1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
23 | 23 |
|
24 | 24 |
\section mcf_def Definition (GEQ form) |
25 | 25 |
|
26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
29 | 29 |
and arc costs \ref amo93networkflows. |
30 | 30 |
|
31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
33 | 33 |
upper bounds for the flow values on the arcs, for which |
34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
37 | 37 |
signed supply values of the nodes. |
38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
40 | 40 |
\f$-sup(u)\f$ demand. |
41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution |
42 | 42 |
of the following optimization problem. |
43 | 43 |
|
44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
46 | 46 |
sup(u) \quad \forall u\in V \f] |
47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
48 | 48 |
|
49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
52 | 52 |
It means that the total demand must be greater or equal to the total |
53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
54 | 54 |
but there could be demands that are not satisfied. |
55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
57 | 57 |
have to be satisfied and all supplies have to be used. |
58 | 58 |
|
59 | 59 |
|
60 | 60 |
\section mcf_algs Algorithms |
61 | 61 |
|
62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
64 | 64 |
|
65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
66 | 66 |
|
67 | 67 |
|
68 | 68 |
\section mcf_dual Dual Solution |
69 | 69 |
|
70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 |
- \f$\pi(u) |
|
81 |
- \f$\pi(u)\leq 0\f$; |
|
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 | 84 |
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
94 | 94 |
|
95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
97 | 97 |
equalities are required in the supply/demand contraints. |
98 | 98 |
|
99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
101 | 101 |
sup(u) \quad \forall u\in V \f] |
102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
103 | 103 |
|
104 | 104 |
However if the sum of the supply values is zero, then these two problems |
105 | 105 |
are equivalent. |
106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
108 | 108 |
contraint manually. |
109 | 109 |
|
110 | 110 |
|
111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
112 | 112 |
|
113 | 113 |
Another possible definition of the minimum cost flow problem is |
114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
116 | 116 |
|
117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
119 | 119 |
sup(u) \quad \forall u\in V \f] |
120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
121 | 121 |
|
122 | 122 |
It means that the total demand must be less or equal to the |
123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
124 | 124 |
positive) and all the demands have to be satisfied, but there |
125 | 125 |
could be supplies that are not carried out from the supply |
126 | 126 |
nodes. |
127 | 127 |
The equality form is also a special case of this form, of course. |
128 | 128 |
|
129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
132 | 132 |
\ref NegMap adaptors). |
133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
134 | 134 |
for the sake of convenience. |
135 | 135 |
|
136 | 136 |
Note that the optimality conditions for this supply constraint type are |
137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
141 | 141 |
node potentials the following conditions hold. |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 |
- \f$\pi(u) |
|
148 |
- \f$\pi(u)\geq 0\f$; |
|
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
... | ... |
@@ -207,193 +207,193 @@ |
207 | 207 |
typedef typename Digraph::Node Node; |
208 | 208 |
typedef typename Digraph::NodeIt NodeIt; |
209 | 209 |
typedef typename Digraph::Arc Arc; |
210 | 210 |
typedef typename Digraph::OutArcIt OutArcIt; |
211 | 211 |
|
212 | 212 |
// Pointer to the underlying digraph. |
213 | 213 |
const Digraph *_gr; |
214 | 214 |
// Pointer to the length map |
215 | 215 |
const LengthMap *_length; |
216 | 216 |
// Pointer to the map of predecessors arcs. |
217 | 217 |
PredMap *_pred; |
218 | 218 |
// Indicates if _pred is locally allocated (true) or not. |
219 | 219 |
bool _local_pred; |
220 | 220 |
// Pointer to the map of distances. |
221 | 221 |
DistMap *_dist; |
222 | 222 |
// Indicates if _dist is locally allocated (true) or not. |
223 | 223 |
bool _local_dist; |
224 | 224 |
|
225 | 225 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
226 | 226 |
MaskMap *_mask; |
227 | 227 |
|
228 | 228 |
std::vector<Node> _process; |
229 | 229 |
|
230 | 230 |
// Creates the maps if necessary. |
231 | 231 |
void create_maps() { |
232 | 232 |
if(!_pred) { |
233 | 233 |
_local_pred = true; |
234 | 234 |
_pred = Traits::createPredMap(*_gr); |
235 | 235 |
} |
236 | 236 |
if(!_dist) { |
237 | 237 |
_local_dist = true; |
238 | 238 |
_dist = Traits::createDistMap(*_gr); |
239 | 239 |
} |
240 | 240 |
_mask = new MaskMap(*_gr, false); |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
public : |
244 | 244 |
|
245 | 245 |
typedef BellmanFord Create; |
246 | 246 |
|
247 | 247 |
/// \name Named Template Parameters |
248 | 248 |
|
249 | 249 |
///@{ |
250 | 250 |
|
251 | 251 |
template <class T> |
252 | 252 |
struct SetPredMapTraits : public Traits { |
253 | 253 |
typedef T PredMap; |
254 | 254 |
static PredMap *createPredMap(const Digraph&) { |
255 | 255 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
256 | 256 |
return 0; // ignore warnings |
257 | 257 |
} |
258 | 258 |
}; |
259 | 259 |
|
260 | 260 |
/// \brief \ref named-templ-param "Named parameter" for setting |
261 | 261 |
/// \c PredMap type. |
262 | 262 |
/// |
263 | 263 |
/// \ref named-templ-param "Named parameter" for setting |
264 | 264 |
/// \c PredMap type. |
265 | 265 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
266 | 266 |
template <class T> |
267 | 267 |
struct SetPredMap |
268 | 268 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
269 | 269 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
270 | 270 |
}; |
271 | 271 |
|
272 | 272 |
template <class T> |
273 | 273 |
struct SetDistMapTraits : public Traits { |
274 | 274 |
typedef T DistMap; |
275 | 275 |
static DistMap *createDistMap(const Digraph&) { |
276 | 276 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
277 | 277 |
return 0; // ignore warnings |
278 | 278 |
} |
279 | 279 |
}; |
280 | 280 |
|
281 | 281 |
/// \brief \ref named-templ-param "Named parameter" for setting |
282 | 282 |
/// \c DistMap type. |
283 | 283 |
/// |
284 | 284 |
/// \ref named-templ-param "Named parameter" for setting |
285 | 285 |
/// \c DistMap type. |
286 | 286 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
287 | 287 |
template <class T> |
288 | 288 |
struct SetDistMap |
289 | 289 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
290 | 290 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
template <class T> |
294 | 294 |
struct SetOperationTraitsTraits : public Traits { |
295 | 295 |
typedef T OperationTraits; |
296 | 296 |
}; |
297 | 297 |
|
298 | 298 |
/// \brief \ref named-templ-param "Named parameter" for setting |
299 | 299 |
/// \c OperationTraits type. |
300 | 300 |
/// |
301 | 301 |
/// \ref named-templ-param "Named parameter" for setting |
302 | 302 |
/// \c OperationTraits type. |
303 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
304 | 304 |
template <class T> |
305 | 305 |
struct SetOperationTraits |
306 | 306 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
307 | 307 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
308 | 308 |
Create; |
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
///@} |
312 | 312 |
|
313 | 313 |
protected: |
314 | 314 |
|
315 | 315 |
BellmanFord() {} |
316 | 316 |
|
317 | 317 |
public: |
318 | 318 |
|
319 | 319 |
/// \brief Constructor. |
320 | 320 |
/// |
321 | 321 |
/// Constructor. |
322 | 322 |
/// \param g The digraph the algorithm runs on. |
323 | 323 |
/// \param length The length map used by the algorithm. |
324 | 324 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
325 | 325 |
_gr(&g), _length(&length), |
326 | 326 |
_pred(0), _local_pred(false), |
327 | 327 |
_dist(0), _local_dist(false), _mask(0) {} |
328 | 328 |
|
329 | 329 |
///Destructor. |
330 | 330 |
~BellmanFord() { |
331 | 331 |
if(_local_pred) delete _pred; |
332 | 332 |
if(_local_dist) delete _dist; |
333 | 333 |
if(_mask) delete _mask; |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
/// \brief Sets the length map. |
337 | 337 |
/// |
338 | 338 |
/// Sets the length map. |
339 | 339 |
/// \return <tt>(*this)</tt> |
340 | 340 |
BellmanFord &lengthMap(const LengthMap &map) { |
341 | 341 |
_length = ↦ |
342 | 342 |
return *this; |
343 | 343 |
} |
344 | 344 |
|
345 | 345 |
/// \brief Sets the map that stores the predecessor arcs. |
346 | 346 |
/// |
347 | 347 |
/// Sets the map that stores the predecessor arcs. |
348 | 348 |
/// If you don't use this function before calling \ref run() |
349 | 349 |
/// or \ref init(), an instance will be allocated automatically. |
350 | 350 |
/// The destructor deallocates this automatically allocated map, |
351 | 351 |
/// of course. |
352 | 352 |
/// \return <tt>(*this)</tt> |
353 | 353 |
BellmanFord &predMap(PredMap &map) { |
354 | 354 |
if(_local_pred) { |
355 | 355 |
delete _pred; |
356 | 356 |
_local_pred=false; |
357 | 357 |
} |
358 | 358 |
_pred = ↦ |
359 | 359 |
return *this; |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
/// \brief Sets the map that stores the distances of the nodes. |
363 | 363 |
/// |
364 | 364 |
/// Sets the map that stores the distances of the nodes calculated |
365 | 365 |
/// by the algorithm. |
366 | 366 |
/// If you don't use this function before calling \ref run() |
367 | 367 |
/// or \ref init(), an instance will be allocated automatically. |
368 | 368 |
/// The destructor deallocates this automatically allocated map, |
369 | 369 |
/// of course. |
370 | 370 |
/// \return <tt>(*this)</tt> |
371 | 371 |
BellmanFord &distMap(DistMap &map) { |
372 | 372 |
if(_local_dist) { |
373 | 373 |
delete _dist; |
374 | 374 |
_local_dist=false; |
375 | 375 |
} |
376 | 376 |
_dist = ↦ |
377 | 377 |
return *this; |
378 | 378 |
} |
379 | 379 |
|
380 | 380 |
/// \name Execution Control |
381 | 381 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
382 | 382 |
/// one of the member functions called \ref run().\n |
383 | 383 |
/// If you need better control on the execution, you have to call |
384 | 384 |
/// \ref init() first, then you can add several source nodes |
385 | 385 |
/// with \ref addSource(). Finally the actual path computation can be |
386 | 386 |
/// performed with \ref start(), \ref checkedStart() or |
387 | 387 |
/// \ref limitedStart(). |
388 | 388 |
|
389 | 389 |
///@{ |
390 | 390 |
|
391 | 391 |
/// \brief Initializes the internal data structures. |
392 | 392 |
/// |
393 | 393 |
/// Initializes the internal data structures. The optional parameter |
394 | 394 |
/// is the initial distance of each node. |
395 | 395 |
void init(const Value value = OperationTraits::infinity()) { |
396 | 396 |
create_maps(); |
397 | 397 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
398 | 398 |
_pred->set(it, INVALID); |
399 | 399 |
_dist->set(it, value); |
... | ... |
@@ -625,208 +625,208 @@ |
625 | 625 |
|
626 | 626 |
///@} |
627 | 627 |
|
628 | 628 |
/// \brief LEMON iterator for getting the active nodes. |
629 | 629 |
/// |
630 | 630 |
/// This class provides a common style LEMON iterator that traverses |
631 | 631 |
/// the active nodes of the Bellman-Ford algorithm after the last |
632 | 632 |
/// phase. These nodes should be checked in the next phase to |
633 | 633 |
/// find augmenting arcs outgoing from them. |
634 | 634 |
class ActiveIt { |
635 | 635 |
public: |
636 | 636 |
|
637 | 637 |
/// \brief Constructor. |
638 | 638 |
/// |
639 | 639 |
/// Constructor for getting the active nodes of the given BellmanFord |
640 | 640 |
/// instance. |
641 | 641 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
642 | 642 |
{ |
643 | 643 |
_index = _algorithm->_process.size() - 1; |
644 | 644 |
} |
645 | 645 |
|
646 | 646 |
/// \brief Invalid constructor. |
647 | 647 |
/// |
648 | 648 |
/// Invalid constructor. |
649 | 649 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
650 | 650 |
|
651 | 651 |
/// \brief Conversion to \c Node. |
652 | 652 |
/// |
653 | 653 |
/// Conversion to \c Node. |
654 | 654 |
operator Node() const { |
655 | 655 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// \brief Increment operator. |
659 | 659 |
/// |
660 | 660 |
/// Increment operator. |
661 | 661 |
ActiveIt& operator++() { |
662 | 662 |
--_index; |
663 | 663 |
return *this; |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
bool operator==(const ActiveIt& it) const { |
667 | 667 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
668 | 668 |
} |
669 | 669 |
bool operator!=(const ActiveIt& it) const { |
670 | 670 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
671 | 671 |
} |
672 | 672 |
bool operator<(const ActiveIt& it) const { |
673 | 673 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
674 | 674 |
} |
675 | 675 |
|
676 | 676 |
private: |
677 | 677 |
const BellmanFord* _algorithm; |
678 | 678 |
int _index; |
679 | 679 |
}; |
680 | 680 |
|
681 | 681 |
/// \name Query Functions |
682 | 682 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
683 | 683 |
/// functions.\n |
684 | 684 |
/// Either \ref run() or \ref init() should be called before using them. |
685 | 685 |
|
686 | 686 |
///@{ |
687 | 687 |
|
688 | 688 |
/// \brief The shortest path to the given node. |
689 | 689 |
/// |
690 | 690 |
/// Gives back the shortest path to the given node from the root(s). |
691 | 691 |
/// |
692 | 692 |
/// \warning \c t should be reached from the root(s). |
693 | 693 |
/// |
694 | 694 |
/// \pre Either \ref run() or \ref init() must be called before |
695 | 695 |
/// using this function. |
696 | 696 |
Path path(Node t) const |
697 | 697 |
{ |
698 | 698 |
return Path(*_gr, *_pred, t); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
/// \brief The distance of the given node from the root(s). |
702 | 702 |
/// |
703 | 703 |
/// Returns the distance of the given node from the root(s). |
704 | 704 |
/// |
705 | 705 |
/// \warning If node \c v is not reached from the root(s), then |
706 | 706 |
/// the return value of this function is undefined. |
707 | 707 |
/// |
708 | 708 |
/// \pre Either \ref run() or \ref init() must be called before |
709 | 709 |
/// using this function. |
710 | 710 |
Value dist(Node v) const { return (*_dist)[v]; } |
711 | 711 |
|
712 | 712 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
713 | 713 |
/// the given node. |
714 | 714 |
/// |
715 | 715 |
/// This function returns the 'previous arc' of the shortest path |
716 | 716 |
/// tree for node \c v, i.e. it returns the last arc of a |
717 | 717 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
718 | 718 |
/// is not reached from the root(s) or if \c v is a root. |
719 | 719 |
/// |
720 | 720 |
/// The shortest path tree used here is equal to the shortest path |
721 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// tree used in \ref predNode() and \ref predMap(). |
|
722 | 722 |
/// |
723 | 723 |
/// \pre Either \ref run() or \ref init() must be called before |
724 | 724 |
/// using this function. |
725 | 725 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
726 | 726 |
|
727 | 727 |
/// \brief Returns the 'previous node' of the shortest path tree for |
728 | 728 |
/// the given node. |
729 | 729 |
/// |
730 | 730 |
/// This function returns the 'previous node' of the shortest path |
731 | 731 |
/// tree for node \c v, i.e. it returns the last but one node of |
732 | 732 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
733 | 733 |
/// is not reached from the root(s) or if \c v is a root. |
734 | 734 |
/// |
735 | 735 |
/// The shortest path tree used here is equal to the shortest path |
736 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// tree used in \ref predArc() and \ref predMap(). |
|
737 | 737 |
/// |
738 | 738 |
/// \pre Either \ref run() or \ref init() must be called before |
739 | 739 |
/// using this function. |
740 | 740 |
Node predNode(Node v) const { |
741 | 741 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
/// \brief Returns a const reference to the node map that stores the |
745 | 745 |
/// distances of the nodes. |
746 | 746 |
/// |
747 | 747 |
/// Returns a const reference to the node map that stores the distances |
748 | 748 |
/// of the nodes calculated by the algorithm. |
749 | 749 |
/// |
750 | 750 |
/// \pre Either \ref run() or \ref init() must be called before |
751 | 751 |
/// using this function. |
752 | 752 |
const DistMap &distMap() const { return *_dist;} |
753 | 753 |
|
754 | 754 |
/// \brief Returns a const reference to the node map that stores the |
755 | 755 |
/// predecessor arcs. |
756 | 756 |
/// |
757 | 757 |
/// Returns a const reference to the node map that stores the predecessor |
758 | 758 |
/// arcs, which form the shortest path tree (forest). |
759 | 759 |
/// |
760 | 760 |
/// \pre Either \ref run() or \ref init() must be called before |
761 | 761 |
/// using this function. |
762 | 762 |
const PredMap &predMap() const { return *_pred; } |
763 | 763 |
|
764 | 764 |
/// \brief Checks if a node is reached from the root(s). |
765 | 765 |
/// |
766 | 766 |
/// Returns \c true if \c v is reached from the root(s). |
767 | 767 |
/// |
768 | 768 |
/// \pre Either \ref run() or \ref init() must be called before |
769 | 769 |
/// using this function. |
770 | 770 |
bool reached(Node v) const { |
771 | 771 |
return (*_dist)[v] != OperationTraits::infinity(); |
772 | 772 |
} |
773 | 773 |
|
774 | 774 |
/// \brief Gives back a negative cycle. |
775 | 775 |
/// |
776 | 776 |
/// This function gives back a directed cycle with negative total |
777 | 777 |
/// length if the algorithm has already found one. |
778 | 778 |
/// Otherwise it gives back an empty path. |
779 | 779 |
lemon::Path<Digraph> negativeCycle() const { |
780 | 780 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
781 | 781 |
lemon::Path<Digraph> cycle; |
782 | 782 |
for (int i = 0; i < int(_process.size()); ++i) { |
783 | 783 |
if (state[_process[i]] != -1) continue; |
784 | 784 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
785 | 785 |
v = _gr->source((*_pred)[v])) { |
786 | 786 |
if (state[v] == i) { |
787 | 787 |
cycle.addFront((*_pred)[v]); |
788 | 788 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
789 | 789 |
u = _gr->source((*_pred)[u])) { |
790 | 790 |
cycle.addFront((*_pred)[u]); |
791 | 791 |
} |
792 | 792 |
return cycle; |
793 | 793 |
} |
794 | 794 |
else if (state[v] >= 0) { |
795 | 795 |
break; |
796 | 796 |
} |
797 | 797 |
state[v] = i; |
798 | 798 |
} |
799 | 799 |
} |
800 | 800 |
return cycle; |
801 | 801 |
} |
802 | 802 |
|
803 | 803 |
///@} |
804 | 804 |
}; |
805 | 805 |
|
806 | 806 |
/// \brief Default traits class of bellmanFord() function. |
807 | 807 |
/// |
808 | 808 |
/// Default traits class of bellmanFord() function. |
809 | 809 |
/// \tparam GR The type of the digraph. |
810 | 810 |
/// \tparam LEN The type of the length map. |
811 | 811 |
template <typename GR, typename LEN> |
812 | 812 |
struct BellmanFordWizardDefaultTraits { |
813 | 813 |
/// The type of the digraph the algorithm runs on. |
814 | 814 |
typedef GR Digraph; |
815 | 815 |
|
816 | 816 |
/// \brief The type of the map that stores the arc lengths. |
817 | 817 |
/// |
818 | 818 |
/// The type of the map that stores the arc lengths. |
819 | 819 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
820 | 820 |
typedef LEN LengthMap; |
821 | 821 |
|
822 | 822 |
/// The type of the arc lengths. |
823 | 823 |
typedef typename LEN::Value Value; |
824 | 824 |
|
825 | 825 |
/// \brief Operation traits for Bellman-Ford algorithm. |
826 | 826 |
/// |
827 | 827 |
/// It defines the used operations and the infinity value for the |
828 | 828 |
/// given \c Value type. |
829 | 829 |
/// \see BellmanFordDefaultOperationTraits |
830 | 830 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
831 | 831 |
|
832 | 832 |
/// \brief The type of the map that stores the last |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 |
///By default it is a NullMap. |
|
66 |
///By default, it is a NullMap. |
|
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \c ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
91 | 91 |
///we would like to define the \ref ReachedMap. |
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 102 |
///Instantiates a \c DistMap. |
103 | 103 |
|
104 | 104 |
///This function instantiates a \ref DistMap. |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///\ref DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%BFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default type is \ref ListDigraph. |
124 | 124 |
#ifdef DOXYGEN |
125 | 125 |
template <typename GR, |
126 | 126 |
typename TR> |
127 | 127 |
#else |
128 | 128 |
template <typename GR=ListDigraph, |
129 | 129 |
typename TR=BfsDefaultTraits<GR> > |
130 | 130 |
#endif |
131 | 131 |
class Bfs { |
132 | 132 |
public: |
133 | 133 |
|
134 | 134 |
///The type of the digraph the algorithm runs on. |
135 | 135 |
typedef typename TR::Digraph Digraph; |
136 | 136 |
|
137 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
138 | 138 |
///shortest paths. |
139 | 139 |
typedef typename TR::PredMap PredMap; |
140 | 140 |
///The type of the map that stores the distances of the nodes. |
141 | 141 |
typedef typename TR::DistMap DistMap; |
142 | 142 |
///The type of the map that indicates which nodes are reached. |
143 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
144 | 144 |
///The type of the map that indicates which nodes are processed. |
145 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
146 | 146 |
///The type of the paths. |
147 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
148 | 148 |
|
149 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
typedef typename Digraph::Node Node; |
155 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
156 | 156 |
typedef typename Digraph::Arc Arc; |
157 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
158 | 158 |
|
159 | 159 |
//Pointer to the underlying digraph. |
160 | 160 |
const Digraph *G; |
161 | 161 |
//Pointer to the map of predecessor arcs. |
162 | 162 |
PredMap *_pred; |
... | ... |
@@ -755,193 +755,193 @@ |
755 | 755 |
///must be called before using this function. |
756 | 756 |
int dist(Node v) const { return (*_dist)[v]; } |
757 | 757 |
|
758 | 758 |
///\brief Returns the 'previous arc' of the shortest path tree for |
759 | 759 |
///the given node. |
760 | 760 |
/// |
761 | 761 |
///This function returns the 'previous arc' of the shortest path |
762 | 762 |
///tree for the node \c v, i.e. it returns the last arc of a |
763 | 763 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
764 | 764 |
///is not reached from the root(s) or if \c v is a root. |
765 | 765 |
/// |
766 | 766 |
///The shortest path tree used here is equal to the shortest path |
767 | 767 |
///tree used in \ref predNode() and \ref predMap(). |
768 | 768 |
/// |
769 | 769 |
///\pre Either \ref run(Node) "run()" or \ref init() |
770 | 770 |
///must be called before using this function. |
771 | 771 |
Arc predArc(Node v) const { return (*_pred)[v];} |
772 | 772 |
|
773 | 773 |
///\brief Returns the 'previous node' of the shortest path tree for |
774 | 774 |
///the given node. |
775 | 775 |
/// |
776 | 776 |
///This function returns the 'previous node' of the shortest path |
777 | 777 |
///tree for the node \c v, i.e. it returns the last but one node |
778 | 778 |
///of a shortest path from a root to \c v. It is \c INVALID |
779 | 779 |
///if \c v is not reached from the root(s) or if \c v is a root. |
780 | 780 |
/// |
781 | 781 |
///The shortest path tree used here is equal to the shortest path |
782 | 782 |
///tree used in \ref predArc() and \ref predMap(). |
783 | 783 |
/// |
784 | 784 |
///\pre Either \ref run(Node) "run()" or \ref init() |
785 | 785 |
///must be called before using this function. |
786 | 786 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
787 | 787 |
G->source((*_pred)[v]); } |
788 | 788 |
|
789 | 789 |
///\brief Returns a const reference to the node map that stores the |
790 | 790 |
/// distances of the nodes. |
791 | 791 |
/// |
792 | 792 |
///Returns a const reference to the node map that stores the distances |
793 | 793 |
///of the nodes calculated by the algorithm. |
794 | 794 |
/// |
795 | 795 |
///\pre Either \ref run(Node) "run()" or \ref init() |
796 | 796 |
///must be called before using this function. |
797 | 797 |
const DistMap &distMap() const { return *_dist;} |
798 | 798 |
|
799 | 799 |
///\brief Returns a const reference to the node map that stores the |
800 | 800 |
///predecessor arcs. |
801 | 801 |
/// |
802 | 802 |
///Returns a const reference to the node map that stores the predecessor |
803 | 803 |
///arcs, which form the shortest path tree (forest). |
804 | 804 |
/// |
805 | 805 |
///\pre Either \ref run(Node) "run()" or \ref init() |
806 | 806 |
///must be called before using this function. |
807 | 807 |
const PredMap &predMap() const { return *_pred;} |
808 | 808 |
|
809 | 809 |
///Checks if the given node is reached from the root(s). |
810 | 810 |
|
811 | 811 |
///Returns \c true if \c v is reached from the root(s). |
812 | 812 |
/// |
813 | 813 |
///\pre Either \ref run(Node) "run()" or \ref init() |
814 | 814 |
///must be called before using this function. |
815 | 815 |
bool reached(Node v) const { return (*_reached)[v]; } |
816 | 816 |
|
817 | 817 |
///@} |
818 | 818 |
}; |
819 | 819 |
|
820 | 820 |
///Default traits class of bfs() function. |
821 | 821 |
|
822 | 822 |
///Default traits class of bfs() function. |
823 | 823 |
///\tparam GR Digraph type. |
824 | 824 |
template<class GR> |
825 | 825 |
struct BfsWizardDefaultTraits |
826 | 826 |
{ |
827 | 827 |
///The type of the digraph the algorithm runs on. |
828 | 828 |
typedef GR Digraph; |
829 | 829 |
|
830 | 830 |
///\brief The type of the map that stores the predecessor |
831 | 831 |
///arcs of the shortest paths. |
832 | 832 |
/// |
833 | 833 |
///The type of the map that stores the predecessor |
834 | 834 |
///arcs of the shortest paths. |
835 | 835 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
836 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
837 | 837 |
///Instantiates a PredMap. |
838 | 838 |
|
839 | 839 |
///This function instantiates a PredMap. |
840 | 840 |
///\param g is the digraph, to which we would like to define the |
841 | 841 |
///PredMap. |
842 | 842 |
static PredMap *createPredMap(const Digraph &g) |
843 | 843 |
{ |
844 | 844 |
return new PredMap(g); |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
///The type of the map that indicates which nodes are processed. |
848 | 848 |
|
849 | 849 |
///The type of the map that indicates which nodes are processed. |
850 | 850 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
851 |
///By default it is a NullMap. |
|
851 |
///By default, it is a NullMap. |
|
852 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
853 | 853 |
///Instantiates a ProcessedMap. |
854 | 854 |
|
855 | 855 |
///This function instantiates a ProcessedMap. |
856 | 856 |
///\param g is the digraph, to which |
857 | 857 |
///we would like to define the ProcessedMap. |
858 | 858 |
#ifdef DOXYGEN |
859 | 859 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
860 | 860 |
#else |
861 | 861 |
static ProcessedMap *createProcessedMap(const Digraph &) |
862 | 862 |
#endif |
863 | 863 |
{ |
864 | 864 |
return new ProcessedMap(); |
865 | 865 |
} |
866 | 866 |
|
867 | 867 |
///The type of the map that indicates which nodes are reached. |
868 | 868 |
|
869 | 869 |
///The type of the map that indicates which nodes are reached. |
870 | 870 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
871 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
872 | 872 |
///Instantiates a ReachedMap. |
873 | 873 |
|
874 | 874 |
///This function instantiates a ReachedMap. |
875 | 875 |
///\param g is the digraph, to which |
876 | 876 |
///we would like to define the ReachedMap. |
877 | 877 |
static ReachedMap *createReachedMap(const Digraph &g) |
878 | 878 |
{ |
879 | 879 |
return new ReachedMap(g); |
880 | 880 |
} |
881 | 881 |
|
882 | 882 |
///The type of the map that stores the distances of the nodes. |
883 | 883 |
|
884 | 884 |
///The type of the map that stores the distances of the nodes. |
885 | 885 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
886 | 886 |
typedef typename Digraph::template NodeMap<int> DistMap; |
887 | 887 |
///Instantiates a DistMap. |
888 | 888 |
|
889 | 889 |
///This function instantiates a DistMap. |
890 | 890 |
///\param g is the digraph, to which we would like to define |
891 | 891 |
///the DistMap |
892 | 892 |
static DistMap *createDistMap(const Digraph &g) |
893 | 893 |
{ |
894 | 894 |
return new DistMap(g); |
895 | 895 |
} |
896 | 896 |
|
897 | 897 |
///The type of the shortest paths. |
898 | 898 |
|
899 | 899 |
///The type of the shortest paths. |
900 | 900 |
///It must conform to the \ref concepts::Path "Path" concept. |
901 | 901 |
typedef lemon::Path<Digraph> Path; |
902 | 902 |
}; |
903 | 903 |
|
904 | 904 |
/// Default traits class used by BfsWizard |
905 | 905 |
|
906 | 906 |
/// Default traits class used by BfsWizard. |
907 | 907 |
/// \tparam GR The type of the digraph. |
908 | 908 |
template<class GR> |
909 | 909 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
910 | 910 |
{ |
911 | 911 |
|
912 | 912 |
typedef BfsWizardDefaultTraits<GR> Base; |
913 | 913 |
protected: |
914 | 914 |
//The type of the nodes in the digraph. |
915 | 915 |
typedef typename Base::Digraph::Node Node; |
916 | 916 |
|
917 | 917 |
//Pointer to the digraph the algorithm runs on. |
918 | 918 |
void *_g; |
919 | 919 |
//Pointer to the map of reached nodes. |
920 | 920 |
void *_reached; |
921 | 921 |
//Pointer to the map of processed nodes. |
922 | 922 |
void *_processed; |
923 | 923 |
//Pointer to the map of predecessors arcs. |
924 | 924 |
void *_pred; |
925 | 925 |
//Pointer to the map of distances. |
926 | 926 |
void *_dist; |
927 | 927 |
//Pointer to the shortest path to the target node. |
928 | 928 |
void *_path; |
929 | 929 |
//Pointer to the distance of the target node. |
930 | 930 |
int *_di; |
931 | 931 |
|
932 | 932 |
public: |
933 | 933 |
/// Constructor. |
934 | 934 |
|
935 | 935 |
/// This constructor does not require parameters, it initiates |
936 | 936 |
/// all of the attributes to \c 0. |
937 | 937 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
938 | 938 |
_dist(0), _path(0), _di(0) {} |
939 | 939 |
|
940 | 940 |
/// Constructor. |
941 | 941 |
|
942 | 942 |
/// This constructor requires one parameter, |
943 | 943 |
/// others are initiated to \c 0. |
944 | 944 |
/// \param g The digraph the algorithm runs on. |
945 | 945 |
BfsWizardBase(const GR &g) : |
946 | 946 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
947 | 947 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
... | ... |
@@ -213,193 +213,193 @@ |
213 | 213 |
|
214 | 214 |
private: |
215 | 215 |
|
216 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
217 | 217 |
|
218 | 218 |
const Digraph &_g; |
219 | 219 |
int _node_num; |
220 | 220 |
|
221 | 221 |
const LowerMap *_lo; |
222 | 222 |
const UpperMap *_up; |
223 | 223 |
const SupplyMap *_supply; |
224 | 224 |
|
225 | 225 |
FlowMap *_flow; |
226 | 226 |
bool _local_flow; |
227 | 227 |
|
228 | 228 |
Elevator* _level; |
229 | 229 |
bool _local_level; |
230 | 230 |
|
231 | 231 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
232 | 232 |
ExcessMap* _excess; |
233 | 233 |
|
234 | 234 |
Tolerance _tol; |
235 | 235 |
int _el; |
236 | 236 |
|
237 | 237 |
public: |
238 | 238 |
|
239 | 239 |
typedef Circulation Create; |
240 | 240 |
|
241 | 241 |
///\name Named Template Parameters |
242 | 242 |
|
243 | 243 |
///@{ |
244 | 244 |
|
245 | 245 |
template <typename T> |
246 | 246 |
struct SetFlowMapTraits : public Traits { |
247 | 247 |
typedef T FlowMap; |
248 | 248 |
static FlowMap *createFlowMap(const Digraph&) { |
249 | 249 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
250 | 250 |
return 0; // ignore warnings |
251 | 251 |
} |
252 | 252 |
}; |
253 | 253 |
|
254 | 254 |
/// \brief \ref named-templ-param "Named parameter" for setting |
255 | 255 |
/// FlowMap type |
256 | 256 |
/// |
257 | 257 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
258 | 258 |
/// type. |
259 | 259 |
template <typename T> |
260 | 260 |
struct SetFlowMap |
261 | 261 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
262 | 262 |
SetFlowMapTraits<T> > { |
263 | 263 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
264 | 264 |
SetFlowMapTraits<T> > Create; |
265 | 265 |
}; |
266 | 266 |
|
267 | 267 |
template <typename T> |
268 | 268 |
struct SetElevatorTraits : public Traits { |
269 | 269 |
typedef T Elevator; |
270 | 270 |
static Elevator *createElevator(const Digraph&, int) { |
271 | 271 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
272 | 272 |
return 0; // ignore warnings |
273 | 273 |
} |
274 | 274 |
}; |
275 | 275 |
|
276 | 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
277 | 277 |
/// Elevator type |
278 | 278 |
/// |
279 | 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
280 | 280 |
/// type. If this named parameter is used, then an external |
281 | 281 |
/// elevator object must be passed to the algorithm using the |
282 | 282 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
283 | 283 |
/// \ref run() or \ref init(). |
