 | 766 |
protected: |
767 | 767 |
friend class SmartGraph; |
768 | 768 |
unsigned int node_num; |
769 | 769 |
unsigned int arc_num; |
770 | 770 |
public: |
771 | 771 |
///Default constructor. |
772 | 772 |
|
773 | 773 |
///Default constructor. |
774 | 774 |
///To actually make a snapshot you must call save(). |
775 | 775 |
/// |
776 | 776 |
Snapshot() : _graph(0) {} |
777 | 777 |
///Constructor that immediately makes a snapshot |
778 | 778 |
|
779 | 779 |
///This constructor immediately makes a snapshot of the digraph. |
780 | 780 |
///\param graph The digraph we make a snapshot of. |
781 | 781 |
Snapshot(SmartGraph &graph) { |
782 | 782 |
graph.saveSnapshot(*this); |
783 | 783 |
} |
784 | 784 |
|
785 | 785 |
///Make a snapshot. |
786 | 786 |
|
787 | 787 |
///Make a snapshot of the graph. |
788 | 788 |
/// |
789 | 789 |
///This function can be called more than once. In case of a repeated |
790 | 790 |
///call, the previous snapshot gets lost. |
791 | 791 |
///\param graph The digraph we make the snapshot of. |
792 | 792 |
void save(SmartGraph &graph) |
793 | 793 |
{ |
794 | 794 |
graph.saveSnapshot(*this); |
795 | 795 |
} |
796 | 796 |
|
797 | 797 |
///Undo the changes until a snapshot. |
798 | 798 |
|
799 | 799 |
///Undo the changes until a snapshot created by save(). |
800 | 800 |
/// |
801 | 801 |
///\note After you restored a state, you cannot restore |
802 | 802 |
///a later state, in other word you cannot add again the arcs deleted |
803 | 803 |
///by restore(). |
804 | 804 |
void restore() |
805 | 805 |
{ |
806 | 806 |
_graph->restoreSnapshot(*this); |
807 | 807 |
} |
808 | 808 |
}; |
809 | 809 |
}; |
810 | 810 |
|
811 | 811 |
} //namespace lemon |
812 | 812 |
|
813 | 813 |
|
814 | 814 |
#endif //LEMON_SMART_GRAPH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
20 | 20 |
#define LEMON_TIME_MEASURE_H |
21 | 21 |
|
22 | 22 |
///\ingroup timecount |
23 | 23 |
///\file |
24 | 24 |
///\brief Tools for measuring cpu usage |
25 | 25 |
|
26 | 26 |
#ifdef WIN32 |
27 | 27 |
#include <lemon/bits/windows.h> |
28 | 28 |
#else |
29 | 29 |
#include <unistd.h> |
30 | 30 |
#include <sys/times.h> |
31 | 31 |
#include <sys/time.h> |
32 | 32 |
#endif |
33 | 33 |
|
34 | 34 |
#include <string> |
35 | 35 |
#include <fstream> |
36 | 36 |
#include <iostream> |
37 | 37 |
|
38 | 38 |
namespace lemon { |
39 | 39 |
|
40 | 40 |
/// \addtogroup timecount |
41 | 41 |
/// @{ |
42 | 42 |
|
43 | 43 |
/// A class to store (cpu)time instances. |
44 | 44 |
|
45 | 45 |
/// This class stores five time values. |
46 | 46 |
/// - a real time |
47 | 47 |
/// - a user cpu time |
48 | 48 |
/// - a system cpu time |
49 | 49 |
/// - a user cpu time of children |
50 | 50 |
/// - a system cpu time of children |
51 | 51 |
/// |
52 | 52 |
/// TimeStamp's can be added to or substracted from each other and |
53 | 53 |
/// they can be pushed to a stream. |
54 | 54 |
/// |
55 | 55 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
56 | 56 |
/// class is what you want to use instead. |
57 | 57 |
|
58 | 58 |
class TimeStamp |
59 | 59 |
{ |
60 | 60 |
double utime; |
61 | 61 |
double stime; |
62 | 62 |
double cutime; |
63 | 63 |
double cstime; |
64 | 64 |
double rtime; |
65 | 65 |
|
66 | 66 |
void _reset() { |
67 | 67 |
utime = stime = cutime = cstime = rtime = 0; |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
|
72 | 72 |
///Read the current time values of the process |
73 | 73 |
void stamp() |
74 | 74 |
{ |
75 | 75 |
#ifndef WIN32 |
76 | 76 |
timeval tv; |
77 | 77 |
gettimeofday(&tv, 0); |
78 | 78 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
79 | 79 |
|
80 | 80 |
tms ts; |
81 | 81 |
double tck=sysconf(_SC_CLK_TCK); |
82 | 82 |
times(&ts); |
83 | 83 |
utime=ts.tms_utime/tck; |
84 | 84 |
stime=ts.tms_stime/tck; |
85 | 85 |
cutime=ts.tms_cutime/tck; |
86 | 86 |
cstime=ts.tms_cstime/tck; |
87 | 87 |
#else |
88 | 88 |
bits::getWinProcTimes(rtime, utime, stime, cutime, cstime); |
89 | 89 |
#endif |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
/// Constructor initializing with zero |
93 | 93 |
TimeStamp() |
94 | 94 |
{ _reset(); } |
95 | 95 |
///Constructor initializing with the current time values of the process |
96 | 96 |
TimeStamp(void *) { stamp();} |
97 | 97 |
|
98 | 98 |
///Set every time value to zero |
99 | 99 |
TimeStamp &reset() {_reset();return *this;} |
100 | 100 |
|
101 | 101 |
///\e |
102 | 102 |
TimeStamp &operator+=(const TimeStamp &b) |
103 | 103 |
{ |
104 | 104 |
utime+=b.utime; |
105 | 105 |
stime+=b.stime; |
106 | 106 |
cutime+=b.cutime; |
107 | 107 |
cstime+=b.cstime; |
108 | 108 |
rtime+=b.rtime; |
109 | 109 |
return *this; |
110 | 110 |
} |
111 | 111 |
///\e |
112 | 112 |
TimeStamp operator+(const TimeStamp &b) const |
113 | 113 |
{ |
114 | 114 |
TimeStamp t(*this); |
115 | 115 |
return t+=b; |
116 | 116 |
} |
117 | 117 |
///\e |
118 | 118 |
TimeStamp &operator-=(const TimeStamp &b) |
119 | 119 |
{ |
120 | 120 |
utime-=b.utime; |
121 | 121 |
stime-=b.stime; |
122 | 122 |
cutime-=b.cutime; |
123 | 123 |
cstime-=b.cstime; |
124 | 124 |
rtime-=b.rtime; |
125 | 125 |
return *this; |
126 | 126 |
} |
127 | 127 |
///\e |
128 | 128 |
TimeStamp operator-(const TimeStamp &b) const |
129 | 129 |
{ |
130 | 130 |
TimeStamp t(*this); |
131 | 131 |
return t-=b; |
132 | 132 |
} |
133 | 133 |
///\e |
134 | 134 |
TimeStamp &operator*=(double b) |
135 | 135 |
{ |
136 | 136 |
utime*=b; |
137 | 137 |
stime*=b; |
138 | 138 |
cutime*=b; |
139 | 139 |
cstime*=b; |
140 | 140 |
rtime*=b; |
141 | 141 |
return *this; |
142 | 142 |
} |
143 | 143 |
///\e |
144 | 144 |
TimeStamp operator*(double b) const |
145 | 145 |
{ |
146 | 146 |
TimeStamp t(*this); |
147 | 147 |
return t*=b; |
148 | 148 |
} |
149 | 149 |
friend TimeStamp operator*(double b,const TimeStamp &t); |
150 | 150 |
///\e |
151 | 151 |
TimeStamp &operator/=(double b) |
152 | 152 |
{ |
153 | 153 |
utime/=b; |
154 | 154 |
stime/=b; |
155 | 155 |
cutime/=b; |
156 | 156 |
cstime/=b; |
157 | 157 |
rtime/=b; |
158 | 158 |
return *this; |
159 | 159 |
} |
160 | 160 |
///\e |
161 | 161 |
TimeStamp operator/(double b) const |
162 | 162 |
{ |
163 | 163 |
TimeStamp t(*this); |
164 | 164 |
return t/=b; |
165 | 165 |
} |
166 | 166 |
///The time ellapsed since the last call of stamp() |
167 | 167 |
TimeStamp ellapsed() const |
168 | 168 |
{ |
169 | 169 |
TimeStamp t(NULL); |
170 | 170 |
return t-*this; |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
174 | 174 |
|
175 | 175 |
///Gives back the user time of the process |
176 | 176 |
double userTime() const |
177 | 177 |
{ |
178 | 178 |
return utime; |
179 | 179 |
} |
180 | 180 |
///Gives back the system time of the process |
181 | 181 |
double systemTime() const |
182 | 182 |
{ |
183 | 183 |
return stime; |
184 | 184 |
} |
185 | 185 |
///Gives back the user time of the process' children |
186 | 186 |
|
187 | 187 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
188 | 188 |
/// |
189 | 189 |
double cUserTime() const |
190 | 190 |
{ |
191 | 191 |
return cutime; |
192 | 192 |
} |
193 | 193 |
///Gives back the user time of the process' children |
194 | 194 |
|
195 | 195 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
196 | 196 |
/// |
197 | 197 |
double cSystemTime() const |
198 | 198 |
{ |
199 | 199 |
return cstime; |
200 | 200 |
} |
201 | 201 |
///Gives back the real time |
202 | 202 |
double realTime() const {return rtime;} |
203 | 203 |
}; |
204 | 204 |
|
205 | 205 |
inline TimeStamp operator*(double b,const TimeStamp &t) |
206 | 206 |
{ |
207 | 207 |
return t*b; |
208 | 208 |
} |
209 | 209 |
|
210 | 210 |
///Prints the time counters |
211 | 211 |
|
212 | 212 |
///Prints the time counters in the following form: |
213 | 213 |
/// |
214 | 214 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
215 | 215 |
/// |
216 | 216 |
/// where the values are the |
217 | 217 |
/// \li \c u: user cpu time, |
218 | 218 |
/// \li \c s: system cpu time, |
219 | 219 |
/// \li \c cu: user cpu time of children, |
220 | 220 |
/// \li \c cs: system cpu time of children, |
221 | 221 |
/// \li \c real: real time. |
222 | 222 |
/// \relates TimeStamp |
223 | 223 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
224 | 224 |
/// calculated. |
225 | 225 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
226 | 226 |
{ |
227 | 227 |
os << "u: " << t.userTime() << |
228 | 228 |
"s, s: " << t.systemTime() << |
229 | 229 |
"s, cu: " << t.cUserTime() << |
230 | 230 |
"s, cs: " << t.cSystemTime() << |
231 | 231 |
"s, real: " << t.realTime() << "s"; |
232 | 232 |
return os; |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
///Class for measuring the cpu time and real time usage of the process |
236 | 236 |
|
237 | 237 |
///Class for measuring the cpu time and real time usage of the process. |
238 | 238 |
///It is quite easy-to-use, here is a short example. |
239 | 239 |
///\code |
240 | 240 |
/// #include<lemon/time_measure.h> |
241 | 241 |
/// #include<iostream> |
242 | 242 |
/// |
243 | 243 |
/// int main() |
244 | 244 |
/// { |
245 | 245 |
/// |
246 | 246 |
/// ... |
247 | 247 |
/// |
248 | 248 |
/// Timer t; |
249 | 249 |
/// doSomething(); |
250 | 250 |
/// std::cout << t << '\n'; |
251 | 251 |
/// t.restart(); |
252 | 252 |
/// doSomethingElse(); |
253 | 253 |
/// std::cout << t << '\n'; |
254 | 254 |
/// |
255 | 255 |
/// ... |
256 | 256 |
/// |
257 | 257 |
/// } |
258 | 258 |
///\endcode |
259 | 259 |
/// |
260 | 260 |
///The \ref Timer can also be \ref stop() "stopped" and |
261 | 261 |
///\ref start() "started" again, so it is possible to compute collected |
262 | 262 |
///running times. |
263 | 263 |
/// |
264 | 264 |
///\warning Depending on the operation system and its actual configuration |
265 | 265 |
///the time counters have a certain (10ms on a typical Linux system) |
266 | 266 |
///granularity. |
267 | 267 |
///Therefore this tool is not appropriate to measure very short times. |
268 | 268 |
///Also, if you start and stop the timer very frequently, it could lead to |
269 | 269 |
///distorted results. |
270 | 270 |
/// |
271 | 271 |
///\note If you want to measure the running time of the execution of a certain |
272 | 272 |
///function, consider the usage of \ref TimeReport instead. |
273 | 273 |
/// |
274 | 274 |
///\sa TimeReport |
275 | 275 |
class Timer |
276 | 276 |
{ |
277 | 277 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
278 | 278 |
TimeStamp start_time; //This is the relativ start-time if the timer |
279 | 279 |
//is _running, the collected _running time otherwise. |
280 | 280 |
|
281 | 281 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
282 | 282 |
|
283 | 283 |
public: |
284 | 284 |
///Constructor. |
285 | 285 |
|
286 | 286 |
///\param run indicates whether or not the timer starts immediately. |
287 | 287 |
/// |
288 | 288 |
Timer(bool run=true) :_running(run) {_reset();} |
289 | 289 |
|
290 | 290 |
///\name Control the state of the timer |
291 | 291 |
///Basically a Timer can be either running or stopped, |
292 | 292 |
///but it provides a bit finer control on the execution. |
293 | 293 |
///The \ref lemon::Timer "Timer" also counts the number of |
294 | 294 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
295 | 295 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
296 | 296 |
///"stop()"s. This can be useful e.g. to compute the running time |
297 | 297 |
///of recursive functions. |
298 | 298 |
|
299 | 299 |
///@{ |
300 | 300 |
|
301 | 301 |
///Reset and stop the time counters |
302 | 302 |
|
303 | 303 |
///This function resets and stops the time counters |
304 | 304 |
///\sa restart() |
305 | 305 |
void reset() |
306 | 306 |
{ |
307 | 307 |
_running=0; |
308 | 308 |
_reset(); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
///Start the time counters |
312 | 312 |
|
313 | 313 |
///This function starts the time counters. |
314 | 314 |
/// |
315 | 315 |
///If the timer is started more than ones, it will remain running |
316 | 316 |
///until the same amount of \ref stop() is called. |
317 | 317 |
///\sa stop() |
318 | 318 |
void start() |
319 | 319 |
{ |
320 | 320 |
if(_running) _running++; |
321 | 321 |
else { |
322 | 322 |
_running=1; |
323 | 323 |
TimeStamp t; |
324 | 324 |
t.stamp(); |
325 | 325 |
start_time=t-start_time; |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
|
330 | 330 |
///Stop the time counters |
331 | 331 |
|
332 | 332 |
///This function stops the time counters. If start() was executed more than |
333 | 333 |
///once, then the same number of stop() execution is necessary the really |
334 | 334 |
///stop the timer. |
335 | 335 |
/// |
336 | 336 |
///\sa halt() |
337 | 337 |
///\sa start() |
338 | 338 |
///\sa restart() |
339 | 339 |
///\sa reset() |
340 | 340 |
|
341 | 341 |
void stop() |
342 | 342 |
{ |
343 | 343 |
if(_running && !--_running) { |
344 | 344 |
TimeStamp t; |
345 | 345 |
t.stamp(); |
346 | 346 |
start_time=t-start_time; |
347 | 347 |
} |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
///Halt (i.e stop immediately) the time counters |
351 | 351 |
|
352 | 352 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
353 | 353 |
///is a faster |
354 | 354 |
///equivalent of the following. |
355 | 355 |
///\code |
356 | 356 |
/// while(t.running()) t.stop() |
357 | 357 |
///\endcode |
358 | 358 |
/// |
359 | 359 |
/// |
360 | 360 |
///\sa stop() |
361 | 361 |
///\sa restart() |
362 | 362 |
///\sa reset() |
363 | 363 |
|
364 | 364 |
void halt() |
365 | 365 |
{ |
366 | 366 |
if(_running) { |
367 | 367 |
_running=0; |
368 | 368 |
TimeStamp t; |
369 | 369 |
t.stamp(); |
370 | 370 |
start_time=t-start_time; |
371 | 371 |
} |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Returns the running state of the timer |
375 | 375 |
|
376 | 376 |
///This function returns the number of stop() exections that is |
377 | 377 |
///necessary to really stop the timer. |
378 | 378 |
///For example the timer |
379 | 379 |
///is running if and only if the return value is \c true |
380 | 380 |
///(i.e. greater than |
381 | 381 |
///zero). |
382 | 382 |
int running() { return _running; } |
383 | 383 |
|
384 | 384 |
|
385 | 385 |
///Restart the time counters |
386 | 386 |
|
387 | 387 |
///This function is a shorthand for |
388 | 388 |
///a reset() and a start() calls. |
389 | 389 |
/// |
390 | 390 |
void restart() |
391 | 391 |
{ |
392 | 392 |
reset(); |
393 | 393 |
start(); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
///@} |
397 | 397 |
|
398 | 398 |
///\name Query Functions for the ellapsed time |
399 | 399 |
|
400 | 400 |
///@{ |
401 | 401 |
|
402 | 402 |
///Gives back the ellapsed user time of the process |
403 | 403 |
double userTime() const |
404 | 404 |
{ |
405 | 405 |
return operator TimeStamp().userTime(); |
406 | 406 |
} |
407 | 407 |
///Gives back the ellapsed system time of the process |
408 | 408 |
double systemTime() const |
409 | 409 |
{ |
410 | 410 |
return operator TimeStamp().systemTime(); |
411 | 411 |
} |
412 | 412 |
///Gives back the ellapsed user time of the process' children |
413 | 413 |
|
414 | 414 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
415 | 415 |
/// |
416 | 416 |
double cUserTime() const |
417 | 417 |
{ |
418 | 418 |
return operator TimeStamp().cUserTime(); |
419 | 419 |
} |
420 | 420 |
///Gives back the ellapsed user time of the process' children |
421 | 421 |
|
422 | 422 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
423 | 423 |
/// |
424 | 424 |
double cSystemTime() const |
425 | 425 |
{ |
426 | 426 |
return operator TimeStamp().cSystemTime(); |
