↑ Collapse diff ↑
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\dir demo
21 21
\brief A collection of demo applications.
22 22

	
23 23
This directory contains several simple demo applications, mainly
24 24
for educational purposes.
25 25
*/
26 26

	
27 27
/**
28 28
\dir doc
29 29
\brief Auxiliary (and the whole generated) documentation.
30 30

	
31 31
This directory contains some auxiliary pages and the whole generated
32 32
documentation.
33 33
*/
34 34

	
35 35
/**
36 36
\dir test
37 37
\brief Test programs.
38 38

	
39 39
This directory contains several test programs that check the consistency
40 40
of the code.
41 41
*/
42 42

	
43 43
/**
44 44
\dir tools
45 45
\brief Some useful executables.
46 46

	
47 47
This directory contains the sources of some useful complete executables.
48 48
*/
49 49

	
50 50
/**
51 51
\dir lemon
52 52
\brief Base include directory of LEMON.
53 53

	
54 54
This is the base directory of LEMON includes, so each include file must be
55 55
prefixed with this, e.g.
56 56
\code
57 57
#include<lemon/list_graph.h>
58 58
#include<lemon/dijkstra.h>
59 59
\endcode
60 60
*/
61 61

	
62 62
/**
63 63
\dir concepts
64 64
\brief Concept descriptors and checking classes.
65 65

	
66 66
This directory contains the concept descriptors and concept checking tools.
67 67
For more information see the \ref concept "Concepts" module.
68 68
*/
69 69

	
70 70
/**
71 71
\dir bits
72 72
\brief Auxiliary tools for implementation.
73 73

	
74 74
This directory contains some auxiliary classes for implementing graphs, 
75 75
maps and some other classes.
76 76
As a user you typically don't have to deal with these files.
77 77
*/
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
@defgroup datas Data Structures
21 21
This group describes the several data structures implemented in LEMON.
22 22
*/
23 23

	
24 24
/**
25 25
@defgroup graphs Graph Structures
26 26
@ingroup datas
27 27
\brief Graph structures implemented in LEMON.
28 28

	
29 29
The implementation of combinatorial algorithms heavily relies on
30 30
efficient graph implementations. LEMON offers data structures which are
31 31
planned to be easily used in an experimental phase of implementation studies,
32 32
and thereafter the program code can be made efficient by small modifications.
33 33

	
34 34
The most efficient implementation of diverse applications require the
35 35
usage of different physical graph implementations. These differences
36 36
appear in the size of graph we require to handle, memory or time usage
37 37
limitations or in the set of operations through which the graph can be
38 38
accessed.  LEMON provides several physical graph structures to meet
39 39
the diverging requirements of the possible users.  In order to save on
40 40
running time or on memory usage, some structures may fail to provide
41 41
some graph features like arc/edge or node deletion.
42 42

	
43 43
You are free to use the graph structure that fit your requirements
44 44
the best, most graph algorithms and auxiliary data structures can be used
45 45
with any graph structure.
46 46

	
47 47
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
48 48
*/
49 49

	
50 50
/**
51 51
@defgroup maps Maps
52 52
@ingroup datas
53 53
\brief Map structures implemented in LEMON.
54 54

	
55 55
This group describes the map structures implemented in LEMON.
56 56

	
57 57
LEMON provides several special purpose maps and map adaptors that e.g. combine
58 58
new maps from existing ones.
59 59

	
60 60
<b>See also:</b> \ref map_concepts "Map Concepts".
61 61
*/
62 62

	
63 63
/**
64 64
@defgroup graph_maps Graph Maps
65 65
@ingroup maps
66 66
\brief Special graph-related maps.
67 67

	
68 68
This group describes maps that are specifically designed to assign
69 69
values to the nodes and arcs of graphs.
70 70
*/
71 71

	
72 72
/**
73 73
\defgroup map_adaptors Map Adaptors
74 74
\ingroup maps
75 75
\brief Tools to create new maps from existing ones
76 76

	
77 77
This group describes map adaptors that are used to create "implicit"
78 78
maps from other maps.
79 79

	
80 80
Most of them are \ref lemon::concepts::ReadMap "read-only maps".
81 81
They can make arithmetic and logical operations between one or two maps
82 82
(negation, shifting, addition, multiplication, logical 'and', 'or',
83 83
'not' etc.) or e.g. convert a map to another one of different Value type.
84 84

	
85 85
The typical usage of this classes is passing implicit maps to
86 86
algorithms.  If a function type algorithm is called then the function
87 87
type map adaptors can be used comfortable. For example let's see the
88 88
usage of map adaptors with the \c graphToEps() function.
89 89
\code
90 90
  Color nodeColor(int deg) {
91 91
    if (deg >= 2) {
92 92
      return Color(0.5, 0.0, 0.5);
93 93
    } else if (deg == 1) {
94 94
      return Color(1.0, 0.5, 1.0);
95 95
    } else {
96 96
      return Color(0.0, 0.0, 0.0);
97 97
    }
98 98
  }
99 99

	
100 100
  Digraph::NodeMap<int> degree_map(graph);
101 101

	
102 102
  graphToEps(graph, "graph.eps")
103 103
    .coords(coords).scaleToA4().undirected()
104 104
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
105 105
    .run();
106 106
\endcode
107 107
The \c functorToMap() function makes an \c int to \c Color map from the
108 108
\c nodeColor() function. The \c composeMap() compose the \c degree_map
109 109
and the previously created map. The composed map is a proper function to
110 110
get the color of each node.
111 111

	
112 112
The usage with class type algorithms is little bit harder. In this
113 113
case the function type map adaptors can not be used, because the
114 114
function map adaptors give back temporary objects.
115 115
\code
116 116
  Digraph graph;
117 117

	
118 118
  typedef Digraph::ArcMap<double> DoubleArcMap;
119 119
  DoubleArcMap length(graph);
120 120
  DoubleArcMap speed(graph);
121 121

	
122 122
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
123 123
  TimeMap time(length, speed);
124 124

	
125 125
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
126 126
  dijkstra.run(source, target);
127 127
\endcode
128 128
We have a length map and a maximum speed map on the arcs of a digraph.
129 129
The minimum time to pass the arc can be calculated as the division of
130 130
the two maps which can be done implicitly with the \c DivMap template
131 131
class. We use the implicit minimum time map as the length map of the
132 132
\c Dijkstra algorithm.
133 133
*/
134 134

	
135 135
/**
136 136
@defgroup paths Path Structures
137 137
@ingroup datas
138 138
\brief %Path structures implemented in LEMON.
139 139

	
140 140
This group describes the path structures implemented in LEMON.
141 141

	
142 142
LEMON provides flexible data structures to work with paths.
143 143
All of them have similar interfaces and they can be copied easily with
144 144
assignment operators and copy constructors. This makes it easy and
145 145
efficient to have e.g. the Dijkstra algorithm to store its result in
146 146
any kind of path structure.
147 147

	
148 148
\sa lemon::concepts::Path
149 149
*/
150 150

	
151 151
/**
152 152
@defgroup auxdat Auxiliary Data Structures
153 153
@ingroup datas
154 154
\brief Auxiliary data structures implemented in LEMON.
155 155

	
156 156
This group describes some data structures implemented in LEMON in
157 157
order to make it easier to implement combinatorial algorithms.
158 158
*/
159 159

	
160 160
/**
161 161
@defgroup algs Algorithms
162 162
\brief This group describes the several algorithms
163 163
implemented in LEMON.
164 164

	
165 165
This group describes the several algorithms
166 166
implemented in LEMON.
167 167
*/
168 168

	
169 169
/**
170 170
@defgroup search Graph Search
171 171
@ingroup algs
172 172
\brief Common graph search algorithms.
173 173

	
174 174
This group describes the common graph search algorithms like
175 175
Breadth-First Search (BFS) and Depth-First Search (DFS).
176 176
*/
177 177

	
178 178
/**
179 179
@defgroup shortest_path Shortest Path Algorithms
180 180
@ingroup algs
181 181
\brief Algorithms for finding shortest paths.
182 182

	
183 183
This group describes the algorithms for finding shortest paths in graphs.
184 184
*/
185 185

	
186 186
/**
187 187
@defgroup spantree Minimum Spanning Tree Algorithms
188 188
@ingroup algs
189 189
\brief Algorithms for finding a minimum cost spanning tree in a graph.
190 190

	
191 191
This group describes the algorithms for finding a minimum cost spanning
192 192
tree in a graph
193 193
*/
194 194

	
195 195
/**
196 196
@defgroup utils Tools and Utilities
197 197
\brief Tools and utilities for programming in LEMON
198 198

	
199 199
Tools and utilities for programming in LEMON.
200 200
*/
201 201

	
202 202
/**
203 203
@defgroup gutils Basic Graph Utilities
204 204
@ingroup utils
205 205
\brief Simple basic graph utilities.
206 206

	
207 207
This group describes some simple basic graph utilities.
208 208
*/
209 209

	
210 210
/**
211 211
@defgroup misc Miscellaneous Tools
212 212
@ingroup utils
213 213
\brief Tools for development, debugging and testing.
214 214

	
215 215
This group describes several useful tools for development,
216 216
debugging and testing.
217 217
*/
218 218

	
219 219
/**
220 220
@defgroup timecount Time Measuring and Counting
221 221
@ingroup misc
222 222
\brief Simple tools for measuring the performance of algorithms.
223 223

	
224 224
This group describes simple tools for measuring the performance
225 225
of algorithms.
226 226
*/
227 227

	
228 228
/**
229 229
@defgroup exceptions Exceptions
230 230
@ingroup utils
231 231
\brief Exceptions defined in LEMON.
232 232

	
233 233
This group describes the exceptions defined in LEMON.
234 234
*/
235 235

	
236 236
/**
237 237
@defgroup io_group Input-Output
238 238
\brief Graph Input-Output methods
239 239

	
240 240
This group describes the tools for importing and exporting graphs
241 241
and graph related data. Now it supports the LEMON format
242 242
and the encapsulated postscript (EPS) format.
243 243
postscript (EPS) format.
244 244
*/
245 245

	
246 246
/**
247 247
@defgroup lemon_io LEMON Input-Output
248 248
@ingroup io_group
249 249
\brief Reading and writing LEMON Graph Format.
250 250

	
251 251
This group describes methods for reading and writing
252 252
\ref lgf-format "LEMON Graph Format".
253 253
*/
254 254

	
255 255
/**
256 256
@defgroup eps_io Postscript Exporting
257 257
@ingroup io_group
258 258
\brief General \c EPS drawer and graph exporter
259 259

	
260 260
This group describes general \c EPS drawing methods and special
261 261
graph exporting tools.
262 262
*/
263 263

	
264 264
/**
265 265
@defgroup concept Concepts
266 266
\brief Skeleton classes and concept checking classes
267 267

	
268 268
This group describes the data/algorithm skeletons and concept checking
269 269
classes implemented in LEMON.
270 270

	
271 271
The purpose of the classes in this group is fourfold.
272 272

	
273 273
- These classes contain the documentations of the %concepts. In order
274 274
  to avoid document multiplications, an implementation of a concept
275 275
  simply refers to the corresponding concept class.
276 276

	
277 277
- These classes declare every functions, <tt>typedef</tt>s etc. an
278 278
  implementation of the %concepts should provide, however completely
279 279
  without implementations and real data structures behind the
280 280
  interface. On the other hand they should provide nothing else. All
281 281
  the algorithms working on a data structure meeting a certain concept
282 282
  should compile with these classes. (Though it will not run properly,
283 283
  of course.) In this way it is easily to check if an algorithm
284 284
  doesn't use any extra feature of a certain implementation.
285 285

	
286 286
- The concept descriptor classes also provide a <em>checker class</em>
287 287
  that makes it possible to check whether a certain implementation of a
288 288
  concept indeed provides all the required features.
289 289

	
290 290
- Finally, They can serve as a skeleton of a new implementation of a concept.
291 291
*/
292 292

	
293 293
/**
294 294
@defgroup graph_concepts Graph Structure Concepts
295 295
@ingroup concept
296 296
\brief Skeleton and concept checking classes for graph structures
297 297

	
298 298
This group describes the skeletons and concept checking classes of LEMON's
299 299
graph structures and helper classes used to implement these.
300 300
*/
301 301

	
302 302
/**
303 303
@defgroup map_concepts Map Concepts
304 304
@ingroup concept
305 305
\brief Skeleton and concept checking classes for maps
306 306
 
307 307
This group describes the skeletons and concept checking classes of maps.
308 308
*/
309 309

	
310 310
/**
311 311
\anchor demoprograms
312 312

	
313 313
@defgroup demos Demo programs
314 314

	
315 315
Some demo programs are listed here. Their full source codes can be found in
316 316
the \c demo subdirectory of the source tree.
317 317

	
318 318
It order to compile them, use <tt>--enable-demo</tt> configure option when
319 319
build the library.
320 320
*/
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22

	
23 23

	
24 24
\page lgf-format LEMON Graph Format (LGF)
25 25

	
26 26
The \e LGF is a <em>column oriented</em>
27 27
file format for storing graphs and associated data like
28 28
node and edge maps.
29 29

	
30 30
Each line with \c '#' first non-whitespace
31 31
character is considered as a comment line.
32 32

	
33 33
Otherwise the file consists of sections starting with
34 34
a header line. The header lines starts with an \c '@' character followed by the
35 35
type of section. The standard section types are \c \@nodes, \c
36 36
\@arcs and \c \@edges
37 37
and \@attributes. Each header line may also have an optional
38 38
\e name, which can be use to distinguish the sections of the same
39 39
type.
40 40

	
41 41
The standard sections are column oriented, each line consists of
42 42
<em>token</em>s separated by whitespaces. A token can be \e plain or
43 43
\e quoted. A plain token is just a sequence of non-whitespace characters,
44 44
while a quoted token is a
45 45
character sequence surrounded by double quotes, and it can also
46 46
contain whitespaces and escape sequences.
47 47

	
48 48
The \c \@nodes section describes a set of nodes and associated
49 49
maps. The first is a header line, its columns are the names of the
50 50
maps appearing in the following lines.
51 51
One of the maps must be called \c
52 52
"label", which plays special role in the file.
53 53
The following
54 54
non-empty lines until the next section describes nodes of the
55 55
graph. Each line contains the values of the node maps
56 56
associated to the current node.
57 57

	
58 58
\code
59 59
 @nodes
60 60
 label  coordinates  size    title
61 61
 1      (10,20)      10      "First node"
62 62
 2      (80,80)      8       "Second node"
63 63
 3      (40,10)      10      "Third node"
64 64
\endcode
65 65

	
66 66
The \c \@arcs section is very similar to the \c \@nodes section, it
67 67
again starts with a header line describing the names of the maps, but
68 68
the \c "label" map is not obligatory here. The following lines
69 69
describe the arcs. The first two tokens of each line are the source
70 70
and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81 81
If there is no map in the \c \@arcs section at all, then it must be
82 82
indicated by a sole '-' sign in the first line.
83 83

	
84 84
\code
85 85
 @arcs
86 86
         -
87 87
 1   2
88 88
 1   3
89 89
 2   3
90 90
\endcode
91 91

	
92 92
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
93 93
also store the edge set of an undirected graph. In such case there is
94 94
a conventional method for store arc maps in the file, if two columns
95 95
have the same caption with \c '+' and \c '-' prefix, then these columns
96 96
can be regarded as the values of an arc map.
97 97

	
98 98
The \c \@attributes section contains key-value pairs, each line
99 99
consists of two tokens, an attribute name, and then an attribute
100 100
value. The value of the attribute could be also a label value of a
101 101
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
102 102
which regards to the forward or backward directed arc of the
103 103
corresponding edge.
104 104

	
105 105
\code
106 106
 @attributes
107 107
 source 1
108 108
 target 3
109 109
 caption "LEMON test digraph"
110 110
\endcode
111 111

	
112 112
The \e LGF can contain extra sections, but there is no restriction on
113 113
the format of such sections.
114 114

	
115 115
*/
116 116
}
117 117

	
118 118
//  LocalWords:  whitespace whitespaces
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/tolerance.h>
23 23
#include<lemon/core.h>
24 24
namespace lemon {
25 25

	
26 26
  float Tolerance<float>::def_epsilon = static_cast<float>(1e-4);
27 27
  double Tolerance<double>::def_epsilon = 1e-10;
28 28
  long double Tolerance<long double>::def_epsilon = 1e-14;
29 29

	
30 30
#ifndef LEMON_ONLY_TEMPLATES
31 31
  const Invalid INVALID = Invalid();
32 32
#endif
33 33

	
34 34
} //namespace lemon
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_DEFAULT_MAP_H
20 20
#define LEMON_BITS_DEFAULT_MAP_H
21 21

	
22 22
#include <lemon/config.h>
23 23
#include <lemon/bits/array_map.h>
24 24
#include <lemon/bits/vector_map.h>
25 25
//#include <lemon/bits/debug_map.h>
26 26

	
27 27
//\ingroup graphbits
28 28
//\file
29 29
//\brief Graph maps that construct and destruct their elements dynamically.
30 30

	
31 31
namespace lemon {
32 32

	
33 33

	
34 34
  //#ifndef LEMON_USE_DEBUG_MAP
35 35

	
36 36
  template <typename _Graph, typename _Item, typename _Value>
37 37
  struct DefaultMapSelector {
38 38
    typedef ArrayMap<_Graph, _Item, _Value> Map;
39 39
  };
40 40

	
41 41
  // bool
42 42
  template <typename _Graph, typename _Item>
43 43
  struct DefaultMapSelector<_Graph, _Item, bool> {
44 44
    typedef VectorMap<_Graph, _Item, bool> Map;
45 45
  };
46 46

	
47 47
  // char
48 48
  template <typename _Graph, typename _Item>
49 49
  struct DefaultMapSelector<_Graph, _Item, char> {
50 50
    typedef VectorMap<_Graph, _Item, char> Map;
51 51
  };
52 52

	
53 53
  template <typename _Graph, typename _Item>
54 54
  struct DefaultMapSelector<_Graph, _Item, signed char> {
55 55
    typedef VectorMap<_Graph, _Item, signed char> Map;
56 56
  };
57 57

	
58 58
  template <typename _Graph, typename _Item>
59 59
  struct DefaultMapSelector<_Graph, _Item, unsigned char> {
60 60
    typedef VectorMap<_Graph, _Item, unsigned char> Map;
61 61
  };
62 62

	
63 63

	
64 64
  // int
65 65
  template <typename _Graph, typename _Item>
66 66
  struct DefaultMapSelector<_Graph, _Item, signed int> {
67 67
    typedef VectorMap<_Graph, _Item, signed int> Map;
68 68
  };
69 69

	
70 70
  template <typename _Graph, typename _Item>
71 71
  struct DefaultMapSelector<_Graph, _Item, unsigned int> {
72 72
    typedef VectorMap<_Graph, _Item, unsigned int> Map;
73 73
  };
74 74

	
75 75

	
76 76
  // short
77 77
  template <typename _Graph, typename _Item>
78 78
  struct DefaultMapSelector<_Graph, _Item, signed short> {
79 79
    typedef VectorMap<_Graph, _Item, signed short> Map;
80 80
  };
81 81

	
82 82
  template <typename _Graph, typename _Item>
83 83
  struct DefaultMapSelector<_Graph, _Item, unsigned short> {
84 84
    typedef VectorMap<_Graph, _Item, unsigned short> Map;
85 85
  };
86 86

	
87 87

	
88 88
  // long
89 89
  template <typename _Graph, typename _Item>
90 90
  struct DefaultMapSelector<_Graph, _Item, signed long> {
91 91
    typedef VectorMap<_Graph, _Item, signed long> Map;
92 92
  };
93 93

	
94 94
  template <typename _Graph, typename _Item>
95 95
  struct DefaultMapSelector<_Graph, _Item, unsigned long> {
96 96
    typedef VectorMap<_Graph, _Item, unsigned long> Map;
97 97
  };
98 98

	
99 99

	
100 100
#if defined LEMON_HAVE_LONG_LONG
101 101

	
102 102
  // long long
103 103
  template <typename _Graph, typename _Item>
104 104
  struct DefaultMapSelector<_Graph, _Item, signed long long> {
105 105
    typedef VectorMap<_Graph, _Item, signed long long> Map;
106 106
  };
107 107

	
108 108
  template <typename _Graph, typename _Item>
109 109
  struct DefaultMapSelector<_Graph, _Item, unsigned long long> {
110 110
    typedef VectorMap<_Graph, _Item, unsigned long long> Map;
111 111
  };
112 112

	
113 113
#endif
114 114

	
115 115

	
116 116
  // float
117 117
  template <typename _Graph, typename _Item>
118 118
  struct DefaultMapSelector<_Graph, _Item, float> {
119 119
    typedef VectorMap<_Graph, _Item, float> Map;
120 120
  };
121 121

	
122 122

	
123 123
  // double
124 124
  template <typename _Graph, typename _Item>
125 125
  struct DefaultMapSelector<_Graph, _Item, double> {
126 126
    typedef VectorMap<_Graph, _Item,  double> Map;
127 127
  };
128 128

	
129 129

	
130 130
  // long double
131 131
  template <typename _Graph, typename _Item>
132 132
  struct DefaultMapSelector<_Graph, _Item, long double> {
133 133
    typedef VectorMap<_Graph, _Item, long double> Map;
134 134
  };
135 135

	
136 136

	
137 137
  // pointer
138 138
  template <typename _Graph, typename _Item, typename _Ptr>
139 139
  struct DefaultMapSelector<_Graph, _Item, _Ptr*> {
140 140
    typedef VectorMap<_Graph, _Item, _Ptr*> Map;
141 141
  };
142 142

	
143 143
// #else
144 144

	
145 145
//   template <typename _Graph, typename _Item, typename _Value>
146 146
//   struct DefaultMapSelector {
147 147
//     typedef DebugMap<_Graph, _Item, _Value> Map;
148 148
//   };
149 149

	
150 150
// #endif
151 151

	
152 152
  // DefaultMap class
153 153
  template <typename _Graph, typename _Item, typename _Value>
154 154
  class DefaultMap
155 155
    : public DefaultMapSelector<_Graph, _Item, _Value>::Map {
156 156
  public:
157 157
    typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent;
158 158
    typedef DefaultMap<_Graph, _Item, _Value> Map;
159 159

	
160 160
    typedef typename Parent::Graph Graph;
161 161
    typedef typename Parent::Value Value;
162 162

	
163 163
    explicit DefaultMap(const Graph& graph) : Parent(graph) {}
164 164
    DefaultMap(const Graph& graph, const Value& value)
165 165
      : Parent(graph, value) {}
166 166

	
167 167
    DefaultMap& operator=(const DefaultMap& cmap) {
168 168
      return operator=<DefaultMap>(cmap);
169 169
    }
170 170

	
171 171
    template <typename CMap>
172 172
    DefaultMap& operator=(const CMap& cmap) {
173 173
      Parent::operator=(cmap);
174 174
      return *this;
175 175
    }
176 176

	
177 177
  };
178 178

	
179 179
}
180 180

	
181 181
#endif
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_MAP_EXTENDER_H
20 20
#define LEMON_BITS_MAP_EXTENDER_H
21 21

	
22 22
#include <iterator>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25

	
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
//\file
30 30
//\brief Extenders for iterable maps.
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  // \ingroup graphbits
35 35
  //
36 36
  // \brief Extender for maps
37 37
  template <typename _Map>
38 38
  class MapExtender : public _Map {
39 39
  public:
40 40

	
41 41
    typedef _Map Parent;
42 42
    typedef MapExtender Map;
43 43

	
44 44

	
45 45
    typedef typename Parent::Graph Graph;
46 46
    typedef typename Parent::Key Item;
47 47

	
48 48
    typedef typename Parent::Key Key;
49 49
    typedef typename Parent::Value Value;
50 50

	
51 51
    class MapIt;
52 52
    class ConstMapIt;
53 53

	
54 54
    friend class MapIt;
55 55
    friend class ConstMapIt;
56 56

	
57 57
  public:
58 58

	
59 59
    MapExtender(const Graph& graph)
60 60
      : Parent(graph) {}
61 61

	
62 62
    MapExtender(const Graph& graph, const Value& value)
63 63
      : Parent(graph, value) {}
64 64

	
65 65
  private:
66 66
    MapExtender& operator=(const MapExtender& cmap) {
67 67
      return operator=<MapExtender>(cmap);
68 68
    }
69 69

	
70 70
    template <typename CMap>
71 71
    MapExtender& operator=(const CMap& cmap) {
72 72
      Parent::operator=(cmap);
73 73
      return *this;
74 74
    }
75 75

	
76 76
  public:
77 77
    class MapIt : public Item {
78 78
    public:
79 79

	
80 80
      typedef Item Parent;
81 81
      typedef typename Map::Value Value;
82 82

	
83 83
      MapIt() : map(NULL) {}
84 84

	
85 85
      MapIt(Invalid i) : Parent(i), map(NULL) {}
86 86

	
87 87
      explicit MapIt(Map& _map) : map(&_map) {
88 88
        map->notifier()->first(*this);
89 89
      }
90 90

	
91 91
      MapIt(const Map& _map, const Item& item)
92 92
        : Parent(item), map(&_map) {}
93 93

	
94 94
      MapIt& operator++() {
95 95
        map->notifier()->next(*this);
96 96
        return *this;
97 97
      }
98 98

	
99 99
      typename MapTraits<Map>::ConstReturnValue operator*() const {
100 100
        return (*map)[*this];
101 101
      }
102 102

	
103 103
      typename MapTraits<Map>::ReturnValue operator*() {
104 104
        return (*map)[*this];
105 105
      }
106 106

	
107 107
      void set(const Value& value) {
108 108
        map->set(*this, value);
109 109
      }
110 110

	
111 111
    protected:
112 112
      Map* map;
113 113

	
114 114
    };
115 115

	
116 116
    class ConstMapIt : public Item {
117 117
    public:
118 118

	
119 119
      typedef Item Parent;
120 120

	
121 121
      typedef typename Map::Value Value;
122 122

	
123 123
      ConstMapIt() : map(NULL) {}
124 124

	
125 125
      ConstMapIt(Invalid i) : Parent(i), map(NULL) {}
126 126

	
127 127
      explicit ConstMapIt(Map& _map) : map(&_map) {
128 128
        map->notifier()->first(*this);
129 129
      }
130 130

	
131 131
      ConstMapIt(const Map& _map, const Item& item)
132 132
        : Parent(item), map(_map) {}
133 133

	
134 134
      ConstMapIt& operator++() {
135 135
        map->notifier()->next(*this);
136 136
        return *this;
137 137
      }
138 138

	
139 139
      typename MapTraits<Map>::ConstReturnValue operator*() const {
140 140
        return map[*this];
141 141
      }
142 142

	
143 143
    protected:
144 144
      const Map* map;
145 145
    };
146 146

	
147 147
    class ItemIt : public Item {
148 148
    public:
149 149

	
150 150
      typedef Item Parent;
151 151

	
152 152
      ItemIt() : map(NULL) {}
153 153

	
154 154
      ItemIt(Invalid i) : Parent(i), map(NULL) {}
155 155

	
156 156
      explicit ItemIt(Map& _map) : map(&_map) {
157 157
        map->notifier()->first(*this);
158 158
      }
159 159

	
160 160
      ItemIt(const Map& _map, const Item& item)
161 161
        : Parent(item), map(&_map) {}
162 162

	
163 163
      ItemIt& operator++() {
164 164
        map->notifier()->next(*this);
165 165
        return *this;
166 166
      }
167 167

	
168 168
    protected:
169 169
      const Map* map;
170 170

	
171 171
    };
172 172
  };
173 173

	
174 174
  // \ingroup graphbits
175 175
  //
176 176
  // \brief Extender for maps which use a subset of the items.
177 177
  template <typename _Graph, typename _Map>
178 178
  class SubMapExtender : public _Map {
179 179
  public:
180 180

	
181 181
    typedef _Map Parent;
182 182
    typedef SubMapExtender Map;
183 183

	
184 184
    typedef _Graph Graph;
185 185

	
186 186
    typedef typename Parent::Key Item;
187 187

	
188 188
    typedef typename Parent::Key Key;
189 189
    typedef typename Parent::Value Value;
190 190

	
191 191
    class MapIt;
192 192
    class ConstMapIt;
193 193

	
194 194
    friend class MapIt;
195 195
    friend class ConstMapIt;
196 196

	
197 197
  public:
198 198

	
199 199
    SubMapExtender(const Graph& _graph)
200 200
      : Parent(_graph), graph(_graph) {}
201 201

	
202 202
    SubMapExtender(const Graph& _graph, const Value& _value)
203 203
      : Parent(_graph, _value), graph(_graph) {}
204 204

	
205 205
  private:
206 206
    SubMapExtender& operator=(const SubMapExtender& cmap) {
207 207
      return operator=<MapExtender>(cmap);
208 208
    }
209 209

	
210 210
    template <typename CMap>
211 211
    SubMapExtender& operator=(const CMap& cmap) {
212 212
      checkConcept<concepts::ReadMap<Key, Value>, CMap>();
213 213
      Item it;
214 214
      for (graph.first(it); it != INVALID; graph.next(it)) {
215 215
        Parent::set(it, cmap[it]);
216 216
      }
217 217
      return *this;
218 218
    }
219 219

	
220 220
  public:
221 221
    class MapIt : public Item {
222 222
    public:
223 223

	
224 224
      typedef Item Parent;
225 225
      typedef typename Map::Value Value;
226 226

	
227 227
      MapIt() : map(NULL) {}
228 228

	
229 229
      MapIt(Invalid i) : Parent(i), map(NULL) { }
230 230

	
231 231
      explicit MapIt(Map& _map) : map(&_map) {
232 232
        map->graph.first(*this);
233 233
      }
234 234

	
235 235
      MapIt(const Map& _map, const Item& item)
236 236
        : Parent(item), map(&_map) {}
237 237

	
238 238
      MapIt& operator++() {
239 239
        map->graph.next(*this);
240 240
        return *this;
241 241
      }
242 242

	
243 243
      typename MapTraits<Map>::ConstReturnValue operator*() const {
244 244
        return (*map)[*this];
245 245
      }
246 246

	
247 247
      typename MapTraits<Map>::ReturnValue operator*() {
248 248
        return (*map)[*this];
249 249
      }
250 250

	
251 251
      void set(const Value& value) {
252 252
        map->set(*this, value);
253 253
      }
254 254

	
255 255
    protected:
256 256
      Map* map;
257 257

	
258 258
    };
259 259

	
260 260
    class ConstMapIt : public Item {
261 261
    public:
262 262

	
263 263
      typedef Item Parent;
264 264

	
265 265
      typedef typename Map::Value Value;
266 266

	
267 267
      ConstMapIt() : map(NULL) {}
268 268

	
269 269
      ConstMapIt(Invalid i) : Parent(i), map(NULL) { }
270 270

	
271 271
      explicit ConstMapIt(Map& _map) : map(&_map) {
272 272
        map->graph.first(*this);
273 273
      }
274 274

	
275 275
      ConstMapIt(const Map& _map, const Item& item)
276 276
        : Parent(item), map(&_map) {}
277 277

	
278 278
      ConstMapIt& operator++() {
279 279
        map->graph.next(*this);
280 280
        return *this;
281 281
      }
282 282

	
283 283
      typename MapTraits<Map>::ConstReturnValue operator*() const {
284 284
        return (*map)[*this];
285 285
      }
286 286

	
287 287
    protected:
288 288
      const Map* map;
289 289
    };
290 290

	
291 291
    class ItemIt : public Item {
292 292
    public:
293 293

	
294 294
      typedef Item Parent;
295 295

	
296 296
      ItemIt() : map(NULL) {}
297 297

	
298 298
      ItemIt(Invalid i) : Parent(i), map(NULL) { }
299 299

	
300 300
      explicit ItemIt(Map& _map) : map(&_map) {
301 301
        map->graph.first(*this);
302 302
      }
303 303

	
304 304
      ItemIt(const Map& _map, const Item& item)
305 305
        : Parent(item), map(&_map) {}
306 306

	
307 307
      ItemIt& operator++() {
308 308
        map->graph.next(*this);
309 309
        return *this;
310 310
      }
311 311

	
312 312
    protected:
313 313
      const Map* map;
314 314

	
315 315
    };
316 316

	
317 317
  private:
318 318

	
319 319
    const Graph& graph;
320 320

	
321 321
  };
322 322

	
323 323
}
324 324

	
325 325
#endif
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_PRED_MAP_PATH_H
20 20
#define LEMON_BITS_PRED_MAP_PATH_H
21 21

	
22 22
namespace lemon {
23 23

	
24 24
  template <typename _Digraph, typename _PredMap>
25 25
  class PredMapPath {
26 26
  public:
27 27
    typedef True RevPathTag;
28 28

	
29 29
    typedef _Digraph Digraph;
30 30
    typedef typename Digraph::Arc Arc;
31 31
    typedef _PredMap PredMap;
32 32

	
33 33
    PredMapPath(const Digraph& _digraph, const PredMap& _predMap,
34 34
                typename Digraph::Node _target)
35 35
      : digraph(_digraph), predMap(_predMap), target(_target) {}
36 36

	
37 37
    int length() const {
38 38
      int len = 0;
39 39
      typename Digraph::Node node = target;
40 40
      typename Digraph::Arc arc;
41 41
      while ((arc = predMap[node]) != INVALID) {
42 42
        node = digraph.source(arc);
43 43
        ++len;
44 44
      }
45 45
      return len;
46 46
    }
47 47

	
48 48
    bool empty() const {
49 49
      return predMap[target] == INVALID;
50 50
    }
51 51

	
52 52
    class RevArcIt {
53 53
    public:
54 54
      RevArcIt() {}
55 55
      RevArcIt(Invalid) : path(0), current(INVALID) {}
56 56
      RevArcIt(const PredMapPath& _path)
57 57
        : path(&_path), current(_path.target) {
58 58
        if (path->predMap[current] == INVALID) current = INVALID;
59 59
      }
60 60

	
61 61
      operator const typename Digraph::Arc() const {
62 62
        return path->predMap[current];
63 63
      }
64 64

	
65 65
      RevArcIt& operator++() {
66 66
        current = path->digraph.source(path->predMap[current]);
67 67
        if (path->predMap[current] == INVALID) current = INVALID;
68 68
        return *this;
69 69
      }
70 70

	
71 71
      bool operator==(const RevArcIt& e) const {
72 72
        return current == e.current;
73 73
      }
74 74

	
75 75
      bool operator!=(const RevArcIt& e) const {
76 76
        return current != e.current;
77 77
      }
78 78

	
79 79
      bool operator<(const RevArcIt& e) const {
80 80
        return current < e.current;
81 81
      }
82 82

	
83 83
    private:
84 84
      const PredMapPath* path;
85 85
      typename Digraph::Node current;
86 86
    };
87 87

	
88 88
  private:
89 89
    const Digraph& digraph;
90 90
    const PredMap& predMap;
91 91
    typename Digraph::Node target;
92 92
  };
93 93

	
94 94

	
95 95
  template <typename _Digraph, typename _PredMatrixMap>
96 96
  class PredMatrixMapPath {
97 97
  public:
98 98
    typedef True RevPathTag;
99 99

	
100 100
    typedef _Digraph Digraph;
101 101
    typedef typename Digraph::Arc Arc;
102 102
    typedef _PredMatrixMap PredMatrixMap;
103 103

	
104 104
    PredMatrixMapPath(const Digraph& _digraph,
105 105
                      const PredMatrixMap& _predMatrixMap,
106 106
                      typename Digraph::Node _source,
107 107
                      typename Digraph::Node _target)
108 108
      : digraph(_digraph), predMatrixMap(_predMatrixMap),
109 109
        source(_source), target(_target) {}
110 110

	
111 111
    int length() const {
112 112
      int len = 0;
113 113
      typename Digraph::Node node = target;
114 114
      typename Digraph::Arc arc;
115 115
      while ((arc = predMatrixMap(source, node)) != INVALID) {
116 116
        node = digraph.source(arc);
117 117
        ++len;
118 118
      }
119 119
      return len;
120 120
    }
121 121

	
122 122
    bool empty() const {
123 123
      return predMatrixMap(source, target) == INVALID;
124 124
    }
125 125

	
126 126
    class RevArcIt {
127 127
    public:
128 128
      RevArcIt() {}
129 129
      RevArcIt(Invalid) : path(0), current(INVALID) {}
130 130
      RevArcIt(const PredMatrixMapPath& _path)
131 131
        : path(&_path), current(_path.target) {
132 132
        if (path->predMatrixMap(path->source, current) == INVALID)
133 133
          current = INVALID;
134 134
      }
135 135

	
136 136
      operator const typename Digraph::Arc() const {
137 137
        return path->predMatrixMap(path->source, current);
138 138
      }
139 139

	
140 140
      RevArcIt& operator++() {
141 141
        current =
142 142
          path->digraph.source(path->predMatrixMap(path->source, current));
143 143
        if (path->predMatrixMap(path->source, current) == INVALID)
144 144
          current = INVALID;
145 145
        return *this;
146 146
      }
147 147

	
148 148
      bool operator==(const RevArcIt& e) const {
149 149
        return current == e.current;
150 150
      }
151 151

	
152 152
      bool operator!=(const RevArcIt& e) const {
153 153
        return current != e.current;
154 154
      }
155 155

	
156 156
      bool operator<(const RevArcIt& e) const {
157 157
        return current < e.current;
158 158
      }
159 159

	
160 160
    private:
161 161
      const PredMatrixMapPath* path;
162 162
      typename Digraph::Node current;
163 163
    };
164 164

	
165 165
  private:
166 166
    const Digraph& digraph;
167 167
    const PredMatrixMap& predMatrixMap;
168 168
    typename Digraph::Node source;
169 169
    typename Digraph::Node target;
170 170
  };
171 171

	
172 172
}
173 173

	
174 174
#endif
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/bits/windows.h>
23 23

	
24 24
#ifdef WIN32
25 25
#ifndef WIN32_LEAN_AND_MEAN
26 26
#define WIN32_LEAN_AND_MEAN
27 27
#endif
28 28
#ifndef NOMINMAX
29 29
#define NOMINMAX
30 30
#endif
31 31
#ifdef UNICODE
32 32
#undef UNICODE
33 33
#endif
34 34
#include <windows.h>
35 35
#ifdef LOCALE_INVARIANT
36 36
#define MY_LOCALE LOCALE_INVARIANT
37 37
#else
38 38
#define MY_LOCALE LOCALE_NEUTRAL
39 39
#endif
40 40
#else
41 41
#include <unistd.h>
42 42
#include <ctime>
43 43
#include <sys/times.h>
44 44
#include <sys/time.h>
45 45
#endif
46 46

	
47 47
#include <cmath>
48 48
#include <sstream>
49 49

	
50 50
namespace lemon {
51 51
  namespace bits {
52 52
    void getWinProcTimes(double &rtime,
53 53
                         double &utime, double &stime,
54 54
                         double &cutime, double &cstime)
55 55
    {
56 56
#ifdef WIN32
57 57
      static const double ch = 4294967296.0e-7;
58 58
      static const double cl = 1.0e-7;
59 59

	
60 60
      FILETIME system;
61 61
      GetSystemTimeAsFileTime(&system);
62 62
      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
63 63

	
64 64
      FILETIME create, exit, kernel, user;
65 65
      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
66 66
        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
67 67
        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
68 68
        cutime = 0;
69 69
        cstime = 0;
70 70
      } else {
71 71
        rtime = 0;
72 72
        utime = 0;
73 73
        stime = 0;
74 74
        cutime = 0;
75 75
        cstime = 0;
76 76
      }
77 77
#else
78 78
      timeval tv;
79 79
      gettimeofday(&tv, 0);
80 80
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
81 81

	
82 82
      tms ts;
83 83
      double tck=sysconf(_SC_CLK_TCK);
84 84
      times(&ts);
85 85
      utime=ts.tms_utime/tck;
86 86
      stime=ts.tms_stime/tck;
87 87
      cutime=ts.tms_cutime/tck;
88 88
      cstime=ts.tms_cstime/tck;
89 89
#endif
90 90
    }
91 91

	
92 92
    std::string getWinFormattedDate()
93 93
    {
94 94
      std::ostringstream os;
95 95
#ifdef WIN32
96 96
      SYSTEMTIME time;
97 97
      GetSystemTime(&time);
98 98
      char buf1[11], buf2[9], buf3[5];
99 99
	  if (GetDateFormat(MY_LOCALE, 0, &time,
100 100
                        ("ddd MMM dd"), buf1, 11) &&
101 101
          GetTimeFormat(MY_LOCALE, 0, &time,
102 102
                        ("HH':'mm':'ss"), buf2, 9) &&
103 103
          GetDateFormat(MY_LOCALE, 0, &time,
104 104
                        ("yyyy"), buf3, 5)) {
105 105
        os << buf1 << ' ' << buf2 << ' ' << buf3;
106 106
      }
107 107
      else os << "unknown";
108 108
#else
109 109
      timeval tv;
110 110
      gettimeofday(&tv, 0);
111 111

	
112 112
      char cbuf[26];
113 113
      ctime_r(&tv.tv_sec,cbuf);
114 114
      os << cbuf;
115 115
#endif
116 116
      return os.str();
117 117
    }
118 118

	
119 119
    int getWinRndSeed()
120 120
    {
121 121
#ifdef WIN32
122 122
      FILETIME time;
123 123
      GetSystemTimeAsFileTime(&time);
124 124
      return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime;
125 125
#else
126 126
      timeval tv;
127 127
      gettimeofday(&tv, 0);
128 128
      return getpid() + tv.tv_sec + tv.tv_usec;
129 129
#endif
130 130
    }
131 131
  }
132 132
}
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CORE_H
20 20
#define LEMON_CORE_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/config.h>
26 26
#include <lemon/bits/enable_if.h>
27 27
#include <lemon/bits/traits.h>
28 28
#include <lemon/assert.h>
29 29

	
30 30
///\file
31 31
///\brief LEMON core utilities.
32 32
///
33 33
///This header file contains core utilities for LEMON.
34 34
///It is automatically included by all graph types, therefore it usually
35 35
///do not have to be included directly.
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Dummy type to make it easier to create invalid iterators.
40 40
  ///
41 41
  /// Dummy type to make it easier to create invalid iterators.
42 42
  /// See \ref INVALID for the usage.
43 43
  struct Invalid {
44 44
  public:
45 45
    bool operator==(Invalid) { return true;  }
46 46
    bool operator!=(Invalid) { return false; }
47 47
    bool operator< (Invalid) { return false; }
48 48
  };
49 49

