0
22
0
2
2
2
2
10
10
... | ... |
@@ -57,49 +57,49 @@ |
57 | 57 |
have to be satisfied and all supplies have to be used. |
58 | 58 |
|
59 | 59 |
|
60 | 60 |
\section mcf_algs Algorithms |
61 | 61 |
|
62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
64 | 64 |
|
65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
66 | 66 |
|
67 | 67 |
|
68 | 68 |
\section mcf_dual Dual Solution |
69 | 69 |
|
70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 |
- \f$\pi(u) |
|
81 |
- \f$\pi(u)\leq 0\f$; |
|
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 | 84 |
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
94 | 94 |
|
95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
97 | 97 |
equalities are required in the supply/demand contraints. |
98 | 98 |
|
99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
101 | 101 |
sup(u) \quad \forall u\in V \f] |
102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
103 | 103 |
|
104 | 104 |
However if the sum of the supply values is zero, then these two problems |
105 | 105 |
are equivalent. |
... | ... |
@@ -124,30 +124,30 @@ |
124 | 124 |
positive) and all the demands have to be satisfied, but there |
125 | 125 |
could be supplies that are not carried out from the supply |
126 | 126 |
nodes. |
127 | 127 |
The equality form is also a special case of this form, of course. |
128 | 128 |
|
129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
132 | 132 |
\ref NegMap adaptors). |
133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
134 | 134 |
for the sake of convenience. |
135 | 135 |
|
136 | 136 |
Note that the optimality conditions for this supply constraint type are |
137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
141 | 141 |
node potentials the following conditions hold. |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 |
- \f$\pi(u) |
|
148 |
- \f$\pi(u)\geq 0\f$; |
|
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
... | ... |
@@ -279,49 +279,49 @@ |
279 | 279 |
}; |
280 | 280 |
|
281 | 281 |
/// \brief \ref named-templ-param "Named parameter" for setting |
282 | 282 |
/// \c DistMap type. |
283 | 283 |
/// |
284 | 284 |
/// \ref named-templ-param "Named parameter" for setting |
285 | 285 |
/// \c DistMap type. |
286 | 286 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
287 | 287 |
template <class T> |
288 | 288 |
struct SetDistMap |
289 | 289 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
290 | 290 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
template <class T> |
294 | 294 |
struct SetOperationTraitsTraits : public Traits { |
295 | 295 |
typedef T OperationTraits; |
296 | 296 |
}; |
297 | 297 |
|
298 | 298 |
/// \brief \ref named-templ-param "Named parameter" for setting |
299 | 299 |
/// \c OperationTraits type. |
300 | 300 |
/// |
301 | 301 |
/// \ref named-templ-param "Named parameter" for setting |
302 | 302 |
/// \c OperationTraits type. |
303 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
304 | 304 |
template <class T> |
305 | 305 |
struct SetOperationTraits |
306 | 306 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
307 | 307 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
308 | 308 |
Create; |
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
///@} |
312 | 312 |
|
313 | 313 |
protected: |
314 | 314 |
|
315 | 315 |
BellmanFord() {} |
316 | 316 |
|
317 | 317 |
public: |
318 | 318 |
|
319 | 319 |
/// \brief Constructor. |
320 | 320 |
/// |
321 | 321 |
/// Constructor. |
322 | 322 |
/// \param g The digraph the algorithm runs on. |
323 | 323 |
/// \param length The length map used by the algorithm. |
324 | 324 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
325 | 325 |
_gr(&g), _length(&length), |
326 | 326 |
_pred(0), _local_pred(false), |
327 | 327 |
_dist(0), _local_dist(false), _mask(0) {} |
... | ... |
@@ -697,64 +697,64 @@ |
697 | 697 |
{ |
698 | 698 |
return Path(*_gr, *_pred, t); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
/// \brief The distance of the given node from the root(s). |
702 | 702 |
/// |
703 | 703 |
/// Returns the distance of the given node from the root(s). |
704 | 704 |
/// |
705 | 705 |
/// \warning If node \c v is not reached from the root(s), then |
706 | 706 |
/// the return value of this function is undefined. |
707 | 707 |
/// |
708 | 708 |
/// \pre Either \ref run() or \ref init() must be called before |
709 | 709 |
/// using this function. |
710 | 710 |
Value dist(Node v) const { return (*_dist)[v]; } |
711 | 711 |
|
712 | 712 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
713 | 713 |
/// the given node. |
714 | 714 |
/// |
715 | 715 |
/// This function returns the 'previous arc' of the shortest path |
716 | 716 |
/// tree for node \c v, i.e. it returns the last arc of a |
717 | 717 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
718 | 718 |
/// is not reached from the root(s) or if \c v is a root. |
719 | 719 |
/// |
720 | 720 |
/// The shortest path tree used here is equal to the shortest path |
721 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// tree used in \ref predNode() and \ref predMap(). |
|
722 | 722 |
/// |
723 | 723 |
/// \pre Either \ref run() or \ref init() must be called before |
724 | 724 |
/// using this function. |
725 | 725 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
726 | 726 |
|
727 | 727 |
/// \brief Returns the 'previous node' of the shortest path tree for |
728 | 728 |
/// the given node. |
729 | 729 |
/// |
730 | 730 |
/// This function returns the 'previous node' of the shortest path |
731 | 731 |
/// tree for node \c v, i.e. it returns the last but one node of |
732 | 732 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
733 | 733 |
/// is not reached from the root(s) or if \c v is a root. |
734 | 734 |
/// |
735 | 735 |
/// The shortest path tree used here is equal to the shortest path |
736 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// tree used in \ref predArc() and \ref predMap(). |
|
737 | 737 |
/// |
738 | 738 |
/// \pre Either \ref run() or \ref init() must be called before |
739 | 739 |
/// using this function. |
740 | 740 |
Node predNode(Node v) const { |
741 | 741 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
/// \brief Returns a const reference to the node map that stores the |
745 | 745 |
/// distances of the nodes. |
746 | 746 |
/// |
747 | 747 |
/// Returns a const reference to the node map that stores the distances |
748 | 748 |
/// of the nodes calculated by the algorithm. |
749 | 749 |
/// |
750 | 750 |
/// \pre Either \ref run() or \ref init() must be called before |
751 | 751 |
/// using this function. |
752 | 752 |
const DistMap &distMap() const { return *_dist;} |
753 | 753 |
|
754 | 754 |
/// \brief Returns a const reference to the node map that stores the |
755 | 755 |
/// predecessor arcs. |
756 | 756 |
/// |
757 | 757 |
/// Returns a const reference to the node map that stores the predecessor |
758 | 758 |
/// arcs, which form the shortest path tree (forest). |
759 | 759 |
/// |
760 | 760 |
/// \pre Either \ref run() or \ref init() must be called before |
... | ... |
@@ -42,49 +42,49 @@ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 |
///By default it is a NullMap. |
|
66 |
///By default, it is a NullMap. |
|
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \c ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
... | ... |
@@ -827,49 +827,49 @@ |
827 | 827 |
///The type of the digraph the algorithm runs on. |
828 | 828 |
typedef GR Digraph; |
829 | 829 |
|
830 | 830 |
///\brief The type of the map that stores the predecessor |
831 | 831 |
///arcs of the shortest paths. |
832 | 832 |
/// |
833 | 833 |
///The type of the map that stores the predecessor |
834 | 834 |
///arcs of the shortest paths. |
835 | 835 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
836 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
837 | 837 |
///Instantiates a PredMap. |
838 | 838 |
|
839 | 839 |
///This function instantiates a PredMap. |
840 | 840 |
///\param g is the digraph, to which we would like to define the |
841 | 841 |
///PredMap. |
842 | 842 |
static PredMap *createPredMap(const Digraph &g) |
843 | 843 |
{ |
844 | 844 |
return new PredMap(g); |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
///The type of the map that indicates which nodes are processed. |
848 | 848 |
|
849 | 849 |
///The type of the map that indicates which nodes are processed. |
850 | 850 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
851 |
///By default it is a NullMap. |
|
851 |
///By default, it is a NullMap. |
|
852 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
853 | 853 |
///Instantiates a ProcessedMap. |
854 | 854 |
|
855 | 855 |
///This function instantiates a ProcessedMap. |
856 | 856 |
///\param g is the digraph, to which |
857 | 857 |
///we would like to define the ProcessedMap. |
858 | 858 |
#ifdef DOXYGEN |
859 | 859 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
860 | 860 |
#else |
861 | 861 |
static ProcessedMap *createProcessedMap(const Digraph &) |
862 | 862 |
#endif |
863 | 863 |
{ |
864 | 864 |
return new ProcessedMap(); |
865 | 865 |
} |
866 | 866 |
|
867 | 867 |
///The type of the map that indicates which nodes are reached. |
868 | 868 |
|
869 | 869 |
///The type of the map that indicates which nodes are reached. |
870 | 870 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
871 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
872 | 872 |
///Instantiates a ReachedMap. |
873 | 873 |
|
874 | 874 |
///This function instantiates a ReachedMap. |
875 | 875 |
///\param g is the digraph, to which |
... | ... |
@@ -285,49 +285,49 @@ |
285 | 285 |
template <typename T> |
286 | 286 |
struct SetElevator |
287 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
288 | 288 |
SetElevatorTraits<T> > { |
289 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
290 | 290 |
SetElevatorTraits<T> > Create; |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
template <typename T> |
294 | 294 |
struct SetStandardElevatorTraits : public Traits { |
295 | 295 |
typedef T Elevator; |
296 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
297 | 297 |
return new Elevator(digraph, max_level); |
298 | 298 |
} |
299 | 299 |
}; |
300 | 300 |
|
301 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
302 | 302 |
/// Elevator type with automatic allocation |
303 | 303 |
/// |
304 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
305 | 305 |
/// type with automatic allocation. |
306 | 306 |
/// The Elevator should have standard constructor interface to be |
307 | 307 |
/// able to automatically created by the algorithm (i.e. the |
308 | 308 |
/// digraph and the maximum level should be passed to it). |
309 |
/// However an external elevator object could also be passed to the |
|
309 |
/// However, an external elevator object could also be passed to the |
|
310 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
311 | 311 |
/// before calling \ref run() or \ref init(). |
312 | 312 |
/// \sa SetElevator |
313 | 313 |
template <typename T> |
314 | 314 |
struct SetStandardElevator |
315 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
316 | 316 |
SetStandardElevatorTraits<T> > { |
317 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
318 | 318 |
SetStandardElevatorTraits<T> > Create; |
319 | 319 |
}; |
320 | 320 |
|
321 | 321 |
/// @} |
322 | 322 |
|
323 | 323 |
protected: |
324 | 324 |
|
325 | 325 |
Circulation() {} |
326 | 326 |
|
327 | 327 |
public: |
328 | 328 |
|
329 | 329 |
/// Constructor. |
330 | 330 |
|
331 | 331 |
/// The constructor of the class. |
332 | 332 |
/// |
333 | 333 |
/// \param graph The digraph the algorithm runs on. |
... | ... |
@@ -86,49 +86,49 @@ |
86 | 86 |
/// Equality operator. |
87 | 87 |
/// |
88 | 88 |
/// Two iterators are equal if and only if they point to the |
89 | 89 |
/// same object or both are \c INVALID. |
90 | 90 |
bool operator==(Node) const { return true; } |
91 | 91 |
|
92 | 92 |
/// Inequality operator |
93 | 93 |
|
94 | 94 |
/// Inequality operator. |
95 | 95 |
bool operator!=(Node) const { return true; } |
96 | 96 |
|
97 | 97 |
/// Artificial ordering operator. |
98 | 98 |
|
99 | 99 |
/// Artificial ordering operator. |
100 | 100 |
/// |
101 | 101 |
/// \note This operator only has to define some strict ordering of |
102 | 102 |
/// the nodes; this order has nothing to do with the iteration |
103 | 103 |
/// ordering of the nodes. |
104 | 104 |
bool operator<(Node) const { return false; } |
105 | 105 |
}; |
106 | 106 |
|
107 | 107 |
/// Iterator class for the nodes. |
108 | 108 |
|
109 | 109 |
/// This iterator goes through each node of the digraph. |
110 |
/// Its usage is quite simple, for example you can count the number |
|
110 |
/// Its usage is quite simple, for example, you can count the number |
|
111 | 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
112 | 112 |
///\code |
113 | 113 |
/// int count=0; |
114 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
115 | 115 |
///\endcode |
116 | 116 |
class NodeIt : public Node { |
117 | 117 |
public: |
118 | 118 |
/// Default constructor |
119 | 119 |
|
120 | 120 |
/// Default constructor. |
121 | 121 |
/// \warning It sets the iterator to an undefined value. |
122 | 122 |
NodeIt() { } |
123 | 123 |
/// Copy constructor. |
124 | 124 |
|
125 | 125 |
/// Copy constructor. |
126 | 126 |
/// |
127 | 127 |
NodeIt(const NodeIt& n) : Node(n) { } |
128 | 128 |
/// %Invalid constructor \& conversion. |
129 | 129 |
|
130 | 130 |
/// Initializes the iterator to be invalid. |
131 | 131 |
/// \sa Invalid for more details. |
132 | 132 |
NodeIt(Invalid) { } |
133 | 133 |
/// Sets the iterator to the first node. |
134 | 134 |
|
... | ... |
@@ -175,138 +175,138 @@ |
175 | 175 |
/// Equality operator. |
176 | 176 |
/// |
177 | 177 |
/// Two iterators are equal if and only if they point to the |
178 | 178 |
/// same object or both are \c INVALID. |
179 | 179 |
bool operator==(Arc) const { return true; } |
180 | 180 |
/// Inequality operator |
181 | 181 |
|
182 | 182 |
/// Inequality operator. |
183 | 183 |
bool operator!=(Arc) const { return true; } |
184 | 184 |
|
185 | 185 |
/// Artificial ordering operator. |