427 | 427 |
} |
428 | 428 |
///Gives back the ellapsed real time |
429 | 429 |
double realTime() const |
430 | 430 |
{ |
431 | 431 |
return operator TimeStamp().realTime(); |
432 | 432 |
} |
433 | 433 |
///Computes the ellapsed time |
434 | 434 |
|
435 | 435 |
///This conversion computes the ellapsed time, therefore you can print |
436 | 436 |
///the ellapsed time like this. |
437 | 437 |
///\code |
438 | 438 |
/// Timer t; |
439 | 439 |
/// doSomething(); |
440 | 440 |
/// std::cout << t << '\n'; |
441 | 441 |
///\endcode |
442 | 442 |
operator TimeStamp () const |
443 | 443 |
{ |
444 | 444 |
TimeStamp t; |
445 | 445 |
t.stamp(); |
446 | 446 |
return _running?t-start_time:start_time; |
447 | 447 |
} |
448 | 448 |
|
449 | 449 |
|
450 | 450 |
///@} |
451 | 451 |
}; |
452 | 452 |
|
453 | 453 |
///Same as Timer but prints a report on destruction. |
454 | 454 |
|
455 | 455 |
///Same as \ref Timer but prints a report on destruction. |
456 | 456 |
///This example shows its usage. |
457 | 457 |
///\code |
458 | 458 |
/// void myAlg(ListGraph &g,int n) |
459 | 459 |
/// { |
460 | 460 |
/// TimeReport tr("Running time of myAlg: "); |
461 | 461 |
/// ... //Here comes the algorithm |
462 | 462 |
/// } |
463 | 463 |
///\endcode |
464 | 464 |
/// |
465 | 465 |
///\sa Timer |
466 | 466 |
///\sa NoTimeReport |
467 | 467 |
class TimeReport : public Timer |
468 | 468 |
{ |
469 | 469 |
std::string _title; |
470 | 470 |
std::ostream &_os; |
471 | 471 |
public: |
472 | 472 |
///Constructor |
473 | 473 |
|
474 | 474 |
///Constructor. |
475 | 475 |
///\param title This text will be printed before the ellapsed time. |
476 | 476 |
///\param os The stream to print the report to. |
477 | 477 |
///\param run Sets whether the timer should start immediately. |
478 | 478 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
479 | 479 |
: Timer(run), _title(title), _os(os){} |
480 | 480 |
///Destructor that prints the ellapsed time |
481 | 481 |
~TimeReport() |
482 | 482 |
{ |
483 | 483 |
_os << _title << *this << std::endl; |
484 | 484 |
} |
485 | 485 |
}; |
486 | 486 |
|
487 | 487 |
///'Do nothing' version of TimeReport |
488 | 488 |
|
489 | 489 |
///\sa TimeReport |
490 | 490 |
/// |
491 | 491 |
class NoTimeReport |
492 | 492 |
{ |
493 | 493 |
public: |
494 | 494 |
///\e |
495 | 495 |
NoTimeReport(std::string,std::ostream &,bool) {} |
496 | 496 |
///\e |
497 | 497 |
NoTimeReport(std::string,std::ostream &) {} |
498 | 498 |
///\e |
499 | 499 |
NoTimeReport(std::string) {} |
500 | 500 |
///\e Do nothing. |
501 | 501 |
~NoTimeReport() {} |
502 | 502 |
|
503 | 503 |
operator TimeStamp () const { return TimeStamp(); } |
504 | 504 |
void reset() {} |
505 | 505 |
void start() {} |
506 | 506 |
void stop() {} |
507 | 507 |
void halt() {} |
508 | 508 |
int running() { return 0; } |
509 | 509 |
void restart() {} |
510 | 510 |
double userTime() const { return 0; } |
511 | 511 |
double systemTime() const { return 0; } |
512 | 512 |
double cUserTime() const { return 0; } |
513 | 513 |
double cSystemTime() const { return 0; } |
514 | 514 |
double realTime() const { return 0; } |
515 | 515 |
}; |
516 | 516 |
|
517 | 517 |
///Tool to measure the running time more exactly. |
518 | 518 |
|
519 | 519 |
///This function calls \c f several times and returns the average |
520 | 520 |
///running time. The number of the executions will be choosen in such a way |
521 | 521 |
///that the full real running time will be roughly between \c min_time |
522 | 522 |
///and <tt>2*min_time</tt>. |
523 | 523 |
///\param f the function object to be measured. |
524 | 524 |
///\param min_time the minimum total running time. |
525 | 525 |
///\retval num if it is not \c NULL, then the actual |
526 | 526 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
527 | 527 |
///\retval full_time if it is not \c NULL, then the actual |
528 | 528 |
/// total running time will be written into <tt>*full_time</tt>. |
529 | 529 |
///\return The average running time of \c f. |
530 | 530 |
|
531 | 531 |
template<class F> |
532 | 532 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
533 | 533 |
TimeStamp *full_time=NULL) |
534 | 534 |
{ |
535 | 535 |
TimeStamp full; |
536 | 536 |
unsigned int total=0; |
537 | 537 |
Timer t; |
538 | 538 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) { |
539 | 539 |
for(;total<tn;total++) f(); |
540 | 540 |
full=t; |
541 | 541 |
} |
542 | 542 |
if(num) *num=total; |
543 | 543 |
if(full_time) *full_time=full; |
544 | 544 |
return full/total; |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
/// @} |
548 | 548 |
|
549 | 549 |
|
550 | 550 |
} //namespace lemon |
551 | 551 |
|
552 | 552 |
#endif //LEMON_TIME_MEASURE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TOLERANCE_H |
20 | 20 |
#define LEMON_TOLERANCE_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief A basic tool to handle the anomalies of calculation with |
25 | 25 |
///floating point numbers. |
26 | 26 |
/// |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
/// \addtogroup misc |
31 | 31 |
/// @{ |
32 | 32 |
|
33 | 33 |
///\brief A class to provide a basic way to |
34 | 34 |
///handle the comparison of numbers that are obtained |
35 | 35 |
///as a result of a probably inexact computation. |
36 | 36 |
/// |
37 | 37 |
///\ref Tolerance is a class to provide a basic way to |
38 | 38 |
///handle the comparison of numbers that are obtained |
39 | 39 |
///as a result of a probably inexact computation. |
40 | 40 |
/// |
41 | 41 |
///The general implementation is suitable only if the data type is exact, |
42 | 42 |
///like the integer types, otherwise a specialized version must be |
43 | 43 |
///implemented. These specialized classes like |
44 | 44 |
///Tolerance<double> may offer additional tuning parameters. |
45 | 45 |
/// |
46 | 46 |
///\sa Tolerance<float> |
47 | 47 |
///\sa Tolerance<double> |
48 | 48 |
///\sa Tolerance<long double> |
49 | 49 |
|
50 | 50 |
template<class T> |
51 | 51 |
class Tolerance |
52 | 52 |
{ |
53 | 53 |
public: |
54 | 54 |
typedef T Value; |
55 | 55 |
|
56 | 56 |
///\name Comparisons |
57 | 57 |
///The concept is that these bool functions return \c true only if |
58 | 58 |
///the related comparisons hold even if some numerical error appeared |
59 | 59 |
///during the computations. |
60 | 60 |
|
61 | 61 |
///@{ |
62 | 62 |
|
63 | 63 |
///Returns \c true if \c a is \e surely strictly less than \c b |
64 | 64 |
static bool less(Value a,Value b) {return a<b;} |
65 | 65 |
///Returns \c true if \c a is \e surely different from \c b |
66 | 66 |
static bool different(Value a,Value b) {return a!=b;} |
67 | 67 |
///Returns \c true if \c a is \e surely positive |
68 | 68 |
static bool positive(Value a) {return static_cast<Value>(0) < a;} |
69 | 69 |
///Returns \c true if \c a is \e surely negative |
70 | 70 |
static bool negative(Value a) {return a < static_cast<Value>(0);} |
71 | 71 |
///Returns \c true if \c a is \e surely non-zero |
72 | 72 |
static bool nonZero(Value a) {return a != static_cast<Value>(0);} |
73 | 73 |
|
74 | 74 |
///@} |
75 | 75 |
|
76 | 76 |
///Returns the zero value. |
77 | 77 |
static Value zero() {return static_cast<Value>(0);} |
78 | 78 |
|
79 | 79 |
// static bool finite(Value a) {} |
80 | 80 |
// static Value big() {} |
81 | 81 |
// static Value negativeBig() {} |
82 | 82 |
}; |
83 | 83 |
|
84 | 84 |
|
85 | 85 |
///Float specialization of Tolerance. |
86 | 86 |
|
87 | 87 |
///Float specialization of Tolerance. |
88 | 88 |
///\sa Tolerance |
89 | 89 |
///\relates Tolerance |
90 | 90 |
template<> |
91 | 91 |
class Tolerance<float> |
92 | 92 |
{ |
93 | 93 |
static float def_epsilon; |
94 | 94 |
float _epsilon; |
95 | 95 |
public: |
96 | 96 |
///\e |
97 | 97 |
typedef float Value; |
98 | 98 |
|
99 | 99 |
///Constructor setting the epsilon tolerance to the default value. |
100 | 100 |
Tolerance() : _epsilon(def_epsilon) {} |
101 | 101 |
///Constructor setting the epsilon tolerance to the given value. |
102 | 102 |
Tolerance(float e) : _epsilon(e) {} |
103 | 103 |
|
104 | 104 |
///Returns the epsilon value. |
105 | 105 |
Value epsilon() const {return _epsilon;} |
106 | 106 |
///Sets the epsilon value. |
107 | 107 |
void epsilon(Value e) {_epsilon=e;} |
108 | 108 |
|
109 | 109 |
///Returns the default epsilon value. |
110 | 110 |
static Value defaultEpsilon() {return def_epsilon;} |
111 | 111 |
///Sets the default epsilon value. |
112 | 112 |
static void defaultEpsilon(Value e) {def_epsilon=e;} |
113 | 113 |
|
114 | 114 |
///\name Comparisons |
115 | 115 |
///See \ref lemon::Tolerance "Tolerance" for more details. |
116 | 116 |
|
117 | 117 |
///@{ |
118 | 118 |
|
119 | 119 |
///Returns \c true if \c a is \e surely strictly less than \c b |
120 | 120 |
bool less(Value a,Value b) const {return a+_epsilon<b;} |
121 | 121 |
///Returns \c true if \c a is \e surely different from \c b |
122 | 122 |
bool different(Value a,Value b) const { return less(a,b)||less(b,a); } |
123 | 123 |
///Returns \c true if \c a is \e surely positive |
124 | 124 |
bool positive(Value a) const { return _epsilon<a; } |
125 | 125 |
///Returns \c true if \c a is \e surely negative |
126 | 126 |
bool negative(Value a) const { return -_epsilon>a; } |
127 | 127 |
///Returns \c true if \c a is \e surely non-zero |
128 | 128 |
bool nonZero(Value a) const { return positive(a)||negative(a); } |
129 | 129 |
|
130 | 130 |
///@} |
131 | 131 |
|
132 | 132 |
///Returns zero |
133 | 133 |
static Value zero() {return 0;} |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
///Double specialization of Tolerance. |
137 | 137 |
|
138 | 138 |
///Double specialization of Tolerance. |
139 | 139 |
///\sa Tolerance |
140 | 140 |
///\relates Tolerance |
141 | 141 |
template<> |
142 | 142 |
class Tolerance<double> |
143 | 143 |
{ |
144 | 144 |
static double def_epsilon; |
145 | 145 |
double _epsilon; |
146 | 146 |
public: |
147 | 147 |
///\e |
148 | 148 |
typedef double Value; |
149 | 149 |
|
150 | 150 |
///Constructor setting the epsilon tolerance to the default value. |
151 | 151 |
Tolerance() : _epsilon(def_epsilon) {} |
152 | 152 |
///Constructor setting the epsilon tolerance to the given value. |
153 | 153 |
Tolerance(double e) : _epsilon(e) {} |
154 | 154 |
|
155 | 155 |
///Returns the epsilon value. |
156 | 156 |
Value epsilon() const {return _epsilon;} |
157 | 157 |
///Sets the epsilon value. |
158 | 158 |
void epsilon(Value e) {_epsilon=e;} |
159 | 159 |
|
160 | 160 |
///Returns the default epsilon value. |
161 | 161 |
static Value defaultEpsilon() {return def_epsilon;} |
162 | 162 |
///Sets the default epsilon value. |
163 | 163 |
static void defaultEpsilon(Value e) {def_epsilon=e;} |
164 | 164 |
|
165 | 165 |
///\name Comparisons |
166 | 166 |
///See \ref lemon::Tolerance "Tolerance" for more details. |
167 | 167 |
|
168 | 168 |
///@{ |
169 | 169 |
|
170 | 170 |
///Returns \c true if \c a is \e surely strictly less than \c b |
171 | 171 |
bool less(Value a,Value b) const {return a+_epsilon<b;} |
172 | 172 |
///Returns \c true if \c a is \e surely different from \c b |
173 | 173 |
bool different(Value a,Value b) const { return less(a,b)||less(b,a); } |
174 | 174 |
///Returns \c true if \c a is \e surely positive |
175 | 175 |
bool positive(Value a) const { return _epsilon<a; } |
176 | 176 |
///Returns \c true if \c a is \e surely negative |
177 | 177 |
bool negative(Value a) const { return -_epsilon>a; } |
178 | 178 |
///Returns \c true if \c a is \e surely non-zero |
179 | 179 |
bool nonZero(Value a) const { return positive(a)||negative(a); } |
180 | 180 |
|
181 | 181 |
///@} |
182 | 182 |
|
183 | 183 |
///Returns zero |
184 | 184 |
static Value zero() {return 0;} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
///Long double specialization of Tolerance. |
188 | 188 |
|
189 | 189 |
///Long double specialization of Tolerance. |
190 | 190 |
///\sa Tolerance |
191 | 191 |
///\relates Tolerance |
192 | 192 |
template<> |
193 | 193 |
class Tolerance<long double> |
194 | 194 |
{ |
195 | 195 |
static long double def_epsilon; |
196 | 196 |
long double _epsilon; |
197 | 197 |
public: |
198 | 198 |
///\e |
199 | 199 |
typedef long double Value; |
200 | 200 |
|
201 | 201 |
///Constructor setting the epsilon tolerance to the default value. |
202 | 202 |
Tolerance() : _epsilon(def_epsilon) {} |
203 | 203 |
///Constructor setting the epsilon tolerance to the given value. |
204 | 204 |
Tolerance(long double e) : _epsilon(e) {} |
205 | 205 |
|
206 | 206 |
///Returns the epsilon value. |
207 | 207 |
Value epsilon() const {return _epsilon;} |
208 | 208 |
///Sets the epsilon value. |
209 | 209 |
void epsilon(Value e) {_epsilon=e;} |
210 | 210 |
|
211 | 211 |
///Returns the default epsilon value. |
212 | 212 |
static Value defaultEpsilon() {return def_epsilon;} |
213 | 213 |
///Sets the default epsilon value. |
214 | 214 |
static void defaultEpsilon(Value e) {def_epsilon=e;} |
215 | 215 |
|
216 | 216 |
///\name Comparisons |
217 | 217 |
///See \ref lemon::Tolerance "Tolerance" for more details. |
218 | 218 |
|
219 | 219 |
///@{ |
220 | 220 |
|
221 | 221 |
///Returns \c true if \c a is \e surely strictly less than \c b |
222 | 222 |
bool less(Value a,Value b) const {return a+_epsilon<b;} |
223 | 223 |
///Returns \c true if \c a is \e surely different from \c b |
224 | 224 |
bool different(Value a,Value b) const { return less(a,b)||less(b,a); } |
225 | 225 |
///Returns \c true if \c a is \e surely positive |
226 | 226 |
bool positive(Value a) const { return _epsilon<a; } |
227 | 227 |
///Returns \c true if \c a is \e surely negative |
228 | 228 |
bool negative(Value a) const { return -_epsilon>a; } |
229 | 229 |
///Returns \c true if \c a is \e surely non-zero |
230 | 230 |
bool nonZero(Value a) const { return positive(a)||negative(a); } |
231 | 231 |
|
232 | 232 |
///@} |
233 | 233 |
|
234 | 234 |
///Returns zero |
235 | 235 |
static Value zero() {return 0;} |
236 | 236 |
}; |
237 | 237 |
|
238 | 238 |
/// @} |
239 | 239 |
|
240 | 240 |
} //namespace lemon |
241 | 241 |
|
242 | 242 |
#endif //LEMON_TOLERANCE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_UNION_FIND_H |
20 | 20 |
#define LEMON_UNION_FIND_H |
21 | 21 |
|
22 | 22 |
//!\ingroup auxdat |
23 | 23 |
//!\file |
24 | 24 |
//!\brief Union-Find data structures. |
25 | 25 |
//! |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <list> |
29 | 29 |
#include <utility> |
30 | 30 |
#include <algorithm> |
31 | 31 |
#include <functional> |
32 | 32 |
|
33 | 33 |
#include <lemon/core.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup auxdat |
38 | 38 |
/// |
39 | 39 |
/// \brief A \e Union-Find data structure implementation |
40 | 40 |
/// |
41 | 41 |
/// The class implements the \e Union-Find data structure. |
42 | 42 |
/// The union operation uses rank heuristic, while |
43 | 43 |
/// the find operation uses path compression. |
44 | 44 |
/// This is a very simple but efficient implementation, providing |
45 | 45 |
/// only four methods: join (union), find, insert and size. |
46 | 46 |
/// For more features see the \ref UnionFindEnum class. |
47 | 47 |
/// |
48 | 48 |
/// It is primarily used in Kruskal algorithm for finding minimal |
49 | 49 |
/// cost spanning tree in a graph. |
50 | 50 |
/// \sa kruskal() |
51 | 51 |
/// |
52 | 52 |
/// \pre You need to add all the elements by the \ref insert() |
53 | 53 |
/// method. |
54 | 54 |
template <typename _ItemIntMap> |
55 | 55 |
class UnionFind { |
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
typedef _ItemIntMap ItemIntMap; |