	
50 50
  /// \brief Invalid iterators.
51 51
  ///
52 52
  /// \ref Invalid is a global type that converts to each iterator
53 53
  /// in such a way that the value of the target iterator will be invalid.
54 54
#ifdef LEMON_ONLY_TEMPLATES
55 55
  const Invalid INVALID = Invalid();
56 56
#else
57 57
  extern const Invalid INVALID;
58 58
#endif
59 59

	
60 60
  /// \addtogroup gutils
61 61
  /// @{
62 62

	
63 63
  ///Create convenience typedefs for the digraph types and iterators
64 64

	
65 65
  ///This \c \#define creates convenient type definitions for the following
66 66
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
67 67
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
68 68
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
69 69
  ///
70 70
  ///\note If the graph type is a dependent type, ie. the graph type depend
71 71
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
72 72
  ///macro.
73 73
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
74 74
  typedef Digraph::Node Node;                                           \
75 75
  typedef Digraph::NodeIt NodeIt;                                       \
76 76
  typedef Digraph::Arc Arc;                                             \
77 77
  typedef Digraph::ArcIt ArcIt;                                         \
78 78
  typedef Digraph::InArcIt InArcIt;                                     \
79 79
  typedef Digraph::OutArcIt OutArcIt;                                   \
80 80
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
81 81
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
82 82
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
83 83
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
84 84
  typedef Digraph::ArcMap<int> IntArcMap;                               \
85 85
  typedef Digraph::ArcMap<double> DoubleArcMap
86 86

	
87 87
  ///Create convenience typedefs for the digraph types and iterators
88 88

	
89 89
  ///\see DIGRAPH_TYPEDEFS
90 90
  ///
91 91
  ///\note Use this macro, if the graph type is a dependent type,
92 92
  ///ie. the graph type depend on a template parameter.
93 93
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
94 94
  typedef typename Digraph::Node Node;                                  \
95 95
  typedef typename Digraph::NodeIt NodeIt;                              \
96 96
  typedef typename Digraph::Arc Arc;                                    \
97 97
  typedef typename Digraph::ArcIt ArcIt;                                \
98 98
  typedef typename Digraph::InArcIt InArcIt;                            \
99 99
  typedef typename Digraph::OutArcIt OutArcIt;                          \
100 100
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
101 101
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
102 102
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
103 103
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
104 104
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
105 105
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
106 106

	
107 107
  ///Create convenience typedefs for the graph types and iterators
108 108

	
109 109
  ///This \c \#define creates the same convenient type definitions as defined
110 110
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
111 111
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
112 112
  ///\c DoubleEdgeMap.
113 113
  ///
114 114
  ///\note If the graph type is a dependent type, ie. the graph type depend
115 115
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
116 116
  ///macro.
117 117
#define GRAPH_TYPEDEFS(Graph)                                           \
118 118
  DIGRAPH_TYPEDEFS(Graph);                                              \
119 119
  typedef Graph::Edge Edge;                                             \
120 120
  typedef Graph::EdgeIt EdgeIt;                                         \
121 121
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
122 122
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
123 123
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
124 124
  typedef Graph::EdgeMap<double> DoubleEdgeMap
125 125

	
126 126
  ///Create convenience typedefs for the graph types and iterators
127 127

	
128 128
  ///\see GRAPH_TYPEDEFS
129 129
  ///
130 130
  ///\note Use this macro, if the graph type is a dependent type,
131 131
  ///ie. the graph type depend on a template parameter.
132 132
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
133 133
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
134 134
  typedef typename Graph::Edge Edge;                                    \
135 135
  typedef typename Graph::EdgeIt EdgeIt;                                \
136 136
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
137 137
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
138 138
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
139 139
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
140 140

	
141 141
  /// \brief Function to count the items in a graph.
142 142
  ///
143 143
  /// This function counts the items (nodes, arcs etc.) in a graph.
144 144
  /// The complexity of the function is linear because
145 145
  /// it iterates on all of the items.
146 146
  template <typename Graph, typename Item>
147 147
  inline int countItems(const Graph& g) {
148 148
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
149 149
    int num = 0;
150 150
    for (ItemIt it(g); it != INVALID; ++it) {
151 151
      ++num;
152 152
    }
153 153
    return num;
154 154
  }
155 155

	
156 156
  // Node counting:
157 157

	
158 158
  namespace _core_bits {
159 159

	
160 160
    template <typename Graph, typename Enable = void>
161 161
    struct CountNodesSelector {
162 162
      static int count(const Graph &g) {
163 163
        return countItems<Graph, typename Graph::Node>(g);
164 164
      }
165 165
    };
166 166

	
167 167
    template <typename Graph>
168 168
    struct CountNodesSelector<
169 169
      Graph, typename
170 170
      enable_if<typename Graph::NodeNumTag, void>::type>
171 171
    {
172 172
      static int count(const Graph &g) {
173 173
        return g.nodeNum();
174 174
      }
175 175
    };
176 176
  }
177 177

	
178 178
  /// \brief Function to count the nodes in the graph.
179 179
  ///
180 180
  /// This function counts the nodes in the graph.
181 181
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
182 182
  /// graph structures it is specialized to run in <em>O</em>(1).
183 183
  ///
184 184
  /// \note If the graph contains a \c nodeNum() member function and a
185 185
  /// \c NodeNumTag tag then this function calls directly the member
186 186
  /// function to query the cardinality of the node set.
187 187
  template <typename Graph>
188 188
  inline int countNodes(const Graph& g) {
189 189
    return _core_bits::CountNodesSelector<Graph>::count(g);
190 190
  }
191 191

	
192 192
  // Arc counting:
193 193

	
194 194
  namespace _core_bits {
195 195

	
196 196
    template <typename Graph, typename Enable = void>
197 197
    struct CountArcsSelector {
198 198
      static int count(const Graph &g) {
199 199
        return countItems<Graph, typename Graph::Arc>(g);
200 200
      }
201 201
    };
202 202

	
203 203
    template <typename Graph>
204 204
    struct CountArcsSelector<
205 205
      Graph,
206 206
      typename enable_if<typename Graph::ArcNumTag, void>::type>
207 207
    {
208 208
      static int count(const Graph &g) {
209 209
        return g.arcNum();
210 210
      }
211 211
    };
212 212
  }
213 213

	
214 214
  /// \brief Function to count the arcs in the graph.
215 215
  ///
216 216
  /// This function counts the arcs in the graph.
217 217
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
218 218
  /// graph structures it is specialized to run in <em>O</em>(1).
219 219
  ///
220 220
  /// \note If the graph contains a \c arcNum() member function and a
221 221
  /// \c ArcNumTag tag then this function calls directly the member
222 222
  /// function to query the cardinality of the arc set.
223 223
  template <typename Graph>
224 224
  inline int countArcs(const Graph& g) {
225 225
    return _core_bits::CountArcsSelector<Graph>::count(g);
226 226
  }
227 227

	
228 228
  // Edge counting:
229 229

	
230 230
  namespace _core_bits {
231 231

	
232 232
    template <typename Graph, typename Enable = void>
233 233
    struct CountEdgesSelector {
234 234
      static int count(const Graph &g) {
235 235
        return countItems<Graph, typename Graph::Edge>(g);
236 236
      }
237 237
    };
238 238

	
239 239
    template <typename Graph>
240 240
    struct CountEdgesSelector<
241 241
      Graph,
242 242
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
243 243
    {
244 244
      static int count(const Graph &g) {
245 245
        return g.edgeNum();
246 246
      }
247 247
    };
248 248
  }
249 249

	
250 250
  /// \brief Function to count the edges in the graph.
251 251
  ///
252 252
  /// This function counts the edges in the graph.
253 253
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
254 254
  /// graph structures it is specialized to run in <em>O</em>(1).
255 255
  ///
256 256
  /// \note If the graph contains a \c edgeNum() member function and a
257 257
  /// \c EdgeNumTag tag then this function calls directly the member
258 258
  /// function to query the cardinality of the edge set.
259 259
  template <typename Graph>
260 260
  inline int countEdges(const Graph& g) {
261 261
    return _core_bits::CountEdgesSelector<Graph>::count(g);
262 262

	
263 263
  }
264 264

	
265 265

	
266 266
  template <typename Graph, typename DegIt>
267 267
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
268 268
    int num = 0;
269 269
    for (DegIt it(_g, _n); it != INVALID; ++it) {
270 270
      ++num;
271 271
    }
272 272
    return num;
273 273
  }
274 274

	
275 275
  /// \brief Function to count the number of the out-arcs from node \c n.
276 276
  ///
277 277
  /// This function counts the number of the out-arcs from node \c n
278 278
  /// in the graph \c g.
279 279
  template <typename Graph>
280 280
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
281 281
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
282 282
  }
283 283

	
284 284
  /// \brief Function to count the number of the in-arcs to node \c n.
285 285
  ///
286 286
  /// This function counts the number of the in-arcs to node \c n
287 287
  /// in the graph \c g.
288 288
  template <typename Graph>
289 289
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
290 290
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
291 291
  }
292 292

	
293 293
  /// \brief Function to count the number of the inc-edges to node \c n.
294 294
  ///
295 295
  /// This function counts the number of the inc-edges to node \c n
296 296
  /// in the undirected graph \c g.
297 297
  template <typename Graph>
298 298
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
299 299
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
300 300
  }
301 301

	
302 302
  namespace _core_bits {
303 303

	
304 304
    template <typename Digraph, typename Item, typename RefMap>
305 305
    class MapCopyBase {
306 306
    public:
307 307
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
308 308

	
309 309
      virtual ~MapCopyBase() {}
310 310
    };
311 311

	
312 312
    template <typename Digraph, typename Item, typename RefMap,
313 313
              typename FromMap, typename ToMap>
314 314
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
315 315
    public:
316 316

	
317 317
      MapCopy(const FromMap& map, ToMap& tmap)
318 318
        : _map(map), _tmap(tmap) {}
319 319

	
320 320
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
321 321
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
322 322
        for (ItemIt it(digraph); it != INVALID; ++it) {
323 323
          _tmap.set(refMap[it], _map[it]);
324 324
        }
325 325
      }
326 326

	
327 327
    private:
328 328
      const FromMap& _map;
329 329
      ToMap& _tmap;
330 330
    };
331 331

	
332 332
    template <typename Digraph, typename Item, typename RefMap, typename It>
333 333
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
334 334
    public:
335 335

	
336 336
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
337 337

	
338 338
      virtual void copy(const Digraph&, const RefMap& refMap) {
339 339
        _it = refMap[_item];
340 340
      }
341 341

	
342 342
    private:
343 343
      Item _item;
344 344
      It& _it;
345 345
    };
346 346

	
347 347
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
348 348
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
349 349
    public:
350 350

	
351 351
      RefCopy(Ref& map) : _map(map) {}
352 352

	
353 353
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
354 354
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
355 355
        for (ItemIt it(digraph); it != INVALID; ++it) {
356 356
          _map.set(it, refMap[it]);
357 357
        }
358 358
      }
359 359

	
360 360
    private:
361 361
      Ref& _map;
362 362
    };
363 363

	
364 364
    template <typename Digraph, typename Item, typename RefMap,
365 365
              typename CrossRef>
366 366
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
367 367
    public:
368 368

	
369 369
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
370 370

	
371 371
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
372 372
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
373 373
        for (ItemIt it(digraph); it != INVALID; ++it) {
374 374
          _cmap.set(refMap[it], it);
375 375
        }
376 376
      }
377 377

	
378 378
    private:
379 379
      CrossRef& _cmap;
380 380
    };
381 381

	
382 382
    template <typename Digraph, typename Enable = void>
383 383
    struct DigraphCopySelector {
384 384
      template <typename From, typename NodeRefMap, typename ArcRefMap>
385 385
      static void copy(const From& from, Digraph &to,
386 386
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
387 387
        to.clear();
388 388
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
389 389
          nodeRefMap[it] = to.addNode();
390 390
        }
391 391
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
392 392
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
393 393
                                    nodeRefMap[from.target(it)]);
394 394
        }
395 395
      }
396 396
    };
397 397

	
398 398
    template <typename Digraph>
399 399
    struct DigraphCopySelector<
400 400
      Digraph,
401 401
      typename enable_if<typename Digraph::BuildTag, void>::type>
402 402
    {
403 403
      template <typename From, typename NodeRefMap, typename ArcRefMap>
404 404
      static void copy(const From& from, Digraph &to,
405 405
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
406 406
        to.build(from, nodeRefMap, arcRefMap);
407 407
      }
408 408
    };
409 409

	
410 410
    template <typename Graph, typename Enable = void>
411 411
    struct GraphCopySelector {
412 412
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
413 413
      static void copy(const From& from, Graph &to,
414 414
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
415 415
        to.clear();
416 416
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
417 417
          nodeRefMap[it] = to.addNode();
418 418
        }
419 419
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
420 420
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
421 421
                                      nodeRefMap[from.v(it)]);
422 422
        }
423 423
      }
424 424
    };
425 425

	
426 426
    template <typename Graph>
427 427
    struct GraphCopySelector<
428 428
      Graph,
429 429
      typename enable_if<typename Graph::BuildTag, void>::type>
430 430
    {
431 431
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
432 432
      static void copy(const From& from, Graph &to,
433 433
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
434 434
        to.build(from, nodeRefMap, edgeRefMap);
435 435
      }
436 436
    };
437 437

	
438 438
  }
439 439

	
440 440
  /// \brief Class to copy a digraph.
441 441
  ///
442 442
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
443 443
  /// simplest way of using it is through the \c digraphCopy() function.
444 444
  ///
445 445
  /// This class not only make a copy of a digraph, but it can create
446 446
  /// references and cross references between the nodes and arcs of
447 447
  /// the two digraphs, and it can copy maps to use with the newly created
448 448
  /// digraph.
449 449
  ///
450 450
  /// To make a copy from a digraph, first an instance of DigraphCopy
451 451
  /// should be created, then the data belongs to the digraph should
452 452
  /// assigned to copy. In the end, the \c run() member should be
453 453
  /// called.
454 454
  ///
455 455
  /// The next code copies a digraph with several data:
456 456
  ///\code
457 457
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
458 458
  ///  // Create references for the nodes
459 459
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
460 460
  ///  cg.nodeRef(nr);
461 461
  ///  // Create cross references (inverse) for the arcs
462 462
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
463 463
  ///  cg.arcCrossRef(acr);
464 464
  ///  // Copy an arc map
465 465
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
466 466
  ///  NewGraph::ArcMap<double> namap(new_graph);
467 467
  ///  cg.arcMap(oamap, namap);
468 468
  ///  // Copy a node
469 469
  ///  OrigGraph::Node on;
470 470
  ///  NewGraph::Node nn;
471 471
  ///  cg.node(on, nn);
472 472
  ///  // Execute copying
473 473
  ///  cg.run();
474 474
  ///\endcode
475 475
  template <typename From, typename To>
476 476
  class DigraphCopy {
477 477
  private:
478 478

	
479 479
    typedef typename From::Node Node;
480 480
    typedef typename From::NodeIt NodeIt;
481 481
    typedef typename From::Arc Arc;
482 482
    typedef typename From::ArcIt ArcIt;
483 483

	
484 484
    typedef typename To::Node TNode;
485 485
    typedef typename To::Arc TArc;
486 486

	
487 487
    typedef typename From::template NodeMap<TNode> NodeRefMap;
488 488
    typedef typename From::template ArcMap<TArc> ArcRefMap;
489 489

	
490 490
  public:
491 491

	
492 492
    /// \brief Constructor of DigraphCopy.
493 493
    ///
494 494
    /// Constructor of DigraphCopy for copying the content of the
495 495
    /// \c from digraph into the \c to digraph.
496 496
    DigraphCopy(const From& from, To& to)
497 497
      : _from(from), _to(to) {}
498 498

	
499 499
    /// \brief Destructor of DigraphCopy
500 500
    ///
501 501
    /// Destructor of DigraphCopy.
502 502
    ~DigraphCopy() {
503 503
      for (int i = 0; i < int(_node_maps.size()); ++i) {
504 504
        delete _node_maps[i];
505 505
      }
506 506
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
507 507
        delete _arc_maps[i];
508 508
      }
509 509

	
510 510
    }
511 511

	
512 512
    /// \brief Copy the node references into the given map.
513 513
    ///
514 514
    /// This function copies the node references into the given map.
515 515
    /// The parameter should be a map, whose key type is the Node type of
516 516
    /// the source digraph, while the value type is the Node type of the
517 517
    /// destination digraph.
518 518
    template <typename NodeRef>
519 519
    DigraphCopy& nodeRef(NodeRef& map) {
520 520
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
521 521
                           NodeRefMap, NodeRef>(map));
522 522
      return *this;
523 523
    }
524 524

	
525 525
    /// \brief Copy the node cross references into the given map.
526 526
    ///
527 527
    /// This function copies the node cross references (reverse references)
528 528
    /// into the given map. The parameter should be a map, whose key type
529 529
    /// is the Node type of the destination digraph, while the value type is
530 530
    /// the Node type of the source digraph.
531 531
    template <typename NodeCrossRef>
532 532
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
533 533
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
534 534
                           NodeRefMap, NodeCrossRef>(map));
535 535
      return *this;
536 536
    }
537 537

	
538 538
    /// \brief Make a copy of the given node map.
539 539
    ///
540 540
    /// This function makes a copy of the given node map for the newly
541 541
    /// created digraph.
542 542
    /// The key type of the new map \c tmap should be the Node type of the
543 543
    /// destination digraph, and the key type of the original map \c map
544 544
    /// should be the Node type of the source digraph.
545 545
    template <typename FromMap, typename ToMap>
546 546
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
547 547
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
548 548
                           NodeRefMap, FromMap, ToMap>(map, tmap));
549 549
      return *this;
550 550
    }
551 551

	
552 552
    /// \brief Make a copy of the given node.
553 553
    ///
554 554
    /// This function makes a copy of the given node.
555 555
    DigraphCopy& node(const Node& node, TNode& tnode) {
556 556
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
557 557
                           NodeRefMap, TNode>(node, tnode));
558 558
      return *this;
559 559
    }
560 560

	
561 561
    /// \brief Copy the arc references into the given map.
562 562
    ///
563 563
    /// This function copies the arc references into the given map.
564 564
    /// The parameter should be a map, whose key type is the Arc type of
565 565
    /// the source digraph, while the value type is the Arc type of the
566 566
    /// destination digraph.
567 567
    template <typename ArcRef>
568 568
    DigraphCopy& arcRef(ArcRef& map) {
569 569
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
570 570
                          ArcRefMap, ArcRef>(map));
571 571
      return *this;
572 572
    }
573 573

	
574 574
    /// \brief Copy the arc cross references into the given map.
575 575
    ///
576 576
    /// This function copies the arc cross references (reverse references)
577 577
    /// into the given map. The parameter should be a map, whose key type
578 578
    /// is the Arc type of the destination digraph, while the value type is
579 579
    /// the Arc type of the source digraph.
580 580
    template <typename ArcCrossRef>
581 581
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
582 582
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
583 583
                          ArcRefMap, ArcCrossRef>(map));
584 584
      return *this;
585 585
    }
586 586

	
587 587
    /// \brief Make a copy of the given arc map.
588 588
    ///
589 589
    /// This function makes a copy of the given arc map for the newly
590 590
    /// created digraph.
591 591
    /// The key type of the new map \c tmap should be the Arc type of the
592 592
    /// destination digraph, and the key type of the original map \c map
593 593
    /// should be the Arc type of the source digraph.
594 594
    template <typename FromMap, typename ToMap>
595 595
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
596 596
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
597 597
                          ArcRefMap, FromMap, ToMap>(map, tmap));
598 598
      return *this;
599 599
    }
600 600

	
601 601
    /// \brief Make a copy of the given arc.
602 602
    ///
603 603
    /// This function makes a copy of the given arc.
604 604
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
605 605
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
606 606
                          ArcRefMap, TArc>(arc, tarc));
607 607
      return *this;
608 608
    }
609 609

	
610 610
    /// \brief Execute copying.
611 611
    ///
612 612
    /// This function executes the copying of the digraph along with the
613 613
    /// copying of the assigned data.
614 614
    void run() {
615 615
      NodeRefMap nodeRefMap(_from);
616 616
      ArcRefMap arcRefMap(_from);
617 617
      _core_bits::DigraphCopySelector<To>::
618 618
        copy(_from, _to, nodeRefMap, arcRefMap);
619 619
      for (int i = 0; i < int(_node_maps.size()); ++i) {
620 620
        _node_maps[i]->copy(_from, nodeRefMap);
621 621
      }
622 622
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
623 623
        _arc_maps[i]->copy(_from, arcRefMap);
624 624
      }
625 625
    }
626 626

	
627 627
  protected:
628 628

	
629 629
    const From& _from;
630 630
    To& _to;
631 631

	
632 632
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
633 633
      _node_maps;
634 634

	
635 635
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
636 636
      _arc_maps;
637 637

	
638 638
  };
639 639

	
640 640
  /// \brief Copy a digraph to another digraph.
641 641
  ///
642 642
  /// This function copies a digraph to another digraph.
643 643
  /// The complete usage of it is detailed in the DigraphCopy class, but
644 644
  /// a short example shows a basic work:
645 645
  ///\code
646 646
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
647 647
  ///\endcode
648 648
  ///
649 649
  /// After the copy the \c nr map will contain the mapping from the
650 650
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
651 651
  /// \c acr will contain the mapping from the arcs of the \c to digraph
652 652
  /// to the arcs of the \c from digraph.
653 653
  ///
654 654
  /// \see DigraphCopy
655 655
  template <typename From, typename To>
656 656
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
657 657
    return DigraphCopy<From, To>(from, to);
658 658
  }
659 659

	
660 660
  /// \brief Class to copy a graph.
661 661
  ///
662 662
  /// Class to copy a graph to another graph (duplicate a graph). The
663 663
  /// simplest way of using it is through the \c graphCopy() function.
664 664
  ///
665 665
  /// This class not only make a copy of a graph, but it can create
666 666
  /// references and cross references between the nodes, edges and arcs of
667 667
  /// the two graphs, and it can copy maps for using with the newly created
668 668
  /// graph.
669 669
  ///
670 670
  /// To make a copy from a graph, first an instance of GraphCopy
671 671
  /// should be created, then the data belongs to the graph should
672 672
  /// assigned to copy. In the end, the \c run() member should be
673 673
  /// called.
674 674
  ///
675 675
  /// The next code copies a graph with several data:
676 676
  ///\code
677 677
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
678 678
  ///  // Create references for the nodes
679 679
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
680 680
  ///  cg.nodeRef(nr);
681 681
  ///  // Create cross references (inverse) for the edges
682 682
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
683 683
  ///  cg.edgeCrossRef(ecr);
684 684
  ///  // Copy an edge map
685 685
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
686 686
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
687 687
  ///  cg.edgeMap(oemap, nemap);
688 688
  ///  // Copy a node
689 689
  ///  OrigGraph::Node on;
690 690
  ///  NewGraph::Node nn;
691 691
  ///  cg.node(on, nn);
692 692
  ///  // Execute copying
693 693
  ///  cg.run();
694 694
  ///\endcode
695 695
  template <typename From, typename To>
696 696
  class GraphCopy {
697 697
  private:
698 698

	
699 699
    typedef typename From::Node Node;
700 700
    typedef typename From::NodeIt NodeIt;
701 701
    typedef typename From::Arc Arc;
702 702
    typedef typename From::ArcIt ArcIt;
703 703
    typedef typename From::Edge Edge;
704 704
    typedef typename From::EdgeIt EdgeIt;
705 705

	
706 706
    typedef typename To::Node TNode;
707 707
    typedef typename To::Arc TArc;
708 708
    typedef typename To::Edge TEdge;
709 709

	
710 710
    typedef typename From::template NodeMap<TNode> NodeRefMap;
711 711
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
712 712

	
713 713
    struct ArcRefMap {
714 714
      ArcRefMap(const From& from, const To& to,
715 715
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
716 716
        : _from(from), _to(to),
717 717
          _edge_ref(edge_ref), _node_ref(node_ref) {}
718 718

	
719 719
      typedef typename From::Arc Key;
720 720
      typedef typename To::Arc Value;
721 721

	
722 722
      Value operator[](const Key& key) const {
723 723
        bool forward = _from.u(key) != _from.v(key) ?
724 724
          _node_ref[_from.source(key)] ==
725 725
          _to.source(_to.direct(_edge_ref[key], true)) :
726 726
          _from.direction(key);
727 727
        return _to.direct(_edge_ref[key], forward);
728 728
      }
729 729

	
730 730
      const From& _from;
731 731
      const To& _to;
732 732
      const EdgeRefMap& _edge_ref;
733 733
      const NodeRefMap& _node_ref;
734 734
    };
735 735

	
736 736
  public:
737 737

	
738 738
    /// \brief Constructor of GraphCopy.
739 739
    ///
740 740
    /// Constructor of GraphCopy for copying the content of the
741 741
    /// \c from graph into the \c to graph.
742 742
    GraphCopy(const From& from, To& to)
743 743
      : _from(from), _to(to) {}
744 744

	
745 745
    /// \brief Destructor of GraphCopy
746 746
    ///
747 747
    /// Destructor of GraphCopy.
748 748
    ~GraphCopy() {
749 749
      for (int i = 0; i < int(_node_maps.size()); ++i) {
750 750
        delete _node_maps[i];
751 751
      }
752 752
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
753 753
        delete _arc_maps[i];
754 754
      }
755 755
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
756 756
        delete _edge_maps[i];
757 757
      }
758 758
    }
759 759

	
760 760
    /// \brief Copy the node references into the given map.
761 761
    ///
762 762
    /// This function copies the node references into the given map.
763 763
    /// The parameter should be a map, whose key type is the Node type of
764 764
    /// the source graph, while the value type is the Node type of the
765 765
    /// destination graph.
766 766
    template <typename NodeRef>
767 767
    GraphCopy& nodeRef(NodeRef& map) {
768 768
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
769 769
                           NodeRefMap, NodeRef>(map));
770 770
      return *this;
771 771
    }
772 772

	
773 773
    /// \brief Copy the node cross references into the given map.
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DFS_H
20 20
#define LEMON_DFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief DFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Dfs class.
36 36

	
37 37
  ///Default traits class of Dfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct DfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the %DFS paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the %DFS paths.
50 50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a PredMap.
53 53

	
54 54
    ///This function instantiates a PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
66 66
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67 67
    ///Instantiates a ProcessedMap.
68 68

	
69 69
    ///This function instantiates a ProcessedMap.
70 70
    ///\param g is the digraph, to which
71 71
    ///we would like to define the ProcessedMap
72 72
#ifdef DOXYGEN
73 73
    static ProcessedMap *createProcessedMap(const Digraph &g)
74 74
#else
75 75
    static ProcessedMap *createProcessedMap(const Digraph &)
76 76
#endif
77 77
    {
78 78
      return new ProcessedMap();
79 79
    }
80 80

	
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86 86
    ///Instantiates a ReachedMap.
87 87

	
88 88
    ///This function instantiates a ReachedMap.
89 89
    ///\param g is the digraph, to which
90 90
    ///we would like to define the ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101 101
    ///Instantiates a DistMap.
102 102

	
103 103
    ///This function instantiates a DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105 105
    ///DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%DFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %DFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref dfs() "function-type interface" for the DFS
118 118
  ///algorithm, which is convenient in the simplier cases and it can be
119 119
  ///used easier.
120 120
  ///
121 121
  ///\tparam GR The type of the digraph the algorithm runs on.
122 122
  ///The default value is \ref ListDigraph. The value of GR is not used
123 123
  ///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits.
124 124
  ///\tparam TR Traits class to set various data types used by the algorithm.
125 125
  ///The default traits class is
126 126
  ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
127 127
  ///See \ref DfsDefaultTraits for the documentation of
128 128
  ///a Dfs traits class.
129 129
#ifdef DOXYGEN
130 130
  template <typename GR,
131 131
            typename TR>
132 132
#else
133 133
  template <typename GR=ListDigraph,
134 134
            typename TR=DfsDefaultTraits<GR> >
135 135
#endif
136 136
  class Dfs {
137 137
  public:
138 138

	
139 139
    ///The type of the digraph the algorithm runs on.
140 140
    typedef typename TR::Digraph Digraph;
141 141

	
142 142
    ///\brief The type of the map that stores the predecessor arcs of the
143 143
    ///DFS paths.
144 144
    typedef typename TR::PredMap PredMap;
145 145
    ///The type of the map that stores the distances of the nodes.
146 146
    typedef typename TR::DistMap DistMap;
147 147
    ///The type of the map that indicates which nodes are reached.
148 148
    typedef typename TR::ReachedMap ReachedMap;
149 149
    ///The type of the map that indicates which nodes are processed.
150 150
    typedef typename TR::ProcessedMap ProcessedMap;
151 151
    ///The type of the paths.
152 152
    typedef PredMapPath<Digraph, PredMap> Path;
153 153

	
154 154
    ///The traits class.
155 155
    typedef TR Traits;
156 156

	
157 157
  private:
158 158

	
159 159
    typedef typename Digraph::Node Node;
160 160
    typedef typename Digraph::NodeIt NodeIt;
161 161
    typedef typename Digraph::Arc Arc;
162 162
    typedef typename Digraph::OutArcIt OutArcIt;
163 163

	
164 164
    //Pointer to the underlying digraph.
165 165
    const Digraph *G;
166 166
    //Pointer to the map of predecessor arcs.
167 167
    PredMap *_pred;
168 168
    //Indicates if _pred is locally allocated (true) or not.
169 169
    bool local_pred;
170 170
    //Pointer to the map of distances.
171 171
    DistMap *_dist;
172 172
    //Indicates if _dist is locally allocated (true) or not.
173 173
    bool local_dist;
174 174
    //Pointer to the map of reached status of the nodes.
175 175
    ReachedMap *_reached;
176 176
    //Indicates if _reached is locally allocated (true) or not.
177 177
    bool local_reached;
178 178
    //Pointer to the map of processed status of the nodes.
179 179
    ProcessedMap *_processed;
180 180
    //Indicates if _processed is locally allocated (true) or not.
181 181
    bool local_processed;
182 182

	
183 183
    std::vector<typename Digraph::OutArcIt> _stack;
184 184
    int _stack_head;
185 185

	
186 186
    //Creates the maps if necessary.
187 187
    void create_maps()
188 188
    {
189 189
      if(!_pred) {
190 190
        local_pred = true;
191 191
        _pred = Traits::createPredMap(*G);
192 192
      }
193 193
      if(!_dist) {
194 194
        local_dist = true;
195 195
        _dist = Traits::createDistMap(*G);
196 196
      }
197 197
      if(!_reached) {
198 198
        local_reached = true;
199 199
        _reached = Traits::createReachedMap(*G);
200 200
      }
201 201
      if(!_processed) {
202 202
        local_processed = true;
203 203
        _processed = Traits::createProcessedMap(*G);
204 204
      }
205 205
    }
206 206

	
207 207
  protected:
208 208

	
209 209
    Dfs() {}
210 210

	
211 211
  public:
212 212

	
213 213
    typedef Dfs Create;
214 214

	
215 215
    ///\name Named template parameters
216 216

	
217 217
    ///@{
218 218

	
219 219
    template <class T>
220 220
    struct SetPredMapTraits : public Traits {
221 221
      typedef T PredMap;
222 222
      static PredMap *createPredMap(const Digraph &)
223 223
      {
224 224
        LEMON_ASSERT(false, "PredMap is not initialized");
225 225
        return 0; // ignore warnings
226 226
      }
227 227
    };
228 228
    ///\brief \ref named-templ-param "Named parameter" for setting
229 229
    ///PredMap type.
230 230
    ///
231 231
    ///\ref named-templ-param "Named parameter" for setting
232 232
    ///PredMap type.
233 233
    template <class T>
234 234
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
235 235
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
236 236
    };
237 237

	
238 238
    template <class T>
239 239
    struct SetDistMapTraits : public Traits {
240 240
      typedef T DistMap;
241 241
      static DistMap *createDistMap(const Digraph &)
242 242
      {
243 243
        LEMON_ASSERT(false, "DistMap is not initialized");
244 244
        return 0; // ignore warnings
245 245
      }
246 246
    };
247 247
    ///\brief \ref named-templ-param "Named parameter" for setting
248 248
    ///DistMap type.
249 249
    ///
250 250
    ///\ref named-templ-param "Named parameter" for setting
251 251
    ///DistMap type.
252 252
    template <class T>
253 253
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
254 254
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
255 255
    };
256 256

	
257 257
    template <class T>
258 258
    struct SetReachedMapTraits : public Traits {
259 259
      typedef T ReachedMap;
260 260
      static ReachedMap *createReachedMap(const Digraph &)
261 261
      {
262 262
        LEMON_ASSERT(false, "ReachedMap is not initialized");
263 263
        return 0; // ignore warnings
264 264
      }
265 265
    };
266 266
    ///\brief \ref named-templ-param "Named parameter" for setting
267 267
    ///ReachedMap type.
268 268
    ///
269 269
    ///\ref named-templ-param "Named parameter" for setting
270 270
    ///ReachedMap type.
271 271
    template <class T>
272 272
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
273 273
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
274 274
    };
275 275

	
276 276
    template <class T>
277 277
    struct SetProcessedMapTraits : public Traits {
278 278
      typedef T ProcessedMap;
279 279
      static ProcessedMap *createProcessedMap(const Digraph &)
280 280
      {
281 281
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
282 282
        return 0; // ignore warnings
283 283
      }
284 284
    };
285 285
    ///\brief \ref named-templ-param "Named parameter" for setting
286 286
    ///ProcessedMap type.
287 287
    ///
288 288
    ///\ref named-templ-param "Named parameter" for setting
289 289
    ///ProcessedMap type.
290 290
    template <class T>
291 291
    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
292 292
      typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
293 293
    };
294 294

	
295 295
    struct SetStandardProcessedMapTraits : public Traits {
296 296
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
297 297
      static ProcessedMap *createProcessedMap(const Digraph &g)
298 298
      {
299 299
        return new ProcessedMap(g);
300 300
      }
301 301
    };
302 302
    ///\brief \ref named-templ-param "Named parameter" for setting
303 303
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
304 304
    ///
305 305
    ///\ref named-templ-param "Named parameter" for setting
306 306
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
307 307
    ///If you don't set it explicitly, it will be automatically allocated.
308 308
    struct SetStandardProcessedMap :
309 309
      public Dfs< Digraph, SetStandardProcessedMapTraits > {
310 310
      typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
311 311
    };
312 312

	
313 313
    ///@}
314 314

	
315 315
  public:
316 316

	
317 317
    ///Constructor.
318 318

	
319 319
    ///Constructor.
320 320
    ///\param g The digraph the algorithm runs on.
321 321
    Dfs(const Digraph &g) :
322 322
      G(&g),
323 323
      _pred(NULL), local_pred(false),
324 324
      _dist(NULL), local_dist(false),
325 325
      _reached(NULL), local_reached(false),
326 326
      _processed(NULL), local_processed(false)
327 327
    { }
328 328

	
329 329
    ///Destructor.
330 330
    ~Dfs()
331 331
    {
332 332
      if(local_pred) delete _pred;
333 333
      if(local_dist) delete _dist;
334 334
      if(local_reached) delete _reached;
335 335
      if(local_processed) delete _processed;
336 336
    }
337 337

	
338 338
    ///Sets the map that stores the predecessor arcs.
339 339

	
340 340
    ///Sets the map that stores the predecessor arcs.
341 341
    ///If you don't use this function before calling \ref run(),
342 342
    ///it will allocate one. The destructor deallocates this
343 343
    ///automatically allocated map, of course.
344 344
    ///\return <tt> (*this) </tt>
345 345
    Dfs &predMap(PredMap &m)
346 346
    {
347 347
      if(local_pred) {
348 348
        delete _pred;
349 349
        local_pred=false;
350 350
      }
351 351
      _pred = &m;
352 352
      return *this;
353 353
    }
354 354

	
355 355
    ///Sets the map that indicates which nodes are reached.
356 356

	
357 357
    ///Sets the map that indicates which nodes are reached.
358 358
    ///If you don't use this function before calling \ref run(),
359 359
    ///it will allocate one. The destructor deallocates this
360 360
    ///automatically allocated map, of course.
361 361
    ///\return <tt> (*this) </tt>
362 362
    Dfs &reachedMap(ReachedMap &m)
363 363
    {
364 364
      if(local_reached) {
365 365
        delete _reached;
366 366
        local_reached=false;
367 367
      }
368 368
      _reached = &m;
369 369
      return *this;
370 370
    }
371 371

	
372 372
    ///Sets the map that indicates which nodes are processed.
373 373

	
374 374
    ///Sets the map that indicates which nodes are processed.
375 375
    ///If you don't use this function before calling \ref run(),
376 376
    ///it will allocate one. The destructor deallocates this
377 377
    ///automatically allocated map, of course.
378 378
    ///\return <tt> (*this) </tt>
379 379
    Dfs &processedMap(ProcessedMap &m)
380 380
    {
381 381
      if(local_processed) {
382 382
        delete _processed;
383 383
        local_processed=false;
384 384
      }
385 385
      _processed = &m;
386 386
      return *this;
387 387
    }
388 388

	
389 389
    ///Sets the map that stores the distances of the nodes.
390 390

	
391 391
    ///Sets the map that stores the distances of the nodes calculated by
392 392
    ///the algorithm.
393 393
    ///If you don't use this function before calling \ref run(),
394 394
    ///it will allocate one. The destructor deallocates this
395 395
    ///automatically allocated map, of course.
396 396
    ///\return <tt> (*this) </tt>
397 397
    Dfs &distMap(DistMap &m)
398 398
    {
399 399
      if(local_dist) {
400 400
        delete _dist;
401 401
        local_dist=false;
402 402
      }
403 403
      _dist = &m;
404 404
      return *this;
405 405
    }
406 406

	
407 407
  public:
408 408

	
409 409
    ///\name Execution control
410 410
    ///The simplest way to execute the algorithm is to use
411 411
    ///one of the member functions called \ref lemon::Dfs::run() "run()".
412 412
    ///\n
413 413
    ///If you need more control on the execution, first you must call
414 414
    ///\ref lemon::Dfs::init() "init()", then you can add a source node
415 415
    ///with \ref lemon::Dfs::addSource() "addSource()".
416 416
    ///Finally \ref lemon::Dfs::start() "start()" will perform the
417 417
    ///actual path computation.
418 418

	
419 419
    ///@{
420 420

	
421 421
    ///Initializes the internal data structures.
422 422

	
423 423
    ///Initializes the internal data structures.
424 424
    ///
425 425
    void init()
426 426
    {
427 427
      create_maps();
428 428
      _stack.resize(countNodes(*G));
429 429
      _stack_head=-1;
430 430
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
431 431
        _pred->set(u,INVALID);
432 432
        _reached->set(u,false);
433 433
        _processed->set(u,false);
434 434
      }
435 435
    }
436 436

	
437 437
    ///Adds a new source node.
438 438

	
439 439
    ///Adds a new source node to the set of nodes to be processed.
440 440
    ///
441 441
    ///\pre The stack must be empty. (Otherwise the algorithm gives
442 442
    ///false results.)
443 443
    ///
444 444
    ///\warning Distances will be wrong (or at least strange) in case of
445 445
    ///multiple sources.
446 446
    void addSource(Node s)
447 447
    {
448 448
      LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
449 449
      if(!(*_reached)[s])
450 450
        {
451 451
          _reached->set(s,true);
452 452
          _pred->set(s,INVALID);
453 453
          OutArcIt e(*G,s);
454 454
          if(e!=INVALID) {
455 455
            _stack[++_stack_head]=e;
456 456
            _dist->set(s,_stack_head);
457 457
          }
458 458
          else {
459 459
            _processed->set(s,true);
460 460
            _dist->set(s,0);
461 461
          }
462 462
        }
463 463
    }
464 464

	
465 465
    ///Processes the next arc.
466 466

	
467 467
    ///Processes the next arc.
468 468
    ///
469 469
    ///\return The processed arc.
470 470
    ///
471 471
    ///\pre The stack must not be empty.
472 472
    Arc processNextArc()
473 473
    {
474 474
      Node m;
475 475
      Arc e=_stack[_stack_head];
476 476
      if(!(*_reached)[m=G->target(e)]) {
477 477
        _pred->set(m,e);
478 478
        _reached->set(m,true);
479 479
        ++_stack_head;
480 480
        _stack[_stack_head] = OutArcIt(*G, m);
481 481
        _dist->set(m,_stack_head);
482 482
      }
483 483
      else {
484 484
        m=G->source(e);
485 485
        ++_stack[_stack_head];
486 486
      }
487 487
      while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
488 488
        _processed->set(m,true);
489 489
        --_stack_head;
490 490
        if(_stack_head>=0) {
491 491
          m=G->source(_stack[_stack_head]);
492 492
          ++_stack[_stack_head];
493 493
        }
494 494
      }
495 495
      return e;
496 496
    }
497 497

	
498 498
    ///Next arc to be processed.
499 499

	
500 500
    ///Next arc to be processed.
501 501
    ///
502 502
    ///\return The next arc to be processed or \c INVALID if the stack
503 503
    ///is empty.
504 504
    OutArcIt nextArc() const
505 505
    {
506 506
      return _stack_head>=0?_stack[_stack_head]:INVALID;
507 507
    }
508 508

	
509 509
    ///\brief Returns \c false if there are nodes
510 510
    ///to be processed.
511 511
    ///
512 512
    ///Returns \c false if there are nodes
513 513
    ///to be processed in the queue (stack).
514 514
    bool emptyQueue() const { return _stack_head<0; }
515 515

	
516 516
    ///Returns the number of the nodes to be processed.
517 517

	
518 518
    ///Returns the number of the nodes to be processed in the queue (stack).
519 519
    int queueSize() const { return _stack_head+1; }
520 520

	
521 521
    ///Executes the algorithm.
522 522

	
523 523
    ///Executes the algorithm.
524 524
    ///
525 525
    ///This method runs the %DFS algorithm from the root node
526 526
    ///in order to compute the DFS path to each node.
527 527
    ///
528 528
    /// The algorithm computes
529 529
    ///- the %DFS tree,
530 530
    ///- the distance of each node from the root in the %DFS tree.
531 531
    ///
532 532
    ///\pre init() must be called and a root node should be
533 533
    ///added with addSource() before using this function.
534 534
    ///
535 535
    ///\note <tt>d.start()</tt> is just a shortcut of the following code.
536 536
    ///\code
537 537
    ///  while ( !d.emptyQueue() ) {
538 538
    ///    d.processNextArc();
539 539
    ///  }
540 540
    ///\endcode
541 541
    void start()
542 542
    {
543 543
      while ( !emptyQueue() ) processNextArc();
544 544
    }
545 545