186 | 186 |
|
187 | 187 |
/// Artificial ordering operator. |
188 | 188 |
/// |
189 | 189 |
/// \note This operator only has to define some strict ordering of |
190 | 190 |
/// the arcs; this order has nothing to do with the iteration |
191 | 191 |
/// ordering of the arcs. |
192 | 192 |
bool operator<(Arc) const { return false; } |
193 | 193 |
}; |
194 | 194 |
|
195 | 195 |
/// Iterator class for the outgoing arcs of a node. |
196 | 196 |
|
197 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
198 | 198 |
/// of a digraph. |
199 |
/// Its usage is quite simple, for example you can count the number |
|
199 |
/// Its usage is quite simple, for example, you can count the number |
|
200 | 200 |
/// of outgoing arcs of a node \c n |
201 | 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
202 | 202 |
///\code |
203 | 203 |
/// int count=0; |
204 | 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
205 | 205 |
///\endcode |
206 | 206 |
class OutArcIt : public Arc { |
207 | 207 |
public: |
208 | 208 |
/// Default constructor |
209 | 209 |
|
210 | 210 |
/// Default constructor. |
211 | 211 |
/// \warning It sets the iterator to an undefined value. |
212 | 212 |
OutArcIt() { } |
213 | 213 |
/// Copy constructor. |
214 | 214 |
|
215 | 215 |
/// Copy constructor. |
216 | 216 |
/// |
217 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
218 | 218 |
/// %Invalid constructor \& conversion. |
219 | 219 |
|
220 | 220 |
/// Initializes the iterator to be invalid. |
221 | 221 |
/// \sa Invalid for more details. |
222 | 222 |
OutArcIt(Invalid) { } |
223 | 223 |
/// Sets the iterator to the first outgoing arc. |
224 | 224 |
|
225 | 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
226 | 226 |
/// |
227 | 227 |
OutArcIt(const Digraph&, const Node&) { } |
228 | 228 |
/// Sets the iterator to the given arc. |
229 | 229 |
|
230 | 230 |
/// Sets the iterator to the given arc of the given digraph. |
231 | 231 |
/// |
232 | 232 |
OutArcIt(const Digraph&, const Arc&) { } |
233 | 233 |
/// Next outgoing arc |
234 | 234 |
|
235 | 235 |
/// Assign the iterator to the next |
236 | 236 |
/// outgoing arc of the corresponding node. |
237 | 237 |
OutArcIt& operator++() { return *this; } |
238 | 238 |
}; |
239 | 239 |
|
240 | 240 |
/// Iterator class for the incoming arcs of a node. |
241 | 241 |
|
242 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
243 | 243 |
/// of a digraph. |
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of incoming arcs of a node \c n |
246 | 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
247 | 247 |
///\code |
248 | 248 |
/// int count=0; |
249 | 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
250 | 250 |
///\endcode |
251 | 251 |
class InArcIt : public Arc { |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// Default constructor. |
256 | 256 |
/// \warning It sets the iterator to an undefined value. |
257 | 257 |
InArcIt() { } |
258 | 258 |
/// Copy constructor. |
259 | 259 |
|
260 | 260 |
/// Copy constructor. |
261 | 261 |
/// |
262 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { } |
263 | 263 |
/// %Invalid constructor \& conversion. |
264 | 264 |
|
265 | 265 |
/// Initializes the iterator to be invalid. |
266 | 266 |
/// \sa Invalid for more details. |
267 | 267 |
InArcIt(Invalid) { } |
268 | 268 |
/// Sets the iterator to the first incoming arc. |
269 | 269 |
|
270 | 270 |
/// Sets the iterator to the first incoming arc of the given node. |
271 | 271 |
/// |
272 | 272 |
InArcIt(const Digraph&, const Node&) { } |
273 | 273 |
/// Sets the iterator to the given arc. |
274 | 274 |
|
275 | 275 |
/// Sets the iterator to the given arc of the given digraph. |
276 | 276 |
/// |
277 | 277 |
InArcIt(const Digraph&, const Arc&) { } |
278 | 278 |
/// Next incoming arc |
279 | 279 |
|
280 | 280 |
/// Assign the iterator to the next |
281 | 281 |
/// incoming arc of the corresponding node. |
282 | 282 |
InArcIt& operator++() { return *this; } |
283 | 283 |
}; |
284 | 284 |
|
285 | 285 |
/// Iterator class for the arcs. |
286 | 286 |
|
287 | 287 |
/// This iterator goes through each arc of the digraph. |
288 |
/// Its usage is quite simple, for example you can count the number |
|
288 |
/// Its usage is quite simple, for example, you can count the number |
|
289 | 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
290 | 290 |
///\code |
291 | 291 |
/// int count=0; |
292 | 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
293 | 293 |
///\endcode |
294 | 294 |
class ArcIt : public Arc { |
295 | 295 |
public: |
296 | 296 |
/// Default constructor |
297 | 297 |
|
298 | 298 |
/// Default constructor. |
299 | 299 |
/// \warning It sets the iterator to an undefined value. |
300 | 300 |
ArcIt() { } |
301 | 301 |
/// Copy constructor. |
302 | 302 |
|
303 | 303 |
/// Copy constructor. |
304 | 304 |
/// |
305 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { } |
306 | 306 |
/// %Invalid constructor \& conversion. |
307 | 307 |
|
308 | 308 |
/// Initializes the iterator to be invalid. |
309 | 309 |
/// \sa Invalid for more details. |
310 | 310 |
ArcIt(Invalid) { } |
311 | 311 |
/// Sets the iterator to the first arc. |
312 | 312 |
... | ... |
@@ -119,49 +119,49 @@ |
119 | 119 |
/// |
120 | 120 |
/// Two iterators are equal if and only if they point to the |
121 | 121 |
/// same object or both are \c INVALID. |
122 | 122 |
bool operator==(Node) const { return true; } |
123 | 123 |
|
124 | 124 |
/// Inequality operator |
125 | 125 |
|
126 | 126 |
/// Inequality operator. |
127 | 127 |
bool operator!=(Node) const { return true; } |
128 | 128 |
|
129 | 129 |
/// Artificial ordering operator. |
130 | 130 |
|
131 | 131 |
/// Artificial ordering operator. |
132 | 132 |
/// |
133 | 133 |
/// \note This operator only has to define some strict ordering of |
134 | 134 |
/// the items; this order has nothing to do with the iteration |
135 | 135 |
/// ordering of the items. |
136 | 136 |
bool operator<(Node) const { return false; } |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
/// Iterator class for the nodes. |
141 | 141 |
|
142 | 142 |
/// This iterator goes through each node of the graph. |
143 |
/// Its usage is quite simple, for example you can count the number |
|
143 |
/// Its usage is quite simple, for example, you can count the number |
|
144 | 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
145 | 145 |
///\code |
146 | 146 |
/// int count=0; |
147 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
148 | 148 |
///\endcode |
149 | 149 |
class NodeIt : public Node { |
150 | 150 |
public: |
151 | 151 |
/// Default constructor |
152 | 152 |
|
153 | 153 |
/// Default constructor. |
154 | 154 |
/// \warning It sets the iterator to an undefined value. |
155 | 155 |
NodeIt() { } |
156 | 156 |
/// Copy constructor. |
157 | 157 |
|
158 | 158 |
/// Copy constructor. |
159 | 159 |
/// |
160 | 160 |
NodeIt(const NodeIt& n) : Node(n) { } |
161 | 161 |
/// %Invalid constructor \& conversion. |
162 | 162 |
|
163 | 163 |
/// Initializes the iterator to be invalid. |
164 | 164 |
/// \sa Invalid for more details. |
165 | 165 |
NodeIt(Invalid) { } |
166 | 166 |
/// Sets the iterator to the first node. |
167 | 167 |
|
... | ... |
@@ -207,93 +207,93 @@ |
207 | 207 |
|
208 | 208 |
/// Equality operator. |
209 | 209 |
/// |
210 | 210 |
/// Two iterators are equal if and only if they point to the |
211 | 211 |
/// same object or both are \c INVALID. |
212 | 212 |
bool operator==(Edge) const { return true; } |
213 | 213 |
/// Inequality operator |
214 | 214 |
|
215 | 215 |
/// Inequality operator. |
216 | 216 |
bool operator!=(Edge) const { return true; } |
217 | 217 |
|
218 | 218 |
/// Artificial ordering operator. |
219 | 219 |
|
220 | 220 |
/// Artificial ordering operator. |
221 | 221 |
/// |
222 | 222 |
/// \note This operator only has to define some strict ordering of |
223 | 223 |
/// the edges; this order has nothing to do with the iteration |
224 | 224 |
/// ordering of the edges. |
225 | 225 |
bool operator<(Edge) const { return false; } |
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// Iterator class for the edges. |
229 | 229 |
|
230 | 230 |
/// This iterator goes through each edge of the graph. |
231 |
/// Its usage is quite simple, for example you can count the number |
|
231 |
/// Its usage is quite simple, for example, you can count the number |
|
232 | 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
233 | 233 |
///\code |
234 | 234 |
/// int count=0; |
235 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
236 | 236 |
///\endcode |
237 | 237 |
class EdgeIt : public Edge { |
238 | 238 |
public: |
239 | 239 |
/// Default constructor |
240 | 240 |
|
241 | 241 |
/// Default constructor. |
242 | 242 |
/// \warning It sets the iterator to an undefined value. |
243 | 243 |
EdgeIt() { } |
244 | 244 |
/// Copy constructor. |
245 | 245 |
|
246 | 246 |
/// Copy constructor. |
247 | 247 |
/// |
248 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { } |
249 | 249 |
/// %Invalid constructor \& conversion. |
250 | 250 |
|
251 | 251 |
/// Initializes the iterator to be invalid. |
252 | 252 |
/// \sa Invalid for more details. |
253 | 253 |
EdgeIt(Invalid) { } |
254 | 254 |
/// Sets the iterator to the first edge. |
255 | 255 |
|
256 | 256 |
/// Sets the iterator to the first edge of the given graph. |
257 | 257 |
/// |
258 | 258 |
explicit EdgeIt(const Graph&) { } |
259 | 259 |
/// Sets the iterator to the given edge. |
260 | 260 |
|
261 | 261 |
/// Sets the iterator to the given edge of the given graph. |
262 | 262 |
/// |
263 | 263 |
EdgeIt(const Graph&, const Edge&) { } |
264 | 264 |
/// Next edge |
265 | 265 |
|
266 | 266 |
/// Assign the iterator to the next edge. |
267 | 267 |
/// |
268 | 268 |
EdgeIt& operator++() { return *this; } |
269 | 269 |
}; |
270 | 270 |
|
271 | 271 |
/// Iterator class for the incident edges of a node. |
272 | 272 |
|
273 | 273 |
/// This iterator goes trough the incident undirected edges |
274 | 274 |
/// of a certain node of a graph. |
275 |
/// Its usage is quite simple, for example you can compute the |
|
275 |
/// Its usage is quite simple, for example, you can compute the |
|
276 | 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
277 | 277 |
/// in a graph \c g of type \c %Graph as follows. |
278 | 278 |
/// |
279 | 279 |
///\code |
280 | 280 |
/// int count=0; |
281 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
282 | 282 |
///\endcode |
283 | 283 |
/// |
284 | 284 |
/// \warning Loop edges will be iterated twice. |
285 | 285 |
class IncEdgeIt : public Edge { |
286 | 286 |
public: |
287 | 287 |
/// Default constructor |
288 | 288 |
|
289 | 289 |
/// Default constructor. |
290 | 290 |
/// \warning It sets the iterator to an undefined value. |
291 | 291 |
IncEdgeIt() { } |
292 | 292 |
/// Copy constructor. |
293 | 293 |
|
294 | 294 |
/// Copy constructor. |
295 | 295 |
/// |
296 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } |
297 | 297 |
/// %Invalid constructor \& conversion. |
298 | 298 |
|
299 | 299 |
/// Initializes the iterator to be invalid. |
... | ... |
@@ -348,141 +348,141 @@ |
348 | 348 |
/// Inequality operator |
349 | 349 |
|
350 | 350 |
/// Inequality operator. |
351 | 351 |
bool operator!=(Arc) const { return true; } |
352 | 352 |
|
353 | 353 |
/// Artificial ordering operator. |
354 | 354 |
|
355 | 355 |
/// Artificial ordering operator. |
356 | 356 |
/// |
357 | 357 |
/// \note This operator only has to define some strict ordering of |
358 | 358 |
/// the arcs; this order has nothing to do with the iteration |
359 | 359 |
/// ordering of the arcs. |
360 | 360 |
bool operator<(Arc) const { return false; } |
361 | 361 |
|
362 | 362 |
/// Converison to \c Edge |
363 | 363 |
|
364 | 364 |
/// Converison to \c Edge. |
365 | 365 |
/// |
366 | 366 |
operator Edge() const { return Edge(); } |
367 | 367 |
}; |
368 | 368 |
|
369 | 369 |
/// Iterator class for the arcs. |
370 | 370 |
|
371 | 371 |
/// This iterator goes through each directed arc of the graph. |
372 |
/// Its usage is quite simple, for example you can count the number |
|
372 |
/// Its usage is quite simple, for example, you can count the number |
|
373 | 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
374 | 374 |
///\code |
375 | 375 |
/// int count=0; |
376 | 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
377 | 377 |
///\endcode |
378 | 378 |
class ArcIt : public Arc { |
379 | 379 |
public: |
380 | 380 |
/// Default constructor |
381 | 381 |
|
382 | 382 |
/// Default constructor. |
383 | 383 |
/// \warning It sets the iterator to an undefined value. |
384 | 384 |
ArcIt() { } |
385 | 385 |
/// Copy constructor. |
386 | 386 |
|
387 | 387 |
/// Copy constructor. |
388 | 388 |
/// |
389 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { } |
390 | 390 |
/// %Invalid constructor \& conversion. |
391 | 391 |
|
392 | 392 |
/// Initializes the iterator to be invalid. |
393 | 393 |
/// \sa Invalid for more details. |
394 | 394 |
ArcIt(Invalid) { } |
395 | 395 |
/// Sets the iterator to the first arc. |
396 | 396 |
|
397 | 397 |
/// Sets the iterator to the first arc of the given graph. |
398 | 398 |
/// |
399 | 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } |
400 | 400 |
/// Sets the iterator to the given arc. |
401 | 401 |
|
402 | 402 |
/// Sets the iterator to the given arc of the given graph. |
403 | 403 |
/// |
404 | 404 |
ArcIt(const Graph&, const Arc&) { } |
405 | 405 |
/// Next arc |
406 | 406 |
|
407 | 407 |
/// Assign the iterator to the next arc. |
408 | 408 |
/// |
409 | 409 |
ArcIt& operator++() { return *this; } |
410 | 410 |
}; |
411 | 411 |
|
412 | 412 |
/// Iterator class for the outgoing arcs of a node. |
413 | 413 |
|
414 | 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
415 | 415 |
/// certain node of a graph. |
416 |
/// Its usage is quite simple, for example you can count the number |
|
416 |
/// Its usage is quite simple, for example, you can count the number |
|
417 | 417 |
/// of outgoing arcs of a node \c n |
418 | 418 |
/// in a graph \c g of type \c %Graph as follows. |
419 | 419 |
///\code |
420 | 420 |
/// int count=0; |
421 | 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