59 | 59 |
typedef typename ItemIntMap::Key Item; |
60 | 60 |
|
61 | 61 |
private: |
62 | 62 |
// If the items vector stores negative value for an item then |
63 | 63 |
// that item is root item and it has -items[it] component size. |
64 | 64 |
// Else the items[it] contains the index of the parent. |
65 | 65 |
std::vector<int> items; |
66 | 66 |
ItemIntMap& index; |
67 | 67 |
|
68 | 68 |
bool rep(int idx) const { |
69 | 69 |
return items[idx] < 0; |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
int repIndex(int idx) const { |
73 | 73 |
int k = idx; |
74 | 74 |
while (!rep(k)) { |
75 | 75 |
k = items[k] ; |
76 | 76 |
} |
77 | 77 |
while (idx != k) { |
78 | 78 |
int next = items[idx]; |
79 | 79 |
const_cast<int&>(items[idx]) = k; |
80 | 80 |
idx = next; |
81 | 81 |
} |
82 | 82 |
return k; |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
|
87 | 87 |
/// \brief Constructor |
88 | 88 |
/// |
89 | 89 |
/// Constructor of the UnionFind class. You should give an item to |
90 | 90 |
/// integer map which will be used from the data structure. If you |
91 | 91 |
/// modify directly this map that may cause segmentation fault, |
92 | 92 |
/// invalid data structure, or infinite loop when you use again |
93 | 93 |
/// the union-find. |
94 | 94 |
UnionFind(ItemIntMap& m) : index(m) {} |
95 | 95 |
|
96 | 96 |
/// \brief Returns the index of the element's component. |
97 | 97 |
/// |
98 | 98 |
/// The method returns the index of the element's component. |
99 | 99 |
/// This is an integer between zero and the number of inserted elements. |
100 | 100 |
/// |
101 | 101 |
int find(const Item& a) { |
102 | 102 |
return repIndex(index[a]); |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
/// \brief Clears the union-find data structure |
106 | 106 |
/// |
107 | 107 |
/// Erase each item from the data structure. |
108 | 108 |
void clear() { |
109 | 109 |
items.clear(); |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
/// \brief Inserts a new element into the structure. |
113 | 113 |
/// |
114 | 114 |
/// This method inserts a new element into the data structure. |
115 | 115 |
/// |
116 | 116 |
/// The method returns the index of the new component. |
117 | 117 |
int insert(const Item& a) { |
118 | 118 |
int n = items.size(); |
119 | 119 |
items.push_back(-1); |
120 | 120 |
index.set(a,n); |
121 | 121 |
return n; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
/// \brief Joining the components of element \e a and element \e b. |
125 | 125 |
/// |
126 | 126 |
/// This is the \e union operation of the Union-Find structure. |
127 | 127 |
/// Joins the component of element \e a and component of |
128 | 128 |
/// element \e b. If \e a and \e b are in the same component then |
129 | 129 |
/// it returns false otherwise it returns true. |
130 | 130 |
bool join(const Item& a, const Item& b) { |
131 | 131 |
int ka = repIndex(index[a]); |
132 | 132 |
int kb = repIndex(index[b]); |
133 | 133 |
|
134 | 134 |
if ( ka == kb ) |
135 | 135 |
return false; |
136 | 136 |
|
137 | 137 |
if (items[ka] < items[kb]) { |
138 | 138 |
items[ka] += items[kb]; |
139 | 139 |
items[kb] = ka; |
140 | 140 |
} else { |
141 | 141 |
items[kb] += items[ka]; |
142 | 142 |
items[ka] = kb; |
143 | 143 |
} |
144 | 144 |
return true; |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
/// \brief Returns the size of the component of element \e a. |
148 | 148 |
/// |
149 | 149 |
/// Returns the size of the component of element \e a. |
150 | 150 |
int size(const Item& a) { |
151 | 151 |
int k = repIndex(index[a]); |
152 | 152 |
return - items[k]; |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
}; |
156 | 156 |
|
157 | 157 |
/// \ingroup auxdat |
158 | 158 |
/// |
159 | 159 |
/// \brief A \e Union-Find data structure implementation which |
160 | 160 |
/// is able to enumerate the components. |
161 | 161 |
/// |
162 | 162 |
/// The class implements a \e Union-Find data structure |
163 | 163 |
/// which is able to enumerate the components and the items in |
164 | 164 |
/// a component. If you don't need this feature then perhaps it's |
165 | 165 |
/// better to use the \ref UnionFind class which is more efficient. |
166 | 166 |
/// |
167 | 167 |
/// The union operation uses rank heuristic, while |
168 | 168 |
/// the find operation uses path compression. |
169 | 169 |
/// |
170 | 170 |
/// \pre You need to add all the elements by the \ref insert() |
171 | 171 |
/// method. |
172 | 172 |
/// |
173 | 173 |
template <typename _ItemIntMap> |
174 | 174 |
class UnionFindEnum { |
175 | 175 |
public: |
176 | 176 |
|
177 | 177 |
typedef _ItemIntMap ItemIntMap; |
178 | 178 |
typedef typename ItemIntMap::Key Item; |
179 | 179 |
|
180 | 180 |
private: |
181 | 181 |
|
182 | 182 |
ItemIntMap& index; |
183 | 183 |
|
184 | 184 |
// If the parent stores negative value for an item then that item |
185 | 185 |
// is root item and it has ~(items[it].parent) component id. Else |
186 | 186 |
// the items[it].parent contains the index of the parent. |
187 | 187 |
// |
188 | 188 |
// The \c next and \c prev provides the double-linked |
189 | 189 |
// cyclic list of one component's items. |
190 | 190 |
struct ItemT { |
191 | 191 |
int parent; |
192 | 192 |
Item item; |
193 | 193 |
|
194 | 194 |
int next, prev; |
195 | 195 |
}; |
196 | 196 |
|
197 | 197 |
std::vector<ItemT> items; |
198 | 198 |
int firstFreeItem; |
199 | 199 |
|
200 | 200 |
struct ClassT { |
201 | 201 |
int size; |
202 | 202 |
int firstItem; |
203 | 203 |
int next, prev; |
204 | 204 |
}; |
205 | 205 |
|
206 | 206 |
std::vector<ClassT> classes; |
207 | 207 |
int firstClass, firstFreeClass; |
208 | 208 |
|
209 | 209 |
int newClass() { |
210 | 210 |
if (firstFreeClass == -1) { |
211 | 211 |
int cdx = classes.size(); |
212 | 212 |
classes.push_back(ClassT()); |
213 | 213 |
return cdx; |
214 | 214 |
} else { |
215 | 215 |
int cdx = firstFreeClass; |
216 | 216 |
firstFreeClass = classes[firstFreeClass].next; |
217 | 217 |
return cdx; |
218 | 218 |
} |
219 | 219 |
} |
220 | 220 |
|
221 | 221 |
int newItem() { |
222 | 222 |
if (firstFreeItem == -1) { |
223 | 223 |
int idx = items.size(); |
224 | 224 |
items.push_back(ItemT()); |
225 | 225 |
return idx; |
226 | 226 |
} else { |
227 | 227 |
int idx = firstFreeItem; |
228 | 228 |
firstFreeItem = items[firstFreeItem].next; |
229 | 229 |
return idx; |
230 | 230 |
} |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
|
234 | 234 |
bool rep(int idx) const { |
235 | 235 |
return items[idx].parent < 0; |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
int repIndex(int idx) const { |
239 | 239 |
int k = idx; |
240 | 240 |
while (!rep(k)) { |
241 | 241 |
k = items[k].parent; |
242 | 242 |
} |
243 | 243 |
while (idx != k) { |
244 | 244 |
int next = items[idx].parent; |
245 | 245 |
const_cast<int&>(items[idx].parent) = k; |
246 | 246 |
idx = next; |
247 | 247 |
} |
248 | 248 |
return k; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
int classIndex(int idx) const { |
252 | 252 |
return ~(items[repIndex(idx)].parent); |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
void singletonItem(int idx) { |
256 | 256 |
items[idx].next = idx; |
257 | 257 |
items[idx].prev = idx; |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
void laceItem(int idx, int rdx) { |
261 | 261 |
items[idx].prev = rdx; |
262 | 262 |
items[idx].next = items[rdx].next; |
263 | 263 |
items[items[rdx].next].prev = idx; |
264 | 264 |
items[rdx].next = idx; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
void unlaceItem(int idx) { |
268 | 268 |
items[items[idx].prev].next = items[idx].next; |
269 | 269 |
items[items[idx].next].prev = items[idx].prev; |
270 | 270 |
|
271 | 271 |
items[idx].next = firstFreeItem; |
272 | 272 |
firstFreeItem = idx; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
void spliceItems(int ak, int bk) { |
276 | 276 |
items[items[ak].prev].next = bk; |
277 | 277 |
items[items[bk].prev].next = ak; |
278 | 278 |
int tmp = items[ak].prev; |
279 | 279 |
items[ak].prev = items[bk].prev; |
280 | 280 |
items[bk].prev = tmp; |
281 | 281 |
|
282 | 282 |
} |
283 | 283 |
|
284 | 284 |
void laceClass(int cls) { |
285 | 285 |
if (firstClass != -1) { |
286 | 286 |
classes[firstClass].prev = cls; |
287 | 287 |
} |
288 | 288 |
classes[cls].next = firstClass; |
289 | 289 |
classes[cls].prev = -1; |
290 | 290 |
firstClass = cls; |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
void unlaceClass(int cls) { |
294 | 294 |
if (classes[cls].prev != -1) { |
295 | 295 |
classes[classes[cls].prev].next = classes[cls].next; |
296 | 296 |
} else { |
297 | 297 |
firstClass = classes[cls].next; |
298 | 298 |
} |
299 | 299 |
if (classes[cls].next != -1) { |
300 | 300 |
classes[classes[cls].next].prev = classes[cls].prev; |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
classes[cls].next = firstFreeClass; |
304 | 304 |
firstFreeClass = cls; |
305 | 305 |
} |
306 | 306 |
|
307 | 307 |
public: |
308 | 308 |
|
309 | 309 |
UnionFindEnum(ItemIntMap& _index) |
310 | 310 |
: index(_index), items(), firstFreeItem(-1), |
311 | 311 |
firstClass(-1), firstFreeClass(-1) {} |
312 | 312 |
|
313 | 313 |
/// \brief Inserts the given element into a new component. |
314 | 314 |
/// |
315 | 315 |
/// This method creates a new component consisting only of the |
316 | 316 |
/// given element. |
317 | 317 |
/// |
318 | 318 |
int insert(const Item& item) { |
319 | 319 |
int idx = newItem(); |
320 | 320 |
|
321 | 321 |
index.set(item, idx); |
322 | 322 |
|
323 | 323 |
singletonItem(idx); |
324 | 324 |
items[idx].item = item; |
325 | 325 |
|
326 | 326 |
int cdx = newClass(); |
327 | 327 |
|
328 | 328 |
items[idx].parent = ~cdx; |
329 | 329 |
|
330 | 330 |
laceClass(cdx); |
331 | 331 |
classes[cdx].size = 1; |
332 | 332 |
classes[cdx].firstItem = idx; |
333 | 333 |
|
334 | 334 |
firstClass = cdx; |
335 | 335 |
|
336 | 336 |
return cdx; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
/// \brief Inserts the given element into the component of the others. |
340 | 340 |
/// |
341 | 341 |
/// This methods inserts the element \e a into the component of the |
342 | 342 |
/// element \e comp. |
343 | 343 |
void insert(const Item& item, int cls) { |
344 | 344 |
int rdx = classes[cls].firstItem; |
345 | 345 |
int idx = newItem(); |
346 | 346 |
|
347 | 347 |
index.set(item, idx); |
348 | 348 |
|
349 | 349 |
laceItem(idx, rdx); |
350 | 350 |
|
351 | 351 |
items[idx].item = item; |
352 | 352 |
items[idx].parent = rdx; |
353 | 353 |
|
354 | 354 |
++classes[~(items[rdx].parent)].size; |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Clears the union-find data structure |
358 | 358 |
/// |
359 | 359 |
/// Erase each item from the data structure. |
360 | 360 |
void clear() { |
361 | 361 |
items.clear(); |
362 | 362 |
firstClass = -1; |
363 | 363 |
firstFreeItem = -1; |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
/// \brief Finds the component of the given element. |
367 | 367 |
/// |
368 | 368 |
/// The method returns the component id of the given element. |
369 | 369 |
int find(const Item &item) const { |
370 | 370 |
return ~(items[repIndex(index[item])].parent); |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
/// \brief Joining the component of element \e a and element \e b. |
374 | 374 |
/// |
375 | 375 |
/// This is the \e union operation of the Union-Find structure. |
376 | 376 |
/// Joins the component of element \e a and component of |
377 | 377 |
/// element \e b. If \e a and \e b are in the same component then |
378 | 378 |
/// returns -1 else returns the remaining class. |
379 | 379 |
int join(const Item& a, const Item& b) { |
380 | 380 |
|
381 | 381 |
int ak = repIndex(index[a]); |
382 | 382 |
int bk = repIndex(index[b]); |
383 | 383 |
|
384 | 384 |
if (ak == bk) { |
385 | 385 |
return -1; |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
int acx = ~(items[ak].parent); |
389 | 389 |
int bcx = ~(items[bk].parent); |
390 | 390 |
|
391 | 391 |
int rcx; |
392 | 392 |
|
393 | 393 |
if (classes[acx].size > classes[bcx].size) { |
394 | 394 |
classes[acx].size += classes[bcx].size; |
395 | 395 |
items[bk].parent = ak; |
396 | 396 |
unlaceClass(bcx); |
397 | 397 |
rcx = acx; |
398 | 398 |
} else { |
399 | 399 |
classes[bcx].size += classes[acx].size; |
400 | 400 |
items[ak].parent = bk; |
401 | 401 |
unlaceClass(acx); |
402 | 402 |
rcx = bcx; |
403 | 403 |
} |
404 | 404 |
spliceItems(ak, bk); |
405 | 405 |
|
406 | 406 |
return rcx; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
/// \brief Returns the size of the class. |
410 | 410 |
/// |
411 | 411 |
/// Returns the size of the class. |
412 | 412 |
int size(int cls) const { |
413 | 413 |
return classes[cls].size; |
414 | 414 |
} |
415 | 415 |
|
416 | 416 |
/// \brief Splits up the component. |
417 | 417 |
/// |
418 | 418 |
/// Splitting the component into singleton components (component |
419 | 419 |
/// of size one). |
420 | 420 |
void split(int cls) { |
421 | 421 |
int fdx = classes[cls].firstItem; |
422 | 422 |
int idx = items[fdx].next; |
423 | 423 |
while (idx != fdx) { |
424 | 424 |
int next = items[idx].next; |
425 | 425 |
|
426 | 426 |
singletonItem(idx); |
427 | 427 |
|
428 | 428 |
int cdx = newClass(); |
429 | 429 |
items[idx].parent = ~cdx; |
430 | 430 |
|
431 | 431 |
laceClass(cdx); |
432 | 432 |
classes[cdx].size = 1; |
433 | 433 |
classes[cdx].firstItem = idx; |
434 | 434 |
|
435 | 435 |
idx = next; |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
items[idx].prev = idx; |
439 | 439 |
items[idx].next = idx; |
440 | 440 |
|
441 | 441 |
classes[~(items[idx].parent)].size = 1; |
442 | 442 |
|
443 | 443 |
} |
444 | 444 |
|
445 | 445 |
/// \brief Removes the given element from the structure. |
446 | 446 |
/// |
447 | 447 |
/// Removes the element from its component and if the component becomes |
448 | 448 |
/// empty then removes that component from the component list. |
449 | 449 |
/// |
450 | 450 |
/// \warning It is an error to remove an element which is not in |
451 | 451 |
/// the structure. |
452 | 452 |
/// \warning This running time of this operation is proportional to the |
453 | 453 |
/// number of the items in this class. |
454 | 454 |
void erase(const Item& item) { |
455 | 455 |
int idx = index[item]; |
456 | 456 |
int fdx = items[idx].next; |
457 | 457 |
|
458 | 458 |
int cdx = classIndex(idx); |
459 | 459 |
if (idx == fdx) { |
460 | 460 |
unlaceClass(cdx); |
461 | 461 |
items[idx].next = firstFreeItem; |
462 | 462 |
firstFreeItem = idx; |
463 | 463 |
return; |
464 | 464 |
} else { |
465 | 465 |
classes[cdx].firstItem = fdx; |
466 | 466 |
--classes[cdx].size; |
467 | 467 |
items[fdx].parent = ~cdx; |
468 | 468 |
|
469 | 469 |
unlaceItem(idx); |
470 | 470 |
idx = items[fdx].next; |
471 | 471 |
while (idx != fdx) { |
472 | 472 |
items[idx].parent = fdx; |
473 | 473 |
idx = items[idx].next; |
474 | 474 |
} |
475 | 475 |
|
476 | 476 |
} |
477 | 477 |
|
478 | 478 |
} |
479 | 479 |
|
480 | 480 |
/// \brief Gives back a representant item of the component. |
481 | 481 |
/// |
482 | 482 |
/// Gives back a representant item of the component. |
483 | 483 |
Item item(int cls) const { |
484 | 484 |
return items[classes[cls].firstItem].item; |
485 | 485 |
} |
486 | 486 |
|
487 | 487 |
/// \brief Removes the component of the given element from the structure. |
488 | 488 |
/// |
489 | 489 |
/// Removes the component of the given element from the structure. |
490 | 490 |
/// |
491 | 491 |
/// \warning It is an error to give an element which is not in the |