	
546 546
    ///Executes the algorithm until the given target node is reached.
547 547

	
548 548
    ///Executes the algorithm until the given target node is reached.
549 549
    ///
550 550
    ///This method runs the %DFS algorithm from the root node
551 551
    ///in order to compute the DFS path to \c t.
552 552
    ///
553 553
    ///The algorithm computes
554 554
    ///- the %DFS path to \c t,
555 555
    ///- the distance of \c t from the root in the %DFS tree.
556 556
    ///
557 557
    ///\pre init() must be called and a root node should be
558 558
    ///added with addSource() before using this function.
559 559
    void start(Node t)
560 560
    {
561 561
      while ( !emptyQueue() && !(*_reached)[t] )
562 562
        processNextArc();
563 563
    }
564 564

	
565 565
    ///Executes the algorithm until a condition is met.
566 566

	
567 567
    ///Executes the algorithm until a condition is met.
568 568
    ///
569 569
    ///This method runs the %DFS algorithm from the root node
570 570
    ///until an arc \c a with <tt>am[a]</tt> true is found.
571 571
    ///
572 572
    ///\param am A \c bool (or convertible) arc map. The algorithm
573 573
    ///will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
574 574
    ///
575 575
    ///\return The reached arc \c a with <tt>am[a]</tt> true or
576 576
    ///\c INVALID if no such arc was found.
577 577
    ///
578 578
    ///\pre init() must be called and a root node should be
579 579
    ///added with addSource() before using this function.
580 580
    ///
581 581
    ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
582 582
    ///not a node map.
583 583
    template<class ArcBoolMap>
584 584
    Arc start(const ArcBoolMap &am)
585 585
    {
586 586
      while ( !emptyQueue() && !am[_stack[_stack_head]] )
587 587
        processNextArc();
588 588
      return emptyQueue() ? INVALID : _stack[_stack_head];
589 589
    }
590 590

	
591 591
    ///Runs the algorithm from the given source node.
592 592

	
593 593
    ///This method runs the %DFS algorithm from node \c s
594 594
    ///in order to compute the DFS path to each node.
595 595
    ///
596 596
    ///The algorithm computes
597 597
    ///- the %DFS tree,
598 598
    ///- the distance of each node from the root in the %DFS tree.
599 599
    ///
600 600
    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
601 601
    ///\code
602 602
    ///  d.init();
603 603
    ///  d.addSource(s);
604 604
    ///  d.start();
605 605
    ///\endcode
606 606
    void run(Node s) {
607 607
      init();
608 608
      addSource(s);
609 609
      start();
610 610
    }
611 611

	
612 612
    ///Finds the %DFS path between \c s and \c t.
613 613

	
614 614
    ///This method runs the %DFS algorithm from node \c s
615 615
    ///in order to compute the DFS path to node \c t
616 616
    ///(it stops searching when \c t is processed)
617 617
    ///
618 618
    ///\return \c true if \c t is reachable form \c s.
619 619
    ///
620 620
    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is
621 621
    ///just a shortcut of the following code.
622 622
    ///\code
623 623
    ///  d.init();
624 624
    ///  d.addSource(s);
625 625
    ///  d.start(t);
626 626
    ///\endcode
627 627
    bool run(Node s,Node t) {
628 628
      init();
629 629
      addSource(s);
630 630
      start(t);
631 631
      return reached(t);
632 632
    }
633 633

	
634 634
    ///Runs the algorithm to visit all nodes in the digraph.
635 635

	
636 636
    ///This method runs the %DFS algorithm in order to compute the
637 637
    ///%DFS path to each node.
638 638
    ///
639 639
    ///The algorithm computes
640 640
    ///- the %DFS tree,
641 641
    ///- the distance of each node from the root in the %DFS tree.
642 642
    ///
643 643
    ///\note <tt>d.run()</tt> is just a shortcut of the following code.
644 644
    ///\code
645 645
    ///  d.init();
646 646
    ///  for (NodeIt n(digraph); n != INVALID; ++n) {
647 647
    ///    if (!d.reached(n)) {
648 648
    ///      d.addSource(n);
649 649
    ///      d.start();
650 650
    ///    }
651 651
    ///  }
652 652
    ///\endcode
653 653
    void run() {
654 654
      init();
655 655
      for (NodeIt it(*G); it != INVALID; ++it) {
656 656
        if (!reached(it)) {
657 657
          addSource(it);
658 658
          start();
659 659
        }
660 660
      }
661 661
    }
662 662

	
663 663
    ///@}
664 664

	
665 665
    ///\name Query Functions
666 666
    ///The result of the %DFS algorithm can be obtained using these
667 667
    ///functions.\n
668 668
    ///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start()
669 669
    ///"start()" must be called before using them.
670 670

	
671 671
    ///@{
672 672

	
673 673
    ///The DFS path to a node.
674 674

	
675 675
    ///Returns the DFS path to a node.
676 676
    ///
677 677
    ///\warning \c t should be reachable from the root.
678 678
    ///
679 679
    ///\pre Either \ref run() or \ref start() must be called before
680 680
    ///using this function.
681 681
    Path path(Node t) const { return Path(*G, *_pred, t); }
682 682

	
683 683
    ///The distance of a node from the root.
684 684

	
685 685
    ///Returns the distance of a node from the root.
686 686
    ///
687 687
    ///\warning If node \c v is not reachable from the root, then
688 688
    ///the return value of this function is undefined.
689 689
    ///
690 690
    ///\pre Either \ref run() or \ref start() must be called before
691 691
    ///using this function.
692 692
    int dist(Node v) const { return (*_dist)[v]; }
693 693

	
694 694
    ///Returns the 'previous arc' of the %DFS tree for a node.
695 695

	
696 696
    ///This function returns the 'previous arc' of the %DFS tree for the
697 697
    ///node \c v, i.e. it returns the last arc of a %DFS path from the
698 698
    ///root to \c v. It is \c INVALID
699 699
    ///if \c v is not reachable from the root(s) or if \c v is a root.
700 700
    ///
701 701
    ///The %DFS tree used here is equal to the %DFS tree used in
702 702
    ///\ref predNode().
703 703
    ///
704 704
    ///\pre Either \ref run() or \ref start() must be called before using
705 705
    ///this function.
706 706
    Arc predArc(Node v) const { return (*_pred)[v];}
707 707

	
708 708
    ///Returns the 'previous node' of the %DFS tree.
709 709

	
710 710
    ///This function returns the 'previous node' of the %DFS
711 711
    ///tree for the node \c v, i.e. it returns the last but one node
712 712
    ///from a %DFS path from the root to \c v. It is \c INVALID
713 713
    ///if \c v is not reachable from the root(s) or if \c v is a root.
714 714
    ///
715 715
    ///The %DFS tree used here is equal to the %DFS tree used in
716 716
    ///\ref predArc().
717 717
    ///
718 718
    ///\pre Either \ref run() or \ref start() must be called before
719 719
    ///using this function.
720 720
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
721 721
                                  G->source((*_pred)[v]); }
722 722

	
723 723
    ///\brief Returns a const reference to the node map that stores the
724 724
    ///distances of the nodes.
725 725
    ///
726 726
    ///Returns a const reference to the node map that stores the
727 727
    ///distances of the nodes calculated by the algorithm.
728 728
    ///
729 729
    ///\pre Either \ref run() or \ref init()
730 730
    ///must be called before using this function.
731 731
    const DistMap &distMap() const { return *_dist;}
732 732

	
733 733
    ///\brief Returns a const reference to the node map that stores the
734 734
    ///predecessor arcs.
735 735
    ///
736 736
    ///Returns a const reference to the node map that stores the predecessor
737 737
    ///arcs, which form the DFS tree.
738 738
    ///
739 739
    ///\pre Either \ref run() or \ref init()
740 740
    ///must be called before using this function.
741 741
    const PredMap &predMap() const { return *_pred;}
742 742

	
743 743
    ///Checks if a node is reachable from the root(s).
744 744

	
745 745
    ///Returns \c true if \c v is reachable from the root(s).
746 746
    ///\pre Either \ref run() or \ref start()
747 747
    ///must be called before using this function.
748 748
    bool reached(Node v) const { return (*_reached)[v]; }
749 749

	
750 750
    ///@}
751 751
  };
752 752

	
753 753
  ///Default traits class of dfs() function.
754 754

	
755 755
  ///Default traits class of dfs() function.
756 756
  ///\tparam GR Digraph type.
757 757
  template<class GR>
758 758
  struct DfsWizardDefaultTraits
759 759
  {
760 760
    ///The type of the digraph the algorithm runs on.
761 761
    typedef GR Digraph;
762 762

	
763 763
    ///\brief The type of the map that stores the predecessor
764 764
    ///arcs of the %DFS paths.
765 765
    ///
766 766
    ///The type of the map that stores the predecessor
767 767
    ///arcs of the %DFS paths.
768 768
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
769 769
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
770 770
    ///Instantiates a PredMap.
771 771

	
772 772
    ///This function instantiates a PredMap.
773 773
    ///\param g is the digraph, to which we would like to define the
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GRAPH_TO_EPS_H
20 20
#define LEMON_GRAPH_TO_EPS_H
21 21

	
22 22
#include<iostream>
23 23
#include<fstream>
24 24
#include<sstream>
25 25
#include<algorithm>
26 26
#include<vector>
27 27

	
28 28
#ifndef WIN32
29 29
#include<sys/time.h>
30 30
#include<ctime>
31 31
#else
32 32
#include<lemon/bits/windows.h>
33 33
#endif
34 34

	
35 35
#include<lemon/math.h>
36 36
#include<lemon/core.h>
37 37
#include<lemon/dim2.h>
38 38
#include<lemon/maps.h>
39 39
#include<lemon/color.h>
40 40
#include<lemon/bits/bezier.h>
41 41
#include<lemon/error.h>
42 42

	
43 43

	
44 44
///\ingroup eps_io
45 45
///\file
46 46
///\brief A well configurable tool for visualizing graphs
47 47

	
48 48
namespace lemon {
49 49

	
50 50
  namespace _graph_to_eps_bits {
51 51
    template<class MT>
52 52
    class _NegY {
53 53
    public:
54 54
      typedef typename MT::Key Key;
55 55
      typedef typename MT::Value Value;
56 56
      const MT &map;
57 57
      int yscale;
58 58
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
59 59
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
60 60
    };
61 61
  }
62 62

	
63 63
///Default traits class of GraphToEps
64 64

	
65 65
///Default traits class of \ref GraphToEps.
66 66
///
67 67
///\c G is the type of the underlying graph.
68 68
template<class G>
69 69
struct DefaultGraphToEpsTraits
70 70
{
71 71
  typedef G Graph;
72 72
  typedef typename Graph::Node Node;
73 73
  typedef typename Graph::NodeIt NodeIt;
74 74
  typedef typename Graph::Arc Arc;
75 75
  typedef typename Graph::ArcIt ArcIt;
76 76
  typedef typename Graph::InArcIt InArcIt;
77 77
  typedef typename Graph::OutArcIt OutArcIt;
78 78

	
79 79

	
80 80
  const Graph &g;
81 81

	
82 82
  std::ostream& os;
83 83

	
84 84
  typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
85 85
  CoordsMapType _coords;
86 86
  ConstMap<typename Graph::Node,double > _nodeSizes;
87 87
  ConstMap<typename Graph::Node,int > _nodeShapes;
88 88

	
89 89
  ConstMap<typename Graph::Node,Color > _nodeColors;
90 90
  ConstMap<typename Graph::Arc,Color > _arcColors;
91 91

	
92 92
  ConstMap<typename Graph::Arc,double > _arcWidths;
93 93

	
94 94
  double _arcWidthScale;
95 95

	
96 96
  double _nodeScale;
97 97
  double _xBorder, _yBorder;
98 98
  double _scale;
99 99
  double _nodeBorderQuotient;
100 100

	
101 101
  bool _drawArrows;
102 102
  double _arrowLength, _arrowWidth;
103 103

	
104 104
  bool _showNodes, _showArcs;
105 105

	
106 106
  bool _enableParallel;
107 107
  double _parArcDist;
108 108

	
109 109
  bool _showNodeText;
110 110
  ConstMap<typename Graph::Node,bool > _nodeTexts;
111 111
  double _nodeTextSize;
112 112

	
113 113
  bool _showNodePsText;
114 114
  ConstMap<typename Graph::Node,bool > _nodePsTexts;
115 115
  char *_nodePsTextsPreamble;
116 116

	
117 117
  bool _undirected;
118 118

	
119 119
  bool _pleaseRemoveOsStream;
120 120

	
121 121
  bool _scaleToA4;
122 122

	
123 123
  std::string _title;
124 124
  std::string _copyright;
125 125

	
126 126
  enum NodeTextColorType
127 127
    { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
128 128
  ConstMap<typename Graph::Node,Color > _nodeTextColors;
129 129

	
130 130
  bool _autoNodeScale;
131 131
  bool _autoArcWidthScale;
132 132

	
133 133
  bool _absoluteNodeSizes;
134 134
  bool _absoluteArcWidths;
135 135

	
136 136
  bool _negY;
137 137

	
138 138
  bool _preScale;
139 139
  ///Constructor
140 140

	
141 141
  ///Constructor
142 142
  ///\param _g  Reference to the graph to be printed.
143 143
  ///\param _os Reference to the output stream.
144 144
  ///\param _os Reference to the output stream.
145 145
  ///By default it is <tt>std::cout</tt>.
146 146
  ///\param _pros If it is \c true, then the \c ostream referenced by \c _os
147 147
  ///will be explicitly deallocated by the destructor.
148 148
  DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout,
149 149
                          bool _pros=false) :
150 150
    g(_g), os(_os),
151 151
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
152 152
    _nodeColors(WHITE), _arcColors(BLACK),
153 153
    _arcWidths(1.0), _arcWidthScale(0.003),
154 154
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
155 155
    _nodeBorderQuotient(.1),
156 156
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
157 157
    _showNodes(true), _showArcs(true),
158 158
    _enableParallel(false), _parArcDist(1),
159 159
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
160 160
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
161 161
    _undirected(lemon::UndirectedTagIndicator<G>::value),
162 162
    _pleaseRemoveOsStream(_pros), _scaleToA4(false),
163 163
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
164 164
    _autoNodeScale(false),
165 165
    _autoArcWidthScale(false),
166 166
    _absoluteNodeSizes(false),
167 167
    _absoluteArcWidths(false),
168 168
    _negY(false),
169 169
    _preScale(true)
170 170
  {}
171 171
};
172 172

	
173 173
///Auxiliary class to implement the named parameters of \ref graphToEps()
174 174

	
175 175
///Auxiliary class to implement the named parameters of \ref graphToEps().
176 176
///
177 177
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
178 178
template<class T> class GraphToEps : public T
179 179
{
180 180
  // Can't believe it is required by the C++ standard
181 181
  using T::g;
182 182
  using T::os;
183 183

	
184 184
  using T::_coords;
185 185
  using T::_nodeSizes;
186 186
  using T::_nodeShapes;
187 187
  using T::_nodeColors;
188 188
  using T::_arcColors;
189 189
  using T::_arcWidths;
190 190

	
191 191
  using T::_arcWidthScale;
192 192
  using T::_nodeScale;
193 193
  using T::_xBorder;
194 194
  using T::_yBorder;
195 195
  using T::_scale;
196 196
  using T::_nodeBorderQuotient;
197 197

	
198 198
  using T::_drawArrows;
199 199
  using T::_arrowLength;
200 200
  using T::_arrowWidth;
201 201

	
202 202
  using T::_showNodes;
203 203
  using T::_showArcs;
204 204

	
205 205
  using T::_enableParallel;
206 206
  using T::_parArcDist;
207 207

	
208 208
  using T::_showNodeText;
209 209
  using T::_nodeTexts;
210 210
  using T::_nodeTextSize;
211 211

	
212 212
  using T::_showNodePsText;
213 213
  using T::_nodePsTexts;
214 214
  using T::_nodePsTextsPreamble;
215 215

	
216 216
  using T::_undirected;
217 217

	
218 218
  using T::_pleaseRemoveOsStream;
219 219

	
220 220
  using T::_scaleToA4;
221 221

	
222 222
  using T::_title;
223 223
  using T::_copyright;
224 224

	
225 225
  using T::NodeTextColorType;
226 226
  using T::CUST_COL;
227 227
  using T::DIST_COL;
228 228
  using T::DIST_BW;
229 229
  using T::_nodeTextColorType;
230 230
  using T::_nodeTextColors;
231 231

	
232 232
  using T::_autoNodeScale;
233 233
  using T::_autoArcWidthScale;
234 234

	
235 235
  using T::_absoluteNodeSizes;
236 236
  using T::_absoluteArcWidths;
237 237

	
238 238

	
239 239
  using T::_negY;
240 240
  using T::_preScale;
241 241

	
242 242
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
243 243

	
244 244
  typedef typename T::Graph Graph;
245 245
  typedef typename Graph::Node Node;
246 246
  typedef typename Graph::NodeIt NodeIt;
247 247
  typedef typename Graph::Arc Arc;
248 248
  typedef typename Graph::ArcIt ArcIt;
249 249
  typedef typename Graph::InArcIt InArcIt;
250 250
  typedef typename Graph::OutArcIt OutArcIt;
251 251

	
252 252
  static const int INTERPOL_PREC;
253 253
  static const double A4HEIGHT;
254 254
  static const double A4WIDTH;
255 255
  static const double A4BORDER;
256 256

	
257 257
  bool dontPrint;
258 258

	
259 259
public:
260 260
  ///Node shapes
261 261

	
262 262
  ///Node shapes.
263 263
  ///
264 264
  enum NodeShapes {
265 265
    /// = 0
266 266
    ///\image html nodeshape_0.png
267 267
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
268 268
    CIRCLE=0,
269 269
    /// = 1
270 270
    ///\image html nodeshape_1.png
271 271
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
272 272
    ///
273 273
    SQUARE=1,
274 274
    /// = 2
275 275
    ///\image html nodeshape_2.png
276 276
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
277 277
    ///
278 278
    DIAMOND=2,
279 279
    /// = 3
280 280
    ///\image html nodeshape_3.png
281 281
    ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm
282 282
    ///
283 283
    MALE=3,
284 284
    /// = 4
285 285
    ///\image html nodeshape_4.png
286 286
    ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm
287 287
    ///
288 288
    FEMALE=4
289 289
  };
290 290

	
291 291
private:
292 292
  class arcLess {
293 293
    const Graph &g;
294 294
  public:
295 295
    arcLess(const Graph &_g) : g(_g) {}
296 296
    bool operator()(Arc a,Arc b) const
297 297
    {
298 298
      Node ai=std::min(g.source(a),g.target(a));
299 299
      Node aa=std::max(g.source(a),g.target(a));
300 300
      Node bi=std::min(g.source(b),g.target(b));
301 301
      Node ba=std::max(g.source(b),g.target(b));
302 302
      return ai<bi ||
303 303
        (ai==bi && (aa < ba ||
304 304
                    (aa==ba && ai==g.source(a) && bi==g.target(b))));
305 305
    }
306 306
  };
307 307
  bool isParallel(Arc e,Arc f) const
308 308
  {
309 309
    return (g.source(e)==g.source(f)&&
310 310
            g.target(e)==g.target(f)) ||
311 311
      (g.source(e)==g.target(f)&&
312 312
       g.target(e)==g.source(f));
313 313
  }
314 314
  template<class TT>
315 315
  static std::string psOut(const dim2::Point<TT> &p)
316 316
    {
317 317
      std::ostringstream os;
318 318
      os << p.x << ' ' << p.y;
319 319
      return os.str();
320 320
    }
321 321
  static std::string psOut(const Color &c)
322 322
    {
323 323
      std::ostringstream os;
324 324
      os << c.red() << ' ' << c.green() << ' ' << c.blue();
325 325
      return os.str();
326 326
    }
327 327

	
328 328
public:
329 329
  GraphToEps(const T &t) : T(t), dontPrint(false) {};
330 330

	
331 331
  template<class X> struct CoordsTraits : public T {
332 332
  typedef X CoordsMapType;
333 333
    const X &_coords;
334 334
    CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
335 335
  };
336 336
  ///Sets the map of the node coordinates
337 337

	
338 338
  ///Sets the map of the node coordinates.
339 339
  ///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
340 340
  ///\ref dim2::Point "dim2::Point<int>" values.
341 341
  template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
342 342
    dontPrint=true;
343 343
    return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
344 344
  }
345 345
  template<class X> struct NodeSizesTraits : public T {
346 346
    const X &_nodeSizes;
347 347
    NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
348 348
  };
349 349
  ///Sets the map of the node sizes
350 350

	
351 351
  ///Sets the map of the node sizes.
352 352
  ///\param x must be a node map with \c double (or convertible) values.
353 353
  template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
354 354
  {
355 355
    dontPrint=true;
356 356
    return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
357 357
  }
358 358
  template<class X> struct NodeShapesTraits : public T {
359 359
    const X &_nodeShapes;
360 360
    NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
361 361
  };
362 362
  ///Sets the map of the node shapes
363 363

	
364 364
  ///Sets the map of the node shapes.
365 365
  ///The available shape values
366 366
  ///can be found in \ref NodeShapes "enum NodeShapes".
367 367
  ///\param x must be a node map with \c int (or convertible) values.
368 368
  ///\sa NodeShapes
369 369
  template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
370 370
  {
371 371
    dontPrint=true;
372 372
    return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
373 373
  }
374 374
  template<class X> struct NodeTextsTraits : public T {
375 375
    const X &_nodeTexts;
376 376
    NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
377 377
  };
378 378
  ///Sets the text printed on the nodes
379 379

	
380 380
  ///Sets the text printed on the nodes.
381 381
  ///\param x must be a node map with type that can be pushed to a standard
382 382
  ///\c ostream.
383 383
  template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
384 384
  {
385 385
    dontPrint=true;
386 386
    _showNodeText=true;
387 387
    return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
388 388
  }
389 389
  template<class X> struct NodePsTextsTraits : public T {
390 390
    const X &_nodePsTexts;
391 391
    NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
392 392
  };
393 393
  ///Inserts a PostScript block to the nodes
394 394

	
395 395
  ///With this command it is possible to insert a verbatim PostScript
396 396
  ///block to the nodes.
397 397
  ///The PS current point will be moved to the center of the node before
398 398
  ///the PostScript block inserted.
399 399
  ///
400 400
  ///Before and after the block a newline character is inserted so you
401 401
  ///don't have to bother with the separators.
402 402
  ///
403 403
  ///\param x must be a node map with type that can be pushed to a standard
404 404
  ///\c ostream.
405 405
  ///
406 406
  ///\sa nodePsTextsPreamble()
407 407
  template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
408 408
  {
409 409
    dontPrint=true;
410 410
    _showNodePsText=true;
411 411
    return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
412 412
  }
413 413
  template<class X> struct ArcWidthsTraits : public T {
414 414
    const X &_arcWidths;
415 415
    ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
416 416
  };
417 417
  ///Sets the map of the arc widths
418 418

	
419 419
  ///Sets the map of the arc widths.
420 420
  ///\param x must be an arc map with \c double (or convertible) values.
421 421
  template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
422 422
  {
423 423
    dontPrint=true;
424 424
    return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
425 425
  }
426 426

	
427 427
  template<class X> struct NodeColorsTraits : public T {
428 428
    const X &_nodeColors;
429 429
    NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
430 430
  };
431 431
  ///Sets the map of the node colors
432 432

	
433 433
  ///Sets the map of the node colors.
434 434
  ///\param x must be a node map with \ref Color values.
435 435
  ///
436 436
  ///\sa Palette
437 437
  template<class X> GraphToEps<NodeColorsTraits<X> >
438 438
  nodeColors(const X &x)
439 439
  {
440 440
    dontPrint=true;
441 441
    return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
442 442
  }
443 443
  template<class X> struct NodeTextColorsTraits : public T {
444 444
    const X &_nodeTextColors;
445 445
    NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
446 446
  };
447 447
  ///Sets the map of the node text colors
448 448

	
449 449
  ///Sets the map of the node text colors.
450 450
  ///\param x must be a node map with \ref Color values.
451 451
  ///
452 452
  ///\sa Palette
453 453
  template<class X> GraphToEps<NodeTextColorsTraits<X> >
454 454
  nodeTextColors(const X &x)
455 455
  {
456 456
    dontPrint=true;
457 457
    _nodeTextColorType=CUST_COL;
458 458
    return GraphToEps<NodeTextColorsTraits<X> >
459 459
      (NodeTextColorsTraits<X>(*this,x));
460 460
  }
461 461
  template<class X> struct ArcColorsTraits : public T {
462 462
    const X &_arcColors;
463 463
    ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
464 464
  };
465 465
  ///Sets the map of the arc colors
466 466

	
467 467
  ///Sets the map of the arc colors.
468 468
  ///\param x must be an arc map with \ref Color values.
469 469
  ///
470 470
  ///\sa Palette
471 471
  template<class X> GraphToEps<ArcColorsTraits<X> >
472 472
  arcColors(const X &x)
473 473
  {
474 474
    dontPrint=true;
475 475
    return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
476 476
  }
477 477
  ///Sets a global scale factor for node sizes
478 478

	
479 479
  ///Sets a global scale factor for node sizes.
480 480
  ///
481 481
  /// If nodeSizes() is not given, this function simply sets the node
482 482
  /// sizes to \c d.  If nodeSizes() is given, but
483 483
  /// autoNodeScale() is not, then the node size given by
484 484
  /// nodeSizes() will be multiplied by the value \c d.
485 485
  /// If both nodeSizes() and autoNodeScale() are used, then the
486 486
  /// node sizes will be scaled in such a way that the greatest size will be
487 487
  /// equal to \c d.
488 488
  /// \sa nodeSizes()
489 489
  /// \sa autoNodeScale()
490 490
  GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
491 491
  ///Turns on/off the automatic node size scaling.
492 492

	
493 493
  ///Turns on/off the automatic node size scaling.
494 494
  ///
495 495
  ///\sa nodeScale()
496 496
  ///
497 497
  GraphToEps<T> &autoNodeScale(bool b=true) {
498 498
    _autoNodeScale=b;return *this;
499 499
  }
500 500

	
501 501
  ///Turns on/off the absolutematic node size scaling.
502 502

	
503 503
  ///Turns on/off the absolutematic node size scaling.
504 504
  ///
505 505
  ///\sa nodeScale()
506 506
  ///
507 507
  GraphToEps<T> &absoluteNodeSizes(bool b=true) {
508 508
    _absoluteNodeSizes=b;return *this;
509 509
  }
510 510

	
511 511
  ///Negates the Y coordinates.
512 512
  GraphToEps<T> &negateY(bool b=true) {
513 513
    _negY=b;return *this;
514 514
  }
515 515

	
516 516
  ///Turn on/off pre-scaling
517 517

	
518 518
  ///By default graphToEps() rescales the whole image in order to avoid
519 519
  ///very big or very small bounding boxes.
520 520
  ///
521 521
  ///This (p)rescaling can be turned off with this function.
522 522
  ///
523 523
  GraphToEps<T> &preScale(bool b=true) {
524 524
    _preScale=b;return *this;
525 525
  }
526 526

	
527 527
  ///Sets a global scale factor for arc widths
528 528

	
529 529
  /// Sets a global scale factor for arc widths.
530 530
  ///
531 531
  /// If arcWidths() is not given, this function simply sets the arc
532 532
  /// widths to \c d.  If arcWidths() is given, but
533 533
  /// autoArcWidthScale() is not, then the arc withs given by
534 534
  /// arcWidths() will be multiplied by the value \c d.
535 535
  /// If both arcWidths() and autoArcWidthScale() are used, then the
536 536
  /// arc withs will be scaled in such a way that the greatest width will be
537 537
  /// equal to \c d.
538 538
  GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
539 539
  ///Turns on/off the automatic arc width scaling.
540 540

	
541 541
  ///Turns on/off the automatic arc width scaling.
542 542
  ///
543 543
  ///\sa arcWidthScale()
544 544
  ///
545 545
  GraphToEps<T> &autoArcWidthScale(bool b=true) {
546 546
    _autoArcWidthScale=b;return *this;
547 547
  }
548 548
  ///Turns on/off the absolutematic arc width scaling.
549 549

	
550 550
  ///Turns on/off the absolutematic arc width scaling.
551 551
  ///
552 552
  ///\sa arcWidthScale()
553 553
  ///
554 554
  GraphToEps<T> &absoluteArcWidths(bool b=true) {
555 555
    _absoluteArcWidths=b;return *this;
556 556
  }
557 557
  ///Sets a global scale factor for the whole picture
558 558
  GraphToEps<T> &scale(double d) {_scale=d;return *this;}
559 559
  ///Sets the width of the border around the picture
560 560
  GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
561 561
  ///Sets the width of the border around the picture
562 562
  GraphToEps<T> &border(double x, double y) {
563 563
    _xBorder=x;_yBorder=y;return *this;
564 564
  }
565 565
  ///Sets whether to draw arrows
566 566
  GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
567 567
  ///Sets the length of the arrowheads
568 568
  GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
569 569
  ///Sets the width of the arrowheads
570 570
  GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
571 571

	
572 572
  ///Scales the drawing to fit to A4 page
573 573
  GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
574 574

	
575 575
  ///Enables parallel arcs
576 576
  GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
577 577

	
578 578
  ///Sets the distance between parallel arcs
579 579
  GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
580 580

	
581 581
  ///Hides the arcs
582 582
  GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
583 583
  ///Hides the nodes
584 584
  GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
585 585

	
586 586
  ///Sets the size of the node texts
587 587
  GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
588 588

	
589 589
  ///Sets the color of the node texts to be different from the node color
590 590

	
591 591
  ///Sets the color of the node texts to be as different from the node color
592 592
  ///as it is possible.
593 593
  GraphToEps<T> &distantColorNodeTexts()
594 594
  {_nodeTextColorType=DIST_COL;return *this;}
595 595
  ///Sets the color of the node texts to be black or white and always visible.
596 596

	
597 597
  ///Sets the color of the node texts to be black or white according to
598 598
  ///which is more different from the node color.
599 599
  GraphToEps<T> &distantBWNodeTexts()
600 600
  {_nodeTextColorType=DIST_BW;return *this;}
601 601

	
602 602
  ///Gives a preamble block for node Postscript block.
603 603

	
604 604
  ///Gives a preamble block for node Postscript block.
605 605
  ///
606 606
  ///\sa nodePsTexts()
607 607
  GraphToEps<T> & nodePsTextsPreamble(const char *str) {
608 608
    _nodePsTextsPreamble=str ;return *this;
609 609
  }
610 610
  ///Sets whether the graph is undirected
611 611

	
612 612
  ///Sets whether the graph is undirected.
613 613
  ///
614 614
  ///This setting is the default for undirected graphs.
615 615
  ///
616 616
  ///\sa directed()
617 617
   GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
618 618

	
619 619
  ///Sets whether the graph is directed
620 620

	
621 621
  ///Sets whether the graph is directed.
622 622
  ///Use it to show the edges as a pair of directed ones.
623 623
  ///
624 624
  ///This setting is the default for digraphs.
625 625
  ///
626 626
  ///\sa undirected()
627 627
  GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
628 628

	
629 629
  ///Sets the title.
630 630

	
631 631
  ///Sets the title of the generated image,
632 632
  ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
633 633
  ///the EPS file.
634 634
  GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
635 635
  ///Sets the copyright statement.
636 636

	
637 637
  ///Sets the copyright statement of the generated image,
638 638
  ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
639 639
  ///the EPS file.
640 640
  GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
641 641

	
642 642
protected:
643 643
  bool isInsideNode(dim2::Point<double> p, double r,int t)
644 644
  {
645 645
    switch(t) {
646 646
    case CIRCLE:
647 647
    case MALE:
648 648
    case FEMALE:
649 649
      return p.normSquare()<=r*r;
650 650
    case SQUARE:
651 651
      return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
652 652
    case DIAMOND:
653 653
      return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
654 654
    }
655 655
    return false;
656 656
  }
657 657

	
658 658
public:
659 659
  ~GraphToEps() { }
660 660

	
661 661
  ///Draws the graph.
662 662

	
663 663
  ///Like other functions using
664 664
  ///\ref named-templ-func-param "named template parameters",
665 665
  ///this function calls the algorithm itself, i.e. in this case
666 666
  ///it draws the graph.
667 667
  void run() {
668 668
    const double EPSILON=1e-9;
669 669
    if(dontPrint) return;
670 670

	
671 671
    _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
672 672
      mycoords(_coords,_negY);
673 673

	
674 674
    os << "%!PS-Adobe-2.0 EPSF-2.0\n";
675 675
    if(_title.size()>0) os << "%%Title: " << _title << '\n';
676 676
     if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
677 677
    os << "%%Creator: LEMON, graphToEps()\n";
678 678

	
679 679
    {
680 680
      os << "%%CreationDate: ";
681 681
#ifndef WIN32
682 682
      timeval tv;
683 683
      gettimeofday(&tv, 0);
684 684

	
685 685
      char cbuf[26];
686 686
      ctime_r(&tv.tv_sec,cbuf);
687 687
      os << cbuf;
688 688
#else
689 689
      os << bits::getWinFormattedDate();
690 690
      os << std::endl;
691 691
#endif
692 692
    }
693 693

	
694 694
    if (_autoArcWidthScale) {
695 695
      double max_w=0;
696 696
      for(ArcIt e(g);e!=INVALID;++e)
697 697
        max_w=std::max(double(_arcWidths[e]),max_w);
698 698
      if(max_w>EPSILON) {
699 699
        _arcWidthScale/=max_w;
700 700
      }
701 701
    }
702 702

	
703 703
    if (_autoNodeScale) {
704 704
      double max_s=0;
705 705
      for(NodeIt n(g);n!=INVALID;++n)
706 706
        max_s=std::max(double(_nodeSizes[n]),max_s);
707 707
      if(max_s>EPSILON) {
708 708
        _nodeScale/=max_s;
709 709
      }
710 710
    }
711 711

	
712 712
    double diag_len = 1;
713 713
    if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
714 714
      dim2::Box<double> bb;
715 715
      for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]);
716 716
      if (bb.empty()) {
717 717
        bb = dim2::Box<double>(dim2::Point<double>(0,0));
718 718
      }
719 719
      diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare());
720 720
      if(diag_len<EPSILON) diag_len = 1;
721 721
      if(!_absoluteNodeSizes) _nodeScale*=diag_len;
722 722
      if(!_absoluteArcWidths) _arcWidthScale*=diag_len;
723 723
    }
724 724

	
725 725
    dim2::Box<double> bb;
726 726
    for(NodeIt n(g);n!=INVALID;++n) {
727 727
      double ns=_nodeSizes[n]*_nodeScale;
728 728
      dim2::Point<double> p(ns,ns);
729 729
      switch(_nodeShapes[n]) {
730 730
      case CIRCLE:
731 731
      case SQUARE:
732 732
      case DIAMOND:
733 733
        bb.add(p+mycoords[n]);
734 734
        bb.add(-p+mycoords[n]);
735 735
        break;
736 736
      case MALE:
737 737
        bb.add(-p+mycoords[n]);
738 738
        bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]);
739 739
        break;
740 740
      case FEMALE:
741 741
        bb.add(p+mycoords[n]);
742 742
        bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]);
743 743
        break;
744 744
      }
745 745
    }
746 746
    if (bb.empty()) {
747 747
      bb = dim2::Box<double>(dim2::Point<double>(0,0));
748 748
    }
749 749

	
750 750
    if(_scaleToA4)
751 751
      os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n";
752 752
    else {
753 753
      if(_preScale) {
754 754
        //Rescale so that BoundingBox won't be neither to big nor too small.
755 755
        while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10;
756 756
        while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10;
757 757
      }
758 758

	
759 759
      os << "%%BoundingBox: "
760 760
         << int(floor(bb.left()   * _scale - _xBorder)) << ' '
761 761
         << int(floor(bb.bottom() * _scale - _yBorder)) << ' '
762 762
         << int(ceil(bb.right()  * _scale + _xBorder)) << ' '
763 763
         << int(ceil(bb.top()    * _scale + _yBorder)) << '\n';
764 764
    }
765 765

	
766 766
    os << "%%EndComments\n";
767 767

	
768 768
    //x1 y1 x2 y2 x3 y3 cr cg cb w
769 769
    os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
770 770
       << "      4 2 roll 1 index 1 index curveto stroke } bind def\n";
771 771
    os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
772 772
       << " bind def\n";
773 773
    //x y r
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup lemon_io
20 20
///\file
21 21
///\brief \ref lgf-format "LEMON Graph Format" writer.
22 22

	
23 23

	
24 24
#ifndef LEMON_LGF_WRITER_H
25 25
#define LEMON_LGF_WRITER_H
26 26

	
27 27
#include <iostream>
28 28
#include <fstream>
29 29
#include <sstream>
30 30

	
31 31
#include <algorithm>
32 32

	
33 33
#include <vector>
34 34
#include <functional>
35 35

	
36 36
#include <lemon/core.h>
37 37
#include <lemon/maps.h>
38 38

	
39 39
#include <lemon/concept_check.h>
40 40
#include <lemon/concepts/maps.h>
41 41

	
42 42
namespace lemon {
43 43

	
44 44
  namespace _writer_bits {
45 45

	
46 46
    template <typename Value>
47 47
    struct DefaultConverter {
48 48
      std::string operator()(const Value& value) {
49 49
        std::ostringstream os;
50 50
        os << value;
51 51
        return os.str();
52 52
      }
53 53
    };
54 54

	
55 55
    template <typename T>
56 56
    bool operator<(const T&, const T&) {
57 57
      throw FormatError("Label map is not comparable");
58 58
    }
59 59

	
60 60
    template <typename _Map>
61 61
    class MapLess {
62 62
    public:
63 63
      typedef _Map Map;
64 64
      typedef typename Map::Key Item;
65 65

	
66 66
    private:
67 67
      const Map& _map;
68 68

	
69 69
    public:
70 70
      MapLess(const Map& map) : _map(map) {}
71 71

	
72 72
      bool operator()(const Item& left, const Item& right) {
73 73
        return _map[left] < _map[right];
74 74
      }
75 75
    };
76 76

	
77 77
    template <typename _Graph, bool _dir, typename _Map>
78 78
    class GraphArcMapLess {
79 79
    public:
80 80
      typedef _Map Map;
81 81
      typedef _Graph Graph;
82 82
      typedef typename Graph::Edge Item;
83 83

	
84 84
    private:
85 85
      const Graph& _graph;
86 86
      const Map& _map;
87 87

	
88 88
    public:
89 89
      GraphArcMapLess(const Graph& graph, const Map& map)
90 90
        : _graph(graph), _map(map) {}
91 91

	
92 92
      bool operator()(const Item& left, const Item& right) {
93 93
        return _map[_graph.direct(left, _dir)] <
94 94
          _map[_graph.direct(right, _dir)];
95 95
      }
96 96
    };
97 97

	
98 98
    template <typename _Item>
99 99
    class MapStorageBase {
100 100
    public:
101 101
      typedef _Item Item;
102 102

	
103 103
    public:
104 104
      MapStorageBase() {}
105 105
      virtual ~MapStorageBase() {}
106 106

	
107 107
      virtual std::string get(const Item& item) = 0;
108 108
      virtual void sort(std::vector<Item>&) = 0;
109 109
    };
110 110

	
111 111
    template <typename _Item, typename _Map,
112 112
              typename _Converter = DefaultConverter<typename _Map::Value> >
113 113
    class MapStorage : public MapStorageBase<_Item> {
114 114
    public:
115 115
      typedef _Map Map;
116 116
      typedef _Converter Converter;
117 117
      typedef _Item Item;
118 118

	
119 119
    private:
120 120
      const Map& _map;
121 121
      Converter _converter;
122 122

	
123 123
    public:
124 124
      MapStorage(const Map& map, const Converter& converter = Converter())
125 125
        : _map(map), _converter(converter) {}
126 126
      virtual ~MapStorage() {}
127 127

	
128 128
      virtual std::string get(const Item& item) {
129 129
        return _converter(_map[item]);
130 130
      }
131 131
      virtual void sort(std::vector<Item>& items) {
132 132
        MapLess<Map> less(_map);
133 133
        std::sort(items.begin(), items.end(), less);
134 134
      }
135 135
    };
136 136

	
137 137
    template <typename _Graph, bool _dir, typename _Map,
138 138
              typename _Converter = DefaultConverter<typename _Map::Value> >
139 139
    class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> {
140 140
    public:
141 141
      typedef _Map Map;
142 142
      typedef _Converter Converter;
143 143
      typedef _Graph Graph;
144 144
      typedef typename Graph::Edge Item;
145 145
      static const bool dir = _dir;
146 146

	
147 147
    private:
148 148
      const Graph& _graph;
149 149
      const Map& _map;
150 150
      Converter _converter;
151 151

	
152 152
    public:
153 153
      GraphArcMapStorage(const Graph& graph, const Map& map,
154 154
                         const Converter& converter = Converter())
155 155
        : _graph(graph), _map(map), _converter(converter) {}
156 156
      virtual ~GraphArcMapStorage() {}
157 157

	
158 158
      virtual std::string get(const Item& item) {
159 159
        return _converter(_map[_graph.direct(item, dir)]);
160 160
      }
161 161
      virtual void sort(std::vector<Item>& items) {
162 162
        GraphArcMapLess<Graph, dir, Map> less(_graph, _map);
163 163
        std::sort(items.begin(), items.end(), less);
164 164
      }
165 165
    };
166 166

	
167 167
    class ValueStorageBase {
168 168
    public:
169 169
      ValueStorageBase() {}
170 170
      virtual ~ValueStorageBase() {}
171 171

	
172 172
      virtual std::string get() = 0;
173 173
    };
174 174

	
175 175
    template <typename _Value, typename _Converter = DefaultConverter<_Value> >
176 176
    class ValueStorage : public ValueStorageBase {
177 177
    public:
178 178
      typedef _Value Value;
179 179
      typedef _Converter Converter;
180 180

	
181 181
    private:
182 182
      const Value& _value;
183 183
      Converter _converter;
184 184

	
185 185
    public:
186 186
      ValueStorage(const Value& value, const Converter& converter = Converter())
187 187
        : _value(value), _converter(converter) {}
188 188