422 | 422 |
///\endcode |
423 | 423 |
class OutArcIt : public Arc { |
424 | 424 |
public: |
425 | 425 |
/// Default constructor |
426 | 426 |
|
427 | 427 |
/// Default constructor. |
428 | 428 |
/// \warning It sets the iterator to an undefined value. |
429 | 429 |
OutArcIt() { } |
430 | 430 |
/// Copy constructor. |
431 | 431 |
|
432 | 432 |
/// Copy constructor. |
433 | 433 |
/// |
434 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
435 | 435 |
/// %Invalid constructor \& conversion. |
436 | 436 |
|
437 | 437 |
/// Initializes the iterator to be invalid. |
438 | 438 |
/// \sa Invalid for more details. |
439 | 439 |
OutArcIt(Invalid) { } |
440 | 440 |
/// Sets the iterator to the first outgoing arc. |
441 | 441 |
|
442 | 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
443 | 443 |
/// |
444 | 444 |
OutArcIt(const Graph& n, const Node& g) { |
445 | 445 |
ignore_unused_variable_warning(n); |
446 | 446 |
ignore_unused_variable_warning(g); |
447 | 447 |
} |
448 | 448 |
/// Sets the iterator to the given arc. |
449 | 449 |
|
450 | 450 |
/// Sets the iterator to the given arc of the given graph. |
451 | 451 |
/// |
452 | 452 |
OutArcIt(const Graph&, const Arc&) { } |
453 | 453 |
/// Next outgoing arc |
454 | 454 |
|
455 | 455 |
/// Assign the iterator to the next |
456 | 456 |
/// outgoing arc of the corresponding node. |
457 | 457 |
OutArcIt& operator++() { return *this; } |
458 | 458 |
}; |
459 | 459 |
|
460 | 460 |
/// Iterator class for the incoming arcs of a node. |
461 | 461 |
|
462 | 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
463 | 463 |
/// certain node of a graph. |
464 |
/// Its usage is quite simple, for example you can count the number |
|
464 |
/// Its usage is quite simple, for example, you can count the number |
|
465 | 465 |
/// of incoming arcs of a node \c n |
466 | 466 |
/// in a graph \c g of type \c %Graph as follows. |
467 | 467 |
///\code |
468 | 468 |
/// int count=0; |
469 | 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
470 | 470 |
///\endcode |
471 | 471 |
class InArcIt : public Arc { |
472 | 472 |
public: |
473 | 473 |
/// Default constructor |
474 | 474 |
|
475 | 475 |
/// Default constructor. |
476 | 476 |
/// \warning It sets the iterator to an undefined value. |
477 | 477 |
InArcIt() { } |
478 | 478 |
/// Copy constructor. |
479 | 479 |
|
480 | 480 |
/// Copy constructor. |
481 | 481 |
/// |
482 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { } |
483 | 483 |
/// %Invalid constructor \& conversion. |
484 | 484 |
|
485 | 485 |
/// Initializes the iterator to be invalid. |
486 | 486 |
/// \sa Invalid for more details. |
487 | 487 |
InArcIt(Invalid) { } |
488 | 488 |
/// Sets the iterator to the first incoming arc. |
... | ... |
@@ -566,62 +566,62 @@ |
566 | 566 |
{ |
567 | 567 |
public: |
568 | 568 |
|
569 | 569 |
/// Constructor |
570 | 570 |
explicit EdgeMap(const Graph&) { } |
571 | 571 |
/// Constructor with given initial value |
572 | 572 |
EdgeMap(const Graph&, T) { } |
573 | 573 |
|
574 | 574 |
private: |
575 | 575 |
///Copy constructor |
576 | 576 |
EdgeMap(const EdgeMap& em) : |
577 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {} |
578 | 578 |
///Assignment operator |
579 | 579 |
template <typename CMap> |
580 | 580 |
EdgeMap& operator=(const CMap&) { |
581 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
582 | 582 |
return *this; |
583 | 583 |
} |
584 | 584 |
}; |
585 | 585 |
|
586 | 586 |
/// \brief The first node of the edge. |
587 | 587 |
/// |
588 | 588 |
/// Returns the first node of the given edge. |
589 | 589 |
/// |
590 |
/// Edges don't have source and target nodes, however methods |
|
590 |
/// Edges don't have source and target nodes, however, methods |
|
591 | 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
592 | 592 |
/// The orientation of an edge that arises this way is called |
593 | 593 |
/// the inherent direction, it is used to define the default |
594 | 594 |
/// direction for the corresponding arcs. |
595 | 595 |
/// \sa v() |
596 | 596 |
/// \sa direction() |
597 | 597 |
Node u(Edge) const { return INVALID; } |
598 | 598 |
|
599 | 599 |
/// \brief The second node of the edge. |
600 | 600 |
/// |
601 | 601 |
/// Returns the second node of the given edge. |
602 | 602 |
/// |
603 |
/// Edges don't have source and target nodes, however methods |
|
603 |
/// Edges don't have source and target nodes, however, methods |
|
604 | 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
605 | 605 |
/// The orientation of an edge that arises this way is called |
606 | 606 |
/// the inherent direction, it is used to define the default |
607 | 607 |
/// direction for the corresponding arcs. |
608 | 608 |
/// \sa u() |
609 | 609 |
/// \sa direction() |
610 | 610 |
Node v(Edge) const { return INVALID; } |
611 | 611 |
|
612 | 612 |
/// \brief The source node of the arc. |
613 | 613 |
/// |
614 | 614 |
/// Returns the source node of the given arc. |
615 | 615 |
Node source(Arc) const { return INVALID; } |
616 | 616 |
|
617 | 617 |
/// \brief The target node of the arc. |
618 | 618 |
/// |
619 | 619 |
/// Returns the target node of the given arc. |
620 | 620 |
Node target(Arc) const { return INVALID; } |
621 | 621 |
|
622 | 622 |
/// \brief The ID of the node. |
623 | 623 |
/// |
624 | 624 |
/// Returns the ID of the given node. |
625 | 625 |
int id(Node) const { return -1; } |
626 | 626 |
|
627 | 627 |
/// \brief The ID of the edge. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 |
///\brief The |
|
21 |
///\brief The concepts of graph components. |
|
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 |
///\brief |
|
21 |
///\brief The concept of paths |
|
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
37 | 37 |
/// a digraph. |
38 | 38 |
/// |
39 | 39 |
/// A skeleton structure for representing directed paths in a |
40 | 40 |
/// digraph. |
41 |
/// In a sense, a path can be treated as a list of arcs. |
|
42 |
/// LEMON path types just store this list. As a consequence, they cannot |
|
43 |
/// enumerate the nodes on the path directly and a zero length path |
|
44 |
/// cannot store its source node. |
|
45 |
/// |
|
46 |
/// The arcs of a path should be stored in the order of their directions, |
|
47 |
/// i.e. the target node of each arc should be the same as the source |
|
48 |
/// node of the next arc. This consistency could be checked using |
|
49 |
/// \ref checkPath(). |
|
50 |
/// The source and target nodes of a (consistent) path can be obtained |
|
51 |
/// using \ref pathSource() and \ref pathTarget(). |
|
52 |
/// |
|
53 |
/// A path can be constructed from another path of any type using the |
|
54 |
/// copy constructor or the assignment operator. |
|
55 |
/// |
|
41 | 56 |
/// \tparam GR The digraph type in which the path is. |
42 |
/// |
|
43 |
/// In a sense, the path can be treated as a list of arcs. The |
|
44 |
/// lemon path type stores just this list. As a consequence it |
|
45 |
/// cannot enumerate the nodes in the path and the zero length |
|
46 |
/// paths cannot store the source. |
|
47 |
/// |
|
48 | 57 |
template <typename GR> |
49 | 58 |
class Path { |
50 | 59 |
public: |
51 | 60 |
|
52 | 61 |
/// Type of the underlying digraph. |
53 | 62 |
typedef GR Digraph; |
54 | 63 |
/// Arc type of the underlying digraph. |
55 | 64 |
typedef typename Digraph::Arc Arc; |
56 | 65 |
|
57 | 66 |
class ArcIt; |
58 | 67 |
|
59 | 68 |
/// \brief Default constructor |
60 | 69 |
Path() {} |
61 | 70 |
|
62 |
/// \brief Template constructor |
|
71 |
/// \brief Template copy constructor |
|
63 | 72 |
template <typename CPath> |
64 | 73 |
Path(const CPath& cpath) {} |
65 | 74 |
|
66 |
/// \brief Template assigment |
|
75 |
/// \brief Template assigment operator |
|
67 | 76 |
template <typename CPath> |
68 | 77 |
Path& operator=(const CPath& cpath) { |
69 | 78 |
ignore_unused_variable_warning(cpath); |
70 | 79 |
return *this; |
71 | 80 |
} |
72 | 81 |
|
73 |
/// Length of the path |
|
82 |
/// Length of the path, i.e. the number of arcs on the path. |
|
74 | 83 |
int length() const { return 0;} |
75 | 84 |
|
76 | 85 |
/// Returns whether the path is empty. |
77 | 86 |
bool empty() const { return true;} |
78 | 87 |
|
79 | 88 |
/// Resets the path to an empty path. |
80 | 89 |
void clear() {} |
81 | 90 |
|
82 |
/// \brief LEMON style iterator for |
|
91 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
83 | 92 |
/// |
84 |
/// |
|
93 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
85 | 94 |
class ArcIt { |
86 | 95 |
public: |
87 | 96 |
/// Default constructor |
88 | 97 |
ArcIt() {} |
89 | 98 |
/// Invalid constructor |
90 | 99 |
ArcIt(Invalid) {} |
91 |
/// |
|
100 |
/// Sets the iterator to the first arc of the given path |
|
92 | 101 |
ArcIt(const Path &) {} |
93 | 102 |
|
94 |
/// Conversion to Arc |
|
103 |
/// Conversion to \c Arc |
|
95 | 104 |
operator Arc() const { return INVALID; } |
96 | 105 |
|
97 | 106 |
/// Next arc |
98 | 107 |
ArcIt& operator++() {return *this;} |
99 | 108 |
|
100 | 109 |
/// Comparison operator |
101 | 110 |
bool operator==(const ArcIt&) const {return true;} |
102 | 111 |
/// Comparison operator |
103 | 112 |
bool operator!=(const ArcIt&) const {return true;} |
104 | 113 |
/// Comparison operator |
105 | 114 |
bool operator<(const ArcIt&) const {return false;} |
106 | 115 |
|
107 | 116 |
}; |
108 | 117 |
|
109 | 118 |
template <typename _Path> |
110 | 119 |
struct Constraints { |
111 | 120 |
void constraints() { |
112 | 121 |
Path<Digraph> pc; |
113 | 122 |
_Path p, pp(pc); |
114 | 123 |
int l = p.length(); |
115 | 124 |
int e = p.empty(); |
116 | 125 |
p.clear(); |
117 | 126 |
|
118 | 127 |
p = pc; |
... | ... |
@@ -171,130 +180,124 @@ |
171 | 180 |
int e = p.empty(); |
172 | 181 |
|
173 | 182 |
typename _Path::RevArcIt id, i(p); |
174 | 183 |
|
175 | 184 |
++i; |
176 | 185 |
typename _Digraph::Arc ed = i; |
177 | 186 |
|
178 | 187 |
e = (i == INVALID); |
179 | 188 |
e = (i != INVALID); |
180 | 189 |
|
181 | 190 |
ignore_unused_variable_warning(l); |
182 | 191 |
ignore_unused_variable_warning(e); |
183 | 192 |
ignore_unused_variable_warning(id); |
184 | 193 |
ignore_unused_variable_warning(ed); |
185 | 194 |
} |
186 | 195 |
_Path& p; |
187 | 196 |
}; |
188 | 197 |
|
189 | 198 |
} |
190 | 199 |
|
191 | 200 |
|
192 | 201 |
/// \brief A skeleton structure for path dumpers. |
193 | 202 |
/// |
194 | 203 |
/// A skeleton structure for path dumpers. The path dumpers are |
195 |
/// the generalization of the paths. The path dumpers can |
|
196 |
/// enumerate the arcs of the path wheter in forward or in |
|
197 |
/// backward order. In most time these classes are not used |
|
198 |
/// directly rather it used to assign a dumped class to a real |
|
199 |
/// |
|
204 |
/// the generalization of the paths, they can enumerate the arcs |
|
205 |
/// of the path either in forward or in backward order. |
|
206 |
/// These classes are typically not used directly, they are rather |
|
207 |
/// used to be assigned to a real path type. |
|
200 | 208 |
/// |
201 | 209 |
/// The main purpose of this concept is that the shortest path |
202 |
/// algorithms can enumerate easily the arcs in reverse order. |
|
203 |
/// If we would like to give back a real path from these |
|
204 |
/// algorithms then we should create a temporarly path object. In |
|
205 |
/// LEMON such algorithms gives back a path dumper what can |
|
206 |
/// |
|
210 |
/// algorithms can enumerate the arcs easily in reverse order. |
|
211 |
/// In LEMON, such algorithms give back a (reverse) path dumper that |
|
212 |
/// can be assigned to a real path. The dumpers can be implemented as |
|
207 | 213 |
/// an adaptor class to the predecessor map. |
208 | 214 |
/// |
209 | 215 |
/// \tparam GR The digraph type in which the path is. |
210 |
/// |
|
211 |
/// The paths can be constructed from any path type by a |
|
212 |
/// template constructor or a template assignment operator. |
|
213 | 216 |
template <typename GR> |
214 | 217 |
class PathDumper { |
215 | 218 |
public: |
216 | 219 |
|
217 | 220 |
/// Type of the underlying digraph. |
218 | 221 |
typedef GR Digraph; |
219 | 222 |
/// Arc type of the underlying digraph. |
220 | 223 |
typedef typename Digraph::Arc Arc; |
221 | 224 |
|
222 |
/// Length of the path |
|
225 |
/// Length of the path, i.e. the number of arcs on the path. |
|
223 | 226 |
int length() const { return 0;} |
224 | 227 |
|
225 | 228 |
/// Returns whether the path is empty. |
226 | 229 |
bool empty() const { return true;} |
227 | 230 |
|
228 | 231 |
/// \brief Forward or reverse dumping |
229 | 232 |
/// |
230 |
/// If the RevPathTag is defined and true then reverse dumping |
|
231 |
/// is provided in the path dumper. In this case instead of the |
|
232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
|
233 |
/// dumper. |
|
233 |
/// If this tag is defined to be \c True, then reverse dumping |
|
234 |
/// is provided in the path dumper. In this case, \c RevArcIt |
|
235 |
/// iterator should be implemented instead of \c ArcIt iterator. |
|
234 | 236 |
typedef False RevPathTag; |
235 | 237 |
|
236 |
/// \brief LEMON style iterator for |
|
238 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
237 | 239 |
/// |
238 |
/// |
|
240 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
239 | 241 |
class ArcIt { |
240 | 242 |
public: |
241 | 243 |
/// Default constructor |
242 | 244 |
ArcIt() {} |
243 | 245 |
/// Invalid constructor |
244 | 246 |
ArcIt(Invalid) {} |
245 |
/// |
|
247 |
/// Sets the iterator to the first arc of the given path |
|
246 | 248 |
ArcIt(const PathDumper&) {} |
247 | 249 |
|
248 |
/// Conversion to Arc |
|
250 |
/// Conversion to \c Arc |
|
249 | 251 |
operator Arc() const { return INVALID; } |
250 | 252 |
|
251 | 253 |
/// Next arc |
252 | 254 |
ArcIt& operator++() {return *this;} |
253 | 255 |
|
254 | 256 |
/// Comparison operator |
255 | 257 |
bool operator==(const ArcIt&) const {return true;} |
256 | 258 |
/// Comparison operator |
257 | 259 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 260 |
/// Comparison operator |
259 | 261 |
bool operator<(const ArcIt&) const {return false;} |
260 | 262 |
|
261 | 263 |
}; |
262 | 264 |
|
263 |
/// \brief LEMON style iterator for |