492 | 492 |
/// structure. |
493 | 493 |
void eraseClass(int cls) { |
494 | 494 |
int fdx = classes[cls].firstItem; |
495 | 495 |
unlaceClass(cls); |
496 | 496 |
items[items[fdx].prev].next = firstFreeItem; |
497 | 497 |
firstFreeItem = fdx; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
/// \brief LEMON style iterator for the representant items. |
501 | 501 |
/// |
502 | 502 |
/// ClassIt is a lemon style iterator for the components. It iterates |
503 | 503 |
/// on the ids of the classes. |
504 | 504 |
class ClassIt { |
505 | 505 |
public: |
506 | 506 |
/// \brief Constructor of the iterator |
507 | 507 |
/// |
508 | 508 |
/// Constructor of the iterator |
509 | 509 |
ClassIt(const UnionFindEnum& ufe) : unionFind(&ufe) { |
510 | 510 |
cdx = unionFind->firstClass; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
/// \brief Constructor to get invalid iterator |
514 | 514 |
/// |
515 | 515 |
/// Constructor to get invalid iterator |
516 | 516 |
ClassIt(Invalid) : unionFind(0), cdx(-1) {} |
517 | 517 |
|
518 | 518 |
/// \brief Increment operator |
519 | 519 |
/// |
520 | 520 |
/// It steps to the next representant item. |
521 | 521 |
ClassIt& operator++() { |
522 | 522 |
cdx = unionFind->classes[cdx].next; |
523 | 523 |
return *this; |
524 | 524 |
} |
525 | 525 |
|
526 | 526 |
/// \brief Conversion operator |
527 | 527 |
/// |
528 | 528 |
/// It converts the iterator to the current representant item. |
529 | 529 |
operator int() const { |
530 | 530 |
return cdx; |
531 | 531 |
} |
532 | 532 |
|
533 | 533 |
/// \brief Equality operator |
534 | 534 |
/// |
535 | 535 |
/// Equality operator |
536 | 536 |
bool operator==(const ClassIt& i) { |
537 | 537 |
return i.cdx == cdx; |
538 | 538 |
} |
539 | 539 |
|
540 | 540 |
/// \brief Inequality operator |
541 | 541 |
/// |
542 | 542 |
/// Inequality operator |
543 | 543 |
bool operator!=(const ClassIt& i) { |
544 | 544 |
return i.cdx != cdx; |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
private: |
548 | 548 |
const UnionFindEnum* unionFind; |
549 | 549 |
int cdx; |
550 | 550 |
}; |
551 | 551 |
|
552 | 552 |
/// \brief LEMON style iterator for the items of a component. |
553 | 553 |
/// |
554 | 554 |
/// ClassIt is a lemon style iterator for the components. It iterates |
555 | 555 |
/// on the items of a class. By example if you want to iterate on |
556 | 556 |
/// each items of each classes then you may write the next code. |
557 | 557 |
///\code |
558 | 558 |
/// for (ClassIt cit(ufe); cit != INVALID; ++cit) { |
559 | 559 |
/// std::cout << "Class: "; |
560 | 560 |
/// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) { |
561 | 561 |
/// std::cout << toString(iit) << ' ' << std::endl; |
562 | 562 |
/// } |
563 | 563 |
/// std::cout << std::endl; |
564 | 564 |
/// } |
565 | 565 |
///\endcode |
566 | 566 |
class ItemIt { |
567 | 567 |
public: |
568 | 568 |
/// \brief Constructor of the iterator |
569 | 569 |
/// |
570 | 570 |
/// Constructor of the iterator. The iterator iterates |
571 | 571 |
/// on the class of the \c item. |
572 | 572 |
ItemIt(const UnionFindEnum& ufe, int cls) : unionFind(&ufe) { |
573 | 573 |
fdx = idx = unionFind->classes[cls].firstItem; |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
/// \brief Constructor to get invalid iterator |
577 | 577 |
/// |
578 | 578 |
/// Constructor to get invalid iterator |
579 | 579 |
ItemIt(Invalid) : unionFind(0), idx(-1) {} |
580 | 580 |
|
581 | 581 |
/// \brief Increment operator |
582 | 582 |
/// |
583 | 583 |
/// It steps to the next item in the class. |
584 | 584 |
ItemIt& operator++() { |
585 | 585 |
idx = unionFind->items[idx].next; |
586 | 586 |
if (idx == fdx) idx = -1; |
587 | 587 |
return *this; |
588 | 588 |
} |
589 | 589 |
|
590 | 590 |
/// \brief Conversion operator |
591 | 591 |
/// |
592 | 592 |
/// It converts the iterator to the current item. |
593 | 593 |
operator const Item&() const { |
594 | 594 |
return unionFind->items[idx].item; |
595 | 595 |
} |
596 | 596 |
|
597 | 597 |
/// \brief Equality operator |
598 | 598 |
/// |
599 | 599 |
/// Equality operator |
600 | 600 |
bool operator==(const ItemIt& i) { |
601 | 601 |
return i.idx == idx; |
602 | 602 |
} |
603 | 603 |
|
604 | 604 |
/// \brief Inequality operator |
605 | 605 |
/// |
606 | 606 |
/// Inequality operator |
607 | 607 |
bool operator!=(const ItemIt& i) { |
608 | 608 |
return i.idx != idx; |
609 | 609 |
} |
610 | 610 |
|
611 | 611 |
private: |
612 | 612 |
const UnionFindEnum* unionFind; |
613 | 613 |
int idx, fdx; |
614 | 614 |
}; |
615 | 615 |
|
616 | 616 |
}; |
617 | 617 |
|
618 | 618 |
/// \ingroup auxdat |
619 | 619 |
/// |
620 | 620 |
/// \brief A \e Extend-Find data structure implementation which |
621 | 621 |
/// is able to enumerate the components. |
622 | 622 |
/// |
623 | 623 |
/// The class implements an \e Extend-Find data structure which is |
624 | 624 |
/// able to enumerate the components and the items in a |
625 | 625 |
/// component. The data structure is a simplification of the |
626 | 626 |
/// Union-Find structure, and it does not allow to merge two components. |
627 | 627 |
/// |
628 | 628 |
/// \pre You need to add all the elements by the \ref insert() |
629 | 629 |
/// method. |
630 | 630 |
template <typename _ItemIntMap> |
631 | 631 |
class ExtendFindEnum { |
632 | 632 |
public: |
633 | 633 |
|
634 | 634 |
typedef _ItemIntMap ItemIntMap; |
635 | 635 |
typedef typename ItemIntMap::Key Item; |
636 | 636 |
|
637 | 637 |
private: |
638 | 638 |
|
639 | 639 |
ItemIntMap& index; |
640 | 640 |
|
641 | 641 |
struct ItemT { |
642 | 642 |
int cls; |
643 | 643 |
Item item; |
644 | 644 |
int next, prev; |
645 | 645 |
}; |
646 | 646 |
|
647 | 647 |
std::vector<ItemT> items; |
648 | 648 |
int firstFreeItem; |
649 | 649 |
|
650 | 650 |
struct ClassT { |
651 | 651 |
int firstItem; |
652 | 652 |
int next, prev; |
653 | 653 |
}; |
654 | 654 |
|
655 | 655 |
std::vector<ClassT> classes; |
656 | 656 |
|
657 | 657 |
int firstClass, firstFreeClass; |
658 | 658 |
|
659 | 659 |
int newClass() { |
660 | 660 |
if (firstFreeClass != -1) { |
661 | 661 |
int cdx = firstFreeClass; |
662 | 662 |
firstFreeClass = classes[cdx].next; |
663 | 663 |
return cdx; |
664 | 664 |
} else { |
665 | 665 |
classes.push_back(ClassT()); |
666 | 666 |
return classes.size() - 1; |
667 | 667 |
} |
668 | 668 |
} |
669 | 669 |
|
670 | 670 |
int newItem() { |
671 | 671 |
if (firstFreeItem != -1) { |
672 | 672 |
int idx = firstFreeItem; |
673 | 673 |
firstFreeItem = items[idx].next; |
674 | 674 |
return idx; |
675 | 675 |
} else { |
676 | 676 |
items.push_back(ItemT()); |
677 | 677 |
return items.size() - 1; |
678 | 678 |
} |
679 | 679 |
} |
680 | 680 |
|
681 | 681 |
public: |
682 | 682 |
|
683 | 683 |
/// \brief Constructor |
684 | 684 |
ExtendFindEnum(ItemIntMap& _index) |
685 | 685 |
: index(_index), items(), firstFreeItem(-1), |
686 | 686 |
classes(), firstClass(-1), firstFreeClass(-1) {} |
687 | 687 |
|
688 | 688 |
/// \brief Inserts the given element into a new component. |
689 | 689 |
/// |
690 | 690 |
/// This method creates a new component consisting only of the |
691 | 691 |
/// given element. |
692 | 692 |
int insert(const Item& item) { |
693 | 693 |
int cdx = newClass(); |
694 | 694 |
classes[cdx].prev = -1; |
695 | 695 |
classes[cdx].next = firstClass; |
696 | 696 |
if (firstClass != -1) { |
697 | 697 |
classes[firstClass].prev = cdx; |
698 | 698 |
} |
699 | 699 |
firstClass = cdx; |
700 | 700 |
|
701 | 701 |
int idx = newItem(); |
702 | 702 |
items[idx].item = item; |
703 | 703 |
items[idx].cls = cdx; |
704 | 704 |
items[idx].prev = idx; |
705 | 705 |
items[idx].next = idx; |
706 | 706 |
|
707 | 707 |
classes[cdx].firstItem = idx; |
708 | 708 |
|
709 | 709 |
index.set(item, idx); |
710 | 710 |
|
711 | 711 |
return cdx; |
712 | 712 |
} |
713 | 713 |
|
714 | 714 |
/// \brief Inserts the given element into the given component. |
715 | 715 |
/// |
716 | 716 |
/// This methods inserts the element \e item a into the \e cls class. |
717 | 717 |
void insert(const Item& item, int cls) { |
718 | 718 |
int idx = newItem(); |
719 | 719 |
int rdx = classes[cls].firstItem; |
720 | 720 |
items[idx].item = item; |
721 | 721 |
items[idx].cls = cls; |
722 | 722 |
|
723 | 723 |
items[idx].prev = rdx; |
724 | 724 |
items[idx].next = items[rdx].next; |
725 | 725 |
items[items[rdx].next].prev = idx; |
726 | 726 |
items[rdx].next = idx; |
727 | 727 |
|
728 | 728 |
index.set(item, idx); |
729 | 729 |
} |
730 | 730 |
|
731 | 731 |
/// \brief Clears the union-find data structure |
732 | 732 |
/// |
733 | 733 |
/// Erase each item from the data structure. |
734 | 734 |
void clear() { |
735 | 735 |
items.clear(); |
736 | 736 |
classes.clear(); |
737 | 737 |
firstClass = firstFreeClass = firstFreeItem = -1; |
738 | 738 |
} |
739 | 739 |
|
740 | 740 |
/// \brief Gives back the class of the \e item. |
741 | 741 |
/// |
742 | 742 |
/// Gives back the class of the \e item. |
743 | 743 |
int find(const Item &item) const { |
744 | 744 |
return items[index[item]].cls; |
745 | 745 |
} |
746 | 746 |
|
747 | 747 |
/// \brief Gives back a representant item of the component. |
748 | 748 |
/// |
749 | 749 |
/// Gives back a representant item of the component. |
750 | 750 |
Item item(int cls) const { |
751 | 751 |
return items[classes[cls].firstItem].item; |
752 | 752 |
} |
753 | 753 |
|
754 | 754 |
/// \brief Removes the given element from the structure. |
755 | 755 |
/// |
756 | 756 |
/// Removes the element from its component and if the component becomes |
757 | 757 |
/// empty then removes that component from the component list. |
758 | 758 |
/// |
759 | 759 |
/// \warning It is an error to remove an element which is not in |
760 | 760 |
/// the structure. |
761 | 761 |
void erase(const Item &item) { |
762 | 762 |
int idx = index[item]; |
763 | 763 |
int cdx = items[idx].cls; |
764 | 764 |
|
765 | 765 |
if (idx == items[idx].next) { |
766 | 766 |
if (classes[cdx].prev != -1) { |
767 | 767 |
classes[classes[cdx].prev].next = classes[cdx].next; |
768 | 768 |
} else { |
769 | 769 |
firstClass = classes[cdx].next; |
770 | 770 |
} |
771 | 771 |
if (classes[cdx].next != -1) { |
772 | 772 |
classes[classes[cdx].next].prev = classes[cdx].prev; |
773 | 773 |
} |
774 | 774 |
classes[cdx].next = firstFreeClass; |
775 | 775 |
firstFreeClass = cdx; |
776 | 776 |
} else { |
777 | 777 |
classes[cdx].firstItem = items[idx].next; |
778 | 778 |
items[items[idx].next].prev = items[idx].prev; |
779 | 779 |
items[items[idx].prev].next = items[idx].next; |
780 | 780 |
} |
781 | 781 |
items[idx].next = firstFreeItem; |
782 | 782 |
firstFreeItem = idx; |
783 | 783 |
|
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
|
787 | 787 |
/// \brief Removes the component of the given element from the structure. |
788 | 788 |
/// |
789 | 789 |
/// Removes the component of the given element from the structure. |
790 | 790 |
/// |
791 | 791 |
/// \warning It is an error to give an element which is not in the |
792 | 792 |
/// structure. |
793 | 793 |
void eraseClass(int cdx) { |
794 | 794 |
int idx = classes[cdx].firstItem; |
795 | 795 |
items[items[idx].prev].next = firstFreeItem; |
796 | 796 |
firstFreeItem = idx; |
797 | 797 |
|
798 | 798 |
if (classes[cdx].prev != -1) { |
799 | 799 |
classes[classes[cdx].prev].next = classes[cdx].next; |
800 | 800 |
} else { |
801 | 801 |
firstClass = classes[cdx].next; |
802 | 802 |
} |
803 | 803 |
if (classes[cdx].next != -1) { |
804 | 804 |
classes[classes[cdx].next].prev = classes[cdx].prev; |
805 | 805 |
} |
806 | 806 |
classes[cdx].next = firstFreeClass; |
807 | 807 |
firstFreeClass = cdx; |
808 | 808 |
} |
809 | 809 |
|
810 | 810 |
/// \brief LEMON style iterator for the classes. |
811 | 811 |
/// |
812 | 812 |
/// ClassIt is a lemon style iterator for the components. It iterates |
813 | 813 |
/// on the ids of classes. |
814 | 814 |
class ClassIt { |
815 | 815 |
public: |
816 | 816 |
/// \brief Constructor of the iterator |
817 | 817 |
/// |
818 | 818 |
/// Constructor of the iterator |
819 | 819 |
ClassIt(const ExtendFindEnum& ufe) : extendFind(&ufe) { |
820 | 820 |
cdx = extendFind->firstClass; |
821 | 821 |
} |
822 | 822 |
|
823 | 823 |
/// \brief Constructor to get invalid iterator |
824 | 824 |
/// |
825 | 825 |
/// Constructor to get invalid iterator |
826 | 826 |
ClassIt(Invalid) : extendFind(0), cdx(-1) {} |
827 | 827 |
|
828 | 828 |
/// \brief Increment operator |
829 | 829 |
/// |
830 | 830 |
/// It steps to the next representant item. |
831 | 831 |
ClassIt& operator++() { |
832 | 832 |
cdx = extendFind->classes[cdx].next; |
833 | 833 |
return *this; |
834 | 834 |
} |
835 | 835 |
|
836 | 836 |
/// \brief Conversion operator |
837 | 837 |
/// |
838 | 838 |
/// It converts the iterator to the current class id. |
839 | 839 |
operator int() const { |
840 | 840 |
return cdx; |
841 | 841 |
} |
842 | 842 |
|
843 | 843 |
/// \brief Equality operator |
844 | 844 |
/// |
845 | 845 |
/// Equality operator |
846 | 846 |
bool operator==(const ClassIt& i) { |
847 | 847 |
return i.cdx == cdx; |
848 | 848 |
} |
849 | 849 |
|
850 | 850 |
/// \brief Inequality operator |
851 | 851 |
/// |
852 | 852 |
/// Inequality operator |
853 | 853 |
bool operator!=(const ClassIt& i) { |
854 | 854 |
return i.cdx != cdx; |
855 | 855 |
} |
856 | 856 |
|
857 | 857 |
private: |
858 | 858 |
const ExtendFindEnum* extendFind; |
859 | 859 |
int cdx; |
860 | 860 |
}; |
861 | 861 |
|
862 | 862 |
/// \brief LEMON style iterator for the items of a component. |
863 | 863 |
/// |
864 | 864 |
/// ClassIt is a lemon style iterator for the components. It iterates |
865 | 865 |
/// on the items of a class. By example if you want to iterate on |
866 | 866 |
/// each items of each classes then you may write the next code. |
867 | 867 |
///\code |
868 | 868 |
/// for (ClassIt cit(ufe); cit != INVALID; ++cit) { |
869 | 869 |
/// std::cout << "Class: "; |
870 | 870 |
/// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) { |
871 | 871 |
/// std::cout << toString(iit) << ' ' << std::endl; |
872 | 872 |
/// } |
873 | 873 |
/// std::cout << std::endl; |
874 | 874 |
/// } |
875 | 875 |
///\endcode |
876 | 876 |
class ItemIt { |
877 | 877 |
public: |
878 | 878 |
/// \brief Constructor of the iterator |
879 | 879 |
/// |
880 | 880 |
/// Constructor of the iterator. The iterator iterates |
881 | 881 |
/// on the class of the \c item. |
882 | 882 |
ItemIt(const ExtendFindEnum& ufe, int cls) : extendFind(&ufe) { |
883 | 883 |
fdx = idx = extendFind->classes[cls].firstItem; |
884 | 884 |
} |
885 | 885 |
|
886 | 886 |
/// \brief Constructor to get invalid iterator |
887 | 887 |
/// |
888 | 888 |
/// Constructor to get invalid iterator |
889 | 889 |
ItemIt(Invalid) : extendFind(0), idx(-1) {} |
890 | 890 |
|
891 | 891 |
/// \brief Increment operator |
892 | 892 |
/// |
893 | 893 |
/// It steps to the next item in the class. |
894 | 894 |
ItemIt& operator++() { |
895 | 895 |
idx = extendFind->items[idx].next; |
896 | 896 |
if (fdx == idx) idx = -1; |
897 | 897 |
return *this; |
898 | 898 |
} |
899 | 899 |
|
900 | 900 |
/// \brief Conversion operator |
901 | 901 |
/// |
902 | 902 |
/// It converts the iterator to the current item. |
903 | 903 |
operator const Item&() const { |
904 | 904 |
return extendFind->items[idx].item; |
905 | 905 |
} |
906 | 906 |
|
907 | 907 |
/// \brief Equality operator |
908 | 908 |
/// |
909 | 909 |
/// Equality operator |
910 | 910 |
bool operator==(const ItemIt& i) { |
911 | 911 |