284 | 284 |
/// \sa SetStandardElevator |
285 | 285 |
template <typename T> |
286 | 286 |
struct SetElevator |
287 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
288 | 288 |
SetElevatorTraits<T> > { |
289 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
290 | 290 |
SetElevatorTraits<T> > Create; |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
template <typename T> |
294 | 294 |
struct SetStandardElevatorTraits : public Traits { |
295 | 295 |
typedef T Elevator; |
296 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
297 | 297 |
return new Elevator(digraph, max_level); |
298 | 298 |
} |
299 | 299 |
}; |
300 | 300 |
|
301 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
302 | 302 |
/// Elevator type with automatic allocation |
303 | 303 |
/// |
304 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
305 | 305 |
/// type with automatic allocation. |
306 | 306 |
/// The Elevator should have standard constructor interface to be |
307 | 307 |
/// able to automatically created by the algorithm (i.e. the |
308 | 308 |
/// digraph and the maximum level should be passed to it). |
309 |
/// However an external elevator object could also be passed to the |
|
309 |
/// However, an external elevator object could also be passed to the |
|
310 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
311 | 311 |
/// before calling \ref run() or \ref init(). |
312 | 312 |
/// \sa SetElevator |
313 | 313 |
template <typename T> |
314 | 314 |
struct SetStandardElevator |
315 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
316 | 316 |
SetStandardElevatorTraits<T> > { |
317 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
318 | 318 |
SetStandardElevatorTraits<T> > Create; |
319 | 319 |
}; |
320 | 320 |
|
321 | 321 |
/// @} |
322 | 322 |
|
323 | 323 |
protected: |
324 | 324 |
|
325 | 325 |
Circulation() {} |
326 | 326 |
|
327 | 327 |
public: |
328 | 328 |
|
329 | 329 |
/// Constructor. |
330 | 330 |
|
331 | 331 |
/// The constructor of the class. |
332 | 332 |
/// |
333 | 333 |
/// \param graph The digraph the algorithm runs on. |
334 | 334 |
/// \param lower The lower bounds for the flow values on the arcs. |
335 | 335 |
/// \param upper The upper bounds (capacities) for the flow values |
336 | 336 |
/// on the arcs. |
337 | 337 |
/// \param supply The signed supply values of the nodes. |
338 | 338 |
Circulation(const Digraph &graph, const LowerMap &lower, |
339 | 339 |
const UpperMap &upper, const SupplyMap &supply) |
340 | 340 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
341 | 341 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
342 | 342 |
_excess(NULL) {} |
343 | 343 |
|
344 | 344 |
/// Destructor. |
345 | 345 |
~Circulation() { |
346 | 346 |
destroyStructures(); |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
|
350 | 350 |
private: |
351 | 351 |
|
352 | 352 |
bool checkBoundMaps() { |
353 | 353 |
for (ArcIt e(_g);e!=INVALID;++e) { |
354 | 354 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
355 | 355 |
} |
356 | 356 |
return true; |
357 | 357 |
} |
358 | 358 |
|
359 | 359 |
void createStructures() { |
360 | 360 |
_node_num = _el = countNodes(_g); |
361 | 361 |
|
362 | 362 |
if (!_flow) { |
363 | 363 |
_flow = Traits::createFlowMap(_g); |
364 | 364 |
_local_flow = true; |
365 | 365 |
} |
366 | 366 |
if (!_level) { |
367 | 367 |
_level = Traits::createElevator(_g, _node_num); |
368 | 368 |
_local_level = true; |
369 | 369 |
} |
370 | 370 |
if (!_excess) { |
371 | 371 |
_excess = new ExcessMap(_g); |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
void destroyStructures() { |
376 | 376 |
if (_local_flow) { |
377 | 377 |
delete _flow; |
378 | 378 |
} |
379 | 379 |
if (_local_level) { |
380 | 380 |
delete _level; |
381 | 381 |
} |
382 | 382 |
if (_excess) { |
383 | 383 |
delete _excess; |
384 | 384 |
} |
385 | 385 |
} |
386 | 386 |
|
387 | 387 |
public: |
388 | 388 |
|
389 | 389 |
/// Sets the lower bound map. |
390 | 390 |
|
391 | 391 |
/// Sets the lower bound map. |
392 | 392 |
/// \return <tt>(*this)</tt> |
393 | 393 |
Circulation& lowerMap(const LowerMap& map) { |
394 | 394 |
_lo = ↦ |
395 | 395 |
return *this; |
396 | 396 |
} |
397 | 397 |
|
398 | 398 |
/// Sets the upper bound (capacity) map. |
399 | 399 |
|
400 | 400 |
/// Sets the upper bound (capacity) map. |
401 | 401 |
/// \return <tt>(*this)</tt> |
402 | 402 |
Circulation& upperMap(const UpperMap& map) { |
403 | 403 |
_up = ↦ |
404 | 404 |
return *this; |
405 | 405 |
} |
... | ... |
@@ -14,371 +14,371 @@ |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graph_concepts |
23 | 23 |
///\file |
24 | 24 |
///\brief The concept of directed graphs. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/graph_components.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of directed graphs. |
37 | 37 |
/// |
38 | 38 |
/// This class describes the common interface of all directed |
39 | 39 |
/// graphs (digraphs). |
40 | 40 |
/// |
41 | 41 |
/// Like all concept classes, it only provides an interface |
42 | 42 |
/// without any sensible implementation. So any general algorithm for |
43 | 43 |
/// directed graphs should compile with this class, but it will not |
44 | 44 |
/// run properly, of course. |
45 | 45 |
/// An actual digraph implementation like \ref ListDigraph or |
46 | 46 |
/// \ref SmartDigraph may have additional functionality. |
47 | 47 |
/// |
48 | 48 |
/// \sa Graph |
49 | 49 |
class Digraph { |
50 | 50 |
private: |
51 | 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
52 | 52 |
Digraph(const Digraph &) {} |
53 | 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
54 | 54 |
/// Use DigraphCopy instead. |
55 | 55 |
void operator=(const Digraph &) {} |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
/// Default constructor. |
59 | 59 |
Digraph() { } |
60 | 60 |
|
61 | 61 |
/// The node type of the digraph |
62 | 62 |
|
63 | 63 |
/// This class identifies a node of the digraph. It also serves |
64 | 64 |
/// as a base class of the node iterators, |
65 | 65 |
/// thus they convert to this type. |
66 | 66 |
class Node { |
67 | 67 |
public: |
68 | 68 |
/// Default constructor |
69 | 69 |
|
70 | 70 |
/// Default constructor. |
71 | 71 |
/// \warning It sets the object to an undefined value. |
72 | 72 |
Node() { } |
73 | 73 |
/// Copy constructor. |
74 | 74 |
|
75 | 75 |
/// Copy constructor. |
76 | 76 |
/// |
77 | 77 |
Node(const Node&) { } |
78 | 78 |
|
79 | 79 |
/// %Invalid constructor \& conversion. |
80 | 80 |
|
81 | 81 |
/// Initializes the object to be invalid. |
82 | 82 |
/// \sa Invalid for more details. |
83 | 83 |
Node(Invalid) { } |
84 | 84 |
/// Equality operator |
85 | 85 |
|
86 | 86 |
/// Equality operator. |
87 | 87 |
/// |
88 | 88 |
/// Two iterators are equal if and only if they point to the |
89 | 89 |
/// same object or both are \c INVALID. |
90 | 90 |
bool operator==(Node) const { return true; } |
91 | 91 |
|
92 | 92 |
/// Inequality operator |
93 | 93 |
|
94 | 94 |
/// Inequality operator. |
95 | 95 |
bool operator!=(Node) const { return true; } |
96 | 96 |
|
97 | 97 |
/// Artificial ordering operator. |
98 | 98 |
|
99 | 99 |
/// Artificial ordering operator. |
100 | 100 |
/// |
101 | 101 |
/// \note This operator only has to define some strict ordering of |
102 | 102 |
/// the nodes; this order has nothing to do with the iteration |
103 | 103 |
/// ordering of the nodes. |
104 | 104 |
bool operator<(Node) const { return false; } |
105 | 105 |
}; |
106 | 106 |
|
107 | 107 |
/// Iterator class for the nodes. |
108 | 108 |
|
109 | 109 |
/// This iterator goes through each node of the digraph. |
110 |
/// Its usage is quite simple, for example you can count the number |
|
110 |
/// Its usage is quite simple, for example, you can count the number |
|
111 | 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
112 | 112 |
///\code |
113 | 113 |
/// int count=0; |
114 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
115 | 115 |
///\endcode |
116 | 116 |
class NodeIt : public Node { |
117 | 117 |
public: |
118 | 118 |
/// Default constructor |
119 | 119 |
|
120 | 120 |
/// Default constructor. |
121 | 121 |
/// \warning It sets the iterator to an undefined value. |
122 | 122 |
NodeIt() { } |
123 | 123 |
/// Copy constructor. |
124 | 124 |
|
125 | 125 |
/// Copy constructor. |
126 | 126 |
/// |
127 | 127 |
NodeIt(const NodeIt& n) : Node(n) { } |
128 | 128 |
/// %Invalid constructor \& conversion. |
129 | 129 |
|
130 | 130 |
/// Initializes the iterator to be invalid. |
131 | 131 |
/// \sa Invalid for more details. |
132 | 132 |
NodeIt(Invalid) { } |
133 | 133 |
/// Sets the iterator to the first node. |
134 | 134 |
|
135 | 135 |
/// Sets the iterator to the first node of the given digraph. |
136 | 136 |
/// |
137 | 137 |
explicit NodeIt(const Digraph&) { } |
138 | 138 |
/// Sets the iterator to the given node. |
139 | 139 |
|
140 | 140 |
/// Sets the iterator to the given node of the given digraph. |
141 | 141 |
/// |
142 | 142 |
NodeIt(const Digraph&, const Node&) { } |
143 | 143 |
/// Next node. |
144 | 144 |
|
145 | 145 |
/// Assign the iterator to the next node. |
146 | 146 |
/// |
147 | 147 |
NodeIt& operator++() { return *this; } |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
/// The arc type of the digraph |
152 | 152 |
|
153 | 153 |
/// This class identifies an arc of the digraph. It also serves |
154 | 154 |
/// as a base class of the arc iterators, |
155 | 155 |
/// thus they will convert to this type. |
156 | 156 |
class Arc { |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 | 159 |
|
160 | 160 |
/// Default constructor. |
161 | 161 |
/// \warning It sets the object to an undefined value. |
162 | 162 |
Arc() { } |
163 | 163 |
/// Copy constructor. |
164 | 164 |
|
165 | 165 |
/// Copy constructor. |
166 | 166 |
/// |
167 | 167 |
Arc(const Arc&) { } |
168 | 168 |
/// %Invalid constructor \& conversion. |
169 | 169 |
|
170 | 170 |
/// Initializes the object to be invalid. |
171 | 171 |
/// \sa Invalid for more details. |
172 | 172 |
Arc(Invalid) { } |
173 | 173 |
/// Equality operator |
174 | 174 |
|
175 | 175 |
/// Equality operator. |
176 | 176 |
/// |
177 | 177 |
/// Two iterators are equal if and only if they point to the |
178 | 178 |
/// same object or both are \c INVALID. |
179 | 179 |
bool operator==(Arc) const { return true; } |
180 | 180 |
/// Inequality operator |
181 | 181 |
|
182 | 182 |
/// Inequality operator. |
183 | 183 |
bool operator!=(Arc) const { return true; } |
184 | 184 |
|
185 | 185 |
/// Artificial ordering operator. |
186 | 186 |
|
187 | 187 |
/// Artificial ordering operator. |
188 | 188 |
/// |
189 | 189 |
/// \note This operator only has to define some strict ordering of |
190 | 190 |
/// the arcs; this order has nothing to do with the iteration |
191 | 191 |
/// ordering of the arcs. |
192 | 192 |
bool operator<(Arc) const { return false; } |
193 | 193 |
}; |
194 | 194 |
|
195 | 195 |
/// Iterator class for the outgoing arcs of a node. |
196 | 196 |
|
197 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
198 | 198 |
/// of a digraph. |
199 |
/// Its usage is quite simple, for example you can count the number |
|
199 |
/// Its usage is quite simple, for example, you can count the number |
|
200 | 200 |
/// of outgoing arcs of a node \c n |
201 | 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
202 | 202 |
///\code |
203 | 203 |
/// int count=0; |
204 | 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
205 | 205 |
///\endcode |
206 | 206 |
class OutArcIt : public Arc { |
207 | 207 |
public: |
208 | 208 |
/// Default constructor |
209 | 209 |
|
210 | 210 |
/// Default constructor. |
211 | 211 |
/// \warning It sets the iterator to an undefined value. |
212 | 212 |
OutArcIt() { } |
213 | 213 |
/// Copy constructor. |
214 | 214 |
|
215 | 215 |
/// Copy constructor. |
216 | 216 |
/// |
217 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
218 | 218 |
/// %Invalid constructor \& conversion. |
219 | 219 |
|
220 | 220 |
/// Initializes the iterator to be invalid. |
221 | 221 |
/// \sa Invalid for more details. |
222 | 222 |
OutArcIt(Invalid) { } |
223 | 223 |
/// Sets the iterator to the first outgoing arc. |
224 | 224 |
|
225 | 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
226 | 226 |
/// |
227 | 227 |
OutArcIt(const Digraph&, const Node&) { } |
228 | 228 |
/// Sets the iterator to the given arc. |
229 | 229 |
|
230 | 230 |
/// Sets the iterator to the given arc of the given digraph. |
231 | 231 |
/// |
232 | 232 |
OutArcIt(const Digraph&, const Arc&) { } |
233 | 233 |
/// Next outgoing arc |
234 | 234 |
|
235 | 235 |
/// Assign the iterator to the next |
236 | 236 |
/// outgoing arc of the corresponding node. |
237 | 237 |
OutArcIt& operator++() { return *this; } |
238 | 238 |
}; |
239 | 239 |
|
240 | 240 |
/// Iterator class for the incoming arcs of a node. |
241 | 241 |
|
242 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
243 | 243 |
/// of a digraph. |
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of incoming arcs of a node \c n |
246 | 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
247 | 247 |
///\code |
248 | 248 |
/// int count=0; |
249 | 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
250 | 250 |
///\endcode |
251 | 251 |
class InArcIt : public Arc { |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// Default constructor. |
256 | 256 |
/// \warning It sets the iterator to an undefined value. |
257 | 257 |
InArcIt() { } |
258 | 258 |
/// Copy constructor. |
259 | 259 |
|
260 | 260 |
/// Copy constructor. |
261 | 261 |
/// |
262 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { } |
263 | 263 |
/// %Invalid constructor \& conversion. |
264 | 264 |
|
265 | 265 |
/// Initializes the iterator to be invalid. |
266 | 266 |
/// \sa Invalid for more details. |
267 | 267 |
InArcIt(Invalid) { } |
268 | 268 |
/// Sets the iterator to the first incoming arc. |
269 | 269 |
|
270 | 270 |
/// Sets the iterator to the first incoming arc of the given node. |
271 | 271 |
/// |
272 | 272 |
InArcIt(const Digraph&, const Node&) { } |
273 | 273 |
/// Sets the iterator to the given arc. |
274 | 274 |
|
275 | 275 |
/// Sets the iterator to the given arc of the given digraph. |
276 | 276 |
/// |
277 | 277 |
InArcIt(const Digraph&, const Arc&) { } |
278 | 278 |
/// Next incoming arc |
279 | 279 |
|
280 | 280 |
/// Assign the iterator to the next |
281 | 281 |
/// incoming arc of the corresponding node. |
282 | 282 |
InArcIt& operator++() { return *this; } |
283 | 283 |
}; |
284 | 284 |
|
285 | 285 |
/// Iterator class for the arcs. |
286 | 286 |
|
287 | 287 |
/// This iterator goes through each arc of the digraph. |
288 |
/// Its usage is quite simple, for example you can count the number |
|
288 |
/// Its usage is quite simple, for example, you can count the number |
|
289 | 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
290 | 290 |
///\code |
291 | 291 |
/// int count=0; |
292 | 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
293 | 293 |
///\endcode |
294 | 294 |
class ArcIt : public Arc { |
295 | 295 |
public: |
296 | 296 |
/// Default constructor |
297 | 297 |
|
298 | 298 |
/// Default constructor. |
299 | 299 |
/// \warning It sets the iterator to an undefined value. |
300 | 300 |
ArcIt() { } |
301 | 301 |
/// Copy constructor. |
302 | 302 |
|
303 | 303 |
/// Copy constructor. |
304 | 304 |
/// |
305 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { } |
306 | 306 |
/// %Invalid constructor \& conversion. |
307 | 307 |
|
308 | 308 |
/// Initializes the iterator to be invalid. |
309 | 309 |
/// \sa Invalid for more details. |
310 | 310 |
ArcIt(Invalid) { } |
311 | 311 |
/// Sets the iterator to the first arc. |
312 | 312 |
|
313 | 313 |
/// Sets the iterator to the first arc of the given digraph. |
314 | 314 |
/// |
315 | 315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); } |
316 | 316 |
/// Sets the iterator to the given arc. |
317 | 317 |
|
318 | 318 |
/// Sets the iterator to the given arc of the given digraph. |
319 | 319 |
/// |
320 | 320 |
ArcIt(const Digraph&, const Arc&) { } |
321 | 321 |
/// Next arc |
322 | 322 |
|
323 | 323 |
/// Assign the iterator to the next arc. |
324 | 324 |
/// |
325 | 325 |
ArcIt& operator++() { return *this; } |
326 | 326 |
}; |
327 | 327 |
|
328 | 328 |
/// \brief The source node of the arc. |
329 | 329 |
/// |
330 | 330 |
/// Returns the source node of the given arc. |
331 | 331 |
Node source(Arc) const { return INVALID; } |
332 | 332 |
|
333 | 333 |
/// \brief The target node of the arc. |
334 | 334 |
/// |
335 | 335 |
/// Returns the target node of the given arc. |
336 | 336 |
Node target(Arc) const { return INVALID; } |
337 | 337 |
|
338 | 338 |
/// \brief The ID of the node. |
339 | 339 |
/// |
340 | 340 |
/// Returns the ID of the given node. |
341 | 341 |
int id(Node) const { return -1; } |
342 | 342 |
|
343 | 343 |
/// \brief The ID of the arc. |
344 | 344 |
/// |
345 | 345 |
/// Returns the ID of the given arc. |
346 | 346 |
int id(Arc) const { return -1; } |
347 | 347 |
|
348 | 348 |
/// \brief The node with the given ID. |
349 | 349 |
/// |
350 | 350 |
/// Returns the node with the given ID. |
351 | 351 |
/// \pre The argument should be a valid node ID in the digraph. |
352 | 352 |
Node nodeFromId(int) const { return INVALID; } |
353 | 353 |
|
354 | 354 |
/// \brief The arc with the given ID. |
355 | 355 |
/// |
356 | 356 |
/// Returns the arc with the given ID. |
357 | 357 |
/// \pre The argument should be a valid arc ID in the digraph. |
358 | 358 |
Arc arcFromId(int) const { return INVALID; } |
359 | 359 |
|
360 | 360 |
/// \brief An upper bound on the node IDs. |
361 | 361 |
/// |
362 | 362 |
/// Returns an upper bound on the node IDs. |
363 | 363 |
int maxNodeId() const { return -1; } |
364 | 364 |
|
365 | 365 |
/// \brief An upper bound on the arc IDs. |
366 | 366 |
/// |
367 | 367 |
/// Returns an upper bound on the arc IDs. |
368 | 368 |
int maxArcId() const { return -1; } |
369 | 369 |
|
370 | 370 |
void first(Node&) const {} |
371 | 371 |
void next(Node&) const {} |
372 | 372 |
|
373 | 373 |
void first(Arc&) const {} |
374 | 374 |
void next(Arc&) const {} |
375 | 375 |
|
376 | 376 |
|
377 | 377 |
void firstIn(Arc&, const Node&) const {} |
378 | 378 |
void nextIn(Arc&) const {} |
379 | 379 |
|
380 | 380 |
void firstOut(Arc&, const Node&) const {} |
381 | 381 |
void nextOut(Arc&) const {} |
382 | 382 |
|
383 | 383 |
// The second parameter is dummy. |
384 | 384 |
Node fromId(int, Node) const { return INVALID; } |
... | ... |
@@ -47,653 +47,653 @@ |
47 | 47 |
/// |
48 | 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
49 | 49 |
/// "directed graphs", since each edge can also be regarded as two |
50 | 50 |
/// oppositely directed arcs. |
51 | 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
52 | 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
53 | 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
54 | 54 |
/// obtained from an arc. |
55 | 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
56 | 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
57 | 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
58 | 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
59 | 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
60 | 60 |
/// only to Edge. |
61 | 61 |
/// |
62 | 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
63 | 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
64 | 64 |
/// an undirected graph with respect to this default oriantation of |
65 | 65 |
/// the represented edge. |
66 | 66 |
/// With the direction() and direct() functions the direction |
67 | 67 |
/// of an arc can be obtained and set, respectively. |
68 | 68 |
/// |
69 | 69 |
/// Only nodes and edges can be added to or removed from an undirected |
70 | 70 |
/// graph and the corresponding arcs are added or removed automatically. |
71 | 71 |
/// |
72 | 72 |
/// \sa Digraph |
73 | 73 |
class Graph { |
74 | 74 |
private: |
75 | 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
76 | 76 |
Graph(const Graph&) {} |
77 | 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
78 | 78 |
/// Use DigraphCopy instead. |
79 | 79 |
void operator=(const Graph&) {} |
80 | 80 |
|
81 | 81 |
public: |
82 | 82 |
/// Default constructor. |
83 | 83 |
Graph() {} |
84 | 84 |
|
85 | 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
86 | 86 |
/// |
87 | 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
88 | 88 |
/// |
89 | 89 |
/// This tag helps the \c enable_if technics to make compile time |
90 | 90 |
/// specializations for undirected graphs. |
91 | 91 |
typedef True UndirectedTag; |
92 | 92 |
|
93 | 93 |
/// The node type of the graph |
94 | 94 |
|
95 | 95 |
/// This class identifies a node of the graph. It also serves |
96 | 96 |
/// as a base class of the node iterators, |
97 | 97 |
/// thus they convert to this type. |
98 | 98 |
class Node { |
99 | 99 |
public: |
100 | 100 |
/// Default constructor |
101 | 101 |
|
102 | 102 |
/// Default constructor. |
103 | 103 |
/// \warning It sets the object to an undefined value. |
104 | 104 |
Node() { } |
105 | 105 |
/// Copy constructor. |
106 | 106 |
|
107 | 107 |
/// Copy constructor. |
108 | 108 |
/// |
109 | 109 |
Node(const Node&) { } |
110 | 110 |
|
111 | 111 |
/// %Invalid constructor \& conversion. |
112 | 112 |
|
113 | 113 |
/// Initializes the object to be invalid. |
114 | 114 |
/// \sa Invalid for more details. |
115 | 115 |
Node(Invalid) { } |
116 | 116 |
/// Equality operator |
117 | 117 |
|
118 | 118 |
/// Equality operator. |
119 | 119 |
/// |
120 | 120 |
/// Two iterators are equal if and only if they point to the |
121 | 121 |
/// same object or both are \c INVALID. |
122 | 122 |
bool operator==(Node) const { return true; } |
123 | 123 |
|
124 | 124 |
/// Inequality operator |
125 | 125 |
|
126 | 126 |
/// Inequality operator. |
127 | 127 |
bool operator!=(Node) const { return true; } |
128 | 128 |
|
129 | 129 |
/// Artificial ordering operator. |
130 | 130 |
|
131 | 131 |
/// Artificial ordering operator. |
132 | 132 |
/// |
133 | 133 |
/// \note This operator only has to define some strict ordering of |
134 | 134 |
/// the items; this order has nothing to do with the iteration |
135 | 135 |
/// ordering of the items. |
136 | 136 |
bool operator<(Node) const { return false; } |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
/// Iterator class for the nodes. |
141 | 141 |
|
142 | 142 |
/// This iterator goes through each node of the graph. |
143 |
/// Its usage is quite simple, for example you can count the number |
|
143 |
/// Its usage is quite simple, for example, you can count the number |
|
144 | 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
145 | 145 |
///\code |
146 | 146 |
/// int count=0; |
147 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
148 | 148 |
///\endcode |
149 | 149 |
class NodeIt : public Node { |
150 | 150 |
public: |
151 | 151 |
/// Default constructor |
152 | 152 |
|
153 | 153 |
/// Default constructor. |
154 | 154 |
/// \warning It sets the iterator to an undefined value. |
155 | 155 |
NodeIt() { } |
156 | 156 |
/// Copy constructor. |
157 | 157 |
|
158 | 158 |
/// Copy constructor. |
159 | 159 |
/// |
160 | 160 |
NodeIt(const NodeIt& n) : Node(n) { } |
161 | 161 |
/// %Invalid constructor \& conversion. |
162 | 162 |
|
163 | 163 |
/// Initializes the iterator to be invalid. |
164 | 164 |
/// \sa Invalid for more details. |
165 | 165 |
NodeIt(Invalid) { } |
166 | 166 |
/// Sets the iterator to the first node. |
167 | 167 |
|
168 | 168 |
/// Sets the iterator to the first node of the given digraph. |
169 | 169 |
/// |
170 | 170 |
explicit NodeIt(const Graph&) { } |
171 | 171 |
/// Sets the iterator to the given node. |
172 | 172 |
|
173 | 173 |
/// Sets the iterator to the given node of the given digraph. |
174 | 174 |
/// |
175 | 175 |
NodeIt(const Graph&, const Node&) { } |
176 | 176 |
/// Next node. |
177 | 177 |
|
178 | 178 |
/// Assign the iterator to the next node. |
179 | 179 |
/// |
180 | 180 |
NodeIt& operator++() { return *this; } |
181 | 181 |
}; |
182 | 182 |
|
183 | 183 |
|
184 | 184 |
/// The edge type of the graph |
185 | 185 |
|
186 | 186 |
/// This class identifies an edge of the graph. It also serves |
187 | 187 |
/// as a base class of the edge iterators, |
188 | 188 |
/// thus they will convert to this type. |
189 | 189 |
class Edge { |
190 | 190 |
public: |
191 | 191 |
/// Default constructor |
192 | 192 |
|
193 | 193 |
/// Default constructor. |
194 | 194 |
/// \warning It sets the object to an undefined value. |
195 | 195 |
Edge() { } |
196 | 196 |
/// Copy constructor. |
197 | 197 |
|
198 | 198 |
/// Copy constructor. |
199 | 199 |
/// |
200 | 200 |
Edge(const Edge&) { } |
201 | 201 |
/// %Invalid constructor \& conversion. |
202 | 202 |
|
203 | 203 |
/// Initializes the object to be invalid. |
204 | 204 |
/// \sa Invalid for more details. |
205 | 205 |
Edge(Invalid) { } |
206 | 206 |
/// Equality operator |
207 | 207 |
|
208 | 208 |
/// Equality operator. |
209 | 209 |
/// |
210 | 210 |
/// Two iterators are equal if and only if they point to the |
211 | 211 |
/// same object or both are \c INVALID. |
212 | 212 |
bool operator==(Edge) const { return true; } |
213 | 213 |
/// Inequality operator |
214 | 214 |
|
215 | 215 |
/// Inequality operator. |
216 | 216 |
bool operator!=(Edge) const { return true; } |
217 | 217 |
|
218 | 218 |
/// Artificial ordering operator. |
219 | 219 |
|
220 | 220 |
/// Artificial ordering operator. |
221 | 221 |
/// |
222 | 222 |
/// \note This operator only has to define some strict ordering of |
223 | 223 |
/// the edges; this order has nothing to do with the iteration |
224 | 224 |
/// ordering of the edges. |
225 | 225 |
bool operator<(Edge) const { return false; } |
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// Iterator class for the edges. |
229 | 229 |
|
230 | 230 |
/// This iterator goes through each edge of the graph. |
231 |
/// Its usage is quite simple, for example you can count the number |
|
231 |
/// Its usage is quite simple, for example, you can count the number |
|
232 | 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
233 | 233 |
///\code |
234 | 234 |
/// int count=0; |
235 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
236 | 236 |
///\endcode |
237 | 237 |
class EdgeIt : public Edge { |
238 | 238 |
public: |
239 | 239 |
/// Default constructor |
240 | 240 |
|
241 | 241 |
/// Default constructor. |
242 | 242 |
/// \warning It sets the iterator to an undefined value. |
243 | 243 |
EdgeIt() { } |
244 | 244 |
/// Copy constructor. |
245 | 245 |
|
246 | 246 |
/// Copy constructor. |
247 | 247 |
/// |
248 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { } |
249 | 249 |
/// %Invalid constructor \& conversion. |
250 | 250 |
|
251 | 251 |
/// Initializes the iterator to be invalid. |
252 | 252 |
/// \sa Invalid for more details. |
253 | 253 |
EdgeIt(Invalid) { } |
254 | 254 |
/// Sets the iterator to the first edge. |
255 | 255 |
|
256 | 256 |
/// Sets the iterator to the first edge of the given graph. |
257 | 257 |
/// |
258 | 258 |
explicit EdgeIt(const Graph&) { } |
259 | 259 |
/// Sets the iterator to the given edge. |
260 | 260 |
|
261 | 261 |
/// Sets the iterator to the given edge of the given graph. |
262 | 262 |
/// |
263 | 263 |
EdgeIt(const Graph&, const Edge&) { } |
264 | 264 |
/// Next edge |
265 | 265 |
|
266 | 266 |
/// Assign the iterator to the next edge. |
267 | 267 |
/// |
268 | 268 |
EdgeIt& operator++() { return *this; } |
269 | 269 |
}; |
270 | 270 |
|
271 | 271 |
/// Iterator class for the incident edges of a node. |
272 | 272 |
|
273 | 273 |
/// This iterator goes trough the incident undirected edges |
274 | 274 |
/// of a certain node of a graph. |
275 |
/// Its usage is quite simple, for example you can compute the |
|
275 |
/// Its usage is quite simple, for example, you can compute the |
|
276 | 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
277 | 277 |
/// in a graph \c g of type \c %Graph as follows. |
278 | 278 |
/// |
279 | 279 |
///\code |
280 | 280 |
/// int count=0; |
281 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
282 | 282 |
///\endcode |
283 | 283 |
/// |
284 | 284 |
/// \warning Loop edges will be iterated twice. |
285 | 285 |
class IncEdgeIt : public Edge { |
286 | 286 |
public: |
287 | 287 |
/// Default constructor |
288 | 288 |
|
289 | 289 |
/// Default constructor. |
290 | 290 |
/// \warning It sets the iterator to an undefined value. |
291 | 291 |
IncEdgeIt() { } |
292 | 292 |
/// Copy constructor. |
293 | 293 |
|
294 | 294 |
/// Copy constructor. |
295 | 295 |
/// |
296 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } |
297 | 297 |
/// %Invalid constructor \& conversion. |
298 | 298 |
|
299 | 299 |
/// Initializes the iterator to be invalid. |
300 | 300 |
/// \sa Invalid for more details. |
301 | 301 |
IncEdgeIt(Invalid) { } |
302 | 302 |
/// Sets the iterator to the first incident edge. |
303 | 303 |
|
304 | 304 |
/// Sets the iterator to the first incident edge of the given node. |
305 | 305 |
/// |
306 | 306 |
IncEdgeIt(const Graph&, const Node&) { } |
307 | 307 |
/// Sets the iterator to the given edge. |
308 | 308 |
|
309 | 309 |
/// Sets the iterator to the given edge of the given graph. |
310 | 310 |
/// |
311 | 311 |
IncEdgeIt(const Graph&, const Edge&) { } |
312 | 312 |
/// Next incident edge |
313 | 313 |
|
314 | 314 |
/// Assign the iterator to the next incident edge |
315 | 315 |
/// of the corresponding node. |
316 | 316 |
IncEdgeIt& operator++() { return *this; } |
317 | 317 |
}; |
318 | 318 |
|
319 | 319 |
/// The arc type of the graph |
320 | 320 |
|
321 | 321 |
/// This class identifies a directed arc of the graph. It also serves |
322 | 322 |
/// as a base class of the arc iterators, |
323 | 323 |
/// thus they will convert to this type. |
324 | 324 |
class Arc { |
325 | 325 |
public: |
326 | 326 |
/// Default constructor |
327 | 327 |
|
328 | 328 |
/// Default constructor. |
329 | 329 |
/// \warning It sets the object to an undefined value. |
330 | 330 |
Arc() { } |
331 | 331 |
/// Copy constructor. |
332 | 332 |
|
333 | 333 |
/// Copy constructor. |
334 | 334 |
/// |
335 | 335 |
Arc(const Arc&) { } |
336 | 336 |
/// %Invalid constructor \& conversion. |
337 | 337 |
|
338 | 338 |
/// Initializes the object to be invalid. |
339 | 339 |
/// \sa Invalid for more details. |
340 | 340 |
Arc(Invalid) { } |
341 | 341 |
/// Equality operator |
342 | 342 |
|
343 | 343 |
/// Equality operator. |
344 | 344 |
/// |
345 | 345 |
/// Two iterators are equal if and only if they point to the |
346 | 346 |
/// same object or both are \c INVALID. |
347 | 347 |
bool operator==(Arc) const { return true; } |
348 | 348 |
/// Inequality operator |
349 | 349 |
|
350 | 350 |
/// Inequality operator. |
351 | 351 |
bool operator!=(Arc) const { return true; } |
352 | 352 |
|
353 | 353 |
/// Artificial ordering operator. |
354 | 354 |
|
355 | 355 |
/// Artificial ordering operator. |
356 | 356 |
/// |
357 | 357 |
/// \note This operator only has to define some strict ordering of |
358 | 358 |
/// the arcs; this order has nothing to do with the iteration |
359 | 359 |
/// ordering of the arcs. |
360 | 360 |
bool operator<(Arc) const { return false; } |
361 | 361 |
|
362 | 362 |
/// Converison to \c Edge |
363 | 363 |
|
364 | 364 |
/// Converison to \c Edge. |
365 | 365 |
/// |
366 | 366 |
operator Edge() const { return Edge(); } |
367 | 367 |
}; |
368 | 368 |
|
369 | 369 |
/// Iterator class for the arcs. |
370 | 370 |
|
371 | 371 |
/// This iterator goes through each directed arc of the graph. |
372 |
/// Its usage is quite simple, for example you can count the number |
|
372 |
/// Its usage is quite simple, for example, you can count the number |
|
373 | 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
374 | 374 |
///\code |
375 | 375 |
/// int count=0; |
376 | 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
377 | 377 |
///\endcode |
378 | 378 |
class ArcIt : public Arc { |
379 | 379 |
public: |
380 | 380 |
/// Default constructor |
381 | 381 |
|
382 | 382 |
/// Default constructor. |
383 | 383 |
/// \warning It sets the iterator to an undefined value. |
384 | 384 |
ArcIt() { } |
385 | 385 |
/// Copy constructor. |
386 | 386 |
|
387 | 387 |
/// Copy constructor. |
388 | 388 |
/// |
389 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { } |
390 | 390 |
/// %Invalid constructor \& conversion. |
391 | 391 |
|
392 | 392 |
/// Initializes the iterator to be invalid. |
393 | 393 |
/// \sa Invalid for more details. |
394 | 394 |
ArcIt(Invalid) { } |
395 | 395 |
/// Sets the iterator to the first arc. |
396 | 396 |
|
397 | 397 |
/// Sets the iterator to the first arc of the given graph. |
398 | 398 |
/// |
399 | 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } |
400 | 400 |
/// Sets the iterator to the given arc. |
401 | 401 |
|
402 | 402 |
/// Sets the iterator to the given arc of the given graph. |
403 | 403 |
/// |
404 | 404 |
ArcIt(const Graph&, const Arc&) { } |
405 | 405 |
/// Next arc |
406 | 406 |
|
407 | 407 |
/// Assign the iterator to the next arc. |
408 | 408 |
/// |
409 | 409 |
ArcIt& operator++() { return *this; } |
410 | 410 |
}; |
411 | 411 |
|
412 | 412 |
/// Iterator class for the outgoing arcs of a node. |
413 | 413 |
|
414 | 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
415 | 415 |
/// certain node of a graph. |
416 |
/// Its usage is quite simple, for example you can count the number |
|
416 |
/// Its usage is quite simple, for example, you can count the number |
|
417 | 417 |
/// of outgoing arcs of a node \c n |
418 | 418 |
/// in a graph \c g of type \c %Graph as follows. |
419 | 419 |
///\code |
420 | 420 |
/// int count=0; |
421 | 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
422 | 422 |
///\endcode |