	
189 189
      virtual std::string get() {
190 190
        return _converter(_value);
191 191
      }
192 192
    };
193 193

	
194 194
    template <typename Value>
195 195
    struct MapLookUpConverter {
196 196
      const std::map<Value, std::string>& _map;
197 197

	
198 198
      MapLookUpConverter(const std::map<Value, std::string>& map)
199 199
        : _map(map) {}
200 200

	
201 201
      std::string operator()(const Value& str) {
202 202
        typename std::map<Value, std::string>::const_iterator it =
203 203
          _map.find(str);
204 204
        if (it == _map.end()) {
205 205
          throw FormatError("Item not found");
206 206
        }
207 207
        return it->second;
208 208
      }
209 209
    };
210 210

	
211 211
    template <typename Graph>
212 212
    struct GraphArcLookUpConverter {
213 213
      const Graph& _graph;
214 214
      const std::map<typename Graph::Edge, std::string>& _map;
215 215

	
216 216
      GraphArcLookUpConverter(const Graph& graph,
217 217
                              const std::map<typename Graph::Edge,
218 218
                                             std::string>& map)
219 219
        : _graph(graph), _map(map) {}
220 220

	
221 221
      std::string operator()(const typename Graph::Arc& val) {
222 222
        typename std::map<typename Graph::Edge, std::string>
223 223
          ::const_iterator it = _map.find(val);
224 224
        if (it == _map.end()) {
225 225
          throw FormatError("Item not found");
226 226
        }
227 227
        return (_graph.direction(val) ? '+' : '-') + it->second;
228 228
      }
229 229
    };
230 230

	
231 231
    inline bool isWhiteSpace(char c) {
232 232
      return c == ' ' || c == '\t' || c == '\v' ||
233 233
        c == '\n' || c == '\r' || c == '\f';
234 234
    }
235 235

	
236 236
    inline bool isEscaped(char c) {
237 237
      return c == '\\' || c == '\"' || c == '\'' ||
238 238
        c == '\a' || c == '\b';
239 239
    }
240 240

	
241 241
    inline static void writeEscape(std::ostream& os, char c) {
242 242
      switch (c) {
243 243
      case '\\':
244 244
        os << "\\\\";
245 245
        return;
246 246
      case '\"':
247 247
        os << "\\\"";
248 248
        return;
249 249
      case '\a':
250 250
        os << "\\a";
251 251
        return;
252 252
      case '\b':
253 253
        os << "\\b";
254 254
        return;
255 255
      case '\f':
256 256
        os << "\\f";
257 257
        return;
258 258
      case '\r':
259 259
        os << "\\r";
260 260
        return;
261 261
      case '\n':
262 262
        os << "\\n";
263 263
        return;
264 264
      case '\t':
265 265
        os << "\\t";
266 266
        return;
267 267
      case '\v':
268 268
        os << "\\v";
269 269
        return;
270 270
      default:
271 271
        if (c < 0x20) {
272 272
          std::ios::fmtflags flags = os.flags();
273 273
          os << '\\' << std::oct << static_cast<int>(c);
274 274
          os.flags(flags);
275 275
        } else {
276 276
          os << c;
277 277
        }
278 278
        return;
279 279
      }
280 280
    }
281 281

	
282 282
    inline bool requireEscape(const std::string& str) {
283 283
      if (str.empty() || str[0] == '@') return true;
284 284
      std::istringstream is(str);
285 285
      char c;
286 286
      while (is.get(c)) {
287 287
        if (isWhiteSpace(c) || isEscaped(c)) {
288 288
          return true;
289 289
        }
290 290
      }
291 291
      return false;
292 292
    }
293 293

	
294 294
    inline std::ostream& writeToken(std::ostream& os, const std::string& str) {
295 295

	
296 296
      if (requireEscape(str)) {
297 297
        os << '\"';
298 298
        for (std::string::const_iterator it = str.begin();
299 299
             it != str.end(); ++it) {
300 300
          writeEscape(os, *it);
301 301
        }
302 302
        os << '\"';
303 303
      } else {
304 304
        os << str;
305 305
      }
306 306
      return os;
307 307
    }
308 308

	
309 309
    class Section {
310 310
    public:
311 311
      virtual ~Section() {}
312 312
      virtual void process(std::ostream& os) = 0;
313 313
    };
314 314

	
315 315
    template <typename Functor>
316 316
    class LineSection : public Section {
317 317
    private:
318 318

	
319 319
      Functor _functor;
320 320

	
321 321
    public:
322 322

	
323 323
      LineSection(const Functor& functor) : _functor(functor) {}
324 324
      virtual ~LineSection() {}
325 325

	
326 326
      virtual void process(std::ostream& os) {
327 327
        std::string line;
328 328
        while (!(line = _functor()).empty()) os << line << std::endl;
329 329
      }
330 330
    };
331 331

	
332 332
    template <typename Functor>
333 333
    class StreamSection : public Section {
334 334
    private:
335 335

	
336 336
      Functor _functor;
337 337

	
338 338
    public:
339 339

	
340 340
      StreamSection(const Functor& functor) : _functor(functor) {}
341 341
      virtual ~StreamSection() {}
342 342

	
343 343
      virtual void process(std::ostream& os) {
344 344
        _functor(os);
345 345
      }
346 346
    };
347 347

	
348 348
  }
349 349

	
350 350
  template <typename Digraph>
351 351
  class DigraphWriter;
352 352

	
353 353
  template <typename Digraph>
354 354
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
355 355
                                       std::ostream& os = std::cout);
356 356
  template <typename Digraph>
357 357
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
358 358
                                       const std::string& fn);
359 359

	
360 360
  template <typename Digraph>
361 361
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
362 362
                                       const char* fn);
363 363

	
364 364

	
365 365
  /// \ingroup lemon_io
366 366
  ///
367 367
  /// \brief \ref lgf-format "LGF" writer for directed graphs
368 368
  ///
369 369
  /// This utility writes an \ref lgf-format "LGF" file.
370 370
  ///
371 371
  /// The writing method does a batch processing. The user creates a
372 372
  /// writer object, then various writing rules can be added to the
373 373
  /// writer, and eventually the writing is executed with the \c run()
374 374
  /// member function. A map writing rule can be added to the writer
375 375
  /// with the \c nodeMap() or \c arcMap() members. An optional
376 376
  /// converter parameter can also be added as a standard functor
377 377
  /// converting from the value type of the map to \c std::string. If it
378 378
  /// is set, it will determine how the value type of the map is written to
379 379
  /// the output stream. If the functor is not set, then a default
380 380
  /// conversion will be used. The \c attribute(), \c node() and \c
381 381
  /// arc() functions are used to add attribute writing rules.
382 382
  ///
383 383
  ///\code
384 384
  /// DigraphWriter<Digraph>(digraph, std::cout).
385 385
  ///   nodeMap("coordinates", coord_map).
386 386
  ///   nodeMap("size", size).
387 387
  ///   nodeMap("title", title).
388 388
  ///   arcMap("capacity", cap_map).
389 389
  ///   node("source", src).
390 390
  ///   node("target", trg).
391 391
  ///   attribute("caption", caption).
392 392
  ///   run();
393 393
  ///\endcode
394 394
  ///
395 395
  ///
396 396
  /// By default, the writer does not write additional captions to the
397 397
  /// sections, but they can be give as an optional parameter of
398 398
  /// the \c nodes(), \c arcs() or \c
399 399
  /// attributes() functions.
400 400
  ///
401 401
  /// The \c skipNodes() and \c skipArcs() functions forbid the
402 402
  /// writing of the sections. If two arc sections should be written
403 403
  /// to the output, it can be done in two passes, the first pass
404 404
  /// writes the node section and the first arc section, then the
405 405
  /// second pass skips the node section and writes just the arc
406 406
  /// section to the stream. The output stream can be retrieved with
407 407
  /// the \c ostream() function, hence the second pass can append its
408 408
  /// output to the output of the first pass.
409 409
  template <typename _Digraph>
410 410
  class DigraphWriter {
411 411
  public:
412 412

	
413 413
    typedef _Digraph Digraph;
414 414
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
415 415

	
416 416
  private:
417 417

	
418 418

	
419 419
    std::ostream* _os;
420 420
    bool local_os;
421 421

	
422 422
    const Digraph& _digraph;
423 423

	
424 424
    std::string _nodes_caption;
425 425
    std::string _arcs_caption;
426 426
    std::string _attributes_caption;
427 427

	
428 428
    typedef std::map<Node, std::string> NodeIndex;
429 429
    NodeIndex _node_index;
430 430
    typedef std::map<Arc, std::string> ArcIndex;
431 431
    ArcIndex _arc_index;
432 432

	
433 433
    typedef std::vector<std::pair<std::string,
434 434
      _writer_bits::MapStorageBase<Node>* > > NodeMaps;
435 435
    NodeMaps _node_maps;
436 436

	
437 437
    typedef std::vector<std::pair<std::string,
438 438
      _writer_bits::MapStorageBase<Arc>* > >ArcMaps;
439 439
    ArcMaps _arc_maps;
440 440

	
441 441
    typedef std::vector<std::pair<std::string,
442 442
      _writer_bits::ValueStorageBase*> > Attributes;
443 443
    Attributes _attributes;
444 444

	
445 445
    bool _skip_nodes;
446 446
    bool _skip_arcs;
447 447

	
448 448
  public:
449 449

	
450 450
    /// \brief Constructor
451 451
    ///
452 452
    /// Construct a directed graph writer, which writes to the given
453 453
    /// output stream.
454 454
    DigraphWriter(const Digraph& digraph, std::ostream& os = std::cout)
455 455
      : _os(&os), local_os(false), _digraph(digraph),
456 456
        _skip_nodes(false), _skip_arcs(false) {}
457 457

	
458 458
    /// \brief Constructor
459 459
    ///
460 460
    /// Construct a directed graph writer, which writes to the given
461 461
    /// output file.
462 462
    DigraphWriter(const Digraph& digraph, const std::string& fn)
463 463
      : _os(new std::ofstream(fn.c_str())), local_os(true), _digraph(digraph),
464 464
        _skip_nodes(false), _skip_arcs(false) {
465 465
      if (!(*_os)) {
466 466
        delete _os;
467 467
        throw IoError("Cannot write file", fn);
468 468
      }
469 469
    }
470 470

	
471 471
    /// \brief Constructor
472 472
    ///
473 473
    /// Construct a directed graph writer, which writes to the given
474 474
    /// output file.
475 475
    DigraphWriter(const Digraph& digraph, const char* fn)
476 476
      : _os(new std::ofstream(fn)), local_os(true), _digraph(digraph),
477 477
        _skip_nodes(false), _skip_arcs(false) {
478 478
      if (!(*_os)) {
479 479
        delete _os;
480 480
        throw IoError("Cannot write file", fn);
481 481
      }
482 482
    }
483 483

	
484 484
    /// \brief Destructor
485 485
    ~DigraphWriter() {
486 486
      for (typename NodeMaps::iterator it = _node_maps.begin();
487 487
           it != _node_maps.end(); ++it) {
488 488
        delete it->second;
489 489
      }
490 490

	
491 491
      for (typename ArcMaps::iterator it = _arc_maps.begin();
492 492
           it != _arc_maps.end(); ++it) {
493 493
        delete it->second;
494 494
      }
495 495

	
496 496
      for (typename Attributes::iterator it = _attributes.begin();
497 497
           it != _attributes.end(); ++it) {
498 498
        delete it->second;
499 499
      }
500 500

	
501 501
      if (local_os) {
502 502
        delete _os;
503 503
      }
504 504
    }
505 505

	
506 506
  private:
507 507

	
508 508
    template <typename DGR>
509 509
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, 
510 510
                                            std::ostream& os);
511 511
    template <typename DGR>
512 512
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph,
513 513
                                            const std::string& fn);
514 514
    template <typename DGR>
515 515
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph,
516 516
                                            const char *fn);
517 517

	
518 518
    DigraphWriter(DigraphWriter& other)
519 519
      : _os(other._os), local_os(other.local_os), _digraph(other._digraph),
520 520
        _skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) {
521 521

	
522 522
      other._os = 0;
523 523
      other.local_os = false;
524 524

	
525 525
      _node_index.swap(other._node_index);
526 526
      _arc_index.swap(other._arc_index);
527 527

	
528 528
      _node_maps.swap(other._node_maps);
529 529
      _arc_maps.swap(other._arc_maps);
530 530
      _attributes.swap(other._attributes);
531 531

	
532 532
      _nodes_caption = other._nodes_caption;
533 533
      _arcs_caption = other._arcs_caption;
534 534
      _attributes_caption = other._attributes_caption;
535 535
    }
536 536

	
537 537
    DigraphWriter& operator=(const DigraphWriter&);
538 538

	
539 539
  public:
540 540

	
541 541
    /// \name Writing rules
542 542
    /// @{
543 543

	
544 544
    /// \brief Node map writing rule
545 545
    ///
546 546
    /// Add a node map writing rule to the writer.
547 547
    template <typename Map>
548 548
    DigraphWriter& nodeMap(const std::string& caption, const Map& map) {
549 549
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
550 550
      _writer_bits::MapStorageBase<Node>* storage =
551 551
        new _writer_bits::MapStorage<Node, Map>(map);
552 552
      _node_maps.push_back(std::make_pair(caption, storage));
553 553
      return *this;
554 554
    }
555 555

	
556 556
    /// \brief Node map writing rule
557 557
    ///
558 558
    /// Add a node map writing rule with specialized converter to the
559 559
    /// writer.
560 560
    template <typename Map, typename Converter>
561 561
    DigraphWriter& nodeMap(const std::string& caption, const Map& map,
562 562
                           const Converter& converter = Converter()) {
563 563
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
564 564
      _writer_bits::MapStorageBase<Node>* storage =
565 565
        new _writer_bits::MapStorage<Node, Map, Converter>(map, converter);
566 566
      _node_maps.push_back(std::make_pair(caption, storage));
567 567
      return *this;
568 568
    }
569 569

	
570 570
    /// \brief Arc map writing rule
571 571
    ///
572 572
    /// Add an arc map writing rule to the writer.
573 573
    template <typename Map>
574 574
    DigraphWriter& arcMap(const std::string& caption, const Map& map) {
575 575
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
576 576
      _writer_bits::MapStorageBase<Arc>* storage =
577 577
        new _writer_bits::MapStorage<Arc, Map>(map);
578 578
      _arc_maps.push_back(std::make_pair(caption, storage));
579 579
      return *this;
580 580
    }
581 581

	
582 582
    /// \brief Arc map writing rule
583 583
    ///
584 584
    /// Add an arc map writing rule with specialized converter to the
585 585
    /// writer.
586 586
    template <typename Map, typename Converter>
587 587
    DigraphWriter& arcMap(const std::string& caption, const Map& map,
588 588
                          const Converter& converter = Converter()) {
589 589
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
590 590
      _writer_bits::MapStorageBase<Arc>* storage =
591 591
        new _writer_bits::MapStorage<Arc, Map, Converter>(map, converter);
592 592
      _arc_maps.push_back(std::make_pair(caption, storage));
593 593
      return *this;
594 594
    }
595 595

	
596 596
    /// \brief Attribute writing rule
597 597
    ///
598 598
    /// Add an attribute writing rule to the writer.
599 599
    template <typename Value>
600 600
    DigraphWriter& attribute(const std::string& caption, const Value& value) {
601 601
      _writer_bits::ValueStorageBase* storage =
602 602
        new _writer_bits::ValueStorage<Value>(value);
603 603
      _attributes.push_back(std::make_pair(caption, storage));
604 604
      return *this;
605 605
    }
606 606

	
607 607
    /// \brief Attribute writing rule
608 608
    ///
609 609
    /// Add an attribute writing rule with specialized converter to the
610 610
    /// writer.
611 611
    template <typename Value, typename Converter>
612 612
    DigraphWriter& attribute(const std::string& caption, const Value& value,
613 613
                             const Converter& converter = Converter()) {
614 614
      _writer_bits::ValueStorageBase* storage =
615 615
        new _writer_bits::ValueStorage<Value, Converter>(value, converter);
616 616
      _attributes.push_back(std::make_pair(caption, storage));
617 617
      return *this;
618 618
    }
619 619

	
620 620
    /// \brief Node writing rule
621 621
    ///
622 622
    /// Add a node writing rule to the writer.
623 623
    DigraphWriter& node(const std::string& caption, const Node& node) {
624 624
      typedef _writer_bits::MapLookUpConverter<Node> Converter;
625 625
      Converter converter(_node_index);
626 626
      _writer_bits::ValueStorageBase* storage =
627 627
        new _writer_bits::ValueStorage<Node, Converter>(node, converter);
628 628
      _attributes.push_back(std::make_pair(caption, storage));
629 629
      return *this;
630 630
    }
631 631

	
632 632
    /// \brief Arc writing rule
633 633
    ///
634 634
    /// Add an arc writing rule to writer.
635 635
    DigraphWriter& arc(const std::string& caption, const Arc& arc) {
636 636
      typedef _writer_bits::MapLookUpConverter<Arc> Converter;
637 637
      Converter converter(_arc_index);
638 638
      _writer_bits::ValueStorageBase* storage =
639 639
        new _writer_bits::ValueStorage<Arc, Converter>(arc, converter);
640 640
      _attributes.push_back(std::make_pair(caption, storage));
641 641
      return *this;
642 642
    }
643 643

	
644 644
    /// \name Section captions
645 645
    /// @{
646 646

	
647 647
    /// \brief Add an additional caption to the \c \@nodes section
648 648
    ///
649 649
    /// Add an additional caption to the \c \@nodes section.
650 650
    DigraphWriter& nodes(const std::string& caption) {
651 651
      _nodes_caption = caption;
652 652
      return *this;
653 653
    }
654 654

	
655 655
    /// \brief Add an additional caption to the \c \@arcs section
656 656
    ///
657 657
    /// Add an additional caption to the \c \@arcs section.
658 658
    DigraphWriter& arcs(const std::string& caption) {
659 659
      _arcs_caption = caption;
660 660
      return *this;
661 661
    }
662 662

	
663 663
    /// \brief Add an additional caption to the \c \@attributes section
664 664
    ///
665 665
    /// Add an additional caption to the \c \@attributes section.
666 666
    DigraphWriter& attributes(const std::string& caption) {
667 667
      _attributes_caption = caption;
668 668
      return *this;
669 669
    }
670 670

	
671 671
    /// \name Skipping section
672 672
    /// @{
673 673

	
674 674
    /// \brief Skip writing the node set
675 675
    ///
676 676
    /// The \c \@nodes section will not be written to the stream.
677 677
    DigraphWriter& skipNodes() {
678 678
      LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member");
679 679
      _skip_nodes = true;
680 680
      return *this;
681 681
    }
682 682

	
683 683
    /// \brief Skip writing arc set
684 684
    ///
685 685
    /// The \c \@arcs section will not be written to the stream.
686 686
    DigraphWriter& skipArcs() {
687 687
      LEMON_ASSERT(!_skip_arcs, "Multiple usage of skipArcs() member");
688 688
      _skip_arcs = true;
689 689
      return *this;
690 690
    }
691 691

	
692 692
    /// @}
693 693

	
694 694
  private:
695 695

	
696 696
    void writeNodes() {
697 697
      _writer_bits::MapStorageBase<Node>* label = 0;
698 698
      for (typename NodeMaps::iterator it = _node_maps.begin();
699 699
           it != _node_maps.end(); ++it) {
700 700
        if (it->first == "label") {
701 701
          label = it->second;
702 702
          break;
703 703
        }
704 704
      }
705 705

	
706 706
      *_os << "@nodes";
707 707
      if (!_nodes_caption.empty()) {
708 708
        _writer_bits::writeToken(*_os << ' ', _nodes_caption);
709 709
      }
710 710
      *_os << std::endl;
711 711

	
712 712
      if (label == 0) {
713 713
        *_os << "label" << '\t';
714 714
      }
715 715
      for (typename NodeMaps::iterator it = _node_maps.begin();
716 716
           it != _node_maps.end(); ++it) {
717 717
        _writer_bits::writeToken(*_os, it->first) << '\t';
718 718
      }
719 719
      *_os << std::endl;
720 720

	
721 721
      std::vector<Node> nodes;
722 722
      for (NodeIt n(_digraph); n != INVALID; ++n) {
723 723
        nodes.push_back(n);
724 724
      }
725 725

	
726 726
      if (label == 0) {
727 727
        IdMap<Digraph, Node> id_map(_digraph);
728 728
        _writer_bits::MapLess<IdMap<Digraph, Node> > id_less(id_map);
729 729
        std::sort(nodes.begin(), nodes.end(), id_less);
730 730
      } else {
731 731
        label->sort(nodes);
732 732
      }
733 733

	
734 734
      for (int i = 0; i < static_cast<int>(nodes.size()); ++i) {
735 735
        Node n = nodes[i];
736 736
        if (label == 0) {
737 737
          std::ostringstream os;
738 738
          os << _digraph.id(n);
739 739
          _writer_bits::writeToken(*_os, os.str());
740 740
          *_os << '\t';
741 741
          _node_index.insert(std::make_pair(n, os.str()));
742 742
        }
743 743
        for (typename NodeMaps::iterator it = _node_maps.begin();
744 744
             it != _node_maps.end(); ++it) {
745 745
          std::string value = it->second->get(n);
746 746
          _writer_bits::writeToken(*_os, value);
747 747
          if (it->first == "label") {
748 748
            _node_index.insert(std::make_pair(n, value));
749 749
          }
750 750
          *_os << '\t';
751 751
        }
752 752
        *_os << std::endl;
753 753
      }
754 754
    }
755 755

	
756 756
    void createNodeIndex() {
757 757
      _writer_bits::MapStorageBase<Node>* label = 0;
758 758
      for (typename NodeMaps::iterator it = _node_maps.begin();
759 759
           it != _node_maps.end(); ++it) {
760 760
        if (it->first == "label") {
761 761
          label = it->second;
762 762
          break;
763 763
        }
764 764
      }
765 765

	
766 766
      if (label == 0) {
767 767
        for (NodeIt n(_digraph); n != INVALID; ++n) {
768 768
          std::ostringstream os;
769 769
          os << _digraph.id(n);
770 770
          _node_index.insert(std::make_pair(n, os.str()));
771 771
        }
772 772
      } else {
773 773
        for (NodeIt n(_digraph); n != INVALID; ++n) {
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LIST_GRAPH_H
20 20
#define LEMON_LIST_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24 24
///\brief ListDigraph, ListGraph classes.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/error.h>
28 28
#include <lemon/bits/graph_extender.h>
29 29

	
30 30
#include <vector>
31 31
#include <list>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  class ListDigraphBase {
36 36

	
37 37
  protected:
38 38
    struct NodeT {
39 39
      int first_in, first_out;
40 40
      int prev, next;
41 41
    };
42 42

	
43 43
    struct ArcT {
44 44
      int target, source;
45 45
      int prev_in, prev_out;
46 46
      int next_in, next_out;
47 47
    };
48 48

	
49 49
    std::vector<NodeT> nodes;
50 50

	
51 51
    int first_node;
52 52

	
53 53
    int first_free_node;
54 54

	
55 55
    std::vector<ArcT> arcs;
56 56

	
57 57
    int first_free_arc;
58 58

	
59 59
  public:
60 60

	
61 61
    typedef ListDigraphBase Digraph;
62 62

	
63 63
    class Node {
64 64
      friend class ListDigraphBase;
65 65
    protected:
66 66

	
67 67
      int id;
68 68
      explicit Node(int pid) { id = pid;}
69 69

	
70 70
    public:
71 71
      Node() {}
72 72
      Node (Invalid) { id = -1; }
73 73
      bool operator==(const Node& node) const {return id == node.id;}
74 74
      bool operator!=(const Node& node) const {return id != node.id;}
75 75
      bool operator<(const Node& node) const {return id < node.id;}
76 76
    };
77 77

	
78 78
    class Arc {
79 79
      friend class ListDigraphBase;
80 80
    protected:
81 81

	
82 82
      int id;
83 83
      explicit Arc(int pid) { id = pid;}
84 84

	
85 85
    public:
86 86
      Arc() {}
87 87
      Arc (Invalid) { id = -1; }
88 88
      bool operator==(const Arc& arc) const {return id == arc.id;}
89 89
      bool operator!=(const Arc& arc) const {return id != arc.id;}
90 90
      bool operator<(const Arc& arc) const {return id < arc.id;}
91 91
    };
92 92

	
93 93

	
94 94

	
95 95
    ListDigraphBase()
96 96
      : nodes(), first_node(-1),
97 97
        first_free_node(-1), arcs(), first_free_arc(-1) {}
98 98

	
99 99

	
100 100
    int maxNodeId() const { return nodes.size()-1; }
101 101
    int maxArcId() const { return arcs.size()-1; }
102 102

	
103 103
    Node source(Arc e) const { return Node(arcs[e.id].source); }
104 104
    Node target(Arc e) const { return Node(arcs[e.id].target); }
105 105

	
106 106

	
107 107
    void first(Node& node) const {
108 108
      node.id = first_node;
109 109
    }
110 110

	
111 111
    void next(Node& node) const {
112 112
      node.id = nodes[node.id].next;
113 113
    }
114 114

	
115 115

	
116 116
    void first(Arc& arc) const {
117 117
      int n;
118 118
      for(n = first_node;
119 119
          n!=-1 && nodes[n].first_in == -1;
120 120
          n = nodes[n].next) {}
121 121
      arc.id = (n == -1) ? -1 : nodes[n].first_in;
122 122
    }
123 123

	
124 124
    void next(Arc& arc) const {
125 125
      if (arcs[arc.id].next_in != -1) {
126 126
        arc.id = arcs[arc.id].next_in;
127 127
      } else {
128 128
        int n;
129 129
        for(n = nodes[arcs[arc.id].target].next;
130 130
            n!=-1 && nodes[n].first_in == -1;
131 131
            n = nodes[n].next) {}
132 132
        arc.id = (n == -1) ? -1 : nodes[n].first_in;
133 133
      }
134 134
    }
135 135

	
136 136
    void firstOut(Arc &e, const Node& v) const {
137 137
      e.id = nodes[v.id].first_out;
138 138
    }
139 139
    void nextOut(Arc &e) const {
140 140
      e.id=arcs[e.id].next_out;
141 141
    }
142 142

	
143 143
    void firstIn(Arc &e, const Node& v) const {
144 144
      e.id = nodes[v.id].first_in;
145 145
    }
146 146
    void nextIn(Arc &e) const {
147 147
      e.id=arcs[e.id].next_in;
148 148
    }
149 149

	
150 150

	
151 151
    static int id(Node v) { return v.id; }
152 152
    static int id(Arc e) { return e.id; }
153 153

	
154 154
    static Node nodeFromId(int id) { return Node(id);}
155 155
    static Arc arcFromId(int id) { return Arc(id);}
156 156

	
157 157
    bool valid(Node n) const {
158 158
      return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
159 159
        nodes[n.id].prev != -2;
160 160
    }
161 161

	
162 162
    bool valid(Arc a) const {
163 163
      return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
164 164
        arcs[a.id].prev_in != -2;
165 165
    }
166 166

	
167 167
    Node addNode() {
168 168
      int n;
169 169

	
170 170
      if(first_free_node==-1) {
171 171
        n = nodes.size();
172 172
        nodes.push_back(NodeT());
173 173
      } else {
174 174
        n = first_free_node;
175 175
        first_free_node = nodes[n].next;
176 176
      }
177 177

	
178 178
      nodes[n].next = first_node;
179 179
      if(first_node != -1) nodes[first_node].prev = n;
180 180
      first_node = n;
181 181
      nodes[n].prev = -1;
182 182

	
183 183
      nodes[n].first_in = nodes[n].first_out = -1;
184 184

	
185 185
      return Node(n);
186 186
    }
187 187

	
188 188
    Arc addArc(Node u, Node v) {
189 189
      int n;
190 190

	
191 191
      if (first_free_arc == -1) {
192 192
        n = arcs.size();
193 193
        arcs.push_back(ArcT());
194 194
      } else {
195 195
        n = first_free_arc;
196 196
        first_free_arc = arcs[n].next_in;
197 197
      }
198 198

	
199 199
      arcs[n].source = u.id;
200 200
      arcs[n].target = v.id;
201 201

	
202 202
      arcs[n].next_out = nodes[u.id].first_out;
203 203
      if(nodes[u.id].first_out != -1) {
204 204
        arcs[nodes[u.id].first_out].prev_out = n;
205 205
      }
206 206

	
207 207
      arcs[n].next_in = nodes[v.id].first_in;
208 208
      if(nodes[v.id].first_in != -1) {
209 209
        arcs[nodes[v.id].first_in].prev_in = n;
210 210
      }
211 211

	
212 212
      arcs[n].prev_in = arcs[n].prev_out = -1;
213 213

	
214 214
      nodes[u.id].first_out = nodes[v.id].first_in = n;
215 215

	
216 216
      return Arc(n);
217 217
    }
218 218

	
219 219
    void erase(const Node& node) {
220 220
      int n = node.id;
221 221

	
222 222
      if(nodes[n].next != -1) {
223 223
        nodes[nodes[n].next].prev = nodes[n].prev;
224 224
      }
225 225

	
226 226
      if(nodes[n].prev != -1) {
227 227
        nodes[nodes[n].prev].next = nodes[n].next;
228 228
      } else {
229 229
        first_node = nodes[n].next;
230 230
      }
231 231

	
232 232
      nodes[n].next = first_free_node;
233 233
      first_free_node = n;
234 234
      nodes[n].prev = -2;
235 235

	
236 236
    }
237 237

	
238 238
    void erase(const Arc& arc) {
239 239
      int n = arc.id;
240 240

	
241 241
      if(arcs[n].next_in!=-1) {
242 242
        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
243 243
      }
244 244

	
245 245
      if(arcs[n].prev_in!=-1) {
246 246
        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
247 247
      } else {
248 248
        nodes[arcs[n].target].first_in = arcs[n].next_in;
249 249
      }
250 250

	
251 251

	
252 252
      if(arcs[n].next_out!=-1) {
253 253
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
254 254
      }
255 255

	
256 256
      if(arcs[n].prev_out!=-1) {
257 257
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
258 258
      } else {
259 259
        nodes[arcs[n].source].first_out = arcs[n].next_out;
260 260
      }
261 261

	
262 262
      arcs[n].next_in = first_free_arc;
263 263
      first_free_arc = n;
264 264
      arcs[n].prev_in = -2;
265 265
    }
266 266

	
267 267
    void clear() {
268 268
      arcs.clear();
269 269
      nodes.clear();
270 270
      first_node = first_free_node = first_free_arc = -1;
271 271
    }
272 272

	
273 273
  protected:
274 274
    void changeTarget(Arc e, Node n)
275 275
    {
276 276
      if(arcs[e.id].next_in != -1)
277 277
        arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
278 278
      if(arcs[e.id].prev_in != -1)
279 279
        arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
280 280
      else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
281 281
      if (nodes[n.id].first_in != -1) {
282 282
        arcs[nodes[n.id].first_in].prev_in = e.id;
283 283
      }
284 284
      arcs[e.id].target = n.id;
285 285
      arcs[e.id].prev_in = -1;
286 286
      arcs[e.id].next_in = nodes[n.id].first_in;
287 287
      nodes[n.id].first_in = e.id;
288 288
    }
289 289
    void changeSource(Arc e, Node n)
290 290
    {
291 291
      if(arcs[e.id].next_out != -1)
292 292
        arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
293 293
      if(arcs[e.id].prev_out != -1)
294 294
        arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
295 295
      else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
296 296
      if (nodes[n.id].first_out != -1) {
297 297
        arcs[nodes[n.id].first_out].prev_out = e.id;
298 298
      }
299 299
      arcs[e.id].source = n.id;
300 300
      arcs[e.id].prev_out = -1;
301 301
      arcs[e.id].next_out = nodes[n.id].first_out;
302 302
      nodes[n.id].first_out = e.id;
303 303
    }
304 304

	
305 305
  };
306 306

	
307 307
  typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
308 308

	
309 309
  /// \addtogroup graphs
310 310
  /// @{
311 311

	
312 312
  ///A general directed graph structure.
313 313

	
314 314
  ///\ref ListDigraph is a simple and fast <em>directed graph</em>
315 315
  ///implementation based on static linked lists that are stored in
316 316
  ///\c std::vector structures.
317 317
  ///
318 318
  ///It conforms to the \ref concepts::Digraph "Digraph concept" and it
319 319
  ///also provides several useful additional functionalities.
320 320
  ///Most of the member functions and nested classes are documented
321 321
  ///only in the concept class.
322 322
  ///
323 323
  ///An important extra feature of this digraph implementation is that
324 324
  ///its maps are real \ref concepts::ReferenceMap "reference map"s.
325 325
  ///
326 326
  ///\sa concepts::Digraph
327 327

	
328 328
  class ListDigraph : public ExtendedListDigraphBase {
329 329
  private:
330 330
    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
331 331

	
332 332
    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
333 333
    ///
334 334
    ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
335 335
    ///\brief Assignment of ListDigraph to another one is \e not allowed.
336 336
    ///Use copyDigraph() instead.
337 337

	
338 338
    ///Assignment of ListDigraph to another one is \e not allowed.
339 339
    ///Use copyDigraph() instead.
340 340
    void operator=(const ListDigraph &) {}
341 341
  public:
342 342

	
343 343
    typedef ExtendedListDigraphBase Parent;
344 344

	
345 345
    /// Constructor
346 346

	
347 347
    /// Constructor.
348 348
    ///
349 349
    ListDigraph() {}
350 350

	
351 351
    ///Add a new node to the digraph.
352 352

	
353 353
    ///Add a new node to the digraph.
354 354
    ///\return the new node.
355 355
    Node addNode() { return Parent::addNode(); }
356 356

	
357 357
    ///Add a new arc to the digraph.
358 358

	
359 359
    ///Add a new arc to the digraph with source node \c s
360 360
    ///and target node \c t.
361 361
    ///\return the new arc.
362 362
    Arc addArc(const Node& s, const Node& t) {
363 363
      return Parent::addArc(s, t);
364 364
    }
365 365

	
366 366
    ///\brief Erase a node from the digraph.
367 367
    ///
368 368
    ///Erase a node from the digraph.
369 369
    ///
370 370
    void erase(const Node& n) { Parent::erase(n); }
371 371

	
372 372
    ///\brief Erase an arc from the digraph.
373 373
    ///
374 374
    ///Erase an arc from the digraph.
375 375
    ///
376 376
    void erase(const Arc& a) { Parent::erase(a); }
377 377

	
378 378
    /// Node validity check
379 379

	
380 380
    /// This function gives back true if the given node is valid,
381 381
    /// ie. it is a real node of the graph.
382 382
    ///
383 383
    /// \warning A Node pointing to a removed item
384 384
    /// could become valid again later if new nodes are
385 385
    /// added to the graph.
386 386
    bool valid(Node n) const { return Parent::valid(n); }
387 387

	
388 388
    /// Arc validity check
389 389

	
390 390
    /// This function gives back true if the given arc is valid,
391 391
    /// ie. it is a real arc of the graph.
392 392
    ///
393 393
    /// \warning An Arc pointing to a removed item
394 394
    /// could become valid again later if new nodes are
395 395
    /// added to the graph.
396 396
    bool valid(Arc a) const { return Parent::valid(a); }
397 397

	
398 398
    /// Change the target of \c a to \c n
399 399

	
400 400
    /// Change the target of \c a to \c n
401 401
    ///
402 402
    ///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing
403 403
    ///the changed arc remain valid. However <tt>InArcIt</tt>s are
404 404
    ///invalidated.
405 405
    ///
406 406
    ///\warning This functionality cannot be used together with the Snapshot
407 407
    ///feature.
408 408
    void changeTarget(Arc a, Node n) {
409 409
      Parent::changeTarget(a,n);
410 410
    }
411 411
    /// Change the source of \c a to \c n
412 412

	
413 413
    /// Change the source of \c a to \c n
414 414
    ///
415 415
    ///\note The <tt>InArcIt</tt>s referencing the changed arc remain
416 416
    ///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are
417 417
    ///invalidated.
418 418
    ///
419 419
    ///\warning This functionality cannot be used together with the Snapshot
420 420
    ///feature.
421 421
    void changeSource(Arc a, Node n) {
422 422
      Parent::changeSource(a,n);
423 423
    }
424 424

	
425 425
    /// Invert the direction of an arc.
426 426

	
427 427
    ///\note The <tt>ArcIt</tt>s referencing the changed arc remain
428 428
    ///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are
429 429
    ///invalidated.
430 430
    ///
431 431
    ///\warning This functionality cannot be used together with the Snapshot
432 432
    ///feature.
433 433
    void reverseArc(Arc e) {
434 434
      Node t=target(e);
435 435
      changeTarget(e,source(e));
436 436
      changeSource(e,t);
437 437
    }
438 438

	
439 439
    /// Reserve memory for nodes.
440 440

	
441 441
    /// Using this function it is possible to avoid the superfluous memory
442 442
    /// allocation: if you know that the digraph you want to build will
443 443
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
444 444
    /// then it is worth reserving space for this amount before starting
445 445
    /// to build the digraph.
446 446
    /// \sa reserveArc
447 447
    void reserveNode(int n) { nodes.reserve(n); };
448 448

	
449 449
    /// Reserve memory for arcs.
450 450

	
451 451
    /// Using this function it is possible to avoid the superfluous memory
452 452
    /// allocation: if you know that the digraph you want to build will
453 453
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
454 454
    /// then it is worth reserving space for this amount before starting
455 455
    /// to build the digraph.
456 456
    /// \sa reserveNode
457 457
    void reserveArc(int m) { arcs.reserve(m); };
458 458

	
459 459
    ///Contract two nodes.
460 460

	
461 461
    ///This function contracts two nodes.
462 462
    ///Node \p b will be removed but instead of deleting
463 463
    ///incident arcs, they will be joined to \p a.
464 464
    ///The last parameter \p r controls whether to remove loops. \c true
465 465
    ///means that loops will be removed.
466 466
    ///
467 467
    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
468 468
    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s
469 469
    ///may be invalidated.
470 470
    ///
471 471
    ///\warning This functionality cannot be used together with the Snapshot
472 472
    ///feature.
473 473
    void contract(Node a, Node b, bool r = true)
474 474
    {
475 475
      for(OutArcIt e(*this,b);e!=INVALID;) {
476 476
        OutArcIt f=e;
477 477
        ++f;
478 478
        if(r && target(e)==a) erase(e);
479 479
        else changeSource(e,a);
480 480
        e=f;
481 481
      }
482 482
      for(InArcIt e(*this,b);e!=INVALID;) {
483 483
        InArcIt f=e;
484 484
        ++f;
485 485
        if(r && source(e)==a) erase(e);
486 486
        else changeTarget(e,a);
487 487
        e=f;
488 488
      }
489 489
      erase(b);
490 490
    }
491 491

	
492 492
    ///Split a node.
493 493

	
494 494
    ///This function splits a node. First a new node is added to the digraph,
495 495
    ///then the source of each outgoing arc of \c n is moved to this new node.
496 496
    ///If \c connect is \c true (this is the default value), then a new arc
497 497
    ///from \c n to the newly created node is also added.
498 498
    ///\return The newly created node.
499 499
    ///
500 500
    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
501 501
    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may
502 502
    ///be invalidated.
503 503
    ///
504 504
    ///\warning This functionality cannot be used in conjunction with the
505 505
    ///Snapshot feature.
506 506
    Node split(Node n, bool connect = true) {
507 507
      Node b = addNode();
508 508
      for(OutArcIt e(*this,n);e!=INVALID;) {
509 509
        OutArcIt f=e;
510 510
        ++f;
511 511
        changeSource(e,b);
512 512
        e=f;
513 513
      }
514 514
      if (connect) addArc(n,b);
515 515
      return b;
516 516
    }
517 517

	
518 518
    ///Split an arc.
519 519

	
520 520
    ///This function splits an arc. First a new node \c b is added to
521 521
    ///the digraph, then the original arc is re-targeted to \c
522 522
    ///b. Finally an arc from \c b to the original target is added.
523 523
    ///
524 524
    ///\return The newly created node.
525 525
    ///
526 526
    ///\warning This functionality cannot be used together with the
527 527
    ///Snapshot feature.
528 528
    Node split(Arc e) {
529 529
      Node b = addNode();
530 530
      addArc(b,target(e));
531 531
      changeTarget(e,b);
532 532
      return b;
533 533
    }
534 534

	
535 535
    /// \brief Class to make a snapshot of the digraph and restore
536 536
    /// it later.
537 537
    ///
538 538
    /// Class to make a snapshot of the digraph and restore it later.
539 539
    ///
540 540
    /// The newly added nodes and arcs can be removed using the
541 541
    /// restore() function.
542 542
    ///
543 543
    /// \warning Arc and node deletions and other modifications (e.g.
544 544
    /// contracting, splitting, reversing arcs or nodes) cannot be
545 545
    /// restored. These events invalidate the snapshot.
546 546
    class Snapshot {
547 547
    protected:
548 548

	
549 549
      typedef Parent::NodeNotifier NodeNotifier;
550 550

	
551 551
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
552 552
      public:
553 553

	
554 554
        NodeObserverProxy(Snapshot& _snapshot)
555 555
          : snapshot(_snapshot) {}
556 556

	
557 557
        using NodeNotifier::ObserverBase::attach;
558 558
        using NodeNotifier::ObserverBase::detach;
559 559
        using NodeNotifier::ObserverBase::attached;
560 560

	
561 561
      protected:
562 562

	
563 563
        virtual void add(const Node& node) {
564 564
          snapshot.addNode(node);
565 565
        }
566 566
        virtual void add(const std::vector<Node>& nodes) {
567 567
          for (int i = nodes.size() - 1; i >= 0; ++i) {
568 568
            snapshot.addNode(nodes[i]);
569 569
          }
570 570
        }
571 571
        virtual void erase(const Node& node) {
572 572
          snapshot.eraseNode(node);
573 573
        }
574 574
        virtual void erase(const std::vector<Node>& nodes) {
575 575
          for (int i = 0; i < int(nodes.size()); ++i) {
576 576
            snapshot.eraseNode(nodes[i]);
577 577
          }
578 578
        }
579 579
        virtual void build() {
580 580
          Node node;
581 581
          std::vector<Node> nodes;
582 582
          for (notifier()->first(node); node != INVALID;
583 583
               notifier()->next(node)) {
584 584
            nodes.push_back(node);
585 585
          }
586 586
          for (int i = nodes.size() - 1; i >= 0; --i) {
587 587
            snapshot.addNode(nodes[i]);
588 588
          }
589 589
        }
590 590
        virtual void clear() {
591 591
          Node node;
592 592
          for (notifier()->first(node); node != INVALID;
593 593
               notifier()->next(node)) {
594 594
            snapshot.eraseNode(node);
595 595
          }
596 596
        }
597 597

