0
2
0
| ... | ... |
@@ -20,54 +20,60 @@ |
| 20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 |
/// This algorithm is a specialized version of the linear programming |
|
| 45 |
/// simplex method directly for the minimum cost flow problem. |
|
| 46 |
/// It is one of the most efficient solution methods. |
|
| 47 |
/// |
|
| 48 |
/// In general this class is the fastest implementation available |
|
| 49 |
/// in LEMON for the minimum cost flow problem. |
|
| 44 | 50 |
/// |
| 45 | 51 |
/// \tparam GR The digraph type the algorithm runs on. |
| 46 | 52 |
/// \tparam V The value type used in the algorithm. |
| 47 | 53 |
/// By default it is \c int. |
| 48 | 54 |
/// |
| 49 |
/// \warning |
|
| 55 |
/// \warning The value type must be a signed integer type. |
|
| 50 | 56 |
/// |
| 51 | 57 |
/// \note %NetworkSimplex provides five different pivot rule |
| 52 | 58 |
/// implementations. For more information see \ref PivotRule. |
| 53 | 59 |
template <typename GR, typename V = int> |
| 54 | 60 |
class NetworkSimplex |
| 55 | 61 |
{
|
| 56 | 62 |
public: |
| 57 | 63 |
|
| 58 | 64 |
/// The value type of the algorithm |
| 59 | 65 |
typedef V Value; |
| 60 | 66 |
/// The type of the flow map |
| 61 | 67 |
typedef typename GR::template ArcMap<Value> FlowMap; |
| 62 | 68 |
/// The type of the potential map |
| 63 | 69 |
typedef typename GR::template NodeMap<Value> PotentialMap; |
| 64 | 70 |
|
| 65 | 71 |
public: |
| 66 | 72 |
|
| 67 | 73 |
/// \brief Enum type for selecting the pivot rule. |
| 68 | 74 |
/// |
| 69 | 75 |
/// Enum type for selecting the pivot rule for the \ref run() |
| 70 | 76 |
/// function. |
| 71 | 77 |
/// |
| 72 | 78 |
/// \ref NetworkSimplex provides five different pivot rule |
| 73 | 79 |
/// implementations that significantly affect the running time |
| ... | ... |
@@ -768,65 +774,115 @@ |
| 768 | 774 |
/// the dual solution. |
| 769 | 775 |
/// If it is not used before calling \ref run(), an instance will |
| 770 | 776 |
/// be allocated automatically. The destructor deallocates this |
| 771 | 777 |
/// automatically allocated map, of course. |
| 772 | 778 |
/// |
| 773 | 779 |
/// \return <tt>(*this)</tt> |
| 774 | 780 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
| 775 | 781 |
if (_local_potential) {
|
| 776 | 782 |
delete _potential_map; |
| 777 | 783 |
_local_potential = false; |
| 778 | 784 |
} |
| 779 | 785 |
_potential_map = ↦ |
| 780 | 786 |
return *this; |
| 781 | 787 |
} |
| 782 | 788 |
|
| 783 | 789 |
/// \name Execution Control |
| 784 | 790 |
/// The algorithm can be executed using \ref run(). |
| 785 | 791 |
|
| 786 | 792 |
/// @{
|
| 787 | 793 |
|
| 788 | 794 |
/// \brief Run the algorithm. |
| 789 | 795 |
/// |
| 790 | 796 |
/// This function runs the algorithm. |
| 791 | 797 |
/// The paramters can be specified using \ref lowerMap(), |
| 792 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
| 798 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
| 793 | 799 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
| 794 | 800 |
/// functions. For example, |
| 795 | 801 |
/// \code |
| 796 | 802 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 797 | 803 |
/// ns.boundMaps(lower, upper).costMap(cost) |
| 798 | 804 |
/// .supplyMap(sup).run(); |
| 799 | 805 |