423 | 423 |
class OutArcIt : public Arc { |
424 | 424 |
public: |
425 | 425 |
/// Default constructor |
426 | 426 |
|
427 | 427 |
/// Default constructor. |
428 | 428 |
/// \warning It sets the iterator to an undefined value. |
429 | 429 |
OutArcIt() { } |
430 | 430 |
/// Copy constructor. |
431 | 431 |
|
432 | 432 |
/// Copy constructor. |
433 | 433 |
/// |
434 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
435 | 435 |
/// %Invalid constructor \& conversion. |
436 | 436 |
|
437 | 437 |
/// Initializes the iterator to be invalid. |
438 | 438 |
/// \sa Invalid for more details. |
439 | 439 |
OutArcIt(Invalid) { } |
440 | 440 |
/// Sets the iterator to the first outgoing arc. |
441 | 441 |
|
442 | 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
443 | 443 |
/// |
444 | 444 |
OutArcIt(const Graph& n, const Node& g) { |
445 | 445 |
ignore_unused_variable_warning(n); |
446 | 446 |
ignore_unused_variable_warning(g); |
447 | 447 |
} |
448 | 448 |
/// Sets the iterator to the given arc. |
449 | 449 |
|
450 | 450 |
/// Sets the iterator to the given arc of the given graph. |
451 | 451 |
/// |
452 | 452 |
OutArcIt(const Graph&, const Arc&) { } |
453 | 453 |
/// Next outgoing arc |
454 | 454 |
|
455 | 455 |
/// Assign the iterator to the next |
456 | 456 |
/// outgoing arc of the corresponding node. |
457 | 457 |
OutArcIt& operator++() { return *this; } |
458 | 458 |
}; |
459 | 459 |
|
460 | 460 |
/// Iterator class for the incoming arcs of a node. |
461 | 461 |
|
462 | 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
463 | 463 |
/// certain node of a graph. |
464 |
/// Its usage is quite simple, for example you can count the number |
|
464 |
/// Its usage is quite simple, for example, you can count the number |
|
465 | 465 |
/// of incoming arcs of a node \c n |
466 | 466 |
/// in a graph \c g of type \c %Graph as follows. |
467 | 467 |
///\code |
468 | 468 |
/// int count=0; |
469 | 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
470 | 470 |
///\endcode |
471 | 471 |
class InArcIt : public Arc { |
472 | 472 |
public: |
473 | 473 |
/// Default constructor |
474 | 474 |
|
475 | 475 |
/// Default constructor. |
476 | 476 |
/// \warning It sets the iterator to an undefined value. |
477 | 477 |
InArcIt() { } |
478 | 478 |
/// Copy constructor. |
479 | 479 |
|
480 | 480 |
/// Copy constructor. |
481 | 481 |
/// |
482 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { } |
483 | 483 |
/// %Invalid constructor \& conversion. |
484 | 484 |
|
485 | 485 |
/// Initializes the iterator to be invalid. |
486 | 486 |
/// \sa Invalid for more details. |
487 | 487 |
InArcIt(Invalid) { } |
488 | 488 |
/// Sets the iterator to the first incoming arc. |
489 | 489 |
|
490 | 490 |
/// Sets the iterator to the first incoming arc of the given node. |
491 | 491 |
/// |
492 | 492 |
InArcIt(const Graph& g, const Node& n) { |
493 | 493 |
ignore_unused_variable_warning(n); |
494 | 494 |
ignore_unused_variable_warning(g); |
495 | 495 |
} |
496 | 496 |
/// Sets the iterator to the given arc. |
497 | 497 |
|
498 | 498 |
/// Sets the iterator to the given arc of the given graph. |
499 | 499 |
/// |
500 | 500 |
InArcIt(const Graph&, const Arc&) { } |
501 | 501 |
/// Next incoming arc |
502 | 502 |
|
503 | 503 |
/// Assign the iterator to the next |
504 | 504 |
/// incoming arc of the corresponding node. |
505 | 505 |
InArcIt& operator++() { return *this; } |
506 | 506 |
}; |
507 | 507 |
|
508 | 508 |
/// \brief Standard graph map type for the nodes. |
509 | 509 |
/// |
510 | 510 |
/// Standard graph map type for the nodes. |
511 | 511 |
/// It conforms to the ReferenceMap concept. |
512 | 512 |
template<class T> |
513 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
514 | 514 |
{ |
515 | 515 |
public: |
516 | 516 |
|
517 | 517 |
/// Constructor |
518 | 518 |
explicit NodeMap(const Graph&) { } |
519 | 519 |
/// Constructor with given initial value |
520 | 520 |
NodeMap(const Graph&, T) { } |
521 | 521 |
|
522 | 522 |
private: |
523 | 523 |
///Copy constructor |
524 | 524 |
NodeMap(const NodeMap& nm) : |
525 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { } |
526 | 526 |
///Assignment operator |
527 | 527 |
template <typename CMap> |
528 | 528 |
NodeMap& operator=(const CMap&) { |
529 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
530 | 530 |
return *this; |
531 | 531 |
} |
532 | 532 |
}; |
533 | 533 |
|
534 | 534 |
/// \brief Standard graph map type for the arcs. |
535 | 535 |
/// |
536 | 536 |
/// Standard graph map type for the arcs. |
537 | 537 |
/// It conforms to the ReferenceMap concept. |
538 | 538 |
template<class T> |
539 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
540 | 540 |
{ |
541 | 541 |
public: |
542 | 542 |
|
543 | 543 |
/// Constructor |
544 | 544 |
explicit ArcMap(const Graph&) { } |
545 | 545 |
/// Constructor with given initial value |
546 | 546 |
ArcMap(const Graph&, T) { } |
547 | 547 |
|
548 | 548 |
private: |
549 | 549 |
///Copy constructor |
550 | 550 |
ArcMap(const ArcMap& em) : |
551 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { } |
552 | 552 |
///Assignment operator |
553 | 553 |
template <typename CMap> |
554 | 554 |
ArcMap& operator=(const CMap&) { |
555 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
556 | 556 |
return *this; |
557 | 557 |
} |
558 | 558 |
}; |
559 | 559 |
|
560 | 560 |
/// \brief Standard graph map type for the edges. |
561 | 561 |
/// |
562 | 562 |
/// Standard graph map type for the edges. |
563 | 563 |
/// It conforms to the ReferenceMap concept. |
564 | 564 |
template<class T> |
565 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
566 | 566 |
{ |
567 | 567 |
public: |
568 | 568 |
|
569 | 569 |
/// Constructor |
570 | 570 |
explicit EdgeMap(const Graph&) { } |
571 | 571 |
/// Constructor with given initial value |
572 | 572 |
EdgeMap(const Graph&, T) { } |
573 | 573 |
|
574 | 574 |
private: |
575 | 575 |
///Copy constructor |
576 | 576 |
EdgeMap(const EdgeMap& em) : |
577 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {} |
578 | 578 |
///Assignment operator |
579 | 579 |
template <typename CMap> |
580 | 580 |
EdgeMap& operator=(const CMap&) { |
581 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
582 | 582 |
return *this; |
583 | 583 |
} |
584 | 584 |
}; |
585 | 585 |
|
586 | 586 |
/// \brief The first node of the edge. |
587 | 587 |
/// |
588 | 588 |
/// Returns the first node of the given edge. |
589 | 589 |
/// |
590 |
/// Edges don't have source and target nodes, however methods |
|
590 |
/// Edges don't have source and target nodes, however, methods |
|
591 | 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
592 | 592 |
/// The orientation of an edge that arises this way is called |
593 | 593 |
/// the inherent direction, it is used to define the default |
594 | 594 |
/// direction for the corresponding arcs. |
595 | 595 |
/// \sa v() |
596 | 596 |
/// \sa direction() |
597 | 597 |
Node u(Edge) const { return INVALID; } |
598 | 598 |
|
599 | 599 |
/// \brief The second node of the edge. |
600 | 600 |
/// |
601 | 601 |
/// Returns the second node of the given edge. |
602 | 602 |
/// |
603 |
/// Edges don't have source and target nodes, however methods |
|
603 |
/// Edges don't have source and target nodes, however, methods |
|
604 | 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
605 | 605 |
/// The orientation of an edge that arises this way is called |
606 | 606 |
/// the inherent direction, it is used to define the default |
607 | 607 |
/// direction for the corresponding arcs. |
608 | 608 |
/// \sa u() |
609 | 609 |
/// \sa direction() |
610 | 610 |
Node v(Edge) const { return INVALID; } |
611 | 611 |
|
612 | 612 |
/// \brief The source node of the arc. |
613 | 613 |
/// |
614 | 614 |
/// Returns the source node of the given arc. |
615 | 615 |
Node source(Arc) const { return INVALID; } |
616 | 616 |
|
617 | 617 |
/// \brief The target node of the arc. |
618 | 618 |
/// |
619 | 619 |
/// Returns the target node of the given arc. |
620 | 620 |
Node target(Arc) const { return INVALID; } |
621 | 621 |
|
622 | 622 |
/// \brief The ID of the node. |
623 | 623 |
/// |
624 | 624 |
/// Returns the ID of the given node. |
625 | 625 |
int id(Node) const { return -1; } |
626 | 626 |
|
627 | 627 |
/// \brief The ID of the edge. |
628 | 628 |
/// |
629 | 629 |
/// Returns the ID of the given edge. |
630 | 630 |
int id(Edge) const { return -1; } |
631 | 631 |
|
632 | 632 |
/// \brief The ID of the arc. |
633 | 633 |
/// |
634 | 634 |
/// Returns the ID of the given arc. |
635 | 635 |
int id(Arc) const { return -1; } |
636 | 636 |
|
637 | 637 |
/// \brief The node with the given ID. |
638 | 638 |
/// |
639 | 639 |
/// Returns the node with the given ID. |
640 | 640 |
/// \pre The argument should be a valid node ID in the graph. |
641 | 641 |
Node nodeFromId(int) const { return INVALID; } |
642 | 642 |
|
643 | 643 |
/// \brief The edge with the given ID. |
644 | 644 |
/// |
645 | 645 |
/// Returns the edge with the given ID. |
646 | 646 |
/// \pre The argument should be a valid edge ID in the graph. |
647 | 647 |
Edge edgeFromId(int) const { return INVALID; } |
648 | 648 |
|
649 | 649 |
/// \brief The arc with the given ID. |
650 | 650 |
/// |
651 | 651 |
/// Returns the arc with the given ID. |
652 | 652 |
/// \pre The argument should be a valid arc ID in the graph. |
653 | 653 |
Arc arcFromId(int) const { return INVALID; } |
654 | 654 |
|
655 | 655 |
/// \brief An upper bound on the node IDs. |
656 | 656 |
/// |
657 | 657 |
/// Returns an upper bound on the node IDs. |
658 | 658 |
int maxNodeId() const { return -1; } |
659 | 659 |
|
660 | 660 |
/// \brief An upper bound on the edge IDs. |
661 | 661 |
/// |
662 | 662 |
/// Returns an upper bound on the edge IDs. |
663 | 663 |
int maxEdgeId() const { return -1; } |
664 | 664 |
|
665 | 665 |
/// \brief An upper bound on the arc IDs. |
666 | 666 |
/// |
667 | 667 |
/// Returns an upper bound on the arc IDs. |
668 | 668 |
int maxArcId() const { return -1; } |
669 | 669 |
|
670 | 670 |
/// \brief The direction of the arc. |
671 | 671 |
/// |
672 | 672 |
/// Returns \c true if the direction of the given arc is the same as |
673 | 673 |
/// the inherent orientation of the represented edge. |
674 | 674 |
bool direction(Arc) const { return true; } |
675 | 675 |
|
676 | 676 |
/// \brief Direct the edge. |
677 | 677 |
/// |
678 | 678 |
/// Direct the given edge. The returned arc |
679 | 679 |
/// represents the given edge and its direction comes |
680 | 680 |
/// from the bool parameter. If it is \c true, then the direction |
681 | 681 |
/// of the arc is the same as the inherent orientation of the edge. |
682 | 682 |
Arc direct(Edge, bool) const { |
683 | 683 |
return INVALID; |
684 | 684 |
} |
685 | 685 |
|
686 | 686 |
/// \brief Direct the edge. |
687 | 687 |
/// |
688 | 688 |
/// Direct the given edge. The returned arc represents the given |
689 | 689 |
/// edge and its source node is the given node. |
690 | 690 |
Arc direct(Edge, Node) const { |
691 | 691 |
return INVALID; |
692 | 692 |
} |
693 | 693 |
|
694 | 694 |
/// \brief The oppositely directed arc. |
695 | 695 |
/// |
696 | 696 |
/// Returns the oppositely directed arc representing the same edge. |
697 | 697 |
Arc oppositeArc(Arc) const { return INVALID; } |
698 | 698 |
|
699 | 699 |
/// \brief The opposite node on the edge. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 |
///\brief The |
|
21 |
///\brief The concepts of graph components. |
|
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
46 | 46 |
#endif |
47 | 47 |
class GraphItem { |
48 | 48 |
public: |
49 | 49 |
/// \brief Default constructor. |
50 | 50 |
/// |
51 | 51 |
/// Default constructor. |
52 | 52 |
/// \warning The default constructor is not required to set |
53 | 53 |
/// the item to some well-defined value. So you should consider it |
54 | 54 |
/// as uninitialized. |
55 | 55 |
GraphItem() {} |
56 | 56 |
|
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
GraphItem(const GraphItem &) {} |
61 | 61 |
|
62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
63 | 63 |
/// |
64 | 64 |
/// Constructor for conversion from \c INVALID. |
65 | 65 |
/// It initializes the item to be invalid. |
66 | 66 |
/// \sa Invalid for more details. |
67 | 67 |
GraphItem(Invalid) {} |
68 | 68 |
|
69 | 69 |
/// \brief Assignment operator. |
70 | 70 |
/// |
71 | 71 |
/// Assignment operator for the item. |
72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; } |
73 | 73 |
|
74 | 74 |
/// \brief Assignment operator for INVALID. |
75 | 75 |
/// |
76 | 76 |
/// This operator makes the item invalid. |
77 | 77 |
GraphItem& operator=(Invalid) { return *this; } |
78 | 78 |
|
79 | 79 |
/// \brief Equality operator. |
80 | 80 |
/// |
81 | 81 |
/// Equality operator. |
82 | 82 |
bool operator==(const GraphItem&) const { return false; } |
83 | 83 |
|
84 | 84 |
/// \brief Inequality operator. |
85 | 85 |
/// |
86 | 86 |
/// Inequality operator. |
87 | 87 |
bool operator!=(const GraphItem&) const { return false; } |
88 | 88 |
|
89 | 89 |
/// \brief Ordering operator. |
90 | 90 |
/// |
91 | 91 |
/// This operator defines an ordering of the items. |
92 | 92 |
/// It makes possible to use graph item types as key types in |
93 | 93 |
/// associative containers (e.g. \c std::map). |
94 | 94 |
/// |
95 | 95 |
/// \note This operator only has to define some strict ordering of |
96 | 96 |
/// the items; this order has nothing to do with the iteration |
97 | 97 |
/// ordering of the items. |
98 | 98 |
bool operator<(const GraphItem&) const { return false; } |
99 | 99 |
|
100 | 100 |
template<typename _GraphItem> |
101 | 101 |
struct Constraints { |
102 | 102 |
void constraints() { |
103 | 103 |
_GraphItem i1; |
104 | 104 |
i1=INVALID; |
105 | 105 |
_GraphItem i2 = i1; |
106 | 106 |
_GraphItem i3 = INVALID; |
107 | 107 |
|
108 | 108 |
i1 = i2 = i3; |
109 | 109 |
|
110 | 110 |
bool b; |
111 | 111 |
b = (ia == ib) && (ia != ib); |
112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
113 | 113 |
b = (ia < ib); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
const _GraphItem &ia; |
117 | 117 |
const _GraphItem &ib; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 |
///\brief |
|
21 |
///\brief The concept of paths |
|
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
37 | 37 |
/// a digraph. |
38 | 38 |
/// |
39 | 39 |
/// A skeleton structure for representing directed paths in a |
40 | 40 |
/// digraph. |
41 |
/// In a sense, a path can be treated as a list of arcs. |
|
42 |
/// LEMON path types just store this list. As a consequence, they cannot |
|
43 |
/// enumerate the nodes on the path directly and a zero length path |
|
44 |
/// cannot store its source node. |
|
45 |
/// |
|
46 |
/// The arcs of a path should be stored in the order of their directions, |
|
47 |
/// i.e. the target node of each arc should be the same as the source |
|
48 |
/// node of the next arc. This consistency could be checked using |
|
49 |
/// \ref checkPath(). |
|
50 |
/// The source and target nodes of a (consistent) path can be obtained |
|
51 |
/// using \ref pathSource() and \ref pathTarget(). |
|
52 |
/// |
|
53 |
/// A path can be constructed from another path of any type using the |
|
54 |
/// copy constructor or the assignment operator. |
|
55 |
/// |
|
41 | 56 |
/// \tparam GR The digraph type in which the path is. |
42 |
/// |
|
43 |
/// In a sense, the path can be treated as a list of arcs. The |
|
44 |
/// lemon path type stores just this list. As a consequence it |
|
45 |
/// cannot enumerate the nodes in the path and the zero length |
|
46 |
/// paths cannot store the source. |
|
47 |
/// |
|
48 | 57 |
template <typename GR> |
49 | 58 |
class Path { |
50 | 59 |
public: |
51 | 60 |
|
52 | 61 |
/// Type of the underlying digraph. |
53 | 62 |
typedef GR Digraph; |
54 | 63 |
/// Arc type of the underlying digraph. |
55 | 64 |
typedef typename Digraph::Arc Arc; |
56 | 65 |
|
57 | 66 |
class ArcIt; |
58 | 67 |
|
59 | 68 |
/// \brief Default constructor |
60 | 69 |
Path() {} |
61 | 70 |
|
62 |
/// \brief Template constructor |
|
71 |
/// \brief Template copy constructor |
|
63 | 72 |
template <typename CPath> |
64 | 73 |
Path(const CPath& cpath) {} |
65 | 74 |
|
66 |
/// \brief Template assigment |
|
75 |
/// \brief Template assigment operator |
|
67 | 76 |
template <typename CPath> |
68 | 77 |
Path& operator=(const CPath& cpath) { |
69 | 78 |
ignore_unused_variable_warning(cpath); |
70 | 79 |
return *this; |
71 | 80 |
} |
72 | 81 |
|
73 |
/// Length of the path |
|
82 |
/// Length of the path, i.e. the number of arcs on the path. |
|
74 | 83 |
int length() const { return 0;} |
75 | 84 |
|
76 | 85 |
/// Returns whether the path is empty. |
77 | 86 |
bool empty() const { return true;} |
78 | 87 |
|
79 | 88 |
/// Resets the path to an empty path. |
80 | 89 |
void clear() {} |
81 | 90 |
|
82 |
/// \brief LEMON style iterator for |
|
91 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
83 | 92 |
/// |
84 |
/// |
|
93 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
85 | 94 |
class ArcIt { |
86 | 95 |
public: |
87 | 96 |
/// Default constructor |
88 | 97 |
ArcIt() {} |
89 | 98 |
/// Invalid constructor |
90 | 99 |
ArcIt(Invalid) {} |
91 |
/// |
|
100 |
/// Sets the iterator to the first arc of the given path |
|
92 | 101 |
ArcIt(const Path &) {} |
93 | 102 |
|
94 |
/// Conversion to Arc |
|
103 |
/// Conversion to \c Arc |
|
95 | 104 |
operator Arc() const { return INVALID; } |
96 | 105 |
|
97 | 106 |
/// Next arc |
98 | 107 |
ArcIt& operator++() {return *this;} |
99 | 108 |
|
100 | 109 |
/// Comparison operator |
101 | 110 |
bool operator==(const ArcIt&) const {return true;} |
102 | 111 |
/// Comparison operator |
103 | 112 |
bool operator!=(const ArcIt&) const {return true;} |
104 | 113 |
/// Comparison operator |
105 | 114 |
bool operator<(const ArcIt&) const {return false;} |
106 | 115 |
|
107 | 116 |
}; |
108 | 117 |
|
109 | 118 |
template <typename _Path> |
110 | 119 |
struct Constraints { |
111 | 120 |
void constraints() { |
112 | 121 |
Path<Digraph> pc; |
113 | 122 |
_Path p, pp(pc); |
114 | 123 |
int l = p.length(); |
115 | 124 |
int e = p.empty(); |
116 | 125 |
p.clear(); |
117 | 126 |
|
118 | 127 |
p = pc; |
119 | 128 |
|
120 | 129 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
121 | 130 |
|
122 | 131 |
++i; |
123 | 132 |
typename Digraph::Arc ed = i; |
124 | 133 |
|
125 | 134 |
e = (i == ii); |
126 | 135 |
e = (i != ii); |
127 | 136 |
e = (i < ii); |
128 | 137 |
|
129 | 138 |
ignore_unused_variable_warning(l); |
130 | 139 |
ignore_unused_variable_warning(pp); |
131 | 140 |
ignore_unused_variable_warning(e); |
132 | 141 |
ignore_unused_variable_warning(id); |
133 | 142 |
ignore_unused_variable_warning(ii); |
134 | 143 |
ignore_unused_variable_warning(ed); |
135 | 144 |
} |
136 | 145 |
}; |
137 | 146 |
|
138 | 147 |
}; |
139 | 148 |
|
140 | 149 |
namespace _path_bits { |
141 | 150 |
|
142 | 151 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
143 | 152 |
struct PathDumperConstraints { |
144 | 153 |
void constraints() { |
145 | 154 |
int l = p.length(); |
146 | 155 |
int e = p.empty(); |
147 | 156 |
|
148 | 157 |
typename _Path::ArcIt id, i(p); |
149 | 158 |
|
150 | 159 |
++i; |
151 | 160 |
typename _Digraph::Arc ed = i; |
152 | 161 |
|
153 | 162 |
e = (i == INVALID); |
154 | 163 |
e = (i != INVALID); |
155 | 164 |
|
156 | 165 |
ignore_unused_variable_warning(l); |
157 | 166 |
ignore_unused_variable_warning(e); |
158 | 167 |
ignore_unused_variable_warning(id); |
159 | 168 |
ignore_unused_variable_warning(ed); |
160 | 169 |
} |
161 | 170 |
_Path& p; |
162 | 171 |
}; |
163 | 172 |
|
164 | 173 |
template <typename _Digraph, typename _Path> |
165 | 174 |
struct PathDumperConstraints< |
166 | 175 |
_Digraph, _Path, |
167 | 176 |
typename enable_if<typename _Path::RevPathTag, void>::type |
168 | 177 |
> { |
169 | 178 |
void constraints() { |
170 | 179 |
int l = p.length(); |
171 | 180 |
int e = p.empty(); |
172 | 181 |
|
173 | 182 |
typename _Path::RevArcIt id, i(p); |
174 | 183 |
|
175 | 184 |
++i; |
176 | 185 |
typename _Digraph::Arc ed = i; |
177 | 186 |
|
178 | 187 |
e = (i == INVALID); |
179 | 188 |
e = (i != INVALID); |
180 | 189 |
|
181 | 190 |
ignore_unused_variable_warning(l); |
182 | 191 |
ignore_unused_variable_warning(e); |
183 | 192 |
ignore_unused_variable_warning(id); |
184 | 193 |
ignore_unused_variable_warning(ed); |
185 | 194 |
} |
186 | 195 |
_Path& p; |
187 | 196 |
}; |
188 | 197 |
|
189 | 198 |
} |
190 | 199 |
|
191 | 200 |
|
192 | 201 |
/// \brief A skeleton structure for path dumpers. |
193 | 202 |
/// |
194 | 203 |
/// A skeleton structure for path dumpers. The path dumpers are |
195 |
/// the generalization of the paths. The path dumpers can |
|
196 |
/// enumerate the arcs of the path wheter in forward or in |
|
197 |
/// backward order. In most time these classes are not used |
|
198 |
/// directly rather it used to assign a dumped class to a real |
|
199 |
/// |
|
204 |
/// the generalization of the paths, they can enumerate the arcs |
|
205 |
/// of the path either in forward or in backward order. |
|
206 |
/// These classes are typically not used directly, they are rather |
|
207 |
/// used to be assigned to a real path type. |
|
200 | 208 |
/// |
201 | 209 |
/// The main purpose of this concept is that the shortest path |
202 |
/// algorithms can enumerate easily the arcs in reverse order. |
|
203 |
/// If we would like to give back a real path from these |
|
204 |
/// algorithms then we should create a temporarly path object. In |
|
205 |
/// LEMON such algorithms gives back a path dumper what can |
|
206 |
/// |
|
210 |
/// algorithms can enumerate the arcs easily in reverse order. |
|
211 |
/// In LEMON, such algorithms give back a (reverse) path dumper that |
|
212 |
/// can be assigned to a real path. The dumpers can be implemented as |
|
207 | 213 |
/// an adaptor class to the predecessor map. |
208 | 214 |
/// |
209 | 215 |
/// \tparam GR The digraph type in which the path is. |
210 |
/// |
|
211 |
/// The paths can be constructed from any path type by a |
|
212 |
/// template constructor or a template assignment operator. |
|
213 | 216 |
template <typename GR> |
214 | 217 |
class PathDumper { |
215 | 218 |
public: |
216 | 219 |
|
217 | 220 |
/// Type of the underlying digraph. |
218 | 221 |
typedef GR Digraph; |
219 | 222 |
/// Arc type of the underlying digraph. |
220 | 223 |
typedef typename Digraph::Arc Arc; |
221 | 224 |
|
222 |
/// Length of the path |
|
225 |
/// Length of the path, i.e. the number of arcs on the path. |
|
223 | 226 |
int length() const { return 0;} |
224 | 227 |
|
225 | 228 |
/// Returns whether the path is empty. |
226 | 229 |
bool empty() const { return true;} |
227 | 230 |
|
228 | 231 |
/// \brief Forward or reverse dumping |
229 | 232 |
/// |
230 |
/// If the RevPathTag is defined and true then reverse dumping |
|
231 |
/// is provided in the path dumper. In this case instead of the |
|
232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
|
233 |
/// dumper. |
|
233 |
/// If this tag is defined to be \c True, then reverse dumping |
|
234 |
/// is provided in the path dumper. In this case, \c RevArcIt |
|
235 |
/// iterator should be implemented instead of \c ArcIt iterator. |
|
234 | 236 |
typedef False RevPathTag; |
235 | 237 |
|
236 |
/// \brief LEMON style iterator for |
|
238 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
237 | 239 |
/// |
238 |
/// |
|
240 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
239 | 241 |
class ArcIt { |
240 | 242 |
public: |
241 | 243 |
/// Default constructor |
242 | 244 |
ArcIt() {} |
243 | 245 |
/// Invalid constructor |
244 | 246 |
ArcIt(Invalid) {} |
245 |
/// |
|
247 |
/// Sets the iterator to the first arc of the given path |
|
246 | 248 |
ArcIt(const PathDumper&) {} |
247 | 249 |
|
248 |
/// Conversion to Arc |
|
250 |
/// Conversion to \c Arc |
|
249 | 251 |
operator Arc() const { return INVALID; } |
250 | 252 |
|
251 | 253 |
/// Next arc |
252 | 254 |
ArcIt& operator++() {return *this;} |
253 | 255 |
|
254 | 256 |
/// Comparison operator |
255 | 257 |
bool operator==(const ArcIt&) const {return true;} |
256 | 258 |
/// Comparison operator |
257 | 259 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 260 |
/// Comparison operator |
259 | 261 |
bool operator<(const ArcIt&) const {return false;} |
260 | 262 |
|
261 | 263 |
}; |
262 | 264 |
|
263 |
/// \brief LEMON style iterator for |
|
265 |
/// \brief LEMON style iterator for enumerating the arcs of a path |
|
266 |
/// in reverse direction. |
|
264 | 267 |
/// |
265 |
/// This class is used to iterate on the arcs of the paths in |
|
266 |
/// reverse direction. |
|
268 |
/// LEMON style iterator class for enumerating the arcs of a path |
|
269 |
/// in reverse direction. |
|
267 | 270 |
class RevArcIt { |
268 | 271 |
public: |
269 | 272 |
/// Default constructor |
270 | 273 |
RevArcIt() {} |
271 | 274 |
/// Invalid constructor |
272 | 275 |
RevArcIt(Invalid) {} |
273 |
/// |
|
276 |
/// Sets the iterator to the last arc of the given path |
|
274 | 277 |
RevArcIt(const PathDumper &) {} |
275 | 278 |
|
276 |
/// Conversion to Arc |
|
279 |
/// Conversion to \c Arc |
|
277 | 280 |
operator Arc() const { return INVALID; } |
278 | 281 |
|
279 | 282 |
/// Next arc |
280 | 283 |
RevArcIt& operator++() {return *this;} |
281 | 284 |
|
282 | 285 |
/// Comparison operator |
283 | 286 |
bool operator==(const RevArcIt&) const {return true;} |
284 | 287 |
/// Comparison operator |
285 | 288 |
bool operator!=(const RevArcIt&) const {return true;} |
286 | 289 |
/// Comparison operator |
287 | 290 |
bool operator<(const RevArcIt&) const {return false;} |
288 | 291 |
|
289 | 292 |
}; |
290 | 293 |
|
291 | 294 |
template <typename _Path> |
292 | 295 |
struct Constraints { |
293 | 296 |
void constraints() { |
294 | 297 |
function_requires<_path_bits:: |
295 | 298 |
PathDumperConstraints<Digraph, _Path> >(); |
296 | 299 |
} |
297 | 300 |
}; |
298 | 301 |
|
299 | 302 |
}; |
300 | 303 |
|
301 | 304 |
|
302 | 305 |
///@} |
303 | 306 |
} |
304 | 307 |
|
305 | 308 |
} // namespace lemon |
306 | 309 |
|
307 | 310 |
#endif |
... | ... |
@@ -119,131 +119,131 @@ |
119 | 119 |
/// v[j] = v[j+1]; |
120 | 120 |
/// v[j+1] = tmp; |
121 | 121 |
/// as += 3; // three assignments |
122 | 122 |
/// } |
123 | 123 |
/// ++co; // one comparison |
124 | 124 |
/// } |
125 | 125 |
/// } |
126 | 126 |
/// \endcode |
127 | 127 |
/// |
128 | 128 |
/// This code prints out something like that: |
129 | 129 |
/// \code |
130 | 130 |
/// Comparisons: 45 |
131 | 131 |
/// Assignments: 57 |
132 | 132 |
/// Operations: 102 |
133 | 133 |
/// \endcode |
134 | 134 |
/// |
135 | 135 |
/// \sa NoCounter |
136 | 136 |
class Counter |
137 | 137 |
{ |
138 | 138 |
std::string _title; |
139 | 139 |
std::ostream &_os; |
140 | 140 |
int count; |
141 | 141 |
public: |
142 | 142 |
|
143 | 143 |
/// SubCounter class |
144 | 144 |
|
145 | 145 |
/// This class can be used to setup subcounters for a \ref Counter |
146 | 146 |
/// to have finer reports. A subcounter provides exactly the same |
147 | 147 |
/// operations as the main \ref Counter, but it also increments and |
148 | 148 |
/// decrements the value of its parent. |
149 | 149 |
/// Subcounters can also have subcounters. |
150 | 150 |
/// |
151 | 151 |
/// The parent counter must be given as the first parameter of the |
152 | 152 |
/// constructor. Apart from that a title and an \c ostream object |
153 | 153 |
/// can also be given just like for the main \ref Counter. |
154 | 154 |
/// |
155 | 155 |
/// A report containing the given title and the value of the |
156 | 156 |
/// subcounter is automatically printed on destruction. If you |
157 | 157 |
/// would like to turn off this report, use \ref NoSubCounter |
158 | 158 |
/// instead. |
159 | 159 |
/// |
160 | 160 |
/// \sa NoSubCounter |
161 | 161 |
typedef _SubCounter<Counter> SubCounter; |
162 | 162 |
|
163 | 163 |
/// SubCounter class without printing report on destruction |
164 | 164 |
|
165 | 165 |
/// This class can be used to setup subcounters for a \ref Counter. |
166 | 166 |
/// It is the same as \ref SubCounter but it does not print report |
167 | 167 |
/// on destruction. (It modifies the value of its parent, so 'No' |
168 | 168 |
/// only means 'do not print'.) |
169 | 169 |
/// |
170 | 170 |
/// Replacing \ref SubCounter "SubCounter"s with \ref NoSubCounter |
171 | 171 |
/// "NoSubCounter"s makes it possible to turn off reporting |
172 | 172 |
/// subcounter values without actually removing the definitions |
173 | 173 |
/// and the increment or decrement operators. |
174 | 174 |
/// |
175 | 175 |
/// \sa SubCounter |
176 | 176 |
typedef _NoSubCounter<Counter> NoSubCounter; |
177 | 177 |
|
178 | 178 |
/// Constructor. |
179 | 179 |
Counter() : _title(), _os(std::cerr), count(0) {} |
180 | 180 |
/// Constructor. |
181 | 181 |
Counter(std::string title,std::ostream &os=std::cerr) |
182 | 182 |
: _title(title), _os(os), count(0) {} |
183 | 183 |
/// Constructor. |
184 | 184 |
Counter(const char *title,std::ostream &os=std::cerr) |
185 | 185 |
: _title(title), _os(os), count(0) {} |
186 | 186 |
/// Destructor. Prints the given title and the value of the counter. |
187 | 187 |
~Counter() { |
188 | 188 |
_os << _title << count <<std::endl; |
189 | 189 |
} |
190 | 190 |
///\e |
191 | 191 |
Counter &operator++() { count++; return *this;} |
192 | 192 |
///\e |
193 | 193 |
int operator++(int) { return count++;} |
194 | 194 |
///\e |
195 | 195 |
Counter &operator--() { count--; return *this;} |
196 | 196 |
///\e |
197 | 197 |
int operator--(int) { return count--;} |
198 | 198 |
///\e |
199 | 199 |
Counter &operator+=(int c) { count+=c; return *this;} |
200 | 200 |
///\e |
201 | 201 |
Counter &operator-=(int c) { count-=c; return *this;} |
202 | 202 |
/// Resets the counter to the given value. |
203 | 203 |
|
204 | 204 |
/// Resets the counter to the given value. |
205 | 205 |
/// \note This function does not reset the values of |
206 | 206 |
/// \ref SubCounter "SubCounter"s but it resets \ref NoSubCounter |
207 | 207 |
/// "NoSubCounter"s along with the main counter. |
208 | 208 |
void reset(int c=0) {count=c;} |
209 | 209 |
/// Returns the value of the counter. |
210 | 210 |
operator int() {return count;} |
211 | 211 |
}; |
212 | 212 |
|
213 | 213 |
/// 'Do nothing' version of Counter. |
214 | 214 |
|
215 |
/// This class can be used in the same way as \ref Counter |
|
215 |
/// This class can be used in the same way as \ref Counter, but it |
|
216 | 216 |
/// does not count at all and does not print report on destruction. |
217 | 217 |
/// |
218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
221 | 221 |
/// efficiency of the program at all. |
222 | 222 |
/// |
223 | 223 |
/// \sa Counter |
224 | 224 |
class NoCounter |
225 | 225 |
{ |
226 | 226 |
public: |
227 | 227 |
typedef _NoSubCounter<NoCounter> SubCounter; |
228 | 228 |
typedef _NoSubCounter<NoCounter> NoSubCounter; |
229 | 229 |
|
230 | 230 |
NoCounter() {} |
231 | 231 |
NoCounter(std::string,std::ostream &) {} |
232 | 232 |
NoCounter(const char *,std::ostream &) {} |
233 | 233 |
NoCounter(std::string) {} |
234 | 234 |
NoCounter(const char *) {} |
235 | 235 |
NoCounter &operator++() { return *this; } |
236 | 236 |
int operator++(int) { return 0; } |
237 | 237 |
NoCounter &operator--() { return *this; } |
238 | 238 |
int operator--(int) { return 0; } |
239 | 239 |
NoCounter &operator+=(int) { return *this;} |
240 | 240 |
NoCounter &operator-=(int) { return *this;} |
241 | 241 |
void reset(int) {} |
242 | 242 |
void reset() {} |
243 | 243 |
operator int() {return 0;} |
244 | 244 |
}; |
245 | 245 |
|
246 | 246 |
///@} |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 |
///By default it is a NullMap. |
|
66 |
///By default, it is a NullMap. |
|
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap. |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \c ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
91 | 91 |
///we would like to define the \ref ReachedMap. |
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 102 |
///Instantiates a \c DistMap. |
103 | 103 |
|
104 | 104 |
///This function instantiates a \ref DistMap. |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///\ref DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%DFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default type is \ref ListDigraph. |
124 | 124 |
#ifdef DOXYGEN |
125 | 125 |
template <typename GR, |
126 | 126 |
typename TR> |
127 | 127 |
#else |
128 | 128 |
template <typename GR=ListDigraph, |
129 | 129 |
typename TR=DfsDefaultTraits<GR> > |
130 | 130 |
#endif |
131 | 131 |
class Dfs { |
132 | 132 |
public: |
133 | 133 |
|
134 | 134 |
///The type of the digraph the algorithm runs on. |
135 | 135 |
typedef typename TR::Digraph Digraph; |
136 | 136 |
|
137 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
138 | 138 |
///DFS paths. |
139 | 139 |
typedef typename TR::PredMap PredMap; |
140 | 140 |
///The type of the map that stores the distances of the nodes. |
141 | 141 |
typedef typename TR::DistMap DistMap; |
142 | 142 |
///The type of the map that indicates which nodes are reached. |
143 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
144 | 144 |
///The type of the map that indicates which nodes are processed. |
145 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
146 | 146 |
///The type of the paths. |
147 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
148 | 148 |
|
149 | 149 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
typedef typename Digraph::Node Node; |
155 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
156 | 156 |
typedef typename Digraph::Arc Arc; |
157 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
158 | 158 |
|
159 | 159 |