	
598 598
        Snapshot& snapshot;
599 599
      };
600 600

	
601 601
      class ArcObserverProxy : public ArcNotifier::ObserverBase {
602 602
      public:
603 603

	
604 604
        ArcObserverProxy(Snapshot& _snapshot)
605 605
          : snapshot(_snapshot) {}
606 606

	
607 607
        using ArcNotifier::ObserverBase::attach;
608 608
        using ArcNotifier::ObserverBase::detach;
609 609
        using ArcNotifier::ObserverBase::attached;
610 610

	
611 611
      protected:
612 612

	
613 613
        virtual void add(const Arc& arc) {
614 614
          snapshot.addArc(arc);
615 615
        }
616 616
        virtual void add(const std::vector<Arc>& arcs) {
617 617
          for (int i = arcs.size() - 1; i >= 0; ++i) {
618 618
            snapshot.addArc(arcs[i]);
619 619
          }
620 620
        }
621 621
        virtual void erase(const Arc& arc) {
622 622
          snapshot.eraseArc(arc);
623 623
        }
624 624
        virtual void erase(const std::vector<Arc>& arcs) {
625 625
          for (int i = 0; i < int(arcs.size()); ++i) {
626 626
            snapshot.eraseArc(arcs[i]);
627 627
          }
628 628
        }
629 629
        virtual void build() {
630 630
          Arc arc;
631 631
          std::vector<Arc> arcs;
632 632
          for (notifier()->first(arc); arc != INVALID;
633 633
               notifier()->next(arc)) {
634 634
            arcs.push_back(arc);
635 635
          }
636 636
          for (int i = arcs.size() - 1; i >= 0; --i) {
637 637
            snapshot.addArc(arcs[i]);
638 638
          }
639 639
        }
640 640
        virtual void clear() {
641 641
          Arc arc;
642 642
          for (notifier()->first(arc); arc != INVALID;
643 643
               notifier()->next(arc)) {
644 644
            snapshot.eraseArc(arc);
645 645
          }
646 646
        }
647 647

	
648 648
        Snapshot& snapshot;
649 649
      };
650 650

	
651 651
      ListDigraph *digraph;
652 652

	
653 653
      NodeObserverProxy node_observer_proxy;
654 654
      ArcObserverProxy arc_observer_proxy;
655 655

	
656 656
      std::list<Node> added_nodes;
657 657
      std::list<Arc> added_arcs;
658 658

	
659 659

	
660 660
      void addNode(const Node& node) {
661 661
        added_nodes.push_front(node);
662 662
      }
663 663
      void eraseNode(const Node& node) {
664 664
        std::list<Node>::iterator it =
665 665
          std::find(added_nodes.begin(), added_nodes.end(), node);
666 666
        if (it == added_nodes.end()) {
667 667
          clear();
668 668
          arc_observer_proxy.detach();
669 669
          throw NodeNotifier::ImmediateDetach();
670 670
        } else {
671 671
          added_nodes.erase(it);
672 672
        }
673 673
      }
674 674

	
675 675
      void addArc(const Arc& arc) {
676 676
        added_arcs.push_front(arc);
677 677
      }
678 678
      void eraseArc(const Arc& arc) {
679 679
        std::list<Arc>::iterator it =
680 680
          std::find(added_arcs.begin(), added_arcs.end(), arc);
681 681
        if (it == added_arcs.end()) {
682 682
          clear();
683 683
          node_observer_proxy.detach();
684 684
          throw ArcNotifier::ImmediateDetach();
685 685
        } else {
686 686
          added_arcs.erase(it);
687 687
        }
688 688
      }
689 689

	
690 690
      void attach(ListDigraph &_digraph) {
691 691
        digraph = &_digraph;
692 692
        node_observer_proxy.attach(digraph->notifier(Node()));
693 693
        arc_observer_proxy.attach(digraph->notifier(Arc()));
694 694
      }
695 695

	
696 696
      void detach() {
697 697
        node_observer_proxy.detach();
698 698
        arc_observer_proxy.detach();
699 699
      }
700 700

	
701 701
      bool attached() const {
702 702
        return node_observer_proxy.attached();
703 703
      }
704 704

	
705 705
      void clear() {
706 706
        added_nodes.clear();
707 707
        added_arcs.clear();
708 708
      }
709 709

	
710 710
    public:
711 711

	
712 712
      /// \brief Default constructor.
713 713
      ///
714 714
      /// Default constructor.
715 715
      /// To actually make a snapshot you must call save().
716 716
      Snapshot()
717 717
        : digraph(0), node_observer_proxy(*this),
718 718
          arc_observer_proxy(*this) {}
719 719

	
720 720
      /// \brief Constructor that immediately makes a snapshot.
721 721
      ///
722 722
      /// This constructor immediately makes a snapshot of the digraph.
723 723
      /// \param _digraph The digraph we make a snapshot of.
724 724
      Snapshot(ListDigraph &_digraph)
725 725
        : node_observer_proxy(*this),
726 726
          arc_observer_proxy(*this) {
727 727
        attach(_digraph);
728 728
      }
729 729

	
730 730
      /// \brief Make a snapshot.
731 731
      ///
732 732
      /// Make a snapshot of the digraph.
733 733
      ///
734 734
      /// This function can be called more than once. In case of a repeated
735 735
      /// call, the previous snapshot gets lost.
736 736
      /// \param _digraph The digraph we make the snapshot of.
737 737
      void save(ListDigraph &_digraph) {
738 738
        if (attached()) {
739 739
          detach();
740 740
          clear();
741 741
        }
742 742
        attach(_digraph);
743 743
      }
744 744

	
745 745
      /// \brief Undo the changes until the last snapshot.
746 746
      //
747 747
      /// Undo the changes until the last snapshot created by save().
748 748
      void restore() {
749 749
        detach();
750 750
        for(std::list<Arc>::iterator it = added_arcs.begin();
751 751
            it != added_arcs.end(); ++it) {
752 752
          digraph->erase(*it);
753 753
        }
754 754
        for(std::list<Node>::iterator it = added_nodes.begin();
755 755
            it != added_nodes.end(); ++it) {
756 756
          digraph->erase(*it);
757 757
        }
758 758
        clear();
759 759
      }
760 760

	
761 761
      /// \brief Gives back true when the snapshot is valid.
762 762
      ///
763 763
      /// Gives back true when the snapshot is valid.
764 764
      bool valid() const {
765 765
        return attached();
766 766
      }
767 767
    };
768 768

	
769 769
  };
770 770

	
771 771
  ///@}
772 772

	
773 773
  class ListGraphBase {
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup paths
20 20
///\file
21 21
///\brief Classes for representing paths in digraphs.
22 22
///
23 23

	
24 24
#ifndef LEMON_PATH_H
25 25
#define LEMON_PATH_H
26 26

	
27 27
#include <vector>
28 28
#include <algorithm>
29 29

	
30 30
#include <lemon/error.h>
31 31
#include <lemon/core.h>
32 32
#include <lemon/concepts/path.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup paths
37 37
  /// @{
38 38

	
39 39

	
40 40
  /// \brief A structure for representing directed paths in a digraph.
41 41
  ///
42 42
  /// A structure for representing directed path in a digraph.
43 43
  /// \tparam _Digraph The digraph type in which the path is.
44 44
  ///
45 45
  /// In a sense, the path can be treated as a list of arcs. The
46 46
  /// lemon path type stores just this list. As a consequence, it
47 47
  /// cannot enumerate the nodes of the path and the source node of
48 48
  /// a zero length path is undefined.
49 49
  ///
50 50
  /// This implementation is a back and front insertable and erasable
51 51
  /// path type. It can be indexed in O(1) time. The front and back
52 52
  /// insertion and erase is done in O(1) (amortized) time. The
53 53
  /// implementation uses two vectors for storing the front and back
54 54
  /// insertions.
55 55
  template <typename _Digraph>
56 56
  class Path {
57 57
  public:
58 58

	
59 59
    typedef _Digraph Digraph;
60 60
    typedef typename Digraph::Arc Arc;
61 61

	
62 62
    /// \brief Default constructor
63 63
    ///
64 64
    /// Default constructor
65 65
    Path() {}
66 66

	
67 67
    /// \brief Template copy constructor
68 68
    ///
69 69
    /// This constuctor initializes the path from any other path type.
70 70
    /// It simply makes a copy of the given path.
71 71
    template <typename CPath>
72 72
    Path(const CPath& cpath) {
73 73
      pathCopy(cpath, *this);
74 74
    }
75 75

	
76 76
    /// \brief Template copy assignment
77 77
    ///
78 78
    /// This operator makes a copy of a path of any other type.
79 79
    template <typename CPath>
80 80
    Path& operator=(const CPath& cpath) {
81 81
      pathCopy(cpath, *this);
82 82
      return *this;
83 83
    }
84 84

	
85 85
    /// \brief LEMON style iterator for path arcs
86 86
    ///
87 87
    /// This class is used to iterate on the arcs of the paths.
88 88
    class ArcIt {
89 89
      friend class Path;
90 90
    public:
91 91
      /// \brief Default constructor
92 92
      ArcIt() {}
93 93
      /// \brief Invalid constructor
94 94
      ArcIt(Invalid) : path(0), idx(-1) {}
95 95
      /// \brief Initializate the iterator to the first arc of path
96 96
      ArcIt(const Path &_path)
97 97
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
98 98

	
99 99
    private:
100 100

	
101 101
      ArcIt(const Path &_path, int _idx)
102 102
        : path(&_path), idx(_idx) {}
103 103

	
104 104
    public:
105 105

	
106 106
      /// \brief Conversion to Arc
107 107
      operator const Arc&() const {
108 108
        return path->nth(idx);
109 109
      }
110 110

	
111 111
      /// \brief Next arc
112 112
      ArcIt& operator++() {
113 113
        ++idx;
114 114
        if (idx >= path->length()) idx = -1;
115 115
        return *this;
116 116
      }
117 117

	
118 118
      /// \brief Comparison operator
119 119
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
120 120
      /// \brief Comparison operator
121 121
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
122 122
      /// \brief Comparison operator
123 123
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
124 124

	
125 125
    private:
126 126
      const Path *path;
127 127
      int idx;
128 128
    };
129 129

	
130 130
    /// \brief Length of the path.
131 131
    int length() const { return head.size() + tail.size(); }
132 132
    /// \brief Return whether the path is empty.
133 133
    bool empty() const { return head.empty() && tail.empty(); }
134 134

	
135 135
    /// \brief Reset the path to an empty one.
136 136
    void clear() { head.clear(); tail.clear(); }
137 137

	
138 138
    /// \brief The nth arc.
139 139
    ///
140 140
    /// \pre n is in the [0..length() - 1] range
141 141
    const Arc& nth(int n) const {
142 142
      return n < int(head.size()) ? *(head.rbegin() + n) :
143 143
        *(tail.begin() + (n - head.size()));
144 144
    }
145 145

	
146 146
    /// \brief Initialize arc iterator to point to the nth arc
147 147
    ///
148 148
    /// \pre n is in the [0..length() - 1] range
149 149
    ArcIt nthIt(int n) const {
150 150
      return ArcIt(*this, n);
151 151
    }
152 152

	
153 153
    /// \brief The first arc of the path
154 154
    const Arc& front() const {
155 155
      return head.empty() ? tail.front() : head.back();
156 156
    }
157 157

	
158 158
    /// \brief Add a new arc before the current path
159 159
    void addFront(const Arc& arc) {
160 160
      head.push_back(arc);
161 161
    }
162 162

	
163 163
    /// \brief Erase the first arc of the path
164 164
    void eraseFront() {
165 165
      if (!head.empty()) {
166 166
        head.pop_back();
167 167
      } else {
168 168
        head.clear();
169 169
        int halfsize = tail.size() / 2;
170 170
        head.resize(halfsize);
171 171
        std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
172 172
                  head.rbegin());
173 173
        std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
174 174
        tail.resize(tail.size() - halfsize - 1);
175 175
      }
176 176
    }
177 177

	
178 178
    /// \brief The last arc of the path
179 179
    const Arc& back() const {
180 180
      return tail.empty() ? head.front() : tail.back();
181 181
    }
182 182

	
183 183
    /// \brief Add a new arc behind the current path
184 184
    void addBack(const Arc& arc) {
185 185
      tail.push_back(arc);
186 186
    }
187 187

	
188 188
    /// \brief Erase the last arc of the path
189 189
    void eraseBack() {
190 190
      if (!tail.empty()) {
191 191
        tail.pop_back();
192 192
      } else {
193 193
        int halfsize = head.size() / 2;
194 194
        tail.resize(halfsize);
195 195
        std::copy(head.begin() + 1, head.begin() + halfsize + 1,
196 196
                  tail.rbegin());
197 197
        std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
198 198
        head.resize(head.size() - halfsize - 1);
199 199
      }
200 200
    }
201 201

	
202 202
    typedef True BuildTag;
203 203

	
204 204
    template <typename CPath>
205 205
    void build(const CPath& path) {
206 206
      int len = path.length();
207 207
      tail.reserve(len);
208 208
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
209 209
        tail.push_back(it);
210 210
      }
211 211
    }
212 212

	
213 213
    template <typename CPath>
214 214
    void buildRev(const CPath& path) {
215 215
      int len = path.length();
216 216
      head.reserve(len);
217 217
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
218 218
        head.push_back(it);
219 219
      }
220 220
    }
221 221

	
222 222
  protected:
223 223
    typedef std::vector<Arc> Container;
224 224
    Container head, tail;
225 225

	
226 226
  };
227 227

	
228 228
  /// \brief A structure for representing directed paths in a digraph.
229 229
  ///
230 230
  /// A structure for representing directed path in a digraph.
231 231
  /// \tparam _Digraph The digraph type in which the path is.
232 232
  ///
233 233
  /// In a sense, the path can be treated as a list of arcs. The
234 234
  /// lemon path type stores just this list. As a consequence it
235 235
  /// cannot enumerate the nodes in the path and the zero length paths
236 236
  /// cannot store the source.
237 237
  ///
238 238
  /// This implementation is a just back insertable and erasable path
239 239
  /// type. It can be indexed in O(1) time. The back insertion and
240 240
  /// erasure is amortized O(1) time. This implementation is faster
241 241
  /// then the \c Path type because it use just one vector for the
242 242
  /// arcs.
243 243
  template <typename _Digraph>
244 244
  class SimplePath {
245 245
  public:
246 246

	
247 247
    typedef _Digraph Digraph;
248 248
    typedef typename Digraph::Arc Arc;
249 249

	
250 250
    /// \brief Default constructor
251 251
    ///
252 252
    /// Default constructor
253 253
    SimplePath() {}
254 254

	
255 255
    /// \brief Template copy constructor
256 256
    ///
257 257
    /// This path can be initialized with any other path type. It just
258 258
    /// makes a copy of the given path.
259 259
    template <typename CPath>
260 260
    SimplePath(const CPath& cpath) {
261 261
      pathCopy(cpath, *this);
262 262
    }
263 263

	
264 264
    /// \brief Template copy assignment
265 265
    ///
266 266
    /// This path can be initialized with any other path type. It just
267 267
    /// makes a copy of the given path.
268 268
    template <typename CPath>
269 269
    SimplePath& operator=(const CPath& cpath) {
270 270
      pathCopy(cpath, *this);
271 271
      return *this;
272 272
    }
273 273

	
274 274
    /// \brief Iterator class to iterate on the arcs of the paths
275 275
    ///
276 276
    /// This class is used to iterate on the arcs of the paths
277 277
    ///
278 278
    /// Of course it converts to Digraph::Arc
279 279
    class ArcIt {
280 280
      friend class SimplePath;
281 281
    public:
282 282
      /// Default constructor
283 283
      ArcIt() {}
284 284
      /// Invalid constructor
285 285
      ArcIt(Invalid) : path(0), idx(-1) {}
286 286
      /// \brief Initializate the constructor to the first arc of path
287 287
      ArcIt(const SimplePath &_path)
288 288
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
289 289

	
290 290
    private:
291 291

	
292 292
      /// Constructor with starting point
293 293
      ArcIt(const SimplePath &_path, int _idx)
294 294
        : idx(_idx), path(&_path) {}
295 295

	
296 296
    public:
297 297

	
298 298
      ///Conversion to Digraph::Arc
299 299
      operator const Arc&() const {
300 300
        return path->nth(idx);
301 301
      }
302 302

	
303 303
      /// Next arc
304 304
      ArcIt& operator++() {
305 305
        ++idx;
306 306
        if (idx >= path->length()) idx = -1;
307 307
        return *this;
308 308
      }
309 309

	
310 310
      /// Comparison operator
311 311
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
312 312
      /// Comparison operator
313 313
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
314 314
      /// Comparison operator
315 315
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
316 316

	
317 317
    private:
318 318
      const SimplePath *path;
319 319
      int idx;
320 320
    };
321 321

	
322 322
    /// \brief Length of the path.
323 323
    int length() const { return data.size(); }
324 324
    /// \brief Return true if the path is empty.
325 325
    bool empty() const { return data.empty(); }
326 326

	
327 327
    /// \brief Reset the path to an empty one.
328 328
    void clear() { data.clear(); }
329 329

	
330 330
    /// \brief The nth arc.
331 331
    ///
332 332
    /// \pre n is in the [0..length() - 1] range
333 333
    const Arc& nth(int n) const {
334 334
      return data[n];
335 335
    }
336 336

	
337 337
    /// \brief  Initializes arc iterator to point to the nth arc.
338 338
    ArcIt nthIt(int n) const {
339 339
      return ArcIt(*this, n);
340 340
    }
341 341

	
342 342
    /// \brief The first arc of the path.
343 343
    const Arc& front() const {
344 344
      return data.front();
345 345
    }
346 346

	
347 347
    /// \brief The last arc of the path.
348 348
    const Arc& back() const {
349 349
      return data.back();
350 350
    }
351 351

	
352 352
    /// \brief Add a new arc behind the current path.
353 353
    void addBack(const Arc& arc) {
354 354
      data.push_back(arc);
355 355
    }
356 356

	
357 357
    /// \brief Erase the last arc of the path
358 358
    void eraseBack() {
359 359
      data.pop_back();
360 360
    }
361 361

	
362 362
    typedef True BuildTag;
363 363

	
364 364
    template <typename CPath>
365 365
    void build(const CPath& path) {
366 366
      int len = path.length();
367 367
      data.resize(len);
368 368
      int index = 0;
369 369
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
370 370
        data[index] = it;;
371 371
        ++index;
372 372
      }
373 373
    }
374 374

	
375 375
    template <typename CPath>
376 376
    void buildRev(const CPath& path) {
377 377
      int len = path.length();
378 378
      data.resize(len);
379 379
      int index = len;
380 380
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
381 381
        --index;
382 382
        data[index] = it;;
383 383
      }
384 384
    }
385 385

	
386 386
  protected:
387 387
    typedef std::vector<Arc> Container;
388 388
    Container data;
389 389

	
390 390
  };
391 391

	
392 392
  /// \brief A structure for representing directed paths in a digraph.
393 393
  ///
394 394
  /// A structure for representing directed path in a digraph.
395 395
  /// \tparam _Digraph The digraph type in which the path is.
396 396
  ///
397 397
  /// In a sense, the path can be treated as a list of arcs. The
398 398
  /// lemon path type stores just this list. As a consequence it
399 399
  /// cannot enumerate the nodes in the path and the zero length paths
400 400
  /// cannot store the source.
401 401
  ///
402 402
  /// This implementation is a back and front insertable and erasable
403 403
  /// path type. It can be indexed in O(k) time, where k is the rank
404 404
  /// of the arc in the path. The length can be computed in O(n)
405 405
  /// time. The front and back insertion and erasure is O(1) time
406 406
  /// and it can be splited and spliced in O(1) time.
407 407
  template <typename _Digraph>
408 408
  class ListPath {
409 409
  public:
410 410

	
411 411
    typedef _Digraph Digraph;
412 412
    typedef typename Digraph::Arc Arc;
413 413

	
414 414
  protected:
415 415

	
416 416
    // the std::list<> is incompatible
417 417
    // hard to create invalid iterator
418 418
    struct Node {
419 419
      Arc arc;
420 420
      Node *next, *prev;
421 421
    };
422 422

	
423 423
    Node *first, *last;
424 424

	
425 425
    std::allocator<Node> alloc;
426 426

	
427 427
  public:
428 428

	
429 429
    /// \brief Default constructor
430 430
    ///
431 431
    /// Default constructor
432 432
    ListPath() : first(0), last(0) {}
433 433

	
434 434
    /// \brief Template copy constructor
435 435
    ///
436 436
    /// This path can be initialized with any other path type. It just
437 437
    /// makes a copy of the given path.
438 438
    template <typename CPath>
439 439
    ListPath(const CPath& cpath) : first(0), last(0) {
440 440
      pathCopy(cpath, *this);
441 441
    }
442 442

	
443 443
    /// \brief Destructor of the path
444 444
    ///
445 445
    /// Destructor of the path
446 446
    ~ListPath() {
447 447
      clear();
448 448
    }
449 449

	
450 450
    /// \brief Template copy assignment
451 451
    ///
452 452
    /// This path can be initialized with any other path type. It just
453 453
    /// makes a copy of the given path.
454 454
    template <typename CPath>
455 455
    ListPath& operator=(const CPath& cpath) {
456 456
      pathCopy(cpath, *this);
457 457
      return *this;
458 458
    }
459 459

	
460 460
    /// \brief Iterator class to iterate on the arcs of the paths
461 461
    ///
462 462
    /// This class is used to iterate on the arcs of the paths
463 463
    ///
464 464
    /// Of course it converts to Digraph::Arc
465 465
    class ArcIt {
466 466
      friend class ListPath;
467 467
    public:
468 468
      /// Default constructor
469 469
      ArcIt() {}
470 470
      /// Invalid constructor
471 471
      ArcIt(Invalid) : path(0), node(0) {}
472 472
      /// \brief Initializate the constructor to the first arc of path
473 473
      ArcIt(const ListPath &_path)
474 474
        : path(&_path), node(_path.first) {}
475 475

	
476 476
    protected:
477 477

	
478 478
      ArcIt(const ListPath &_path, Node *_node)
479 479
        : path(&_path), node(_node) {}
480 480

	
481 481

	
482 482
    public:
483 483

	
484 484
      ///Conversion to Digraph::Arc
485 485
      operator const Arc&() const {
486 486
        return node->arc;
487 487
      }
488 488

	
489 489
      /// Next arc
490 490
      ArcIt& operator++() {
491 491
        node = node->next;
492 492
        return *this;
493 493
      }
494 494

	
495 495
      /// Comparison operator
496 496
      bool operator==(const ArcIt& e) const { return node==e.node; }
497 497
      /// Comparison operator
498 498
      bool operator!=(const ArcIt& e) const { return node!=e.node; }
499 499
      /// Comparison operator
500 500
      bool operator<(const ArcIt& e) const { return node<e.node; }
501 501

	
502 502
    private:
503 503
      const ListPath *path;
504 504
      Node *node;
505 505
    };
506 506

	
507 507
    /// \brief The nth arc.
508 508
    ///
509 509
    /// This function looks for the nth arc in O(n) time.
510 510
    /// \pre n is in the [0..length() - 1] range
511 511
    const Arc& nth(int n) const {
512 512
      Node *node = first;
513 513
      for (int i = 0; i < n; ++i) {
514 514
        node = node->next;
515 515
      }
516 516
      return node->arc;
517 517
    }
518 518

	
519 519
    /// \brief Initializes arc iterator to point to the nth arc.
520 520
    ArcIt nthIt(int n) const {
521 521
      Node *node = first;
522 522
      for (int i = 0; i < n; ++i) {
523 523
        node = node->next;
524 524
      }
525 525
      return ArcIt(*this, node);
526 526
    }
527 527

	
528 528
    /// \brief Length of the path.
529 529
    int length() const {
530 530
      int len = 0;
531 531
      Node *node = first;
532 532
      while (node != 0) {
533 533
        node = node->next;
534 534
        ++len;
535 535
      }
536 536
      return len;
537 537
    }
538 538

	
539 539
    /// \brief Return true if the path is empty.
540 540
    bool empty() const { return first == 0; }
541 541

	
542 542
    /// \brief Reset the path to an empty one.
543 543
    void clear() {
544 544
      while (first != 0) {
545 545
        last = first->next;
546 546
        alloc.destroy(first);
547 547
        alloc.deallocate(first, 1);
548 548
        first = last;
549 549
      }
550 550
    }
551 551

	
552 552
    /// \brief The first arc of the path
553 553
    const Arc& front() const {
554 554
      return first->arc;
555 555
    }
556 556

	
557 557
    /// \brief Add a new arc before the current path
558 558
    void addFront(const Arc& arc) {
559 559
      Node *node = alloc.allocate(1);
560 560
      alloc.construct(node, Node());
561 561
      node->prev = 0;
562 562
      node->next = first;
563 563
      node->arc = arc;
564 564
      if (first) {
565 565
        first->prev = node;
566 566
        first = node;
567 567
      } else {
568 568
        first = last = node;
569 569
      }
570 570
    }
571 571

	
572 572
    /// \brief Erase the first arc of the path
573 573
    void eraseFront() {
574 574
      Node *node = first;
575 575
      first = first->next;
576 576
      if (first) {
577 577
        first->prev = 0;
578 578
      } else {
579 579
        last = 0;
580 580
      }
581 581
      alloc.destroy(node);
582 582
      alloc.deallocate(node, 1);
583 583
    }
584 584

	
585 585
    /// \brief The last arc of the path.
586 586
    const Arc& back() const {
587 587
      return last->arc;
588 588
    }
589 589

	
590 590
    /// \brief Add a new arc behind the current path.
591 591
    void addBack(const Arc& arc) {
592 592
      Node *node = alloc.allocate(1);
593 593
      alloc.construct(node, Node());
594 594
      node->next = 0;
595 595
      node->prev = last;
596 596
      node->arc = arc;
597 597
      if (last) {
598 598
        last->next = node;
599 599
        last = node;
600 600
      } else {
601 601
        last = first = node;
602 602
      }
603 603
    }
604 604

	
605 605
    /// \brief Erase the last arc of the path
606 606
    void eraseBack() {
607 607
      Node *node = last;
608 608
      last = last->prev;
609 609
      if (last) {
610 610
        last->next = 0;
611 611
      } else {
612 612
        first = 0;
613 613
      }
614 614
      alloc.destroy(node);
615 615
      alloc.deallocate(node, 1);
616 616
    }
617 617

	
618 618
    /// \brief Splice a path to the back of the current path.
619 619
    ///
620 620
    /// It splices \c tpath to the back of the current path and \c
621 621
    /// tpath becomes empty. The time complexity of this function is
622 622
    /// O(1).
623 623
    void spliceBack(ListPath& tpath) {
624 624
      if (first) {
625 625
        if (tpath.first) {
626 626
          last->next = tpath.first;
627 627
          tpath.first->prev = last;
628 628
          last = tpath.last;
629 629
        }
630 630
      } else {
631 631
        first = tpath.first;
632 632
        last = tpath.last;
633 633
      }
634 634
      tpath.first = tpath.last = 0;
635 635
    }
636 636

	
637 637
    /// \brief Splice a path to the front of the current path.
638 638
    ///
639 639
    /// It splices \c tpath before the current path and \c tpath
640 640
    /// becomes empty. The time complexity of this function
641 641
    /// is O(1).
642 642
    void spliceFront(ListPath& tpath) {
643 643
      if (first) {
644 644
        if (tpath.first) {
645 645
          first->prev = tpath.last;
646 646
          tpath.last->next = first;
647 647
          first = tpath.first;
648 648
        }
649 649
      } else {
650 650
        first = tpath.first;
651 651
        last = tpath.last;
652 652
      }
653 653
      tpath.first = tpath.last = 0;
654 654
    }
655 655

	
656 656
    /// \brief Splice a path into the current path.
657 657
    ///
658 658
    /// It splices the \c tpath into the current path before the
659 659
    /// position of \c it iterator and \c tpath becomes empty. The
660 660
    /// time complexity of this function is O(1). If the \c it is
661 661
    /// \c INVALID then it will splice behind the current path.
662 662
    void splice(ArcIt it, ListPath& tpath) {
663 663
      if (it.node) {
664 664
        if (tpath.first) {
665 665
          tpath.first->prev = it.node->prev;
666 666
          if (it.node->prev) {
667 667
            it.node->prev->next = tpath.first;
668 668
          } else {
669 669
            first = tpath.first;
670 670
          }
671 671
          it.node->prev = tpath.last;
672 672
          tpath.last->next = it.node;
673 673
        }
674 674
      } else {
675 675
        if (first) {
676 676
          if (tpath.first) {
677 677
            last->next = tpath.first;
678 678
            tpath.first->prev = last;
679 679
            last = tpath.last;
680 680
          }
681 681
        } else {
682 682
          first = tpath.first;
683 683
          last = tpath.last;
684 684
        }
685 685
      }
686 686
      tpath.first = tpath.last = 0;
687 687
    }
688 688

	
689 689
    /// \brief Split the current path.
690 690
    ///
691 691
    /// It splits the current path into two parts. The part before
692 692
    /// the iterator \c it will remain in the current path and the part
693 693
    /// starting with
694 694
    /// \c it will put into \c tpath. If \c tpath have arcs
695 695
    /// before the operation they are removed first.  The time
696 696
    /// complexity of this function is O(1) plus the the time of emtying
697 697
    /// \c tpath. If \c it is \c INVALID then it just clears \c tpath
698 698
    void split(ArcIt it, ListPath& tpath) {
699 699
      tpath.clear();
700 700
      if (it.node) {
701 701
        tpath.first = it.node;
702 702
        tpath.last = last;
703 703
        if (it.node->prev) {
704 704
          last = it.node->prev;
705 705
          last->next = 0;
706 706
        } else {
707 707
          first = last = 0;
708 708
        }
709 709
        it.node->prev = 0;
710 710
      }
711 711
    }
712 712

	
713 713

	
714 714
    typedef True BuildTag;
715 715

	
716 716
    template <typename CPath>
717 717
    void build(const CPath& path) {
718 718
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
719 719
        addBack(it);
720 720
      }
721 721
    }
722 722

	
723 723
    template <typename CPath>
724 724
    void buildRev(const CPath& path) {
725 725
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
726 726
        addFront(it);
727 727
      }
728 728
    }
729 729

	
730 730
  };
731 731

	
732 732
  /// \brief A structure for representing directed paths in a digraph.
733 733
  ///
734 734
  /// A structure for representing directed path in a digraph.
735 735
  /// \tparam _Digraph The digraph type in which the path is.
736 736
  ///
737 737
  /// In a sense, the path can be treated as a list of arcs. The
738 738
  /// lemon path type stores just this list. As a consequence it
739 739
  /// cannot enumerate the nodes in the path and the source node of
740 740
  /// a zero length path is undefined.
741 741
  ///
742 742
  /// This implementation is completly static, i.e. it can be copy constucted
743 743
  /// or copy assigned from another path, but otherwise it cannot be
744 744
  /// modified.
745 745
  ///
746 746
  /// Being the the most memory efficient path type in LEMON,
747 747
  /// it is intented to be
748 748
  /// used when you want to store a large number of paths.
749 749
  template <typename _Digraph>
750 750
  class StaticPath {
751 751
  public:
752 752

	
753 753
    typedef _Digraph Digraph;
754 754
    typedef typename Digraph::Arc Arc;
755 755

	
756 756
    /// \brief Default constructor
757 757
    ///
758 758
    /// Default constructor
759 759
    StaticPath() : len(0), arcs(0) {}
760 760

	
761 761
    /// \brief Template copy constructor
762 762
    ///
763 763
    /// This path can be initialized from any other path type.
764 764
    template <typename CPath>
765 765
    StaticPath(const CPath& cpath) : arcs(0) {
766 766
      pathCopy(cpath, *this);
767 767
    }
768 768

	
769 769
    /// \brief Destructor of the path
770 770
    ///
771 771
    /// Destructor of the path
772 772
    ~StaticPath() {
773 773
      if (arcs) delete[] arcs;
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/*
20 20
 * This file contains the reimplemented version of the Mersenne Twister
21 21
 * Generator of Matsumoto and Nishimura.
22 22
 *
23 23
 * See the appropriate copyright notice below.
24 24
 *
25 25
 * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
26 26
 * All rights reserved.
27 27
 *
28 28
 * Redistribution and use in source and binary forms, with or without
29 29
 * modification, are permitted provided that the following conditions
30 30
 * are met:
31 31
 *
32 32
 * 1. Redistributions of source code must retain the above copyright
33 33
 *    notice, this list of conditions and the following disclaimer.
34 34
 *
35 35
 * 2. Redistributions in binary form must reproduce the above copyright
36 36
 *    notice, this list of conditions and the following disclaimer in the
37 37
 *    documentation and/or other materials provided with the distribution.
38 38
 *
39 39
 * 3. The names of its contributors may not be used to endorse or promote
40 40
 *    products derived from this software without specific prior written
41 41
 *    permission.
42 42
 *
43 43
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 44
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 45
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
46 46
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
47 47
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
48 48
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 49
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
50 50
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 51
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
52 52
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 53
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
54 54
 * OF THE POSSIBILITY OF SUCH DAMAGE.
55 55
 *
56 56
 *
57 57
 * Any feedback is very welcome.
58 58
 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
59 59
 * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
60 60
 */
61 61

	
62 62
#ifndef LEMON_RANDOM_H
63 63
#define LEMON_RANDOM_H
64 64

	
65 65
#include <algorithm>
66 66
#include <iterator>
67 67
#include <vector>
68 68
#include <limits>
69 69
#include <fstream>
70 70

	
71 71
#include <lemon/math.h>
72 72
#include <lemon/dim2.h>
73 73

	
74 74
#ifndef WIN32
75 75
#include <sys/time.h>
76 76
#include <ctime>
77 77
#include <sys/types.h>
78 78
#include <unistd.h>
79 79
#else
80 80
#include <lemon/bits/windows.h>
81 81
#endif
82 82

	
83 83
///\ingroup misc
84 84
///\file
85 85
///\brief Mersenne Twister random number generator
86 86

	
87 87
namespace lemon {
88 88

	
89 89
  namespace _random_bits {
90 90

	
91 91
    template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
92 92
    struct RandomTraits {};
93 93

	
94 94
    template <typename _Word>
95 95
    struct RandomTraits<_Word, 32> {
96 96

	
97 97
      typedef _Word Word;
98 98
      static const int bits = 32;
99 99

	
100 100
      static const int length = 624;
101 101
      static const int shift = 397;
102 102

	
103 103
      static const Word mul = 0x6c078965u;
104 104
      static const Word arrayInit = 0x012BD6AAu;
105 105
      static const Word arrayMul1 = 0x0019660Du;
106 106
      static const Word arrayMul2 = 0x5D588B65u;
107 107

	
108 108
      static const Word mask = 0x9908B0DFu;
109 109
      static const Word loMask = (1u << 31) - 1;
110 110
      static const Word hiMask = ~loMask;
111 111

	
112 112

	
113 113
      static Word tempering(Word rnd) {
114 114
        rnd ^= (rnd >> 11);
115 115
        rnd ^= (rnd << 7) & 0x9D2C5680u;
116 116
        rnd ^= (rnd << 15) & 0xEFC60000u;
117 117
        rnd ^= (rnd >> 18);
118 118
        return rnd;
119 119
      }
120 120

	
121 121
    };
122 122

	
123 123
    template <typename _Word>
124 124
    struct RandomTraits<_Word, 64> {
125 125

	
126 126
      typedef _Word Word;
127 127
      static const int bits = 64;
128 128

	
129 129
      static const int length = 312;
130 130
      static const int shift = 156;
131 131

	
132 132
      static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
133 133
      static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
134 134
      static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
135 135
      static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);
136 136

	
137 137
      static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
138 138
      static const Word loMask = (Word(1u) << 31) - 1;
139 139
      static const Word hiMask = ~loMask;
140 140

	
141 141
      static Word tempering(Word rnd) {
142 142
        rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
143 143
        rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
144 144
        rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
145 145
        rnd ^= (rnd >> 43);
146 146
        return rnd;
147 147
      }
148 148

	
149 149
    };
150 150

	
151 151
    template <typename _Word>
152 152
    class RandomCore {
153 153
    public:
154 154

	
155 155
      typedef _Word Word;
156 156

	
157 157
    private:
158 158

	
159 159
      static const int bits = RandomTraits<Word>::bits;
160 160

	
161 161
      static const int length = RandomTraits<Word>::length;
162 162
      static const int shift = RandomTraits<Word>::shift;
163 163

	
164 164
    public:
165 165

	
166 166
      void initState() {
167 167
        static const Word seedArray[4] = {
168 168
          0x12345u, 0x23456u, 0x34567u, 0x45678u
169 169
        };
170 170

	
171 171
        initState(seedArray, seedArray + 4);
172 172
      }
173 173

	
174 174
      void initState(Word seed) {
175 175

	
176 176
        static const Word mul = RandomTraits<Word>::mul;
177 177

	
178 178
        current = state;
179 179

	
180 180
        Word *curr = state + length - 1;
181 181
        curr[0] = seed; --curr;
182 182
        for (int i = 1; i < length; ++i) {
183 183
          curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
184 184
          --curr;
185 185
        }
186 186
      }
187 187

	
188 188
      template <typename Iterator>
189 189
      void initState(Iterator begin, Iterator end) {
190 190

	
191 191
        static const Word init = RandomTraits<Word>::arrayInit;
192 192
        static const Word mul1 = RandomTraits<Word>::arrayMul1;
193 193
        static const Word mul2 = RandomTraits<Word>::arrayMul2;
194 194

	
195 195

	
196 196
        Word *curr = state + length - 1; --curr;
197 197
        Iterator it = begin; int cnt = 0;
198 198
        int num;
199 199

	
200 200
        initState(init);
201 201

	
202 202
        num = length > end - begin ? length : end - begin;
203 203
        while (num--) {
204 204
          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
205 205
            + *it + cnt;
206 206
          ++it; ++cnt;
207 207
          if (it == end) {
208 208
            it = begin; cnt = 0;
209 209
          }
210 210
          if (curr == state) {
211 211
            curr = state + length - 1; curr[0] = state[0];
212 212
          }
213 213
          --curr;
214 214
        }
215 215

	
216 216
        num = length - 1; cnt = length - (curr - state) - 1;
217 217
        while (num--) {
218 218
          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
219 219
            - cnt;
220 220
          --curr; ++cnt;
221 221
          if (curr == state) {
222 222
            curr = state + length - 1; curr[0] = state[0]; --curr;
223 223
            cnt = 1;
224 224
          }
225 225
        }
226 226

	
227 227
        state[length - 1] = Word(1) << (bits - 1);
228 228
      }
229 229

	
230 230
      void copyState(const RandomCore& other) {
231 231
        std::copy(other.state, other.state + length, state);
232 232
        current = state + (other.current - other.state);
233 233
      }
234 234

	
235 235
      Word operator()() {
236 236
        if (current == state) fillState();
237 237
        --current;
238 238
        Word rnd = *current;
239 239
        return RandomTraits<Word>::tempering(rnd);
240 240
      }
241 241

	
242 242
    private:
243 243

	
244 244

	
245 245
      void fillState() {
246 246
        static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
247 247
        static const Word loMask = RandomTraits<Word>::loMask;
248 248
        static const Word hiMask = RandomTraits<Word>::hiMask;
249 249

	
250 250
        current = state + length;
251 251

	
252 252
        register Word *curr = state + length - 1;
253 253
        register long num;
254 254

	
255 255
        num = length - shift;
256 256
        while (num--) {
257 257
          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
258 258
            curr[- shift] ^ mask[curr[-1] & 1ul];
259 259
          --curr;
260 260
        }
261 261
        num = shift - 1;
262 262
        while (num--) {
263 263
          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
264 264
            curr[length - shift] ^ mask[curr[-1] & 1ul];
265 265
          --curr;
266 266
        }
267 267
        state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
268 268
          curr[length - shift] ^ mask[curr[length - 1] & 1ul];
269 269

	
270 270
      }
271 271

	
272 272

	
273 273
      Word *current;
274 274
      Word state[length];
275 275

	
276 276
    };
277 277

	
278 278

	
279 279
    template <typename Result,
280 280
              int shift = (std::numeric_limits<Result>::digits + 1) / 2>
281 281
    struct Masker {
282 282
      static Result mask(const Result& result) {
283 283
        return Masker<Result, (shift + 1) / 2>::
284 284
          mask(static_cast<Result>(result | (result >> shift)));
285 285
      }
286 286
    };
287 287

	
288 288
    template <typename Result>
289 289
    struct Masker<Result, 1> {
290 290
      static Result mask(const Result& result) {
291 291
        return static_cast<Result>(result | (result >> 1));
292 292
      }
293 293
    };
294 294

	
295 295
    template <typename Result, typename Word,
296 296
              int rest = std::numeric_limits<Result>::digits, int shift = 0,
297 297
              bool last = rest <= std::numeric_limits<Word>::digits>
298 298
    struct IntConversion {
299 299
      static const int bits = std::numeric_limits<Word>::digits;
300 300

	
301 301
      static Result convert(RandomCore<Word>& rnd) {
302 302
        return static_cast<Result>(rnd() >> (bits - rest)) << shift;
303 303
      }
304 304

	
305 305
    };
306 306

	
307 307
    template <typename Result, typename Word, int rest, int shift>
308 308
    struct IntConversion<Result, Word, rest, shift, false> {
309 309
      static const int bits = std::numeric_limits<Word>::digits;
310 310

	
311 311
      static Result convert(RandomCore<Word>& rnd) {
312 312
        return (static_cast<Result>(rnd()) << shift) |
313 313
          IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
314 314
      }
315 315
    };
316 316

	
317 317

	
318 318
    template <typename Result, typename Word,
319 319
              bool one_word = (std::numeric_limits<Word>::digits <
320 320
                               std::numeric_limits<Result>::digits) >
321 321
    struct Mapping {
322 322
      static Result map(RandomCore<Word>& rnd, const Result& bound) {
323 323
        Word max = Word(bound - 1);
324 324
        Result mask = Masker<Result>::mask(bound - 1);
325 325
        Result num;
326 326
        do {
327 327
          num = IntConversion<Result, Word>::convert(rnd) & mask;
328 328
        } while (num > max);
329 329
        return num;
330 330
      }
331 331
    };
332 332