/// \endcode |
| 800 | 806 |
/// |
| 807 |
/// This function can be called more than once. All the parameters |
|
| 808 |
/// that have been given are kept for the next call, unless |
|
| 809 |
/// \ref reset() is called, thus only the modified parameters |
|
| 810 |
/// have to be set again. See \ref reset() for examples. |
|
| 811 |
/// |
|
| 801 | 812 |
/// \param pivot_rule The pivot rule that will be used during the |
| 802 | 813 |
/// algorithm. For more information see \ref PivotRule. |
| 803 | 814 |
/// |
| 804 | 815 |
/// \return \c true if a feasible flow can be found. |
| 805 | 816 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 806 | 817 |
return init() && start(pivot_rule); |
| 807 | 818 |
} |
| 808 | 819 |
|
| 820 |
/// \brief Reset all the parameters that have been given before. |
|
| 821 |
/// |
|
| 822 |
/// This function resets all the paramaters that have been given |
|
| 823 |
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(), |
|
| 824 |
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and |
|
| 825 |
/// \ref stSupply() functions before. |
|
| 826 |
/// |
|
| 827 |
/// It is useful for multiple run() calls. If this function is not |
|
| 828 |
/// used, all the parameters given before are kept for the next |
|
| 829 |
/// \ref run() call. |
|
| 830 |
/// |
|
| 831 |
/// For example, |
|
| 832 |
/// \code |
|
| 833 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
| 834 |
/// |
|
| 835 |
/// // First run |
|
| 836 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
|
| 837 |
/// .supplyMap(sup).run(); |
|
| 838 |
/// |
|
| 839 |
/// // Run again with modified cost map (reset() is not called, |
|
| 840 |
/// // so only the cost map have to be set again) |
|
| 841 |
/// cost[e] += 100; |
|
| 842 |
/// ns.costMap(cost).run(); |
|
| 843 |
/// |
|
| 844 |
/// // Run again from scratch using reset() |
|
| 845 |
/// // (the lower bounds will be set to zero on all arcs) |
|
| 846 |
/// ns.reset(); |
|
| 847 |
/// ns.capacityMap(cap).costMap(cost) |
|
| 848 |
/// .supplyMap(sup).run(); |
|
| 849 |
/// \endcode |
|
| 850 |
/// |
|
| 851 |
/// \return <tt>(*this)</tt> |
|
| 852 |
NetworkSimplex& reset() {
|
|
| 853 |
delete _plower; |
|
| 854 |
delete _pupper; |
|
| 855 |
delete _pcost; |
|
| 856 |
delete _psupply; |
|
| 857 |
_plower = NULL; |
|
| 858 |
_pupper = NULL; |
|
| 859 |
_pcost = NULL; |
|
| 860 |
_psupply = NULL; |
|
| 861 |
_pstsup = false; |
|
| 862 |
return *this; |
|
| 863 |
} |
|
| 864 |
|
|
| 809 | 865 |
/// @} |
| 810 | 866 |
|
| 811 | 867 |
/// \name Query Functions |
| 812 | 868 |
/// The results of the algorithm can be obtained using these |
| 813 | 869 |
/// functions.\n |
| 814 | 870 |
/// The \ref run() function must be called before using them. |
| 815 | 871 |
|
| 816 | 872 |
/// @{
|
| 817 | 873 |
|
| 818 | 874 |
/// \brief Return the total cost of the found flow. |
| 819 | 875 |
/// |
| 820 | 876 |
/// This function returns the total cost of the found flow. |
| 821 | 877 |
/// The complexity of the function is \f$ O(e) \f$. |
| 822 | 878 |
/// |
| 823 | 879 |
/// \note The return type of the function can be specified as a |
| 824 | 880 |
/// template parameter. For example, |
| 825 | 881 |
/// \code |
| 826 | 882 |
/// ns.totalCost<double>(); |
| 827 | 883 |