//Pointer to the underlying digraph. |
160 | 160 |
const Digraph *G; |
161 | 161 |
//Pointer to the map of predecessor arcs. |
162 | 162 |
PredMap *_pred; |
... | ... |
@@ -685,193 +685,193 @@ |
685 | 685 |
/// |
686 | 686 |
///\pre Either \ref run(Node) "run()" or \ref init() |
687 | 687 |
///must be called before using this function. |
688 | 688 |
int dist(Node v) const { return (*_dist)[v]; } |
689 | 689 |
|
690 | 690 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
691 | 691 |
|
692 | 692 |
///This function returns the 'previous arc' of the %DFS tree for the |
693 | 693 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
694 | 694 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
695 | 695 |
///root(s) or if \c v is a root. |
696 | 696 |
/// |
697 | 697 |
///The %DFS tree used here is equal to the %DFS tree used in |
698 | 698 |
///\ref predNode() and \ref predMap(). |
699 | 699 |
/// |
700 | 700 |
///\pre Either \ref run(Node) "run()" or \ref init() |
701 | 701 |
///must be called before using this function. |
702 | 702 |
Arc predArc(Node v) const { return (*_pred)[v];} |
703 | 703 |
|
704 | 704 |
///Returns the 'previous node' of the %DFS tree for the given node. |
705 | 705 |
|
706 | 706 |
///This function returns the 'previous node' of the %DFS |
707 | 707 |
///tree for the node \c v, i.e. it returns the last but one node |
708 | 708 |
///of a %DFS path from a root to \c v. It is \c INVALID |
709 | 709 |
///if \c v is not reached from the root(s) or if \c v is a root. |
710 | 710 |
/// |
711 | 711 |
///The %DFS tree used here is equal to the %DFS tree used in |
712 | 712 |
///\ref predArc() and \ref predMap(). |
713 | 713 |
/// |
714 | 714 |
///\pre Either \ref run(Node) "run()" or \ref init() |
715 | 715 |
///must be called before using this function. |
716 | 716 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
717 | 717 |
G->source((*_pred)[v]); } |
718 | 718 |
|
719 | 719 |
///\brief Returns a const reference to the node map that stores the |
720 | 720 |
///distances of the nodes. |
721 | 721 |
/// |
722 | 722 |
///Returns a const reference to the node map that stores the |
723 | 723 |
///distances of the nodes calculated by the algorithm. |
724 | 724 |
/// |
725 | 725 |
///\pre Either \ref run(Node) "run()" or \ref init() |
726 | 726 |
///must be called before using this function. |
727 | 727 |
const DistMap &distMap() const { return *_dist;} |
728 | 728 |
|
729 | 729 |
///\brief Returns a const reference to the node map that stores the |
730 | 730 |
///predecessor arcs. |
731 | 731 |
/// |
732 | 732 |
///Returns a const reference to the node map that stores the predecessor |
733 | 733 |
///arcs, which form the DFS tree (forest). |
734 | 734 |
/// |
735 | 735 |
///\pre Either \ref run(Node) "run()" or \ref init() |
736 | 736 |
///must be called before using this function. |
737 | 737 |
const PredMap &predMap() const { return *_pred;} |
738 | 738 |
|
739 | 739 |
///Checks if the given node. node is reached from the root(s). |
740 | 740 |
|
741 | 741 |
///Returns \c true if \c v is reached from the root(s). |
742 | 742 |
/// |
743 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
744 | 744 |
///must be called before using this function. |
745 | 745 |
bool reached(Node v) const { return (*_reached)[v]; } |
746 | 746 |
|
747 | 747 |
///@} |
748 | 748 |
}; |
749 | 749 |
|
750 | 750 |
///Default traits class of dfs() function. |
751 | 751 |
|
752 | 752 |
///Default traits class of dfs() function. |
753 | 753 |
///\tparam GR Digraph type. |
754 | 754 |
template<class GR> |
755 | 755 |
struct DfsWizardDefaultTraits |
756 | 756 |
{ |
757 | 757 |
///The type of the digraph the algorithm runs on. |
758 | 758 |
typedef GR Digraph; |
759 | 759 |
|
760 | 760 |
///\brief The type of the map that stores the predecessor |
761 | 761 |
///arcs of the %DFS paths. |
762 | 762 |
/// |
763 | 763 |
///The type of the map that stores the predecessor |
764 | 764 |
///arcs of the %DFS paths. |
765 | 765 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
766 | 766 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
767 | 767 |
///Instantiates a PredMap. |
768 | 768 |
|
769 | 769 |
///This function instantiates a PredMap. |
770 | 770 |
///\param g is the digraph, to which we would like to define the |
771 | 771 |
///PredMap. |
772 | 772 |
static PredMap *createPredMap(const Digraph &g) |
773 | 773 |
{ |
774 | 774 |
return new PredMap(g); |
775 | 775 |
} |
776 | 776 |
|
777 | 777 |
///The type of the map that indicates which nodes are processed. |
778 | 778 |
|
779 | 779 |
///The type of the map that indicates which nodes are processed. |
780 | 780 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
781 |
///By default it is a NullMap. |
|
781 |
///By default, it is a NullMap. |
|
782 | 782 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
783 | 783 |
///Instantiates a ProcessedMap. |
784 | 784 |
|
785 | 785 |
///This function instantiates a ProcessedMap. |
786 | 786 |
///\param g is the digraph, to which |
787 | 787 |
///we would like to define the ProcessedMap. |
788 | 788 |
#ifdef DOXYGEN |
789 | 789 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
790 | 790 |
#else |
791 | 791 |
static ProcessedMap *createProcessedMap(const Digraph &) |
792 | 792 |
#endif |
793 | 793 |
{ |
794 | 794 |
return new ProcessedMap(); |
795 | 795 |
} |
796 | 796 |
|
797 | 797 |
///The type of the map that indicates which nodes are reached. |
798 | 798 |
|
799 | 799 |
///The type of the map that indicates which nodes are reached. |
800 | 800 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
801 | 801 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
802 | 802 |
///Instantiates a ReachedMap. |
803 | 803 |
|
804 | 804 |
///This function instantiates a ReachedMap. |
805 | 805 |
///\param g is the digraph, to which |
806 | 806 |
///we would like to define the ReachedMap. |
807 | 807 |
static ReachedMap *createReachedMap(const Digraph &g) |
808 | 808 |
{ |
809 | 809 |
return new ReachedMap(g); |
810 | 810 |
} |
811 | 811 |
|
812 | 812 |
///The type of the map that stores the distances of the nodes. |
813 | 813 |
|
814 | 814 |
///The type of the map that stores the distances of the nodes. |
815 | 815 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
816 | 816 |
typedef typename Digraph::template NodeMap<int> DistMap; |
817 | 817 |
///Instantiates a DistMap. |
818 | 818 |
|
819 | 819 |
///This function instantiates a DistMap. |
820 | 820 |
///\param g is the digraph, to which we would like to define |
821 | 821 |
///the DistMap |
822 | 822 |
static DistMap *createDistMap(const Digraph &g) |
823 | 823 |
{ |
824 | 824 |
return new DistMap(g); |
825 | 825 |
} |
826 | 826 |
|
827 | 827 |
///The type of the DFS paths. |
828 | 828 |
|
829 | 829 |
///The type of the DFS paths. |
830 | 830 |
///It must conform to the \ref concepts::Path "Path" concept. |
831 | 831 |
typedef lemon::Path<Digraph> Path; |
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
/// Default traits class used by DfsWizard |
835 | 835 |
|
836 | 836 |
/// Default traits class used by DfsWizard. |
837 | 837 |
/// \tparam GR The type of the digraph. |
838 | 838 |
template<class GR> |
839 | 839 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
840 | 840 |
{ |
841 | 841 |
|
842 | 842 |
typedef DfsWizardDefaultTraits<GR> Base; |
843 | 843 |
protected: |
844 | 844 |
//The type of the nodes in the digraph. |
845 | 845 |
typedef typename Base::Digraph::Node Node; |
846 | 846 |
|
847 | 847 |
//Pointer to the digraph the algorithm runs on. |
848 | 848 |
void *_g; |
849 | 849 |
//Pointer to the map of reached nodes. |
850 | 850 |
void *_reached; |
851 | 851 |
//Pointer to the map of processed nodes. |
852 | 852 |
void *_processed; |
853 | 853 |
//Pointer to the map of predecessors arcs. |
854 | 854 |
void *_pred; |
855 | 855 |
//Pointer to the map of distances. |
856 | 856 |
void *_dist; |
857 | 857 |
//Pointer to the DFS path to the target node. |
858 | 858 |
void *_path; |
859 | 859 |
//Pointer to the distance of the target node. |
860 | 860 |
int *_di; |
861 | 861 |
|
862 | 862 |
public: |
863 | 863 |
/// Constructor. |
864 | 864 |
|
865 | 865 |
/// This constructor does not require parameters, it initiates |
866 | 866 |
/// all of the attributes to \c 0. |
867 | 867 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
868 | 868 |
_dist(0), _path(0), _di(0) {} |
869 | 869 |
|
870 | 870 |
/// Constructor. |
871 | 871 |
|
872 | 872 |
/// This constructor requires one parameter, |
873 | 873 |
/// others are initiated to \c 0. |
874 | 874 |
/// \param g The digraph the algorithm runs on. |
875 | 875 |
DfsWizardBase(const GR &g) : |
876 | 876 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
877 | 877 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
... | ... |
@@ -39,193 +39,193 @@ |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename V> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \e |
44 | 44 |
typedef V Value; |
45 | 45 |
/// \brief Gives back the zero value of the type. |
46 | 46 |
static Value zero() { |
47 | 47 |
return static_cast<Value>(0); |
48 | 48 |
} |
49 | 49 |
/// \brief Gives back the sum of the given two elements. |
50 | 50 |
static Value plus(const Value& left, const Value& right) { |
51 | 51 |
return left + right; |
52 | 52 |
} |
53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
54 | 54 |
static bool less(const Value& left, const Value& right) { |
55 | 55 |
return left < right; |
56 | 56 |
} |
57 | 57 |
}; |
58 | 58 |
|
59 | 59 |
///Default traits class of Dijkstra class. |
60 | 60 |
|
61 | 61 |
///Default traits class of Dijkstra class. |
62 | 62 |
///\tparam GR The type of the digraph. |
63 | 63 |
///\tparam LEN The type of the length map. |
64 | 64 |
template<typename GR, typename LEN> |
65 | 65 |
struct DijkstraDefaultTraits |
66 | 66 |
{ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 | 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
74 | 74 |
typedef LEN LengthMap; |
75 | 75 |
///The type of the arc lengths. |
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
83 | 83 |
|
84 | 84 |
/// The cross reference type used by the heap. |
85 | 85 |
|
86 | 86 |
/// The cross reference type used by the heap. |
87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
89 | 89 |
///Instantiates a \c HeapCrossRef. |
90 | 90 |
|
91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
92 | 92 |
/// \param g is the digraph, to which we would like to define the |
93 | 93 |
/// \ref HeapCrossRef. |
94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
95 | 95 |
{ |
96 | 96 |
return new HeapCrossRef(g); |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
///The heap type used by the Dijkstra algorithm. |
102 | 102 |
/// |
103 | 103 |
///\sa BinHeap |
104 | 104 |
///\sa Dijkstra |
105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
106 | 106 |
///Instantiates a \c Heap. |
107 | 107 |
|
108 | 108 |
///This function instantiates a \ref Heap. |
109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
110 | 110 |
{ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 | 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 | 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
135 |
///By default it is a NullMap. |
|
135 |
///By default, it is a NullMap. |
|
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 | 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
162 | 162 |
{ |
163 | 163 |
return new DistMap(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 | 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
173 | 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
174 | 174 |
///the BellmanFord algorithm should be used instead. |
175 | 175 |
/// |
176 | 176 |
///The arc lengths are passed to the algorithm using a |
177 | 177 |
///\ref concepts::ReadMap "ReadMap", |
178 | 178 |
///so it is easy to change it to any kind of length. |
179 | 179 |
///The type of the length is determined by the |
180 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
181 | 181 |
///It is also possible to change the underlying priority heap. |
182 | 182 |
/// |
183 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
184 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
185 | 185 |
///it can be used easier. |
186 | 186 |
/// |
187 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
188 | 188 |
///The default type is \ref ListDigraph. |
189 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
190 | 190 |
///the lengths of the arcs. |
191 | 191 |
///It is read once for each arc, so the map may involve in |
192 | 192 |
///relatively time consuming process to compute the arc lengths if |
193 | 193 |
///it is necessary. The default map type is \ref |
194 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
195 | 195 |
#ifdef DOXYGEN |
196 | 196 |
template <typename GR, typename LEN, typename TR> |
197 | 197 |
#else |
198 | 198 |
template <typename GR=ListDigraph, |
199 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
200 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
201 | 201 |
#endif |
202 | 202 |
class Dijkstra { |
203 | 203 |
public: |
204 | 204 |
|
205 | 205 |
///The type of the digraph the algorithm runs on. |
206 | 206 |
typedef typename TR::Digraph Digraph; |
207 | 207 |
|
208 | 208 |
///The type of the arc lengths. |
209 | 209 |
typedef typename TR::Value Value; |
210 | 210 |
///The type of the map that stores the arc lengths. |
211 | 211 |
typedef typename TR::LengthMap LengthMap; |
212 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
213 | 213 |
///shortest paths. |
214 | 214 |
typedef typename TR::PredMap PredMap; |
215 | 215 |
///The type of the map that stores the distances of the nodes. |
216 | 216 |
typedef typename TR::DistMap DistMap; |
217 | 217 |
///The type of the map that indicates which nodes are processed. |
218 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
219 | 219 |
///The type of the paths. |
220 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
221 | 221 |
///The cross reference type used for the current heap. |
222 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
223 | 223 |
///The heap type used by the algorithm. |
224 | 224 |
typedef typename TR::Heap Heap; |
225 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
226 | 226 |
///of the algorithm. |
227 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
228 | 228 |
|
229 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
230 | 230 |
typedef TR Traits; |
231 | 231 |
|
... | ... |
@@ -333,214 +333,214 @@ |
333 | 333 |
template <class T> |
334 | 334 |
struct SetDistMap |
335 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
336 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
337 | 337 |
}; |
338 | 338 |
|
339 | 339 |
template <class T> |
340 | 340 |
struct SetProcessedMapTraits : public Traits { |
341 | 341 |
typedef T ProcessedMap; |
342 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
343 | 343 |
{ |
344 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
345 | 345 |
return 0; // ignore warnings |
346 | 346 |
} |
347 | 347 |
}; |
348 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
349 | 349 |
///\c ProcessedMap type. |
350 | 350 |
/// |
351 | 351 |
///\ref named-templ-param "Named parameter" for setting |
352 | 352 |
///\c ProcessedMap type. |
353 | 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
354 | 354 |
template <class T> |
355 | 355 |
struct SetProcessedMap |
356 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
357 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
struct SetStandardProcessedMapTraits : public Traits { |
361 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
362 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
363 | 363 |
{ |
364 | 364 |
return new ProcessedMap(g); |
365 | 365 |
} |
366 | 366 |
}; |
367 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
368 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
369 | 369 |
/// |
370 | 370 |
///\ref named-templ-param "Named parameter" for setting |
371 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
372 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
373 | 373 |
struct SetStandardProcessedMap |
374 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
375 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
376 | 376 |
Create; |
377 | 377 |
}; |
378 | 378 |
|
379 | 379 |
template <class H, class CR> |
380 | 380 |
struct SetHeapTraits : public Traits { |
381 | 381 |
typedef CR HeapCrossRef; |
382 | 382 |
typedef H Heap; |
383 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
384 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
385 | 385 |
return 0; // ignore warnings |
386 | 386 |
} |
387 | 387 |
static Heap *createHeap(HeapCrossRef &) |
388 | 388 |
{ |
389 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
390 | 390 |
return 0; // ignore warnings |
391 | 391 |
} |
392 | 392 |
}; |
393 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
394 | 394 |
///heap and cross reference types |
395 | 395 |
/// |
396 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
397 | 397 |
///reference types. If this named parameter is used, then external |
398 | 398 |
///heap and cross reference objects must be passed to the algorithm |
399 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
400 | 400 |
///or \ref init(). |
401 | 401 |
///\sa SetStandardHeap |
402 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
403 | 403 |
struct SetHeap |
404 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
405 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
template <class H, class CR> |
409 | 409 |
struct SetStandardHeapTraits : public Traits { |
410 | 410 |
typedef CR HeapCrossRef; |
411 | 411 |
typedef H Heap; |
412 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
413 | 413 |
return new HeapCrossRef(G); |
414 | 414 |
} |
415 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
416 | 416 |
{ |
417 | 417 |
return new Heap(R); |
418 | 418 |
} |
419 | 419 |
}; |
420 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
421 | 421 |
///heap and cross reference types with automatic allocation |
422 | 422 |
/// |
423 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
424 | 424 |
///reference types with automatic allocation. |
425 | 425 |
///They should have standard constructor interfaces to be able to |
426 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
427 | 427 |
///passed to the constructor of the cross reference and the cross |
428 | 428 |
///reference should be passed to the constructor of the heap). |
429 |
///However external heap and cross reference objects could also be |
|
429 |
///However, external heap and cross reference objects could also be |
|
430 | 430 |
///passed to the algorithm using the \ref heap() function before |
431 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
432 | 432 |
///\sa SetHeap |
433 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
434 | 434 |
struct SetStandardHeap |
435 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
436 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
437 | 437 |
Create; |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <class T> |
441 | 441 |
struct SetOperationTraitsTraits : public Traits { |
442 | 442 |
typedef T OperationTraits; |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
446 | 446 |
///\c OperationTraits type |
447 | 447 |
/// |
448 | 448 |
///\ref named-templ-param "Named parameter" for setting |
449 | 449 |
///\c OperationTraits type. |
450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
450 |
/// For more information, see \ref DijkstraDefaultOperationTraits. |
|
451 | 451 |
template <class T> |
452 | 452 |
struct SetOperationTraits |
453 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
454 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
455 | 455 |
Create; |
456 | 456 |
}; |
457 | 457 |
|
458 | 458 |
///@} |
459 | 459 |
|
460 | 460 |
protected: |
461 | 461 |
|
462 | 462 |
Dijkstra() {} |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
///Constructor. |
467 | 467 |
|
468 | 468 |
///Constructor. |
469 | 469 |
///\param g The digraph the algorithm runs on. |
470 | 470 |
///\param length The length map used by the algorithm. |
471 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
472 | 472 |
G(&g), _length(&length), |
473 | 473 |
_pred(NULL), local_pred(false), |
474 | 474 |
_dist(NULL), local_dist(false), |
475 | 475 |
_processed(NULL), local_processed(false), |
476 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
477 | 477 |
_heap(NULL), local_heap(false) |
478 | 478 |
{ } |
479 | 479 |
|
480 | 480 |
///Destructor. |
481 | 481 |
~Dijkstra() |
482 | 482 |
{ |
483 | 483 |
if(local_pred) delete _pred; |
484 | 484 |
if(local_dist) delete _dist; |
485 | 485 |
if(local_processed) delete _processed; |
486 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
487 | 487 |
if(local_heap) delete _heap; |
488 | 488 |
} |
489 | 489 |
|
490 | 490 |
///Sets the length map. |
491 | 491 |
|
492 | 492 |
///Sets the length map. |
493 | 493 |
///\return <tt> (*this) </tt> |
494 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
495 | 495 |
{ |
496 | 496 |
_length = &m; |
497 | 497 |
return *this; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
///Sets the map that stores the predecessor arcs. |
501 | 501 |
|
502 | 502 |
///Sets the map that stores the predecessor arcs. |
503 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
504 | 504 |
///or \ref init(), an instance will be allocated automatically. |
505 | 505 |
///The destructor deallocates this automatically allocated map, |
506 | 506 |
///of course. |
507 | 507 |
///\return <tt> (*this) </tt> |
508 | 508 |
Dijkstra &predMap(PredMap &m) |
509 | 509 |
{ |
510 | 510 |
if(local_pred) { |
511 | 511 |
delete _pred; |
512 | 512 |
local_pred=false; |
513 | 513 |
} |
514 | 514 |
_pred = &m; |
515 | 515 |
return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Sets the map that indicates which nodes are processed. |
519 | 519 |
|
520 | 520 |
///Sets the map that indicates which nodes are processed. |
521 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
522 | 522 |
///or \ref init(), an instance will be allocated automatically. |
523 | 523 |
///The destructor deallocates this automatically allocated map, |
524 | 524 |
///of course. |
525 | 525 |
///\return <tt> (*this) </tt> |
526 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
527 | 527 |
{ |
528 | 528 |
if(local_processed) { |
529 | 529 |
delete _processed; |
530 | 530 |
local_processed=false; |
531 | 531 |
} |
532 | 532 |
_processed = &m; |
533 | 533 |
return *this; |
534 | 534 |
} |
535 | 535 |
|
536 | 536 |
///Sets the map that stores the distances of the nodes. |
537 | 537 |
|
538 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
539 | 539 |
///algorithm. |
540 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
541 | 541 |
///or \ref init(), an instance will be allocated automatically. |
542 | 542 |
///The destructor deallocates this automatically allocated map, |
543 | 543 |
///of course. |
544 | 544 |
///\return <tt> (*this) </tt> |
545 | 545 |
Dijkstra &distMap(DistMap &m) |
546 | 546 |
{ |
... | ... |
@@ -903,193 +903,193 @@ |
903 | 903 |
Heap::POST_HEAP; } |
904 | 904 |
|
905 | 905 |
///The current distance of the given node from the root(s). |
906 | 906 |
|
907 | 907 |
///Returns the current distance of the given node from the root(s). |
908 | 908 |
///It may be decreased in the following processes. |
909 | 909 |
/// |
910 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
911 | 911 |
///must be called before using this function and |
912 | 912 |
///node \c v must be reached but not necessarily processed. |
913 | 913 |
Value currentDist(Node v) const { |
914 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
915 | 915 |
} |
916 | 916 |
|
917 | 917 |
///@} |
918 | 918 |
}; |
919 | 919 |
|
920 | 920 |
|
921 | 921 |
///Default traits class of dijkstra() function. |
922 | 922 |
|
923 | 923 |
///Default traits class of dijkstra() function. |
924 | 924 |
///\tparam GR The type of the digraph. |
925 | 925 |
///\tparam LEN The type of the length map. |
926 | 926 |
template<class GR, class LEN> |
927 | 927 |
struct DijkstraWizardDefaultTraits |
928 | 928 |
{ |
929 | 929 |
///The type of the digraph the algorithm runs on. |
930 | 930 |
typedef GR Digraph; |
931 | 931 |
///The type of the map that stores the arc lengths. |
932 | 932 |
|
933 | 933 |
///The type of the map that stores the arc lengths. |
934 | 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
935 | 935 |
typedef LEN LengthMap; |
936 | 936 |
///The type of the arc lengths. |
937 | 937 |
typedef typename LEN::Value Value; |
938 | 938 |
|
939 | 939 |
/// Operation traits for Dijkstra algorithm. |
940 | 940 |
|
941 | 941 |
/// This class defines the operations that are used in the algorithm. |
942 | 942 |
/// \see DijkstraDefaultOperationTraits |
943 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
944 | 944 |
|
945 | 945 |
/// The cross reference type used by the heap. |
946 | 946 |
|
947 | 947 |
/// The cross reference type used by the heap. |
948 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
949 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
950 | 950 |
///Instantiates a \ref HeapCrossRef. |
951 | 951 |
|
952 | 952 |
///This function instantiates a \ref HeapCrossRef. |
953 | 953 |
/// \param g is the digraph, to which we would like to define the |
954 | 954 |
/// HeapCrossRef. |
955 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
956 | 956 |
{ |
957 | 957 |
return new HeapCrossRef(g); |
958 | 958 |
} |
959 | 959 |
|
960 | 960 |
///The heap type used by the Dijkstra algorithm. |
961 | 961 |
|
962 | 962 |
///The heap type used by the Dijkstra algorithm. |
963 | 963 |
/// |
964 | 964 |
///\sa BinHeap |
965 | 965 |
///\sa Dijkstra |
966 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
967 | 967 |
std::less<Value> > Heap; |
968 | 968 |
|
969 | 969 |
///Instantiates a \ref Heap. |
970 | 970 |
|
971 | 971 |
///This function instantiates a \ref Heap. |
972 | 972 |
/// \param r is the HeapCrossRef which is used. |
973 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
974 | 974 |
{ |
975 | 975 |
return new Heap(r); |
976 | 976 |
} |
977 | 977 |
|
978 | 978 |
///\brief The type of the map that stores the predecessor |
979 | 979 |
///arcs of the shortest paths. |
980 | 980 |
/// |
981 | 981 |
///The type of the map that stores the predecessor |
982 | 982 |
///arcs of the shortest paths. |
983 | 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
984 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
985 | 985 |
///Instantiates a PredMap. |
986 | 986 |
|
987 | 987 |
///This function instantiates a PredMap. |
988 | 988 |
///\param g is the digraph, to which we would like to define the |
989 | 989 |
///PredMap. |
990 | 990 |
static PredMap *createPredMap(const Digraph &g) |
991 | 991 |
{ |
992 | 992 |
return new PredMap(g); |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
///The type of the map that indicates which nodes are processed. |
996 | 996 |
|
997 | 997 |
///The type of the map that indicates which nodes are processed. |
998 | 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
999 |
///By default it is a NullMap. |
|
999 |
///By default, it is a NullMap. |
|
1000 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1001 | 1001 |
///Instantiates a ProcessedMap. |
1002 | 1002 |
|
1003 | 1003 |
///This function instantiates a ProcessedMap. |
1004 | 1004 |
///\param g is the digraph, to which |
1005 | 1005 |
///we would like to define the ProcessedMap. |
1006 | 1006 |
#ifdef DOXYGEN |
1007 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1008 | 1008 |
#else |
1009 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1010 | 1010 |
#endif |
1011 | 1011 |
{ |
1012 | 1012 |
return new ProcessedMap(); |
1013 | 1013 |
} |
1014 | 1014 |
|
1015 | 1015 |
///The type of the map that stores the distances of the nodes. |
1016 | 1016 |
|
1017 | 1017 |
///The type of the map that stores the distances of the nodes. |
1018 | 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
1019 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1020 | 1020 |
///Instantiates a DistMap. |
1021 | 1021 |
|
1022 | 1022 |
///This function instantiates a DistMap. |
1023 | 1023 |
///\param g is the digraph, to which we would like to define |
1024 | 1024 |
///the DistMap |
1025 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
1026 | 1026 |
{ |
1027 | 1027 |
return new DistMap(g); |
1028 | 1028 |
} |
1029 | 1029 |
|
1030 | 1030 |
///The type of the shortest paths. |
1031 | 1031 |
|
1032 | 1032 |
///The type of the shortest paths. |
1033 | 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
1034 | 1034 |
typedef lemon::Path<Digraph> Path; |
1035 | 1035 |
}; |
1036 | 1036 |
|
1037 | 1037 |
/// Default traits class used by DijkstraWizard |
1038 | 1038 |
|
1039 | 1039 |
/// Default traits class used by DijkstraWizard. |
1040 | 1040 |
/// \tparam GR The type of the digraph. |
1041 | 1041 |
/// \tparam LEN The type of the length map. |
1042 | 1042 |
template<typename GR, typename LEN> |
1043 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
1044 | 1044 |
{ |
1045 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
1046 | 1046 |
protected: |
1047 | 1047 |
//The type of the nodes in the digraph. |
1048 | 1048 |
typedef typename Base::Digraph::Node Node; |
1049 | 1049 |
|
1050 | 1050 |
//Pointer to the digraph the algorithm runs on. |
1051 | 1051 |
void *_g; |
1052 | 1052 |
//Pointer to the length map. |
1053 | 1053 |
void *_length; |
1054 | 1054 |
//Pointer to the map of processed nodes. |
1055 | 1055 |
void *_processed; |
1056 | 1056 |
//Pointer to the map of predecessors arcs. |
1057 | 1057 |
void *_pred; |
1058 | 1058 |
//Pointer to the map of distances. |
1059 | 1059 |
void *_dist; |
1060 | 1060 |
//Pointer to the shortest path to the target node. |
1061 | 1061 |
void *_path; |
1062 | 1062 |
//Pointer to the distance of the target node. |
1063 | 1063 |
void *_di; |
1064 | 1064 |
|
1065 | 1065 |
public: |
1066 | 1066 |
/// Constructor. |
1067 | 1067 |
|
1068 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
1069 | 1069 |
/// all of the attributes to \c 0. |
1070 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1071 | 1071 |
_dist(0), _path(0), _di(0) {} |
1072 | 1072 |
|
1073 | 1073 |
/// Constructor. |
1074 | 1074 |
|
1075 | 1075 |
/// This constructor requires two parameters, |
1076 | 1076 |
/// others are initiated to \c 0. |
1077 | 1077 |
/// \param g The digraph the algorithm runs on. |
1078 | 1078 |
/// \param l The length map. |
1079 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
1080 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1081 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
1082 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1083 | 1083 |
|
1084 | 1084 |
}; |
1085 | 1085 |
|
1086 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1087 | 1087 |
|
1088 | 1088 |
/// This auxiliary class is created to implement the |
1089 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1090 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
1091 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
1092 | 1092 |
/// |
1093 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
1094 | 1094 |
/// which makes it easier to use the algorithm. |
1095 | 1095 |
template<class TR> |
... | ... |
@@ -201,293 +201,291 @@ |
201 | 201 |
///@{ |
202 | 202 |
|
203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
204 | 204 |
/// |
205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
206 | 206 |
void run() { |
207 | 207 |
init(); |
208 | 208 |
start(); |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
/// @} |
212 | 212 |
|
213 | 213 |
///\name Query Functions |
214 | 214 |
///The results of the algorithm can be obtained using these |
215 | 215 |
///functions.\n |
216 | 216 |
///\ref run() should be called before using them.\n |
217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
218 | 218 |
|
219 | 219 |
///@{ |
220 | 220 |
|
221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
222 | 222 |
/// |
223 | 223 |
/// This function returns the predecessor node of the given node |
224 | 224 |
/// in the Gomory-Hu tree. |
225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
226 | 226 |
/// |
227 | 227 |
/// \pre \ref run() must be called before using this function. |
228 | 228 |
Node predNode(const Node& node) const { |
229 | 229 |
return (*_pred)[node]; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
233 | 233 |
/// Gomory-Hu tree. |
234 | 234 |
/// |
235 | 235 |
/// This function returns the weight of the predecessor edge of the |
236 | 236 |
/// given node in the Gomory-Hu tree. |
237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
238 | 238 |
/// |
239 | 239 |
/// \pre \ref run() must be called before using this function. |
240 | 240 |
Value predValue(const Node& node) const { |
241 | 241 |
return (*_weight)[node]; |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
245 | 245 |
/// |
246 | 246 |
/// This function returns the distance of the given node from the root |
247 | 247 |
/// node in the Gomory-Hu tree. |
248 | 248 |
/// |
249 | 249 |
/// \pre \ref run() must be called before using this function. |
250 | 250 |
int rootDist(const Node& node) const { |
251 | 251 |
return (*_order)[node]; |
252 | 252 |
} |
253 | 253 |
|
254 | 254 |
/// \brief Return the minimum cut value between two nodes |
255 | 255 |
/// |
256 | 256 |
/// This function returns the minimum cut value between the nodes |
257 | 257 |
/// \c s and \c t. |
258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
260 | 260 |
/// paths to the ancestor. |
261 | 261 |
/// |
262 | 262 |