|
265 |
/// \brief LEMON style iterator for enumerating the arcs of a path |
|
266 |
/// in reverse direction. |
|
264 | 267 |
/// |
265 |
/// This class is used to iterate on the arcs of the paths in |
|
266 |
/// reverse direction. |
|
268 |
/// LEMON style iterator class for enumerating the arcs of a path |
|
269 |
/// in reverse direction. |
|
267 | 270 |
class RevArcIt { |
268 | 271 |
public: |
269 | 272 |
/// Default constructor |
270 | 273 |
RevArcIt() {} |
271 | 274 |
/// Invalid constructor |
272 | 275 |
RevArcIt(Invalid) {} |
273 |
/// |
|
276 |
/// Sets the iterator to the last arc of the given path |
|
274 | 277 |
RevArcIt(const PathDumper &) {} |
275 | 278 |
|
276 |
/// Conversion to Arc |
|
279 |
/// Conversion to \c Arc |
|
277 | 280 |
operator Arc() const { return INVALID; } |
278 | 281 |
|
279 | 282 |
/// Next arc |
280 | 283 |
RevArcIt& operator++() {return *this;} |
281 | 284 |
|
282 | 285 |
/// Comparison operator |
283 | 286 |
bool operator==(const RevArcIt&) const {return true;} |
284 | 287 |
/// Comparison operator |
285 | 288 |
bool operator!=(const RevArcIt&) const {return true;} |
286 | 289 |
/// Comparison operator |
287 | 290 |
bool operator<(const RevArcIt&) const {return false;} |
288 | 291 |
|
289 | 292 |
}; |
290 | 293 |
|
291 | 294 |
template <typename _Path> |
292 | 295 |
struct Constraints { |
293 | 296 |
void constraints() { |
294 | 297 |
function_requires<_path_bits:: |
295 | 298 |
PathDumperConstraints<Digraph, _Path> >(); |
296 | 299 |
} |
297 | 300 |
}; |
298 | 301 |
|
299 | 302 |
}; |
300 | 303 |
... | ... |
@@ -191,49 +191,49 @@ |
191 | 191 |
Counter &operator++() { count++; return *this;} |
192 | 192 |
///\e |
193 | 193 |
int operator++(int) { return count++;} |
194 | 194 |
///\e |
195 | 195 |
Counter &operator--() { count--; return *this;} |
196 | 196 |
///\e |
197 | 197 |
int operator--(int) { return count--;} |
198 | 198 |
///\e |
199 | 199 |
Counter &operator+=(int c) { count+=c; return *this;} |
200 | 200 |
///\e |
201 | 201 |
Counter &operator-=(int c) { count-=c; return *this;} |
202 | 202 |
/// Resets the counter to the given value. |
203 | 203 |
|
204 | 204 |
/// Resets the counter to the given value. |
205 | 205 |
/// \note This function does not reset the values of |
206 | 206 |
/// \ref SubCounter "SubCounter"s but it resets \ref NoSubCounter |
207 | 207 |
/// "NoSubCounter"s along with the main counter. |
208 | 208 |
void reset(int c=0) {count=c;} |
209 | 209 |
/// Returns the value of the counter. |
210 | 210 |
operator int() {return count;} |
211 | 211 |
}; |
212 | 212 |
|
213 | 213 |
/// 'Do nothing' version of Counter. |
214 | 214 |
|
215 |
/// This class can be used in the same way as \ref Counter |
|
215 |
/// This class can be used in the same way as \ref Counter, but it |
|
216 | 216 |
/// does not count at all and does not print report on destruction. |
217 | 217 |
/// |
218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
221 | 221 |
/// efficiency of the program at all. |
222 | 222 |
/// |
223 | 223 |
/// \sa Counter |
224 | 224 |
class NoCounter |
225 | 225 |
{ |
226 | 226 |
public: |
227 | 227 |
typedef _NoSubCounter<NoCounter> SubCounter; |
228 | 228 |
typedef _NoSubCounter<NoCounter> NoSubCounter; |
229 | 229 |
|
230 | 230 |
NoCounter() {} |
231 | 231 |
NoCounter(std::string,std::ostream &) {} |
232 | 232 |
NoCounter(const char *,std::ostream &) {} |
233 | 233 |
NoCounter(std::string) {} |
234 | 234 |
NoCounter(const char *) {} |
235 | 235 |
NoCounter &operator++() { return *this; } |
236 | 236 |
int operator++(int) { return 0; } |
237 | 237 |
NoCounter &operator--() { return *this; } |
238 | 238 |
int operator--(int) { return 0; } |
239 | 239 |
NoCounter &operator+=(int) { return *this;} |
... | ... |
@@ -42,49 +42,49 @@ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 |
///By default it is a NullMap. |
|
66 |
///By default, it is a NullMap. |
|
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap. |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \c ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
... | ... |
@@ -757,49 +757,49 @@ |
757 | 757 |
///The type of the digraph the algorithm runs on. |
758 | 758 |
typedef GR Digraph; |
759 | 759 |
|
760 | 760 |
///\brief The type of the map that stores the predecessor |
761 | 761 |
///arcs of the %DFS paths. |
762 | 762 |
/// |
763 | 763 |
///The type of the map that stores the predecessor |
764 | 764 |
///arcs of the %DFS paths. |
765 | 765 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
766 | 766 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
767 | 767 |
///Instantiates a PredMap. |
768 | 768 |
|
769 | 769 |
///This function instantiates a PredMap. |
770 | 770 |
///\param g is the digraph, to which we would like to define the |
771 | 771 |
///PredMap. |
772 | 772 |
static PredMap *createPredMap(const Digraph &g) |
773 | 773 |
{ |
774 | 774 |
return new PredMap(g); |
775 | 775 |
} |
776 | 776 |
|
777 | 777 |
///The type of the map that indicates which nodes are processed. |
778 | 778 |
|
779 | 779 |
///The type of the map that indicates which nodes are processed. |
780 | 780 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
781 |
///By default it is a NullMap. |
|
781 |
///By default, it is a NullMap. |
|
782 | 782 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
783 | 783 |
///Instantiates a ProcessedMap. |
784 | 784 |
|
785 | 785 |
///This function instantiates a ProcessedMap. |
786 | 786 |
///\param g is the digraph, to which |
787 | 787 |
///we would like to define the ProcessedMap. |
788 | 788 |
#ifdef DOXYGEN |
789 | 789 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
790 | 790 |
#else |
791 | 791 |
static ProcessedMap *createProcessedMap(const Digraph &) |
792 | 792 |
#endif |
793 | 793 |
{ |
794 | 794 |
return new ProcessedMap(); |
795 | 795 |
} |
796 | 796 |
|
797 | 797 |
///The type of the map that indicates which nodes are reached. |
798 | 798 |
|
799 | 799 |
///The type of the map that indicates which nodes are reached. |
800 | 800 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
801 | 801 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
802 | 802 |
///Instantiates a ReachedMap. |
803 | 803 |
|
804 | 804 |
///This function instantiates a ReachedMap. |
805 | 805 |
///\param g is the digraph, to which |
... | ... |
@@ -111,49 +111,49 @@ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 | 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 | 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
135 |
///By default it is a NullMap. |
|
135 |
///By default, it is a NullMap. |
|
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 | 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
... | ... |
@@ -405,70 +405,70 @@ |
405 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
template <class H, class CR> |
409 | 409 |
struct SetStandardHeapTraits : public Traits { |
410 | 410 |
typedef CR HeapCrossRef; |
411 | 411 |
typedef H Heap; |
412 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
413 | 413 |
return new HeapCrossRef(G); |
414 | 414 |
} |
415 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
416 | 416 |
{ |
417 | 417 |
return new Heap(R); |
418 | 418 |
} |
419 | 419 |
}; |
420 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
421 | 421 |
///heap and cross reference types with automatic allocation |
422 | 422 |
/// |
423 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
424 | 424 |
///reference types with automatic allocation. |
425 | 425 |
///They should have standard constructor interfaces to be able to |
426 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
427 | 427 |
///passed to the constructor of the cross reference and the cross |
428 | 428 |
///reference should be passed to the constructor of the heap). |
429 |
///However external heap and cross reference objects could also be |
|
429 |
///However, external heap and cross reference objects could also be |
|
430 | 430 |
///passed to the algorithm using the \ref heap() function before |
431 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
432 | 432 |
///\sa SetHeap |
433 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
434 | 434 |
struct SetStandardHeap |
435 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
436 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
437 | 437 |
Create; |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <class T> |
441 | 441 |
struct SetOperationTraitsTraits : public Traits { |
442 | 442 |
typedef T OperationTraits; |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
446 | 446 |
///\c OperationTraits type |
447 | 447 |
/// |
448 | 448 |
///\ref named-templ-param "Named parameter" for setting |
449 | 449 |
///\c OperationTraits type. |
450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
450 |
/// For more information, see \ref DijkstraDefaultOperationTraits. |
|
451 | 451 |
template <class T> |
452 | 452 |
struct SetOperationTraits |
453 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
454 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
455 | 455 |
Create; |
456 | 456 |
}; |
457 | 457 |
|
458 | 458 |
///@} |
459 | 459 |
|
460 | 460 |
protected: |
461 | 461 |
|
462 | 462 |
Dijkstra() {} |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
///Constructor. |
467 | 467 |
|
468 | 468 |
///Constructor. |
469 | 469 |
///\param g The digraph the algorithm runs on. |
470 | 470 |
///\param length The length map used by the algorithm. |
471 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
472 | 472 |
G(&g), _length(&length), |
473 | 473 |
_pred(NULL), local_pred(false), |
474 | 474 |
_dist(NULL), local_dist(false), |
... | ... |
@@ -975,49 +975,49 @@ |
975 | 975 |
return new Heap(r); |
976 | 976 |
} |
977 | 977 |
|
978 | 978 |
///\brief The type of the map that stores the predecessor |
979 | 979 |
///arcs of the shortest paths. |
980 | 980 |
/// |
981 | 981 |
///The type of the map that stores the predecessor |
982 | 982 |
///arcs of the shortest paths. |
983 | 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
984 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
985 | 985 |
///Instantiates a PredMap. |
986 | 986 |
|
987 | 987 |
///This function instantiates a PredMap. |
988 | 988 |
///\param g is the digraph, to which we would like to define the |
989 | 989 |
///PredMap. |
990 | 990 |
static PredMap *createPredMap(const Digraph &g) |
991 | 991 |
{ |
992 | 992 |
return new PredMap(g); |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
///The type of the map that indicates which nodes are processed. |
996 | 996 |
|
997 | 997 |
///The type of the map that indicates which nodes are processed. |
998 | 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
999 |
///By default it is a NullMap. |
|
999 |
///By default, it is a NullMap. |
|
1000 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1001 | 1001 |
///Instantiates a ProcessedMap. |
1002 | 1002 |
|
1003 | 1003 |
///This function instantiates a ProcessedMap. |
1004 | 1004 |
///\param g is the digraph, to which |
1005 | 1005 |
///we would like to define the ProcessedMap. |
1006 | 1006 |
#ifdef DOXYGEN |
1007 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1008 | 1008 |
#else |
1009 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1010 | 1010 |
#endif |
1011 | 1011 |
{ |
1012 | 1012 |
return new ProcessedMap(); |
1013 | 1013 |
} |
1014 | 1014 |
|
1015 | 1015 |
///The type of the map that stores the distances of the nodes. |
1016 | 1016 |
|
1017 | 1017 |
///The type of the map that stores the distances of the nodes. |
1018 | 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
1019 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1020 | 1020 |
///Instantiates a DistMap. |
1021 | 1021 |
|
1022 | 1022 |
///This function instantiates a DistMap. |
1023 | 1023 |
///\param g is the digraph, to which we would like to define |
... | ... |
@@ -273,53 +273,51 @@ |
273 | 273 |
sn = (*_pred)[sn]; |
274 | 274 |
} |
275 | 275 |
} |
276 | 276 |
return value; |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Return the minimum cut between two nodes |
280 | 280 |
/// |
281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
284 | 284 |
/// |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
287 | 287 |
/// \param s The base node. |
288 | 288 |
/// \param t The node you want to separate from node \c s. |
289 | 289 |
/// \param cutMap The cut will be returned in this map. |
290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 |
Value minCutMap(const Node& s, |
|
297 |
Value minCutMap(const Node& s, |
|
298 | 298 |
const Node& t, |
299 |
///< |
|
300 | 299 |
CutMap& cutMap |
301 |
///< |
|
302 | 300 |
) const { |
303 | 301 |
Node sn = s, tn = t; |
304 | 302 |
bool s_root=false; |
305 | 303 |
Node rn = INVALID; |
306 | 304 |
Value value = std::numeric_limits<Value>::max(); |
307 | 305 |
|
308 | 306 |
while (sn != tn) { |
309 | 307 |
if ((*_order)[sn] < (*_order)[tn]) { |
310 | 308 |
if ((*_weight)[tn] <= value) { |
311 | 309 |
rn = tn; |
312 | 310 |
s_root = false; |
313 | 311 |
value = (*_weight)[tn]; |
314 | 312 |
} |
315 | 313 |
tn = (*_pred)[tn]; |
316 | 314 |
} else { |
317 | 315 |
if ((*_weight)[sn] <= value) { |
318 | 316 |
rn = sn; |
319 | 317 |
s_root = true; |
320 | 318 |
value = (*_weight)[sn]; |
321 | 319 |
} |
322 | 320 |
sn = (*_pred)[sn]; |
323 | 321 |
} |
324 | 322 |
} |
325 | 323 |
|
... | ... |
@@ -373,49 +371,49 @@ |
373 | 371 |
/// Constructor |
374 | 372 |
|
375 | 373 |
/// Constructor. |
376 | 374 |
/// |
377 | 375 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 376 |
///< The GomoryHu class. You must call its |
379 | 377 |
/// run() method |
380 | 378 |
/// before initializing this iterator. |
381 | 379 |
const Node& s, ///< The base node. |
382 | 380 |
const Node& t, |
383 | 381 |
///< The node you want to separate from node \c s. |
384 | 382 |
bool side=true |
385 | 383 |
///< If it is \c true (default) then the iterator lists |
386 | 384 |
/// the nodes of the component containing \c s, |
387 | 385 |
/// otherwise it lists the other component. |
388 | 386 |
/// \note As the minimum cut is not always unique, |
389 | 387 |
/// \code |