return i.idx == idx; |
912 | 912 |
} |
913 | 913 |
|
914 | 914 |
/// \brief Inequality operator |
915 | 915 |
/// |
916 | 916 |
/// Inequality operator |
917 | 917 |
bool operator!=(const ItemIt& i) { |
918 | 918 |
return i.idx != idx; |
919 | 919 |
} |
920 | 920 |
|
921 | 921 |
private: |
922 | 922 |
const ExtendFindEnum* extendFind; |
923 | 923 |
int idx, fdx; |
924 | 924 |
}; |
925 | 925 |
|
926 | 926 |
}; |
927 | 927 |
|
928 | 928 |
/// \ingroup auxdat |
929 | 929 |
/// |
930 | 930 |
/// \brief A \e Union-Find data structure implementation which |
931 | 931 |
/// is able to store a priority for each item and retrieve the minimum of |
932 | 932 |
/// each class. |
933 | 933 |
/// |
934 | 934 |
/// A \e Union-Find data structure implementation which is able to |
935 | 935 |
/// store a priority for each item and retrieve the minimum of each |
936 | 936 |
/// class. In addition, it supports the joining and splitting the |
937 | 937 |
/// components. If you don't need this feature then you makes |
938 | 938 |
/// better to use the \ref UnionFind class which is more efficient. |
939 | 939 |
/// |
940 | 940 |
/// The union-find data strcuture based on a (2, 16)-tree with a |
941 | 941 |
/// tournament minimum selection on the internal nodes. The insert |
942 | 942 |
/// operation takes O(1), the find, set, decrease and increase takes |
943 | 943 |
/// O(log(n)), where n is the number of nodes in the current |
944 | 944 |
/// component. The complexity of join and split is O(log(n)*k), |
945 | 945 |
/// where n is the sum of the number of the nodes and k is the |
946 | 946 |
/// number of joined components or the number of the components |
947 | 947 |
/// after the split. |
948 | 948 |
/// |
949 | 949 |
/// \pre You need to add all the elements by the \ref insert() |
950 | 950 |
/// method. |
951 | 951 |
/// |
952 | 952 |
template <typename _Value, typename _ItemIntMap, |
953 | 953 |
typename _Comp = std::less<_Value> > |
954 | 954 |
class HeapUnionFind { |
955 | 955 |
public: |
956 | 956 |
|
957 | 957 |
typedef _Value Value; |
958 | 958 |
typedef typename _ItemIntMap::Key Item; |
959 | 959 |
|
960 | 960 |
typedef _ItemIntMap ItemIntMap; |
961 | 961 |
|
962 | 962 |
typedef _Comp Comp; |
963 | 963 |
|
964 | 964 |
private: |
965 | 965 |
|
966 | 966 |
static const int cmax = 16; |
967 | 967 |
|
968 | 968 |
ItemIntMap& index; |
969 | 969 |
|
970 | 970 |
struct ClassNode { |
971 | 971 |
int parent; |
972 | 972 |
int depth; |
973 | 973 |
|
974 | 974 |
int left, right; |
975 | 975 |
int next, prev; |
976 | 976 |
}; |
977 | 977 |
|
978 | 978 |
int first_class; |
979 | 979 |
int first_free_class; |
980 | 980 |
std::vector<ClassNode> classes; |
981 | 981 |
|
982 | 982 |
int newClass() { |
983 | 983 |
if (first_free_class < 0) { |
984 | 984 |
int id = classes.size(); |
985 | 985 |
classes.push_back(ClassNode()); |
986 | 986 |
return id; |
987 | 987 |
} else { |
988 | 988 |
int id = first_free_class; |
989 | 989 |
first_free_class = classes[id].next; |
990 | 990 |
return id; |
991 | 991 |
} |
992 | 992 |
} |
993 | 993 |
|
994 | 994 |
void deleteClass(int id) { |
995 | 995 |
classes[id].next = first_free_class; |
996 | 996 |
first_free_class = id; |
997 | 997 |
} |
998 | 998 |
|
999 | 999 |
struct ItemNode { |
1000 | 1000 |
int parent; |
1001 | 1001 |
Item item; |
1002 | 1002 |
Value prio; |
1003 | 1003 |
int next, prev; |
1004 | 1004 |
int left, right; |
1005 | 1005 |
int size; |
1006 | 1006 |
}; |
1007 | 1007 |
|
1008 | 1008 |
int first_free_node; |
1009 | 1009 |
std::vector<ItemNode> nodes; |
1010 | 1010 |
|
1011 | 1011 |
int newNode() { |
1012 | 1012 |
if (first_free_node < 0) { |
1013 | 1013 |
int id = nodes.size(); |
1014 | 1014 |
nodes.push_back(ItemNode()); |
1015 | 1015 |
return id; |
1016 | 1016 |
} else { |
1017 | 1017 |
int id = first_free_node; |
1018 | 1018 |
first_free_node = nodes[id].next; |
1019 | 1019 |
return id; |
1020 | 1020 |
} |
1021 | 1021 |
} |
1022 | 1022 |
|
1023 | 1023 |
void deleteNode(int id) { |
1024 | 1024 |
nodes[id].next = first_free_node; |
1025 | 1025 |
first_free_node = id; |
1026 | 1026 |
} |
1027 | 1027 |
|
1028 | 1028 |
Comp comp; |
1029 | 1029 |
|
1030 | 1030 |
int findClass(int id) const { |
1031 | 1031 |
int kd = id; |
1032 | 1032 |
while (kd >= 0) { |
1033 | 1033 |
kd = nodes[kd].parent; |
1034 | 1034 |
} |
1035 | 1035 |
return ~kd; |
1036 | 1036 |
} |
1037 | 1037 |
|
1038 | 1038 |
int leftNode(int id) const { |
1039 | 1039 |
int kd = ~(classes[id].parent); |
1040 | 1040 |
for (int i = 0; i < classes[id].depth; ++i) { |
1041 | 1041 |
kd = nodes[kd].left; |
1042 | 1042 |
} |
1043 | 1043 |
return kd; |
1044 | 1044 |
} |
1045 | 1045 |
|
1046 | 1046 |
int nextNode(int id) const { |
1047 | 1047 |
int depth = 0; |
1048 | 1048 |
while (id >= 0 && nodes[id].next == -1) { |
1049 | 1049 |
id = nodes[id].parent; |
1050 | 1050 |
++depth; |
1051 | 1051 |
} |
1052 | 1052 |
if (id < 0) { |
1053 | 1053 |
return -1; |
1054 | 1054 |
} |
1055 | 1055 |
id = nodes[id].next; |
1056 | 1056 |
while (depth--) { |
1057 | 1057 |
id = nodes[id].left; |
1058 | 1058 |
} |
1059 | 1059 |
return id; |
1060 | 1060 |
} |
1061 | 1061 |
|
1062 | 1062 |
|
1063 | 1063 |
void setPrio(int id) { |
1064 | 1064 |
int jd = nodes[id].left; |
1065 | 1065 |
nodes[id].prio = nodes[jd].prio; |
1066 | 1066 |
nodes[id].item = nodes[jd].item; |
1067 | 1067 |
jd = nodes[jd].next; |
1068 | 1068 |
while (jd != -1) { |
1069 | 1069 |
if (comp(nodes[jd].prio, nodes[id].prio)) { |
1070 | 1070 |
nodes[id].prio = nodes[jd].prio; |
1071 | 1071 |
nodes[id].item = nodes[jd].item; |
1072 | 1072 |
} |
1073 | 1073 |
jd = nodes[jd].next; |
1074 | 1074 |
} |
1075 | 1075 |
} |
1076 | 1076 |
|
1077 | 1077 |
void push(int id, int jd) { |
1078 | 1078 |
nodes[id].size = 1; |
1079 | 1079 |
nodes[id].left = nodes[id].right = jd; |
1080 | 1080 |
nodes[jd].next = nodes[jd].prev = -1; |
1081 | 1081 |
nodes[jd].parent = id; |
1082 | 1082 |
} |
1083 | 1083 |
|
1084 | 1084 |
void pushAfter(int id, int jd) { |
1085 | 1085 |
int kd = nodes[id].parent; |
1086 | 1086 |
if (nodes[id].next != -1) { |
1087 | 1087 |
nodes[nodes[id].next].prev = jd; |
1088 | 1088 |
if (kd >= 0) { |
1089 | 1089 |
nodes[kd].size += 1; |
1090 | 1090 |
} |
1091 | 1091 |
} else { |
1092 | 1092 |
if (kd >= 0) { |
1093 | 1093 |
nodes[kd].right = jd; |
1094 | 1094 |
nodes[kd].size += 1; |
1095 | 1095 |
} |
1096 | 1096 |
} |
1097 | 1097 |
nodes[jd].next = nodes[id].next; |
1098 | 1098 |
nodes[jd].prev = id; |
1099 | 1099 |
nodes[id].next = jd; |
1100 | 1100 |
nodes[jd].parent = kd; |
1101 | 1101 |
} |
1102 | 1102 |
|
1103 | 1103 |
void pushRight(int id, int jd) { |
1104 | 1104 |
nodes[id].size += 1; |
1105 | 1105 |
nodes[jd].prev = nodes[id].right; |
1106 | 1106 |
nodes[jd].next = -1; |
1107 | 1107 |
nodes[nodes[id].right].next = jd; |
1108 | 1108 |
nodes[id].right = jd; |
1109 | 1109 |
nodes[jd].parent = id; |
1110 | 1110 |
} |
1111 | 1111 |
|
1112 | 1112 |
void popRight(int id) { |
1113 | 1113 |
nodes[id].size -= 1; |
1114 | 1114 |
int jd = nodes[id].right; |
1115 | 1115 |
nodes[nodes[jd].prev].next = -1; |
1116 | 1116 |
nodes[id].right = nodes[jd].prev; |
1117 | 1117 |
} |
1118 | 1118 |
|
1119 | 1119 |
void splice(int id, int jd) { |
1120 | 1120 |
nodes[id].size += nodes[jd].size; |
1121 | 1121 |
nodes[nodes[id].right].next = nodes[jd].left; |
1122 | 1122 |
nodes[nodes[jd].left].prev = nodes[id].right; |
1123 | 1123 |
int kd = nodes[jd].left; |
1124 | 1124 |
while (kd != -1) { |
1125 | 1125 |
nodes[kd].parent = id; |
1126 | 1126 |
kd = nodes[kd].next; |
1127 | 1127 |
} |
1128 | 1128 |
nodes[id].right = nodes[jd].right; |
1129 | 1129 |
} |
1130 | 1130 |
|
1131 | 1131 |
void split(int id, int jd) { |
1132 | 1132 |
int kd = nodes[id].parent; |
1133 | 1133 |
nodes[kd].right = nodes[id].prev; |
1134 | 1134 |
nodes[nodes[id].prev].next = -1; |
1135 | 1135 |
|
1136 | 1136 |
nodes[jd].left = id; |
1137 | 1137 |
nodes[id].prev = -1; |
1138 | 1138 |
int num = 0; |
1139 | 1139 |
while (id != -1) { |
1140 | 1140 |
nodes[id].parent = jd; |
1141 | 1141 |
nodes[jd].right = id; |
1142 | 1142 |
id = nodes[id].next; |
1143 | 1143 |
++num; |
1144 | 1144 |
} |
1145 | 1145 |
nodes[kd].size -= num; |
1146 | 1146 |
nodes[jd].size = num; |
1147 | 1147 |
} |
1148 | 1148 |
|
1149 | 1149 |
void pushLeft(int id, int jd) { |
1150 | 1150 |
nodes[id].size += 1; |
1151 | 1151 |
nodes[jd].next = nodes[id].left; |
1152 | 1152 |
nodes[jd].prev = -1; |
1153 | 1153 |
nodes[nodes[id].left].prev = jd; |
1154 | 1154 |
nodes[id].left = jd; |
1155 | 1155 |
nodes[jd].parent = id; |
1156 | 1156 |
} |
1157 | 1157 |
|
1158 | 1158 |
void popLeft(int id) { |
1159 | 1159 |
nodes[id].size -= 1; |
1160 | 1160 |
int jd = nodes[id].left; |
1161 | 1161 |
nodes[nodes[jd].next].prev = -1; |
1162 | 1162 |
nodes[id].left = nodes[jd].next; |
1163 | 1163 |
} |
1164 | 1164 |
|
1165 | 1165 |
void repairLeft(int id) { |
1166 | 1166 |
int jd = ~(classes[id].parent); |
1167 | 1167 |
while (nodes[jd].left != -1) { |
1168 | 1168 |
int kd = nodes[jd].left; |
1169 | 1169 |
if (nodes[jd].size == 1) { |
1170 | 1170 |
if (nodes[jd].parent < 0) { |
1171 | 1171 |
classes[id].parent = ~kd; |
1172 | 1172 |
classes[id].depth -= 1; |
1173 | 1173 |
nodes[kd].parent = ~id; |
1174 | 1174 |
deleteNode(jd); |
1175 | 1175 |
jd = kd; |
1176 | 1176 |
} else { |
1177 | 1177 |
int pd = nodes[jd].parent; |
1178 | 1178 |
if (nodes[nodes[jd].next].size < cmax) { |
1179 | 1179 |
pushLeft(nodes[jd].next, nodes[jd].left); |
1180 | 1180 |
if (less(jd, nodes[jd].next) || |
1181 | 1181 |
nodes[jd].item == nodes[pd].item) { |
1182 | 1182 |
nodes[nodes[jd].next].prio = nodes[jd].prio; |
1183 | 1183 |
nodes[nodes[jd].next].item = nodes[jd].item; |
1184 | 1184 |
} |
1185 | 1185 |
popLeft(pd); |
1186 | 1186 |
deleteNode(jd); |
1187 | 1187 |
jd = pd; |
1188 | 1188 |
} else { |
1189 | 1189 |
int ld = nodes[nodes[jd].next].left; |
1190 | 1190 |
popLeft(nodes[jd].next); |
1191 | 1191 |
pushRight(jd, ld); |
1192 | 1192 |
if (less(ld, nodes[jd].left) || |
1193 | 1193 |
nodes[ld].item == nodes[pd].item) { |
1194 | 1194 |
nodes[jd].item = nodes[ld].item; |
1195 | 1195 |
nodes[jd].prio = nodes[ld].prio; |
1196 | 1196 |
} |
1197 | 1197 |
if (nodes[nodes[jd].next].item == nodes[ld].item) { |
1198 | 1198 |
setPrio(nodes[jd].next); |
1199 | 1199 |
} |
1200 | 1200 |
jd = nodes[jd].left; |
1201 | 1201 |
} |
1202 | 1202 |
} |
1203 | 1203 |
} else { |
1204 | 1204 |
jd = nodes[jd].left; |
1205 | 1205 |
} |
1206 | 1206 |
} |
1207 | 1207 |
} |
1208 | 1208 |
|
1209 | 1209 |
void repairRight(int id) { |
1210 | 1210 |
int jd = ~(classes[id].parent); |
1211 | 1211 |
while (nodes[jd].right != -1) { |
1212 | 1212 |
int kd = nodes[jd].right; |
1213 | 1213 |
if (nodes[jd].size == 1) { |
1214 | 1214 |
if (nodes[jd].parent < 0) { |
1215 | 1215 |
classes[id].parent = ~kd; |
1216 | 1216 |
classes[id].depth -= 1; |
1217 | 1217 |
nodes[kd].parent = ~id; |
1218 | 1218 |
deleteNode(jd); |
1219 | 1219 |
jd = kd; |
1220 | 1220 |
} else { |
1221 | 1221 |
int pd = nodes[jd].parent; |
1222 | 1222 |
if (nodes[nodes[jd].prev].size < cmax) { |
1223 | 1223 |
pushRight(nodes[jd].prev, nodes[jd].right); |
1224 | 1224 |
if (less(jd, nodes[jd].prev) || |
1225 | 1225 |
nodes[jd].item == nodes[pd].item) { |
1226 | 1226 |
nodes[nodes[jd].prev].prio = nodes[jd].prio; |
1227 | 1227 |
nodes[nodes[jd].prev].item = nodes[jd].item; |
1228 | 1228 |
} |
1229 | 1229 |
popRight(pd); |
1230 | 1230 |
deleteNode(jd); |
1231 | 1231 |
jd = pd; |
1232 | 1232 |
} else { |
1233 | 1233 |
int ld = nodes[nodes[jd].prev].right; |
1234 | 1234 |
popRight(nodes[jd].prev); |
1235 | 1235 |
pushLeft(jd, ld); |
1236 | 1236 |
if (less(ld, nodes[jd].right) || |
1237 | 1237 |
nodes[ld].item == nodes[pd].item) { |
1238 | 1238 |
nodes[jd].item = nodes[ld].item; |
1239 | 1239 |
nodes[jd].prio = nodes[ld].prio; |
1240 | 1240 |
} |
1241 | 1241 |
if (nodes[nodes[jd].prev].item == nodes[ld].item) { |
1242 | 1242 |
setPrio(nodes[jd].prev); |
1243 | 1243 |
} |
1244 | 1244 |
jd = nodes[jd].right; |
1245 | 1245 |
} |
1246 | 1246 |
} |
1247 | 1247 |
} else { |
1248 | 1248 |
jd = nodes[jd].right; |
1249 | 1249 |
} |
1250 | 1250 |
} |
1251 | 1251 |
} |
1252 | 1252 |
|
1253 | 1253 |
|
1254 | 1254 |
bool less(int id, int jd) const { |
1255 | 1255 |
return comp(nodes[id].prio, nodes[jd].prio); |
1256 | 1256 |
} |
1257 | 1257 |
|
1258 | 1258 |
public: |
1259 | 1259 |
|
1260 | 1260 |
/// \brief Returns true when the given class is alive. |
1261 | 1261 |
/// |
1262 | 1262 |
/// Returns true when the given class is alive, ie. the class is |
1263 | 1263 |
/// not nested into other class. |
1264 | 1264 |
bool alive(int cls) const { |
1265 | 1265 |
return classes[cls].parent < 0; |
1266 | 1266 |
} |
1267 | 1267 |
|
1268 | 1268 |
/// \brief Returns true when the given class is trivial. |
1269 | 1269 |
/// |
1270 | 1270 |
/// Returns true when the given class is trivial, ie. the class |
1271 | 1271 |
/// contains just one item directly. |
1272 | 1272 |
bool trivial(int cls) const { |
1273 | 1273 |
return classes[cls].left == -1; |
1274 | 1274 |
} |
1275 | 1275 |
|
1276 | 1276 |
/// \brief Constructs the union-find. |
1277 | 1277 |
/// |
1278 | 1278 |
/// Constructs the union-find. |
1279 | 1279 |
/// \brief _index The index map of the union-find. The data |
1280 | 1280 |
/// structure uses internally for store references. |
1281 | 1281 |
HeapUnionFind(ItemIntMap& _index) |
1282 | 1282 |
: index(_index), first_class(-1), |
1283 | 1283 |
first_free_class(-1), first_free_node(-1) {} |
1284 | 1284 |
|
1285 | 1285 |
/// \brief Insert a new node into a new component. |
1286 | 1286 |
/// |
1287 | 1287 |
/// Insert a new node into a new component. |
1288 | 1288 |
/// \param item The item of the new node. |
1289 | 1289 |
/// \param prio The priority of the new node. |
1290 | 1290 |
/// \return The class id of the one-item-heap. |
1291 | 1291 |
int insert(const Item& item, const Value& prio) { |
1292 | 1292 |
int id = newNode(); |
1293 | 1293 |
nodes[id].item = item; |
1294 | 1294 |
nodes[id].prio = prio; |
1295 | 1295 |
nodes[id].size = 0; |
1296 | 1296 |
|
1297 | 1297 |
nodes[id].prev = -1; |
1298 | 1298 |
nodes[id].next = -1; |
1299 | 1299 |
|
1300 | 1300 |
nodes[id].left = -1; |
1301 | 1301 |
nodes[id].right = -1; |
1302 | 1302 |
|
1303 | 1303 |
nodes[id].item = item; |
1304 | 1304 |
index[item] = id; |
1305 | 1305 |
|
1306 | 1306 |
int class_id = newClass(); |
1307 | 1307 |
classes[class_id].parent = ~id; |
1308 | 1308 |
classes[class_id].depth = 0; |
1309 | 1309 |
|
1310 | 1310 |
classes[class_id].left = -1; |
1311 | 1311 |
classes[class_id].right = -1; |
1312 | 1312 |
|
1313 | 1313 |
if (first_class != -1) { |
1314 | 1314 |
classes[first_class].prev = class_id; |
1315 | 1315 |
} |
1316 | 1316 |
classes[class_id].next = first_class; |
1317 | 1317 |
classes[class_id].prev = -1; |
1318 | 1318 |
first_class = class_id; |
1319 | 1319 |
|
1320 | 1320 |
nodes[id].parent = ~class_id; |
1321 | 1321 |
|
1322 | 1322 |
return class_id; |
1323 | 1323 |
} |
1324 | 1324 |
|
1325 | 1325 |
/// \brief The class of the item. |
1326 | 1326 |
/// |
1327 | 1327 |
/// \return The alive class id of the item, which is not nested into |
1328 | 1328 |
/// other classes. |
1329 | 1329 |
/// |
1330 | 1330 |
/// The time complexity is O(log(n)). |
1331 | 1331 |
int find(const Item& item) const { |
1332 | 1332 |
return findClass(index[item]); |
1333 | 1333 |
} |
1334 | 1334 |
|
1335 | 1335 |
/// \brief Joins the classes. |
1336 | 1336 |
/// |
1337 | 1337 |