/// \pre \ref run() must be called before using this function. |
263 | 263 |
Value minCutValue(const Node& s, const Node& t) const { |
264 | 264 |
Node sn = s, tn = t; |
265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
266 | 266 |
|
267 | 267 |
while (sn != tn) { |
268 | 268 |
if ((*_order)[sn] < (*_order)[tn]) { |
269 | 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
270 | 270 |
tn = (*_pred)[tn]; |
271 | 271 |
} else { |
272 | 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
273 | 273 |
sn = (*_pred)[sn]; |
274 | 274 |
} |
275 | 275 |
} |
276 | 276 |
return value; |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Return the minimum cut between two nodes |
280 | 280 |
/// |
281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
284 | 284 |
/// |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
287 | 287 |
/// \param s The base node. |
288 | 288 |
/// \param t The node you want to separate from node \c s. |
289 | 289 |
/// \param cutMap The cut will be returned in this map. |
290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 |
Value minCutMap(const Node& s, |
|
297 |
Value minCutMap(const Node& s, |
|
298 | 298 |
const Node& t, |
299 |
///< |
|
300 | 299 |
CutMap& cutMap |
301 |
///< |
|
302 | 300 |
) const { |
303 | 301 |
Node sn = s, tn = t; |
304 | 302 |
bool s_root=false; |
305 | 303 |
Node rn = INVALID; |
306 | 304 |
Value value = std::numeric_limits<Value>::max(); |
307 | 305 |
|
308 | 306 |
while (sn != tn) { |
309 | 307 |
if ((*_order)[sn] < (*_order)[tn]) { |
310 | 308 |
if ((*_weight)[tn] <= value) { |
311 | 309 |
rn = tn; |
312 | 310 |
s_root = false; |
313 | 311 |
value = (*_weight)[tn]; |
314 | 312 |
} |
315 | 313 |
tn = (*_pred)[tn]; |
316 | 314 |
} else { |
317 | 315 |
if ((*_weight)[sn] <= value) { |
318 | 316 |
rn = sn; |
319 | 317 |
s_root = true; |
320 | 318 |
value = (*_weight)[sn]; |
321 | 319 |
} |
322 | 320 |
sn = (*_pred)[sn]; |
323 | 321 |
} |
324 | 322 |
} |
325 | 323 |
|
326 | 324 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 325 |
reached[_root] = true; |
328 | 326 |
cutMap.set(_root, !s_root); |
329 | 327 |
reached[rn] = true; |
330 | 328 |
cutMap.set(rn, s_root); |
331 | 329 |
|
332 | 330 |
std::vector<Node> st; |
333 | 331 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 | 332 |
st.clear(); |
335 | 333 |
Node nn = n; |
336 | 334 |
while (!reached[nn]) { |
337 | 335 |
st.push_back(nn); |
338 | 336 |
nn = (*_pred)[nn]; |
339 | 337 |
} |
340 | 338 |
while (!st.empty()) { |
341 | 339 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 340 |
st.pop_back(); |
343 | 341 |
} |
344 | 342 |
} |
345 | 343 |
|
346 | 344 |
return value; |
347 | 345 |
} |
348 | 346 |
|
349 | 347 |
///@} |
350 | 348 |
|
351 | 349 |
friend class MinCutNodeIt; |
352 | 350 |
|
353 | 351 |
/// Iterate on the nodes of a minimum cut |
354 | 352 |
|
355 | 353 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 354 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 355 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 356 |
/// |
359 | 357 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 358 |
/// \c t. |
361 | 359 |
/// \code |
362 | 360 |
/// GomoryHu<Graph> gom(g, capacities); |
363 | 361 |
/// gom.run(); |
364 | 362 |
/// int cnt=0; |
365 | 363 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
366 | 364 |
/// \endcode |
367 | 365 |
class MinCutNodeIt |
368 | 366 |
{ |
369 | 367 |
bool _side; |
370 | 368 |
typename Graph::NodeIt _node_it; |
371 | 369 |
typename Graph::template NodeMap<bool> _cut; |
372 | 370 |
public: |
373 | 371 |
/// Constructor |
374 | 372 |
|
375 | 373 |
/// Constructor. |
376 | 374 |
/// |
377 | 375 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 376 |
///< The GomoryHu class. You must call its |
379 | 377 |
/// run() method |
380 | 378 |
/// before initializing this iterator. |
381 | 379 |
const Node& s, ///< The base node. |
382 | 380 |
const Node& t, |
383 | 381 |
///< The node you want to separate from node \c s. |
384 | 382 |
bool side=true |
385 | 383 |
///< If it is \c true (default) then the iterator lists |
386 | 384 |
/// the nodes of the component containing \c s, |
387 | 385 |
/// otherwise it lists the other component. |
388 | 386 |
/// \note As the minimum cut is not always unique, |
389 | 387 |
/// \code |
390 | 388 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 389 |
/// \endcode |
392 | 390 |
/// and |
393 | 391 |
/// \code |
394 | 392 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 393 |
/// \endcode |
396 | 394 |
/// does not necessarily give the same set of nodes. |
397 |
/// However it is ensured that |
|
395 |
/// However, it is ensured that |
|
398 | 396 |
/// \code |
399 | 397 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 398 |
/// \endcode |
401 | 399 |
/// and |
402 | 400 |
/// \code |
403 | 401 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 402 |
/// \endcode |
405 | 403 |
/// together list each node exactly once. |
406 | 404 |
) |
407 | 405 |
: _side(side), _cut(gomory._graph) |
408 | 406 |
{ |
409 | 407 |
gomory.minCutMap(s,t,_cut); |
410 | 408 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 409 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 410 |
++_node_it) {} |
413 | 411 |
} |
414 | 412 |
/// Conversion to \c Node |
415 | 413 |
|
416 | 414 |
/// Conversion to \c Node. |
417 | 415 |
/// |
418 | 416 |
operator typename Graph::Node() const |
419 | 417 |
{ |
420 | 418 |
return _node_it; |
421 | 419 |
} |
422 | 420 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 421 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 422 |
/// Next node |
425 | 423 |
|
426 | 424 |
/// Next node. |
427 | 425 |
/// |
428 | 426 |
MinCutNodeIt &operator++() |
429 | 427 |
{ |
430 | 428 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 429 |
return *this; |
432 | 430 |
} |
433 | 431 |
/// Postfix incrementation |
434 | 432 |
|
435 | 433 |
/// Postfix incrementation. |
436 | 434 |
/// |
437 | 435 |
/// \warning This incrementation |
438 | 436 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 437 |
/// expect. |
440 | 438 |
typename Graph::Node operator++(int) |
441 | 439 |
{ |
442 | 440 |
typename Graph::Node n=*this; |
443 | 441 |
++(*this); |
444 | 442 |
return n; |
445 | 443 |
} |
446 | 444 |
}; |
447 | 445 |
|
448 | 446 |
friend class MinCutEdgeIt; |
449 | 447 |
|
450 | 448 |
/// Iterate on the edges of a minimum cut |
451 | 449 |
|
452 | 450 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 451 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 452 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 453 |
/// |
456 | 454 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 455 |
/// \c t. |
458 | 456 |
/// \code |
459 | 457 |
/// GomoryHu<Graph> gom(g, capacities); |
460 | 458 |
/// gom.run(); |
461 | 459 |
/// int value=0; |
462 | 460 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
463 | 461 |
/// value+=capacities[e]; |
464 | 462 |
/// \endcode |
465 | 463 |
/// The result will be the same as the value returned by |
466 | 464 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 465 |
class MinCutEdgeIt |
468 | 466 |
{ |
469 | 467 |
bool _side; |
470 | 468 |
const Graph &_graph; |
471 | 469 |
typename Graph::NodeIt _node_it; |
472 | 470 |
typename Graph::OutArcIt _arc_it; |
473 | 471 |
typename Graph::template NodeMap<bool> _cut; |
474 | 472 |
void step() |
475 | 473 |
{ |
476 | 474 |
++_arc_it; |
477 | 475 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 476 |
{ |
479 | 477 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 478 |
if(_node_it!=INVALID) |
481 | 479 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 480 |
} |
483 | 481 |
} |
484 | 482 |
|
485 | 483 |
public: |
486 | 484 |
/// Constructor |
487 | 485 |
|
488 | 486 |
/// Constructor. |
489 | 487 |
/// |
490 | 488 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 489 |
///< The GomoryHu class. You must call its |
492 | 490 |
/// run() method |
493 | 491 |
/// before initializing this iterator. |
... | ... |
@@ -49,193 +49,193 @@ |
49 | 49 |
|
50 | 50 |
namespace _graph_to_eps_bits { |
51 | 51 |
template<class MT> |
52 | 52 |
class _NegY { |
53 | 53 |
public: |
54 | 54 |
typedef typename MT::Key Key; |
55 | 55 |
typedef typename MT::Value Value; |
56 | 56 |
const MT ↦ |
57 | 57 |
int yscale; |
58 | 58 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
59 | 59 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
60 | 60 |
}; |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
///Default traits class of GraphToEps |
64 | 64 |
|
65 | 65 |
///Default traits class of \ref GraphToEps. |
66 | 66 |
/// |
67 | 67 |
///\param GR is the type of the underlying graph. |
68 | 68 |
template<class GR> |
69 | 69 |
struct DefaultGraphToEpsTraits |
70 | 70 |
{ |
71 | 71 |
typedef GR Graph; |
72 | 72 |
typedef GR Digraph; |
73 | 73 |
typedef typename Graph::Node Node; |
74 | 74 |
typedef typename Graph::NodeIt NodeIt; |
75 | 75 |
typedef typename Graph::Arc Arc; |
76 | 76 |
typedef typename Graph::ArcIt ArcIt; |
77 | 77 |
typedef typename Graph::InArcIt InArcIt; |
78 | 78 |
typedef typename Graph::OutArcIt OutArcIt; |
79 | 79 |
|
80 | 80 |
|
81 | 81 |
const Graph &g; |
82 | 82 |
|
83 | 83 |
std::ostream& os; |
84 | 84 |
|
85 | 85 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
86 | 86 |
CoordsMapType _coords; |
87 | 87 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
88 | 88 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
89 | 89 |
|
90 | 90 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
91 | 91 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
92 | 92 |
|
93 | 93 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
94 | 94 |
|
95 | 95 |
double _arcWidthScale; |
96 | 96 |
|
97 | 97 |
double _nodeScale; |
98 | 98 |
double _xBorder, _yBorder; |
99 | 99 |
double _scale; |
100 | 100 |
double _nodeBorderQuotient; |
101 | 101 |
|
102 | 102 |
bool _drawArrows; |
103 | 103 |
double _arrowLength, _arrowWidth; |
104 | 104 |
|
105 | 105 |
bool _showNodes, _showArcs; |
106 | 106 |
|
107 | 107 |
bool _enableParallel; |
108 | 108 |
double _parArcDist; |
109 | 109 |
|
110 | 110 |
bool _showNodeText; |
111 | 111 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
112 | 112 |
double _nodeTextSize; |
113 | 113 |
|
114 | 114 |
bool _showNodePsText; |
115 | 115 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
116 | 116 |
char *_nodePsTextsPreamble; |
117 | 117 |
|
118 | 118 |
bool _undirected; |
119 | 119 |
|
120 | 120 |
bool _pleaseRemoveOsStream; |
121 | 121 |
|
122 | 122 |
bool _scaleToA4; |
123 | 123 |
|
124 | 124 |
std::string _title; |
125 | 125 |
std::string _copyright; |
126 | 126 |
|
127 | 127 |
enum NodeTextColorType |
128 | 128 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
129 | 129 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
130 | 130 |
|
131 | 131 |
bool _autoNodeScale; |
132 | 132 |
bool _autoArcWidthScale; |
133 | 133 |
|
134 | 134 |
bool _absoluteNodeSizes; |
135 | 135 |
bool _absoluteArcWidths; |
136 | 136 |
|
137 | 137 |
bool _negY; |
138 | 138 |
|
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param gr Reference to the graph to be printed. |
144 | 144 |
///\param ost Reference to the output stream. |
145 |
///By default it is <tt>std::cout</tt>. |
|
145 |
///By default, it is <tt>std::cout</tt>. |
|
146 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
147 | 147 |
///will be explicitly deallocated by the destructor. |
148 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
149 | 149 |
bool pros = false) : |
150 | 150 |
g(gr), os(ost), |
151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
152 | 152 |
_nodeColors(WHITE), _arcColors(BLACK), |
153 | 153 |
_arcWidths(1.0), _arcWidthScale(0.003), |
154 | 154 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
155 | 155 |
_nodeBorderQuotient(.1), |
156 | 156 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
157 | 157 |
_showNodes(true), _showArcs(true), |
158 | 158 |
_enableParallel(false), _parArcDist(1), |
159 | 159 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
160 | 160 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
161 | 161 |
_undirected(lemon::UndirectedTagIndicator<GR>::value), |
162 | 162 |
_pleaseRemoveOsStream(pros), _scaleToA4(false), |
163 | 163 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
164 | 164 |
_autoNodeScale(false), |
165 | 165 |
_autoArcWidthScale(false), |
166 | 166 |
_absoluteNodeSizes(false), |
167 | 167 |
_absoluteArcWidths(false), |
168 | 168 |
_negY(false), |
169 | 169 |
_preScale(true) |
170 | 170 |
{} |
171 | 171 |
}; |
172 | 172 |
|
173 | 173 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
174 | 174 |
|
175 | 175 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
176 | 176 |
/// |
177 | 177 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
178 | 178 |
template<class T> class GraphToEps : public T |
179 | 179 |
{ |
180 | 180 |
// Can't believe it is required by the C++ standard |
181 | 181 |
using T::g; |
182 | 182 |
using T::os; |
183 | 183 |
|
184 | 184 |
using T::_coords; |
185 | 185 |
using T::_nodeSizes; |
186 | 186 |
using T::_nodeShapes; |
187 | 187 |
using T::_nodeColors; |
188 | 188 |
using T::_arcColors; |
189 | 189 |
using T::_arcWidths; |
190 | 190 |
|
191 | 191 |
using T::_arcWidthScale; |
192 | 192 |
using T::_nodeScale; |
193 | 193 |
using T::_xBorder; |
194 | 194 |
using T::_yBorder; |
195 | 195 |
using T::_scale; |
196 | 196 |
using T::_nodeBorderQuotient; |
197 | 197 |
|
198 | 198 |
using T::_drawArrows; |
199 | 199 |
using T::_arrowLength; |
200 | 200 |
using T::_arrowWidth; |
201 | 201 |
|
202 | 202 |
using T::_showNodes; |
203 | 203 |
using T::_showArcs; |
204 | 204 |
|
205 | 205 |
using T::_enableParallel; |
206 | 206 |
using T::_parArcDist; |
207 | 207 |
|
208 | 208 |
using T::_showNodeText; |
209 | 209 |
using T::_nodeTexts; |
210 | 210 |
using T::_nodeTextSize; |
211 | 211 |
|
212 | 212 |
using T::_showNodePsText; |
213 | 213 |
using T::_nodePsTexts; |
214 | 214 |
using T::_nodePsTextsPreamble; |
215 | 215 |
|
216 | 216 |
using T::_undirected; |
217 | 217 |
|
218 | 218 |
using T::_pleaseRemoveOsStream; |
219 | 219 |
|
220 | 220 |
using T::_scaleToA4; |
221 | 221 |
|
222 | 222 |
using T::_title; |
223 | 223 |
using T::_copyright; |
224 | 224 |
|
225 | 225 |
using T::NodeTextColorType; |
226 | 226 |
using T::CUST_COL; |
227 | 227 |
using T::DIST_COL; |
228 | 228 |
using T::DIST_BW; |
229 | 229 |
using T::_nodeTextColorType; |
230 | 230 |
using T::_nodeTextColors; |
231 | 231 |
|
232 | 232 |
using T::_autoNodeScale; |
233 | 233 |
using T::_autoArcWidthScale; |
234 | 234 |
|
235 | 235 |
using T::_absoluteNodeSizes; |
236 | 236 |
using T::_absoluteArcWidths; |
237 | 237 |
|
238 | 238 |
|
239 | 239 |
using T::_negY; |
240 | 240 |
using T::_preScale; |
241 | 241 |
|
... | ... |
@@ -419,193 +419,193 @@ |
419 | 419 |
{ |
420 | 420 |
dontPrint=true; |
421 | 421 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
422 | 422 |
} |
423 | 423 |
|
424 | 424 |
template<class X> struct NodeColorsTraits : public T { |
425 | 425 |
const X &_nodeColors; |
426 | 426 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
427 | 427 |
}; |
428 | 428 |
///Sets the map of the node colors |
429 | 429 |
|
430 | 430 |
///Sets the map of the node colors. |
431 | 431 |
///\param x must be a node map with \ref Color values. |
432 | 432 |
/// |
433 | 433 |
///\sa Palette |
434 | 434 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
435 | 435 |
nodeColors(const X &x) |
436 | 436 |
{ |
437 | 437 |
dontPrint=true; |
438 | 438 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
439 | 439 |
} |
440 | 440 |
template<class X> struct NodeTextColorsTraits : public T { |
441 | 441 |
const X &_nodeTextColors; |
442 | 442 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
443 | 443 |
}; |
444 | 444 |
///Sets the map of the node text colors |
445 | 445 |
|
446 | 446 |
///Sets the map of the node text colors. |
447 | 447 |
///\param x must be a node map with \ref Color values. |
448 | 448 |
/// |
449 | 449 |
///\sa Palette |
450 | 450 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
451 | 451 |
nodeTextColors(const X &x) |
452 | 452 |
{ |
453 | 453 |
dontPrint=true; |
454 | 454 |
_nodeTextColorType=CUST_COL; |
455 | 455 |
return GraphToEps<NodeTextColorsTraits<X> > |
456 | 456 |
(NodeTextColorsTraits<X>(*this,x)); |
457 | 457 |
} |
458 | 458 |
template<class X> struct ArcColorsTraits : public T { |
459 | 459 |
const X &_arcColors; |
460 | 460 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
461 | 461 |
}; |
462 | 462 |
///Sets the map of the arc colors |
463 | 463 |
|
464 | 464 |
///Sets the map of the arc colors. |
465 | 465 |
///\param x must be an arc map with \ref Color values. |
466 | 466 |
/// |
467 | 467 |
///\sa Palette |
468 | 468 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
469 | 469 |
arcColors(const X &x) |
470 | 470 |
{ |
471 | 471 |
dontPrint=true; |
472 | 472 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
473 | 473 |
} |
474 | 474 |
///Sets a global scale factor for node sizes |
475 | 475 |
|
476 | 476 |
///Sets a global scale factor for node sizes. |
477 | 477 |
/// |
478 | 478 |
/// If nodeSizes() is not given, this function simply sets the node |
479 | 479 |
/// sizes to \c d. If nodeSizes() is given, but |
480 | 480 |
/// autoNodeScale() is not, then the node size given by |
481 | 481 |
/// nodeSizes() will be multiplied by the value \c d. |
482 | 482 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
483 | 483 |
/// node sizes will be scaled in such a way that the greatest size will be |
484 | 484 |
/// equal to \c d. |
485 | 485 |
/// \sa nodeSizes() |
486 | 486 |
/// \sa autoNodeScale() |
487 | 487 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
488 | 488 |
///Turns on/off the automatic node size scaling. |
489 | 489 |
|
490 | 490 |
///Turns on/off the automatic node size scaling. |
491 | 491 |
/// |
492 | 492 |
///\sa nodeScale() |
493 | 493 |
/// |
494 | 494 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
495 | 495 |
_autoNodeScale=b;return *this; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
///Turns on/off the absolutematic node size scaling. |
499 | 499 |
|
500 | 500 |
///Turns on/off the absolutematic node size scaling. |
501 | 501 |
/// |
502 | 502 |
///\sa nodeScale() |
503 | 503 |
/// |
504 | 504 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
505 | 505 |
_absoluteNodeSizes=b;return *this; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
///Negates the Y coordinates. |
509 | 509 |
GraphToEps<T> &negateY(bool b=true) { |
510 | 510 |
_negY=b;return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Turn on/off pre-scaling |
514 | 514 |
|
515 |
///By default graphToEps() rescales the whole image in order to avoid |
|
515 |
///By default, graphToEps() rescales the whole image in order to avoid |
|
516 | 516 |
///very big or very small bounding boxes. |
517 | 517 |
/// |
518 | 518 |
///This (p)rescaling can be turned off with this function. |
519 | 519 |
/// |
520 | 520 |
GraphToEps<T> &preScale(bool b=true) { |
521 | 521 |
_preScale=b;return *this; |
522 | 522 |
} |
523 | 523 |
|
524 | 524 |
///Sets a global scale factor for arc widths |
525 | 525 |
|
526 | 526 |
/// Sets a global scale factor for arc widths. |
527 | 527 |
/// |
528 | 528 |
/// If arcWidths() is not given, this function simply sets the arc |
529 | 529 |
/// widths to \c d. If arcWidths() is given, but |
530 | 530 |
/// autoArcWidthScale() is not, then the arc withs given by |
531 | 531 |
/// arcWidths() will be multiplied by the value \c d. |
532 | 532 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
533 | 533 |
/// arc withs will be scaled in such a way that the greatest width will be |
534 | 534 |
/// equal to \c d. |
535 | 535 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
536 | 536 |
///Turns on/off the automatic arc width scaling. |
537 | 537 |
|
538 | 538 |
///Turns on/off the automatic arc width scaling. |
539 | 539 |
/// |
540 | 540 |
///\sa arcWidthScale() |
541 | 541 |
/// |
542 | 542 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
543 | 543 |
_autoArcWidthScale=b;return *this; |
544 | 544 |
} |
545 | 545 |
///Turns on/off the absolutematic arc width scaling. |
546 | 546 |
|
547 | 547 |
///Turns on/off the absolutematic arc width scaling. |
548 | 548 |
/// |
549 | 549 |
///\sa arcWidthScale() |
550 | 550 |
/// |
551 | 551 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
552 | 552 |
_absoluteArcWidths=b;return *this; |
553 | 553 |
} |
554 | 554 |
///Sets a global scale factor for the whole picture |
555 | 555 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
556 | 556 |
///Sets the width of the border around the picture |
557 | 557 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
558 | 558 |
///Sets the width of the border around the picture |
559 | 559 |
GraphToEps<T> &border(double x, double y) { |
560 | 560 |
_xBorder=x;_yBorder=y;return *this; |
561 | 561 |
} |
562 | 562 |
///Sets whether to draw arrows |
563 | 563 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
564 | 564 |
///Sets the length of the arrowheads |
565 | 565 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
566 | 566 |
///Sets the width of the arrowheads |
567 | 567 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
568 | 568 |
|
569 | 569 |
///Scales the drawing to fit to A4 page |
570 | 570 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
571 | 571 |
|
572 | 572 |
///Enables parallel arcs |
573 | 573 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
574 | 574 |
|
575 | 575 |
///Sets the distance between parallel arcs |
576 | 576 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
577 | 577 |
|
578 | 578 |
///Hides the arcs |
579 | 579 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
580 | 580 |
///Hides the nodes |
581 | 581 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
582 | 582 |
|
583 | 583 |
///Sets the size of the node texts |
584 | 584 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
585 | 585 |
|
586 | 586 |
///Sets the color of the node texts to be different from the node color |
587 | 587 |
|
588 | 588 |
///Sets the color of the node texts to be as different from the node color |
589 | 589 |
///as it is possible. |
590 | 590 |
GraphToEps<T> &distantColorNodeTexts() |
591 | 591 |
{_nodeTextColorType=DIST_COL;return *this;} |
592 | 592 |
///Sets the color of the node texts to be black or white and always visible. |
593 | 593 |
|
594 | 594 |
///Sets the color of the node texts to be black or white according to |
595 | 595 |
///which is more different from the node color. |
596 | 596 |
GraphToEps<T> &distantBWNodeTexts() |
597 | 597 |
{_nodeTextColorType=DIST_BW;return *this;} |
598 | 598 |
|
599 | 599 |
///Gives a preamble block for node Postscript block. |
600 | 600 |
|
601 | 601 |
///Gives a preamble block for node Postscript block. |
602 | 602 |
/// |
603 | 603 |
///\sa nodePsTexts() |
604 | 604 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
605 | 605 |
_nodePsTextsPreamble=str ;return *this; |
606 | 606 |
} |
607 | 607 |
///Sets whether the graph is undirected |
608 | 608 |
|
609 | 609 |
///Sets whether the graph is undirected. |
610 | 610 |
/// |
611 | 611 |
///This setting is the default for undirected graphs. |
... | ... |
@@ -1021,167 +1021,167 @@ |
1021 | 1021 |
} |
1022 | 1022 |
if(_showNodeText) { |
1023 | 1023 |
os << "%Node texts:\ngsave\n"; |
1024 | 1024 |
os << "/fosi " << _nodeTextSize << " def\n"; |
1025 | 1025 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
1026 | 1026 |
for(NodeIt n(g);n!=INVALID;++n) { |
1027 | 1027 |
switch(_nodeTextColorType) { |
1028 | 1028 |
case DIST_COL: |
1029 | 1029 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
1030 | 1030 |
break; |
1031 | 1031 |
case DIST_BW: |
1032 | 1032 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
1033 | 1033 |
break; |
1034 | 1034 |
case CUST_COL: |
1035 | 1035 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
1036 | 1036 |
break; |
1037 | 1037 |
default: |
1038 | 1038 |
os << "0 0 0 setrgbcolor\n"; |
1039 | 1039 |
} |
1040 | 1040 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1041 | 1041 |
<< " (" << _nodeTexts[n] << ") cshow\n"; |
1042 | 1042 |
} |
1043 | 1043 |
os << "grestore\n"; |
1044 | 1044 |
} |
1045 | 1045 |
if(_showNodePsText) { |
1046 | 1046 |
os << "%Node PS blocks:\ngsave\n"; |
1047 | 1047 |
for(NodeIt n(g);n!=INVALID;++n) |
1048 | 1048 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1049 | 1049 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
1050 | 1050 |
os << "grestore\n"; |
1051 | 1051 |
} |
1052 | 1052 |
|
1053 | 1053 |
os << "grestore\nshowpage\n"; |
1054 | 1054 |
|
1055 | 1055 |
//CleanUp: |
1056 | 1056 |
if(_pleaseRemoveOsStream) {delete &os;} |
1057 | 1057 |
} |
1058 | 1058 |
|
1059 | 1059 |
///\name Aliases |
1060 | 1060 |
///These are just some aliases to other parameter setting functions. |
1061 | 1061 |
|
1062 | 1062 |
///@{ |
1063 | 1063 |
|
1064 | 1064 |
///An alias for arcWidths() |
1065 | 1065 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
1066 | 1066 |
{ |
1067 | 1067 |
return arcWidths(x); |
1068 | 1068 |
} |
1069 | 1069 |
|
1070 | 1070 |
///An alias for arcColors() |
1071 | 1071 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
1072 | 1072 |
edgeColors(const X &x) |
1073 | 1073 |
{ |
1074 | 1074 |
return arcColors(x); |
1075 | 1075 |
} |
1076 | 1076 |
|
1077 | 1077 |
///An alias for arcWidthScale() |
1078 | 1078 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);} |
1079 | 1079 |
|
1080 | 1080 |
///An alias for autoArcWidthScale() |
1081 | 1081 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
1082 | 1082 |
{ |
1083 | 1083 |
return autoArcWidthScale(b); |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
///An alias for absoluteArcWidths() |
1087 | 1087 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
1088 | 1088 |
{ |
1089 | 1089 |
return absoluteArcWidths(b); |
1090 | 1090 |
} |
1091 | 1091 |
|
1092 | 1092 |
///An alias for parArcDist() |
1093 | 1093 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1094 | 1094 |
|
1095 | 1095 |
///An alias for hideArcs() |
1096 | 1096 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1097 | 1097 |
|
1098 | 1098 |
///@} |
1099 | 1099 |
}; |
1100 | 1100 |
|
1101 | 1101 |
template<class T> |
1102 | 1102 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1103 | 1103 |
template<class T> |
1104 | 1104 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1105 | 1105 |
template<class T> |
1106 | 1106 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1107 | 1107 |
template<class T> |
1108 | 1108 |
const double GraphToEps<T>::A4BORDER = 15; |
1109 | 1109 |
|
1110 | 1110 |
|
1111 | 1111 |
///Generates an EPS file from a graph |
1112 | 1112 |
|
1113 | 1113 |
///\ingroup eps_io |
1114 | 1114 |
///Generates an EPS file from a graph. |
1115 | 1115 |
///\param g Reference to the graph to be printed. |
1116 | 1116 |
///\param os Reference to the output stream. |
1117 |
///By default it is <tt>std::cout</tt>. |
|
1117 |
///By default, it is <tt>std::cout</tt>. |
|
1118 | 1118 |
/// |
1119 | 1119 |
///This function also has a lot of |
1120 | 1120 |
///\ref named-templ-func-param "named parameters", |
1121 | 1121 |
///they are declared as the members of class \ref GraphToEps. The following |
1122 | 1122 |
///example shows how to use these parameters. |
1123 | 1123 |
///\code |
1124 | 1124 |
/// graphToEps(g,os).scale(10).coords(coords) |
1125 | 1125 |
/// .nodeScale(2).nodeSizes(sizes) |
1126 | 1126 |
/// .arcWidthScale(.4).run(); |
1127 | 1127 |
///\endcode |
1128 | 1128 |
/// |
1129 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
|
1129 |
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file. |
|
1130 | 1130 |
/// |
1131 | 1131 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1132 | 1132 |
///to the end of the parameter list. |
1133 | 1133 |
///\sa GraphToEps |
1134 | 1134 |
///\sa graphToEps(GR &g, const char *file_name) |
1135 | 1135 |
template<class GR> |
1136 | 1136 |
GraphToEps<DefaultGraphToEpsTraits<GR> > |
1137 | 1137 |
graphToEps(GR &g, std::ostream& os=std::cout) |
1138 | 1138 |
{ |
1139 | 1139 |
return |
1140 | 1140 |
GraphToEps<DefaultGraphToEpsTraits<GR> >(DefaultGraphToEpsTraits<GR>(g,os)); |
1141 | 1141 |
} |
1142 | 1142 |
|
1143 | 1143 |
///Generates an EPS file from a graph |
1144 | 1144 |
|
1145 | 1145 |
///\ingroup eps_io |
1146 | 1146 |
///This function does the same as |
1147 | 1147 |
///\ref graphToEps(GR &g,std::ostream& os) |
1148 | 1148 |
///but it writes its output into the file \c file_name |
1149 | 1149 |
///instead of a stream. |
1150 | 1150 |
///\sa graphToEps(GR &g, std::ostream& os) |
1151 | 1151 |
template<class GR> |
1152 | 1152 |
GraphToEps<DefaultGraphToEpsTraits<GR> > |
1153 | 1153 |
graphToEps(GR &g,const char *file_name) |
1154 | 1154 |
{ |
1155 | 1155 |
std::ostream* os = new std::ofstream(file_name); |
1156 | 1156 |
if (!(*os)) { |
1157 | 1157 |
delete os; |
1158 | 1158 |
throw IoError("Cannot write file", file_name); |
1159 | 1159 |
} |
1160 | 1160 |
return GraphToEps<DefaultGraphToEpsTraits<GR> > |
1161 | 1161 |
(DefaultGraphToEpsTraits<GR>(g,*os,true)); |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
///Generates an EPS file from a graph |
1165 | 1165 |
|
1166 | 1166 |
///\ingroup eps_io |
1167 | 1167 |
///This function does the same as |
1168 | 1168 |
///\ref graphToEps(GR &g,std::ostream& os) |
1169 | 1169 |
///but it writes its output into the file \c file_name |
1170 | 1170 |
///instead of a stream. |
1171 | 1171 |
///\sa graphToEps(GR &g, std::ostream& os) |
1172 | 1172 |
template<class GR> |
1173 | 1173 |
GraphToEps<DefaultGraphToEpsTraits<GR> > |
1174 | 1174 |
graphToEps(GR &g,const std::string& file_name) |
1175 | 1175 |
{ |
1176 | 1176 |
std::ostream* os = new std::ofstream(file_name.c_str()); |
1177 | 1177 |
if (!(*os)) { |
1178 | 1178 |
delete os; |
1179 | 1179 |
throw IoError("Cannot write file", file_name); |
1180 | 1180 |
} |
1181 | 1181 |
return GraphToEps<DefaultGraphToEpsTraits<GR> > |
1182 | 1182 |
(DefaultGraphToEpsTraits<GR>(g,*os,true)); |
1183 | 1183 |
} |
1184 | 1184 |
|
1185 | 1185 |
} //END OF NAMESPACE LEMON |
1186 | 1186 |
|
1187 | 1187 |
#endif // LEMON_GRAPH_TO_EPS_H |
... | ... |
@@ -194,193 +194,193 @@ |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
void nextInc(Edge& edge, bool& dir) const { |
197 | 197 |
Node n = dir ? u(edge) : v(edge); |
198 | 198 |
int k = (edge._id >> (_dim-1)) + 1; |
199 | 199 |
if (k < _dim) { |
200 | 200 |
edge._id = (k << (_dim-1)) | |
201 | 201 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
202 | 202 |
dir = ((n._id >> k) & 1) == 0; |
203 | 203 |
} else { |
204 | 204 |
edge._id = -1; |
205 | 205 |
dir = true; |
206 | 206 |
} |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
void firstOut(Arc& arc, const Node& node) const { |
210 | 210 |
arc._id = ((node._id >> 1) << 1) | (~node._id & 1); |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
void nextOut(Arc& arc) const { |
214 | 214 |
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); |
215 | 215 |
int k = (arc._id >> _dim) + 1; |
216 | 216 |
if (k < _dim) { |
217 | 217 |
arc._id = (k << (_dim-1)) | |
218 | 218 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
219 | 219 |
arc._id = (arc._id << 1) | (~(n._id >> k) & 1); |
220 | 220 |
} else { |
221 | 221 |
arc._id = -1; |
222 | 222 |
} |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
void firstIn(Arc& arc, const Node& node) const { |
226 | 226 |
arc._id = ((node._id >> 1) << 1) | (node._id & 1); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
void nextIn(Arc& arc) const { |
230 | 230 |
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); |
231 | 231 |
int k = (arc._id >> _dim) + 1; |
232 | 232 |
if (k < _dim) { |
233 | 233 |
arc._id = (k << (_dim-1)) | |
234 | 234 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
235 | 235 |
arc._id = (arc._id << 1) | ((n._id >> k) & 1); |
236 | 236 |
} else { |
237 | 237 |
arc._id = -1; |
238 | 238 |
} |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
static bool direction(Arc arc) { |
242 | 242 |
return (arc._id & 1) == 1; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
static Arc direct(Edge edge, bool dir) { |
246 | 246 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
int dimension() const { |
250 | 250 |
return _dim; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
bool projection(Node node, int n) const { |
254 | 254 |
return static_cast<bool>(node._id & (1 << n)); |
255 | 255 |
} |
256 | 256 |
|
257 | 257 |
int dimension(Edge edge) const { |
258 | 258 |
return edge._id >> (_dim-1); |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
int dimension(Arc arc) const { |
262 | 262 |
return arc._id >> _dim; |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
static int index(Node node) { |
266 | 266 |
return node._id; |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Node operator()(int ix) const { |
270 | 270 |
return Node(ix); |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
private: |
274 | 274 |
int _dim; |
275 | 275 |
int _node_num, _edge_num; |
276 | 276 |
}; |
277 | 277 |
|
278 | 278 |
|
279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
280 | 280 |
|
281 | 281 |
/// \ingroup graphs |
282 | 282 |
/// |
283 | 283 |
/// \brief Hypercube graph class |
284 | 284 |
/// |
285 | 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
286 | 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
288 | 288 |
/// differ only on one position in the binary form. |
289 | 289 |
/// This class is completely static and it needs constant memory space. |
290 |
/// Thus you can neither add nor delete nodes or edges, however |
|
290 |
/// Thus you can neither add nor delete nodes or edges, however, |