	
333 333
    template <typename Result, typename Word>
334 334
    struct Mapping<Result, Word, false> {
335 335
      static Result map(RandomCore<Word>& rnd, const Result& bound) {
336 336
        Word max = Word(bound - 1);
337 337
        Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
338 338
          ::mask(max);
339 339
        Word num;
340 340
        do {
341 341
          num = rnd() & mask;
342 342
        } while (num > max);
343 343
        return num;
344 344
      }
345 345
    };
346 346

	
347 347
    template <typename Result, int exp>
348 348
    struct ShiftMultiplier {
349 349
      static const Result multiplier() {
350 350
        Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
351 351
        res *= res;
352 352
        if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
353 353
        return res;
354 354
      }
355 355
    };
356 356

	
357 357
    template <typename Result>
358 358
    struct ShiftMultiplier<Result, 0> {
359 359
      static const Result multiplier() {
360 360
        return static_cast<Result>(1.0);
361 361
      }
362 362
    };
363 363

	
364 364
    template <typename Result>
365 365
    struct ShiftMultiplier<Result, 20> {
366 366
      static const Result multiplier() {
367 367
        return static_cast<Result>(1.0/1048576.0);
368 368
      }
369 369
    };
370 370

	
371 371
    template <typename Result>
372 372
    struct ShiftMultiplier<Result, 32> {
373 373
      static const Result multiplier() {
374 374
        return static_cast<Result>(1.0/4294967296.0);
375 375
      }
376 376
    };
377 377

	
378 378
    template <typename Result>
379 379
    struct ShiftMultiplier<Result, 53> {
380 380
      static const Result multiplier() {
381 381
        return static_cast<Result>(1.0/9007199254740992.0);
382 382
      }
383 383
    };
384 384

	
385 385
    template <typename Result>
386 386
    struct ShiftMultiplier<Result, 64> {
387 387
      static const Result multiplier() {
388 388
        return static_cast<Result>(1.0/18446744073709551616.0);
389 389
      }
390 390
    };
391 391

	
392 392
    template <typename Result, int exp>
393 393
    struct Shifting {
394 394
      static Result shift(const Result& result) {
395 395
        return result * ShiftMultiplier<Result, exp>::multiplier();
396 396
      }
397 397
    };
398 398

	
399 399
    template <typename Result, typename Word,
400 400
              int rest = std::numeric_limits<Result>::digits, int shift = 0,
401 401
              bool last = rest <= std::numeric_limits<Word>::digits>
402 402
    struct RealConversion{
403 403
      static const int bits = std::numeric_limits<Word>::digits;
404 404

	
405 405
      static Result convert(RandomCore<Word>& rnd) {
406 406
        return Shifting<Result, shift + rest>::
407 407
          shift(static_cast<Result>(rnd() >> (bits - rest)));
408 408
      }
409 409
    };
410 410

	
411 411
    template <typename Result, typename Word, int rest, int shift>
412 412
    struct RealConversion<Result, Word, rest, shift, false> {
413 413
      static const int bits = std::numeric_limits<Word>::digits;
414 414

	
415 415
      static Result convert(RandomCore<Word>& rnd) {
416 416
        return Shifting<Result, shift + bits>::
417 417
          shift(static_cast<Result>(rnd())) +
418 418
          RealConversion<Result, Word, rest-bits, shift + bits>::
419 419
          convert(rnd);
420 420
      }
421 421
    };
422 422

	
423 423
    template <typename Result, typename Word>
424 424
    struct Initializer {
425 425

	
426 426
      template <typename Iterator>
427 427
      static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
428 428
        std::vector<Word> ws;
429 429
        for (Iterator it = begin; it != end; ++it) {
430 430
          ws.push_back(Word(*it));
431 431
        }
432 432
        rnd.initState(ws.begin(), ws.end());
433 433
      }
434 434

	
435 435
      static void init(RandomCore<Word>& rnd, Result seed) {
436 436
        rnd.initState(seed);
437 437
      }
438 438
    };
439 439

	
440 440
    template <typename Word>
441 441
    struct BoolConversion {
442 442
      static bool convert(RandomCore<Word>& rnd) {
443 443
        return (rnd() & 1) == 1;
444 444
      }
445 445
    };
446 446

	
447 447
    template <typename Word>
448 448
    struct BoolProducer {
449 449
      Word buffer;
450 450
      int num;
451 451

	
452 452
      BoolProducer() : num(0) {}
453 453

	
454 454
      bool convert(RandomCore<Word>& rnd) {
455 455
        if (num == 0) {
456 456
          buffer = rnd();
457 457
          num = RandomTraits<Word>::bits;
458 458
        }
459 459
        bool r = (buffer & 1);
460 460
        buffer >>= 1;
461 461
        --num;
462 462
        return r;
463 463
      }
464 464
    };
465 465

	
466 466
  }
467 467

	
468 468
  /// \ingroup misc
469 469
  ///
470 470
  /// \brief Mersenne Twister random number generator
471 471
  ///
472 472
  /// The Mersenne Twister is a twisted generalized feedback
473 473
  /// shift-register generator of Matsumoto and Nishimura. The period
474 474
  /// of this generator is \f$ 2^{19937} - 1 \f$ and it is
475 475
  /// equi-distributed in 623 dimensions for 32-bit numbers. The time
476 476
  /// performance of this generator is comparable to the commonly used
477 477
  /// generators.
478 478
  ///
479 479
  /// This implementation is specialized for both 32-bit and 64-bit
480 480
  /// architectures. The generators differ sligthly in the
481 481
  /// initialization and generation phase so they produce two
482 482
  /// completly different sequences.
483 483
  ///
484 484
  /// The generator gives back random numbers of serveral types. To
485 485
  /// get a random number from a range of a floating point type you
486 486
  /// can use one form of the \c operator() or the \c real() member
487 487
  /// function. If you want to get random number from the {0, 1, ...,
488 488
  /// n-1} integer range use the \c operator[] or the \c integer()
489 489
  /// method. And to get random number from the whole range of an
490 490
  /// integer type you can use the argumentless \c integer() or \c
491 491
  /// uinteger() functions. After all you can get random bool with
492 492
  /// equal chance of true and false or given probability of true
493 493
  /// result with the \c boolean() member functions.
494 494
  ///
495 495
  ///\code
496 496
  /// // The commented code is identical to the other
497 497
  /// double a = rnd();                     // [0.0, 1.0)
498 498
  /// // double a = rnd.real();             // [0.0, 1.0)
499 499
  /// double b = rnd(100.0);                // [0.0, 100.0)
500 500
  /// // double b = rnd.real(100.0);        // [0.0, 100.0)
501 501
  /// double c = rnd(1.0, 2.0);             // [1.0, 2.0)
502 502
  /// // double c = rnd.real(1.0, 2.0);     // [1.0, 2.0)
503 503
  /// int d = rnd[100000];                  // 0..99999
504 504
  /// // int d = rnd.integer(100000);       // 0..99999
505 505
  /// int e = rnd[6] + 1;                   // 1..6
506 506
  /// // int e = rnd.integer(1, 1 + 6);     // 1..6
507 507
  /// int b = rnd.uinteger<int>();          // 0 .. 2^31 - 1
508 508
  /// int c = rnd.integer<int>();           // - 2^31 .. 2^31 - 1
509 509
  /// bool g = rnd.boolean();               // P(g = true) = 0.5
510 510
  /// bool h = rnd.boolean(0.8);            // P(h = true) = 0.8
511 511
  ///\endcode
512 512
  ///
513 513
  /// LEMON provides a global instance of the random number
514 514
  /// generator which name is \ref lemon::rnd "rnd". Usually it is a
515 515
  /// good programming convenience to use this global generator to get
516 516
  /// random numbers.
517 517
  class Random {
518 518
  private:
519 519

	
520 520
    // Architecture word
521 521
    typedef unsigned long Word;
522 522

	
523 523
    _random_bits::RandomCore<Word> core;
524 524
    _random_bits::BoolProducer<Word> bool_producer;
525 525

	
526 526

	
527 527
  public:
528 528

	
529 529
    ///\name Initialization
530 530
    ///
531 531
    /// @{
532 532

	
533 533
    ///\name Initialization
534 534
    ///
535 535
    /// @{
536 536

	
537 537
    /// \brief Default constructor
538 538
    ///
539 539
    /// Constructor with constant seeding.
540 540
    Random() { core.initState(); }
541 541

	
542 542
    /// \brief Constructor with seed
543 543
    ///
544 544
    /// Constructor with seed. The current number type will be converted
545 545
    /// to the architecture word type.
546 546
    template <typename Number>
547 547
    Random(Number seed) {
548 548
      _random_bits::Initializer<Number, Word>::init(core, seed);
549 549
    }
550 550

	
551 551
    /// \brief Constructor with array seeding
552 552
    ///
553 553
    /// Constructor with array seeding. The given range should contain
554 554
    /// any number type and the numbers will be converted to the
555 555
    /// architecture word type.
556 556
    template <typename Iterator>
557 557
    Random(Iterator begin, Iterator end) {
558 558
      typedef typename std::iterator_traits<Iterator>::value_type Number;
559 559
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
560 560
    }
561 561

	
562 562
    /// \brief Copy constructor
563 563
    ///
564 564
    /// Copy constructor. The generated sequence will be identical to
565 565
    /// the other sequence. It can be used to save the current state
566 566
    /// of the generator and later use it to generate the same
567 567
    /// sequence.
568 568
    Random(const Random& other) {
569 569
      core.copyState(other.core);
570 570
    }
571 571

	
572 572
    /// \brief Assign operator
573 573
    ///
574 574
    /// Assign operator. The generated sequence will be identical to
575 575
    /// the other sequence. It can be used to save the current state
576 576
    /// of the generator and later use it to generate the same
577 577
    /// sequence.
578 578
    Random& operator=(const Random& other) {
579 579
      if (&other != this) {
580 580
        core.copyState(other.core);
581 581
      }
582 582
      return *this;
583 583
    }
584 584

	
585 585
    /// \brief Seeding random sequence
586 586
    ///
587 587
    /// Seeding the random sequence. The current number type will be
588 588
    /// converted to the architecture word type.
589 589
    template <typename Number>
590 590
    void seed(Number seed) {
591 591
      _random_bits::Initializer<Number, Word>::init(core, seed);
592 592
    }
593 593

	
594 594
    /// \brief Seeding random sequence
595 595
    ///
596 596
    /// Seeding the random sequence. The given range should contain
597 597
    /// any number type and the numbers will be converted to the
598 598
    /// architecture word type.
599 599
    template <typename Iterator>
600 600
    void seed(Iterator begin, Iterator end) {
601 601
      typedef typename std::iterator_traits<Iterator>::value_type Number;
602 602
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
603 603
    }
604 604

	
605 605
    /// \brief Seeding from file or from process id and time
606 606
    ///
607 607
    /// By default, this function calls the \c seedFromFile() member
608 608
    /// function with the <tt>/dev/urandom</tt> file. If it does not success,
609 609
    /// it uses the \c seedFromTime().
610 610
    /// \return Currently always true.
611 611
    bool seed() {
612 612
#ifndef WIN32
613 613
      if (seedFromFile("/dev/urandom", 0)) return true;
614 614
#endif
615 615
      if (seedFromTime()) return true;
616 616
      return false;
617 617
    }
618 618

	
619 619
    /// \brief Seeding from file
620 620
    ///
621 621
    /// Seeding the random sequence from file. The linux kernel has two
622 622
    /// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
623 623
    /// could give good seed values for pseudo random generators (The
624 624
    /// difference between two devices is that the <tt>random</tt> may
625 625
    /// block the reading operation while the kernel can give good
626 626
    /// source of randomness, while the <tt>urandom</tt> does not
627 627
    /// block the input, but it could give back bytes with worse
628 628
    /// entropy).
629 629
    /// \param file The source file
630 630
    /// \param offset The offset, from the file read.
631 631
    /// \return True when the seeding successes.
632 632
#ifndef WIN32
633 633
    bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0)
634 634
#else
635 635
    bool seedFromFile(const std::string& file = "", int offset = 0)
636 636
#endif
637 637
    {
638 638
      std::ifstream rs(file.c_str());
639 639
      const int size = 4;
640 640
      Word buf[size];
641 641
      if (offset != 0 && !rs.seekg(offset)) return false;
642 642
      if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
643 643
      seed(buf, buf + size);
644 644
      return true;
645 645
    }
646 646

	
647 647
    /// \brief Seding from process id and time
648 648
    ///
649 649
    /// Seding from process id and time. This function uses the
650 650
    /// current process id and the current time for initialize the
651 651
    /// random sequence.
652 652
    /// \return Currently always true.
653 653
    bool seedFromTime() {
654 654
#ifndef WIN32
655 655
      timeval tv;
656 656
      gettimeofday(&tv, 0);
657 657
      seed(getpid() + tv.tv_sec + tv.tv_usec);
658 658
#else
659 659
      seed(bits::getWinRndSeed());
660 660
#endif
661 661
      return true;
662 662
    }
663 663

	
664 664
    /// @}
665 665

	
666 666
    ///\name Uniform distributions
667 667
    ///
668 668
    /// @{
669 669

	
670 670
    /// \brief Returns a random real number from the range [0, 1)
671 671
    ///
672 672
    /// It returns a random real number from the range [0, 1). The
673 673
    /// default Number type is \c double.
674 674
    template <typename Number>
675 675
    Number real() {
676 676
      return _random_bits::RealConversion<Number, Word>::convert(core);
677 677
    }
678 678

	
679 679
    double real() {
680 680
      return real<double>();
681 681
    }
682 682

	
683 683
    /// @}
684 684

	
685 685
    ///\name Uniform distributions
686 686
    ///
687 687
    /// @{
688 688

	
689 689
    /// \brief Returns a random real number from the range [0, 1)
690 690
    ///
691 691
    /// It returns a random double from the range [0, 1).
692 692
    double operator()() {
693 693
      return real<double>();
694 694
    }
695 695

	
696 696
    /// \brief Returns a random real number from the range [0, b)
697 697
    ///
698 698
    /// It returns a random real number from the range [0, b).
699 699
    double operator()(double b) {
700 700
      return real<double>() * b;
701 701
    }
702 702

	
703 703
    /// \brief Returns a random real number from the range [a, b)
704 704
    ///
705 705
    /// It returns a random real number from the range [a, b).
706 706
    double operator()(double a, double b) {
707 707
      return real<double>() * (b - a) + a;
708 708
    }
709 709

	
710 710
    /// \brief Returns a random integer from a range
711 711
    ///
712 712
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
713 713
    template <typename Number>
714 714
    Number integer(Number b) {
715 715
      return _random_bits::Mapping<Number, Word>::map(core, b);
716 716
    }
717 717

	
718 718
    /// \brief Returns a random integer from a range
719 719
    ///
720 720
    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
721 721
    template <typename Number>
722 722
    Number integer(Number a, Number b) {
723 723
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
724 724
    }
725 725

	
726 726
    /// \brief Returns a random integer from a range
727 727
    ///
728 728
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
729 729
    template <typename Number>
730 730
    Number operator[](Number b) {
731 731
      return _random_bits::Mapping<Number, Word>::map(core, b);
732 732
    }
733 733

	
734 734
    /// \brief Returns a random non-negative integer
735 735
    ///
736 736
    /// It returns a random non-negative integer uniformly from the
737 737
    /// whole range of the current \c Number type. The default result
738 738
    /// type of this function is <tt>unsigned int</tt>.
739 739
    template <typename Number>
740 740
    Number uinteger() {
741 741
      return _random_bits::IntConversion<Number, Word>::convert(core);
742 742
    }
743 743

	
744 744
    /// @}
745 745

	
746 746
    unsigned int uinteger() {
747 747
      return uinteger<unsigned int>();
748 748
    }
749 749

	
750 750
    /// \brief Returns a random integer
751 751
    ///
752 752
    /// It returns a random integer uniformly from the whole range of
753 753
    /// the current \c Number type. The default result type of this
754 754
    /// function is \c int.
755 755
    template <typename Number>
756 756
    Number integer() {
757 757
      static const int nb = std::numeric_limits<Number>::digits +
758 758
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
759 759
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
760 760
    }
761 761

	
762 762
    int integer() {
763 763
      return integer<int>();
764 764
    }
765 765

	
766 766
    /// \brief Returns a random bool
767 767
    ///
768 768
    /// It returns a random bool. The generator holds a buffer for
769 769
    /// random bits. Every time when it become empty the generator makes
770 770
    /// a new random word and fill the buffer up.
771 771
    bool boolean() {
772 772
      return bool_producer.convert(core);
773 773
    }
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_SMART_GRAPH_H
20 20
#define LEMON_SMART_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24 24
///\brief SmartDigraph and SmartGraph classes.
25 25

	
26 26
#include <vector>
27 27

	
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/bits/graph_extender.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  class SmartDigraph;
35 35
  ///Base of SmartDigraph
36 36

	
37 37
  ///Base of SmartDigraph
38 38
  ///
39 39
  class SmartDigraphBase {
40 40
  protected:
41 41

	
42 42
    struct NodeT
43 43
    {
44 44
      int first_in, first_out;
45 45
      NodeT() {}
46 46
    };
47 47
    struct ArcT
48 48
    {
49 49
      int target, source, next_in, next_out;
50 50
      ArcT() {}
51 51
    };
52 52

	
53 53
    std::vector<NodeT> nodes;
54 54
    std::vector<ArcT> arcs;
55 55

	
56 56
  public:
57 57

	
58 58
    typedef SmartDigraphBase Graph;
59 59

	
60 60
    class Node;
61 61
    class Arc;
62 62

	
63 63
  public:
64 64

	
65 65
    SmartDigraphBase() : nodes(), arcs() { }
66 66
    SmartDigraphBase(const SmartDigraphBase &_g)
67 67
      : nodes(_g.nodes), arcs(_g.arcs) { }
68 68

	
69 69
    typedef True NodeNumTag;
70 70
    typedef True EdgeNumTag;
71 71

	
72 72
    int nodeNum() const { return nodes.size(); }
73 73
    int arcNum() const { return arcs.size(); }
74 74

	
75 75
    int maxNodeId() const { return nodes.size()-1; }
76 76
    int maxArcId() const { return arcs.size()-1; }
77 77

	
78 78
    Node addNode() {
79 79
      int n = nodes.size();
80 80
      nodes.push_back(NodeT());
81 81
      nodes[n].first_in = -1;
82 82
      nodes[n].first_out = -1;
83 83
      return Node(n);
84 84
    }
85 85

	
86 86
    Arc addArc(Node u, Node v) {
87 87
      int n = arcs.size();
88 88
      arcs.push_back(ArcT());
89 89
      arcs[n].source = u._id;
90 90
      arcs[n].target = v._id;
91 91
      arcs[n].next_out = nodes[u._id].first_out;
92 92
      arcs[n].next_in = nodes[v._id].first_in;
93 93
      nodes[u._id].first_out = nodes[v._id].first_in = n;
94 94

	
95 95
      return Arc(n);
96 96
    }
97 97

	
98 98
    void clear() {
99 99
      arcs.clear();
100 100
      nodes.clear();
101 101
    }
102 102

	
103 103
    Node source(Arc a) const { return Node(arcs[a._id].source); }
104 104
    Node target(Arc a) const { return Node(arcs[a._id].target); }
105 105

	
106 106
    static int id(Node v) { return v._id; }
107 107
    static int id(Arc a) { return a._id; }
108 108

	
109 109
    static Node nodeFromId(int id) { return Node(id);}
110 110
    static Arc arcFromId(int id) { return Arc(id);}
111 111

	
112 112
    bool valid(Node n) const {
113 113
      return n._id >= 0 && n._id < static_cast<int>(nodes.size());
114 114
    }
115 115
    bool valid(Arc a) const {
116 116
      return a._id >= 0 && a._id < static_cast<int>(arcs.size());
117 117
    }
118 118

	
119 119
    class Node {
120 120
      friend class SmartDigraphBase;
121 121
      friend class SmartDigraph;
122 122

	
123 123
    protected:
124 124
      int _id;
125 125
      explicit Node(int id) : _id(id) {}
126 126
    public:
127 127
      Node() {}
128 128
      Node (Invalid) : _id(-1) {}
129 129
      bool operator==(const Node i) const {return _id == i._id;}
130 130
      bool operator!=(const Node i) const {return _id != i._id;}
131 131
      bool operator<(const Node i) const {return _id < i._id;}
132 132
    };
133 133

	
134 134

	
135 135
    class Arc {
136 136
      friend class SmartDigraphBase;
137 137
      friend class SmartDigraph;
138 138

	
139 139
    protected:
140 140
      int _id;
141 141
      explicit Arc(int id) : _id(id) {}
142 142
    public:
143 143
      Arc() { }
144 144
      Arc (Invalid) : _id(-1) {}
145 145
      bool operator==(const Arc i) const {return _id == i._id;}
146 146
      bool operator!=(const Arc i) const {return _id != i._id;}
147 147
      bool operator<(const Arc i) const {return _id < i._id;}
148 148
    };
149 149

	
150 150
    void first(Node& node) const {
151 151
      node._id = nodes.size() - 1;
152 152
    }
153 153

	
154 154
    static void next(Node& node) {
155 155
      --node._id;
156 156
    }
157 157

	
158 158
    void first(Arc& arc) const {
159 159
      arc._id = arcs.size() - 1;
160 160
    }
161 161

	
162 162
    static void next(Arc& arc) {
163 163
      --arc._id;
164 164
    }
165 165

	
166 166
    void firstOut(Arc& arc, const Node& node) const {
167 167
      arc._id = nodes[node._id].first_out;
168 168
    }
169 169

	
170 170
    void nextOut(Arc& arc) const {
171 171
      arc._id = arcs[arc._id].next_out;
172 172
    }
173 173

	
174 174
    void firstIn(Arc& arc, const Node& node) const {
175 175
      arc._id = nodes[node._id].first_in;
176 176
    }
177 177

	
178 178
    void nextIn(Arc& arc) const {
179 179
      arc._id = arcs[arc._id].next_in;
180 180
    }
181 181

	
182 182
  };
183 183

	
184 184
  typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase;
185 185

	
186 186
  ///\ingroup graphs
187 187
  ///
188 188
  ///\brief A smart directed graph class.
189 189
  ///
190 190
  ///This is a simple and fast digraph implementation.
191 191
  ///It is also quite memory efficient, but at the price
192 192
  ///that <b> it does support only limited (only stack-like)
193 193
  ///node and arc deletions</b>.
194 194
  ///It conforms to the \ref concepts::Digraph "Digraph concept" with
195 195
  ///an important extra feature that its maps are real \ref
196 196
  ///concepts::ReferenceMap "reference map"s.
197 197
  ///
198 198
  ///\sa concepts::Digraph.
199 199
  class SmartDigraph : public ExtendedSmartDigraphBase {
200 200
  public:
201 201

	
202 202
    typedef ExtendedSmartDigraphBase Parent;
203 203

	
204 204
  private:
205 205

	
206 206
    ///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead.
207 207

	
208 208
    ///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead.
209 209
    ///
210 210
    SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
211 211
    ///\brief Assignment of SmartDigraph to another one is \e not allowed.
212 212
    ///Use DigraphCopy() instead.
213 213

	
214 214
    ///Assignment of SmartDigraph to another one is \e not allowed.
215 215
    ///Use DigraphCopy() instead.
216 216
    void operator=(const SmartDigraph &) {}
217 217

	
218 218
  public:
219 219

	
220 220
    /// Constructor
221 221

	
222 222
    /// Constructor.
223 223
    ///
224 224
    SmartDigraph() {};
225 225

	
226 226
    ///Add a new node to the digraph.
227 227

	
228 228
    /// \return the new node.
229 229
    ///
230 230
    Node addNode() { return Parent::addNode(); }
231 231

	
232 232
    ///Add a new arc to the digraph.
233 233

	
234 234
    ///Add a new arc to the digraph with source node \c s
235 235
    ///and target node \c t.
236 236
    ///\return the new arc.
237 237
    Arc addArc(const Node& s, const Node& t) {
238 238
      return Parent::addArc(s, t);
239 239
    }
240 240

	
241 241
    /// \brief Using this it is possible to avoid the superfluous memory
242 242
    /// allocation.
243 243

	
244 244
    /// Using this it is possible to avoid the superfluous memory
245 245
    /// allocation: if you know that the digraph you want to build will
246 246
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
247 247
    /// then it is worth reserving space for this amount before starting
248 248
    /// to build the digraph.
249 249
    /// \sa reserveArc
250 250
    void reserveNode(int n) { nodes.reserve(n); };
251 251

	
252 252
    /// \brief Using this it is possible to avoid the superfluous memory
253 253
    /// allocation.
254 254

	
255 255
    /// Using this it is possible to avoid the superfluous memory
256 256
    /// allocation: if you know that the digraph you want to build will
257 257
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
258 258
    /// then it is worth reserving space for this amount before starting
259 259
    /// to build the digraph.
260 260
    /// \sa reserveNode
261 261
    void reserveArc(int m) { arcs.reserve(m); };
262 262

	
263 263
    /// \brief Node validity check
264 264
    ///
265 265
    /// This function gives back true if the given node is valid,
266 266
    /// ie. it is a real node of the graph.
267 267
    ///
268 268
    /// \warning A removed node (using Snapshot) could become valid again
269 269
    /// when new nodes are added to the graph.
270 270
    bool valid(Node n) const { return Parent::valid(n); }
271 271

	
272 272
    /// \brief Arc validity check
273 273
    ///
274 274
    /// This function gives back true if the given arc is valid,
275 275
    /// ie. it is a real arc of the graph.
276 276
    ///
277 277
    /// \warning A removed arc (using Snapshot) could become valid again
278 278
    /// when new arcs are added to the graph.
279 279
    bool valid(Arc a) const { return Parent::valid(a); }
280 280

	
281 281
    ///Clear the digraph.
282 282

	
283 283
    ///Erase all the nodes and arcs from the digraph.
284 284
    ///
285 285
    void clear() {
286 286
      Parent::clear();
287 287
    }
288 288

	
289 289
    ///Split a node.
290 290

	
291 291
    ///This function splits a node. First a new node is added to the digraph,
292 292
    ///then the source of each outgoing arc of \c n is moved to this new node.
293 293
    ///If \c connect is \c true (this is the default value), then a new arc
294 294
    ///from \c n to the newly created node is also added.
295 295
    ///\return The newly created node.
296 296
    ///
297 297
    ///\note The <tt>Arc</tt>s
298 298
    ///referencing a moved arc remain
299 299
    ///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s
300 300
    ///may be invalidated.
301 301
    ///\warning This functionality cannot be used together with the Snapshot
302 302
    ///feature.
303 303
    Node split(Node n, bool connect = true)
304 304
    {
305 305
      Node b = addNode();
306 306
      nodes[b._id].first_out=nodes[n._id].first_out;
307 307
      nodes[n._id].first_out=-1;
308 308
      for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) {
309 309
        arcs[i].source=b._id;
310 310
      }
311 311
      if(connect) addArc(n,b);
312 312
      return b;
313 313
    }
314 314

	
315 315
  public:
316 316

	
317 317
    class Snapshot;
318 318

	
319 319
  protected:
320 320

	
321 321
    void restoreSnapshot(const Snapshot &s)
322 322
    {
323 323
      while(s.arc_num<arcs.size()) {
324 324
        Arc arc = arcFromId(arcs.size()-1);
325 325
        Parent::notifier(Arc()).erase(arc);
326 326
        nodes[arcs.back().source].first_out=arcs.back().next_out;
327 327
        nodes[arcs.back().target].first_in=arcs.back().next_in;
328 328
        arcs.pop_back();
329 329
      }
330 330
      while(s.node_num<nodes.size()) {
331 331
        Node node = nodeFromId(nodes.size()-1);
332 332
        Parent::notifier(Node()).erase(node);
333 333
        nodes.pop_back();
334 334
      }
335 335
    }
336 336

	
337 337
  public:
338 338

	
339 339
    ///Class to make a snapshot of the digraph and to restrore to it later.
340 340

	
341 341
    ///Class to make a snapshot of the digraph and to restrore to it later.
342 342
    ///
343 343
    ///The newly added nodes and arcs can be removed using the
344 344
    ///restore() function.
345 345
    ///\note After you restore a state, you cannot restore
346 346
    ///a later state, in other word you cannot add again the arcs deleted
347 347
    ///by restore() using another one Snapshot instance.
348 348
    ///
349 349
    ///\warning If you do not use correctly the snapshot that can cause
350 350
    ///either broken program, invalid state of the digraph, valid but
351 351
    ///not the restored digraph or no change. Because the runtime performance
352 352
    ///the validity of the snapshot is not stored.
353 353
    class Snapshot
354 354
    {
355 355
      SmartDigraph *_graph;
356 356
    protected:
357 357
      friend class SmartDigraph;
358 358
      unsigned int node_num;
359 359
      unsigned int arc_num;
360 360
    public:
361 361
      ///Default constructor.
362 362

	
363 363
      ///Default constructor.
364 364
      ///To actually make a snapshot you must call save().
365 365
      ///
366 366
      Snapshot() : _graph(0) {}
367 367
      ///Constructor that immediately makes a snapshot
368 368

	
369 369
      ///This constructor immediately makes a snapshot of the digraph.
370 370
      ///\param graph The digraph we make a snapshot of.
371 371
      Snapshot(SmartDigraph &graph) : _graph(&graph) {
372 372
        node_num=_graph->nodes.size();
373 373
        arc_num=_graph->arcs.size();
374 374
      }
375 375

	
376 376
      ///Make a snapshot.
377 377

	
378 378
      ///Make a snapshot of the digraph.
379 379
      ///
380 380
      ///This function can be called more than once. In case of a repeated
381 381
      ///call, the previous snapshot gets lost.
382 382
      ///\param graph The digraph we make the snapshot of.
383 383
      void save(SmartDigraph &graph)
384 384
      {
385 385
        _graph=&graph;
386 386
        node_num=_graph->nodes.size();
387 387
        arc_num=_graph->arcs.size();
388 388
      }
389 389

	
390 390
      ///Undo the changes until a snapshot.
391 391

	
392 392
      ///Undo the changes until a snapshot created by save().
393 393
      ///
394 394
      ///\note After you restored a state, you cannot restore
395 395
      ///a later state, in other word you cannot add again the arcs deleted
396 396
      ///by restore().
397 397
      void restore()
398 398
      {
399 399
        _graph->restoreSnapshot(*this);
400 400
      }
401 401
    };
402 402
  };
403 403

	
404 404

	
405 405
  class SmartGraphBase {
406 406

	
407 407
  protected:
408 408

	
409 409
    struct NodeT {
410 410
      int first_out;
411 411
    };
412 412

	
413 413
    struct ArcT {
414 414
      int target;
415 415
      int next_out;
416 416
    };
417 417

	
418 418
    std::vector<NodeT> nodes;
419 419
    std::vector<ArcT> arcs;
420 420

	
421 421
    int first_free_arc;
422 422

	
423 423
  public:
424 424

	
425 425
    typedef SmartGraphBase Digraph;
426 426

	
427 427
    class Node;
428 428
    class Arc;
429 429
    class Edge;
430 430

	
431 431
    class Node {
432 432
      friend class SmartGraphBase;
433 433
    protected:
434 434

	
435 435
      int _id;
436 436
      explicit Node(int id) { _id = id;}
437 437

	
438 438
    public:
439 439
      Node() {}
440 440
      Node (Invalid) { _id = -1; }
441 441
      bool operator==(const Node& node) const {return _id == node._id;}
442 442
      bool operator!=(const Node& node) const {return _id != node._id;}
443 443
      bool operator<(const Node& node) const {return _id < node._id;}
444 444
    };
445 445

	
446 446
    class Edge {
447 447
      friend class SmartGraphBase;
448 448
    protected:
449 449

	
450 450
      int _id;
451 451
      explicit Edge(int id) { _id = id;}
452 452

	
453 453
    public:
454 454
      Edge() {}
455 455
      Edge (Invalid) { _id = -1; }
456 456
      bool operator==(const Edge& arc) const {return _id == arc._id;}
457 457
      bool operator!=(const Edge& arc) const {return _id != arc._id;}
458 458
      bool operator<(const Edge& arc) const {return _id < arc._id;}
459 459
    };
460 460

	
461 461
    class Arc {
462 462
      friend class SmartGraphBase;
463 463
    protected:
464 464

	
465 465
      int _id;
466 466
      explicit Arc(int id) { _id = id;}
467 467

	
468 468
    public:
469 469
      operator Edge() const { 
470 470
        return _id != -1 ? edgeFromId(_id / 2) : INVALID; 
471 471
      }
472 472

	
473 473
      Arc() {}
474 474
      Arc (Invalid) { _id = -1; }
475 475
      bool operator==(const Arc& arc) const {return _id == arc._id;}
476 476
      bool operator!=(const Arc& arc) const {return _id != arc._id;}
477 477
      bool operator<(const Arc& arc) const {return _id < arc._id;}
478 478
    };
479 479

	
480 480

	
481 481

	
482 482
    SmartGraphBase()
483 483
      : nodes(), arcs() {}
484 484

	
485 485

	
486 486
    int maxNodeId() const { return nodes.size()-1; }
487 487
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
488 488
    int maxArcId() const { return arcs.size()-1; }
489 489

	
490 490
    Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
491 491
    Node target(Arc e) const { return Node(arcs[e._id].target); }
492 492

	
493 493
    Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
494 494
    Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
495 495

	
496 496
    static bool direction(Arc e) {
497 497
      return (e._id & 1) == 1;
498 498
    }
499 499

	
500 500
    static Arc direct(Edge e, bool d) {
501 501
      return Arc(e._id * 2 + (d ? 1 : 0));
502 502
    }
503 503

	
504 504
    void first(Node& node) const {
505 505
      node._id = nodes.size() - 1;
506 506
    }
507 507

	
508 508
    void next(Node& node) const {
509 509
      --node._id;
510 510
    }
511 511

	
512 512
    void first(Arc& arc) const {
513 513
      arc._id = arcs.size() - 1;
514 514
    }
515 515

	
516 516
    void next(Arc& arc) const {
517 517
      --arc._id;
518 518
    }
519 519

	
520 520
    void first(Edge& arc) const {
521 521
      arc._id = arcs.size() / 2 - 1;
522 522
    }
523 523

	
524 524
    void next(Edge& arc) const {
525 525
      --arc._id;
526 526
    }
527 527

	
528 528
    void firstOut(Arc &arc, const Node& v) const {
529 529
      arc._id = nodes[v._id].first_out;
530 530
    }
531 531
    void nextOut(Arc &arc) const {
532 532
      arc._id = arcs[arc._id].next_out;
533 533
    }
534 534

	
535 535
    void firstIn(Arc &arc, const Node& v) const {
536 536
      arc._id = ((nodes[v._id].first_out) ^ 1);
537 537
      if (arc._id == -2) arc._id = -1;
538 538
    }
539 539
    void nextIn(Arc &arc) const {
540 540
      arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
541 541
      if (arc._id == -2) arc._id = -1;
542 542
    }
543 543

	
544 544
    void firstInc(Edge &arc, bool& d, const Node& v) const {
545 545
      int de = nodes[v._id].first_out;
546 546
      if (de != -1) {
547 547
        arc._id = de / 2;
548 548
        d = ((de & 1) == 1);
549 549
      } else {
550 550
        arc._id = -1;
551 551
        d = true;
552 552
      }
553 553
    }
554 554
    void nextInc(Edge &arc, bool& d) const {
555 555
      int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
556 556
      if (de != -1) {
557 557
        arc._id = de / 2;
558 558
        d = ((de & 1) == 1);
559 559
      } else {
560 560
        arc._id = -1;
561 561
        d = true;
562 562
      }
563 563
    }
564 564

	
565 565
    static int id(Node v) { return v._id; }
566 566
    static int id(Arc e) { return e._id; }
567 567
    static int id(Edge e) { return e._id; }
568 568

	
569 569
    static Node nodeFromId(int id) { return Node(id);}
570 570
    static Arc arcFromId(int id) { return Arc(id);}
571 571
    static Edge edgeFromId(int id) { return Edge(id);}
572 572

	
573 573
    bool valid(Node n) const {
574 574
      return n._id >= 0 && n._id < static_cast<int>(nodes.size());
575 575
    }
576 576
    bool valid(Arc a) const {
577 577
      return a._id >= 0 && a._id < static_cast<int>(arcs.size());
578 578
    }
579 579
    bool valid(Edge e) const {
580 580
      return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
581 581
    }
582 582

	
583 583
    Node addNode() {
584 584
      int n = nodes.size();
585 585
      nodes.push_back(NodeT());
586 586
      nodes[n].first_out = -1;
587 587

	
588 588
      return Node(n);
589 589
    }
590 590

	
591 591
    Edge addEdge(Node u, Node v) {
592 592
      int n = arcs.size();
593 593
      arcs.push_back(ArcT());
594 594
      arcs.push_back(ArcT());
595 595

	
596 596
      arcs[n].target = u._id;
597 597
      arcs[n | 1].target = v._id;
598 598

	
599 599
      arcs[n].next_out = nodes[v._id].first_out;
600 600
      nodes[v._id].first_out = n;
601 601

	
602 602
      arcs[n | 1].next_out = nodes[u._id].first_out;
603 603
      nodes[u._id].first_out = (n | 1);
604 604

	
605 605
      return Edge(n / 2);
606 606
    }
607 607

	
608 608
    void clear() {
609 609
      arcs.clear();
610 610
      nodes.clear();
611 611
    }
612 612

	
613 613
  };
614 614

	
615 615
  typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase;
616 616

	
617 617
  /// \ingroup graphs
618 618
  ///
619 619
  /// \brief A smart undirected graph class.
620 620
  ///
621 621
  /// This is a simple and fast graph implementation.
622 622
  /// It is also quite memory efficient, but at the price
623 623
  /// that <b> it does support only limited (only stack-like)
624 624
  /// node and arc deletions</b>.
625 625
  /// Except from this it conforms to
626 626
  /// the \ref concepts::Graph "Graph concept".
627 627
  ///
628 628
  /// It also has an
629 629
  /// important extra feature that
630 630
  /// its maps are real \ref concepts::ReferenceMap "reference map"s.
631 631
  ///
632 632
  /// \sa concepts::Graph.
633 633
  ///
634 634
  class SmartGraph : public ExtendedSmartGraphBase {
635 635
  private:
636 636

	
637 637
    ///SmartGraph is \e not copy constructible. Use GraphCopy() instead.
638 638

	
639 639
    ///SmartGraph is \e not copy constructible. Use GraphCopy() instead.
640 640
    ///
641 641
    SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
642 642

	
643 643
    ///\brief Assignment of SmartGraph to another one is \e not allowed.
644 644
    ///Use GraphCopy() instead.
645 645

	
646 646
    ///Assignment of SmartGraph to another one is \e not allowed.
647 647
    ///Use GraphCopy() instead.
648 648
    void operator=(const SmartGraph &) {}
649 649

	
650 650
  public:
651 651

	
652 652
    typedef ExtendedSmartGraphBase Parent;
653 653

	
654 654
    /// Constructor
655 655

	
656 656
    /// Constructor.
657 657
    ///
658 658
    SmartGraph() {}
659 659

	
660 660
    ///Add a new node to the graph.
661 661

	
662 662
    /// \return the new node.
663 663
    ///
664 664
    Node addNode() { return Parent::addNode(); }
665 665

	
666 666
    ///Add a new edge to the graph.
667 667

	
668 668
    ///Add a new edge to the graph with node \c s
669 669
    ///and \c t.
670 670
    ///\return the new edge.
671 671
    Edge addEdge(const Node& s, const Node& t) {
672 672
      return Parent::addEdge(s, t);
673 673
    }
674 674

	
675 675
    /// \brief Node validity check
676 676
    ///
677 677
    /// This function gives back true if the given node is valid,
678 678
    /// ie. it is a real node of the graph.
679 679
    ///
680 680
    /// \warning A removed node (using Snapshot) could become valid again
681 681
    /// when new nodes are added to the graph.
682 682
    bool valid(Node n) const { return Parent::valid(n); }
683 683

	
684 684
    /// \brief Arc validity check
685 685
    ///
686 686
    /// This function gives back true if the given arc is valid,
687 687
    /// ie. it is a real arc of the graph.
688 688
    ///
689 689
    /// \warning A removed arc (using Snapshot) could become valid again
690 690
    /// when new edges are added to the graph.
691 691
    bool valid(Arc a) const { return Parent::valid(a); }
692 692

	
693 693
    /// \brief Edge validity check
694 694
    ///
695 695
    /// This function gives back true if the given edge is valid,
696 696
    /// ie. it is a real edge of the graph.
697 697
    ///
698 698
    /// \warning A removed edge (using Snapshot) could become valid again
699 699
    /// when new edges are added to the graph.
700 700
    bool valid(Edge e) const { return Parent::valid(e); }
701 701

	
702 702
    ///Clear the graph.
703 703

	
704 704
    ///Erase all the nodes and edges from the graph.
705 705
    ///
706 706
    void clear() {
707 707
      Parent::clear();
708 708
    }
709 709

	
710 710
  public:
711 711

	
712 712
    class Snapshot;
713 713

	
714 714
  protected:
715 715

	
716 716
    void saveSnapshot(Snapshot &s)
717 717
    {
718 718
      s._graph = this;
719 719
      s.node_num = nodes.size();
720 720
      s.arc_num = arcs.size();
721 721
    }
722 722

	
723 723
    void restoreSnapshot(const Snapshot &s)
724 724
    {
725 725
      while(s.arc_num<arcs.size()) {
726 726
        int n=arcs.size()-1;
727 727
        Edge arc=edgeFromId(n/2);
728 728
        Parent::notifier(Edge()).erase(arc);
729 729
        std::vector<Arc> dir;
730 730
        dir.push_back(arcFromId(n));
731 731
        dir.push_back(arcFromId(n-1));
732 732
        Parent::notifier(Arc()).erase(dir);
733 733
        nodes[arcs[n-1].target].first_out=arcs[n].next_out;
734 734
        nodes[arcs[n].target].first_out=arcs[n-1].next_out;
735 735
        arcs.pop_back();
736 736
        arcs.pop_back();
737 737
      }
738 738
      while(s.node_num<nodes.size()) {
739 739
        int n=nodes.size()-1;
740 740
        Node node = nodeFromId(n);
741 741
        Parent::notifier(Node()).erase(node);
742 742
        nodes.pop_back();
743 743
      }
744 744
    }
745 745