390 | 388 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 389 |
/// \endcode |
392 | 390 |
/// and |
393 | 391 |
/// \code |
394 | 392 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 393 |
/// \endcode |
396 | 394 |
/// does not necessarily give the same set of nodes. |
397 |
/// However it is ensured that |
|
395 |
/// However, it is ensured that |
|
398 | 396 |
/// \code |
399 | 397 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 398 |
/// \endcode |
401 | 399 |
/// and |
402 | 400 |
/// \code |
403 | 401 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 402 |
/// \endcode |
405 | 403 |
/// together list each node exactly once. |
406 | 404 |
) |
407 | 405 |
: _side(side), _cut(gomory._graph) |
408 | 406 |
{ |
409 | 407 |
gomory.minCutMap(s,t,_cut); |
410 | 408 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 409 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 410 |
++_node_it) {} |
413 | 411 |
} |
414 | 412 |
/// Conversion to \c Node |
415 | 413 |
|
416 | 414 |
/// Conversion to \c Node. |
417 | 415 |
/// |
418 | 416 |
operator typename Graph::Node() const |
419 | 417 |
{ |
420 | 418 |
return _node_it; |
421 | 419 |
} |
... | ... |
@@ -121,49 +121,49 @@ |
121 | 121 |
|
122 | 122 |
bool _scaleToA4; |
123 | 123 |
|
124 | 124 |
std::string _title; |
125 | 125 |
std::string _copyright; |
126 | 126 |
|
127 | 127 |
enum NodeTextColorType |
128 | 128 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
129 | 129 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
130 | 130 |
|
131 | 131 |
bool _autoNodeScale; |
132 | 132 |
bool _autoArcWidthScale; |
133 | 133 |
|
134 | 134 |
bool _absoluteNodeSizes; |
135 | 135 |
bool _absoluteArcWidths; |
136 | 136 |
|
137 | 137 |
bool _negY; |
138 | 138 |
|
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param gr Reference to the graph to be printed. |
144 | 144 |
///\param ost Reference to the output stream. |
145 |
///By default it is <tt>std::cout</tt>. |
|
145 |
///By default, it is <tt>std::cout</tt>. |
|
146 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
147 | 147 |
///will be explicitly deallocated by the destructor. |
148 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
149 | 149 |
bool pros = false) : |
150 | 150 |
g(gr), os(ost), |
151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
152 | 152 |
_nodeColors(WHITE), _arcColors(BLACK), |
153 | 153 |
_arcWidths(1.0), _arcWidthScale(0.003), |
154 | 154 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
155 | 155 |
_nodeBorderQuotient(.1), |
156 | 156 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
157 | 157 |
_showNodes(true), _showArcs(true), |
158 | 158 |
_enableParallel(false), _parArcDist(1), |
159 | 159 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
160 | 160 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
161 | 161 |
_undirected(lemon::UndirectedTagIndicator<GR>::value), |
162 | 162 |
_pleaseRemoveOsStream(pros), _scaleToA4(false), |
163 | 163 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
164 | 164 |
_autoNodeScale(false), |
165 | 165 |
_autoArcWidthScale(false), |
166 | 166 |
_absoluteNodeSizes(false), |
167 | 167 |
_absoluteArcWidths(false), |
168 | 168 |
_negY(false), |
169 | 169 |
_preScale(true) |
... | ... |
@@ -491,49 +491,49 @@ |
491 | 491 |
/// |
492 | 492 |
///\sa nodeScale() |
493 | 493 |
/// |
494 | 494 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
495 | 495 |
_autoNodeScale=b;return *this; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
///Turns on/off the absolutematic node size scaling. |
499 | 499 |
|
500 | 500 |
///Turns on/off the absolutematic node size scaling. |
501 | 501 |
/// |
502 | 502 |
///\sa nodeScale() |
503 | 503 |
/// |
504 | 504 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
505 | 505 |
_absoluteNodeSizes=b;return *this; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
///Negates the Y coordinates. |
509 | 509 |
GraphToEps<T> &negateY(bool b=true) { |
510 | 510 |
_negY=b;return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Turn on/off pre-scaling |
514 | 514 |
|
515 |
///By default graphToEps() rescales the whole image in order to avoid |
|
515 |
///By default, graphToEps() rescales the whole image in order to avoid |
|
516 | 516 |
///very big or very small bounding boxes. |
517 | 517 |
/// |
518 | 518 |
///This (p)rescaling can be turned off with this function. |
519 | 519 |
/// |
520 | 520 |
GraphToEps<T> &preScale(bool b=true) { |
521 | 521 |
_preScale=b;return *this; |
522 | 522 |
} |
523 | 523 |
|
524 | 524 |
///Sets a global scale factor for arc widths |
525 | 525 |
|
526 | 526 |
/// Sets a global scale factor for arc widths. |
527 | 527 |
/// |
528 | 528 |
/// If arcWidths() is not given, this function simply sets the arc |
529 | 529 |
/// widths to \c d. If arcWidths() is given, but |
530 | 530 |
/// autoArcWidthScale() is not, then the arc withs given by |
531 | 531 |
/// arcWidths() will be multiplied by the value \c d. |
532 | 532 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
533 | 533 |
/// arc withs will be scaled in such a way that the greatest width will be |
534 | 534 |
/// equal to \c d. |
535 | 535 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
536 | 536 |
///Turns on/off the automatic arc width scaling. |
537 | 537 |
|
538 | 538 |
///Turns on/off the automatic arc width scaling. |
539 | 539 |
/// |
... | ... |
@@ -1093,61 +1093,61 @@ |
1093 | 1093 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1094 | 1094 |
|
1095 | 1095 |
///An alias for hideArcs() |
1096 | 1096 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1097 | 1097 |
|
1098 | 1098 |
///@} |
1099 | 1099 |
}; |
1100 | 1100 |
|
1101 | 1101 |
template<class T> |
1102 | 1102 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1103 | 1103 |
template<class T> |
1104 | 1104 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1105 | 1105 |
template<class T> |
1106 | 1106 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1107 | 1107 |
template<class T> |
1108 | 1108 |
const double GraphToEps<T>::A4BORDER = 15; |
1109 | 1109 |
|
1110 | 1110 |
|
1111 | 1111 |
///Generates an EPS file from a graph |
1112 | 1112 |
|
1113 | 1113 |
///\ingroup eps_io |
1114 | 1114 |
///Generates an EPS file from a graph. |
1115 | 1115 |
///\param g Reference to the graph to be printed. |
1116 | 1116 |
///\param os Reference to the output stream. |
1117 |
///By default it is <tt>std::cout</tt>. |
|
1117 |
///By default, it is <tt>std::cout</tt>. |
|
1118 | 1118 |
/// |
1119 | 1119 |
///This function also has a lot of |
1120 | 1120 |
///\ref named-templ-func-param "named parameters", |
1121 | 1121 |
///they are declared as the members of class \ref GraphToEps. The following |
1122 | 1122 |
///example shows how to use these parameters. |
1123 | 1123 |
///\code |
1124 | 1124 |
/// graphToEps(g,os).scale(10).coords(coords) |
1125 | 1125 |
/// .nodeScale(2).nodeSizes(sizes) |
1126 | 1126 |
/// .arcWidthScale(.4).run(); |
1127 | 1127 |
///\endcode |
1128 | 1128 |
/// |
1129 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
|
1129 |
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file. |
|
1130 | 1130 |
/// |
1131 | 1131 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1132 | 1132 |
///to the end of the parameter list. |
1133 | 1133 |
///\sa GraphToEps |
1134 | 1134 |
///\sa graphToEps(GR &g, const char *file_name) |
1135 | 1135 |
template<class GR> |
1136 | 1136 |
GraphToEps<DefaultGraphToEpsTraits<GR> > |
1137 | 1137 |
graphToEps(GR &g, std::ostream& os=std::cout) |
1138 | 1138 |
{ |
1139 | 1139 |
return |
1140 | 1140 |
GraphToEps<DefaultGraphToEpsTraits<GR> >(DefaultGraphToEpsTraits<GR>(g,os)); |
1141 | 1141 |
} |
1142 | 1142 |
|
1143 | 1143 |
///Generates an EPS file from a graph |
1144 | 1144 |
|
1145 | 1145 |
///\ingroup eps_io |
1146 | 1146 |
///This function does the same as |
1147 | 1147 |
///\ref graphToEps(GR &g,std::ostream& os) |
1148 | 1148 |
///but it writes its output into the file \c file_name |
1149 | 1149 |
///instead of a stream. |
1150 | 1150 |
///\sa graphToEps(GR &g, std::ostream& os) |
1151 | 1151 |
template<class GR> |
1152 | 1152 |
GraphToEps<DefaultGraphToEpsTraits<GR> > |
1153 | 1153 |
graphToEps(GR &g,const char *file_name) |
... | ... |
@@ -266,49 +266,49 @@ |
266 | 266 |
return node._id; |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Node operator()(int ix) const { |
270 | 270 |
return Node(ix); |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
private: |
274 | 274 |
int _dim; |
275 | 275 |
int _node_num, _edge_num; |
276 | 276 |
}; |
277 | 277 |
|
278 | 278 |
|
279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
280 | 280 |
|
281 | 281 |
/// \ingroup graphs |
282 | 282 |
/// |
283 | 283 |
/// \brief Hypercube graph class |
284 | 284 |
/// |
285 | 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
286 | 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
288 | 288 |
/// differ only on one position in the binary form. |
289 | 289 |
/// This class is completely static and it needs constant memory space. |
290 |
/// Thus you can neither add nor delete nodes or edges, however |
|
290 |
/// Thus you can neither add nor delete nodes or edges, however, |
|
291 | 291 |
/// the structure can be resized using resize(). |
292 | 292 |
/// |
293 | 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
294 | 294 |
/// Most of its member functions and nested classes are documented |
295 | 295 |
/// only in the concept class. |
296 | 296 |
/// |
297 | 297 |
/// This class provides constant time counting for nodes, edges and arcs. |
298 | 298 |
/// |
299 | 299 |
/// \note The type of the indices is chosen to \c int for efficiency |
300 | 300 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
301 | 301 |
/// (assuming that the size of \c int is 32 bit). |
302 | 302 |
class HypercubeGraph : public ExtendedHypercubeGraphBase { |
303 | 303 |
typedef ExtendedHypercubeGraphBase Parent; |
304 | 304 |
|
305 | 305 |
public: |
306 | 306 |
|
307 | 307 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
308 | 308 |
/// |
309 | 309 |
/// Constructs a hypercube graph with \c dim dimensions. |
310 | 310 |
HypercubeGraph(int dim) { construct(dim); } |
311 | 311 |
|
312 | 312 |
/// \brief Resizes the graph |
313 | 313 |
/// |
314 | 314 |
/// This function resizes the graph. It fully destroys and |
... | ... |
@@ -406,49 +406,49 @@ |
406 | 406 |
/// The reading method does a batch processing. The user creates a |
407 | 407 |
/// reader object, then various reading rules can be added to the |
408 | 408 |
/// reader, and eventually the reading is executed with the \c run() |
409 | 409 |
/// member function. A map reading rule can be added to the reader |
410 | 410 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
411 | 411 |
/// converter parameter can also be added as a standard functor |
412 | 412 |
/// converting from \c std::string to the value type of the map. If it |
413 | 413 |
/// is set, it will determine how the tokens in the file should be |
414 | 414 |
/// converted to the value type of the map. If the functor is not set, |
415 | 415 |
/// then a default conversion will be used. One map can be read into |
416 | 416 |
/// multiple map objects at the same time. The \c attribute(), \c |
417 | 417 |
/// node() and \c arc() functions are used to add attribute reading |
418 | 418 |
/// rules. |
419 | 419 |
/// |
420 | 420 |
///\code |
421 | 421 |
/// DigraphReader<DGR>(digraph, std::cin). |
422 | 422 |
/// nodeMap("coordinates", coord_map). |
423 | 423 |
/// arcMap("capacity", cap_map). |
424 | 424 |
/// node("source", src). |
425 | 425 |
/// node("target", trg). |
426 | 426 |
/// attribute("caption", caption). |
427 | 427 |
/// run(); |
428 | 428 |
///\endcode |
429 | 429 |
/// |
430 |
/// By default the reader uses the first section in the file of the |
|
430 |
/// By default, the reader uses the first section in the file of the |
|
431 | 431 |
/// proper type. If a section has an optional name, then it can be |
432 | 432 |
/// selected for reading by giving an optional name parameter to the |
433 | 433 |
/// \c nodes(), \c arcs() or \c attributes() functions. |
434 | 434 |
/// |
435 | 435 |
/// The \c useNodes() and \c useArcs() functions are used to tell the reader |
436 | 436 |
/// that the nodes or arcs should not be constructed (added to the |
437 | 437 |
/// graph) during the reading, but instead the label map of the items |
438 | 438 |
/// are given as a parameter of these functions. An |
439 | 439 |
/// application of these functions is multipass reading, which is |
440 | 440 |
/// important if two \c \@arcs sections must be read from the |
441 | 441 |
/// file. In this case the first phase would read the node set and one |
442 | 442 |
/// of the arc sets, while the second phase would read the second arc |
443 | 443 |
/// set into an \e ArcSet class (\c SmartArcSet or \c ListArcSet). |
444 | 444 |
/// The previously read label node map should be passed to the \c |
445 | 445 |
/// useNodes() functions. Another application of multipass reading when |
446 | 446 |
/// paths are given as a node map or an arc map. |
447 | 447 |
/// It is impossible to read this in |
448 | 448 |
/// a single pass, because the arcs are not constructed when the node |
449 | 449 |
/// maps are read. |
450 | 450 |
template <typename DGR> |
451 | 451 |
class DigraphReader { |
452 | 452 |
public: |
453 | 453 |
|
454 | 454 |
typedef DGR Digraph; |
... | ... |
@@ -2200,49 +2200,49 @@ |
2200 | 2200 |
: _is(other._is), local_is(other.local_is) { |
2201 | 2201 |
|
2202 | 2202 |
other._is = 0; |
2203 | 2203 |
other.local_is = false; |
2204 | 2204 |
|
2205 | 2205 |
_sections.swap(other._sections); |
2206 | 2206 |
} |
2207 | 2207 |
|
2208 | 2208 |
SectionReader& operator=(const SectionReader&); |
2209 | 2209 |
|
2210 | 2210 |
public: |
2211 | 2211 |
|
2212 | 2212 |
/// \name Section Readers |
2213 | 2213 |
/// @{ |
2214 | 2214 |
|
2215 | 2215 |
/// \brief Add a section processor with line oriented reading |
2216 | 2216 |
/// |
2217 | 2217 |
/// The first parameter is the type descriptor of the section, the |
2218 | 2218 |
/// second is a functor, which takes just one \c std::string |
2219 | 2219 |