/// \endcode |
| 828 | 884 |
/// It is useful if the total cost cannot be stored in the \c Value |
| 829 | 885 |
/// type of the algorithm, which is the default return type of the |
| 830 | 886 |
/// function. |
| 831 | 887 |
/// |
| 832 | 888 |
/// \pre \ref run() must be called before using this function. |
| ... | ... |
@@ -899,59 +955,59 @@ |
| 899 | 955 |
// Initialize result maps |
| 900 | 956 |
if (!_flow_map) {
|
| 901 | 957 |
_flow_map = new FlowMap(_graph); |
| 902 | 958 |
_local_flow = true; |
| 903 | 959 |
} |
| 904 | 960 |
if (!_potential_map) {
|
| 905 | 961 |
_potential_map = new PotentialMap(_graph); |
| 906 | 962 |
_local_potential = true; |
| 907 | 963 |
} |
| 908 | 964 |
|
| 909 | 965 |
// Initialize vectors |
| 910 | 966 |
_node_num = countNodes(_graph); |
| 911 | 967 |
_arc_num = countArcs(_graph); |
| 912 | 968 |
int all_node_num = _node_num + 1; |
| 913 | 969 |
int all_arc_num = _arc_num + _node_num; |
| 914 | 970 |
if (_node_num == 0) return false; |
| 915 | 971 |
|
| 916 | 972 |
_arc_ref.resize(_arc_num); |
| 917 | 973 |
_source.resize(all_arc_num); |
| 918 | 974 |
_target.resize(all_arc_num); |
| 919 | 975 |
|
| 920 | 976 |
_cap.resize(all_arc_num); |
| 921 | 977 |
_cost.resize(all_arc_num); |
| 922 | 978 |
_supply.resize(all_node_num); |
| 923 |
_flow.resize(all_arc_num, 0); |
|
| 924 |
_pi.resize(all_node_num, 0); |
|
| 979 |
_flow.resize(all_arc_num); |
|
| 980 |
_pi.resize(all_node_num); |
|
| 925 | 981 |
|
| 926 | 982 |
_parent.resize(all_node_num); |
| 927 | 983 |
_pred.resize(all_node_num); |
| 928 | 984 |
_forward.resize(all_node_num); |
| 929 | 985 |
_thread.resize(all_node_num); |
| 930 | 986 |
_rev_thread.resize(all_node_num); |
| 931 | 987 |
_succ_num.resize(all_node_num); |
| 932 | 988 |
_last_succ.resize(all_node_num); |
| 933 |
_state.resize(all_arc_num |
|
| 989 |
_state.resize(all_arc_num); |
|
| 934 | 990 |
|
| 935 | 991 |
// Initialize node related data |
| 936 | 992 |
bool valid_supply = true; |
| 937 | 993 |
if (!_pstsup && !_psupply) {
|
| 938 | 994 |
_pstsup = true; |
| 939 | 995 |
_psource = _ptarget = NodeIt(_graph); |
| 940 | 996 |
_pstflow = 0; |
| 941 | 997 |
} |
| 942 | 998 |
if (_psupply) {
|
| 943 | 999 |
Value sum = 0; |
| 944 | 1000 |
int i = 0; |
| 945 | 1001 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 946 | 1002 |
_node_id[n] = i; |
| 947 | 1003 |
_supply[i] = (*_psupply)[n]; |
| 948 | 1004 |
sum += _supply[i]; |
| 949 | 1005 |
} |
| 950 | 1006 |
valid_supply = (sum == 0); |
| 951 | 1007 |
} else {
|
| 952 | 1008 |
int i = 0; |
| 953 | 1009 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 954 | 1010 |
_node_id[n] = i; |
| 955 | 1011 |
_supply[i] = 0; |
| 956 | 1012 |
} |
| 957 | 1013 |
_supply[_node_id[_psource]] = _pstflow; |
| ... | ... |
@@ -965,106 +1021,110 @@ |
| 965 | 1021 |
_pred[_root] = -1; |
| 966 | 1022 |
_thread[_root] = 0; |
| 967 | 1023 |
_rev_thread[0] = _root; |
| 968 | 1024 |
_succ_num[_root] = all_node_num; |
| 969 | 1025 |
_last_succ[_root] = _root - 1; |
| 970 | 1026 |
_supply[_root] = 0; |
| 971 | 1027 |
_pi[_root] = 0; |
| 972 | 1028 |
|
| 973 | 1029 |
// Store the arcs in a mixed order |
| 974 | 1030 |
int k = std::max(int(sqrt(_arc_num)), 10); |
| 975 | 1031 |
int i = 0; |