|
291 | 291 |
/// the structure can be resized using resize(). |
292 | 292 |
/// |
293 | 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
294 | 294 |
/// Most of its member functions and nested classes are documented |
295 | 295 |
/// only in the concept class. |
296 | 296 |
/// |
297 | 297 |
/// This class provides constant time counting for nodes, edges and arcs. |
298 | 298 |
/// |
299 | 299 |
/// \note The type of the indices is chosen to \c int for efficiency |
300 | 300 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
301 | 301 |
/// (assuming that the size of \c int is 32 bit). |
302 | 302 |
class HypercubeGraph : public ExtendedHypercubeGraphBase { |
303 | 303 |
typedef ExtendedHypercubeGraphBase Parent; |
304 | 304 |
|
305 | 305 |
public: |
306 | 306 |
|
307 | 307 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
308 | 308 |
/// |
309 | 309 |
/// Constructs a hypercube graph with \c dim dimensions. |
310 | 310 |
HypercubeGraph(int dim) { construct(dim); } |
311 | 311 |
|
312 | 312 |
/// \brief Resizes the graph |
313 | 313 |
/// |
314 | 314 |
/// This function resizes the graph. It fully destroys and |
315 | 315 |
/// rebuilds the structure, therefore the maps of the graph will be |
316 | 316 |
/// reallocated automatically and the previous values will be lost. |
317 | 317 |
void resize(int dim) { |
318 | 318 |
Parent::notifier(Arc()).clear(); |
319 | 319 |
Parent::notifier(Edge()).clear(); |
320 | 320 |
Parent::notifier(Node()).clear(); |
321 | 321 |
construct(dim); |
322 | 322 |
Parent::notifier(Node()).build(); |
323 | 323 |
Parent::notifier(Edge()).build(); |
324 | 324 |
Parent::notifier(Arc()).build(); |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
/// \brief The number of dimensions. |
328 | 328 |
/// |
329 | 329 |
/// Gives back the number of dimensions. |
330 | 330 |
int dimension() const { |
331 | 331 |
return Parent::dimension(); |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
/// \brief Returns \c true if the n'th bit of the node is one. |
335 | 335 |
/// |
336 | 336 |
/// Returns \c true if the n'th bit of the node is one. |
337 | 337 |
bool projection(Node node, int n) const { |
338 | 338 |
return Parent::projection(node, n); |
339 | 339 |
} |
340 | 340 |
|
341 | 341 |
/// \brief The dimension id of an edge. |
342 | 342 |
/// |
343 | 343 |
/// Gives back the dimension id of the given edge. |
344 | 344 |
/// It is in the range <tt>[0..dim-1]</tt>. |
345 | 345 |
int dimension(Edge edge) const { |
346 | 346 |
return Parent::dimension(edge); |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
/// \brief The dimension id of an arc. |
350 | 350 |
/// |
351 | 351 |
/// Gives back the dimension id of the given arc. |
352 | 352 |
/// It is in the range <tt>[0..dim-1]</tt>. |
353 | 353 |
int dimension(Arc arc) const { |
354 | 354 |
return Parent::dimension(arc); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief The index of a node. |
358 | 358 |
/// |
359 | 359 |
/// Gives back the index of the given node. |
360 | 360 |
/// The lower bits of the integer describes the node. |
361 | 361 |
static int index(Node node) { |
362 | 362 |
return Parent::index(node); |
363 | 363 |
} |
364 | 364 |
|
365 | 365 |
/// \brief Gives back a node by its index. |
366 | 366 |
/// |
367 | 367 |
/// Gives back a node by its index. |
368 | 368 |
Node operator()(int ix) const { |
369 | 369 |
return Parent::operator()(ix); |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
/// \brief Number of nodes. |
373 | 373 |
int nodeNum() const { return Parent::nodeNum(); } |
374 | 374 |
/// \brief Number of edges. |
375 | 375 |
int edgeNum() const { return Parent::edgeNum(); } |
376 | 376 |
/// \brief Number of arcs. |
377 | 377 |
int arcNum() const { return Parent::arcNum(); } |
378 | 378 |
|
379 | 379 |
/// \brief Linear combination map. |
380 | 380 |
/// |
381 | 381 |
/// This map makes possible to give back a linear combination |
382 | 382 |
/// for each node. It works like the \c std::accumulate function, |
383 | 383 |
/// so it accumulates the \c bf binary function with the \c fv first |
384 | 384 |
/// value. The map accumulates only on that positions (dimensions) |
385 | 385 |
/// where the index of the node is one. The values that have to be |
386 | 386 |
/// accumulated should be given by the \c begin and \c end iterators |
... | ... |
@@ -334,193 +334,193 @@ |
334 | 334 |
public: |
335 | 335 |
|
336 | 336 |
LineSection(const Functor& functor) : _functor(functor) {} |
337 | 337 |
virtual ~LineSection() {} |
338 | 338 |
|
339 | 339 |
virtual void process(std::istream& is, int& line_num) { |
340 | 340 |
char c; |
341 | 341 |
std::string line; |
342 | 342 |
while (is.get(c) && c != '@') { |
343 | 343 |
if (c == '\n') { |
344 | 344 |
++line_num; |
345 | 345 |
} else if (c == '#') { |
346 | 346 |
getline(is, line); |
347 | 347 |
++line_num; |
348 | 348 |
} else if (!isWhiteSpace(c)) { |
349 | 349 |
is.putback(c); |
350 | 350 |
getline(is, line); |
351 | 351 |
_functor(line); |
352 | 352 |
++line_num; |
353 | 353 |
} |
354 | 354 |
} |
355 | 355 |
if (is) is.putback(c); |
356 | 356 |
else if (is.eof()) is.clear(); |
357 | 357 |
} |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
template <typename Functor> |
361 | 361 |
class StreamSection : public Section { |
362 | 362 |
private: |
363 | 363 |
|
364 | 364 |
Functor _functor; |
365 | 365 |
|
366 | 366 |
public: |
367 | 367 |
|
368 | 368 |
StreamSection(const Functor& functor) : _functor(functor) {} |
369 | 369 |
virtual ~StreamSection() {} |
370 | 370 |
|
371 | 371 |
virtual void process(std::istream& is, int& line_num) { |
372 | 372 |
_functor(is, line_num); |
373 | 373 |
char c; |
374 | 374 |
std::string line; |
375 | 375 |
while (is.get(c) && c != '@') { |
376 | 376 |
if (c == '\n') { |
377 | 377 |
++line_num; |
378 | 378 |
} else if (!isWhiteSpace(c)) { |
379 | 379 |
getline(is, line); |
380 | 380 |
++line_num; |
381 | 381 |
} |
382 | 382 |
} |
383 | 383 |
if (is) is.putback(c); |
384 | 384 |
else if (is.eof()) is.clear(); |
385 | 385 |
} |
386 | 386 |
}; |
387 | 387 |
|
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
template <typename DGR> |
391 | 391 |
class DigraphReader; |
392 | 392 |
|
393 | 393 |
template <typename TDGR> |
394 | 394 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is = std::cin); |
395 | 395 |
template <typename TDGR> |
396 | 396 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, const std::string& fn); |
397 | 397 |
template <typename TDGR> |
398 | 398 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn); |
399 | 399 |
|
400 | 400 |
/// \ingroup lemon_io |
401 | 401 |
/// |
402 | 402 |
/// \brief \ref lgf-format "LGF" reader for directed graphs |
403 | 403 |
/// |
404 | 404 |
/// This utility reads an \ref lgf-format "LGF" file. |
405 | 405 |
/// |
406 | 406 |
/// The reading method does a batch processing. The user creates a |
407 | 407 |
/// reader object, then various reading rules can be added to the |
408 | 408 |
/// reader, and eventually the reading is executed with the \c run() |
409 | 409 |
/// member function. A map reading rule can be added to the reader |
410 | 410 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
411 | 411 |
/// converter parameter can also be added as a standard functor |
412 | 412 |
/// converting from \c std::string to the value type of the map. If it |
413 | 413 |
/// is set, it will determine how the tokens in the file should be |
414 | 414 |
/// converted to the value type of the map. If the functor is not set, |
415 | 415 |
/// then a default conversion will be used. One map can be read into |
416 | 416 |
/// multiple map objects at the same time. The \c attribute(), \c |
417 | 417 |
/// node() and \c arc() functions are used to add attribute reading |
418 | 418 |
/// rules. |
419 | 419 |
/// |
420 | 420 |
///\code |
421 | 421 |
/// DigraphReader<DGR>(digraph, std::cin). |
422 | 422 |
/// nodeMap("coordinates", coord_map). |
423 | 423 |
/// arcMap("capacity", cap_map). |
424 | 424 |
/// node("source", src). |
425 | 425 |
/// node("target", trg). |
426 | 426 |
/// attribute("caption", caption). |
427 | 427 |
/// run(); |
428 | 428 |
///\endcode |
429 | 429 |
/// |
430 |
/// By default the reader uses the first section in the file of the |
|
430 |
/// By default, the reader uses the first section in the file of the |
|
431 | 431 |
/// proper type. If a section has an optional name, then it can be |
432 | 432 |
/// selected for reading by giving an optional name parameter to the |
433 | 433 |
/// \c nodes(), \c arcs() or \c attributes() functions. |
434 | 434 |
/// |
435 | 435 |
/// The \c useNodes() and \c useArcs() functions are used to tell the reader |
436 | 436 |
/// that the nodes or arcs should not be constructed (added to the |
437 | 437 |
/// graph) during the reading, but instead the label map of the items |
438 | 438 |
/// are given as a parameter of these functions. An |
439 | 439 |
/// application of these functions is multipass reading, which is |
440 | 440 |
/// important if two \c \@arcs sections must be read from the |
441 | 441 |
/// file. In this case the first phase would read the node set and one |
442 | 442 |
/// of the arc sets, while the second phase would read the second arc |
443 | 443 |
/// set into an \e ArcSet class (\c SmartArcSet or \c ListArcSet). |
444 | 444 |
/// The previously read label node map should be passed to the \c |
445 | 445 |
/// useNodes() functions. Another application of multipass reading when |
446 | 446 |
/// paths are given as a node map or an arc map. |
447 | 447 |
/// It is impossible to read this in |
448 | 448 |
/// a single pass, because the arcs are not constructed when the node |
449 | 449 |
/// maps are read. |
450 | 450 |
template <typename DGR> |
451 | 451 |
class DigraphReader { |
452 | 452 |
public: |
453 | 453 |
|
454 | 454 |
typedef DGR Digraph; |
455 | 455 |
|
456 | 456 |
private: |
457 | 457 |
|
458 | 458 |
TEMPLATE_DIGRAPH_TYPEDEFS(DGR); |
459 | 459 |
|
460 | 460 |
std::istream* _is; |
461 | 461 |
bool local_is; |
462 | 462 |
std::string _filename; |
463 | 463 |
|
464 | 464 |
DGR& _digraph; |
465 | 465 |
|
466 | 466 |
std::string _nodes_caption; |
467 | 467 |
std::string _arcs_caption; |
468 | 468 |
std::string _attributes_caption; |
469 | 469 |
|
470 | 470 |
typedef std::map<std::string, Node> NodeIndex; |
471 | 471 |
NodeIndex _node_index; |
472 | 472 |
typedef std::map<std::string, Arc> ArcIndex; |
473 | 473 |
ArcIndex _arc_index; |
474 | 474 |
|
475 | 475 |
typedef std::vector<std::pair<std::string, |
476 | 476 |
_reader_bits::MapStorageBase<Node>*> > NodeMaps; |
477 | 477 |
NodeMaps _node_maps; |
478 | 478 |
|
479 | 479 |
typedef std::vector<std::pair<std::string, |
480 | 480 |
_reader_bits::MapStorageBase<Arc>*> >ArcMaps; |
481 | 481 |
ArcMaps _arc_maps; |
482 | 482 |
|
483 | 483 |
typedef std::multimap<std::string, _reader_bits::ValueStorageBase*> |
484 | 484 |
Attributes; |
485 | 485 |
Attributes _attributes; |
486 | 486 |
|
487 | 487 |
bool _use_nodes; |
488 | 488 |
bool _use_arcs; |
489 | 489 |
|
490 | 490 |
bool _skip_nodes; |
491 | 491 |
bool _skip_arcs; |
492 | 492 |
|
493 | 493 |
int line_num; |
494 | 494 |
std::istringstream line; |
495 | 495 |
|
496 | 496 |
public: |
497 | 497 |
|
498 | 498 |
/// \brief Constructor |
499 | 499 |
/// |
500 | 500 |
/// Construct a directed graph reader, which reads from the given |
501 | 501 |
/// input stream. |
502 | 502 |
DigraphReader(DGR& digraph, std::istream& is = std::cin) |
503 | 503 |
: _is(&is), local_is(false), _digraph(digraph), |
504 | 504 |
_use_nodes(false), _use_arcs(false), |
505 | 505 |
_skip_nodes(false), _skip_arcs(false) {} |
506 | 506 |
|
507 | 507 |
/// \brief Constructor |
508 | 508 |
/// |
509 | 509 |
/// Construct a directed graph reader, which reads from the given |
510 | 510 |
/// file. |
511 | 511 |
DigraphReader(DGR& digraph, const std::string& fn) |
512 | 512 |
: _is(new std::ifstream(fn.c_str())), local_is(true), |
513 | 513 |
_filename(fn), _digraph(digraph), |
514 | 514 |
_use_nodes(false), _use_arcs(false), |
515 | 515 |
_skip_nodes(false), _skip_arcs(false) { |
516 | 516 |
if (!(*_is)) { |
517 | 517 |
delete _is; |
518 | 518 |
throw IoError("Cannot open file", fn); |
519 | 519 |
} |
520 | 520 |
} |
521 | 521 |
|
522 | 522 |
/// \brief Constructor |
523 | 523 |
/// |
524 | 524 |
/// Construct a directed graph reader, which reads from the given |
525 | 525 |
/// file. |
526 | 526 |
DigraphReader(DGR& digraph, const char* fn) |
... | ... |
@@ -2128,193 +2128,193 @@ |
2128 | 2128 |
/// which contain any data in arbitrary format. Such sections can be |
2129 | 2129 |
/// read with this class. A reading rule can be added to the class |
2130 | 2130 |
/// with two different functions. With the \c sectionLines() function a |
2131 | 2131 |
/// functor can process the section line-by-line, while with the \c |
2132 | 2132 |
/// sectionStream() member the section can be read from an input |
2133 | 2133 |
/// stream. |
2134 | 2134 |
class SectionReader { |
2135 | 2135 |
private: |
2136 | 2136 |
|
2137 | 2137 |
std::istream* _is; |
2138 | 2138 |
bool local_is; |
2139 | 2139 |
std::string _filename; |
2140 | 2140 |
|
2141 | 2141 |
typedef std::map<std::string, _reader_bits::Section*> Sections; |
2142 | 2142 |
Sections _sections; |
2143 | 2143 |
|
2144 | 2144 |
int line_num; |
2145 | 2145 |
std::istringstream line; |
2146 | 2146 |
|
2147 | 2147 |
public: |
2148 | 2148 |
|
2149 | 2149 |
/// \brief Constructor |
2150 | 2150 |
/// |
2151 | 2151 |
/// Construct a section reader, which reads from the given input |
2152 | 2152 |
/// stream. |
2153 | 2153 |
SectionReader(std::istream& is) |
2154 | 2154 |
: _is(&is), local_is(false) {} |
2155 | 2155 |
|
2156 | 2156 |
/// \brief Constructor |
2157 | 2157 |
/// |
2158 | 2158 |
/// Construct a section reader, which reads from the given file. |
2159 | 2159 |
SectionReader(const std::string& fn) |
2160 | 2160 |
: _is(new std::ifstream(fn.c_str())), local_is(true), |
2161 | 2161 |
_filename(fn) { |
2162 | 2162 |
if (!(*_is)) { |
2163 | 2163 |
delete _is; |
2164 | 2164 |
throw IoError("Cannot open file", fn); |
2165 | 2165 |
} |
2166 | 2166 |
} |
2167 | 2167 |
|
2168 | 2168 |
/// \brief Constructor |
2169 | 2169 |
/// |
2170 | 2170 |
/// Construct a section reader, which reads from the given file. |
2171 | 2171 |
SectionReader(const char* fn) |
2172 | 2172 |
: _is(new std::ifstream(fn)), local_is(true), |
2173 | 2173 |
_filename(fn) { |
2174 | 2174 |
if (!(*_is)) { |
2175 | 2175 |
delete _is; |
2176 | 2176 |
throw IoError("Cannot open file", fn); |
2177 | 2177 |
} |
2178 | 2178 |
} |
2179 | 2179 |
|
2180 | 2180 |
/// \brief Destructor |
2181 | 2181 |
~SectionReader() { |
2182 | 2182 |
for (Sections::iterator it = _sections.begin(); |
2183 | 2183 |
it != _sections.end(); ++it) { |
2184 | 2184 |
delete it->second; |
2185 | 2185 |
} |
2186 | 2186 |
|
2187 | 2187 |
if (local_is) { |
2188 | 2188 |
delete _is; |
2189 | 2189 |
} |
2190 | 2190 |
|
2191 | 2191 |
} |
2192 | 2192 |
|
2193 | 2193 |
private: |
2194 | 2194 |
|
2195 | 2195 |
friend SectionReader sectionReader(std::istream& is); |
2196 | 2196 |
friend SectionReader sectionReader(const std::string& fn); |
2197 | 2197 |
friend SectionReader sectionReader(const char* fn); |
2198 | 2198 |
|
2199 | 2199 |
SectionReader(SectionReader& other) |
2200 | 2200 |
: _is(other._is), local_is(other.local_is) { |
2201 | 2201 |
|
2202 | 2202 |
other._is = 0; |
2203 | 2203 |
other.local_is = false; |
2204 | 2204 |
|
2205 | 2205 |
_sections.swap(other._sections); |
2206 | 2206 |
} |
2207 | 2207 |
|
2208 | 2208 |
SectionReader& operator=(const SectionReader&); |
2209 | 2209 |
|
2210 | 2210 |
public: |
2211 | 2211 |
|
2212 | 2212 |
/// \name Section Readers |
2213 | 2213 |
/// @{ |
2214 | 2214 |
|
2215 | 2215 |
/// \brief Add a section processor with line oriented reading |
2216 | 2216 |
/// |
2217 | 2217 |
/// The first parameter is the type descriptor of the section, the |
2218 | 2218 |
/// second is a functor, which takes just one \c std::string |
2219 | 2219 |
/// parameter. At the reading process, each line of the section |
2220 | 2220 |
/// will be given to the functor object. However, the empty lines |
2221 | 2221 |
/// and the comment lines are filtered out, and the leading |
2222 | 2222 |
/// whitespaces are trimmed from each processed string. |
2223 | 2223 |
/// |
2224 |
/// For example let's see a section, which contain several |
|
2224 |
/// For example, let's see a section, which contain several |
|
2225 | 2225 |
/// integers, which should be inserted into a vector. |
2226 | 2226 |
///\code |
2227 | 2227 |
/// @numbers |
2228 | 2228 |
/// 12 45 23 |
2229 | 2229 |
/// 4 |
2230 | 2230 |
/// 23 6 |
2231 | 2231 |
///\endcode |
2232 | 2232 |
/// |
2233 | 2233 |
/// The functor is implemented as a struct: |
2234 | 2234 |
///\code |
2235 | 2235 |
/// struct NumberSection { |
2236 | 2236 |
/// std::vector<int>& _data; |
2237 | 2237 |
/// NumberSection(std::vector<int>& data) : _data(data) {} |
2238 | 2238 |
/// void operator()(const std::string& line) { |
2239 | 2239 |
/// std::istringstream ls(line); |
2240 | 2240 |
/// int value; |
2241 | 2241 |
/// while (ls >> value) _data.push_back(value); |
2242 | 2242 |
/// } |
2243 | 2243 |
/// }; |
2244 | 2244 |
/// |
2245 | 2245 |
/// // ... |
2246 | 2246 |
/// |
2247 | 2247 |
/// reader.sectionLines("numbers", NumberSection(vec)); |
2248 | 2248 |
///\endcode |
2249 | 2249 |
template <typename Functor> |
2250 | 2250 |
SectionReader& sectionLines(const std::string& type, Functor functor) { |
2251 | 2251 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
2252 | 2252 |
LEMON_ASSERT(_sections.find(type) == _sections.end(), |
2253 | 2253 |
"Multiple reading of section."); |
2254 | 2254 |
_sections.insert(std::make_pair(type, |
2255 | 2255 |
new _reader_bits::LineSection<Functor>(functor))); |
2256 | 2256 |
return *this; |
2257 | 2257 |
} |
2258 | 2258 |
|
2259 | 2259 |
|
2260 | 2260 |
/// \brief Add a section processor with stream oriented reading |
2261 | 2261 |
/// |
2262 | 2262 |
/// The first parameter is the type of the section, the second is |
2263 | 2263 |
/// a functor, which takes an \c std::istream& and an \c int& |
2264 | 2264 |
/// parameter, the latter regard to the line number of stream. The |
2265 | 2265 |
/// functor can read the input while the section go on, and the |
2266 | 2266 |
/// line number should be modified accordingly. |
2267 | 2267 |
template <typename Functor> |
2268 | 2268 |
SectionReader& sectionStream(const std::string& type, Functor functor) { |
2269 | 2269 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
2270 | 2270 |
LEMON_ASSERT(_sections.find(type) == _sections.end(), |
2271 | 2271 |
"Multiple reading of section."); |
2272 | 2272 |
_sections.insert(std::make_pair(type, |
2273 | 2273 |
new _reader_bits::StreamSection<Functor>(functor))); |
2274 | 2274 |
return *this; |
2275 | 2275 |
} |
2276 | 2276 |
|
2277 | 2277 |
/// @} |
2278 | 2278 |
|
2279 | 2279 |
private: |
2280 | 2280 |
|
2281 | 2281 |
bool readLine() { |
2282 | 2282 |
std::string str; |
2283 | 2283 |
while(++line_num, std::getline(*_is, str)) { |
2284 | 2284 |
line.clear(); line.str(str); |
2285 | 2285 |
char c; |
2286 | 2286 |
if (line >> std::ws >> c && c != '#') { |
2287 | 2287 |
line.putback(c); |
2288 | 2288 |
return true; |
2289 | 2289 |
} |
2290 | 2290 |
} |
2291 | 2291 |
return false; |
2292 | 2292 |
} |
2293 | 2293 |
|
2294 | 2294 |
bool readSuccess() { |
2295 | 2295 |
return static_cast<bool>(*_is); |
2296 | 2296 |
} |
2297 | 2297 |
|
2298 | 2298 |
void skipSection() { |
2299 | 2299 |
char c; |
2300 | 2300 |
while (readSuccess() && line >> c && c != '@') { |
2301 | 2301 |
readLine(); |
2302 | 2302 |
} |
2303 | 2303 |
if (readSuccess()) { |
2304 | 2304 |
line.putback(c); |
2305 | 2305 |
} |
2306 | 2306 |
} |
2307 | 2307 |
|
2308 | 2308 |
public: |
2309 | 2309 |
|
2310 | 2310 |
|
2311 | 2311 |
/// \name Execution of the Reader |
2312 | 2312 |
/// @{ |
2313 | 2313 |
|
2314 | 2314 |
/// \brief Start the batch processing |
2315 | 2315 |
/// |
2316 | 2316 |
/// This function starts the batch processing. |
2317 | 2317 |
void run() { |
2318 | 2318 |
|
2319 | 2319 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
2320 | 2320 |
... | ... |
@@ -307,352 +307,352 @@ |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
312 | 312 |
|
313 | 313 |
/// \addtogroup graphs |
314 | 314 |
/// @{ |
315 | 315 |
|
316 | 316 |
///A general directed graph structure. |
317 | 317 |
|
318 | 318 |
///\ref ListDigraph is a versatile and fast directed graph |
319 | 319 |
///implementation based on linked lists that are stored in |
320 | 320 |
///\c std::vector structures. |
321 | 321 |
/// |
322 | 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
323 | 323 |
///and it also provides several useful additional functionalities. |
324 | 324 |
///Most of its member functions and nested classes are documented |
325 | 325 |
///only in the concept class. |
326 | 326 |
/// |
327 | 327 |
///This class provides only linear time counting for nodes and arcs. |
328 | 328 |
/// |
329 | 329 |
///\sa concepts::Digraph |
330 | 330 |
///\sa ListGraph |
331 | 331 |
class ListDigraph : public ExtendedListDigraphBase { |
332 | 332 |
typedef ExtendedListDigraphBase Parent; |
333 | 333 |
|
334 | 334 |
private: |
335 | 335 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
336 | 336 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
337 | 337 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
338 | 338 |
/// Use DigraphCopy instead. |
339 | 339 |
void operator=(const ListDigraph &) {} |
340 | 340 |
public: |
341 | 341 |
|
342 | 342 |
/// Constructor |
343 | 343 |
|
344 | 344 |
/// Constructor. |
345 | 345 |
/// |
346 | 346 |
ListDigraph() {} |
347 | 347 |
|
348 | 348 |
///Add a new node to the digraph. |
349 | 349 |
|
350 | 350 |
///This function adds a new node to the digraph. |
351 | 351 |
///\return The new node. |
352 | 352 |
Node addNode() { return Parent::addNode(); } |
353 | 353 |
|
354 | 354 |
///Add a new arc to the digraph. |
355 | 355 |
|
356 | 356 |
///This function adds a new arc to the digraph with source node \c s |
357 | 357 |
///and target node \c t. |
358 | 358 |
///\return The new arc. |
359 | 359 |
Arc addArc(Node s, Node t) { |
360 | 360 |
return Parent::addArc(s, t); |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
///\brief Erase a node from the digraph. |
364 | 364 |
/// |
365 | 365 |
///This function erases the given node along with its outgoing and |
366 | 366 |
///incoming arcs from the digraph. |
367 | 367 |
/// |
368 | 368 |
///\note All iterators referencing the removed node or the connected |
369 | 369 |
///arcs are invalidated, of course. |
370 | 370 |
void erase(Node n) { Parent::erase(n); } |
371 | 371 |
|
372 | 372 |
///\brief Erase an arc from the digraph. |
373 | 373 |
/// |
374 | 374 |
///This function erases the given arc from the digraph. |
375 | 375 |
/// |
376 | 376 |
///\note All iterators referencing the removed arc are invalidated, |
377 | 377 |
///of course. |
378 | 378 |
void erase(Arc a) { Parent::erase(a); } |
379 | 379 |
|
380 | 380 |
/// Node validity check |
381 | 381 |
|
382 | 382 |
/// This function gives back \c true if the given node is valid, |
383 | 383 |
/// i.e. it is a real node of the digraph. |
384 | 384 |
/// |
385 | 385 |
/// \warning A removed node could become valid again if new nodes are |
386 | 386 |
/// added to the digraph. |
387 | 387 |
bool valid(Node n) const { return Parent::valid(n); } |
388 | 388 |
|
389 | 389 |
/// Arc validity check |
390 | 390 |
|
391 | 391 |
/// This function gives back \c true if the given arc is valid, |
392 | 392 |
/// i.e. it is a real arc of the digraph. |
393 | 393 |
/// |
394 | 394 |
/// \warning A removed arc could become valid again if new arcs are |
395 | 395 |
/// added to the digraph. |
396 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
397 | 397 |
|
398 | 398 |
/// Change the target node of an arc |
399 | 399 |
|
400 | 400 |
/// This function changes the target node of the given arc \c a to \c n. |
401 | 401 |
/// |
402 | 402 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
403 |
///arc remain valid, |
|
403 |
///arc remain valid, but \c InArcIt iterators are invalidated. |
|
404 | 404 |
/// |
405 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
406 | 406 |
///feature. |
407 | 407 |
void changeTarget(Arc a, Node n) { |
408 | 408 |
Parent::changeTarget(a,n); |
409 | 409 |
} |
410 | 410 |
/// Change the source node of an arc |
411 | 411 |
|
412 | 412 |
/// This function changes the source node of the given arc \c a to \c n. |
413 | 413 |
/// |
414 | 414 |
///\note \c InArcIt iterators referencing the changed arc remain |
415 |
///valid, |
|
415 |
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated. |
|
416 | 416 |
/// |
417 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
418 | 418 |
///feature. |
419 | 419 |
void changeSource(Arc a, Node n) { |
420 | 420 |
Parent::changeSource(a,n); |
421 | 421 |
} |
422 | 422 |
|
423 | 423 |
/// Reverse the direction of an arc. |
424 | 424 |
|
425 | 425 |
/// This function reverses the direction of the given arc. |
426 | 426 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
427 | 427 |
///the changed arc are invalidated. |
428 | 428 |
/// |
429 | 429 |
///\warning This functionality cannot be used together with the Snapshot |
430 | 430 |
///feature. |
431 | 431 |
void reverseArc(Arc a) { |
432 | 432 |
Node t=target(a); |
433 | 433 |
changeTarget(a,source(a)); |
434 | 434 |
changeSource(a,t); |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Contract two nodes. |
438 | 438 |
|
439 | 439 |
///This function contracts the given two nodes. |
440 | 440 |
///Node \c v is removed, but instead of deleting its |
441 | 441 |
///incident arcs, they are joined to node \c u. |
442 | 442 |
///If the last parameter \c r is \c true (this is the default value), |
443 | 443 |
///then the newly created loops are removed. |
444 | 444 |
/// |
445 | 445 |
///\note The moved arcs are joined to node \c u using changeSource() |
446 | 446 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
447 | 447 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
448 | 448 |
///iterators are invalidated for the incomming arcs of \c v. |
449 | 449 |
///Moreover all iterators referencing node \c v or the removed |
450 | 450 |
///loops are also invalidated. Other iterators remain valid. |
451 | 451 |
/// |
452 | 452 |
///\warning This functionality cannot be used together with the Snapshot |
453 | 453 |
///feature. |
454 | 454 |
void contract(Node u, Node v, bool r = true) |
455 | 455 |
{ |
456 | 456 |
for(OutArcIt e(*this,v);e!=INVALID;) { |
457 | 457 |
OutArcIt f=e; |
458 | 458 |
++f; |
459 | 459 |
if(r && target(e)==u) erase(e); |
460 | 460 |
else changeSource(e,u); |
461 | 461 |
e=f; |
462 | 462 |
} |
463 | 463 |
for(InArcIt e(*this,v);e!=INVALID;) { |
464 | 464 |
InArcIt f=e; |
465 | 465 |
++f; |
466 | 466 |
if(r && source(e)==u) erase(e); |
467 | 467 |
else changeTarget(e,u); |
468 | 468 |
e=f; |
469 | 469 |
} |
470 | 470 |
erase(v); |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
///Split a node. |
474 | 474 |
|
475 | 475 |
///This function splits the given node. First, a new node is added |
476 | 476 |
///to the digraph, then the source of each outgoing arc of node \c n |
477 | 477 |
///is moved to this new node. |
478 | 478 |
///If the second parameter \c connect is \c true (this is the default |
479 | 479 |
///value), then a new arc from node \c n to the newly created node |
480 | 480 |
///is also added. |
481 | 481 |
///\return The newly created node. |
482 | 482 |
/// |
483 | 483 |
///\note All iterators remain valid. |
484 | 484 |
/// |
485 | 485 |
///\warning This functionality cannot be used together with the |
486 | 486 |
///Snapshot feature. |
487 | 487 |
Node split(Node n, bool connect = true) { |
488 | 488 |
Node b = addNode(); |
489 | 489 |
nodes[b.id].first_out=nodes[n.id].first_out; |
490 | 490 |
nodes[n.id].first_out=-1; |
491 | 491 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) { |
492 | 492 |
arcs[i].source=b.id; |
493 | 493 |
} |
494 | 494 |
if (connect) addArc(n,b); |
495 | 495 |
return b; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
///Split an arc. |
499 | 499 |
|
500 | 500 |
///This function splits the given arc. First, a new node \c v is |
501 | 501 |
///added to the digraph, then the target node of the original arc |
502 | 502 |
///is set to \c v. Finally, an arc from \c v to the original target |
503 | 503 |
///is added. |
504 | 504 |
///\return The newly created node. |
505 | 505 |
/// |
506 | 506 |
///\note \c InArcIt iterators referencing the original arc are |
507 | 507 |
///invalidated. Other iterators remain valid. |
508 | 508 |
/// |
509 | 509 |
///\warning This functionality cannot be used together with the |
510 | 510 |
///Snapshot feature. |
511 | 511 |
Node split(Arc a) { |
512 | 512 |
Node v = addNode(); |
513 | 513 |
addArc(v,target(a)); |
514 | 514 |
changeTarget(a,v); |
515 | 515 |
return v; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Clear the digraph. |
519 | 519 |
|
520 | 520 |
///This function erases all nodes and arcs from the digraph. |
521 | 521 |
/// |
522 | 522 |
///\note All iterators of the digraph are invalidated, of course. |
523 | 523 |
void clear() { |
524 | 524 |
Parent::clear(); |
525 | 525 |
} |
526 | 526 |
|
527 | 527 |
/// Reserve memory for nodes. |
528 | 528 |
|
529 | 529 |
/// Using this function, it is possible to avoid superfluous memory |
530 | 530 |
/// allocation: if you know that the digraph you want to build will |
531 | 531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
532 | 532 |
/// then it is worth reserving space for this amount before starting |
533 | 533 |
/// to build the digraph. |
534 | 534 |
/// \sa reserveArc() |
535 | 535 |
void reserveNode(int n) { nodes.reserve(n); }; |
536 | 536 |
|
537 | 537 |
/// Reserve memory for arcs. |
538 | 538 |
|
539 | 539 |
/// Using this function, it is possible to avoid superfluous memory |
540 | 540 |
/// allocation: if you know that the digraph you want to build will |
541 | 541 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
542 | 542 |
/// then it is worth reserving space for this amount before starting |
543 | 543 |
/// to build the digraph. |
544 | 544 |
/// \sa reserveNode() |
545 | 545 |
void reserveArc(int m) { arcs.reserve(m); }; |
546 | 546 |
|
547 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
548 | 548 |
/// it later. |
549 | 549 |
/// |
550 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
551 | 551 |
/// |
552 | 552 |
/// The newly added nodes and arcs can be removed using the |
553 | 553 |
/// restore() function. |
554 | 554 |
/// |
555 | 555 |
/// \note After a state is restored, you cannot restore a later state, |
556 | 556 |
/// i.e. you cannot add the removed nodes and arcs again using |
557 | 557 |
/// another Snapshot instance. |
558 | 558 |
/// |
559 | 559 |
/// \warning Node and arc deletions and other modifications (e.g. |
560 | 560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
561 | 561 |
/// restored. These events invalidate the snapshot. |
562 |
/// However the arcs and nodes that were added to the digraph after |
|
562 |
/// However, the arcs and nodes that were added to the digraph after |
|
563 | 563 |
/// making the current snapshot can be removed without invalidating it. |
564 | 564 |
class Snapshot { |
565 | 565 |
protected: |
566 | 566 |
|
567 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
568 | 568 |
|
569 | 569 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
570 | 570 |
public: |
571 | 571 |
|
572 | 572 |
NodeObserverProxy(Snapshot& _snapshot) |
573 | 573 |
: snapshot(_snapshot) {} |
574 | 574 |
|
575 | 575 |
using NodeNotifier::ObserverBase::attach; |
576 | 576 |
using NodeNotifier::ObserverBase::detach; |
577 | 577 |
using NodeNotifier::ObserverBase::attached; |
578 | 578 |
|
579 | 579 |
protected: |
580 | 580 |
|
581 | 581 |
virtual void add(const Node& node) { |
582 | 582 |
snapshot.addNode(node); |
583 | 583 |
} |
584 | 584 |
virtual void add(const std::vector<Node>& nodes) { |
585 | 585 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
586 | 586 |
snapshot.addNode(nodes[i]); |
587 | 587 |
} |
588 | 588 |
} |
589 | 589 |
virtual void erase(const Node& node) { |
590 | 590 |
snapshot.eraseNode(node); |
591 | 591 |
} |
592 | 592 |
virtual void erase(const std::vector<Node>& nodes) { |
593 | 593 |
for (int i = 0; i < int(nodes.size()); ++i) { |
594 | 594 |
snapshot.eraseNode(nodes[i]); |
595 | 595 |
} |
596 | 596 |
} |
597 | 597 |
virtual void build() { |
598 | 598 |
Node node; |
599 | 599 |
std::vector<Node> nodes; |
600 | 600 |
for (notifier()->first(node); node != INVALID; |
601 | 601 |
notifier()->next(node)) { |
602 | 602 |
nodes.push_back(node); |
603 | 603 |
} |
604 | 604 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
605 | 605 |
snapshot.addNode(nodes[i]); |
606 | 606 |
} |
607 | 607 |
} |
608 | 608 |
virtual void clear() { |
609 | 609 |
Node node; |
610 | 610 |
for (notifier()->first(node); node != INVALID; |
611 | 611 |
notifier()->next(node)) { |
612 | 612 |
snapshot.eraseNode(node); |
613 | 613 |
} |
614 | 614 |
} |
615 | 615 |
|
616 | 616 |
Snapshot& snapshot; |
617 | 617 |
}; |
618 | 618 |
|
619 | 619 |
class ArcObserverProxy : public ArcNotifier::ObserverBase { |
620 | 620 |
public: |
621 | 621 |
|
622 | 622 |
ArcObserverProxy(Snapshot& _snapshot) |
623 | 623 |
: snapshot(_snapshot) {} |
624 | 624 |
|
625 | 625 |
using ArcNotifier::ObserverBase::attach; |
626 | 626 |
using ArcNotifier::ObserverBase::detach; |
627 | 627 |
using ArcNotifier::ObserverBase::attached; |
628 | 628 |
|
629 | 629 |
protected: |
630 | 630 |