/// parameter. At the reading process, each line of the section |
2220 | 2220 |
/// will be given to the functor object. However, the empty lines |
2221 | 2221 |
/// and the comment lines are filtered out, and the leading |
2222 | 2222 |
/// whitespaces are trimmed from each processed string. |
2223 | 2223 |
/// |
2224 |
/// For example let's see a section, which contain several |
|
2224 |
/// For example, let's see a section, which contain several |
|
2225 | 2225 |
/// integers, which should be inserted into a vector. |
2226 | 2226 |
///\code |
2227 | 2227 |
/// @numbers |
2228 | 2228 |
/// 12 45 23 |
2229 | 2229 |
/// 4 |
2230 | 2230 |
/// 23 6 |
2231 | 2231 |
///\endcode |
2232 | 2232 |
/// |
2233 | 2233 |
/// The functor is implemented as a struct: |
2234 | 2234 |
///\code |
2235 | 2235 |
/// struct NumberSection { |
2236 | 2236 |
/// std::vector<int>& _data; |
2237 | 2237 |
/// NumberSection(std::vector<int>& data) : _data(data) {} |
2238 | 2238 |
/// void operator()(const std::string& line) { |
2239 | 2239 |
/// std::istringstream ls(line); |
2240 | 2240 |
/// int value; |
2241 | 2241 |
/// while (ls >> value) _data.push_back(value); |
2242 | 2242 |
/// } |
2243 | 2243 |
/// }; |
2244 | 2244 |
/// |
2245 | 2245 |
/// // ... |
2246 | 2246 |
/// |
2247 | 2247 |
/// reader.sectionLines("numbers", NumberSection(vec)); |
2248 | 2248 |
///\endcode |
... | ... |
@@ -379,61 +379,61 @@ |
379 | 379 |
|
380 | 380 |
/// Node validity check |
381 | 381 |
|
382 | 382 |
/// This function gives back \c true if the given node is valid, |
383 | 383 |
/// i.e. it is a real node of the digraph. |
384 | 384 |
/// |
385 | 385 |
/// \warning A removed node could become valid again if new nodes are |
386 | 386 |
/// added to the digraph. |
387 | 387 |
bool valid(Node n) const { return Parent::valid(n); } |
388 | 388 |
|
389 | 389 |
/// Arc validity check |
390 | 390 |
|
391 | 391 |
/// This function gives back \c true if the given arc is valid, |
392 | 392 |
/// i.e. it is a real arc of the digraph. |
393 | 393 |
/// |
394 | 394 |
/// \warning A removed arc could become valid again if new arcs are |
395 | 395 |
/// added to the digraph. |
396 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
397 | 397 |
|
398 | 398 |
/// Change the target node of an arc |
399 | 399 |
|
400 | 400 |
/// This function changes the target node of the given arc \c a to \c n. |
401 | 401 |
/// |
402 | 402 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
403 |
///arc remain valid, |
|
403 |
///arc remain valid, but \c InArcIt iterators are invalidated. |
|
404 | 404 |
/// |
405 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
406 | 406 |
///feature. |
407 | 407 |
void changeTarget(Arc a, Node n) { |
408 | 408 |
Parent::changeTarget(a,n); |
409 | 409 |
} |
410 | 410 |
/// Change the source node of an arc |
411 | 411 |
|
412 | 412 |
/// This function changes the source node of the given arc \c a to \c n. |
413 | 413 |
/// |
414 | 414 |
///\note \c InArcIt iterators referencing the changed arc remain |
415 |
///valid, |
|
415 |
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated. |
|
416 | 416 |
/// |
417 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
418 | 418 |
///feature. |
419 | 419 |
void changeSource(Arc a, Node n) { |
420 | 420 |
Parent::changeSource(a,n); |
421 | 421 |
} |
422 | 422 |
|
423 | 423 |
/// Reverse the direction of an arc. |
424 | 424 |
|
425 | 425 |
/// This function reverses the direction of the given arc. |
426 | 426 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
427 | 427 |
///the changed arc are invalidated. |
428 | 428 |
/// |
429 | 429 |
///\warning This functionality cannot be used together with the Snapshot |
430 | 430 |
///feature. |
431 | 431 |
void reverseArc(Arc a) { |
432 | 432 |
Node t=target(a); |
433 | 433 |
changeTarget(a,source(a)); |
434 | 434 |
changeSource(a,t); |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Contract two nodes. |
438 | 438 |
|
439 | 439 |
///This function contracts the given two nodes. |
... | ... |
@@ -538,49 +538,49 @@ |
538 | 538 |
|
539 | 539 |
/// Using this function, it is possible to avoid superfluous memory |
540 | 540 |
/// allocation: if you know that the digraph you want to build will |
541 | 541 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
542 | 542 |
/// then it is worth reserving space for this amount before starting |
543 | 543 |
/// to build the digraph. |
544 | 544 |
/// \sa reserveNode() |
545 | 545 |
void reserveArc(int m) { arcs.reserve(m); }; |
546 | 546 |
|
547 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
548 | 548 |
/// it later. |
549 | 549 |
/// |
550 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
551 | 551 |
/// |
552 | 552 |
/// The newly added nodes and arcs can be removed using the |
553 | 553 |
/// restore() function. |
554 | 554 |
/// |
555 | 555 |
/// \note After a state is restored, you cannot restore a later state, |
556 | 556 |
/// i.e. you cannot add the removed nodes and arcs again using |
557 | 557 |
/// another Snapshot instance. |
558 | 558 |
/// |
559 | 559 |
/// \warning Node and arc deletions and other modifications (e.g. |
560 | 560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
561 | 561 |
/// restored. These events invalidate the snapshot. |
562 |
/// However the arcs and nodes that were added to the digraph after |
|
562 |
/// However, the arcs and nodes that were added to the digraph after |
|
563 | 563 |
/// making the current snapshot can be removed without invalidating it. |
564 | 564 |
class Snapshot { |
565 | 565 |
protected: |
566 | 566 |
|
567 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
568 | 568 |
|
569 | 569 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
570 | 570 |
public: |
571 | 571 |
|
572 | 572 |
NodeObserverProxy(Snapshot& _snapshot) |
573 | 573 |
: snapshot(_snapshot) {} |
574 | 574 |
|
575 | 575 |
using NodeNotifier::ObserverBase::attach; |
576 | 576 |
using NodeNotifier::ObserverBase::detach; |
577 | 577 |
using NodeNotifier::ObserverBase::attached; |
578 | 578 |
|
579 | 579 |
protected: |
580 | 580 |
|
581 | 581 |
virtual void add(const Node& node) { |
582 | 582 |
snapshot.addNode(node); |
583 | 583 |
} |
584 | 584 |
virtual void add(const std::vector<Node>& nodes) { |
585 | 585 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
586 | 586 |
snapshot.addNode(nodes[i]); |
... | ... |
@@ -1265,49 +1265,49 @@ |
1265 | 1265 |
/// i.e. it is a real arc of the graph. |
1266 | 1266 |
/// |
1267 | 1267 |
/// \warning A removed arc could become valid again if new edges are |
1268 | 1268 |
/// added to the graph. |
1269 | 1269 |
bool valid(Arc a) const { return Parent::valid(a); } |
1270 | 1270 |
|
1271 | 1271 |
/// \brief Change the first node of an edge. |
1272 | 1272 |
/// |
1273 | 1273 |
/// This function changes the first node of the given edge \c e to \c n. |
1274 | 1274 |
/// |
1275 | 1275 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
1276 | 1276 |
///changed edge are invalidated and all other iterators whose |
1277 | 1277 |
///base node is the changed node are also invalidated. |
1278 | 1278 |
/// |
1279 | 1279 |
///\warning This functionality cannot be used together with the |
1280 | 1280 |
///Snapshot feature. |
1281 | 1281 |
void changeU(Edge e, Node n) { |
1282 | 1282 |
Parent::changeU(e,n); |
1283 | 1283 |
} |
1284 | 1284 |
/// \brief Change the second node of an edge. |
1285 | 1285 |
/// |
1286 | 1286 |
/// This function changes the second node of the given edge \c e to \c n. |
1287 | 1287 |
/// |
1288 | 1288 |
///\note \c EdgeIt iterators referencing the changed edge remain |
1289 |
///valid, |
|
1289 |
///valid, but \c ArcIt iterators referencing the changed edge and |
|
1290 | 1290 |
///all other iterators whose base node is the changed node are also |
1291 | 1291 |
///invalidated. |
1292 | 1292 |
/// |
1293 | 1293 |
///\warning This functionality cannot be used together with the |
1294 | 1294 |
///Snapshot feature. |
1295 | 1295 |
void changeV(Edge e, Node n) { |
1296 | 1296 |
Parent::changeV(e,n); |
1297 | 1297 |
} |
1298 | 1298 |
|
1299 | 1299 |
/// \brief Contract two nodes. |
1300 | 1300 |
/// |
1301 | 1301 |
/// This function contracts the given two nodes. |
1302 | 1302 |
/// Node \c b is removed, but instead of deleting |
1303 | 1303 |
/// its incident edges, they are joined to node \c a. |
1304 | 1304 |
/// If the last parameter \c r is \c true (this is the default value), |
1305 | 1305 |
/// then the newly created loops are removed. |
1306 | 1306 |
/// |
1307 | 1307 |
/// \note The moved edges are joined to node \c a using changeU() |
1308 | 1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
1309 | 1309 |
/// \c b are invalidated. |
1310 | 1310 |
/// Moreover all iterators referencing node \c b or the removed |
1311 | 1311 |
/// loops are also invalidated. Other iterators remain valid. |
1312 | 1312 |
/// |
1313 | 1313 |
///\warning This functionality cannot be used together with the |
... | ... |
@@ -1350,49 +1350,49 @@ |
1350 | 1350 |
|
1351 | 1351 |
/// Using this function, it is possible to avoid superfluous memory |
1352 | 1352 |
/// allocation: if you know that the graph you want to build will |
1353 | 1353 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
1354 | 1354 |
/// then it is worth reserving space for this amount before starting |
1355 | 1355 |
/// to build the graph. |
1356 | 1356 |
/// \sa reserveNode() |
1357 | 1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
1358 | 1358 |
|
1359 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
1360 | 1360 |
/// it later. |
1361 | 1361 |
/// |
1362 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
1363 | 1363 |
/// |
1364 | 1364 |
/// The newly added nodes and edges can be removed |
1365 | 1365 |
/// using the restore() function. |
1366 | 1366 |
/// |
1367 | 1367 |
/// \note After a state is restored, you cannot restore a later state, |
1368 | 1368 |
/// i.e. you cannot add the removed nodes and edges again using |
1369 | 1369 |
/// another Snapshot instance. |
1370 | 1370 |
/// |
1371 | 1371 |
/// \warning Node and edge deletions and other modifications |
1372 | 1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
1373 | 1373 |
/// cannot be restored. These events invalidate the snapshot. |
1374 |
/// However the edges and nodes that were added to the graph after |
|
1374 |
/// However, the edges and nodes that were added to the graph after |
|
1375 | 1375 |
/// making the current snapshot can be removed without invalidating it. |
1376 | 1376 |
class Snapshot { |
1377 | 1377 |
protected: |
1378 | 1378 |
|
1379 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
1380 | 1380 |
|
1381 | 1381 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
1382 | 1382 |
public: |
1383 | 1383 |
|
1384 | 1384 |
NodeObserverProxy(Snapshot& _snapshot) |
1385 | 1385 |
: snapshot(_snapshot) {} |
1386 | 1386 |
|
1387 | 1387 |
using NodeNotifier::ObserverBase::attach; |
1388 | 1388 |
using NodeNotifier::ObserverBase::detach; |
1389 | 1389 |
using NodeNotifier::ObserverBase::attached; |
1390 | 1390 |
|
1391 | 1391 |
protected: |
1392 | 1392 |
|
1393 | 1393 |
virtual void add(const Node& node) { |
1394 | 1394 |
snapshot.addNode(node); |
1395 | 1395 |
} |
1396 | 1396 |
virtual void add(const std::vector<Node>& nodes) { |
1397 | 1397 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
1398 | 1398 |
snapshot.addNode(nodes[i]); |
... | ... |
@@ -125,49 +125,49 @@ |
125 | 125 |
Col(const Invalid&) : _id(-1) {} |
126 | 126 |
/// Equality operator |
127 | 127 |
|
128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
129 | 129 |
/// the same LP column or both are invalid. |
130 | 130 |
bool operator==(Col c) const {return _id == c._id;} |
131 | 131 |
/// Inequality operator |
132 | 132 |
|
133 | 133 |
/// \sa operator==(Col c) |
134 | 134 |
/// |
135 | 135 |
bool operator!=(Col c) const {return _id != c._id;} |
136 | 136 |
/// Artificial ordering operator. |
137 | 137 |
|
138 | 138 |
/// To allow the use of this object in std::map or similar |
139 | 139 |
/// associative container we require this. |
140 | 140 |
/// |
141 | 141 |
/// \note This operator only have to define some strict ordering of |
142 | 142 |
/// the items; this order has nothing to do with the iteration |
143 | 143 |
/// ordering of the items. |
144 | 144 |
bool operator<(Col c) const {return _id < c._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 |
/// Its usage is quite simple, for example you can count the number |
|
149 |
/// Its usage is quite simple, for example, you can count the number |
|
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
156 | 156 |
const LpBase *_solver; |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 | 159 |
|
160 | 160 |
/// \warning The default constructor sets the iterator |
161 | 161 |
/// to an undefined value. |
162 | 162 |
ColIt() {} |
163 | 163 |
/// Sets the iterator to the first Col |
164 | 164 |
|
165 | 165 |
/// Sets the iterator to the first Col. |
166 | 166 |
/// |
167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
168 | 168 |
{ |
169 | 169 |
_solver->cols.firstItem(_id); |
170 | 170 |
} |
171 | 171 |
/// Invalid constructor \& conversion |
172 | 172 |
|
173 | 173 |
/// Initialize the iterator to be invalid. |
... | ... |
@@ -220,49 +220,49 @@ |
220 | 220 |
Row(const Invalid&) : _id(-1) {} |
221 | 221 |
/// Equality operator |
222 | 222 |
|
223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
224 | 224 |
/// the same LP row or both are invalid. |
225 | 225 |
bool operator==(Row r) const {return _id == r._id;} |
226 | 226 |
/// Inequality operator |
227 | 227 |
|
228 | 228 |
/// \sa operator==(Row r) |
229 | 229 |
/// |
230 | 230 |
bool operator!=(Row r) const {return _id != r._id;} |
231 | 231 |
/// Artificial ordering operator. |
232 | 232 |
|
233 | 233 |
/// To allow the use of this object in std::map or similar |
234 | 234 |
/// associative container we require this. |
235 | 235 |
/// |
236 | 236 |
/// \note This operator only have to define some strict ordering of |
237 | 237 |
/// the items; this order has nothing to do with the iteration |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
251 | 251 |