| 976 | 1032 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 977 | 1033 |
_arc_ref[i] = e; |
| 978 | 1034 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
| 979 | 1035 |
} |
| 980 | 1036 |
|
| 981 | 1037 |
// Initialize arc maps |
| 982 | 1038 |
if (_pupper && _pcost) {
|
| 983 | 1039 |
for (int i = 0; i != _arc_num; ++i) {
|
| 984 | 1040 |
Arc e = _arc_ref[i]; |
| 985 | 1041 |
_source[i] = _node_id[_graph.source(e)]; |
| 986 | 1042 |
_target[i] = _node_id[_graph.target(e)]; |
| 987 | 1043 |
_cap[i] = (*_pupper)[e]; |
| 988 | 1044 |
_cost[i] = (*_pcost)[e]; |
| 1045 |
_flow[i] = 0; |
|
| 1046 |
_state[i] = STATE_LOWER; |
|
| 989 | 1047 |
} |
| 990 | 1048 |
} else {
|
| 991 | 1049 |
for (int i = 0; i != _arc_num; ++i) {
|
| 992 | 1050 |
Arc e = _arc_ref[i]; |
| 993 | 1051 |
_source[i] = _node_id[_graph.source(e)]; |
| 994 | 1052 |
_target[i] = _node_id[_graph.target(e)]; |
| 1053 |
_flow[i] = 0; |
|
| 1054 |
_state[i] = STATE_LOWER; |
|
| 995 | 1055 |
} |
| 996 | 1056 |
if (_pupper) {
|
| 997 | 1057 |
for (int i = 0; i != _arc_num; ++i) |
| 998 | 1058 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
| 999 | 1059 |
} else {
|
| 1000 | 1060 |
Value val = std::numeric_limits<Value>::max(); |
| 1001 | 1061 |
for (int i = 0; i != _arc_num; ++i) |
| 1002 | 1062 |
_cap[i] = val; |
| 1003 | 1063 |
} |
| 1004 | 1064 |
if (_pcost) {
|
| 1005 | 1065 |
for (int i = 0; i != _arc_num; ++i) |
| 1006 | 1066 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
| 1007 | 1067 |
} else {
|
| 1008 | 1068 |
for (int i = 0; i != _arc_num; ++i) |
| 1009 | 1069 |
_cost[i] = 1; |
| 1010 | 1070 |
} |
| 1011 | 1071 |
} |
| 1012 | 1072 |
|
| 1013 | 1073 |
// Remove non-zero lower bounds |
| 1014 | 1074 |
if (_plower) {
|
| 1015 | 1075 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1016 | 1076 |
Value c = (*_plower)[_arc_ref[i]]; |
| 1017 | 1077 |
if (c != 0) {
|
| 1018 | 1078 |
_cap[i] -= c; |
| 1019 | 1079 |
_supply[_source[i]] -= c; |
| 1020 | 1080 |
_supply[_target[i]] += c; |
| 1021 | 1081 |
} |
| 1022 | 1082 |
} |
| 1023 | 1083 |
} |
| 1024 | 1084 |
|
| 1025 | 1085 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1026 | 1086 |
Value max_cap = std::numeric_limits<Value>::max(); |
| 1027 | 1087 |
Value max_cost = std::numeric_limits<Value>::max() / 4; |
| 1028 | 1088 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1029 | 1089 |
_thread[u] = u + 1; |
| 1030 | 1090 |
_rev_thread[u + 1] = u; |
| 1031 | 1091 |
_succ_num[u] = 1; |
| 1032 | 1092 |
_last_succ[u] = u; |
| 1033 | 1093 |
_parent[u] = _root; |
| 1034 | 1094 |
_pred[u] = e; |
| 1095 |
_cost[e] = max_cost; |
|
| 1096 |
_cap[e] = max_cap; |
|
| 1097 |
_state[e] = STATE_TREE; |
|
| 1035 | 1098 |
if (_supply[u] >= 0) {
|
| 1036 | 1099 |
_flow[e] = _supply[u]; |
| 1037 | 1100 |
_forward[u] = true; |
| 1038 | 1101 |
_pi[u] = -max_cost; |
| 1039 | 1102 |
} else {
|
| 1040 | 1103 |
_flow[e] = -_supply[u]; |
| 1041 | 1104 |
_forward[u] = false; |
| 1042 | 1105 |
_pi[u] = max_cost; |
| 1043 | 1106 |
} |
| 1044 |
_cost[e] = max_cost; |
|
| 1045 |
_cap[e] = max_cap; |
|
| 1046 |
_state[e] = STATE_TREE; |
|
| 1047 | 1107 |
} |
| 1048 | 1108 |
|
| 1049 | 1109 |
return true; |
| 1050 | 1110 |
} |
| 1051 | 1111 |
|
| 1052 | 1112 |
// Find the join node |
| 1053 | 1113 |
void findJoinNode() {
|
| 1054 | 1114 |