/// The current function joins the given classes. The parameter is |
1338 | 1338 |
/// an STL range which should be contains valid class ids. The |
1339 | 1339 |
/// time complexity is O(log(n)*k) where n is the overall number |
1340 | 1340 |
/// of the joined nodes and k is the number of classes. |
1341 | 1341 |
/// \return The class of the joined classes. |
1342 | 1342 |
/// \pre The range should contain at least two class ids. |
1343 | 1343 |
template <typename Iterator> |
1344 | 1344 |
int join(Iterator begin, Iterator end) { |
1345 | 1345 |
std::vector<int> cs; |
1346 | 1346 |
for (Iterator it = begin; it != end; ++it) { |
1347 | 1347 |
cs.push_back(*it); |
1348 | 1348 |
} |
1349 | 1349 |
|
1350 | 1350 |
int class_id = newClass(); |
1351 | 1351 |
{ // creation union-find |
1352 | 1352 |
|
1353 | 1353 |
if (first_class != -1) { |
1354 | 1354 |
classes[first_class].prev = class_id; |
1355 | 1355 |
} |
1356 | 1356 |
classes[class_id].next = first_class; |
1357 | 1357 |
classes[class_id].prev = -1; |
1358 | 1358 |
first_class = class_id; |
1359 | 1359 |
|
1360 | 1360 |
classes[class_id].depth = classes[cs[0]].depth; |
1361 | 1361 |
classes[class_id].parent = classes[cs[0]].parent; |
1362 | 1362 |
nodes[~(classes[class_id].parent)].parent = ~class_id; |
1363 | 1363 |
|
1364 | 1364 |
int l = cs[0]; |
1365 | 1365 |
|
1366 | 1366 |
classes[class_id].left = l; |
1367 | 1367 |
classes[class_id].right = l; |
1368 | 1368 |
|
1369 | 1369 |
if (classes[l].next != -1) { |
1370 | 1370 |
classes[classes[l].next].prev = classes[l].prev; |
1371 | 1371 |
} |
1372 | 1372 |
classes[classes[l].prev].next = classes[l].next; |
1373 | 1373 |
|
1374 | 1374 |
classes[l].prev = -1; |
1375 | 1375 |
classes[l].next = -1; |
1376 | 1376 |
|
1377 | 1377 |
classes[l].depth = leftNode(l); |
1378 | 1378 |
classes[l].parent = class_id; |
1379 | 1379 |
|
1380 | 1380 |
} |
1381 | 1381 |
|
1382 | 1382 |
{ // merging of heap |
1383 | 1383 |
int l = class_id; |
1384 | 1384 |
for (int ci = 1; ci < int(cs.size()); ++ci) { |
1385 | 1385 |
int r = cs[ci]; |
1386 | 1386 |
int rln = leftNode(r); |
1387 | 1387 |
if (classes[l].depth > classes[r].depth) { |
1388 | 1388 |
int id = ~(classes[l].parent); |
1389 | 1389 |
for (int i = classes[r].depth + 1; i < classes[l].depth; ++i) { |
1390 | 1390 |
id = nodes[id].right; |
1391 | 1391 |
} |
1392 | 1392 |
while (id >= 0 && nodes[id].size == cmax) { |
1393 | 1393 |
int new_id = newNode(); |
1394 | 1394 |
int right_id = nodes[id].right; |
1395 | 1395 |
|
1396 | 1396 |
popRight(id); |
1397 | 1397 |
if (nodes[id].item == nodes[right_id].item) { |
1398 | 1398 |
setPrio(id); |
1399 | 1399 |
} |
1400 | 1400 |
push(new_id, right_id); |
1401 | 1401 |
pushRight(new_id, ~(classes[r].parent)); |
1402 | 1402 |
|
1403 | 1403 |
if (less(~classes[r].parent, right_id)) { |
1404 | 1404 |
nodes[new_id].item = nodes[~classes[r].parent].item; |
1405 | 1405 |
nodes[new_id].prio = nodes[~classes[r].parent].prio; |
1406 | 1406 |
} else { |
1407 | 1407 |
nodes[new_id].item = nodes[right_id].item; |
1408 | 1408 |
nodes[new_id].prio = nodes[right_id].prio; |
1409 | 1409 |
} |
1410 | 1410 |
|
1411 | 1411 |
id = nodes[id].parent; |
1412 | 1412 |
classes[r].parent = ~new_id; |
1413 | 1413 |
} |
1414 | 1414 |
if (id < 0) { |
1415 | 1415 |
int new_parent = newNode(); |
1416 | 1416 |
nodes[new_parent].next = -1; |
1417 | 1417 |
nodes[new_parent].prev = -1; |
1418 | 1418 |
nodes[new_parent].parent = ~l; |
1419 | 1419 |
|
1420 | 1420 |
push(new_parent, ~(classes[l].parent)); |
1421 | 1421 |
pushRight(new_parent, ~(classes[r].parent)); |
1422 | 1422 |
setPrio(new_parent); |
1423 | 1423 |
|
1424 | 1424 |
classes[l].parent = ~new_parent; |
1425 | 1425 |
classes[l].depth += 1; |
1426 | 1426 |
} else { |
1427 | 1427 |
pushRight(id, ~(classes[r].parent)); |
1428 | 1428 |
while (id >= 0 && less(~(classes[r].parent), id)) { |
1429 | 1429 |
nodes[id].prio = nodes[~(classes[r].parent)].prio; |
1430 | 1430 |
nodes[id].item = nodes[~(classes[r].parent)].item; |
1431 | 1431 |
id = nodes[id].parent; |
1432 | 1432 |
} |
1433 | 1433 |
} |
1434 | 1434 |
} else if (classes[r].depth > classes[l].depth) { |
1435 | 1435 |
int id = ~(classes[r].parent); |
1436 | 1436 |
for (int i = classes[l].depth + 1; i < classes[r].depth; ++i) { |
1437 | 1437 |
id = nodes[id].left; |
1438 | 1438 |
} |
1439 | 1439 |
while (id >= 0 && nodes[id].size == cmax) { |
1440 | 1440 |
int new_id = newNode(); |
1441 | 1441 |
int left_id = nodes[id].left; |
1442 | 1442 |
|
1443 | 1443 |
popLeft(id); |
1444 | 1444 |
if (nodes[id].prio == nodes[left_id].prio) { |
1445 | 1445 |
setPrio(id); |
1446 | 1446 |
} |
1447 | 1447 |
push(new_id, left_id); |
1448 | 1448 |
pushLeft(new_id, ~(classes[l].parent)); |
1449 | 1449 |
|
1450 | 1450 |
if (less(~classes[l].parent, left_id)) { |
1451 | 1451 |
nodes[new_id].item = nodes[~classes[l].parent].item; |
1452 | 1452 |
nodes[new_id].prio = nodes[~classes[l].parent].prio; |
1453 | 1453 |
} else { |
1454 | 1454 |
nodes[new_id].item = nodes[left_id].item; |
1455 | 1455 |
nodes[new_id].prio = nodes[left_id].prio; |
1456 | 1456 |
} |
1457 | 1457 |
|
1458 | 1458 |
id = nodes[id].parent; |
1459 | 1459 |
classes[l].parent = ~new_id; |
1460 | 1460 |
|
1461 | 1461 |
} |
1462 | 1462 |
if (id < 0) { |
1463 | 1463 |
int new_parent = newNode(); |
1464 | 1464 |
nodes[new_parent].next = -1; |
1465 | 1465 |
nodes[new_parent].prev = -1; |
1466 | 1466 |
nodes[new_parent].parent = ~l; |
1467 | 1467 |
|
1468 | 1468 |
push(new_parent, ~(classes[r].parent)); |
1469 | 1469 |
pushLeft(new_parent, ~(classes[l].parent)); |
1470 | 1470 |
setPrio(new_parent); |
1471 | 1471 |
|
1472 | 1472 |
classes[r].parent = ~new_parent; |
1473 | 1473 |
classes[r].depth += 1; |
1474 | 1474 |
} else { |
1475 | 1475 |
pushLeft(id, ~(classes[l].parent)); |
1476 | 1476 |
while (id >= 0 && less(~(classes[l].parent), id)) { |
1477 | 1477 |
nodes[id].prio = nodes[~(classes[l].parent)].prio; |
1478 | 1478 |
nodes[id].item = nodes[~(classes[l].parent)].item; |
1479 | 1479 |
id = nodes[id].parent; |
1480 | 1480 |
} |
1481 | 1481 |
} |
1482 | 1482 |
nodes[~(classes[r].parent)].parent = ~l; |
1483 | 1483 |
classes[l].parent = classes[r].parent; |
1484 | 1484 |
classes[l].depth = classes[r].depth; |
1485 | 1485 |
} else { |
1486 | 1486 |
if (classes[l].depth != 0 && |
1487 | 1487 |
nodes[~(classes[l].parent)].size + |
1488 | 1488 |
nodes[~(classes[r].parent)].size <= cmax) { |
1489 | 1489 |
splice(~(classes[l].parent), ~(classes[r].parent)); |
1490 | 1490 |
deleteNode(~(classes[r].parent)); |
1491 | 1491 |
if (less(~(classes[r].parent), ~(classes[l].parent))) { |
1492 | 1492 |
nodes[~(classes[l].parent)].prio = |
1493 | 1493 |
nodes[~(classes[r].parent)].prio; |
1494 | 1494 |
nodes[~(classes[l].parent)].item = |
1495 | 1495 |
nodes[~(classes[r].parent)].item; |
1496 | 1496 |
} |
1497 | 1497 |
} else { |
1498 | 1498 |
int new_parent = newNode(); |
1499 | 1499 |
nodes[new_parent].next = nodes[new_parent].prev = -1; |
1500 | 1500 |
push(new_parent, ~(classes[l].parent)); |
1501 | 1501 |
pushRight(new_parent, ~(classes[r].parent)); |
1502 | 1502 |
setPrio(new_parent); |
1503 | 1503 |
|
1504 | 1504 |
classes[l].parent = ~new_parent; |
1505 | 1505 |
classes[l].depth += 1; |
1506 | 1506 |
nodes[new_parent].parent = ~l; |
1507 | 1507 |
} |
1508 | 1508 |
} |
1509 | 1509 |
if (classes[r].next != -1) { |
1510 | 1510 |
classes[classes[r].next].prev = classes[r].prev; |
1511 | 1511 |
} |
1512 | 1512 |
classes[classes[r].prev].next = classes[r].next; |
1513 | 1513 |
|
1514 | 1514 |
classes[r].prev = classes[l].right; |
1515 | 1515 |
classes[classes[l].right].next = r; |
1516 | 1516 |
classes[l].right = r; |
1517 | 1517 |
classes[r].parent = l; |
1518 | 1518 |
|
1519 | 1519 |
classes[r].next = -1; |
1520 | 1520 |
classes[r].depth = rln; |
1521 | 1521 |
} |
1522 | 1522 |
} |
1523 | 1523 |
return class_id; |
1524 | 1524 |
} |
1525 | 1525 |
|
1526 | 1526 |
/// \brief Split the class to subclasses. |
1527 | 1527 |
/// |
1528 | 1528 |
/// The current function splits the given class. The join, which |
1529 | 1529 |
/// made the current class, stored a reference to the |
1530 | 1530 |
/// subclasses. The \c splitClass() member restores the classes |
1531 | 1531 |
/// and creates the heaps. The parameter is an STL output iterator |
1532 | 1532 |
/// which will be filled with the subclass ids. The time |
1533 | 1533 |
/// complexity is O(log(n)*k) where n is the overall number of |
1534 | 1534 |
/// nodes in the splitted classes and k is the number of the |
1535 | 1535 |
/// classes. |
1536 | 1536 |
template <typename Iterator> |
1537 | 1537 |
void split(int cls, Iterator out) { |
1538 | 1538 |
std::vector<int> cs; |
1539 | 1539 |
{ // splitting union-find |
1540 | 1540 |
int id = cls; |
1541 | 1541 |
int l = classes[id].left; |
1542 | 1542 |
|
1543 | 1543 |
classes[l].parent = classes[id].parent; |
1544 | 1544 |
classes[l].depth = classes[id].depth; |
1545 | 1545 |
|
1546 | 1546 |
nodes[~(classes[l].parent)].parent = ~l; |
1547 | 1547 |
|
1548 | 1548 |
*out++ = l; |
1549 | 1549 |
|
1550 | 1550 |
while (l != -1) { |
1551 | 1551 |
cs.push_back(l); |
1552 | 1552 |
l = classes[l].next; |
1553 | 1553 |
} |
1554 | 1554 |
|
1555 | 1555 |
classes[classes[id].right].next = first_class; |
1556 | 1556 |
classes[first_class].prev = classes[id].right; |
1557 | 1557 |
first_class = classes[id].left; |
1558 | 1558 |
|
1559 | 1559 |
if (classes[id].next != -1) { |
1560 | 1560 |
classes[classes[id].next].prev = classes[id].prev; |
1561 | 1561 |
} |
1562 | 1562 |
classes[classes[id].prev].next = classes[id].next; |
1563 | 1563 |
|
1564 | 1564 |
deleteClass(id); |
1565 | 1565 |
} |
1566 | 1566 |
|
1567 | 1567 |
{ |
1568 | 1568 |
for (int i = 1; i < int(cs.size()); ++i) { |
1569 | 1569 |
int l = classes[cs[i]].depth; |
1570 | 1570 |
while (nodes[nodes[l].parent].left == l) { |
1571 | 1571 |
l = nodes[l].parent; |
1572 | 1572 |
} |
1573 | 1573 |
int r = l; |
1574 | 1574 |
while (nodes[l].parent >= 0) { |
1575 | 1575 |
l = nodes[l].parent; |
1576 | 1576 |
int new_node = newNode(); |
1577 | 1577 |
|
1578 | 1578 |
nodes[new_node].prev = -1; |
1579 | 1579 |
nodes[new_node].next = -1; |
1580 | 1580 |
|
1581 | 1581 |
split(r, new_node); |
1582 | 1582 |
pushAfter(l, new_node); |
1583 | 1583 |
setPrio(l); |
1584 | 1584 |
setPrio(new_node); |
1585 | 1585 |
r = new_node; |
1586 | 1586 |
} |
1587 | 1587 |
classes[cs[i]].parent = ~r; |
1588 | 1588 |
classes[cs[i]].depth = classes[~(nodes[l].parent)].depth; |
1589 | 1589 |
nodes[r].parent = ~cs[i]; |
1590 | 1590 |
|
1591 | 1591 |
nodes[l].next = -1; |
1592 | 1592 |
nodes[r].prev = -1; |
1593 | 1593 |
|
1594 | 1594 |
repairRight(~(nodes[l].parent)); |
1595 | 1595 |
repairLeft(cs[i]); |
1596 | 1596 |
|
1597 | 1597 |
*out++ = cs[i]; |
1598 | 1598 |
} |
1599 | 1599 |
} |
1600 | 1600 |
} |
1601 | 1601 |
|
1602 | 1602 |
/// \brief Gives back the priority of the current item. |
1603 | 1603 |
/// |
1604 | 1604 |
/// \return Gives back the priority of the current item. |
1605 | 1605 |
const Value& operator[](const Item& item) const { |
1606 | 1606 |
return nodes[index[item]].prio; |
1607 | 1607 |
} |
1608 | 1608 |
|
1609 | 1609 |
/// \brief Sets the priority of the current item. |
1610 | 1610 |
/// |
1611 | 1611 |
/// Sets the priority of the current item. |
1612 | 1612 |
void set(const Item& item, const Value& prio) { |
1613 | 1613 |
if (comp(prio, nodes[index[item]].prio)) { |
1614 | 1614 |
decrease(item, prio); |
1615 | 1615 |
} else if (!comp(prio, nodes[index[item]].prio)) { |
1616 | 1616 |
increase(item, prio); |
1617 | 1617 |
} |
1618 | 1618 |
} |
1619 | 1619 |
|
1620 | 1620 |
/// \brief Increase the priority of the current item. |
1621 | 1621 |
/// |
1622 | 1622 |
/// Increase the priority of the current item. |
1623 | 1623 |
void increase(const Item& item, const Value& prio) { |
1624 | 1624 |
int id = index[item]; |
1625 | 1625 |
int kd = nodes[id].parent; |
1626 | 1626 |
nodes[id].prio = prio; |
1627 | 1627 |
while (kd >= 0 && nodes[kd].item == item) { |
1628 | 1628 |
setPrio(kd); |
1629 | 1629 |
kd = nodes[kd].parent; |
1630 | 1630 |
} |
1631 | 1631 |
} |
1632 | 1632 |
|
1633 | 1633 |
/// \brief Increase the priority of the current item. |
1634 | 1634 |
/// |
1635 | 1635 |
/// Increase the priority of the current item. |
1636 | 1636 |
void decrease(const Item& item, const Value& prio) { |
1637 | 1637 |
int id = index[item]; |
1638 | 1638 |
int kd = nodes[id].parent; |
1639 | 1639 |
nodes[id].prio = prio; |
1640 | 1640 |
while (kd >= 0 && less(id, kd)) { |
1641 | 1641 |
nodes[kd].prio = prio; |
1642 | 1642 |
nodes[kd].item = item; |
1643 | 1643 |
kd = nodes[kd].parent; |
1644 | 1644 |
} |
1645 | 1645 |
} |
1646 | 1646 |
|
1647 | 1647 |
/// \brief Gives back the minimum priority of the class. |
1648 | 1648 |
/// |
1649 | 1649 |
/// \return Gives back the minimum priority of the class. |
1650 | 1650 |
const Value& classPrio(int cls) const { |
1651 | 1651 |
return nodes[~(classes[cls].parent)].prio; |
1652 | 1652 |
} |
1653 | 1653 |
|
1654 | 1654 |
/// \brief Gives back the minimum priority item of the class. |
1655 | 1655 |
/// |
1656 | 1656 |
/// \return Gives back the minimum priority item of the class. |
1657 | 1657 |
const Item& classTop(int cls) const { |
1658 | 1658 |
return nodes[~(classes[cls].parent)].item; |
1659 | 1659 |
} |
1660 | 1660 |
|
1661 | 1661 |
/// \brief Gives back a representant item of the class. |
1662 | 1662 |
/// |
1663 | 1663 |
/// The representant is indpendent from the priorities of the |
1664 | 1664 |
/// items. |
1665 | 1665 |
/// \return Gives back a representant item of the class. |
1666 | 1666 |
const Item& classRep(int id) const { |
1667 | 1667 |
int parent = classes[id].parent; |
1668 | 1668 |
return nodes[parent >= 0 ? classes[id].depth : leftNode(id)].item; |
1669 | 1669 |
} |
1670 | 1670 |
|
1671 | 1671 |
/// \brief LEMON style iterator for the items of a class. |
1672 | 1672 |
/// |
1673 | 1673 |
/// ClassIt is a lemon style iterator for the components. It iterates |
1674 | 1674 |
/// on the items of a class. By example if you want to iterate on |
1675 | 1675 |
/// each items of each classes then you may write the next code. |
1676 | 1676 |
///\code |
1677 | 1677 |
/// for (ClassIt cit(huf); cit != INVALID; ++cit) { |
1678 | 1678 |
/// std::cout << "Class: "; |
1679 | 1679 |
/// for (ItemIt iit(huf, cit); iit != INVALID; ++iit) { |
1680 | 1680 |
/// std::cout << toString(iit) << ' ' << std::endl; |
1681 | 1681 |
/// } |
1682 | 1682 |
/// std::cout << std::endl; |
1683 | 1683 |
/// } |
1684 | 1684 |
///\endcode |
1685 | 1685 |
class ItemIt { |
1686 | 1686 |
private: |
1687 | 1687 |
|
1688 | 1688 |
const HeapUnionFind* _huf; |
1689 | 1689 |
int _id, _lid; |
1690 | 1690 |
|
1691 | 1691 |
public: |
1692 | 1692 |
|
1693 | 1693 |
/// \brief Default constructor |
1694 | 1694 |
/// |
1695 | 1695 |
/// Default constructor |
1696 | 1696 |
ItemIt() {} |
1697 | 1697 |
|
1698 | 1698 |
ItemIt(const HeapUnionFind& huf, int cls) : _huf(&huf) { |
1699 | 1699 |
int id = cls; |
1700 | 1700 |
int parent = _huf->classes[id].parent; |
1701 | 1701 |
if (parent >= 0) { |
1702 | 1702 |
_id = _huf->classes[id].depth; |
1703 | 1703 |
if (_huf->classes[id].next != -1) { |
1704 | 1704 |
_lid = _huf->classes[_huf->classes[id].next].depth; |
1705 | 1705 |
} else { |
1706 | 1706 |
_lid = -1; |
1707 | 1707 |
} |
1708 | 1708 |
} else { |
1709 | 1709 |
_id = _huf->leftNode(id); |
1710 | 1710 |
_lid = -1; |
1711 | 1711 |
} |
1712 | 1712 |
} |
1713 | 1713 |