	
746 746
  public:
747 747

	
748 748
    ///Class to make a snapshot of the digraph and to restrore to it later.
749 749

	
750 750
    ///Class to make a snapshot of the digraph and to restrore to it later.
751 751
    ///
752 752
    ///The newly added nodes and arcs can be removed using the
753 753
    ///restore() function.
754 754
    ///
755 755
    ///\note After you restore a state, you cannot restore
756 756
    ///a later state, in other word you cannot add again the arcs deleted
757 757
    ///by restore() using another one Snapshot instance.
758 758
    ///
759 759
    ///\warning If you do not use correctly the snapshot that can cause
760 760
    ///either broken program, invalid state of the digraph, valid but
761 761
    ///not the restored digraph or no change. Because the runtime performance
762 762
    ///the validity of the snapshot is not stored.
763 763
    class Snapshot
764 764
    {
765 765
      SmartGraph *_graph;
766 766
    protected:
767 767
      friend class SmartGraph;
768 768
      unsigned int node_num;
769 769
      unsigned int arc_num;
770 770
    public:
771 771
      ///Default constructor.
772 772

	
773 773
      ///Default constructor.
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_TIME_MEASURE_H
20 20
#define LEMON_TIME_MEASURE_H
21 21

	
22 22
///\ingroup timecount
23 23
///\file
24 24
///\brief Tools for measuring cpu usage
25 25

	
26 26
#ifdef WIN32
27 27
#include <lemon/bits/windows.h>
28 28
#else
29 29
#include <unistd.h>
30 30
#include <sys/times.h>
31 31
#include <sys/time.h>
32 32
#endif
33 33

	
34 34
#include <string>
35 35
#include <fstream>
36 36
#include <iostream>
37 37

	
38 38
namespace lemon {
39 39

	
40 40
  /// \addtogroup timecount
41 41
  /// @{
42 42

	
43 43
  /// A class to store (cpu)time instances.
44 44

	
45 45
  /// This class stores five time values.
46 46
  /// - a real time
47 47
  /// - a user cpu time
48 48
  /// - a system cpu time
49 49
  /// - a user cpu time of children
50 50
  /// - a system cpu time of children
51 51
  ///
52 52
  /// TimeStamp's can be added to or substracted from each other and
53 53
  /// they can be pushed to a stream.
54 54
  ///
55 55
  /// In most cases, perhaps the \ref Timer or the \ref TimeReport
56 56
  /// class is what you want to use instead.
57 57

	
58 58
  class TimeStamp
59 59
  {
60 60
    double utime;
61 61
    double stime;
62 62
    double cutime;
63 63
    double cstime;
64 64
    double rtime;
65 65

	
66 66
    void _reset() {
67 67
      utime = stime = cutime = cstime = rtime = 0;
68 68
    }
69 69

	
70 70
  public:
71 71

	
72 72
    ///Read the current time values of the process
73 73
    void stamp()
74 74
    {
75 75
#ifndef WIN32
76 76
      timeval tv;
77 77
      gettimeofday(&tv, 0);
78 78
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
79 79

	
80 80
      tms ts;
81 81
      double tck=sysconf(_SC_CLK_TCK);
82 82
      times(&ts);
83 83
      utime=ts.tms_utime/tck;
84 84
      stime=ts.tms_stime/tck;
85 85
      cutime=ts.tms_cutime/tck;
86 86
      cstime=ts.tms_cstime/tck;
87 87
#else
88 88
      bits::getWinProcTimes(rtime, utime, stime, cutime, cstime);
89 89
#endif
90 90
    }
91 91

	
92 92
    /// Constructor initializing with zero
93 93
    TimeStamp()
94 94
    { _reset(); }
95 95
    ///Constructor initializing with the current time values of the process
96 96
    TimeStamp(void *) { stamp();}
97 97

	
98 98
    ///Set every time value to zero
99 99
    TimeStamp &reset() {_reset();return *this;}
100 100

	
101 101
    ///\e
102 102
    TimeStamp &operator+=(const TimeStamp &b)
103 103
    {
104 104
      utime+=b.utime;
105 105
      stime+=b.stime;
106 106
      cutime+=b.cutime;
107 107
      cstime+=b.cstime;
108 108
      rtime+=b.rtime;
109 109
      return *this;
110 110
    }
111 111
    ///\e
112 112
    TimeStamp operator+(const TimeStamp &b) const
113 113
    {
114 114
      TimeStamp t(*this);
115 115
      return t+=b;
116 116
    }
117 117
    ///\e
118 118
    TimeStamp &operator-=(const TimeStamp &b)
119 119
    {
120 120
      utime-=b.utime;
121 121
      stime-=b.stime;
122 122
      cutime-=b.cutime;
123 123
      cstime-=b.cstime;
124 124
      rtime-=b.rtime;
125 125
      return *this;
126 126
    }
127 127
    ///\e
128 128
    TimeStamp operator-(const TimeStamp &b) const
129 129
    {
130 130
      TimeStamp t(*this);
131 131
      return t-=b;
132 132
    }
133 133
    ///\e
134 134
    TimeStamp &operator*=(double b)
135 135
    {
136 136
      utime*=b;
137 137
      stime*=b;
138 138
      cutime*=b;
139 139
      cstime*=b;
140 140
      rtime*=b;
141 141
      return *this;
142 142
    }
143 143
    ///\e
144 144
    TimeStamp operator*(double b) const
145 145
    {
146 146
      TimeStamp t(*this);
147 147
      return t*=b;
148 148
    }
149 149
    friend TimeStamp operator*(double b,const TimeStamp &t);
150 150
    ///\e
151 151
    TimeStamp &operator/=(double b)
152 152
    {
153 153
      utime/=b;
154 154
      stime/=b;
155 155
      cutime/=b;
156 156
      cstime/=b;
157 157
      rtime/=b;
158 158
      return *this;
159 159
    }
160 160
    ///\e
161 161
    TimeStamp operator/(double b) const
162 162
    {
163 163
      TimeStamp t(*this);
164 164
      return t/=b;
165 165
    }
166 166
    ///The time ellapsed since the last call of stamp()
167 167
    TimeStamp ellapsed() const
168 168
    {
169 169
      TimeStamp t(NULL);
170 170
      return t-*this;
171 171
    }
172 172

	
173 173
    friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
174 174

	
175 175
    ///Gives back the user time of the process
176 176
    double userTime() const
177 177
    {
178 178
      return utime;
179 179
    }
180 180
    ///Gives back the system time of the process
181 181
    double systemTime() const
182 182
    {
183 183
      return stime;
184 184
    }
185 185
    ///Gives back the user time of the process' children
186 186

	
187 187
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
188 188
    ///
189 189
    double cUserTime() const
190 190
    {
191 191
      return cutime;
192 192
    }
193 193
    ///Gives back the user time of the process' children
194 194

	
195 195
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
196 196
    ///
197 197
    double cSystemTime() const
198 198
    {
199 199
      return cstime;
200 200
    }
201 201
    ///Gives back the real time
202 202
    double realTime() const {return rtime;}
203 203
  };
204 204

	
205 205
  inline TimeStamp operator*(double b,const TimeStamp &t)
206 206
  {
207 207
    return t*b;
208 208
  }
209 209

	
210 210
  ///Prints the time counters
211 211

	
212 212
  ///Prints the time counters in the following form:
213 213
  ///
214 214
  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
215 215
  ///
216 216
  /// where the values are the
217 217
  /// \li \c u: user cpu time,
218 218
  /// \li \c s: system cpu time,
219 219
  /// \li \c cu: user cpu time of children,
220 220
  /// \li \c cs: system cpu time of children,
221 221
  /// \li \c real: real time.
222 222
  /// \relates TimeStamp
223 223
  /// \note On <tt>WIN32</tt> platform the cummulative values are not
224 224
  /// calculated.
225 225
  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
226 226
  {
227 227
    os << "u: " << t.userTime() <<
228 228
      "s, s: " << t.systemTime() <<
229 229
      "s, cu: " << t.cUserTime() <<
230 230
      "s, cs: " << t.cSystemTime() <<
231 231
      "s, real: " << t.realTime() << "s";
232 232
    return os;
233 233
  }
234 234

	
235 235
  ///Class for measuring the cpu time and real time usage of the process
236 236

	
237 237
  ///Class for measuring the cpu time and real time usage of the process.
238 238
  ///It is quite easy-to-use, here is a short example.
239 239
  ///\code
240 240
  /// #include<lemon/time_measure.h>
241 241
  /// #include<iostream>
242 242
  ///
243 243
  /// int main()
244 244
  /// {
245 245
  ///
246 246
  ///   ...
247 247
  ///
248 248
  ///   Timer t;
249 249
  ///   doSomething();
250 250
  ///   std::cout << t << '\n';
251 251
  ///   t.restart();
252 252
  ///   doSomethingElse();
253 253
  ///   std::cout << t << '\n';
254 254
  ///
255 255
  ///   ...
256 256
  ///
257 257
  /// }
258 258
  ///\endcode
259 259
  ///
260 260
  ///The \ref Timer can also be \ref stop() "stopped" and
261 261
  ///\ref start() "started" again, so it is possible to compute collected
262 262
  ///running times.
263 263
  ///
264 264
  ///\warning Depending on the operation system and its actual configuration
265 265
  ///the time counters have a certain (10ms on a typical Linux system)
266 266
  ///granularity.
267 267
  ///Therefore this tool is not appropriate to measure very short times.
268 268
  ///Also, if you start and stop the timer very frequently, it could lead to
269 269
  ///distorted results.
270 270
  ///
271 271
  ///\note If you want to measure the running time of the execution of a certain
272 272
  ///function, consider the usage of \ref TimeReport instead.
273 273
  ///
274 274
  ///\sa TimeReport
275 275
  class Timer
276 276
  {
277 277
    int _running; //Timer is running iff _running>0; (_running>=0 always holds)
278 278
    TimeStamp start_time; //This is the relativ start-time if the timer
279 279
                          //is _running, the collected _running time otherwise.
280 280

	
281 281
    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
282 282

	
283 283
  public:
284 284
    ///Constructor.
285 285

	
286 286
    ///\param run indicates whether or not the timer starts immediately.
287 287
    ///
288 288
    Timer(bool run=true) :_running(run) {_reset();}
289 289

	
290 290
    ///\name Control the state of the timer
291 291
    ///Basically a Timer can be either running or stopped,
292 292
    ///but it provides a bit finer control on the execution.
293 293
    ///The \ref lemon::Timer "Timer" also counts the number of
294 294
    ///\ref lemon::Timer::start() "start()" executions, and it stops
295 295
    ///only after the same amount (or more) \ref lemon::Timer::stop()
296 296
    ///"stop()"s. This can be useful e.g. to compute the running time
297 297
    ///of recursive functions.
298 298

	
299 299
    ///@{
300 300

	
301 301
    ///Reset and stop the time counters
302 302

	
303 303
    ///This function resets and stops the time counters
304 304
    ///\sa restart()
305 305
    void reset()
306 306
    {
307 307
      _running=0;
308 308
      _reset();
309 309
    }
310 310

	
311 311
    ///Start the time counters
312 312

	
313 313
    ///This function starts the time counters.
314 314
    ///
315 315
    ///If the timer is started more than ones, it will remain running
316 316
    ///until the same amount of \ref stop() is called.
317 317
    ///\sa stop()
318 318
    void start()
319 319
    {
320 320
      if(_running) _running++;
321 321
      else {
322 322
        _running=1;
323 323
        TimeStamp t;
324 324
        t.stamp();
325 325
        start_time=t-start_time;
326 326
      }
327 327
    }
328 328

	
329 329

	
330 330
    ///Stop the time counters
331 331

	
332 332
    ///This function stops the time counters. If start() was executed more than
333 333
    ///once, then the same number of stop() execution is necessary the really
334 334
    ///stop the timer.
335 335
    ///
336 336
    ///\sa halt()
337 337
    ///\sa start()
338 338
    ///\sa restart()
339 339
    ///\sa reset()
340 340

	
341 341
    void stop()
342 342
    {
343 343
      if(_running && !--_running) {
344 344
        TimeStamp t;
345 345
        t.stamp();
346 346
        start_time=t-start_time;
347 347
      }
348 348
    }
349 349

	
350 350
    ///Halt (i.e stop immediately) the time counters
351 351

	
352 352
    ///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
353 353
    ///is a faster
354 354
    ///equivalent of the following.
355 355
    ///\code
356 356
    ///  while(t.running()) t.stop()
357 357
    ///\endcode
358 358
    ///
359 359
    ///
360 360
    ///\sa stop()
361 361
    ///\sa restart()
362 362
    ///\sa reset()
363 363

	
364 364
    void halt()
365 365
    {
366 366
      if(_running) {
367 367
        _running=0;
368 368
        TimeStamp t;
369 369
        t.stamp();
370 370
        start_time=t-start_time;
371 371
      }
372 372
    }
373 373

	
374 374
    ///Returns the running state of the timer
375 375

	
376 376
    ///This function returns the number of stop() exections that is
377 377
    ///necessary to really stop the timer.
378 378
    ///For example the timer
379 379
    ///is running if and only if the return value is \c true
380 380
    ///(i.e. greater than
381 381
    ///zero).
382 382
    int running()  { return _running; }
383 383

	
384 384

	
385 385
    ///Restart the time counters
386 386

	
387 387
    ///This function is a shorthand for
388 388
    ///a reset() and a start() calls.
389 389
    ///
390 390
    void restart()
391 391
    {
392 392
      reset();
393 393
      start();
394 394
    }
395 395

	
396 396
    ///@}
397 397

	
398 398
    ///\name Query Functions for the ellapsed time
399 399

	
400 400
    ///@{
401 401

	
402 402
    ///Gives back the ellapsed user time of the process
403 403
    double userTime() const
404 404
    {
405 405
      return operator TimeStamp().userTime();
406 406
    }
407 407
    ///Gives back the ellapsed system time of the process
408 408
    double systemTime() const
409 409
    {
410 410
      return operator TimeStamp().systemTime();
411 411
    }
412 412
    ///Gives back the ellapsed user time of the process' children
413 413

	
414 414
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
415 415
    ///
416 416
    double cUserTime() const
417 417
    {
418 418
      return operator TimeStamp().cUserTime();
419 419
    }
420 420
    ///Gives back the ellapsed user time of the process' children
421 421

	
422 422
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
423 423
    ///
424 424
    double cSystemTime() const
425 425
    {
426 426
      return operator TimeStamp().cSystemTime();
427 427
    }
428 428
    ///Gives back the ellapsed real time
429 429
    double realTime() const
430 430
    {
431 431
      return operator TimeStamp().realTime();
432 432
    }
433 433
    ///Computes the ellapsed time
434 434

	
435 435
    ///This conversion computes the ellapsed time, therefore you can print
436 436
    ///the ellapsed time like this.
437 437
    ///\code
438 438
    ///  Timer t;
439 439
    ///  doSomething();
440 440
    ///  std::cout << t << '\n';
441 441
    ///\endcode
442 442
    operator TimeStamp () const
443 443
    {
444 444
      TimeStamp t;
445 445
      t.stamp();
446 446
      return _running?t-start_time:start_time;
447 447
    }
448 448

	
449 449

	
450 450
    ///@}
451 451
  };
452 452

	
453 453
  ///Same as Timer but prints a report on destruction.
454 454

	
455 455
  ///Same as \ref Timer but prints a report on destruction.
456 456
  ///This example shows its usage.
457 457
  ///\code
458 458
  ///  void myAlg(ListGraph &g,int n)
459 459
  ///  {
460 460
  ///    TimeReport tr("Running time of myAlg: ");
461 461
  ///    ... //Here comes the algorithm
462 462
  ///  }
463 463
  ///\endcode
464 464
  ///
465 465
  ///\sa Timer
466 466
  ///\sa NoTimeReport
467 467
  class TimeReport : public Timer
468 468
  {
469 469
    std::string _title;
470 470
    std::ostream &_os;
471 471
  public:
472 472
    ///Constructor
473 473

	
474 474
    ///Constructor.
475 475
    ///\param title This text will be printed before the ellapsed time.
476 476
    ///\param os The stream to print the report to.
477 477
    ///\param run Sets whether the timer should start immediately.
478 478
    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
479 479
      : Timer(run), _title(title), _os(os){}
480 480
    ///Destructor that prints the ellapsed time
481 481
    ~TimeReport()
482 482
    {
483 483
      _os << _title << *this << std::endl;
484 484
    }
485 485
  };
486 486

	
487 487
  ///'Do nothing' version of TimeReport
488 488

	
489 489
  ///\sa TimeReport
490 490
  ///
491 491
  class NoTimeReport
492 492
  {
493 493
  public:
494 494
    ///\e
495 495
    NoTimeReport(std::string,std::ostream &,bool) {}
496 496
    ///\e
497 497
    NoTimeReport(std::string,std::ostream &) {}
498 498
    ///\e
499 499
    NoTimeReport(std::string) {}
500 500
    ///\e Do nothing.
501 501
    ~NoTimeReport() {}
502 502

	
503 503
    operator TimeStamp () const { return TimeStamp(); }
504 504
    void reset() {}
505 505
    void start() {}
506 506
    void stop() {}
507 507
    void halt() {}
508 508
    int running() { return 0; }
509 509
    void restart() {}
510 510
    double userTime() const { return 0; }
511 511
    double systemTime() const { return 0; }
512 512
    double cUserTime() const { return 0; }
513 513
    double cSystemTime() const { return 0; }
514 514
    double realTime() const { return 0; }
515 515
  };
516 516

	
517 517
  ///Tool to measure the running time more exactly.
518 518

	
519 519
  ///This function calls \c f several times and returns the average
520 520
  ///running time. The number of the executions will be choosen in such a way
521 521
  ///that the full real running time will be roughly between \c min_time
522 522
  ///and <tt>2*min_time</tt>.
523 523
  ///\param f the function object to be measured.
524 524
  ///\param min_time the minimum total running time.
525 525
  ///\retval num if it is not \c NULL, then the actual
526 526
  ///        number of execution of \c f will be written into <tt>*num</tt>.
527 527
  ///\retval full_time if it is not \c NULL, then the actual
528 528
  ///        total running time will be written into <tt>*full_time</tt>.
529 529
  ///\return The average running time of \c f.
530 530

	
531 531
  template<class F>
532 532
  TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
533 533
                            TimeStamp *full_time=NULL)
534 534
  {
535 535
    TimeStamp full;
536 536
    unsigned int total=0;
537 537
    Timer t;
538 538
    for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
539 539
      for(;total<tn;total++) f();
540 540
      full=t;
541 541
    }
542 542
    if(num) *num=total;
543 543
    if(full_time) *full_time=full;
544 544
    return full/total;
545 545
  }
546 546

	
547 547
  /// @}
548 548

	
549 549

	
550 550
} //namespace lemon
551 551

	
552 552
#endif //LEMON_TIME_MEASURE_H
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_TOLERANCE_H
20 20
#define LEMON_TOLERANCE_H
21 21

	
22 22
///\ingroup misc
23 23
///\file
24 24
///\brief A basic tool to handle the anomalies of calculation with
25 25
///floating point numbers.
26 26
///
27 27

	
28 28
namespace lemon {
29 29

	
30 30
  /// \addtogroup misc
31 31
  /// @{
32 32

	
33 33
  ///\brief A class to provide a basic way to
34 34
  ///handle the comparison of numbers that are obtained
35 35
  ///as a result of a probably inexact computation.
36 36
  ///
37 37
  ///\ref Tolerance is a class to provide a basic way to
38 38
  ///handle the comparison of numbers that are obtained
39 39
  ///as a result of a probably inexact computation.
40 40
  ///
41 41
  ///The general implementation is suitable only if the data type is exact,
42 42
  ///like the integer types, otherwise a specialized version must be
43 43
  ///implemented. These specialized classes like
44 44
  ///Tolerance<double> may offer additional tuning parameters.
45 45
  ///
46 46
  ///\sa Tolerance<float>
47 47
  ///\sa Tolerance<double>
48 48
  ///\sa Tolerance<long double>
49 49

	
50 50
  template<class T>
51 51
  class Tolerance
52 52
  {
53 53
  public:
54 54
    typedef T Value;
55 55

	
56 56
    ///\name Comparisons
57 57
    ///The concept is that these bool functions return \c true only if
58 58
    ///the related comparisons hold even if some numerical error appeared
59 59
    ///during the computations.
60 60

	
61 61
    ///@{
62 62

	
63 63
    ///Returns \c true if \c a is \e surely strictly less than \c b
64 64
    static bool less(Value a,Value b) {return a<b;}
65 65
    ///Returns \c true if \c a is \e surely different from \c b
66 66
    static bool different(Value a,Value b) {return a!=b;}
67 67
    ///Returns \c true if \c a is \e surely positive
68 68
    static bool positive(Value a) {return static_cast<Value>(0) < a;}
69 69
    ///Returns \c true if \c a is \e surely negative
70 70
    static bool negative(Value a) {return a < static_cast<Value>(0);}
71 71
    ///Returns \c true if \c a is \e surely non-zero
72 72
    static bool nonZero(Value a) {return a != static_cast<Value>(0);}
73 73

	
74 74
    ///@}
75 75

	
76 76
    ///Returns the zero value.
77 77
    static Value zero() {return static_cast<Value>(0);}
78 78

	
79 79
    //   static bool finite(Value a) {}
80 80
    //   static Value big() {}
81 81
    //   static Value negativeBig() {}
82 82
  };
83 83

	
84 84

	
85 85
  ///Float specialization of Tolerance.
86 86

	
87 87
  ///Float specialization of Tolerance.
88 88
  ///\sa Tolerance
89 89
  ///\relates Tolerance
90 90
  template<>
91 91
  class Tolerance<float>
92 92
  {
93 93
    static float def_epsilon;
94 94
    float _epsilon;
95 95
  public:
96 96
    ///\e
97 97
    typedef float Value;
98 98

	
99 99
    ///Constructor setting the epsilon tolerance to the default value.
100 100
    Tolerance() : _epsilon(def_epsilon) {}
101 101
    ///Constructor setting the epsilon tolerance to the given value.
102 102
    Tolerance(float e) : _epsilon(e) {}
103 103

	
104 104
    ///Returns the epsilon value.
105 105
    Value epsilon() const {return _epsilon;}
106 106
    ///Sets the epsilon value.
107 107
    void epsilon(Value e) {_epsilon=e;}
108 108

	
109 109
    ///Returns the default epsilon value.
110 110
    static Value defaultEpsilon() {return def_epsilon;}
111 111
    ///Sets the default epsilon value.
112 112
    static void defaultEpsilon(Value e) {def_epsilon=e;}
113 113

	
114 114
    ///\name Comparisons
115 115
    ///See \ref lemon::Tolerance "Tolerance" for more details.
116 116

	
117 117
    ///@{
118 118

	
119 119
    ///Returns \c true if \c a is \e surely strictly less than \c b
120 120
    bool less(Value a,Value b) const {return a+_epsilon<b;}
121 121
    ///Returns \c true if \c a is \e surely different from \c b
122 122
    bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
123 123
    ///Returns \c true if \c a is \e surely positive
124 124
    bool positive(Value a) const { return _epsilon<a; }
125 125
    ///Returns \c true if \c a is \e surely negative
126 126
    bool negative(Value a) const { return -_epsilon>a; }
127 127
    ///Returns \c true if \c a is \e surely non-zero
128 128
    bool nonZero(Value a) const { return positive(a)||negative(a); }
129 129

	
130 130
    ///@}
131 131

	
132 132
    ///Returns zero
133 133
    static Value zero() {return 0;}
134 134
  };
135 135

	
136 136
  ///Double specialization of Tolerance.
137 137

	
138 138
  ///Double specialization of Tolerance.
139 139
  ///\sa Tolerance
140 140
  ///\relates Tolerance
141 141
  template<>
142 142
  class Tolerance<double>
143 143
  {
144 144
    static double def_epsilon;
145 145
    double _epsilon;
146 146
  public:
147 147
    ///\e
148 148
    typedef double Value;
149 149

	
150 150
    ///Constructor setting the epsilon tolerance to the default value.
151 151
    Tolerance() : _epsilon(def_epsilon) {}
152 152
    ///Constructor setting the epsilon tolerance to the given value.
153 153
    Tolerance(double e) : _epsilon(e) {}
154 154

	
155 155
    ///Returns the epsilon value.
156 156
    Value epsilon() const {return _epsilon;}
157 157
    ///Sets the epsilon value.
158 158
    void epsilon(Value e) {_epsilon=e;}
159 159

	
160 160
    ///Returns the default epsilon value.
161 161
    static Value defaultEpsilon() {return def_epsilon;}
162 162
    ///Sets the default epsilon value.
163 163
    static void defaultEpsilon(Value e) {def_epsilon=e;}
164 164

	
165 165
    ///\name Comparisons
166 166
    ///See \ref lemon::Tolerance "Tolerance" for more details.
167 167

	
168 168
    ///@{
169 169

	
170 170
    ///Returns \c true if \c a is \e surely strictly less than \c b
171 171
    bool less(Value a,Value b) const {return a+_epsilon<b;}
172 172
    ///Returns \c true if \c a is \e surely different from \c b
173 173
    bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
174 174
    ///Returns \c true if \c a is \e surely positive
175 175
    bool positive(Value a) const { return _epsilon<a; }
176 176
    ///Returns \c true if \c a is \e surely negative
177 177
    bool negative(Value a) const { return -_epsilon>a; }
178 178
    ///Returns \c true if \c a is \e surely non-zero
179 179
    bool nonZero(Value a) const { return positive(a)||negative(a); }
180 180

	
181 181
    ///@}
182 182

	
183 183
    ///Returns zero
184 184
    static Value zero() {return 0;}
185 185
  };
186 186

	
187 187
  ///Long double specialization of Tolerance.
188 188

	
189 189
  ///Long double specialization of Tolerance.
190 190
  ///\sa Tolerance
191 191
  ///\relates Tolerance
192 192
  template<>
193 193
  class Tolerance<long double>
194 194
  {
195 195
    static long double def_epsilon;
196 196
    long double _epsilon;
197 197
  public:
198 198
    ///\e
199 199
    typedef long double Value;
200 200

	
201 201
    ///Constructor setting the epsilon tolerance to the default value.
202 202
    Tolerance() : _epsilon(def_epsilon) {}
203 203
    ///Constructor setting the epsilon tolerance to the given value.
204 204
    Tolerance(long double e) : _epsilon(e) {}
205 205

	
206 206
    ///Returns the epsilon value.
207 207
    Value epsilon() const {return _epsilon;}
208 208
    ///Sets the epsilon value.
209 209
    void epsilon(Value e) {_epsilon=e;}
210 210

	
211 211
    ///Returns the default epsilon value.
212 212
    static Value defaultEpsilon() {return def_epsilon;}
213 213
    ///Sets the default epsilon value.
214 214
    static void defaultEpsilon(Value e) {def_epsilon=e;}
215 215

	
216 216
    ///\name Comparisons
217 217
    ///See \ref lemon::Tolerance "Tolerance" for more details.
218 218

	
219 219
    ///@{
220 220

	
221 221
    ///Returns \c true if \c a is \e surely strictly less than \c b
222 222
    bool less(Value a,Value b) const {return a+_epsilon<b;}
223 223
    ///Returns \c true if \c a is \e surely different from \c b
224 224
    bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
225 225
    ///Returns \c true if \c a is \e surely positive
226 226
    bool positive(Value a) const { return _epsilon<a; }
227 227
    ///Returns \c true if \c a is \e surely negative
228 228
    bool negative(Value a) const { return -_epsilon>a; }
229 229
    ///Returns \c true if \c a is \e surely non-zero
230 230
    bool nonZero(Value a) const { return positive(a)||negative(a); }
231 231

	
232 232
    ///@}
233 233

	
234 234
    ///Returns zero
235 235
    static Value zero() {return 0;}
236 236
  };
237 237

	
238 238
  /// @}
239 239

	
240 240
} //namespace lemon
241 241

	
242 242
#endif //LEMON_TOLERANCE_H
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_UNION_FIND_H
20 20
#define LEMON_UNION_FIND_H
21 21

	
22 22
//!\ingroup auxdat
23 23
//!\file
24 24
//!\brief Union-Find data structures.
25 25
//!
26 26

	
27 27
#include <vector>
28 28
#include <list>
29 29
#include <utility>
30 30
#include <algorithm>
31 31
#include <functional>
32 32

	
33 33
#include <lemon/core.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \ingroup auxdat
38 38
  ///
39 39
  /// \brief A \e Union-Find data structure implementation
40 40
  ///
41 41
  /// The class implements the \e Union-Find data structure.
42 42
  /// The union operation uses rank heuristic, while
43 43
  /// the find operation uses path compression.
44 44
  /// This is a very simple but efficient implementation, providing
45 45
  /// only four methods: join (union), find, insert and size.
46 46
  /// For more features see the \ref UnionFindEnum class.
47 47
  ///
48 48
  /// It is primarily used in Kruskal algorithm for finding minimal
49 49
  /// cost spanning tree in a graph.
50 50
  /// \sa kruskal()
51 51
  ///
52 52
  /// \pre You need to add all the elements by the \ref insert()
53 53
  /// method.
54 54
  template <typename _ItemIntMap>
55 55
  class UnionFind {
56 56
  public:
57 57

	
58 58
    typedef _ItemIntMap ItemIntMap;
59 59
    typedef typename ItemIntMap::Key Item;
60 60

	
61 61
  private:
62 62
    // If the items vector stores negative value for an item then
63 63
    // that item is root item and it has -items[it] component size.
64 64
    // Else the items[it] contains the index of the parent.
65 65
    std::vector<int> items;
66 66
    ItemIntMap& index;
67 67

	
68 68
    bool rep(int idx) const {
69 69
      return items[idx] < 0;
70 70
    }
71 71

	
72 72
    int repIndex(int idx) const {
73 73
      int k = idx;
74 74
      while (!rep(k)) {
75 75
        k = items[k] ;
76 76
      }
77 77
      while (idx != k) {
78 78
        int next = items[idx];
79 79
        const_cast<int&>(items[idx]) = k;
80 80
        idx = next;
81 81
      }
82 82
      return k;
83 83
    }
84 84

	
85 85
  public:
86 86

	
87 87
    /// \brief Constructor
88 88
    ///
89 89
    /// Constructor of the UnionFind class. You should give an item to
90 90
    /// integer map which will be used from the data structure. If you
91 91
    /// modify directly this map that may cause segmentation fault,
92 92
    /// invalid data structure, or infinite loop when you use again
93 93
    /// the union-find.
94 94
    UnionFind(ItemIntMap& m) : index(m) {}
95 95

	
96 96
    /// \brief Returns the index of the element's component.
97 97
    ///
98 98
    /// The method returns the index of the element's component.
99 99
    /// This is an integer between zero and the number of inserted elements.
100 100
    ///
101 101
    int find(const Item& a) {
102 102
      return repIndex(index[a]);
103 103
    }
104 104

	
105 105
    /// \brief Clears the union-find data structure
106 106
    ///
107 107
    /// Erase each item from the data structure.
108 108
    void clear() {
109 109
      items.clear();
110 110
    }
111 111

	
112 112
    /// \brief Inserts a new element into the structure.
113 113
    ///
114 114
    /// This method inserts a new element into the data structure.
115 115
    ///
116 116
    /// The method returns the index of the new component.
117 117
    int insert(const Item& a) {
118 118
      int n = items.size();
119 119
      items.push_back(-1);
120 120
      index.set(a,n);
121 121
      return n;
122 122
    }
123 123

	
124 124
    /// \brief Joining the components of element \e a and element \e b.
125 125
    ///
126 126
    /// This is the \e union operation of the Union-Find structure.
127 127
    /// Joins the component of element \e a and component of
128 128
    /// element \e b. If \e a and \e b are in the same component then
129 129
    /// it returns false otherwise it returns true.
130 130
    bool join(const Item& a, const Item& b) {
131 131
      int ka = repIndex(index[a]);
132 132
      int kb = repIndex(index[b]);
133 133

	
134 134
      if ( ka == kb )
135 135
        return false;
136 136

	
137 137
      if (items[ka] < items[kb]) {
138 138
        items[ka] += items[kb];
139 139
        items[kb] = ka;
140 140
      } else {
141 141
        items[kb] += items[ka];
142 142
        items[ka] = kb;
143 143
      }
144 144
      return true;
145 145
    }
146 146

	
147 147
    /// \brief Returns the size of the component of element \e a.
148 148
    ///
149 149
    /// Returns the size of the component of element \e a.
150 150
    int size(const Item& a) {
151 151
      int k = repIndex(index[a]);
152 152
      return - items[k];
153 153
    }
154 154

	
155 155
  };
156 156

	
157 157
  /// \ingroup auxdat
158 158
  ///
159 159
  /// \brief A \e Union-Find data structure implementation which
160 160
  /// is able to enumerate the components.
161 161
  ///
162 162
  /// The class implements a \e Union-Find data structure
163 163
  /// which is able to enumerate the components and the items in
164 164
  /// a component. If you don't need this feature then perhaps it's
165 165
  /// better to use the \ref UnionFind class which is more efficient.
166 166
  ///
167 167
  /// The union operation uses rank heuristic, while
168 168
  /// the find operation uses path compression.
169 169
  ///
170 170
  /// \pre You need to add all the elements by the \ref insert()
171 171
  /// method.
172 172
  ///
173 173
  template <typename _ItemIntMap>
174 174
  class UnionFindEnum {
175 175
  public:
176 176

	
177 177
    typedef _ItemIntMap ItemIntMap;
178 178
    typedef typename ItemIntMap::Key Item;
179 179

	
180 180
  private:
181 181

	
182 182
    ItemIntMap& index;
183 183

	
184 184
    // If the parent stores negative value for an item then that item
185 185
    // is root item and it has ~(items[it].parent) component id.  Else
186 186
    // the items[it].parent contains the index of the parent.
187 187
    //
188 188
    // The \c next and \c prev provides the double-linked
189 189
    // cyclic list of one component's items.
190 190
    struct ItemT {
191 191
      int parent;
192 192
      Item item;
193 193

	
194 194
      int next, prev;
195 195
    };
196 196

	
197 197
    std::vector<ItemT> items;
198 198
    int firstFreeItem;
199 199

	
200 200
    struct ClassT {
201 201
      int size;
202 202
      int firstItem;
203 203
      int next, prev;
204 204
    };
205 205

	
206 206
    std::vector<ClassT> classes;
207 207
    int firstClass, firstFreeClass;
208 208

	
209 209
    int newClass() {
210 210
      if (firstFreeClass == -1) {
211 211
        int cdx = classes.size();
212 212
        classes.push_back(ClassT());
213 213
        return cdx;
214 214
      } else {
215 215
        int cdx = firstFreeClass;
216 216
        firstFreeClass = classes[firstFreeClass].next;
217 217
        return cdx;
218 218
      }
219 219
    }
220 220

	
221 221
    int newItem() {
222 222
      if (firstFreeItem == -1) {
223 223
        int idx = items.size();
224 224
        items.push_back(ItemT());
225 225
        return idx;
226 226
      } else {
227 227
        int idx = firstFreeItem;
228 228
        firstFreeItem = items[firstFreeItem].next;
229 229
        return idx;
230 230
      }
231 231
    }
232 232

	
233 233

	
234 234
    bool rep(int idx) const {
235 235
      return items[idx].parent < 0;
236 236
    }
237 237

	
238 238
    int repIndex(int idx) const {
239 239
      int k = idx;
240 240
      while (!rep(k)) {
241 241
        k = items[k].parent;
242 242
      }
243 243
      while (idx != k) {
244 244
        int next = items[idx].parent;
245 245
        const_cast<int&>(items[idx].parent) = k;
246 246
        idx = next;
247 247
      }
248 248
      return k;
249 249
    }
250 250

	
251 251
    int classIndex(int idx) const {
252 252
      return ~(items[repIndex(idx)].parent);
253 253
    }
254 254

	
255 255
    void singletonItem(int idx) {
256 256
      items[idx].next = idx;
257 257
      items[idx].prev = idx;
258 258
    }
259 259

	
260 260
    void laceItem(int idx, int rdx) {
261 261
      items[idx].prev = rdx;
262 262
      items[idx].next = items[rdx].next;
263 263
      items[items[rdx].next].prev = idx;
264 264
      items[rdx].next = idx;
265 265
    }
266 266

	
267 267
    void unlaceItem(int idx) {
268 268
      items[items[idx].prev].next = items[idx].next;
269 269
      items[items[idx].next].prev = items[idx].prev;
270 270

	
271 271
      items[idx].next = firstFreeItem;
272 272
      firstFreeItem = idx;
273 273
    }
274 274

	
275 275
    void spliceItems(int ak, int bk) {
276 276
      items[items[ak].prev].next = bk;
277 277
      items[items[bk].prev].next = ak;
278 278
      int tmp = items[ak].prev;
279 279
      items[ak].prev = items[bk].prev;
280 280
      items[bk].prev = tmp;
281 281

	
282 282
    }
283 283

	
284 284
    void laceClass(int cls) {
285 285
      if (firstClass != -1) {
286 286
        classes[firstClass].prev = cls;
287 287
      }
288 288
      classes[cls].next = firstClass;
289 289
      classes[cls].prev = -1;
290 290
      firstClass = cls;
291 291
    }
292 292

	
293 293
    void unlaceClass(int cls) {
294 294
      if (classes[cls].prev != -1) {
295 295
        classes[classes[cls].prev].next = classes[cls].next;
296 296
      } else {
297 297
        firstClass = classes[cls].next;
298 298
      }
299 299
      if (classes[cls].next != -1) {
300 300
        classes[classes[cls].next].prev = classes[cls].prev;
301 301
      }
302 302

	
303 303
      classes[cls].next = firstFreeClass;
304 304
      firstFreeClass = cls;
305 305
    }
306 306

	
307 307
  public:
308 308

	
309 309
    UnionFindEnum(ItemIntMap& _index)
310 310
      : index(_index), items(), firstFreeItem(-1),
311 311
        firstClass(-1), firstFreeClass(-1) {}
312 312

	
313 313
    /// \brief Inserts the given element into a new component.
314 314
    ///
315 315
    /// This method creates a new component consisting only of the
316 316
    /// given element.
317 317
    ///
318 318
    int insert(const Item& item) {
319 319
      int idx = newItem();
320 320

	
321 321
      index.set(item, idx);
322 322

	
323 323
      singletonItem(idx);
324 324
      items[idx].item = item;
325 325

	
326 326
      int cdx = newClass();
327 327

	
328 328
      items[idx].parent = ~cdx;
329 329

	
330 330
      laceClass(cdx);
331 331
      classes[cdx].size = 1;
332 332
      classes[cdx].firstItem = idx;
333 333

	
334 334
      firstClass = cdx;
335 335

	
336 336
      return cdx;
337 337
    }
338 338

	
339 339
    /// \brief Inserts the given element into the component of the others.
340 340
    ///
341 341
    /// This methods inserts the element \e a into the component of the
342 342
    /// element \e comp.
343 343
    void insert(const Item& item, int cls) {
344 344
      int rdx = classes[cls].firstItem;
345 345
      int idx = newItem();
346 346

	
347 347
      index.set(item, idx);
348 348

	
349 349
      laceItem(idx, rdx);
350 350

	
351 351
      items[idx].item = item;
352 352
      items[idx].parent = rdx;
353 353

	
354 354
      ++classes[~(items[rdx].parent)].size;
355 355
    }
356 356

	
357 357
    /// \brief Clears the union-find data structure
358 358
    ///
359 359
    /// Erase each item from the data structure.
360 360
    void clear() {
361 361
      items.clear();
362 362
      firstClass = -1;
363 363
      firstFreeItem = -1;
364 364
    }
365 365

	
366 366
    /// \brief Finds the component of the given element.
367 367
    ///
368 368
    /// The method returns the component id of the given element.
369 369
    int find(const Item &item) const {
370 370
      return ~(items[repIndex(index[item])].parent);
371 371
    }
372 372

	
373 373
    /// \brief Joining the component of element \e a and element \e b.
374 374
    ///
375 375
    /// This is the \e union operation of the Union-Find structure.
376 376
    /// Joins the component of element \e a and component of
377 377
    /// element \e b. If \e a and \e b are in the same component then
378 378
    /// returns -1 else returns the remaining class.
379 379
    int join(const Item& a, const Item& b) {
380 380

	
381 381
      int ak = repIndex(index[a]);
382 382
      int bk = repIndex(index[b]);
383 383

	
384 384
      if (ak == bk) {
385 385
        return -1;
386 386
      }
387 387

	
388 388
      int acx = ~(items[ak].parent);
389 389
      int bcx = ~(items[bk].parent);
390 390

	
391 391
      int rcx;
392 392

	
393 393
      if (classes[acx].size > classes[bcx].size) {
394 394
        classes[acx].size += classes[bcx].size;
395 395
        items[bk].parent = ak;
396 396
        unlaceClass(bcx);
397 397
        rcx = acx;
398 398
      } else {
399 399
        classes[bcx].size += classes[acx].size;
400 400
        items[ak].parent = bk;
401 401
        unlaceClass(acx);
402 402
        rcx = bcx;
403 403
      }
404 404
      spliceItems(ak, bk);
405 405

	
406 406
      return rcx;
407 407
    }
408 408

	
409 409
    /// \brief Returns the size of the class.
410 410
    ///
411 411
    /// Returns the size of the class.
412 412
    int size(int cls) const {
413 413
      return classes[cls].size;
414 414
    }
415 415

	
416 416
    /// \brief Splits up the component.
417 417
    ///
418 418
    /// Splitting the component into singleton components (component
419 419
    /// of size one).
420 420
    void split(int cls) {
421 421
      int fdx = classes[cls].firstItem;
422 422
      int idx = items[fdx].next;
423 423
      while (idx != fdx) {
424 424
        int next = items[idx].next;
425 425

	
426 426
        singletonItem(idx);
427 427

	
428 428
        int cdx = newClass();
429 429
        items[idx].parent = ~cdx;
430 430

	
431 431
        laceClass(cdx);
432 432
        classes[cdx].size = 1;
433 433
        classes[cdx].firstItem = idx;
434 434

	
435 435
        idx = next;
436 436
      }
437 437

	
438 438
      items[idx].prev = idx;
439 439
      items[idx].next = idx;
440 440