int u = _source[in_arc]; |
| 1055 | 1115 |
int v = _target[in_arc]; |
| 1056 | 1116 |
while (u != v) {
|
| 1057 | 1117 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1058 | 1118 |
u = _parent[u]; |
| 1059 | 1119 |
} else {
|
| 1060 | 1120 |
v = _parent[v]; |
| 1061 | 1121 |
} |
| 1062 | 1122 |
} |
| 1063 | 1123 |
join = u; |
| 1064 | 1124 |
} |
| 1065 | 1125 |
|
| 1066 | 1126 |
// Find the leaving arc of the cycle and returns true if the |
| 1067 | 1127 |
// leaving arc is not the same as the entering arc |
| 1068 | 1128 |
bool findLeavingArc() {
|
| 1069 | 1129 |
// Initialize first and second nodes according to the direction |
| 1070 | 1130 |
// of the cycle |
| ... | ... |
@@ -68,49 +68,50 @@ |
| 68 | 68 |
"10 12 70 13 0 5\n" |
| 69 | 69 |
"10 2 100 7 0 0\n" |
| 70 | 70 |
"10 7 60 10 0 0\n" |
| 71 | 71 |
"11 10 20 14 0 6\n" |
| 72 | 72 |
"12 11 30 10 0 0\n" |
| 73 | 73 |
"\n" |
| 74 | 74 |
"@attributes\n" |
| 75 | 75 |
"source 1\n" |
| 76 | 76 |
"target 12\n"; |
| 77 | 77 |
|
| 78 | 78 |
|
| 79 | 79 |
// Check the interface of an MCF algorithm |
| 80 | 80 |
template <typename GR, typename Value> |
| 81 | 81 |
class McfClassConcept |
| 82 | 82 |
{
|
| 83 | 83 |
public: |
| 84 | 84 |
|
| 85 | 85 |
template <typename MCF> |
| 86 | 86 |
struct Constraints {
|
| 87 | 87 |
void constraints() {
|
| 88 | 88 |
checkConcept<concepts::Digraph, GR>(); |
| 89 | 89 |
|
| 90 | 90 |
MCF mcf(g); |
| 91 | 91 |
|
| 92 |
b = mcf. |
|
| 92 |
b = mcf.reset() |
|
| 93 |
.lowerMap(lower) |
|
| 93 | 94 |
.upperMap(upper) |
| 94 | 95 |
.capacityMap(upper) |
| 95 | 96 |
.boundMaps(lower, upper) |
| 96 | 97 |
.costMap(cost) |
| 97 | 98 |
.supplyMap(sup) |
| 98 | 99 |
.stSupply(n, n, k) |
| 99 | 100 |
.run(); |
| 100 | 101 |
|
| 101 | 102 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
| 102 | 103 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
| 103 | 104 |
|
| 104 | 105 |
v = mcf.totalCost(); |
| 105 | 106 |
double x = mcf.template totalCost<double>(); |
| 106 | 107 |
v = mcf.flow(a); |
| 107 | 108 |
v = mcf.potential(n); |
| 108 | 109 |
mcf.flowMap(flow); |
| 109 | 110 |
mcf.potentialMap(pot); |
| 110 | 111 |
|
| 111 | 112 |
ignore_unused_variable_warning(fm); |
| 112 | 113 |
ignore_unused_variable_warning(pm); |
| 113 | 114 |
ignore_unused_variable_warning(x); |
| 114 | 115 |
} |
| 115 | 116 |
|
| 116 | 117 |
typedef typename GR::Node Node; |
| ... | ... |
@@ -221,69 +222,67 @@ |
| 221 | 222 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 222 | 223 |
|
| 223 | 224 |
// Read the test digraph |
| 224 | 225 |
Digraph gr; |
| 225 | 226 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
| 226 | 227 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
| 227 | 228 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 228 | 229 |
Node v, w; |
| 229 | 230 |
|
| 230 | 231 |
std::istringstream input(test_lgf); |
| 231 | 232 |
DigraphReader<Digraph>(gr, input) |
| 232 | 233 |
.arcMap("cost", c)
|
| 233 | 234 |
.arcMap("cap", u)
|
| 234 | 235 |
.arcMap("low1", l1)
|
| 235 | 236 |
.arcMap("low2", l2)
|
| 236 | 237 |
.nodeMap("sup1", s1)
|
| 237 | 238 |
.nodeMap("sup2", s2)
|
| 238 | 239 |
.nodeMap("sup3", s3)
|
| 239 | 240 |
.node("source", v)
|
| 240 | 241 |
.node("target", w)
|
| 241 | 242 |
.run(); |
| 242 | 243 |