|
1714 | 1714 |
/// \brief Increment operator |
1715 | 1715 |
/// |
1716 | 1716 |
/// It steps to the next item in the class. |
1717 | 1717 |
ItemIt& operator++() { |
1718 | 1718 |
_id = _huf->nextNode(_id); |
1719 | 1719 |
return *this; |
1720 | 1720 |
} |
1721 | 1721 |
|
1722 | 1722 |
/// \brief Conversion operator |
1723 | 1723 |
/// |
1724 | 1724 |
/// It converts the iterator to the current item. |
1725 | 1725 |
operator const Item&() const { |
1726 | 1726 |
return _huf->nodes[_id].item; |
1727 | 1727 |
} |
1728 | 1728 |
|
1729 | 1729 |
/// \brief Equality operator |
1730 | 1730 |
/// |
1731 | 1731 |
/// Equality operator |
1732 | 1732 |
bool operator==(const ItemIt& i) { |
1733 | 1733 |
return i._id == _id; |
1734 | 1734 |
} |
1735 | 1735 |
|
1736 | 1736 |
/// \brief Inequality operator |
1737 | 1737 |
/// |
1738 | 1738 |
/// Inequality operator |
1739 | 1739 |
bool operator!=(const ItemIt& i) { |
1740 | 1740 |
return i._id != _id; |
1741 | 1741 |
} |
1742 | 1742 |
|
1743 | 1743 |
/// \brief Equality operator |
1744 | 1744 |
/// |
1745 | 1745 |
/// Equality operator |
1746 | 1746 |
bool operator==(Invalid) { |
1747 | 1747 |
return _id == _lid; |
1748 | 1748 |
} |
1749 | 1749 |
|
1750 | 1750 |
/// \brief Inequality operator |
1751 | 1751 |
/// |
1752 | 1752 |
/// Inequality operator |
1753 | 1753 |
bool operator!=(Invalid) { |
1754 | 1754 |
return _id != _lid; |
1755 | 1755 |
} |
1756 | 1756 |
|
1757 | 1757 |
}; |
1758 | 1758 |
|
1759 | 1759 |
/// \brief Class iterator |
1760 | 1760 |
/// |
1761 | 1761 |
/// The iterator stores |
1762 | 1762 |
class ClassIt { |
1763 | 1763 |
private: |
1764 | 1764 |
|
1765 | 1765 |
const HeapUnionFind* _huf; |
1766 | 1766 |
int _id; |
1767 | 1767 |
|
1768 | 1768 |
public: |
1769 | 1769 |
|
1770 | 1770 |
ClassIt(const HeapUnionFind& huf) |
1771 | 1771 |
: _huf(&huf), _id(huf.first_class) {} |
1772 | 1772 |
|
1773 | 1773 |
ClassIt(const HeapUnionFind& huf, int cls) |
1774 | 1774 |
: _huf(&huf), _id(huf.classes[cls].left) {} |
1775 | 1775 |
|
1776 | 1776 |
ClassIt(Invalid) : _huf(0), _id(-1) {} |
1777 | 1777 |
|
1778 | 1778 |
const ClassIt& operator++() { |
1779 | 1779 |
_id = _huf->classes[_id].next; |
1780 | 1780 |
return *this; |
1781 | 1781 |
} |
1782 | 1782 |
|
1783 | 1783 |
/// \brief Equality operator |
1784 | 1784 |
/// |
1785 | 1785 |
/// Equality operator |
1786 | 1786 |
bool operator==(const ClassIt& i) { |
1787 | 1787 |
return i._id == _id; |
1788 | 1788 |
} |
1789 | 1789 |
|
1790 | 1790 |
/// \brief Inequality operator |
1791 | 1791 |
/// |
1792 | 1792 |
/// Inequality operator |
1793 | 1793 |
bool operator!=(const ClassIt& i) { |
1794 | 1794 |
return i._id != _id; |
1795 | 1795 |
} |
1796 | 1796 |
|
1797 | 1797 |
operator int() const { |
1798 | 1798 |
return _id; |
1799 | 1799 |
} |
1800 | 1800 |
|
1801 | 1801 |
}; |
1802 | 1802 |
|
1803 | 1803 |
}; |
1804 | 1804 |
|
1805 | 1805 |
//! @} |
1806 | 1806 |
|
1807 | 1807 |
} //namespace lemon |
1808 | 1808 |
|
1809 | 1809 |
#endif //LEMON_UNION_FIND_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dfs.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
|
26 | 26 |
#include "graph_test.h" |
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
38 | 38 |
"4\n" |
39 | 39 |
"5\n" |
40 | 40 |
"6\n" |
41 | 41 |
"@arcs\n" |
42 | 42 |
" label\n" |
43 | 43 |
"0 1 0\n" |
44 | 44 |
"1 2 1\n" |
45 | 45 |
"2 3 2\n" |
46 | 46 |
"1 4 3\n" |
47 | 47 |
"4 2 4\n" |
48 | 48 |
"4 5 5\n" |
49 | 49 |
"5 0 6\n" |
50 | 50 |
"6 3 7\n" |
51 | 51 |
"@attributes\n" |
52 | 52 |
"source 0\n" |
53 | 53 |
"target 5\n" |
54 | 54 |
"source1 6\n" |
55 | 55 |
"target1 3\n"; |
56 | 56 |
|
57 | 57 |
|
58 | 58 |
void checkDfsCompile() |
59 | 59 |
{ |
60 | 60 |
typedef concepts::Digraph Digraph; |
61 | 61 |
typedef Dfs<Digraph> DType; |
62 | 62 |
typedef Digraph::Node Node; |
63 | 63 |
typedef Digraph::Arc Arc; |
64 | 64 |
|
65 | 65 |
Digraph G; |
66 | 66 |
Node s, t; |
67 | 67 |
Arc e; |
68 | 68 |
int l; |
69 | 69 |
bool b; |
70 | 70 |
DType::DistMap d(G); |
71 | 71 |
DType::PredMap p(G); |
72 | 72 |
Path<Digraph> pp; |
73 | 73 |
|
74 | 74 |
{ |
75 | 75 |
DType dfs_test(G); |
76 | 76 |
|
77 | 77 |
dfs_test.run(s); |
78 | 78 |
dfs_test.run(s,t); |
79 | 79 |
dfs_test.run(); |
80 | 80 |
|
81 | 81 |
l = dfs_test.dist(t); |
82 | 82 |
e = dfs_test.predArc(t); |
83 | 83 |
s = dfs_test.predNode(t); |
84 | 84 |
b = dfs_test.reached(t); |
85 | 85 |
d = dfs_test.distMap(); |
86 | 86 |
p = dfs_test.predMap(); |
87 | 87 |
pp = dfs_test.path(t); |
88 | 88 |
} |
89 | 89 |
{ |
90 | 90 |
DType |
91 | 91 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
92 | 92 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
93 | 93 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
94 | 94 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
95 | 95 |
::SetStandardProcessedMap |
96 | 96 |
::Create dfs_test(G); |
97 | 97 |
|
98 | 98 |
dfs_test.run(s); |
99 | 99 |
dfs_test.run(s,t); |
100 | 100 |
dfs_test.run(); |
101 | 101 |
|
102 | 102 |
l = dfs_test.dist(t); |
103 | 103 |
e = dfs_test.predArc(t); |
104 | 104 |
s = dfs_test.predNode(t); |
105 | 105 |
b = dfs_test.reached(t); |
106 | 106 |
pp = dfs_test.path(t); |
107 | 107 |
} |
108 | 108 |
} |
109 | 109 |
|
110 | 110 |
void checkDfsFunctionCompile() |
111 | 111 |
{ |
112 | 112 |
typedef int VType; |
113 | 113 |
typedef concepts::Digraph Digraph; |
114 | 114 |
typedef Digraph::Arc Arc; |
115 | 115 |
typedef Digraph::Node Node; |
116 | 116 |
|
117 | 117 |
Digraph g; |
118 | 118 |
bool b; |
119 | 119 |
dfs(g).run(Node()); |
120 | 120 |
b=dfs(g).run(Node(),Node()); |
121 | 121 |
dfs(g).run(); |
122 | 122 |
dfs(g) |
123 | 123 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
124 | 124 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
125 | 125 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
126 | 126 |
.processedMap(concepts::WriteMap<Node,bool>()) |
127 | 127 |
.run(Node()); |
128 | 128 |
b=dfs(g) |
129 | 129 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
130 | 130 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
131 | 131 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
132 | 132 |
.processedMap(concepts::WriteMap<Node,bool>()) |
133 | 133 |
.path(concepts::Path<Digraph>()) |
134 | 134 |
.dist(VType()) |
135 | 135 |
.run(Node(),Node()); |
136 | 136 |
dfs(g) |
137 | 137 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
138 | 138 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
139 | 139 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
140 | 140 |
.processedMap(concepts::WriteMap<Node,bool>()) |
141 | 141 |
.run(); |
142 | 142 |
} |
143 | 143 |
|
144 | 144 |
template <class Digraph> |
145 | 145 |
void checkDfs() { |
146 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
147 | 147 |
|
148 | 148 |
Digraph G; |
149 | 149 |
Node s, t; |
150 | 150 |
Node s1, t1; |
151 | 151 |
|
152 | 152 |
std::istringstream input(test_lgf); |
153 | 153 |
digraphReader(G, input). |
154 | 154 |
node("source", s). |
155 | 155 |
node("target", t). |
156 | 156 |
node("source1", s1). |
157 | 157 |
node("target1", t1). |
158 | 158 |
run(); |
159 | 159 |
|
160 | 160 |
Dfs<Digraph> dfs_test(G); |
161 | 161 |
dfs_test.run(s); |
162 | 162 |
|
163 | 163 |
Path<Digraph> p = dfs_test.path(t); |
164 | 164 |
check(p.length() == dfs_test.dist(t),"path() found a wrong path."); |
165 | 165 |
check(checkPath(G, p),"path() found a wrong path."); |
166 | 166 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
167 | 167 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
168 | 168 |
|
169 | 169 |
for(NodeIt v(G); v!=INVALID; ++v) { |
170 | 170 |
if (dfs_test.reached(v)) { |
171 | 171 |
check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree."); |
172 | 172 |
if (dfs_test.predArc(v)!=INVALID ) { |
173 | 173 |
Arc e=dfs_test.predArc(v); |
174 | 174 |
Node u=G.source(e); |
175 | 175 |
check(u==dfs_test.predNode(v),"Wrong tree."); |
176 | 176 |
check(dfs_test.dist(v) - dfs_test.dist(u) == 1, |
177 | 177 |
"Wrong distance. (" << dfs_test.dist(u) << "->" |
178 | 178 |
<< dfs_test.dist(v) << ")"); |
179 | 179 |
} |
180 | 180 |
} |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
{ |
184 | 184 |
Dfs<Digraph> dfs(G); |
185 | 185 |
check(dfs.run(s1,t1) && dfs.reached(t1),"Node 3 is reachable from Node 6."); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
{ |
189 | 189 |
NullMap<Node,Arc> myPredMap; |
190 | 190 |
dfs(G).predMap(myPredMap).run(s); |
191 | 191 |
} |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
int main() |
195 | 195 |
{ |
196 | 196 |
checkDfs<ListDigraph>(); |
197 | 197 |
checkDfs<SmartDigraph>(); |
198 | 198 |
return 0; |
199 | 199 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/smart_graph.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/lgf_reader.h> |
22 | 22 |
#include <lemon/error.h> |
23 | 23 |
|
24 | 24 |
#include "test_tools.h" |
25 | 25 |
|
26 | 26 |
using namespace std; |
27 | 27 |
using namespace lemon; |
28 | 28 |
|
29 | 29 |
void digraph_copy_test() { |
30 | 30 |
const int nn = 10; |
31 | 31 |
|
32 | 32 |
// Build a digraph |
33 | 33 |
SmartDigraph from; |
34 | 34 |
SmartDigraph::NodeMap<int> fnm(from); |
35 | 35 |
SmartDigraph::ArcMap<int> fam(from); |
36 | 36 |
SmartDigraph::Node fn = INVALID; |
37 | 37 |
SmartDigraph::Arc fa = INVALID; |
38 | 38 |
|
39 | 39 |
std::vector<SmartDigraph::Node> fnv; |
40 | 40 |
for (int i = 0; i < nn; ++i) { |
41 | 41 |
SmartDigraph::Node node = from.addNode(); |
42 | 42 |
fnv.push_back(node); |
43 | 43 |
fnm[node] = i * i; |
44 | 44 |
if (i == 0) fn = node; |
45 | 45 |
} |
46 | 46 |
|
47 | 47 |
for (int i = 0; i < nn; ++i) { |
48 | 48 |
for (int j = 0; j < nn; ++j) { |
49 | 49 |
SmartDigraph::Arc arc = from.addArc(fnv[i], fnv[j]); |
50 | 50 |
fam[arc] = i + j * j; |
51 | 51 |
if (i == 0 && j == 0) fa = arc; |
52 | 52 |
} |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
// Test digraph copy |
56 | 56 |
ListDigraph to; |
57 | 57 |
ListDigraph::NodeMap<int> tnm(to); |
58 | 58 |
ListDigraph::ArcMap<int> tam(to); |
59 | 59 |
ListDigraph::Node tn; |
60 | 60 |
ListDigraph::Arc ta; |
61 | 61 |
|
62 | 62 |
SmartDigraph::NodeMap<ListDigraph::Node> nr(from); |
63 | 63 |
SmartDigraph::ArcMap<ListDigraph::Arc> er(from); |
64 | 64 |
|
65 | 65 |
ListDigraph::NodeMap<SmartDigraph::Node> ncr(to); |
66 | 66 |
ListDigraph::ArcMap<SmartDigraph::Arc> ecr(to); |
67 | 67 |
|
68 | 68 |
digraphCopy(from, to). |
69 | 69 |
nodeMap(fnm, tnm).arcMap(fam, tam). |
70 | 70 |
nodeRef(nr).arcRef(er). |
71 | 71 |
nodeCrossRef(ncr).arcCrossRef(ecr). |
72 | 72 |
node(fn, tn).arc(fa, ta).run(); |
73 | 73 |
|
74 | 74 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
75 | 75 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
76 | 76 |
|
77 | 77 |
for (SmartDigraph::NodeIt it(from); it != INVALID; ++it) { |
78 | 78 |
check(ncr[nr[it]] == it, "Wrong copy."); |
79 | 79 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
for (SmartDigraph::ArcIt it(from); it != INVALID; ++it) { |
83 | 83 |
check(ecr[er[it]] == it, "Wrong copy."); |
84 | 84 |
check(fam[it] == tam[er[it]], "Wrong copy."); |
85 | 85 |
check(nr[from.source(it)] == to.source(er[it]), "Wrong copy."); |
86 | 86 |
check(nr[from.target(it)] == to.target(er[it]), "Wrong copy."); |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
for (ListDigraph::NodeIt it(to); it != INVALID; ++it) { |
90 | 90 |
check(nr[ncr[it]] == it, "Wrong copy."); |
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
for (ListDigraph::ArcIt it(to); it != INVALID; ++it) { |
94 | 94 |
check(er[ecr[it]] == it, "Wrong copy."); |
95 | 95 |
} |
96 | 96 |
check(tn == nr[fn], "Wrong copy."); |
97 | 97 |
check(ta == er[fa], "Wrong copy."); |
98 | 98 |
|
99 | 99 |
// Test repeated copy |
100 | 100 |
digraphCopy(from, to).run(); |
101 | 101 |
|
102 | 102 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
103 | 103 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
void graph_copy_test() { |
107 | 107 |
const int nn = 10; |
108 | 108 |
|
109 | 109 |
// Build a graph |
110 | 110 |
SmartGraph from; |
111 | 111 |
SmartGraph::NodeMap<int> fnm(from); |
112 | 112 |
SmartGraph::ArcMap<int> fam(from); |
113 | 113 |
SmartGraph::EdgeMap<int> fem(from); |
114 | 114 |
SmartGraph::Node fn = INVALID; |
115 | 115 |
SmartGraph::Arc fa = INVALID; |
116 | 116 |
SmartGraph::Edge fe = INVALID; |
117 | 117 |
|
118 | 118 |
std::vector<SmartGraph::Node> fnv; |
119 | 119 |
for (int i = 0; i < nn; ++i) { |
120 | 120 |
SmartGraph::Node node = from.addNode(); |
121 | 121 |
fnv.push_back(node); |
122 | 122 |
fnm[node] = i * i; |
123 | 123 |
if (i == 0) fn = node; |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
for (int i = 0; i < nn; ++i) { |
127 | 127 |
for (int j = 0; j < nn; ++j) { |
128 | 128 |
SmartGraph::Edge edge = from.addEdge(fnv[i], fnv[j]); |
129 | 129 |
fem[edge] = i * i + j * j; |
130 | 130 |
fam[from.direct(edge, true)] = i + j * j; |
131 | 131 |
fam[from.direct(edge, false)] = i * i + j; |
132 | 132 |
if (i == 0 && j == 0) fa = from.direct(edge, true); |
133 | 133 |
if (i == 0 && j == 0) fe = edge; |
134 | 134 |
} |
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
// Test graph copy |
138 | 138 |
ListGraph to; |
139 | 139 |
ListGraph::NodeMap<int> tnm(to); |
140 | 140 |
ListGraph::ArcMap<int> tam(to); |
141 | 141 |
ListGraph::EdgeMap<int> tem(to); |
142 | 142 |
ListGraph::Node tn; |
143 | 143 |
ListGraph::Arc ta; |
144 | 144 |
ListGraph::Edge te; |
145 | 145 |
|
146 | 146 |
SmartGraph::NodeMap<ListGraph::Node> nr(from); |
147 | 147 |
SmartGraph::ArcMap<ListGraph::Arc> ar(from); |
148 | 148 |
SmartGraph::EdgeMap<ListGraph::Edge> er(from); |
149 | 149 |
|
150 | 150 |
ListGraph::NodeMap<SmartGraph::Node> ncr(to); |
151 | 151 |
ListGraph::ArcMap<SmartGraph::Arc> acr(to); |
152 | 152 |
ListGraph::EdgeMap<SmartGraph::Edge> ecr(to); |
153 | 153 |
|
154 | 154 |
graphCopy(from, to). |
155 | 155 |
nodeMap(fnm, tnm).arcMap(fam, tam).edgeMap(fem, tem). |
156 | 156 |
nodeRef(nr).arcRef(ar).edgeRef(er). |
157 | 157 |
nodeCrossRef(ncr).arcCrossRef(acr).edgeCrossRef(ecr). |
158 | 158 |
node(fn, tn).arc(fa, ta).edge(fe, te).run(); |
159 | 159 |
|
160 | 160 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
161 | 161 |
check(countEdges(from) == countEdges(to), "Wrong copy."); |
162 | 162 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
163 | 163 |
|
164 | 164 |
for (SmartGraph::NodeIt it(from); it != INVALID; ++it) { |
165 | 165 |
check(ncr[nr[it]] == it, "Wrong copy."); |
166 | 166 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
167 | 167 |
} |
168 | 168 |
|
169 | 169 |
for (SmartGraph::ArcIt it(from); it != INVALID; ++it) { |
170 | 170 |
check(acr[ar[it]] == it, "Wrong copy."); |
171 | 171 |
check(fam[it] == tam[ar[it]], "Wrong copy."); |
172 | 172 |
check(nr[from.source(it)] == to.source(ar[it]), "Wrong copy."); |
173 | 173 |
check(nr[from.target(it)] == to.target(ar[it]), "Wrong copy."); |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
for (SmartGraph::EdgeIt it(from); it != INVALID; ++it) { |
177 | 177 |
check(ecr[er[it]] == it, "Wrong copy."); |
178 | 178 |
check(fem[it] == tem[er[it]], "Wrong copy."); |
179 | 179 |
check(nr[from.u(it)] == to.u(er[it]) || nr[from.u(it)] == to.v(er[it]), |
180 | 180 |
"Wrong copy."); |
181 | 181 |
check(nr[from.v(it)] == to.u(er[it]) || nr[from.v(it)] == to.v(er[it]), |
182 | 182 |
"Wrong copy."); |
183 | 183 |
check((from.u(it) != from.v(it)) == (to.u(er[it]) != to.v(er[it])), |
184 | 184 |