const LpBase *_solver; |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// \warning The default constructor sets the iterator |
256 | 256 |
/// to an undefined value. |
257 | 257 |
RowIt() {} |
258 | 258 |
/// Sets the iterator to the first Row |
259 | 259 |
|
260 | 260 |
/// Sets the iterator to the first Row. |
261 | 261 |
/// |
262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
263 | 263 |
{ |
264 | 264 |
_solver->rows.firstItem(_id); |
265 | 265 |
} |
266 | 266 |
/// Invalid constructor \& conversion |
267 | 267 |
|
268 | 268 |
/// Initialize the iterator to be invalid. |
... | ... |
@@ -209,52 +209,52 @@ |
209 | 209 |
///\e |
210 | 210 |
typedef T Value; |
211 | 211 |
|
212 | 212 |
/// Gives back the given value without any modification. |
213 | 213 |
Value operator[](const Key &k) const { |
214 | 214 |
return k; |
215 | 215 |
} |
216 | 216 |
}; |
217 | 217 |
|
218 | 218 |
/// Returns an \c IdentityMap class |
219 | 219 |
|
220 | 220 |
/// This function just returns an \c IdentityMap class. |
221 | 221 |
/// \relates IdentityMap |
222 | 222 |
template<typename T> |
223 | 223 |
inline IdentityMap<T> identityMap() { |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 |
/// It can be used with some data structures, for example |
|
234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
|
233 |
/// It can be used together with some data structures, e.g. |
|
234 |
/// heap types and \c UnionFind, when the used items are small |
|
235 | 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
236 |
/// "ReferenceMap" concept. |
|
236 |
/// "ReferenceMap" concept. |
|
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
249 | 249 |
public: |
250 | 250 |
|
251 | 251 |
/// Key type |
252 | 252 |
typedef int Key; |
253 | 253 |
/// Value type |
254 | 254 |
typedef V Value; |
255 | 255 |
/// Reference type |
256 | 256 |
typedef typename Vector::reference Reference; |
257 | 257 |
/// Const reference type |
258 | 258 |
typedef typename Vector::const_reference ConstReference; |
259 | 259 |
|
260 | 260 |
typedef True ReferenceMapTag; |
... | ... |
@@ -327,51 +327,51 @@ |
327 | 327 |
|
328 | 328 |
/// This function just returns a \c RangeMap class created from an |
329 | 329 |
/// appropriate \c std::vector. |
330 | 330 |
/// \relates RangeMap |
331 | 331 |
template<typename V> |
332 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
333 | 333 |
return RangeMap<V>(vector); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
|
337 | 337 |
/// Map type based on \c std::map |
338 | 338 |
|
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 | 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 |
/// Apart form that this map can be used in many other cases since it |
|
351 |
/// Apart form that, this map can be used in many other cases since it |
|
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 |
/// However keep in mind that it is usually not as efficient as other |
|
353 |
/// However, keep in mind that it is usually not as efficient as other |
|
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
360 | 360 |
template <typename K1, typename V1, typename C1> |
361 | 361 |
friend class SparseMap; |
362 | 362 |
public: |
363 | 363 |
|
364 | 364 |
/// Key type |
365 | 365 |
typedef K Key; |
366 | 366 |
/// Value type |
367 | 367 |
typedef V Value; |
368 | 368 |
/// Reference type |
369 | 369 |
typedef Value& Reference; |
370 | 370 |
/// Const reference type |
371 | 371 |
typedef const Value& ConstReference; |
372 | 372 |
|
373 | 373 |
typedef True ReferenceMapTag; |
374 | 374 |
|
375 | 375 |
private: |
376 | 376 |
|
377 | 377 |
typedef std::map<K, V, Comp> Map; |
... | ... |
@@ -1764,64 +1764,64 @@ |
1764 | 1764 |
|
1765 | 1765 |
/// Gives back the the 'after the last' iterator |
1766 | 1766 |
Iterator end() const { |
1767 | 1767 |
return _end; |
1768 | 1768 |
} |
1769 | 1769 |
|
1770 | 1770 |
/// The set function of the map |
1771 | 1771 |
void set(const Key& key, Value value) { |
1772 | 1772 |
if (value) { |
1773 | 1773 |
*_end++ = key; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 |
/// For example it makes easier to store the nodes in the processing |
|
1788 |
/// For example, it makes easier to store the nodes in the processing |
|
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 | 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 | 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 |
/// it cannot be used when a readable map is needed, for example as |
|
1803 |
/// it cannot be used when a readable map is needed, for example, as |
|
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
1816 | 1816 |
|
1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1818 | 1818 |
/// |
1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1821 | 1821 |
/// - \b unique: different items get different ids, |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
... | ... |
@@ -1901,49 +1901,49 @@ |
1901 | 1901 |
|
1902 | 1902 |
/// \brief Returns an \c IdMap class. |
1903 | 1903 |
/// |
1904 | 1904 |
/// This function just returns an \c IdMap class. |
1905 | 1905 |
/// \relates IdMap |
1906 | 1906 |
template <typename K, typename GR> |
1907 | 1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
1908 | 1908 |
return IdMap<GR, K>(graph); |
1909 | 1909 |
} |
1910 | 1910 |
|
1911 | 1911 |
/// \brief General cross reference graph map type. |
1912 | 1912 |
|
1913 | 1913 |
/// This class provides simple invertable graph maps. |
1914 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1915 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1916 | 1916 |
/// The graph items can be accessed by their values either using |
1917 | 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
1918 | 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
1919 | 1919 |
/// |
1920 | 1920 |
/// This map is intended to be used when all associated values are |
1921 | 1921 |
/// different (the map is actually invertable) or there are only a few |
1922 | 1922 |
/// items with the same value. |
1923 | 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
1924 | 1924 |
/// suitable and more efficient for such cases. It provides iterators |
1925 |
/// to traverse the items with the same associated value, |
|
1925 |
/// to traverse the items with the same associated value, but |
|
1926 | 1926 |
/// it does not have \c InverseMap. |
1927 | 1927 |
/// |
1928 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1929 | 1929 |
/// the subscript operator. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \tparam GR The graph type. |
1932 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1933 | 1933 |
/// \c GR::Edge). |
1934 | 1934 |
/// \tparam V The value type of the map. |
1935 | 1935 |
/// |
1936 | 1936 |
/// \see IterableValueMap |
1937 | 1937 |
template <typename GR, typename K, typename V> |
1938 | 1938 |
class CrossRefMap |
1939 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1940 | 1940 |
private: |
1941 | 1941 |
|
1942 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
1943 | 1943 |
template Map<V>::Type Map; |
1944 | 1944 |
|
1945 | 1945 |
typedef std::multimap<V, K> Container; |
1946 | 1946 |
Container _inv_map; |
1947 | 1947 |
|
1948 | 1948 |
public: |
1949 | 1949 |
|
... | ... |
@@ -3445,49 +3445,49 @@ |
3445 | 3445 |
|
3446 | 3446 |
private: |
3447 | 3447 |
const GR& _graph; |
3448 | 3448 |
}; |
3449 | 3449 |
|
3450 | 3450 |
/// \brief Returns a \c BackwardMap class |
3451 | 3451 |
|
3452 | 3452 |
/// This function just returns a \c BackwardMap class. |
3453 | 3453 |
/// \relates BackwardMap |
3454 | 3454 |
template <typename GR> |
3455 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
3456 | 3456 |
return BackwardMap<GR>(graph); |
3457 | 3457 |
} |
3458 | 3458 |
|
3459 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
3460 | 3460 |
/// |
3461 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
3462 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3463 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
3464 | 3464 |
/// whenever the digraph changes. |
3465 | 3465 |
/// |
3466 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3467 | 3467 |
/// may provide alternative ways to modify the digraph. |
3468 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
3469 |
/// features are used. For example the functions |
|
3469 |
/// features are used. For example, the functions |
|
3470 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3471 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3472 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3473 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3474 | 3474 |
/// |
3475 | 3475 |
/// \sa OutDegMap |
3476 | 3476 |
template <typename GR> |
3477 | 3477 |
class InDegMap |
3478 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3479 | 3479 |
::ItemNotifier::ObserverBase { |
3480 | 3480 |
|
3481 | 3481 |
public: |
3482 | 3482 |
|
3483 | 3483 |
/// The graph type of InDegMap |
3484 | 3484 |
typedef GR Graph; |
3485 | 3485 |
typedef GR Digraph; |
3486 | 3486 |
/// The key type |
3487 | 3487 |
typedef typename Digraph::Node Key; |
3488 | 3488 |
/// The value type |
3489 | 3489 |
typedef int Value; |
3490 | 3490 |
|
3491 | 3491 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3492 | 3492 |
::ItemNotifier::ObserverBase Parent; |
3493 | 3493 |
|
... | ... |
@@ -3575,49 +3575,49 @@ |
3575 | 3575 |
} |
3576 | 3576 |
} |
3577 | 3577 |
|
3578 | 3578 |
virtual void clear() { |
3579 | 3579 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3580 | 3580 |
_deg[it] = 0; |
3581 | 3581 |
} |
3582 | 3582 |
} |
3583 | 3583 |
private: |
3584 | 3584 |
|
3585 | 3585 |
const Digraph& _digraph; |
3586 | 3586 |
AutoNodeMap _deg; |
3587 | 3587 |
}; |
3588 | 3588 |
|
3589 | 3589 |
/// \brief Map of the out-degrees of nodes in a digraph. |
3590 | 3590 |
/// |
3591 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
3592 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3593 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
3594 | 3594 |
/// whenever the digraph changes. |
3595 | 3595 |
/// |
3596 | 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3597 | 3597 |
/// may provide alternative ways to modify the digraph. |
3598 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
3599 |
/// features are used. For example the functions |
|
3599 |
/// features are used. For example, the functions |
|
3600 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3601 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3602 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3603 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3604 | 3604 |
/// |
3605 | 3605 |
/// \sa InDegMap |
3606 | 3606 |
template <typename GR> |
3607 | 3607 |
class OutDegMap |
3608 | 3608 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3609 | 3609 |
::ItemNotifier::ObserverBase { |
3610 | 3610 |
|
3611 | 3611 |
public: |
3612 | 3612 |
|
3613 | 3613 |
/// The graph type of OutDegMap |
3614 | 3614 |
typedef GR Graph; |
3615 | 3615 |
typedef GR Digraph; |
3616 | 3616 |
/// The key type |
3617 | 3617 |
typedef typename Digraph::Node Key; |
3618 | 3618 |
/// The value type |
3619 | 3619 |
typedef int Value; |
3620 | 3620 |
|
3621 | 3621 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3622 | 3622 |
::ItemNotifier::ObserverBase Parent; |
3623 | 3623 |
... | ... |
@@ -29,67 +29,67 @@ |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a specialized version of the linear programming |
47 | 47 |
/// simplex method directly for the minimum cost flow problem. |
48 | 48 |
/// It is one of the most efficient solution methods. |
49 | 49 |
/// |
50 | 50 |
/// In general this class is the fastest implementation available |
51 | 51 |
/// in LEMON for the minimum cost flow problem. |
52 | 52 |
/// Moreover it supports both directions of the supply/demand inequality |
53 |
/// constraints. For more information see \ref SupplyType. |
|
53 |
/// constraints. For more information, see \ref SupplyType. |
|
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The value type used for flow amounts, capacity bounds |
62 |
/// and supply values in the algorithm. By default it is \c int. |
|
62 |
/// and supply values in the algorithm. By default, it is \c int. |
|
63 | 63 |
/// \tparam C The value type used for costs and potentials in the |
64 |
/// algorithm. By default it is the same as \c V. |
|
64 |
/// algorithm. By default, it is the same as \c V. |
|
65 | 65 |
/// |
66 | 66 |
/// \warning Both value types must be signed and all input data must |
67 | 67 |
/// be integer. |
68 | 68 |
/// |
69 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
70 | 70 |
/// implementations, from which the most efficient one is used |
71 |
/// by default. For more information see \ref PivotRule. |
|
71 |
/// by default. For more information, see \ref PivotRule. |
|
72 | 72 |
template <typename GR, typename V = int, typename C = V> |
73 | 73 |
class NetworkSimplex |
74 | 74 |
{ |
75 | 75 |
public: |
76 | 76 |
|
77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
78 | 78 |
typedef V Value; |
79 | 79 |
/// The type of the arc costs |
80 | 80 |
typedef C Cost; |
81 | 81 |
|
82 | 82 |
public: |
83 | 83 |
|
84 | 84 |
/// \brief Problem type constants for the \c run() function. |
85 | 85 |
/// |
86 | 86 |
/// Enum type containing the problem type constants that can be |
87 | 87 |
/// returned by the \ref run() function of the algorithm. |
88 | 88 |
enum ProblemType { |
89 | 89 |
/// The problem has no feasible solution (flow). |
90 | 90 |
INFEASIBLE, |
91 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
92 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
93 | 93 |
/// potentials (primal and dual solutions). |
94 | 94 |
OPTIMAL, |
95 | 95 |
/// The objective function of the problem is unbounded, i.e. |
... | ... |
@@ -103,77 +103,77 @@ |
103 | 103 |
/// Enum type containing constants for selecting the supply type, |
104 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
105 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
106 | 106 |
/// |
107 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
108 | 108 |
/// selected using \ref supplyType(). |
109 | 109 |
/// The equality form is a special case of both supply types. |