|
631 | 631 |
virtual void add(const Arc& arc) { |
632 | 632 |
snapshot.addArc(arc); |
633 | 633 |
} |
634 | 634 |
virtual void add(const std::vector<Arc>& arcs) { |
635 | 635 |
for (int i = arcs.size() - 1; i >= 0; ++i) { |
636 | 636 |
snapshot.addArc(arcs[i]); |
637 | 637 |
} |
638 | 638 |
} |
639 | 639 |
virtual void erase(const Arc& arc) { |
640 | 640 |
snapshot.eraseArc(arc); |
641 | 641 |
} |
642 | 642 |
virtual void erase(const std::vector<Arc>& arcs) { |
643 | 643 |
for (int i = 0; i < int(arcs.size()); ++i) { |
644 | 644 |
snapshot.eraseArc(arcs[i]); |
645 | 645 |
} |
646 | 646 |
} |
647 | 647 |
virtual void build() { |
648 | 648 |
Arc arc; |
649 | 649 |
std::vector<Arc> arcs; |
650 | 650 |
for (notifier()->first(arc); arc != INVALID; |
651 | 651 |
notifier()->next(arc)) { |
652 | 652 |
arcs.push_back(arc); |
653 | 653 |
} |
654 | 654 |
for (int i = arcs.size() - 1; i >= 0; --i) { |
655 | 655 |
snapshot.addArc(arcs[i]); |
656 | 656 |
} |
657 | 657 |
} |
658 | 658 |
virtual void clear() { |
... | ... |
@@ -1193,278 +1193,278 @@ |
1193 | 1193 |
/// |
1194 | 1194 |
///\sa concepts::Graph |
1195 | 1195 |
///\sa ListDigraph |
1196 | 1196 |
class ListGraph : public ExtendedListGraphBase { |
1197 | 1197 |
typedef ExtendedListGraphBase Parent; |
1198 | 1198 |
|
1199 | 1199 |
private: |
1200 | 1200 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
1201 | 1201 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; |
1202 | 1202 |
/// \brief Assignment of a graph to another one is \e not allowed. |
1203 | 1203 |
/// Use GraphCopy instead. |
1204 | 1204 |
void operator=(const ListGraph &) {} |
1205 | 1205 |
public: |
1206 | 1206 |
/// Constructor |
1207 | 1207 |
|
1208 | 1208 |
/// Constructor. |
1209 | 1209 |
/// |
1210 | 1210 |
ListGraph() {} |
1211 | 1211 |
|
1212 | 1212 |
typedef Parent::OutArcIt IncEdgeIt; |
1213 | 1213 |
|
1214 | 1214 |
/// \brief Add a new node to the graph. |
1215 | 1215 |
/// |
1216 | 1216 |
/// This function adds a new node to the graph. |
1217 | 1217 |
/// \return The new node. |
1218 | 1218 |
Node addNode() { return Parent::addNode(); } |
1219 | 1219 |
|
1220 | 1220 |
/// \brief Add a new edge to the graph. |
1221 | 1221 |
/// |
1222 | 1222 |
/// This function adds a new edge to the graph between nodes |
1223 | 1223 |
/// \c u and \c v with inherent orientation from node \c u to |
1224 | 1224 |
/// node \c v. |
1225 | 1225 |
/// \return The new edge. |
1226 | 1226 |
Edge addEdge(Node u, Node v) { |
1227 | 1227 |
return Parent::addEdge(u, v); |
1228 | 1228 |
} |
1229 | 1229 |
|
1230 | 1230 |
///\brief Erase a node from the graph. |
1231 | 1231 |
/// |
1232 | 1232 |
/// This function erases the given node along with its incident arcs |
1233 | 1233 |
/// from the graph. |
1234 | 1234 |
/// |
1235 | 1235 |
/// \note All iterators referencing the removed node or the incident |
1236 | 1236 |
/// edges are invalidated, of course. |
1237 | 1237 |
void erase(Node n) { Parent::erase(n); } |
1238 | 1238 |
|
1239 | 1239 |
///\brief Erase an edge from the graph. |
1240 | 1240 |
/// |
1241 | 1241 |
/// This function erases the given edge from the graph. |
1242 | 1242 |
/// |
1243 | 1243 |
/// \note All iterators referencing the removed edge are invalidated, |
1244 | 1244 |
/// of course. |
1245 | 1245 |
void erase(Edge e) { Parent::erase(e); } |
1246 | 1246 |
/// Node validity check |
1247 | 1247 |
|
1248 | 1248 |
/// This function gives back \c true if the given node is valid, |
1249 | 1249 |
/// i.e. it is a real node of the graph. |
1250 | 1250 |
/// |
1251 | 1251 |
/// \warning A removed node could become valid again if new nodes are |
1252 | 1252 |
/// added to the graph. |
1253 | 1253 |
bool valid(Node n) const { return Parent::valid(n); } |
1254 | 1254 |
/// Edge validity check |
1255 | 1255 |
|
1256 | 1256 |
/// This function gives back \c true if the given edge is valid, |
1257 | 1257 |
/// i.e. it is a real edge of the graph. |
1258 | 1258 |
/// |
1259 | 1259 |
/// \warning A removed edge could become valid again if new edges are |
1260 | 1260 |
/// added to the graph. |
1261 | 1261 |
bool valid(Edge e) const { return Parent::valid(e); } |
1262 | 1262 |
/// Arc validity check |
1263 | 1263 |
|
1264 | 1264 |
/// This function gives back \c true if the given arc is valid, |
1265 | 1265 |
/// i.e. it is a real arc of the graph. |
1266 | 1266 |
/// |
1267 | 1267 |
/// \warning A removed arc could become valid again if new edges are |
1268 | 1268 |
/// added to the graph. |
1269 | 1269 |
bool valid(Arc a) const { return Parent::valid(a); } |
1270 | 1270 |
|
1271 | 1271 |
/// \brief Change the first node of an edge. |
1272 | 1272 |
/// |
1273 | 1273 |
/// This function changes the first node of the given edge \c e to \c n. |
1274 | 1274 |
/// |
1275 | 1275 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
1276 | 1276 |
///changed edge are invalidated and all other iterators whose |
1277 | 1277 |
///base node is the changed node are also invalidated. |
1278 | 1278 |
/// |
1279 | 1279 |
///\warning This functionality cannot be used together with the |
1280 | 1280 |
///Snapshot feature. |
1281 | 1281 |
void changeU(Edge e, Node n) { |
1282 | 1282 |
Parent::changeU(e,n); |
1283 | 1283 |
} |
1284 | 1284 |
/// \brief Change the second node of an edge. |
1285 | 1285 |
/// |
1286 | 1286 |
/// This function changes the second node of the given edge \c e to \c n. |
1287 | 1287 |
/// |
1288 | 1288 |
///\note \c EdgeIt iterators referencing the changed edge remain |
1289 |
///valid, |
|
1289 |
///valid, but \c ArcIt iterators referencing the changed edge and |
|
1290 | 1290 |
///all other iterators whose base node is the changed node are also |
1291 | 1291 |
///invalidated. |
1292 | 1292 |
/// |
1293 | 1293 |
///\warning This functionality cannot be used together with the |
1294 | 1294 |
///Snapshot feature. |
1295 | 1295 |
void changeV(Edge e, Node n) { |
1296 | 1296 |
Parent::changeV(e,n); |
1297 | 1297 |
} |
1298 | 1298 |
|
1299 | 1299 |
/// \brief Contract two nodes. |
1300 | 1300 |
/// |
1301 | 1301 |
/// This function contracts the given two nodes. |
1302 | 1302 |
/// Node \c b is removed, but instead of deleting |
1303 | 1303 |
/// its incident edges, they are joined to node \c a. |
1304 | 1304 |
/// If the last parameter \c r is \c true (this is the default value), |
1305 | 1305 |
/// then the newly created loops are removed. |
1306 | 1306 |
/// |
1307 | 1307 |
/// \note The moved edges are joined to node \c a using changeU() |
1308 | 1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
1309 | 1309 |
/// \c b are invalidated. |
1310 | 1310 |
/// Moreover all iterators referencing node \c b or the removed |
1311 | 1311 |
/// loops are also invalidated. Other iterators remain valid. |
1312 | 1312 |
/// |
1313 | 1313 |
///\warning This functionality cannot be used together with the |
1314 | 1314 |
///Snapshot feature. |
1315 | 1315 |
void contract(Node a, Node b, bool r = true) { |
1316 | 1316 |
for(IncEdgeIt e(*this, b); e!=INVALID;) { |
1317 | 1317 |
IncEdgeIt f = e; ++f; |
1318 | 1318 |
if (r && runningNode(e) == a) { |
1319 | 1319 |
erase(e); |
1320 | 1320 |
} else if (u(e) == b) { |
1321 | 1321 |
changeU(e, a); |
1322 | 1322 |
} else { |
1323 | 1323 |
changeV(e, a); |
1324 | 1324 |
} |
1325 | 1325 |
e = f; |
1326 | 1326 |
} |
1327 | 1327 |
erase(b); |
1328 | 1328 |
} |
1329 | 1329 |
|
1330 | 1330 |
///Clear the graph. |
1331 | 1331 |
|
1332 | 1332 |
///This function erases all nodes and arcs from the graph. |
1333 | 1333 |
/// |
1334 | 1334 |
///\note All iterators of the graph are invalidated, of course. |
1335 | 1335 |
void clear() { |
1336 | 1336 |
Parent::clear(); |
1337 | 1337 |
} |
1338 | 1338 |
|
1339 | 1339 |
/// Reserve memory for nodes. |
1340 | 1340 |
|
1341 | 1341 |
/// Using this function, it is possible to avoid superfluous memory |
1342 | 1342 |
/// allocation: if you know that the graph you want to build will |
1343 | 1343 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
1344 | 1344 |
/// then it is worth reserving space for this amount before starting |
1345 | 1345 |
/// to build the graph. |
1346 | 1346 |
/// \sa reserveEdge() |
1347 | 1347 |
void reserveNode(int n) { nodes.reserve(n); }; |
1348 | 1348 |
|
1349 | 1349 |
/// Reserve memory for edges. |
1350 | 1350 |
|
1351 | 1351 |
/// Using this function, it is possible to avoid superfluous memory |
1352 | 1352 |
/// allocation: if you know that the graph you want to build will |
1353 | 1353 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
1354 | 1354 |
/// then it is worth reserving space for this amount before starting |
1355 | 1355 |
/// to build the graph. |
1356 | 1356 |
/// \sa reserveNode() |
1357 | 1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
1358 | 1358 |
|
1359 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
1360 | 1360 |
/// it later. |
1361 | 1361 |
/// |
1362 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
1363 | 1363 |
/// |
1364 | 1364 |
/// The newly added nodes and edges can be removed |
1365 | 1365 |
/// using the restore() function. |
1366 | 1366 |
/// |
1367 | 1367 |
/// \note After a state is restored, you cannot restore a later state, |
1368 | 1368 |
/// i.e. you cannot add the removed nodes and edges again using |
1369 | 1369 |
/// another Snapshot instance. |
1370 | 1370 |
/// |
1371 | 1371 |
/// \warning Node and edge deletions and other modifications |
1372 | 1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
1373 | 1373 |
/// cannot be restored. These events invalidate the snapshot. |
1374 |
/// However the edges and nodes that were added to the graph after |
|
1374 |
/// However, the edges and nodes that were added to the graph after |
|
1375 | 1375 |
/// making the current snapshot can be removed without invalidating it. |
1376 | 1376 |
class Snapshot { |
1377 | 1377 |
protected: |
1378 | 1378 |
|
1379 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
1380 | 1380 |
|
1381 | 1381 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
1382 | 1382 |
public: |
1383 | 1383 |
|
1384 | 1384 |
NodeObserverProxy(Snapshot& _snapshot) |
1385 | 1385 |
: snapshot(_snapshot) {} |
1386 | 1386 |
|
1387 | 1387 |
using NodeNotifier::ObserverBase::attach; |
1388 | 1388 |
using NodeNotifier::ObserverBase::detach; |
1389 | 1389 |
using NodeNotifier::ObserverBase::attached; |
1390 | 1390 |
|
1391 | 1391 |
protected: |
1392 | 1392 |
|
1393 | 1393 |
virtual void add(const Node& node) { |
1394 | 1394 |
snapshot.addNode(node); |
1395 | 1395 |
} |
1396 | 1396 |
virtual void add(const std::vector<Node>& nodes) { |
1397 | 1397 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
1398 | 1398 |
snapshot.addNode(nodes[i]); |
1399 | 1399 |
} |
1400 | 1400 |
} |
1401 | 1401 |
virtual void erase(const Node& node) { |
1402 | 1402 |
snapshot.eraseNode(node); |
1403 | 1403 |
} |
1404 | 1404 |
virtual void erase(const std::vector<Node>& nodes) { |
1405 | 1405 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1406 | 1406 |
snapshot.eraseNode(nodes[i]); |
1407 | 1407 |
} |
1408 | 1408 |
} |
1409 | 1409 |
virtual void build() { |
1410 | 1410 |
Node node; |
1411 | 1411 |
std::vector<Node> nodes; |
1412 | 1412 |
for (notifier()->first(node); node != INVALID; |
1413 | 1413 |
notifier()->next(node)) { |
1414 | 1414 |
nodes.push_back(node); |
1415 | 1415 |
} |
1416 | 1416 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
1417 | 1417 |
snapshot.addNode(nodes[i]); |
1418 | 1418 |
} |
1419 | 1419 |
} |
1420 | 1420 |
virtual void clear() { |
1421 | 1421 |
Node node; |
1422 | 1422 |
for (notifier()->first(node); node != INVALID; |
1423 | 1423 |
notifier()->next(node)) { |
1424 | 1424 |
snapshot.eraseNode(node); |
1425 | 1425 |
} |
1426 | 1426 |
} |
1427 | 1427 |
|
1428 | 1428 |
Snapshot& snapshot; |
1429 | 1429 |
}; |
1430 | 1430 |
|
1431 | 1431 |
class EdgeObserverProxy : public EdgeNotifier::ObserverBase { |
1432 | 1432 |
public: |
1433 | 1433 |
|
1434 | 1434 |
EdgeObserverProxy(Snapshot& _snapshot) |
1435 | 1435 |
: snapshot(_snapshot) {} |
1436 | 1436 |
|
1437 | 1437 |
using EdgeNotifier::ObserverBase::attach; |
1438 | 1438 |
using EdgeNotifier::ObserverBase::detach; |
1439 | 1439 |
using EdgeNotifier::ObserverBase::attached; |
1440 | 1440 |
|
1441 | 1441 |
protected: |
1442 | 1442 |
|
1443 | 1443 |
virtual void add(const Edge& edge) { |
1444 | 1444 |
snapshot.addEdge(edge); |
1445 | 1445 |
} |
1446 | 1446 |
virtual void add(const std::vector<Edge>& edges) { |
1447 | 1447 |
for (int i = edges.size() - 1; i >= 0; ++i) { |
1448 | 1448 |
snapshot.addEdge(edges[i]); |
1449 | 1449 |
} |
1450 | 1450 |
} |
1451 | 1451 |
virtual void erase(const Edge& edge) { |
1452 | 1452 |
snapshot.eraseEdge(edge); |
1453 | 1453 |
} |
1454 | 1454 |
virtual void erase(const std::vector<Edge>& edges) { |
1455 | 1455 |
for (int i = 0; i < int(edges.size()); ++i) { |
1456 | 1456 |
snapshot.eraseEdge(edges[i]); |
1457 | 1457 |
} |
1458 | 1458 |
} |
1459 | 1459 |
virtual void build() { |
1460 | 1460 |
Edge edge; |
1461 | 1461 |
std::vector<Edge> edges; |
1462 | 1462 |
for (notifier()->first(edge); edge != INVALID; |
1463 | 1463 |
notifier()->next(edge)) { |
1464 | 1464 |
edges.push_back(edge); |
1465 | 1465 |
} |
1466 | 1466 |
for (int i = edges.size() - 1; i >= 0; --i) { |
1467 | 1467 |
snapshot.addEdge(edges[i]); |
1468 | 1468 |
} |
1469 | 1469 |
} |
1470 | 1470 |
virtual void clear() { |
... | ... |
@@ -53,288 +53,288 @@ |
53 | 53 |
///Possible outcomes of an LP solving procedure |
54 | 54 |
enum SolveExitStatus { |
55 | 55 |
/// = 0. It means that the problem has been successfully solved: either |
56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
57 | 57 |
///has been proved. |
58 | 58 |
SOLVED = 0, |
59 | 59 |
/// = 1. Any other case (including the case when some user specified |
60 | 60 |
///limit has been exceeded). |
61 | 61 |
UNSOLVED = 1 |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
///Direction of the optimization |
65 | 65 |
enum Sense { |
66 | 66 |
/// Minimization |
67 | 67 |
MIN, |
68 | 68 |
/// Maximization |
69 | 69 |
MAX |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Enum for \c messageLevel() parameter |
73 | 73 |
enum MessageLevel { |
74 | 74 |
/// No output (default value). |
75 | 75 |
MESSAGE_NOTHING, |
76 | 76 |
/// Error messages only. |
77 | 77 |
MESSAGE_ERROR, |
78 | 78 |
/// Warnings. |
79 | 79 |
MESSAGE_WARNING, |
80 | 80 |
/// Normal output. |
81 | 81 |
MESSAGE_NORMAL, |
82 | 82 |
/// Verbose output. |
83 | 83 |
MESSAGE_VERBOSE |
84 | 84 |
}; |
85 | 85 |
|
86 | 86 |
|
87 | 87 |
///The floating point type used by the solver |
88 | 88 |
typedef double Value; |
89 | 89 |
///The infinity constant |
90 | 90 |
static const Value INF; |
91 | 91 |
///The not a number constant |
92 | 92 |
static const Value NaN; |
93 | 93 |
|
94 | 94 |
friend class Col; |
95 | 95 |
friend class ColIt; |
96 | 96 |
friend class Row; |
97 | 97 |
friend class RowIt; |
98 | 98 |
|
99 | 99 |
///Refer to a column of the LP. |
100 | 100 |
|
101 | 101 |
///This type is used to refer to a column of the LP. |
102 | 102 |
/// |
103 | 103 |
///Its value remains valid and correct even after the addition or erase of |
104 | 104 |
///other columns. |
105 | 105 |
/// |
106 | 106 |
///\note This class is similar to other Item types in LEMON, like |
107 | 107 |
///Node and Arc types in digraph. |
108 | 108 |
class Col { |
109 | 109 |
friend class LpBase; |
110 | 110 |
protected: |
111 | 111 |
int _id; |
112 | 112 |
explicit Col(int id) : _id(id) {} |
113 | 113 |
public: |
114 | 114 |
typedef Value ExprValue; |
115 | 115 |
typedef True LpCol; |
116 | 116 |
/// Default constructor |
117 | 117 |
|
118 | 118 |
/// \warning The default constructor sets the Col to an |
119 | 119 |
/// undefined value. |
120 | 120 |
Col() {} |
121 | 121 |
/// Invalid constructor \& conversion. |
122 | 122 |
|
123 | 123 |
/// This constructor initializes the Col to be invalid. |
124 | 124 |
/// \sa Invalid for more details. |
125 | 125 |
Col(const Invalid&) : _id(-1) {} |
126 | 126 |
/// Equality operator |
127 | 127 |
|
128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
129 | 129 |
/// the same LP column or both are invalid. |
130 | 130 |
bool operator==(Col c) const {return _id == c._id;} |
131 | 131 |
/// Inequality operator |
132 | 132 |
|
133 | 133 |
/// \sa operator==(Col c) |
134 | 134 |
/// |
135 | 135 |
bool operator!=(Col c) const {return _id != c._id;} |
136 | 136 |
/// Artificial ordering operator. |
137 | 137 |
|
138 | 138 |
/// To allow the use of this object in std::map or similar |
139 | 139 |
/// associative container we require this. |
140 | 140 |
/// |
141 | 141 |
/// \note This operator only have to define some strict ordering of |
142 | 142 |
/// the items; this order has nothing to do with the iteration |
143 | 143 |
/// ordering of the items. |
144 | 144 |
bool operator<(Col c) const {return _id < c._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 |
/// Its usage is quite simple, for example you can count the number |
|
149 |
/// Its usage is quite simple, for example, you can count the number |
|
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
156 | 156 |
const LpBase *_solver; |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 | 159 |
|
160 | 160 |
/// \warning The default constructor sets the iterator |
161 | 161 |
/// to an undefined value. |
162 | 162 |
ColIt() {} |
163 | 163 |
/// Sets the iterator to the first Col |
164 | 164 |
|
165 | 165 |
/// Sets the iterator to the first Col. |
166 | 166 |
/// |
167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
168 | 168 |
{ |
169 | 169 |
_solver->cols.firstItem(_id); |
170 | 170 |
} |
171 | 171 |
/// Invalid constructor \& conversion |
172 | 172 |
|
173 | 173 |
/// Initialize the iterator to be invalid. |
174 | 174 |
/// \sa Invalid for more details. |
175 | 175 |
ColIt(const Invalid&) : Col(INVALID) {} |
176 | 176 |
/// Next column |
177 | 177 |
|
178 | 178 |
/// Assign the iterator to the next column. |
179 | 179 |
/// |
180 | 180 |
ColIt &operator++() |
181 | 181 |
{ |
182 | 182 |
_solver->cols.nextItem(_id); |
183 | 183 |
return *this; |
184 | 184 |
} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// \brief Returns the ID of the column. |
188 | 188 |
static int id(const Col& col) { return col._id; } |
189 | 189 |
/// \brief Returns the column with the given ID. |
190 | 190 |
/// |
191 | 191 |
/// \pre The argument should be a valid column ID in the LP problem. |
192 | 192 |
static Col colFromId(int id) { return Col(id); } |
193 | 193 |
|
194 | 194 |
///Refer to a row of the LP. |
195 | 195 |
|
196 | 196 |
///This type is used to refer to a row of the LP. |
197 | 197 |
/// |
198 | 198 |
///Its value remains valid and correct even after the addition or erase of |
199 | 199 |
///other rows. |
200 | 200 |
/// |
201 | 201 |
///\note This class is similar to other Item types in LEMON, like |
202 | 202 |
///Node and Arc types in digraph. |
203 | 203 |
class Row { |
204 | 204 |
friend class LpBase; |
205 | 205 |
protected: |
206 | 206 |
int _id; |
207 | 207 |
explicit Row(int id) : _id(id) {} |
208 | 208 |
public: |
209 | 209 |
typedef Value ExprValue; |
210 | 210 |
typedef True LpRow; |
211 | 211 |
/// Default constructor |
212 | 212 |
|
213 | 213 |
/// \warning The default constructor sets the Row to an |
214 | 214 |
/// undefined value. |
215 | 215 |
Row() {} |
216 | 216 |
/// Invalid constructor \& conversion. |
217 | 217 |
|
218 | 218 |
/// This constructor initializes the Row to be invalid. |
219 | 219 |
/// \sa Invalid for more details. |
220 | 220 |
Row(const Invalid&) : _id(-1) {} |
221 | 221 |
/// Equality operator |
222 | 222 |
|
223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
224 | 224 |
/// the same LP row or both are invalid. |
225 | 225 |
bool operator==(Row r) const {return _id == r._id;} |
226 | 226 |
/// Inequality operator |
227 | 227 |
|
228 | 228 |
/// \sa operator==(Row r) |
229 | 229 |
/// |
230 | 230 |
bool operator!=(Row r) const {return _id != r._id;} |
231 | 231 |
/// Artificial ordering operator. |
232 | 232 |
|
233 | 233 |
/// To allow the use of this object in std::map or similar |
234 | 234 |
/// associative container we require this. |
235 | 235 |
/// |
236 | 236 |
/// \note This operator only have to define some strict ordering of |
237 | 237 |
/// the items; this order has nothing to do with the iteration |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
251 | 251 |
const LpBase *_solver; |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// \warning The default constructor sets the iterator |
256 | 256 |
/// to an undefined value. |
257 | 257 |
RowIt() {} |
258 | 258 |
/// Sets the iterator to the first Row |
259 | 259 |
|
260 | 260 |
/// Sets the iterator to the first Row. |
261 | 261 |
/// |
262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
263 | 263 |
{ |
264 | 264 |
_solver->rows.firstItem(_id); |
265 | 265 |
} |
266 | 266 |
/// Invalid constructor \& conversion |
267 | 267 |
|
268 | 268 |
/// Initialize the iterator to be invalid. |
269 | 269 |
/// \sa Invalid for more details. |
270 | 270 |
RowIt(const Invalid&) : Row(INVALID) {} |
271 | 271 |
/// Next row |
272 | 272 |
|
273 | 273 |
/// Assign the iterator to the next row. |
274 | 274 |
/// |
275 | 275 |
RowIt &operator++() |
276 | 276 |
{ |
277 | 277 |
_solver->rows.nextItem(_id); |
278 | 278 |
return *this; |
279 | 279 |
} |
280 | 280 |
}; |
281 | 281 |
|
282 | 282 |
/// \brief Returns the ID of the row. |
283 | 283 |
static int id(const Row& row) { return row._id; } |
284 | 284 |
/// \brief Returns the row with the given ID. |
285 | 285 |
/// |
286 | 286 |
/// \pre The argument should be a valid row ID in the LP problem. |
287 | 287 |
static Row rowFromId(int id) { return Row(id); } |
288 | 288 |
|
289 | 289 |
public: |
290 | 290 |
|
291 | 291 |
///Linear expression of variables and a constant component |
292 | 292 |
|
293 | 293 |
///This data structure stores a linear expression of the variables |
294 | 294 |
///(\ref Col "Col"s) and also has a constant component. |
295 | 295 |
/// |
296 | 296 |
///There are several ways to access and modify the contents of this |
297 | 297 |
///container. |
298 | 298 |
///\code |
299 | 299 |
///e[v]=5; |
300 | 300 |
///e[v]+=12; |
301 | 301 |
///e.erase(v); |
302 | 302 |
///\endcode |
303 | 303 |
///or you can also iterate through its elements. |
304 | 304 |
///\code |
305 | 305 |
///double s=0; |
306 | 306 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
307 | 307 |
/// s+=*i * primal(i); |
308 | 308 |
///\endcode |
309 | 309 |
///(This code computes the primal value of the expression). |
310 | 310 |
///- Numbers (<tt>double</tt>'s) |
311 | 311 |
///and variables (\ref Col "Col"s) directly convert to an |
312 | 312 |
///\ref Expr and the usual linear operations are defined, so |
313 | 313 |
///\code |
314 | 314 |
///v+w |
315 | 315 |
///2*v-3.12*(v-w/2)+2 |
316 | 316 |
///v*2.1+(3*v+(v*12+w+6)*3)/2 |
317 | 317 |
///\endcode |
318 | 318 |
///are valid expressions. |
319 | 319 |
///The usual assignment operations are also defined. |
320 | 320 |
///\code |
321 | 321 |
///e=v+w; |
322 | 322 |
///e+=2*v-3.12*(v-w/2)+2; |
323 | 323 |
///e*=3.4; |
324 | 324 |
///e/=5; |
325 | 325 |
///\endcode |
326 | 326 |
///- The constant member can be set and read by dereference |
327 | 327 |
/// operator (unary *) |
328 | 328 |
/// |
329 | 329 |
///\code |
330 | 330 |
///*e=12; |
331 | 331 |
///double c=*e; |
332 | 332 |
///\endcode |
333 | 333 |
/// |
334 | 334 |
///\sa Constr |
335 | 335 |
class Expr { |
336 | 336 |
friend class LpBase; |
337 | 337 |
public: |
338 | 338 |
/// The key type of the expression |
339 | 339 |
typedef LpBase::Col Key; |
340 | 340 |
/// The value type of the expression |
... | ... |
@@ -137,313 +137,313 @@ |
137 | 137 |
/// Returns a \c ConstMap class |
138 | 138 |
|
139 | 139 |
/// This function just returns a \c ConstMap class. |
140 | 140 |
/// \relates ConstMap |
141 | 141 |
template<typename K, typename V> |
142 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
143 | 143 |
return ConstMap<K, V>(v); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
template<typename K, typename V> |
147 | 147 |
inline ConstMap<K, V> constMap() { |
148 | 148 |
return ConstMap<K, V>(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
template<typename T, T v> |
153 | 153 |
struct Const {}; |
154 | 154 |
|
155 | 155 |
/// Constant map with inlined constant value. |
156 | 156 |
|
157 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
158 | 158 |
/// value to each key. |
159 | 159 |
/// |
160 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
161 | 161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
162 | 162 |
/// concept, but it absorbs the data written to it. |
163 | 163 |
/// |
164 | 164 |
/// The simplest way of using this map is through the constMap() |
165 | 165 |
/// function. |
166 | 166 |
/// |
167 | 167 |
/// \sa NullMap |
168 | 168 |
/// \sa IdentityMap |
169 | 169 |
template<typename K, typename V, V v> |
170 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
171 | 171 |
public: |
172 | 172 |
///\e |
173 | 173 |
typedef K Key; |
174 | 174 |
///\e |
175 | 175 |
typedef V Value; |
176 | 176 |
|
177 | 177 |
/// Constructor. |
178 | 178 |
ConstMap() {} |
179 | 179 |
|
180 | 180 |
/// Gives back the specified value. |
181 | 181 |
Value operator[](const Key&) const { return v; } |
182 | 182 |
|
183 | 183 |
/// Absorbs the value. |
184 | 184 |
void set(const Key&, const Value&) {} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
188 | 188 |
|
189 | 189 |
/// This function just returns a \c ConstMap class with inlined |
190 | 190 |
/// constant value. |
191 | 191 |
/// \relates ConstMap |
192 | 192 |
template<typename K, typename V, V v> |
193 | 193 |
inline ConstMap<K, Const<V, v> > constMap() { |
194 | 194 |
return ConstMap<K, Const<V, v> >(); |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
|
198 | 198 |
/// Identity map. |
199 | 199 |
|
200 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
201 | 201 |
/// key as value without any modification. |
202 | 202 |
/// |
203 | 203 |
/// \sa ConstMap |
204 | 204 |
template <typename T> |
205 | 205 |
class IdentityMap : public MapBase<T, T> { |
206 | 206 |
public: |
207 | 207 |
///\e |
208 | 208 |
typedef T Key; |
209 | 209 |
///\e |
210 | 210 |
typedef T Value; |
211 | 211 |
|
212 | 212 |
/// Gives back the given value without any modification. |
213 | 213 |
Value operator[](const Key &k) const { |
214 | 214 |
return k; |
215 | 215 |
} |
216 | 216 |
}; |
217 | 217 |
|
218 | 218 |
/// Returns an \c IdentityMap class |
219 | 219 |
|
220 | 220 |
/// This function just returns an \c IdentityMap class. |
221 | 221 |
/// \relates IdentityMap |
222 | 222 |
template<typename T> |
223 | 223 |
inline IdentityMap<T> identityMap() { |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 |
/// It can be used with some data structures, for example |
|
234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
|
233 |
/// It can be used together with some data structures, e.g. |
|
234 |
/// heap types and \c UnionFind, when the used items are small |
|
235 | 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
236 | 236 |
/// "ReferenceMap" concept. |
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
249 | 249 |
public: |
250 | 250 |
|
251 | 251 |
/// Key type |
252 | 252 |
typedef int Key; |
253 | 253 |
/// Value type |
254 | 254 |
typedef V Value; |
255 | 255 |
/// Reference type |
256 | 256 |
typedef typename Vector::reference Reference; |
257 | 257 |
/// Const reference type |
258 | 258 |
typedef typename Vector::const_reference ConstReference; |
259 | 259 |
|
260 | 260 |
typedef True ReferenceMapTag; |
261 | 261 |
|
262 | 262 |
public: |
263 | 263 |
|
264 | 264 |
/// Constructor with specified default value. |
265 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
266 | 266 |
: _vector(size, value) {} |
267 | 267 |
|
268 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
269 | 269 |
template <typename V1> |
270 | 270 |
RangeMap(const std::vector<V1>& vector) |
271 | 271 |
: _vector(vector.begin(), vector.end()) {} |
272 | 272 |
|
273 | 273 |
/// Constructs the map from another \c RangeMap. |
274 | 274 |
template <typename V1> |
275 | 275 |
RangeMap(const RangeMap<V1> &c) |
276 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {} |
277 | 277 |
|
278 | 278 |
/// Returns the size of the map. |
279 | 279 |
int size() { |
280 | 280 |
return _vector.size(); |
281 | 281 |
} |
282 | 282 |
|
283 | 283 |
/// Resizes the map. |
284 | 284 |
|
285 | 285 |
/// Resizes the underlying \c std::vector container, so changes the |
286 | 286 |
/// keyset of the map. |
287 | 287 |
/// \param size The new size of the map. The new keyset will be the |
288 | 288 |
/// range <tt>[0..size-1]</tt>. |
289 | 289 |
/// \param value The default value to assign to the new keys. |
290 | 290 |
void resize(int size, const Value &value = Value()) { |
291 | 291 |
_vector.resize(size, value); |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
private: |
295 | 295 |
|
296 | 296 |
RangeMap& operator=(const RangeMap&); |
297 | 297 |
|
298 | 298 |
public: |
299 | 299 |
|
300 | 300 |
///\e |
301 | 301 |
Reference operator[](const Key &k) { |
302 | 302 |
return _vector[k]; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
///\e |
306 | 306 |
ConstReference operator[](const Key &k) const { |
307 | 307 |
return _vector[k]; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
///\e |
311 | 311 |
void set(const Key &k, const Value &v) { |
312 | 312 |
_vector[k] = v; |
313 | 313 |
} |
314 | 314 |
}; |
315 | 315 |
|
316 | 316 |
/// Returns a \c RangeMap class |
317 | 317 |
|
318 | 318 |
/// This function just returns a \c RangeMap class. |
319 | 319 |
/// \relates RangeMap |
320 | 320 |
template<typename V> |
321 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
322 | 322 |
return RangeMap<V>(size, value); |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
326 | 326 |
/// \c std::vector |
327 | 327 |
|
328 | 328 |
/// This function just returns a \c RangeMap class created from an |
329 | 329 |
/// appropriate \c std::vector. |
330 | 330 |
/// \relates RangeMap |
331 | 331 |
template<typename V> |
332 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
333 | 333 |
return RangeMap<V>(vector); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
|
337 | 337 |
/// Map type based on \c std::map |
338 | 338 |
|
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 | 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 |
/// Apart form that this map can be used in many other cases since it |
|
351 |
/// Apart form that, this map can be used in many other cases since it |
|
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 |
/// However keep in mind that it is usually not as efficient as other |
|
353 |
/// However, keep in mind that it is usually not as efficient as other |
|
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
360 | 360 |
template <typename K1, typename V1, typename C1> |
361 | 361 |
friend class SparseMap; |
362 | 362 |
public: |
363 | 363 |
|
364 | 364 |
/// Key type |
365 | 365 |
typedef K Key; |
366 | 366 |
/// Value type |
367 | 367 |
typedef V Value; |
368 | 368 |
/// Reference type |
369 | 369 |
typedef Value& Reference; |
370 | 370 |
/// Const reference type |
371 | 371 |
typedef const Value& ConstReference; |
372 | 372 |
|
373 | 373 |
typedef True ReferenceMapTag; |
374 | 374 |
|
375 | 375 |
private: |
376 | 376 |
|
377 | 377 |
typedef std::map<K, V, Comp> Map; |
378 | 378 |
Map _map; |
379 | 379 |
Value _value; |
380 | 380 |
|
381 | 381 |
public: |
382 | 382 |
|
383 | 383 |
/// \brief Constructor with specified default value. |
384 | 384 |
SparseMap(const Value &value = Value()) : _value(value) {} |
385 | 385 |
/// \brief Constructs the map from an appropriate \c std::map, and |
386 | 386 |
/// explicitly specifies a default value. |
387 | 387 |
template <typename V1, typename Comp1> |
388 | 388 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
389 | 389 |
const Value &value = Value()) |
390 | 390 |
: _map(map.begin(), map.end()), _value(value) {} |
391 | 391 |
|
392 | 392 |
/// \brief Constructs the map from another \c SparseMap. |
393 | 393 |
template<typename V1, typename Comp1> |
394 | 394 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
395 | 395 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
396 | 396 |
|
397 | 397 |
private: |
398 | 398 |
|
399 | 399 |
SparseMap& operator=(const SparseMap&); |
400 | 400 |
|
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
///\e |
404 | 404 |
Reference operator[](const Key &k) { |
405 | 405 |
typename Map::iterator it = _map.lower_bound(k); |
406 | 406 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
407 | 407 |
return it->second; |
408 | 408 |
else |
409 | 409 |
return _map.insert(it, std::make_pair(k, _value))->second; |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
///\e |
413 | 413 |
ConstReference operator[](const Key &k) const { |
414 | 414 |
typename Map::const_iterator it = _map.find(k); |
415 | 415 |
if (it != _map.end()) |
416 | 416 |
return it->second; |
417 | 417 |
else |
418 | 418 |
return _value; |
419 | 419 |
} |
420 | 420 |
|
421 | 421 |
///\e |
422 | 422 |
void set(const Key &k, const Value &v) { |
423 | 423 |
typename Map::iterator it = _map.lower_bound(k); |
424 | 424 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
425 | 425 |
it->second = v; |
426 | 426 |
else |
427 | 427 |
_map.insert(it, std::make_pair(k, v)); |
428 | 428 |
} |
429 | 429 |
|
430 | 430 |
///\e |
431 | 431 |
void setAll(const Value &v) { |
432 | 432 |
_value = v; |
433 | 433 |
_map.clear(); |
434 | 434 |
} |
435 | 435 |
}; |
436 | 436 |
|
437 | 437 |
/// Returns a \c SparseMap class |
438 | 438 |
|
439 | 439 |