	
441 441
      classes[~(items[idx].parent)].size = 1;
442 442

	
443 443
    }
444 444

	
445 445
    /// \brief Removes the given element from the structure.
446 446
    ///
447 447
    /// Removes the element from its component and if the component becomes
448 448
    /// empty then removes that component from the component list.
449 449
    ///
450 450
    /// \warning It is an error to remove an element which is not in
451 451
    /// the structure.
452 452
    /// \warning This running time of this operation is proportional to the
453 453
    /// number of the items in this class.
454 454
    void erase(const Item& item) {
455 455
      int idx = index[item];
456 456
      int fdx = items[idx].next;
457 457

	
458 458
      int cdx = classIndex(idx);
459 459
      if (idx == fdx) {
460 460
        unlaceClass(cdx);
461 461
        items[idx].next = firstFreeItem;
462 462
        firstFreeItem = idx;
463 463
        return;
464 464
      } else {
465 465
        classes[cdx].firstItem = fdx;
466 466
        --classes[cdx].size;
467 467
        items[fdx].parent = ~cdx;
468 468

	
469 469
        unlaceItem(idx);
470 470
        idx = items[fdx].next;
471 471
        while (idx != fdx) {
472 472
          items[idx].parent = fdx;
473 473
          idx = items[idx].next;
474 474
        }
475 475

	
476 476
      }
477 477

	
478 478
    }
479 479

	
480 480
    /// \brief Gives back a representant item of the component.
481 481
    ///
482 482
    /// Gives back a representant item of the component.
483 483
    Item item(int cls) const {
484 484
      return items[classes[cls].firstItem].item;
485 485
    }
486 486

	
487 487
    /// \brief Removes the component of the given element from the structure.
488 488
    ///
489 489
    /// Removes the component of the given element from the structure.
490 490
    ///
491 491
    /// \warning It is an error to give an element which is not in the
492 492
    /// structure.
493 493
    void eraseClass(int cls) {
494 494
      int fdx = classes[cls].firstItem;
495 495
      unlaceClass(cls);
496 496
      items[items[fdx].prev].next = firstFreeItem;
497 497
      firstFreeItem = fdx;
498 498
    }
499 499

	
500 500
    /// \brief LEMON style iterator for the representant items.
501 501
    ///
502 502
    /// ClassIt is a lemon style iterator for the components. It iterates
503 503
    /// on the ids of the classes.
504 504
    class ClassIt {
505 505
    public:
506 506
      /// \brief Constructor of the iterator
507 507
      ///
508 508
      /// Constructor of the iterator
509 509
      ClassIt(const UnionFindEnum& ufe) : unionFind(&ufe) {
510 510
        cdx = unionFind->firstClass;
511 511
      }
512 512

	
513 513
      /// \brief Constructor to get invalid iterator
514 514
      ///
515 515
      /// Constructor to get invalid iterator
516 516
      ClassIt(Invalid) : unionFind(0), cdx(-1) {}
517 517

	
518 518
      /// \brief Increment operator
519 519
      ///
520 520
      /// It steps to the next representant item.
521 521
      ClassIt& operator++() {
522 522
        cdx = unionFind->classes[cdx].next;
523 523
        return *this;
524 524
      }
525 525

	
526 526
      /// \brief Conversion operator
527 527
      ///
528 528
      /// It converts the iterator to the current representant item.
529 529
      operator int() const {
530 530
        return cdx;
531 531
      }
532 532

	
533 533
      /// \brief Equality operator
534 534
      ///
535 535
      /// Equality operator
536 536
      bool operator==(const ClassIt& i) {
537 537
        return i.cdx == cdx;
538 538
      }
539 539

	
540 540
      /// \brief Inequality operator
541 541
      ///
542 542
      /// Inequality operator
543 543
      bool operator!=(const ClassIt& i) {
544 544
        return i.cdx != cdx;
545 545
      }
546 546

	
547 547
    private:
548 548
      const UnionFindEnum* unionFind;
549 549
      int cdx;
550 550
    };
551 551

	
552 552
    /// \brief LEMON style iterator for the items of a component.
553 553
    ///
554 554
    /// ClassIt is a lemon style iterator for the components. It iterates
555 555
    /// on the items of a class. By example if you want to iterate on
556 556
    /// each items of each classes then you may write the next code.
557 557
    ///\code
558 558
    /// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
559 559
    ///   std::cout << "Class: ";
560 560
    ///   for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
561 561
    ///     std::cout << toString(iit) << ' ' << std::endl;
562 562
    ///   }
563 563
    ///   std::cout << std::endl;
564 564
    /// }
565 565
    ///\endcode
566 566
    class ItemIt {
567 567
    public:
568 568
      /// \brief Constructor of the iterator
569 569
      ///
570 570
      /// Constructor of the iterator. The iterator iterates
571 571
      /// on the class of the \c item.
572 572
      ItemIt(const UnionFindEnum& ufe, int cls) : unionFind(&ufe) {
573 573
        fdx = idx = unionFind->classes[cls].firstItem;
574 574
      }
575 575

	
576 576
      /// \brief Constructor to get invalid iterator
577 577
      ///
578 578
      /// Constructor to get invalid iterator
579 579
      ItemIt(Invalid) : unionFind(0), idx(-1) {}
580 580

	
581 581
      /// \brief Increment operator
582 582
      ///
583 583
      /// It steps to the next item in the class.
584 584
      ItemIt& operator++() {
585 585
        idx = unionFind->items[idx].next;
586 586
        if (idx == fdx) idx = -1;
587 587
        return *this;
588 588
      }
589 589

	
590 590
      /// \brief Conversion operator
591 591
      ///
592 592
      /// It converts the iterator to the current item.
593 593
      operator const Item&() const {
594 594
        return unionFind->items[idx].item;
595 595
      }
596 596

	
597 597
      /// \brief Equality operator
598 598
      ///
599 599
      /// Equality operator
600 600
      bool operator==(const ItemIt& i) {
601 601
        return i.idx == idx;
602 602
      }
603 603

	
604 604
      /// \brief Inequality operator
605 605
      ///
606 606
      /// Inequality operator
607 607
      bool operator!=(const ItemIt& i) {
608 608
        return i.idx != idx;
609 609
      }
610 610

	
611 611
    private:
612 612
      const UnionFindEnum* unionFind;
613 613
      int idx, fdx;
614 614
    };
615 615

	
616 616
  };
617 617

	
618 618
  /// \ingroup auxdat
619 619
  ///
620 620
  /// \brief A \e Extend-Find data structure implementation which
621 621
  /// is able to enumerate the components.
622 622
  ///
623 623
  /// The class implements an \e Extend-Find data structure which is
624 624
  /// able to enumerate the components and the items in a
625 625
  /// component. The data structure is a simplification of the
626 626
  /// Union-Find structure, and it does not allow to merge two components.
627 627
  ///
628 628
  /// \pre You need to add all the elements by the \ref insert()
629 629
  /// method.
630 630
  template <typename _ItemIntMap>
631 631
  class ExtendFindEnum {
632 632
  public:
633 633

	
634 634
    typedef _ItemIntMap ItemIntMap;
635 635
    typedef typename ItemIntMap::Key Item;
636 636

	
637 637
  private:
638 638

	
639 639
    ItemIntMap& index;
640 640

	
641 641
    struct ItemT {
642 642
      int cls;
643 643
      Item item;
644 644
      int next, prev;
645 645
    };
646 646

	
647 647
    std::vector<ItemT> items;
648 648
    int firstFreeItem;
649 649

	
650 650
    struct ClassT {
651 651
      int firstItem;
652 652
      int next, prev;
653 653
    };
654 654

	
655 655
    std::vector<ClassT> classes;
656 656

	
657 657
    int firstClass, firstFreeClass;
658 658

	
659 659
    int newClass() {
660 660
      if (firstFreeClass != -1) {
661 661
        int cdx = firstFreeClass;
662 662
        firstFreeClass = classes[cdx].next;
663 663
        return cdx;
664 664
      } else {
665 665
        classes.push_back(ClassT());
666 666
        return classes.size() - 1;
667 667
      }
668 668
    }
669 669

	
670 670
    int newItem() {
671 671
      if (firstFreeItem != -1) {
672 672
        int idx = firstFreeItem;
673 673
        firstFreeItem = items[idx].next;
674 674
        return idx;
675 675
      } else {
676 676
        items.push_back(ItemT());
677 677
        return items.size() - 1;
678 678
      }
679 679
    }
680 680

	
681 681
  public:
682 682

	
683 683
    /// \brief Constructor
684 684
    ExtendFindEnum(ItemIntMap& _index)
685 685
      : index(_index), items(), firstFreeItem(-1),
686 686
        classes(), firstClass(-1), firstFreeClass(-1) {}
687 687

	
688 688
    /// \brief Inserts the given element into a new component.
689 689
    ///
690 690
    /// This method creates a new component consisting only of the
691 691
    /// given element.
692 692
    int insert(const Item& item) {
693 693
      int cdx = newClass();
694 694
      classes[cdx].prev = -1;
695 695
      classes[cdx].next = firstClass;
696 696
      if (firstClass != -1) {
697 697
        classes[firstClass].prev = cdx;
698 698
      }
699 699
      firstClass = cdx;
700 700

	
701 701
      int idx = newItem();
702 702
      items[idx].item = item;
703 703
      items[idx].cls = cdx;
704 704
      items[idx].prev = idx;
705 705
      items[idx].next = idx;
706 706

	
707 707
      classes[cdx].firstItem = idx;
708 708

	
709 709
      index.set(item, idx);
710 710

	
711 711
      return cdx;
712 712
    }
713 713

	
714 714
    /// \brief Inserts the given element into the given component.
715 715
    ///
716 716
    /// This methods inserts the element \e item a into the \e cls class.
717 717
    void insert(const Item& item, int cls) {
718 718
      int idx = newItem();
719 719
      int rdx = classes[cls].firstItem;
720 720
      items[idx].item = item;
721 721
      items[idx].cls = cls;
722 722

	
723 723
      items[idx].prev = rdx;
724 724
      items[idx].next = items[rdx].next;
725 725
      items[items[rdx].next].prev = idx;
726 726
      items[rdx].next = idx;
727 727

	
728 728
      index.set(item, idx);
729 729
    }
730 730

	
731 731
    /// \brief Clears the union-find data structure
732 732
    ///
733 733
    /// Erase each item from the data structure.
734 734
    void clear() {
735 735
      items.clear();
736 736
      classes.clear();
737 737
      firstClass = firstFreeClass = firstFreeItem = -1;
738 738
    }
739 739

	
740 740
    /// \brief Gives back the class of the \e item.
741 741
    ///
742 742
    /// Gives back the class of the \e item.
743 743
    int find(const Item &item) const {
744 744
      return items[index[item]].cls;
745 745
    }
746 746

	
747 747
    /// \brief Gives back a representant item of the component.
748 748
    ///
749 749
    /// Gives back a representant item of the component.
750 750
    Item item(int cls) const {
751 751
      return items[classes[cls].firstItem].item;
752 752
    }
753 753

	
754 754
    /// \brief Removes the given element from the structure.
755 755
    ///
756 756
    /// Removes the element from its component and if the component becomes
757 757
    /// empty then removes that component from the component list.
758 758
    ///
759 759
    /// \warning It is an error to remove an element which is not in
760 760
    /// the structure.
761 761
    void erase(const Item &item) {
762 762
      int idx = index[item];
763 763
      int cdx = items[idx].cls;
764 764

	
765 765
      if (idx == items[idx].next) {
766 766
        if (classes[cdx].prev != -1) {
767 767
          classes[classes[cdx].prev].next = classes[cdx].next;
768 768
        } else {
769 769
          firstClass = classes[cdx].next;
770 770
        }
771 771
        if (classes[cdx].next != -1) {
772 772
          classes[classes[cdx].next].prev = classes[cdx].prev;
773 773
        }
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/digraph.h>
20 20
#include <lemon/smart_graph.h>
21 21
#include <lemon/list_graph.h>
22 22
#include <lemon/lgf_reader.h>
23 23
#include <lemon/dfs.h>
24 24
#include <lemon/path.h>
25 25

	
26 26
#include "graph_test.h"
27 27
#include "test_tools.h"
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
char test_lgf[] =
32 32
  "@nodes\n"
33 33
  "label\n"
34 34
  "0\n"
35 35
  "1\n"
36 36
  "2\n"
37 37
  "3\n"
38 38
  "4\n"
39 39
  "5\n"
40 40
  "6\n"
41 41
  "@arcs\n"
42 42
  "     label\n"
43 43
  "0 1  0\n"
44 44
  "1 2  1\n"
45 45
  "2 3  2\n"
46 46
  "1 4  3\n"
47 47
  "4 2  4\n"
48 48
  "4 5  5\n"
49 49
  "5 0  6\n"
50 50
  "6 3  7\n"
51 51
  "@attributes\n"
52 52
  "source 0\n"
53 53
  "target 5\n"
54 54
  "source1 6\n"
55 55
  "target1 3\n";
56 56

	
57 57

	
58 58
void checkDfsCompile()
59 59
{
60 60
  typedef concepts::Digraph Digraph;
61 61
  typedef Dfs<Digraph> DType;
62 62
  typedef Digraph::Node Node;
63 63
  typedef Digraph::Arc Arc;
64 64

	
65 65
  Digraph G;
66 66
  Node s, t;
67 67
  Arc e;
68 68
  int l;
69 69
  bool b;
70 70
  DType::DistMap d(G);
71 71
  DType::PredMap p(G);
72 72
  Path<Digraph> pp;
73 73

	
74 74
  {
75 75
    DType dfs_test(G);
76 76

	
77 77
    dfs_test.run(s);
78 78
    dfs_test.run(s,t);
79 79
    dfs_test.run();
80 80

	
81 81
    l  = dfs_test.dist(t);
82 82
    e  = dfs_test.predArc(t);
83 83
    s  = dfs_test.predNode(t);
84 84
    b  = dfs_test.reached(t);
85 85
    d  = dfs_test.distMap();
86 86
    p  = dfs_test.predMap();
87 87
    pp = dfs_test.path(t);
88 88
  }
89 89
  {
90 90
    DType
91 91
      ::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
92 92
      ::SetDistMap<concepts::ReadWriteMap<Node,int> >
93 93
      ::SetReachedMap<concepts::ReadWriteMap<Node,bool> >
94 94
      ::SetProcessedMap<concepts::WriteMap<Node,bool> >
95 95
      ::SetStandardProcessedMap
96 96
      ::Create dfs_test(G);
97 97

	
98 98
    dfs_test.run(s);
99 99
    dfs_test.run(s,t);
100 100
    dfs_test.run();
101 101

	
102 102
    l  = dfs_test.dist(t);
103 103
    e  = dfs_test.predArc(t);
104 104
    s  = dfs_test.predNode(t);
105 105
    b  = dfs_test.reached(t);
106 106
    pp = dfs_test.path(t);
107 107
  }
108 108
}
109 109

	
110 110
void checkDfsFunctionCompile()
111 111
{
112 112
  typedef int VType;
113 113
  typedef concepts::Digraph Digraph;
114 114
  typedef Digraph::Arc Arc;
115 115
  typedef Digraph::Node Node;
116 116

	
117 117
  Digraph g;
118 118
  bool b;
119 119
  dfs(g).run(Node());
120 120
  b=dfs(g).run(Node(),Node());
121 121
  dfs(g).run();
122 122
  dfs(g)
123 123
    .predMap(concepts::ReadWriteMap<Node,Arc>())
124 124
    .distMap(concepts::ReadWriteMap<Node,VType>())
125 125
    .reachedMap(concepts::ReadWriteMap<Node,bool>())
126 126
    .processedMap(concepts::WriteMap<Node,bool>())
127 127
    .run(Node());
128 128
  b=dfs(g)
129 129
    .predMap(concepts::ReadWriteMap<Node,Arc>())
130 130
    .distMap(concepts::ReadWriteMap<Node,VType>())
131 131
    .reachedMap(concepts::ReadWriteMap<Node,bool>())
132 132
    .processedMap(concepts::WriteMap<Node,bool>())
133 133
    .path(concepts::Path<Digraph>())
134 134
    .dist(VType())
135 135
    .run(Node(),Node());
136 136
  dfs(g)
137 137
    .predMap(concepts::ReadWriteMap<Node,Arc>())
138 138
    .distMap(concepts::ReadWriteMap<Node,VType>())
139 139
    .reachedMap(concepts::ReadWriteMap<Node,bool>())
140 140
    .processedMap(concepts::WriteMap<Node,bool>())
141 141
    .run();
142 142
}
143 143

	
144 144
template <class Digraph>
145 145
void checkDfs() {
146 146
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
147 147

	
148 148
  Digraph G;
149 149
  Node s, t;
150 150
  Node s1, t1;
151 151

	
152 152
  std::istringstream input(test_lgf);
153 153
  digraphReader(G, input).
154 154
    node("source", s).
155 155
    node("target", t).
156 156
    node("source1", s1).
157 157
    node("target1", t1).
158 158
    run();
159 159

	
160 160
  Dfs<Digraph> dfs_test(G);
161 161
  dfs_test.run(s);
162 162

	
163 163
  Path<Digraph> p = dfs_test.path(t);
164 164
  check(p.length() == dfs_test.dist(t),"path() found a wrong path.");
165 165
  check(checkPath(G, p),"path() found a wrong path.");
166 166
  check(pathSource(G, p) == s,"path() found a wrong path.");
167 167
  check(pathTarget(G, p) == t,"path() found a wrong path.");
168 168

	
169 169
  for(NodeIt v(G); v!=INVALID; ++v) {
170 170
    if (dfs_test.reached(v)) {
171 171
      check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree.");
172 172
      if (dfs_test.predArc(v)!=INVALID ) {
173 173
        Arc e=dfs_test.predArc(v);
174 174
        Node u=G.source(e);
175 175
        check(u==dfs_test.predNode(v),"Wrong tree.");
176 176
        check(dfs_test.dist(v) - dfs_test.dist(u) == 1,
177 177
              "Wrong distance. (" << dfs_test.dist(u) << "->"
178 178
              << dfs_test.dist(v) << ")");
179 179
      }
180 180
    }
181 181
  }
182 182

	
183 183
  {
184 184
  Dfs<Digraph> dfs(G);
185 185
  check(dfs.run(s1,t1) && dfs.reached(t1),"Node 3 is reachable from Node 6.");
186 186
  }
187 187
  
188 188
  {
189 189
    NullMap<Node,Arc> myPredMap;
190 190
    dfs(G).predMap(myPredMap).run(s);
191 191
  }
192 192
}
193 193

	
194 194
int main()
195 195
{
196 196
  checkDfs<ListDigraph>();
197 197
  checkDfs<SmartDigraph>();
198 198
  return 0;
199 199
}
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/smart_graph.h>
20 20
#include <lemon/list_graph.h>
21 21
#include <lemon/lgf_reader.h>
22 22
#include <lemon/error.h>
23 23

	
24 24
#include "test_tools.h"
25 25

	
26 26
using namespace std;
27 27
using namespace lemon;
28 28

	
29 29
void digraph_copy_test() {
30 30
  const int nn = 10;
31 31

	
32 32
  // Build a digraph
33 33
  SmartDigraph from;
34 34
  SmartDigraph::NodeMap<int> fnm(from);
35 35
  SmartDigraph::ArcMap<int> fam(from);
36 36
  SmartDigraph::Node fn = INVALID;
37 37
  SmartDigraph::Arc fa = INVALID;
38 38

	
39 39
  std::vector<SmartDigraph::Node> fnv;
40 40
  for (int i = 0; i < nn; ++i) {
41 41
    SmartDigraph::Node node = from.addNode();
42 42
    fnv.push_back(node);
43 43
    fnm[node] = i * i;
44 44
    if (i == 0) fn = node;
45 45
  }
46 46

	
47 47
  for (int i = 0; i < nn; ++i) {
48 48
    for (int j = 0; j < nn; ++j) {
49 49
      SmartDigraph::Arc arc = from.addArc(fnv[i], fnv[j]);
50 50
      fam[arc] = i + j * j;
51 51
      if (i == 0 && j == 0) fa = arc;
52 52
    }
53 53
  }
54 54

	
55 55
  // Test digraph copy
56 56
  ListDigraph to;
57 57
  ListDigraph::NodeMap<int> tnm(to);
58 58
  ListDigraph::ArcMap<int> tam(to);
59 59
  ListDigraph::Node tn;
60 60
  ListDigraph::Arc ta;
61 61

	
62 62
  SmartDigraph::NodeMap<ListDigraph::Node> nr(from);
63 63
  SmartDigraph::ArcMap<ListDigraph::Arc> er(from);
64 64

	
65 65
  ListDigraph::NodeMap<SmartDigraph::Node> ncr(to);
66 66
  ListDigraph::ArcMap<SmartDigraph::Arc> ecr(to);
67 67

	
68 68
  digraphCopy(from, to).
69 69
    nodeMap(fnm, tnm).arcMap(fam, tam).
70 70
    nodeRef(nr).arcRef(er).
71 71
    nodeCrossRef(ncr).arcCrossRef(ecr).
72 72
    node(fn, tn).arc(fa, ta).run();
73 73
  
74 74
  check(countNodes(from) == countNodes(to), "Wrong copy.");
75 75
  check(countArcs(from) == countArcs(to), "Wrong copy.");
76 76

	
77 77
  for (SmartDigraph::NodeIt it(from); it != INVALID; ++it) {
78 78
    check(ncr[nr[it]] == it, "Wrong copy.");
79 79
    check(fnm[it] == tnm[nr[it]], "Wrong copy.");
80 80
  }
81 81

	
82 82
  for (SmartDigraph::ArcIt it(from); it != INVALID; ++it) {
83 83
    check(ecr[er[it]] == it, "Wrong copy.");
84 84
    check(fam[it] == tam[er[it]], "Wrong copy.");
85 85
    check(nr[from.source(it)] == to.source(er[it]), "Wrong copy.");
86 86
    check(nr[from.target(it)] == to.target(er[it]), "Wrong copy.");
87 87
  }
88 88

	
89 89
  for (ListDigraph::NodeIt it(to); it != INVALID; ++it) {
90 90
    check(nr[ncr[it]] == it, "Wrong copy.");
91 91
  }
92 92

	
93 93
  for (ListDigraph::ArcIt it(to); it != INVALID; ++it) {
94 94
    check(er[ecr[it]] == it, "Wrong copy.");
95 95
  }
96 96
  check(tn == nr[fn], "Wrong copy.");
97 97
  check(ta == er[fa], "Wrong copy.");
98 98

	
99 99
  // Test repeated copy
100 100
  digraphCopy(from, to).run();
101 101
  
102 102
  check(countNodes(from) == countNodes(to), "Wrong copy.");
103 103
  check(countArcs(from) == countArcs(to), "Wrong copy.");
104 104
}
105 105

	
106 106
void graph_copy_test() {
107 107
  const int nn = 10;
108 108

	
109 109
  // Build a graph
110 110
  SmartGraph from;
111 111
  SmartGraph::NodeMap<int> fnm(from);
112 112
  SmartGraph::ArcMap<int> fam(from);
113 113
  SmartGraph::EdgeMap<int> fem(from);
114 114
  SmartGraph::Node fn = INVALID;
115 115
  SmartGraph::Arc fa = INVALID;
116 116
  SmartGraph::Edge fe = INVALID;
117 117

	
118 118
  std::vector<SmartGraph::Node> fnv;
119 119
  for (int i = 0; i < nn; ++i) {
120 120
    SmartGraph::Node node = from.addNode();
121 121
    fnv.push_back(node);
122 122
    fnm[node] = i * i;
123 123
    if (i == 0) fn = node;
124 124
  }
125 125

	
126 126
  for (int i = 0; i < nn; ++i) {
127 127
    for (int j = 0; j < nn; ++j) {
128 128
      SmartGraph::Edge edge = from.addEdge(fnv[i], fnv[j]);
129 129
      fem[edge] = i * i + j * j;
130 130
      fam[from.direct(edge, true)] = i + j * j;
131 131
      fam[from.direct(edge, false)] = i * i + j;
132 132
      if (i == 0 && j == 0) fa = from.direct(edge, true);
133 133
      if (i == 0 && j == 0) fe = edge;
134 134
    }
135 135
  }
136 136

	
137 137
  // Test graph copy
138 138
  ListGraph to;
139 139
  ListGraph::NodeMap<int> tnm(to);
140 140
  ListGraph::ArcMap<int> tam(to);
141 141
  ListGraph::EdgeMap<int> tem(to);
142 142
  ListGraph::Node tn;
143 143
  ListGraph::Arc ta;
144 144
  ListGraph::Edge te;
145 145

	
146 146
  SmartGraph::NodeMap<ListGraph::Node> nr(from);
147 147
  SmartGraph::ArcMap<ListGraph::Arc> ar(from);
148 148
  SmartGraph::EdgeMap<ListGraph::Edge> er(from);
149 149

	
150 150
  ListGraph::NodeMap<SmartGraph::Node> ncr(to);
151 151
  ListGraph::ArcMap<SmartGraph::Arc> acr(to);
152 152
  ListGraph::EdgeMap<SmartGraph::Edge> ecr(to);
153 153

	
154 154
  graphCopy(from, to).
155 155
    nodeMap(fnm, tnm).arcMap(fam, tam).edgeMap(fem, tem).
156 156
    nodeRef(nr).arcRef(ar).edgeRef(er).
157 157
    nodeCrossRef(ncr).arcCrossRef(acr).edgeCrossRef(ecr).
158 158
    node(fn, tn).arc(fa, ta).edge(fe, te).run();
159 159

	
160 160
  check(countNodes(from) == countNodes(to), "Wrong copy.");
161 161
  check(countEdges(from) == countEdges(to), "Wrong copy.");
162 162
  check(countArcs(from) == countArcs(to), "Wrong copy.");
163 163

	
164 164
  for (SmartGraph::NodeIt it(from); it != INVALID; ++it) {
165 165
    check(ncr[nr[it]] == it, "Wrong copy.");
166 166
    check(fnm[it] == tnm[nr[it]], "Wrong copy.");
167 167
  }
168 168

	
169 169
  for (SmartGraph::ArcIt it(from); it != INVALID; ++it) {
170 170
    check(acr[ar[it]] == it, "Wrong copy.");
171 171
    check(fam[it] == tam[ar[it]], "Wrong copy.");
172 172
    check(nr[from.source(it)] == to.source(ar[it]), "Wrong copy.");
173 173
    check(nr[from.target(it)] == to.target(ar[it]), "Wrong copy.");
174 174
  }
175 175

	
176 176
  for (SmartGraph::EdgeIt it(from); it != INVALID; ++it) {
177 177
    check(ecr[er[it]] == it, "Wrong copy.");
178 178
    check(fem[it] == tem[er[it]], "Wrong copy.");
179 179
    check(nr[from.u(it)] == to.u(er[it]) || nr[from.u(it)] == to.v(er[it]),
180 180
          "Wrong copy.");
181 181
    check(nr[from.v(it)] == to.u(er[it]) || nr[from.v(it)] == to.v(er[it]),
182 182
          "Wrong copy.");
183 183
    check((from.u(it) != from.v(it)) == (to.u(er[it]) != to.v(er[it])),
184 184
          "Wrong copy.");
185 185
  }
186 186

	
187 187
  for (ListGraph::NodeIt it(to); it != INVALID; ++it) {
188 188
    check(nr[ncr[it]] == it, "Wrong copy.");
189 189
  }
190 190

	
191 191
  for (ListGraph::ArcIt it(to); it != INVALID; ++it) {
192 192
    check(ar[acr[it]] == it, "Wrong copy.");
193 193
  }
194 194
  for (ListGraph::EdgeIt it(to); it != INVALID; ++it) {
195 195
    check(er[ecr[it]] == it, "Wrong copy.");
196 196
  }
197 197
  check(tn == nr[fn], "Wrong copy.");
198 198
  check(ta == ar[fa], "Wrong copy.");
199 199
  check(te == er[fe], "Wrong copy.");
200 200

	
201 201
  // Test repeated copy
202 202
  graphCopy(from, to).run();
203 203
  
204 204
  check(countNodes(from) == countNodes(to), "Wrong copy.");
205 205
  check(countEdges(from) == countEdges(to), "Wrong copy.");
206 206
  check(countArcs(from) == countArcs(to), "Wrong copy.");
207 207
}
208 208

	
209 209

	
210 210
int main() {
211 211
  digraph_copy_test();
212 212
  graph_copy_test();
213 213

	
214 214
  return 0;
215 215
}
Show white space 1536 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <deque>
20 20
#include <set>
21 21

	
22 22
#include <lemon/concept_check.h>
23 23
#include <lemon/concepts/maps.h>
24 24
#include <lemon/maps.h>
25 25

	
26 26
#include "test_tools.h"
27 27

	
28 28
using namespace lemon;
29 29
using namespace lemon::concepts;
30 30

	
31 31
struct A {};
32 32
inline bool operator<(A, A) { return true; }
33 33
struct B {};
34 34

	
35 35
class C {
36 36
  int x;
37 37
public:
38 38
  C(int _x) : x(_x) {}
39 39
};
40 40

	
41 41
class F {
42 42
public:
43 43
  typedef A argument_type;
44 44
  typedef B result_type;
45 45

	
46 46
  B operator()(const A&) const { return B(); }
47 47
private:
48 48
  F& operator=(const F&);
49 49
};
50 50

	
51 51
int func(A) { return 3; }
52 52

	
53 53
int binc(int a, B) { return a+1; }
54 54

	
55 55
typedef ReadMap<A, double> DoubleMap;
56 56
typedef ReadWriteMap<A, double> DoubleWriteMap;
57 57
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap;
58 58

	
59 59
typedef ReadMap<A, bool> BoolMap;
60 60
typedef ReadWriteMap<A, bool> BoolWriteMap;
61 61
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap;
62 62

	
63 63
int main()
64 64
{
65 65
  // Map concepts
66 66
  checkConcept<ReadMap<A,B>, ReadMap<A,B> >();
67 67
  checkConcept<ReadMap<A,C>, ReadMap<A,C> >();
68 68
  checkConcept<WriteMap<A,B>, WriteMap<A,B> >();
69 69
  checkConcept<WriteMap<A,C>, WriteMap<A,C> >();
70 70
  checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >();
71 71
  checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >();
72
  checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >();
73
  checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >();
72
  checkConcept<ReferenceMap<A,B,B&,const B&>,
73
               ReferenceMap<A,B,B&,const B&> >();
74
  checkConcept<ReferenceMap<A,C,C&,const C&>,
75
               ReferenceMap<A,C,C&,const C&> >();
74 76

	
75 77
  // NullMap
76 78
  {
77 79
    checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >();
78 80
    NullMap<A,B> map1;
79 81
    NullMap<A,B> map2 = map1;
80 82
    map1 = nullMap<A,B>();
81 83
  }
82 84

	
83 85
  // ConstMap
84 86
  {
85 87
    checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >();
86 88
    checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >();
87 89
    ConstMap<A,B> map1;
88 90
    ConstMap<A,B> map2 = B();
89 91
    ConstMap<A,B> map3 = map1;
90 92
    map1 = constMap<A>(B());
91 93
    map1 = constMap<A,B>();
92 94
    map1.setAll(B());
93 95
    ConstMap<A,C> map4(C(1));
94 96
    ConstMap<A,C> map5 = map4;
95 97
    map4 = constMap<A>(C(2));
96 98
    map4.setAll(C(3));
97 99

	
98 100
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >();
99 101
    check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap");
100 102

	
101 103
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >();
102 104
    ConstMap<A,Const<int,10> > map6;
103 105
    ConstMap<A,Const<int,10> > map7 = map6;
104 106
    map6 = constMap<A,int,10>();
105 107
    map7 = constMap<A,Const<int,10> >();
106 108
    check(map6[A()] == 10 && map7[A()] == 10,
107 109
          "Something is wrong with ConstMap");
108 110
  }
109 111

	
110 112
  // IdentityMap
111 113
  {
112 114
    checkConcept<ReadMap<A,A>, IdentityMap<A> >();
113 115
    IdentityMap<A> map1;
114 116
    IdentityMap<A> map2 = map1;
115 117
    map1 = identityMap<A>();
116 118

	
117 119
    checkConcept<ReadMap<double,double>, IdentityMap<double> >();
118 120
    check(identityMap<double>()[1.0] == 1.0 &&
119 121
          identityMap<double>()[3.14] == 3.14,
120 122
          "Something is wrong with IdentityMap");
121 123
  }
122 124

	
123 125
  // RangeMap
124 126
  {
125 127
    checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >();
126 128
    RangeMap<B> map1;
127 129
    RangeMap<B> map2(10);
128 130
    RangeMap<B> map3(10,B());
129 131
    RangeMap<B> map4 = map1;
130 132
    RangeMap<B> map5 = rangeMap<B>();
131 133
    RangeMap<B> map6 = rangeMap<B>(10);
132 134
    RangeMap<B> map7 = rangeMap(10,B());
133 135

	
134 136
    checkConcept< ReferenceMap<int, double, double&, const double&>,
135 137
                  RangeMap<double> >();
136 138
    std::vector<double> v(10, 0);
137 139
    v[5] = 100;
138 140
    RangeMap<double> map8(v);
139 141
    RangeMap<double> map9 = rangeMap(v);
140 142
    check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100,
141 143
          "Something is wrong with RangeMap");
142 144
  }
143 145

	
144 146
  // SparseMap
145 147
  {
146 148
    checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >();
147 149
    SparseMap<A,B> map1;
148 150
    SparseMap<A,B> map2 = B();
149 151
    SparseMap<A,B> map3 = sparseMap<A,B>();
150 152
    SparseMap<A,B> map4 = sparseMap<A>(B());
151 153

	
152 154
    checkConcept< ReferenceMap<double, int, int&, const int&>,
153 155
                  SparseMap<double, int> >();
154 156
    std::map<double, int> m;
155 157
    SparseMap<double, int> map5(m);
156 158
    SparseMap<double, int> map6(m,10);
157 159
    SparseMap<double, int> map7 = sparseMap(m);
158 160
    SparseMap<double, int> map8 = sparseMap(m,10);
159 161

	
160 162
    check(map5[1.0] == 0 && map5[3.14] == 0 &&
161 163
          map6[1.0] == 10 && map6[3.14] == 10,
162 164
          "Something is wrong with SparseMap");
163 165
    map5[1.0] = map6[3.14] = 100;
164 166
    check(map5[1.0] == 100 && map5[3.14] == 0 &&
165 167
          map6[1.0] == 10 && map6[3.14] == 100,
166 168
          "Something is wrong with SparseMap");
167 169
  }
168 170

	
169 171
  // ComposeMap
170 172
  {
171 173
    typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap;
172 174
    checkConcept<ReadMap<B,double>, CompMap>();
173 175
    CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>());
174 176
    CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>());
175 177

	
176 178
    SparseMap<double, bool> m1(false); m1[3.14] = true;
177 179
    RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14;
178 180
    check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1],
179 181
          "Something is wrong with ComposeMap")
180 182
  }
181 183

	
182 184
  // CombineMap
183 185
  {
184 186
    typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap;
185 187
    checkConcept<ReadMap<A,double>, CombMap>();
186 188
    CombMap map1 = CombMap(DoubleMap(), DoubleMap());
187 189
    CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>());
188 190

	
189 191
    check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3,
190 192
          "Something is wrong with CombineMap");
191 193
  }
192 194

	
193 195
  // FunctorToMap, MapToFunctor
194 196
  {
195 197
    checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >();
196 198
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
197 199
    FunctorToMap<F> map1;
198 200
    FunctorToMap<F> map2 = FunctorToMap<F>(F());
199 201
    B b = functorToMap(F())[A()];
200 202

	
201 203
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
202
    MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
204
    MapToFunctor<ReadMap<A,B> > map =
205
      MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
203 206

	
204 207
    check(functorToMap(&func)[A()] == 3,
205 208
          "Something is wrong with FunctorToMap");
206 209
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2,
207 210
          "Something is wrong with MapToFunctor");
208 211
    check(mapToFunctor(functorToMap(&func))(A()) == 3 &&
209 212
          mapToFunctor(functorToMap(&func))[A()] == 3,
210 213
          "Something is wrong with FunctorToMap or MapToFunctor");
211 214
    check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2,
212 215
          "Something is wrong with FunctorToMap or MapToFunctor");
213 216
  }
214 217

	
215 218
  // ConvertMap
216 219
  {
217 220
    checkConcept<ReadMap<double,double>,
218 221
      ConvertMap<ReadMap<double, int>, double> >();
219 222
    ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true));
220 223
    ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false));
221 224
  }
222 225

	
223 226
  // ForkMap
224 227
  {
225 228
    checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >();
226 229

	
227 230
    typedef RangeMap<double> RM;
228 231
    typedef SparseMap<int, double> SM;
229 232
    RM m1(10, -1);
230 233
    SM m2(-1);
231 234
    checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >();
232 235
    checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >();
233 236
    ForkMap<RM, SM> map1(m1,m2);
234 237
    ForkMap<SM, RM> map2 = forkMap(m2,m1);
235 238
    map2.set(5, 10);
236 239
    check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 &&
237 240
          m2[5] == 10 && map2[1] == -1 && map2[5] == 10,
238 241
          "Something is wrong with ForkMap");
239 242
  }
240 243

	
241 244
  // Arithmetic maps:
242 245
  // - AddMap, SubMap, MulMap, DivMap
243 246
  // - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap
244 247
  // - NegMap, NegWriteMap, AbsMap
245 248
  {
246 249
    checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >();
247 250
    checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >();
248 251
    checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >();
249 252
    checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >();
250 253

	
251 254
    ConstMap<int, double> c1(1.0), c2(3.14);
252 255
    IdentityMap<int> im;
253 256
    ConvertMap<IdentityMap<int>, double> id(im);
254 257
    check(addMap(c1,id)[0] == 1.0  && addMap(c1,id)[10] == 11.0,
255 258
          "Something is wrong with AddMap");
256 259
    check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0,
257 260
          "Something is wrong with SubMap");
258 261
    check(mulMap(id,c2)[0] == 0    && mulMap(id,c2)[2]  == 6.28,
259 262
          "Something is wrong with MulMap");
260 263
    check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2]  == 1.57,
261 264
          "Something is wrong with DivMap");
262 265

	
263 266
    checkConcept<DoubleMap, ShiftMap<DoubleMap> >();
264 267
    checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >();
265 268
    checkConcept<DoubleMap, ScaleMap<DoubleMap> >();
266 269
    checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >();
267 270
    checkConcept<DoubleMap, NegMap<DoubleMap> >();
268 271
    checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >();
269 272
    checkConcept<DoubleMap, AbsMap<DoubleMap> >();
270 273

	
271 274
    check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0,
272 275
          "Something is wrong with ShiftMap");
273 276
    check(shiftWriteMap(id, 2.0)[1] == 3.0 &&
274 277
          shiftWriteMap(id, 2.0)[10] == 12.0,
275 278
          "Something is wrong with ShiftWriteMap");
276 279
    check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0,
277 280
          "Something is wrong with ScaleMap");
278 281
    check(scaleWriteMap(id, 2.0)[1] == 2.0 &&
279 282
          scaleWriteMap(id, 2.0)[10] == 20.0,
280 283
          "Something is wrong with ScaleWriteMap");
281 284
    check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0,
282 285
          "Something is wrong with NegMap");
283 286
    check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0,
284 287
          "Something is wrong with NegWriteMap");
285 288
    check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0,
286 289
          "Something is wrong with AbsMap");
287 290
  }
288 291

	
289 292
  // Logical maps:
290 293
  // - TrueMap, FalseMap
291 294
  // - AndMap, OrMap
292 295
  // - NotMap, NotWriteMap
293 296
  // - EqualMap, LessMap
294 297
  {
295 298
    checkConcept<BoolMap, TrueMap<A> >();
296 299
    checkConcept<BoolMap, FalseMap<A> >();
297 300
    checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >();
298 301
    checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >();
299 302
    checkConcept<BoolMap, NotMap<BoolMap> >();
300 303
    checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >();
301 304
    checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >();
302 305
    checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >();
303 306

	
304 307
    TrueMap<int> tm;
305 308
    FalseMap<int> fm;
306 309
    RangeMap<bool> rm(2);
307 310
    rm[0] = true; rm[1] = false;
308 311
    check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] &&
309 312
          !andMap(fm,rm)[0] && !andMap(fm,rm)[1],
310 313
          "Something is wrong with AndMap");
311 314
    check(orMap(tm,rm)[0] && orMap(tm,rm)[1] &&
312 315
          orMap(fm,rm)[0] && !orMap(fm,rm)[1],
313 316
          "Something is wrong with OrMap");
314 317
    check(!notMap(rm)[0] && notMap(rm)[1],
315 318
          "Something is wrong with NotMap");
316 319
    check(!notWriteMap(rm)[0] && notWriteMap(rm)[1],
317 320
          "Something is wrong with NotWriteMap");
318 321

	
319 322
    ConstMap<int, double> cm(2.0);
320 323
    IdentityMap<int> im;
321 324
    ConvertMap<IdentityMap<int>, double> id(im);
322 325
    check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3],
323 326
          "Something is wrong with LessMap");
324 327
    check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3],
325 328
          "Something is wrong with EqualMap");
326 329
  }
327 330

	
328 331
  // LoggerBoolMap
329 332
  {
330 333
    typedef std::vector<int> vec;
331 334
    vec v1;
332 335
    vec v2(10);
333 336
    LoggerBoolMap<std::back_insert_iterator<vec> >
334 337
      map1(std::back_inserter(v1));
335 338
    LoggerBoolMap<vec::iterator> map2(v2.begin());
336 339
    map1.set(10, false);
337 340
    map1.set(20, true);   map2.set(20, true);
338 341
    map1.set(30, false);  map2.set(40, false);
339 342
    map1.set(50, true);   map2.set(50, true);
340 343
    map1.set(60, true);   map2.set(60, true);
341 344
    check(v1.size() == 3 && v2.size() == 10 &&
342 345
          v1[0]==20 && v1[1]==50 && v1[2]==60 &&
343 346
          v2[0]==20 && v2[1]==50 && v2[2]==60,
344 347
          "Something is wrong with LoggerBoolMap");
345 348

	
346 349
    int i = 0;
347 350
    for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin();
348 351
          it != map2.end(); ++it )
349 352
      check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
350 353
  }
351 354

	
352 355
  return 0;
353 356
}
0 comments (0 inline)