|
| 243 | 244 |
// A. Test NetworkSimplex with the default pivot rule |
| 244 | 245 |
{
|
| 245 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), |
|
| 246 |
mcf5(gr), mcf6(gr), mcf7(gr), mcf8(gr); |
|
| 246 |
NetworkSimplex<Digraph> mcf(gr); |
|
| 247 | 247 |
|
| 248 |
|
|
| 248 |
mcf.upperMap(u).costMap(c); |
|
| 249 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
| 249 | 250 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
| 250 |
checkMcf( |
|
| 251 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
| 251 | 252 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
| 252 |
|
|
| 253 |
mcf.lowerMap(l2); |
|
| 254 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
| 253 | 255 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
| 254 |
checkMcf( |
|
| 256 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
| 255 | 257 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
| 256 |
|
|
| 258 |
mcf.reset(); |
|
| 259 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
| 257 | 260 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
| 258 |
checkMcf( |
|
| 261 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
|
| 259 | 262 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
| 260 |
|
|
| 263 |
mcf.reset(); |
|
| 264 |
checkMcf(mcf, mcf.run(), |
|
| 261 | 265 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
| 262 |
checkMcf( |
|
| 266 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
| 263 | 267 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
| 264 | 268 |
} |
| 265 | 269 |
|
| 266 | 270 |
// B. Test NetworkSimplex with each pivot rule |
| 267 | 271 |
{
|
| 268 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), mcf5(gr); |
|
| 269 |
NetworkSimplex<Digraph>::PivotRule pr; |
|
| 272 |
NetworkSimplex<Digraph> mcf(gr); |
|
| 273 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
|
| 270 | 274 |
|
| 271 |
pr = NetworkSimplex<Digraph>::FIRST_ELIGIBLE; |
|
| 272 |
checkMcf(mcf1, mcf1.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 275 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
|
| 273 | 276 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
| 274 |
pr = NetworkSimplex<Digraph>::BEST_ELIGIBLE; |
|
| 275 |
checkMcf(mcf2, mcf2.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 277 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
|
| 276 | 278 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
| 277 |
pr = NetworkSimplex<Digraph>::BLOCK_SEARCH; |
|
| 278 |
checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 279 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
|
| 279 | 280 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
| 280 |
pr = NetworkSimplex<Digraph>::CANDIDATE_LIST; |
|
| 281 |
checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 281 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
|
| 282 | 282 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
| 283 |
pr = NetworkSimplex<Digraph>::ALTERING_LIST; |
|
| 284 |
checkMcf(mcf5, mcf5.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 283 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
|
| 285 | 284 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
| 286 | 285 |
} |
| 287 | 286 |
|
| 288 | 287 |
return 0; |
| 289 | 288 |
} |
0 comments (0 inline)