"Wrong copy."); |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
for (ListGraph::NodeIt it(to); it != INVALID; ++it) { |
188 | 188 |
check(nr[ncr[it]] == it, "Wrong copy."); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
for (ListGraph::ArcIt it(to); it != INVALID; ++it) { |
192 | 192 |
check(ar[acr[it]] == it, "Wrong copy."); |
193 | 193 |
} |
194 | 194 |
for (ListGraph::EdgeIt it(to); it != INVALID; ++it) { |
195 | 195 |
check(er[ecr[it]] == it, "Wrong copy."); |
196 | 196 |
} |
197 | 197 |
check(tn == nr[fn], "Wrong copy."); |
198 | 198 |
check(ta == ar[fa], "Wrong copy."); |
199 | 199 |
check(te == er[fe], "Wrong copy."); |
200 | 200 |
|
201 | 201 |
// Test repeated copy |
202 | 202 |
graphCopy(from, to).run(); |
203 | 203 |
|
204 | 204 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
205 | 205 |
check(countEdges(from) == countEdges(to), "Wrong copy."); |
206 | 206 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
|
210 | 210 |
int main() { |
211 | 211 |
digraph_copy_test(); |
212 | 212 |
graph_copy_test(); |
213 | 213 |
|
214 | 214 |
return 0; |
215 | 215 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 | 25 |
|
26 | 26 |
#include "test_tools.h" |
27 | 27 |
|
28 | 28 |
using namespace lemon; |
29 | 29 |
using namespace lemon::concepts; |
30 | 30 |
|
31 | 31 |
struct A {}; |
32 | 32 |
inline bool operator<(A, A) { return true; } |
33 | 33 |
struct B {}; |
34 | 34 |
|
35 | 35 |
class C { |
36 | 36 |
int x; |
37 | 37 |
public: |
38 | 38 |
C(int _x) : x(_x) {} |
39 | 39 |
}; |
40 | 40 |
|
41 | 41 |
class F { |
42 | 42 |
public: |
43 | 43 |
typedef A argument_type; |
44 | 44 |
typedef B result_type; |
45 | 45 |
|
46 | 46 |
B operator()(const A&) const { return B(); } |
47 | 47 |
private: |
48 | 48 |
F& operator=(const F&); |
49 | 49 |
}; |
50 | 50 |
|
51 | 51 |
int func(A) { return 3; } |
52 | 52 |
|
53 | 53 |
int binc(int a, B) { return a+1; } |
54 | 54 |
|
55 | 55 |
typedef ReadMap<A, double> DoubleMap; |
56 | 56 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
57 | 57 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
58 | 58 |
|
59 | 59 |
typedef ReadMap<A, bool> BoolMap; |
60 | 60 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
61 | 61 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
62 | 62 |
|
63 | 63 |
int main() |
64 | 64 |
{ |
65 | 65 |
// Map concepts |
66 | 66 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
67 | 67 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
68 | 68 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
69 | 69 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
70 | 70 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
71 | 71 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
72 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
|
73 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
|
72 |
checkConcept<ReferenceMap<A,B,B&,const B&>, |
|
73 |
ReferenceMap<A,B,B&,const B&> >(); |
|
74 |
checkConcept<ReferenceMap<A,C,C&,const C&>, |
|
75 |
ReferenceMap<A,C,C&,const C&> >(); |
|
74 | 76 |
|
75 | 77 |
// NullMap |
76 | 78 |
{ |
77 | 79 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
78 | 80 |
NullMap<A,B> map1; |
79 | 81 |
NullMap<A,B> map2 = map1; |
80 | 82 |
map1 = nullMap<A,B>(); |
81 | 83 |
} |
82 | 84 |
|
83 | 85 |
// ConstMap |
84 | 86 |
{ |
85 | 87 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
86 | 88 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
87 | 89 |
ConstMap<A,B> map1; |
88 | 90 |
ConstMap<A,B> map2 = B(); |
89 | 91 |
ConstMap<A,B> map3 = map1; |
90 | 92 |
map1 = constMap<A>(B()); |
91 | 93 |
map1 = constMap<A,B>(); |
92 | 94 |
map1.setAll(B()); |
93 | 95 |
ConstMap<A,C> map4(C(1)); |
94 | 96 |
ConstMap<A,C> map5 = map4; |
95 | 97 |
map4 = constMap<A>(C(2)); |
96 | 98 |
map4.setAll(C(3)); |
97 | 99 |
|
98 | 100 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
99 | 101 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
100 | 102 |
|
101 | 103 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
102 | 104 |
ConstMap<A,Const<int,10> > map6; |
103 | 105 |
ConstMap<A,Const<int,10> > map7 = map6; |
104 | 106 |
map6 = constMap<A,int,10>(); |
105 | 107 |
map7 = constMap<A,Const<int,10> >(); |
106 | 108 |
check(map6[A()] == 10 && map7[A()] == 10, |
107 | 109 |
"Something is wrong with ConstMap"); |
108 | 110 |
} |
109 | 111 |
|
110 | 112 |
// IdentityMap |
111 | 113 |
{ |
112 | 114 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
113 | 115 |
IdentityMap<A> map1; |
114 | 116 |
IdentityMap<A> map2 = map1; |
115 | 117 |
map1 = identityMap<A>(); |
116 | 118 |
|
117 | 119 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
118 | 120 |
check(identityMap<double>()[1.0] == 1.0 && |
119 | 121 |
identityMap<double>()[3.14] == 3.14, |
120 | 122 |
"Something is wrong with IdentityMap"); |
121 | 123 |
} |
122 | 124 |
|
123 | 125 |
// RangeMap |
124 | 126 |
{ |
125 | 127 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
126 | 128 |
RangeMap<B> map1; |
127 | 129 |
RangeMap<B> map2(10); |
128 | 130 |
RangeMap<B> map3(10,B()); |
129 | 131 |
RangeMap<B> map4 = map1; |
130 | 132 |
RangeMap<B> map5 = rangeMap<B>(); |
131 | 133 |
RangeMap<B> map6 = rangeMap<B>(10); |
132 | 134 |
RangeMap<B> map7 = rangeMap(10,B()); |
133 | 135 |
|
134 | 136 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
135 | 137 |
RangeMap<double> >(); |
136 | 138 |
std::vector<double> v(10, 0); |
137 | 139 |
v[5] = 100; |
138 | 140 |
RangeMap<double> map8(v); |
139 | 141 |
RangeMap<double> map9 = rangeMap(v); |
140 | 142 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
141 | 143 |
"Something is wrong with RangeMap"); |
142 | 144 |
} |
143 | 145 |
|
144 | 146 |
// SparseMap |
145 | 147 |
{ |
146 | 148 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
147 | 149 |
SparseMap<A,B> map1; |
148 | 150 |
SparseMap<A,B> map2 = B(); |
149 | 151 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
150 | 152 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
151 | 153 |
|
152 | 154 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
153 | 155 |
SparseMap<double, int> >(); |
154 | 156 |
std::map<double, int> m; |
155 | 157 |
SparseMap<double, int> map5(m); |
156 | 158 |
SparseMap<double, int> map6(m,10); |
157 | 159 |
SparseMap<double, int> map7 = sparseMap(m); |
158 | 160 |
SparseMap<double, int> map8 = sparseMap(m,10); |
159 | 161 |
|
160 | 162 |
check(map5[1.0] == 0 && map5[3.14] == 0 && |
161 | 163 |
map6[1.0] == 10 && map6[3.14] == 10, |
162 | 164 |
"Something is wrong with SparseMap"); |
163 | 165 |
map5[1.0] = map6[3.14] = 100; |
164 | 166 |
check(map5[1.0] == 100 && map5[3.14] == 0 && |
165 | 167 |
map6[1.0] == 10 && map6[3.14] == 100, |
166 | 168 |
"Something is wrong with SparseMap"); |
167 | 169 |
} |
168 | 170 |
|
169 | 171 |
// ComposeMap |
170 | 172 |
{ |
171 | 173 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
172 | 174 |
checkConcept<ReadMap<B,double>, CompMap>(); |
173 | 175 |
CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); |
174 | 176 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
175 | 177 |
|
176 | 178 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
177 | 179 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
178 | 180 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], |
179 | 181 |
"Something is wrong with ComposeMap") |
180 | 182 |
} |
181 | 183 |
|
182 | 184 |
// CombineMap |
183 | 185 |
{ |
184 | 186 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
185 | 187 |
checkConcept<ReadMap<A,double>, CombMap>(); |
186 | 188 |
CombMap map1 = CombMap(DoubleMap(), DoubleMap()); |
187 | 189 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
188 | 190 |
|
189 | 191 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
190 | 192 |
"Something is wrong with CombineMap"); |
191 | 193 |
} |
192 | 194 |
|
193 | 195 |
// FunctorToMap, MapToFunctor |
194 | 196 |
{ |
195 | 197 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
196 | 198 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
197 | 199 |
FunctorToMap<F> map1; |
198 | 200 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
199 | 201 |
B b = functorToMap(F())[A()]; |
200 | 202 |
|
201 | 203 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
202 |
MapToFunctor<ReadMap<A,B> > map = |
|
204 |
MapToFunctor<ReadMap<A,B> > map = |
|
205 |
MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
|
203 | 206 |
|
204 | 207 |
check(functorToMap(&func)[A()] == 3, |
205 | 208 |
"Something is wrong with FunctorToMap"); |
206 | 209 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
207 | 210 |
"Something is wrong with MapToFunctor"); |
208 | 211 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
209 | 212 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
210 | 213 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
211 | 214 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
212 | 215 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
213 | 216 |
} |
214 | 217 |
|
215 | 218 |
// ConvertMap |
216 | 219 |
{ |
217 | 220 |
checkConcept<ReadMap<double,double>, |
218 | 221 |
ConvertMap<ReadMap<double, int>, double> >(); |
219 | 222 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
220 | 223 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
221 | 224 |
} |
222 | 225 |
|
223 | 226 |
// ForkMap |
224 | 227 |
{ |
225 | 228 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
226 | 229 |
|
227 | 230 |
typedef RangeMap<double> RM; |
228 | 231 |
typedef SparseMap<int, double> SM; |
229 | 232 |
RM m1(10, -1); |
230 | 233 |
SM m2(-1); |
231 | 234 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
232 | 235 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
233 | 236 |
ForkMap<RM, SM> map1(m1,m2); |
234 | 237 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
235 | 238 |
map2.set(5, 10); |
236 | 239 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && |
237 | 240 |
m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
238 | 241 |
"Something is wrong with ForkMap"); |
239 | 242 |
} |
240 | 243 |
|
241 | 244 |
// Arithmetic maps: |
242 | 245 |
// - AddMap, SubMap, MulMap, DivMap |
243 | 246 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
244 | 247 |
// - NegMap, NegWriteMap, AbsMap |
245 | 248 |
{ |
246 | 249 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
247 | 250 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
248 | 251 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
249 | 252 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
250 | 253 |
|
251 | 254 |
ConstMap<int, double> c1(1.0), c2(3.14); |
252 | 255 |
IdentityMap<int> im; |
253 | 256 |
ConvertMap<IdentityMap<int>, double> id(im); |
254 | 257 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, |
255 | 258 |
"Something is wrong with AddMap"); |
256 | 259 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, |
257 | 260 |
"Something is wrong with SubMap"); |
258 | 261 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, |
259 | 262 |
"Something is wrong with MulMap"); |
260 | 263 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, |
261 | 264 |
"Something is wrong with DivMap"); |
262 | 265 |
|
263 | 266 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
264 | 267 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
265 | 268 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
266 | 269 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
267 | 270 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
268 | 271 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
269 | 272 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
270 | 273 |
|
271 | 274 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
272 | 275 |
"Something is wrong with ShiftMap"); |
273 | 276 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && |
274 | 277 |
shiftWriteMap(id, 2.0)[10] == 12.0, |
275 | 278 |
"Something is wrong with ShiftWriteMap"); |
276 | 279 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
277 | 280 |
"Something is wrong with ScaleMap"); |
278 | 281 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && |
279 | 282 |
scaleWriteMap(id, 2.0)[10] == 20.0, |
280 | 283 |
"Something is wrong with ScaleWriteMap"); |
281 | 284 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
282 | 285 |
"Something is wrong with NegMap"); |
283 | 286 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
284 | 287 |
"Something is wrong with NegWriteMap"); |
285 | 288 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
286 | 289 |
"Something is wrong with AbsMap"); |
287 | 290 |
} |
288 | 291 |
|
289 | 292 |
// Logical maps: |
290 | 293 |
// - TrueMap, FalseMap |
291 | 294 |
// - AndMap, OrMap |
292 | 295 |
// - NotMap, NotWriteMap |
293 | 296 |
// - EqualMap, LessMap |
294 | 297 |
{ |
295 | 298 |
checkConcept<BoolMap, TrueMap<A> >(); |
296 | 299 |
checkConcept<BoolMap, FalseMap<A> >(); |
297 | 300 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
298 | 301 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
299 | 302 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
300 | 303 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
301 | 304 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
302 | 305 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
303 | 306 |
|
304 | 307 |
TrueMap<int> tm; |
305 | 308 |
FalseMap<int> fm; |
306 | 309 |
RangeMap<bool> rm(2); |
307 | 310 |
rm[0] = true; rm[1] = false; |
308 | 311 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
309 | 312 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
310 | 313 |
"Something is wrong with AndMap"); |
311 | 314 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
312 | 315 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
313 | 316 |
"Something is wrong with OrMap"); |
314 | 317 |
check(!notMap(rm)[0] && notMap(rm)[1], |
315 | 318 |
"Something is wrong with NotMap"); |
316 | 319 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
317 | 320 |
"Something is wrong with NotWriteMap"); |
318 | 321 |
|
319 | 322 |
ConstMap<int, double> cm(2.0); |
320 | 323 |
IdentityMap<int> im; |
321 | 324 |
ConvertMap<IdentityMap<int>, double> id(im); |
322 | 325 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
323 | 326 |
"Something is wrong with LessMap"); |
324 | 327 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
325 | 328 |
"Something is wrong with EqualMap"); |
326 | 329 |
} |
327 | 330 |
|
328 | 331 |
// LoggerBoolMap |
329 | 332 |
{ |
330 | 333 |
typedef std::vector<int> vec; |
331 | 334 |
vec v1; |
332 | 335 |
vec v2(10); |
333 | 336 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
334 | 337 |
map1(std::back_inserter(v1)); |
335 | 338 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
336 | 339 |
map1.set(10, false); |
337 | 340 |
map1.set(20, true); map2.set(20, true); |
338 | 341 |
map1.set(30, false); map2.set(40, false); |
339 | 342 |
map1.set(50, true); map2.set(50, true); |
340 | 343 |
map1.set(60, true); map2.set(60, true); |
341 | 344 |
check(v1.size() == 3 && v2.size() == 10 && |
342 | 345 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
343 | 346 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
344 | 347 |
"Something is wrong with LoggerBoolMap"); |
345 | 348 |
|
346 | 349 |
int i = 0; |
347 | 350 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
348 | 351 |
it != map2.end(); ++it ) |
349 | 352 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
350 | 353 |
} |
351 | 354 |
|
352 | 355 |
return 0; |
353 | 356 |
} |
0 comments (0 inline)