110 | 110 |
enum SupplyType { |
111 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
112 | 112 |
/// supply/demand constraints in the definition of the problem. |
113 | 113 |
GEQ, |
114 | 114 |
/// This option means that there are <em>"less or equal"</em> |
115 | 115 |
/// supply/demand constraints in the definition of the problem. |
116 | 116 |
LEQ |
117 | 117 |
}; |
118 | 118 |
|
119 | 119 |
/// \brief Constants for selecting the pivot rule. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 122 |
/// the \ref run() function. |
123 | 123 |
/// |
124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 125 |
/// implementations that significantly affect the running time |
126 | 126 |
/// of the algorithm. |
127 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
128 | 128 |
/// proved to be the most efficient and the most robust on various |
129 | 129 |
/// test inputs according to our benchmark tests. |
130 |
/// However another pivot rule can be selected using the \ref run() |
|
130 |
/// However, another pivot rule can be selected using the \ref run() |
|
131 | 131 |
/// function with the proper parameter. |
132 | 132 |
enum PivotRule { |
133 | 133 |
|
134 |
/// The First Eligible pivot rule. |
|
134 |
/// The \e First \e Eligible pivot rule. |
|
135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
136 | 136 |
/// in every iteration. |
137 | 137 |
FIRST_ELIGIBLE, |
138 | 138 |
|
139 |
/// The Best Eligible pivot rule. |
|
139 |
/// The \e Best \e Eligible pivot rule. |
|
140 | 140 |
/// The best eligible arc is selected in every iteration. |
141 | 141 |
BEST_ELIGIBLE, |
142 | 142 |
|
143 |
/// The Block Search pivot rule. |
|
143 |
/// The \e Block \e Search pivot rule. |
|
144 | 144 |
/// A specified number of arcs are examined in every iteration |
145 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
146 | 146 |
/// from this block. |
147 | 147 |
BLOCK_SEARCH, |
148 | 148 |
|
149 |
/// The Candidate List pivot rule. |
|
149 |
/// The \e Candidate \e List pivot rule. |
|
150 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
151 | 151 |
/// in a wraparound fashion and in the following minor iterations |
152 | 152 |
/// the best eligible arc is selected from this list. |
153 | 153 |
CANDIDATE_LIST, |
154 | 154 |
|
155 |
/// The Altering Candidate List pivot rule. |
|
155 |
/// The \e Altering \e Candidate \e List pivot rule. |
|
156 | 156 |
/// It is a modified version of the Candidate List method. |
157 | 157 |
/// It keeps only the several best eligible arcs from the former |
158 | 158 |
/// candidate list and extends this list in every iteration. |
159 | 159 |
ALTERING_LIST |
160 | 160 |
}; |
161 | 161 |
|
162 | 162 |
private: |
163 | 163 |
|
164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
165 | 165 |
|
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<bool> BoolVector; |
168 | 168 |
typedef std::vector<Value> ValueVector; |
169 | 169 |
typedef std::vector<Cost> CostVector; |
170 | 170 |
|
171 | 171 |
// State constants for arcs |
172 | 172 |
enum ArcStateEnum { |
173 | 173 |
STATE_UPPER = -1, |
174 | 174 |
STATE_TREE = 0, |
175 | 175 |
STATE_LOWER = 1 |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
private: |
179 | 179 |
|
... | ... |
@@ -791,110 +791,110 @@ |
791 | 791 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
792 | 792 |
/// assigned to \c t and all other nodes have zero supply value. |
793 | 793 |
/// |
794 | 794 |
/// \param s The source node. |
795 | 795 |
/// \param t The target node. |
796 | 796 |
/// \param k The required amount of flow from node \c s to node \c t |
797 | 797 |
/// (i.e. the supply of \c s and the demand of \c t). |
798 | 798 |
/// |
799 | 799 |
/// \return <tt>(*this)</tt> |
800 | 800 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
801 | 801 |
for (int i = 0; i != _node_num; ++i) { |
802 | 802 |
_supply[i] = 0; |
803 | 803 |
} |
804 | 804 |
_supply[_node_id[s]] = k; |
805 | 805 |
_supply[_node_id[t]] = -k; |
806 | 806 |
return *this; |
807 | 807 |
} |
808 | 808 |
|
809 | 809 |
/// \brief Set the type of the supply constraints. |
810 | 810 |
/// |
811 | 811 |
/// This function sets the type of the supply/demand constraints. |
812 | 812 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
813 | 813 |
/// type will be used. |
814 | 814 |
/// |
815 |
/// For more information see \ref SupplyType. |
|
815 |
/// For more information, see \ref SupplyType. |
|
816 | 816 |
/// |
817 | 817 |
/// \return <tt>(*this)</tt> |
818 | 818 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
819 | 819 |
_stype = supply_type; |
820 | 820 |
return *this; |
821 | 821 |
} |
822 | 822 |
|
823 | 823 |
/// @} |
824 | 824 |
|
825 | 825 |
/// \name Execution Control |
826 | 826 |
/// The algorithm can be executed using \ref run(). |
827 | 827 |
|
828 | 828 |
/// @{ |
829 | 829 |
|
830 | 830 |
/// \brief Run the algorithm. |
831 | 831 |
/// |
832 | 832 |
/// This function runs the algorithm. |
833 | 833 |
/// The paramters can be specified using functions \ref lowerMap(), |
834 | 834 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
835 | 835 |
/// \ref supplyType(). |
836 | 836 |
/// For example, |
837 | 837 |
/// \code |
838 | 838 |
/// NetworkSimplex<ListDigraph> ns(graph); |
839 | 839 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
840 | 840 |
/// .supplyMap(sup).run(); |
841 | 841 |
/// \endcode |
842 | 842 |
/// |
843 | 843 |
/// This function can be called more than once. All the parameters |
844 | 844 |
/// that have been given are kept for the next call, unless |
845 | 845 |
/// \ref reset() is called, thus only the modified parameters |
846 | 846 |
/// have to be set again. See \ref reset() for examples. |
847 |
/// However the underlying digraph must not be modified after this |
|
847 |
/// However, the underlying digraph must not be modified after this |
|
848 | 848 |
/// class have been constructed, since it copies and extends the graph. |
849 | 849 |
/// |
850 | 850 |
/// \param pivot_rule The pivot rule that will be used during the |
851 |
/// algorithm. For more information see \ref PivotRule. |
|
851 |
/// algorithm. For more information, see \ref PivotRule. |
|
852 | 852 |
/// |
853 | 853 |
/// \return \c INFEASIBLE if no feasible flow exists, |
854 | 854 |
/// \n \c OPTIMAL if the problem has optimal solution |
855 | 855 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
856 | 856 |
/// optimal flow and node potentials (primal and dual solutions), |
857 | 857 |
/// \n \c UNBOUNDED if the objective function of the problem is |
858 | 858 |
/// unbounded, i.e. there is a directed cycle having negative total |
859 | 859 |
/// cost and infinite upper bound. |
860 | 860 |
/// |
861 | 861 |
/// \see ProblemType, PivotRule |
862 | 862 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
863 | 863 |
if (!init()) return INFEASIBLE; |
864 | 864 |
return start(pivot_rule); |
865 | 865 |
} |
866 | 866 |
|
867 | 867 |
/// \brief Reset all the parameters that have been given before. |
868 | 868 |
/// |
869 | 869 |
/// This function resets all the paramaters that have been given |
870 | 870 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
871 | 871 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
872 | 872 |
/// |
873 | 873 |
/// It is useful for multiple run() calls. If this function is not |
874 | 874 |
/// used, all the parameters given before are kept for the next |
875 | 875 |
/// \ref run() call. |
876 |
/// However the underlying digraph must not be modified after this |
|
876 |
/// However, the underlying digraph must not be modified after this |
|
877 | 877 |
/// class have been constructed, since it copies and extends the graph. |
878 | 878 |
/// |
879 | 879 |
/// For example, |
880 | 880 |
/// \code |
881 | 881 |
/// NetworkSimplex<ListDigraph> ns(graph); |
882 | 882 |
/// |
883 | 883 |
/// // First run |
884 | 884 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
885 | 885 |
/// .supplyMap(sup).run(); |
886 | 886 |
/// |
887 | 887 |
/// // Run again with modified cost map (reset() is not called, |
888 | 888 |
/// // so only the cost map have to be set again) |
889 | 889 |
/// cost[e] += 100; |
890 | 890 |
/// ns.costMap(cost).run(); |
891 | 891 |
/// |
892 | 892 |
/// // Run again from scratch using reset() |
893 | 893 |
/// // (the lower bounds will be set to zero on all arcs) |
894 | 894 |
/// ns.reset(); |
895 | 895 |
/// ns.upperMap(capacity).costMap(cost) |
896 | 896 |
/// .supplyMap(sup).run(); |
897 | 897 |
/// \endcode |
898 | 898 |
/// |
899 | 899 |
/// \return <tt>(*this)</tt> |
900 | 900 |
NetworkSimplex& reset() { |
... | ... |
@@ -244,49 +244,49 @@ |
244 | 244 |
/// \sa SetStandardElevator |
245 | 245 |
template <typename T> |
246 | 246 |
struct SetElevator |
247 | 247 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > { |
248 | 248 |
typedef Preflow<Digraph, CapacityMap, |
249 | 249 |
SetElevatorTraits<T> > Create; |
250 | 250 |
}; |
251 | 251 |
|
252 | 252 |
template <typename T> |
253 | 253 |
struct SetStandardElevatorTraits : public Traits { |
254 | 254 |
typedef T Elevator; |
255 | 255 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
256 | 256 |
return new Elevator(digraph, max_level); |
257 | 257 |
} |
258 | 258 |
}; |
259 | 259 |
|
260 | 260 |
/// \brief \ref named-templ-param "Named parameter" for setting |
261 | 261 |
/// Elevator type with automatic allocation |
262 | 262 |
/// |
263 | 263 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
264 | 264 |
/// type with automatic allocation. |
265 | 265 |
/// The Elevator should have standard constructor interface to be |
266 | 266 |
/// able to automatically created by the algorithm (i.e. the |
267 | 267 |
/// digraph and the maximum level should be passed to it). |
268 |
/// However an external elevator object could also be passed to the |
|
268 |
/// However, an external elevator object could also be passed to the |
|
269 | 269 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
270 | 270 |
/// before calling \ref run() or \ref init(). |
271 | 271 |
/// \sa SetElevator |
272 | 272 |
template <typename T> |
273 | 273 |
struct SetStandardElevator |
274 | 274 |
: public Preflow<Digraph, CapacityMap, |
275 | 275 |
SetStandardElevatorTraits<T> > { |
276 | 276 |
typedef Preflow<Digraph, CapacityMap, |
277 | 277 |
SetStandardElevatorTraits<T> > Create; |
278 | 278 |
}; |
279 | 279 |
|
280 | 280 |
/// @} |
281 | 281 |
|
282 | 282 |
protected: |
283 | 283 |
|
284 | 284 |
Preflow() {} |
285 | 285 |
|
286 | 286 |
public: |
287 | 287 |
|
288 | 288 |
|
289 | 289 |
/// \brief The constructor of the class. |
290 | 290 |
/// |
291 | 291 |
/// The constructor of the class. |
292 | 292 |
/// \param digraph The digraph the algorithm runs on. |
... | ... |
@@ -354,49 +354,49 @@ |
354 | 354 |
///equivalent of the following. |
355 | 355 |
///\code |
356 | 356 |
/// while(t.running()) t.stop() |
357 | 357 |
///\endcode |
358 | 358 |
/// |
359 | 359 |
/// |
360 | 360 |
///\sa stop() |
361 | 361 |
///\sa restart() |
362 | 362 |
///\sa reset() |
363 | 363 |
|
364 | 364 |
void halt() |
365 | 365 |
{ |
366 | 366 |
if(_running) { |
367 | 367 |
_running=0; |
368 | 368 |
TimeStamp t; |
369 | 369 |
t.stamp(); |
370 | 370 |
start_time=t-start_time; |
371 | 371 |
} |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Returns the running state of the timer |
375 | 375 |
|
376 | 376 |
///This function returns the number of stop() exections that is |
377 | 377 |
///necessary to really stop the timer. |
378 |
///For example the timer |
|
378 |
///For example, the timer |
|
379 | 379 |
///is running if and only if the return value is \c true |
380 | 380 |
///(i.e. greater than |
381 | 381 |
///zero). |
382 | 382 |
int running() { return _running; } |
383 | 383 |
|
384 | 384 |
|
385 | 385 |
///Restart the time counters |
386 | 386 |
|
387 | 387 |
///This function is a shorthand for |
388 | 388 |
///a reset() and a start() calls. |
389 | 389 |
/// |
390 | 390 |
void restart() |
391 | 391 |
{ |
392 | 392 |
reset(); |
393 | 393 |
start(); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
///@} |
397 | 397 |
|
398 | 398 |
///\name Query Functions for the Ellapsed Time |
399 | 399 |
|
400 | 400 |
///@{ |
401 | 401 |
|
402 | 402 |
///Gives back the ellapsed user time of the process |
... | ... |
@@ -22,49 +22,49 @@ |
22 | 22 |
//!\ingroup auxdat |
23 | 23 |
//!\file |
24 | 24 |
//!\brief Union-Find data structures. |
25 | 25 |
//! |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <list> |
29 | 29 |
#include <utility> |
30 | 30 |
#include <algorithm> |
31 | 31 |
#include <functional> |
32 | 32 |
|
33 | 33 |
#include <lemon/core.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup auxdat |
38 | 38 |
/// |
39 | 39 |
/// \brief A \e Union-Find data structure implementation |
40 | 40 |
/// |
41 | 41 |
/// The class implements the \e Union-Find data structure. |
42 | 42 |
/// The union operation uses rank heuristic, while |
43 | 43 |
/// the find operation uses path compression. |
44 | 44 |
/// This is a very simple but efficient implementation, providing |
45 | 45 |
/// only four methods: join (union), find, insert and size. |
46 |
/// For more features see the \ref UnionFindEnum class. |
|
46 |
/// For more features, see the \ref UnionFindEnum class. |
|
47 | 47 |
/// |
48 | 48 |
/// It is primarily used in Kruskal algorithm for finding minimal |
49 | 49 |
/// cost spanning tree in a graph. |
50 | 50 |
/// \sa kruskal() |
51 | 51 |
/// |
52 | 52 |
/// \pre You need to add all the elements by the \ref insert() |
53 | 53 |
/// method. |
54 | 54 |
template <typename IM> |
55 | 55 |
class UnionFind { |
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
///\e |
59 | 59 |
typedef IM ItemIntMap; |
60 | 60 |
///\e |
61 | 61 |
typedef typename ItemIntMap::Key Item; |
62 | 62 |
|
63 | 63 |
private: |
64 | 64 |
// If the items vector stores negative value for an item then |
65 | 65 |
// that item is root item and it has -items[it] component size. |
66 | 66 |
// Else the items[it] contains the index of the parent. |
67 | 67 |
std::vector<int> items; |
68 | 68 |
ItemIntMap& index; |
69 | 69 |
|
70 | 70 |
bool rep(int idx) const { |
0 comments (0 inline)