/// This function just returns a \c SparseMap class with specified |
440 | 440 |
/// default value. |
441 | 441 |
/// \relates SparseMap |
442 | 442 |
template<typename K, typename V, typename Compare> |
443 | 443 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
444 | 444 |
return SparseMap<K, V, Compare>(value); |
445 | 445 |
} |
446 | 446 |
|
447 | 447 |
template<typename K, typename V> |
448 | 448 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
449 | 449 |
return SparseMap<K, V, std::less<K> >(value); |
... | ... |
@@ -1692,330 +1692,330 @@ |
1692 | 1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1693 | 1693 |
return LessMap<M1, M2>(m1,m2); |
1694 | 1694 |
} |
1695 | 1695 |
|
1696 | 1696 |
namespace _maps_bits { |
1697 | 1697 |
|
1698 | 1698 |
template <typename _Iterator, typename Enable = void> |
1699 | 1699 |
struct IteratorTraits { |
1700 | 1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1701 | 1701 |
}; |
1702 | 1702 |
|
1703 | 1703 |
template <typename _Iterator> |
1704 | 1704 |
struct IteratorTraits<_Iterator, |
1705 | 1705 |
typename exists<typename _Iterator::container_type>::type> |
1706 | 1706 |
{ |
1707 | 1707 |
typedef typename _Iterator::container_type::value_type Value; |
1708 | 1708 |
}; |
1709 | 1709 |
|
1710 | 1710 |
} |
1711 | 1711 |
|
1712 | 1712 |
/// @} |
1713 | 1713 |
|
1714 | 1714 |
/// \addtogroup maps |
1715 | 1715 |
/// @{ |
1716 | 1716 |
|
1717 | 1717 |
/// \brief Writable bool map for logging each \c true assigned element |
1718 | 1718 |
/// |
1719 | 1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1720 | 1720 |
/// each \c true assigned element, i.e it copies subsequently each |
1721 | 1721 |
/// keys set to \c true to the given iterator. |
1722 | 1722 |
/// The most important usage of it is storing certain nodes or arcs |
1723 | 1723 |
/// that were marked \c true by an algorithm. |
1724 | 1724 |
/// |
1725 | 1725 |
/// There are several algorithms that provide solutions through bool |
1726 | 1726 |
/// maps and most of them assign \c true at most once for each key. |
1727 | 1727 |
/// In these cases it is a natural request to store each \c true |
1728 | 1728 |
/// assigned elements (in order of the assignment), which can be |
1729 | 1729 |
/// easily done with LoggerBoolMap. |
1730 | 1730 |
/// |
1731 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
1732 | 1732 |
/// function. |
1733 | 1733 |
/// |
1734 | 1734 |
/// \tparam IT The type of the iterator. |
1735 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
1736 | 1736 |
/// according to the iterator type should work in most cases. |
1737 | 1737 |
/// |
1738 | 1738 |
/// \note The container of the iterator must contain enough space |
1739 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
1740 | 1740 |
#ifdef DOXYGEN |
1741 | 1741 |
template <typename IT, typename KEY> |
1742 | 1742 |
#else |
1743 | 1743 |
template <typename IT, |
1744 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1745 | 1745 |
#endif |
1746 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1747 | 1747 |
public: |
1748 | 1748 |
|
1749 | 1749 |
///\e |
1750 | 1750 |
typedef KEY Key; |
1751 | 1751 |
///\e |
1752 | 1752 |
typedef bool Value; |
1753 | 1753 |
///\e |
1754 | 1754 |
typedef IT Iterator; |
1755 | 1755 |
|
1756 | 1756 |
/// Constructor |
1757 | 1757 |
LoggerBoolMap(Iterator it) |
1758 | 1758 |
: _begin(it), _end(it) {} |
1759 | 1759 |
|
1760 | 1760 |
/// Gives back the given iterator set for the first key |
1761 | 1761 |
Iterator begin() const { |
1762 | 1762 |
return _begin; |
1763 | 1763 |
} |
1764 | 1764 |
|
1765 | 1765 |
/// Gives back the the 'after the last' iterator |
1766 | 1766 |
Iterator end() const { |
1767 | 1767 |
return _end; |
1768 | 1768 |
} |
1769 | 1769 |
|
1770 | 1770 |
/// The set function of the map |
1771 | 1771 |
void set(const Key& key, Value value) { |
1772 | 1772 |
if (value) { |
1773 | 1773 |
*_end++ = key; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 |
/// For example it makes easier to store the nodes in the processing |
|
1788 |
/// For example, it makes easier to store the nodes in the processing |
|
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 | 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 | 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 |
/// it cannot be used when a readable map is needed, for example as |
|
1803 |
/// it cannot be used when a readable map is needed, for example, as |
|
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
1816 | 1816 |
|
1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1818 | 1818 |
/// |
1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1821 | 1821 |
/// - \b unique: different items get different ids, |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
1828 | 1828 |
/// class \c InverseMap or with the \c operator()() member. |
1829 | 1829 |
/// |
1830 | 1830 |
/// \tparam GR The graph type. |
1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1832 | 1832 |
/// \c GR::Edge). |
1833 | 1833 |
/// |
1834 | 1834 |
/// \see RangeIdMap |
1835 | 1835 |
template <typename GR, typename K> |
1836 | 1836 |
class IdMap : public MapBase<K, int> { |
1837 | 1837 |
public: |
1838 | 1838 |
/// The graph type of IdMap. |
1839 | 1839 |
typedef GR Graph; |
1840 | 1840 |
typedef GR Digraph; |
1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1842 |
typedef K Item; |
1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1844 |
typedef K Key; |
1845 | 1845 |
/// The value type of IdMap. |
1846 | 1846 |
typedef int Value; |
1847 | 1847 |
|
1848 | 1848 |
/// \brief Constructor. |
1849 | 1849 |
/// |
1850 | 1850 |
/// Constructor of the map. |
1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1852 |
|
1853 | 1853 |
/// \brief Gives back the \e id of the item. |
1854 | 1854 |
/// |
1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1857 |
|
1858 | 1858 |
/// \brief Gives back the \e item by its id. |
1859 | 1859 |
/// |
1860 | 1860 |
/// Gives back the \e item by its id. |
1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1862 | 1862 |
|
1863 | 1863 |
private: |
1864 | 1864 |
const Graph* _graph; |
1865 | 1865 |
|
1866 | 1866 |
public: |
1867 | 1867 |
|
1868 | 1868 |
/// \brief The inverse map type of IdMap. |
1869 | 1869 |
/// |
1870 | 1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
1871 | 1871 |
/// an item by its id. |
1872 | 1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
1873 | 1873 |
/// \see inverse() |
1874 | 1874 |
class InverseMap { |
1875 | 1875 |
public: |
1876 | 1876 |
|
1877 | 1877 |
/// \brief Constructor. |
1878 | 1878 |
/// |
1879 | 1879 |
/// Constructor for creating an id-to-item map. |
1880 | 1880 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1881 | 1881 |
|
1882 | 1882 |
/// \brief Constructor. |
1883 | 1883 |
/// |
1884 | 1884 |
/// Constructor for creating an id-to-item map. |
1885 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1886 | 1886 |
|
1887 | 1887 |
/// \brief Gives back an item by its id. |
1888 | 1888 |
/// |
1889 | 1889 |
/// Gives back an item by its id. |
1890 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1891 | 1891 |
|
1892 | 1892 |
private: |
1893 | 1893 |
const Graph* _graph; |
1894 | 1894 |
}; |
1895 | 1895 |
|
1896 | 1896 |
/// \brief Gives back the inverse of the map. |
1897 | 1897 |
/// |
1898 | 1898 |
/// Gives back the inverse of the IdMap. |
1899 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1900 | 1900 |
}; |
1901 | 1901 |
|
1902 | 1902 |
/// \brief Returns an \c IdMap class. |
1903 | 1903 |
/// |
1904 | 1904 |
/// This function just returns an \c IdMap class. |
1905 | 1905 |
/// \relates IdMap |
1906 | 1906 |
template <typename K, typename GR> |
1907 | 1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
1908 | 1908 |
return IdMap<GR, K>(graph); |
1909 | 1909 |
} |
1910 | 1910 |
|
1911 | 1911 |
/// \brief General cross reference graph map type. |
1912 | 1912 |
|
1913 | 1913 |
/// This class provides simple invertable graph maps. |
1914 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1915 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1916 | 1916 |
/// The graph items can be accessed by their values either using |
1917 | 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
1918 | 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
1919 | 1919 |
/// |
1920 | 1920 |
/// This map is intended to be used when all associated values are |
1921 | 1921 |
/// different (the map is actually invertable) or there are only a few |
1922 | 1922 |
/// items with the same value. |
1923 | 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
1924 | 1924 |
/// suitable and more efficient for such cases. It provides iterators |
1925 |
/// to traverse the items with the same associated value, |
|
1925 |
/// to traverse the items with the same associated value, but |
|
1926 | 1926 |
/// it does not have \c InverseMap. |
1927 | 1927 |
/// |
1928 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1929 | 1929 |
/// the subscript operator. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \tparam GR The graph type. |
1932 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1933 | 1933 |
/// \c GR::Edge). |
1934 | 1934 |
/// \tparam V The value type of the map. |
1935 | 1935 |
/// |
1936 | 1936 |
/// \see IterableValueMap |
1937 | 1937 |
template <typename GR, typename K, typename V> |
1938 | 1938 |
class CrossRefMap |
1939 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1940 | 1940 |
private: |
1941 | 1941 |
|
1942 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
1943 | 1943 |
template Map<V>::Type Map; |
1944 | 1944 |
|
1945 | 1945 |
typedef std::multimap<V, K> Container; |
1946 | 1946 |
Container _inv_map; |
1947 | 1947 |
|
1948 | 1948 |
public: |
1949 | 1949 |
|
1950 | 1950 |
/// The graph type of CrossRefMap. |
1951 | 1951 |
typedef GR Graph; |
1952 | 1952 |
typedef GR Digraph; |
1953 | 1953 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1954 | 1954 |
typedef K Item; |
1955 | 1955 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1956 | 1956 |
typedef K Key; |
1957 | 1957 |
/// The value type of CrossRefMap. |
1958 | 1958 |
typedef V Value; |
1959 | 1959 |
|
1960 | 1960 |
/// \brief Constructor. |
1961 | 1961 |
/// |
1962 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
1963 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1964 | 1964 |
|
1965 | 1965 |
/// \brief Forward iterator for values. |
1966 | 1966 |
/// |
1967 | 1967 |
/// This iterator is an STL compatible forward |
1968 | 1968 |
/// iterator on the values of the map. The values can |
1969 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1970 | 1970 |
/// They are considered with multiplicity, so each value is |
1971 | 1971 |
/// traversed for each item it is assigned to. |
1972 | 1972 |
class ValueIt |
1973 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1974 | 1974 |
friend class CrossRefMap; |
1975 | 1975 |
private: |
1976 | 1976 |
ValueIt(typename Container::const_iterator _it) |
1977 | 1977 |
: it(_it) {} |
1978 | 1978 |
public: |
1979 | 1979 |
|
1980 | 1980 |
/// Constructor |
1981 | 1981 |
ValueIt() {} |
1982 | 1982 |
|
1983 | 1983 |
/// \e |
1984 | 1984 |
ValueIt& operator++() { ++it; return *this; } |
1985 | 1985 |
/// \e |
1986 | 1986 |
ValueIt operator++(int) { |
1987 | 1987 |
ValueIt tmp(*this); |
1988 | 1988 |
operator++(); |
1989 | 1989 |
return tmp; |
1990 | 1990 |
} |
1991 | 1991 |
|
1992 | 1992 |
/// \e |
1993 | 1993 |
const Value& operator*() const { return it->first; } |
1994 | 1994 |
/// \e |
1995 | 1995 |
const Value* operator->() const { return &(it->first); } |
1996 | 1996 |
|
1997 | 1997 |
/// \e |
1998 | 1998 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
1999 | 1999 |
/// \e |
2000 | 2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
2001 | 2001 |
|
2002 | 2002 |
private: |
2003 | 2003 |
typename Container::const_iterator it; |
2004 | 2004 |
}; |
2005 | 2005 |
|
2006 | 2006 |
/// Alias for \c ValueIt |
2007 | 2007 |
typedef ValueIt ValueIterator; |
2008 | 2008 |
|
2009 | 2009 |
/// \brief Returns an iterator to the first value. |
2010 | 2010 |
/// |
2011 | 2011 |
/// Returns an STL compatible iterator to the |
2012 | 2012 |
/// first value of the map. The values of the |
2013 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
2014 | 2014 |
/// range. |
2015 | 2015 |
ValueIt beginValue() const { |
2016 | 2016 |
return ValueIt(_inv_map.begin()); |
2017 | 2017 |
} |
2018 | 2018 |
|
2019 | 2019 |
/// \brief Returns an iterator after the last value. |
2020 | 2020 |
/// |
2021 | 2021 |
/// Returns an STL compatible iterator after the |
... | ... |
@@ -3373,323 +3373,323 @@ |
3373 | 3373 |
} |
3374 | 3374 |
|
3375 | 3375 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
3376 | 3376 |
/// |
3377 | 3377 |
/// ForwardMap provides access for the "forward" directed arc view of |
3378 | 3378 |
/// each edge in a graph, which is returned by the \c direct() function |
3379 | 3379 |
/// of the graph with \c true parameter. |
3380 | 3380 |
/// \tparam GR The graph type. |
3381 | 3381 |
/// \see BackwardMap |
3382 | 3382 |
template <typename GR> |
3383 | 3383 |
class ForwardMap { |
3384 | 3384 |
public: |
3385 | 3385 |
|
3386 | 3386 |
/// The key type (the \c Edge type of the digraph). |
3387 | 3387 |
typedef typename GR::Edge Key; |
3388 | 3388 |
/// The value type (the \c Arc type of the digraph). |
3389 | 3389 |
typedef typename GR::Arc Value; |
3390 | 3390 |
|
3391 | 3391 |
/// \brief Constructor |
3392 | 3392 |
/// |
3393 | 3393 |
/// Constructor. |
3394 | 3394 |
/// \param graph The graph that the map belongs to. |
3395 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
3396 | 3396 |
|
3397 | 3397 |
/// \brief Returns the "forward" directed arc view of the given edge. |
3398 | 3398 |
/// |
3399 | 3399 |
/// Returns the "forward" directed arc view of the given edge. |
3400 | 3400 |
Value operator[](const Key& key) const { |
3401 | 3401 |
return _graph.direct(key, true); |
3402 | 3402 |
} |
3403 | 3403 |
|
3404 | 3404 |
private: |
3405 | 3405 |
const GR& _graph; |
3406 | 3406 |
}; |
3407 | 3407 |
|
3408 | 3408 |
/// \brief Returns a \c ForwardMap class. |
3409 | 3409 |
/// |
3410 | 3410 |
/// This function just returns an \c ForwardMap class. |
3411 | 3411 |
/// \relates ForwardMap |
3412 | 3412 |
template <typename GR> |
3413 | 3413 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
3414 | 3414 |
return ForwardMap<GR>(graph); |
3415 | 3415 |
} |
3416 | 3416 |
|
3417 | 3417 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
3418 | 3418 |
/// |
3419 | 3419 |
/// BackwardMap provides access for the "backward" directed arc view of |
3420 | 3420 |
/// each edge in a graph, which is returned by the \c direct() function |
3421 | 3421 |
/// of the graph with \c false parameter. |
3422 | 3422 |
/// \tparam GR The graph type. |
3423 | 3423 |
/// \see ForwardMap |
3424 | 3424 |
template <typename GR> |
3425 | 3425 |
class BackwardMap { |
3426 | 3426 |
public: |
3427 | 3427 |
|
3428 | 3428 |
/// The key type (the \c Edge type of the digraph). |
3429 | 3429 |
typedef typename GR::Edge Key; |
3430 | 3430 |
/// The value type (the \c Arc type of the digraph). |
3431 | 3431 |
typedef typename GR::Arc Value; |
3432 | 3432 |
|
3433 | 3433 |
/// \brief Constructor |
3434 | 3434 |
/// |
3435 | 3435 |
/// Constructor. |
3436 | 3436 |
/// \param graph The graph that the map belongs to. |
3437 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
3438 | 3438 |
|
3439 | 3439 |
/// \brief Returns the "backward" directed arc view of the given edge. |
3440 | 3440 |
/// |
3441 | 3441 |
/// Returns the "backward" directed arc view of the given edge. |
3442 | 3442 |
Value operator[](const Key& key) const { |
3443 | 3443 |
return _graph.direct(key, false); |
3444 | 3444 |
} |
3445 | 3445 |
|
3446 | 3446 |
private: |
3447 | 3447 |
const GR& _graph; |
3448 | 3448 |
}; |
3449 | 3449 |
|
3450 | 3450 |
/// \brief Returns a \c BackwardMap class |
3451 | 3451 |
|
3452 | 3452 |
/// This function just returns a \c BackwardMap class. |
3453 | 3453 |
/// \relates BackwardMap |
3454 | 3454 |
template <typename GR> |
3455 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
3456 | 3456 |
return BackwardMap<GR>(graph); |
3457 | 3457 |
} |
3458 | 3458 |
|
3459 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
3460 | 3460 |
/// |
3461 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
3462 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3463 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
3464 | 3464 |
/// whenever the digraph changes. |
3465 | 3465 |
/// |
3466 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3467 | 3467 |
/// may provide alternative ways to modify the digraph. |
3468 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
3469 |
/// features are used. For example the functions |
|
3469 |
/// features are used. For example, the functions |
|
3470 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3471 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3472 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3473 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3474 | 3474 |
/// |
3475 | 3475 |
/// \sa OutDegMap |
3476 | 3476 |
template <typename GR> |
3477 | 3477 |
class InDegMap |
3478 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3479 | 3479 |
::ItemNotifier::ObserverBase { |
3480 | 3480 |
|
3481 | 3481 |
public: |
3482 | 3482 |
|
3483 | 3483 |
/// The graph type of InDegMap |
3484 | 3484 |
typedef GR Graph; |
3485 | 3485 |
typedef GR Digraph; |
3486 | 3486 |
/// The key type |
3487 | 3487 |
typedef typename Digraph::Node Key; |
3488 | 3488 |
/// The value type |
3489 | 3489 |
typedef int Value; |
3490 | 3490 |
|
3491 | 3491 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3492 | 3492 |
::ItemNotifier::ObserverBase Parent; |
3493 | 3493 |
|
3494 | 3494 |
private: |
3495 | 3495 |
|
3496 | 3496 |
class AutoNodeMap |
3497 | 3497 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
3498 | 3498 |
public: |
3499 | 3499 |
|
3500 | 3500 |
typedef typename ItemSetTraits<Digraph, Key>:: |
3501 | 3501 |
template Map<int>::Type Parent; |
3502 | 3502 |
|
3503 | 3503 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
3504 | 3504 |
|
3505 | 3505 |
virtual void add(const Key& key) { |
3506 | 3506 |
Parent::add(key); |
3507 | 3507 |
Parent::set(key, 0); |
3508 | 3508 |
} |
3509 | 3509 |
|
3510 | 3510 |
virtual void add(const std::vector<Key>& keys) { |
3511 | 3511 |
Parent::add(keys); |
3512 | 3512 |
for (int i = 0; i < int(keys.size()); ++i) { |
3513 | 3513 |
Parent::set(keys[i], 0); |
3514 | 3514 |
} |
3515 | 3515 |
} |
3516 | 3516 |
|
3517 | 3517 |
virtual void build() { |
3518 | 3518 |
Parent::build(); |
3519 | 3519 |
Key it; |
3520 | 3520 |
typename Parent::Notifier* nf = Parent::notifier(); |
3521 | 3521 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
3522 | 3522 |
Parent::set(it, 0); |
3523 | 3523 |
} |
3524 | 3524 |
} |
3525 | 3525 |
}; |
3526 | 3526 |
|
3527 | 3527 |
public: |
3528 | 3528 |
|
3529 | 3529 |
/// \brief Constructor. |
3530 | 3530 |
/// |
3531 | 3531 |
/// Constructor for creating an in-degree map. |
3532 | 3532 |
explicit InDegMap(const Digraph& graph) |
3533 | 3533 |
: _digraph(graph), _deg(graph) { |
3534 | 3534 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
3535 | 3535 |
|
3536 | 3536 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3537 | 3537 |
_deg[it] = countInArcs(_digraph, it); |
3538 | 3538 |
} |
3539 | 3539 |
} |
3540 | 3540 |
|
3541 | 3541 |
/// \brief Gives back the in-degree of a Node. |
3542 | 3542 |
/// |
3543 | 3543 |
/// Gives back the in-degree of a Node. |
3544 | 3544 |
int operator[](const Key& key) const { |
3545 | 3545 |
return _deg[key]; |
3546 | 3546 |
} |
3547 | 3547 |
|
3548 | 3548 |
protected: |
3549 | 3549 |
|
3550 | 3550 |
typedef typename Digraph::Arc Arc; |
3551 | 3551 |
|
3552 | 3552 |
virtual void add(const Arc& arc) { |
3553 | 3553 |
++_deg[_digraph.target(arc)]; |
3554 | 3554 |
} |
3555 | 3555 |
|
3556 | 3556 |
virtual void add(const std::vector<Arc>& arcs) { |
3557 | 3557 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3558 | 3558 |
++_deg[_digraph.target(arcs[i])]; |
3559 | 3559 |
} |
3560 | 3560 |
} |
3561 | 3561 |
|
3562 | 3562 |
virtual void erase(const Arc& arc) { |
3563 | 3563 |
--_deg[_digraph.target(arc)]; |
3564 | 3564 |
} |
3565 | 3565 |
|
3566 | 3566 |
virtual void erase(const std::vector<Arc>& arcs) { |
3567 | 3567 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3568 | 3568 |
--_deg[_digraph.target(arcs[i])]; |
3569 | 3569 |
} |
3570 | 3570 |
} |
3571 | 3571 |
|
3572 | 3572 |
virtual void build() { |
3573 | 3573 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3574 | 3574 |
_deg[it] = countInArcs(_digraph, it); |
3575 | 3575 |
} |
3576 | 3576 |
} |
3577 | 3577 |
|
3578 | 3578 |
virtual void clear() { |
3579 | 3579 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3580 | 3580 |
_deg[it] = 0; |
3581 | 3581 |
} |
3582 | 3582 |
} |
3583 | 3583 |
private: |
3584 | 3584 |
|
3585 | 3585 |
const Digraph& _digraph; |
3586 | 3586 |
AutoNodeMap _deg; |
3587 | 3587 |
}; |
3588 | 3588 |
|
3589 | 3589 |
/// \brief Map of the out-degrees of nodes in a digraph. |
3590 | 3590 |
/// |
3591 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
3592 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3593 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
3594 | 3594 |
/// whenever the digraph changes. |
3595 | 3595 |
/// |
3596 | 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3597 | 3597 |
/// may provide alternative ways to modify the digraph. |
3598 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
3599 |
/// features are used. For example the functions |
|
3599 |
/// features are used. For example, the functions |
|
3600 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3601 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3602 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3603 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3604 | 3604 |
/// |
3605 | 3605 |
/// \sa InDegMap |
3606 | 3606 |
template <typename GR> |
3607 | 3607 |
class OutDegMap |
3608 | 3608 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3609 | 3609 |
::ItemNotifier::ObserverBase { |
3610 | 3610 |
|
3611 | 3611 |
public: |
3612 | 3612 |
|
3613 | 3613 |
/// The graph type of OutDegMap |
3614 | 3614 |
typedef GR Graph; |
3615 | 3615 |
typedef GR Digraph; |
3616 | 3616 |
/// The key type |
3617 | 3617 |
typedef typename Digraph::Node Key; |
3618 | 3618 |
/// The value type |
3619 | 3619 |
typedef int Value; |
3620 | 3620 |
|
3621 | 3621 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3622 | 3622 |
::ItemNotifier::ObserverBase Parent; |
3623 | 3623 |
|
3624 | 3624 |
private: |
3625 | 3625 |
|
3626 | 3626 |
class AutoNodeMap |
3627 | 3627 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
3628 | 3628 |
public: |
3629 | 3629 |
|
3630 | 3630 |
typedef typename ItemSetTraits<Digraph, Key>:: |
3631 | 3631 |
template Map<int>::Type Parent; |
3632 | 3632 |
|
3633 | 3633 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
3634 | 3634 |
|
3635 | 3635 |
virtual void add(const Key& key) { |
3636 | 3636 |
Parent::add(key); |
3637 | 3637 |
Parent::set(key, 0); |
3638 | 3638 |
} |
3639 | 3639 |
virtual void add(const std::vector<Key>& keys) { |
3640 | 3640 |
Parent::add(keys); |
3641 | 3641 |
for (int i = 0; i < int(keys.size()); ++i) { |
3642 | 3642 |
Parent::set(keys[i], 0); |
3643 | 3643 |
} |
3644 | 3644 |
} |
3645 | 3645 |
virtual void build() { |
3646 | 3646 |
Parent::build(); |
3647 | 3647 |
Key it; |
3648 | 3648 |
typename Parent::Notifier* nf = Parent::notifier(); |
3649 | 3649 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
3650 | 3650 |
Parent::set(it, 0); |
3651 | 3651 |
} |
3652 | 3652 |
} |
3653 | 3653 |
}; |
3654 | 3654 |
|
3655 | 3655 |
public: |
3656 | 3656 |
|
3657 | 3657 |
/// \brief Constructor. |
3658 | 3658 |
/// |
3659 | 3659 |
/// Constructor for creating an out-degree map. |
3660 | 3660 |
explicit OutDegMap(const Digraph& graph) |
3661 | 3661 |
: _digraph(graph), _deg(graph) { |
3662 | 3662 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
3663 | 3663 |
|
3664 | 3664 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3665 | 3665 |
_deg[it] = countOutArcs(_digraph, it); |
3666 | 3666 |
} |
3667 | 3667 |
} |
3668 | 3668 |
|
3669 | 3669 |
/// \brief Gives back the out-degree of a Node. |
3670 | 3670 |
/// |
3671 | 3671 |
/// Gives back the out-degree of a Node. |
3672 | 3672 |
int operator[](const Key& key) const { |
3673 | 3673 |
return _deg[key]; |
3674 | 3674 |
} |
3675 | 3675 |
|
3676 | 3676 |
protected: |
3677 | 3677 |
|
3678 | 3678 |
typedef typename Digraph::Arc Arc; |
3679 | 3679 |
|
3680 | 3680 |
virtual void add(const Arc& arc) { |
3681 | 3681 |
++_deg[_digraph.source(arc)]; |
3682 | 3682 |
} |
3683 | 3683 |
|
3684 | 3684 |
virtual void add(const std::vector<Arc>& arcs) { |
3685 | 3685 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3686 | 3686 |
++_deg[_digraph.source(arcs[i])]; |
3687 | 3687 |
} |
3688 | 3688 |
} |
3689 | 3689 |
|
3690 | 3690 |
virtual void erase(const Arc& arc) { |
3691 | 3691 |
--_deg[_digraph.source(arc)]; |
3692 | 3692 |
} |
3693 | 3693 |
|
3694 | 3694 |
virtual void erase(const std::vector<Arc>& arcs) { |
3695 | 3695 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a specialized version of the linear programming |
47 | 47 |
/// simplex method directly for the minimum cost flow problem. |
48 | 48 |
/// It is one of the most efficient solution methods. |
49 | 49 |
/// |
50 | 50 |
/// In general this class is the fastest implementation available |
51 | 51 |
/// in LEMON for the minimum cost flow problem. |
52 | 52 |
/// Moreover it supports both directions of the supply/demand inequality |
53 |
/// constraints. For more information see \ref SupplyType. |
|
53 |
/// constraints. For more information, see \ref SupplyType. |
|
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The value type used for flow amounts, capacity bounds |
62 |
/// and supply values in the algorithm. By default it is \c int. |
|
62 |
/// and supply values in the algorithm. By default, it is \c int. |
|
63 | 63 |
/// \tparam C The value type used for costs and potentials in the |
64 |
/// algorithm. By default it is the same as \c V. |
|
64 |
/// algorithm. By default, it is the same as \c V. |
|
65 | 65 |
/// |
66 | 66 |
/// \warning Both value types must be signed and all input data must |
67 | 67 |
/// be integer. |
68 | 68 |
/// |
69 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
70 | 70 |
/// implementations, from which the most efficient one is used |
71 |
/// by default. For more information see \ref PivotRule. |
|
71 |
/// by default. For more information, see \ref PivotRule. |
|
72 | 72 |
template <typename GR, typename V = int, typename C = V> |
73 | 73 |
class NetworkSimplex |
74 | 74 |
{ |
75 | 75 |
public: |
76 | 76 |
|
77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
78 | 78 |
typedef V Value; |
79 | 79 |
/// The type of the arc costs |
80 | 80 |
typedef C Cost; |
81 | 81 |
|
82 | 82 |
public: |
83 | 83 |
|
84 | 84 |
/// \brief Problem type constants for the \c run() function. |
85 | 85 |
/// |
86 | 86 |
/// Enum type containing the problem type constants that can be |
87 | 87 |
/// returned by the \ref run() function of the algorithm. |
88 | 88 |
enum ProblemType { |
89 | 89 |
/// The problem has no feasible solution (flow). |
90 | 90 |
INFEASIBLE, |
91 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
92 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
93 | 93 |
/// potentials (primal and dual solutions). |
94 | 94 |
OPTIMAL, |
95 | 95 |
/// The objective function of the problem is unbounded, i.e. |
96 | 96 |
/// there is a directed cycle having negative total cost and |
97 | 97 |
/// infinite upper bound. |
98 | 98 |
UNBOUNDED |
99 | 99 |
}; |
100 | 100 |
|
101 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
102 | 102 |
/// |
103 | 103 |
/// Enum type containing constants for selecting the supply type, |
104 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
105 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
106 | 106 |
/// |
107 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
108 | 108 |
/// selected using \ref supplyType(). |
109 | 109 |
/// The equality form is a special case of both supply types. |
110 | 110 |
enum SupplyType { |
111 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
112 | 112 |
/// supply/demand constraints in the definition of the problem. |
113 | 113 |
GEQ, |
114 | 114 |
/// This option means that there are <em>"less or equal"</em> |
115 | 115 |
/// supply/demand constraints in the definition of the problem. |
116 | 116 |
LEQ |
117 | 117 |
}; |
118 | 118 |
|
119 | 119 |
/// \brief Constants for selecting the pivot rule. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 122 |
/// the \ref run() function. |
123 | 123 |
/// |
124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 125 |
/// implementations that significantly affect the running time |
126 | 126 |
/// of the algorithm. |
127 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
128 | 128 |
/// proved to be the most efficient and the most robust on various |
129 | 129 |
/// test inputs according to our benchmark tests. |
130 |
/// However another pivot rule can be selected using the \ref run() |
|
130 |
/// However, another pivot rule can be selected using the \ref run() |
|
131 | 131 |
/// function with the proper parameter. |
132 | 132 |
enum PivotRule { |
133 | 133 |
|
134 |
/// The First Eligible pivot rule. |
|
134 |
/// The \e First \e Eligible pivot rule. |
|
135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
136 | 136 |
/// in every iteration. |
137 | 137 |
FIRST_ELIGIBLE, |
138 | 138 |
|
139 |
/// The Best Eligible pivot rule. |
|
139 |
/// The \e Best \e Eligible pivot rule. |
|
140 | 140 |
/// The best eligible arc is selected in every iteration. |
141 | 141 |
BEST_ELIGIBLE, |
142 | 142 |
|
143 |
/// The Block Search pivot rule. |
|
143 |
/// The \e Block \e Search pivot rule. |
|
144 | 144 |
/// A specified number of arcs are examined in every iteration |
145 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
146 | 146 |
/// from this block. |
147 | 147 |
BLOCK_SEARCH, |
148 | 148 |
|
149 |
/// The Candidate List pivot rule. |
|
149 |
/// The \e Candidate \e List pivot rule. |
|
150 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
151 | 151 |
/// in a wraparound fashion and in the following minor iterations |
152 | 152 |
/// the best eligible arc is selected from this list. |
153 | 153 |
CANDIDATE_LIST, |
154 | 154 |
|
155 |
/// The Altering Candidate List pivot rule. |
|
155 |
/// The \e Altering \e Candidate \e List pivot rule. |
|
156 | 156 |
/// It is a modified version of the Candidate List method. |
157 | 157 |
/// It keeps only the several best eligible arcs from the former |
158 | 158 |
/// candidate list and extends this list in every iteration. |
159 | 159 |
ALTERING_LIST |
160 | 160 |
}; |
161 | 161 |
|
162 | 162 |
private: |
163 | 163 |
|
164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
165 | 165 |
|
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<bool> BoolVector; |
168 | 168 |
typedef std::vector<Value> ValueVector; |
169 | 169 |
typedef std::vector<Cost> CostVector; |
170 | 170 |
|
171 | 171 |
// State constants for arcs |
172 | 172 |
enum ArcStateEnum { |
173 | 173 |
STATE_UPPER = -1, |
174 | 174 |
STATE_TREE = 0, |
175 | 175 |
STATE_LOWER = 1 |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
private: |
179 | 179 |
|
180 | 180 |
// Data related to the underlying digraph |
181 | 181 |
const GR &_graph; |
182 | 182 |
int _node_num; |
183 | 183 |
int _arc_num; |
184 | 184 |
int _all_arc_num; |
185 | 185 |
int _search_arc_num; |
186 | 186 |
|
187 | 187 |
// Parameters of the problem |
188 | 188 |
bool _have_lower; |
189 | 189 |
SupplyType _stype; |
190 | 190 |
Value _sum_supply; |
191 | 191 |
|
192 | 192 |
// Data structures for storing the digraph |
193 | 193 |
IntNodeMap _node_id; |
194 | 194 |
IntArcMap _arc_id; |
195 | 195 |
IntVector _source; |
196 | 196 |
IntVector _target; |
197 | 197 |
|
198 | 198 |
// Node and arc data |
199 | 199 |
ValueVector _lower; |
200 | 200 |
ValueVector _upper; |
201 | 201 |
ValueVector _cap; |
202 | 202 |
CostVector _cost; |
203 | 203 |
ValueVector _supply; |
204 | 204 |
ValueVector _flow; |
205 | 205 |
CostVector _pi; |
206 | 206 |
|
207 | 207 |
// Data for storing the spanning tree structure |
208 | 208 |
IntVector _parent; |
209 | 209 |
IntVector _pred; |
210 | 210 |
IntVector _thread; |
211 | 211 |
IntVector _rev_thread; |
212 | 212 |
IntVector _succ_num; |
213 | 213 |
IntVector _last_succ; |
214 | 214 |
IntVector _dirty_revs; |
215 | 215 |
BoolVector _forward; |
216 | 216 |
IntVector _state; |
217 | 217 |
int _root; |
218 | 218 |
|
219 | 219 |
// Temporary data used in the current pivot iteration |
220 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
221 | 221 |
int first, second, right, last; |
222 | 222 |
int stem, par_stem, new_stem; |
223 | 223 |
Value delta; |
224 | 224 |
|
225 | 225 |
public: |
226 | 226 |
|
227 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
228 | 228 |
/// |
229 | 229 |
/// Constant for infinite upper bounds (capacities). |
230 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
231 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
232 | 232 |
const Value INF; |
233 | 233 |
|
234 | 234 |
private: |
235 | 235 |
|
236 | 236 |
// Implementation of the First Eligible pivot rule |
237 | 237 |
class FirstEligiblePivotRule |
238 | 238 |
{ |
239 | 239 |
private: |
240 | 240 |
|
241 | 241 |
// References to the NetworkSimplex class |
242 | 242 |
const IntVector &_source; |
243 | 243 |
const IntVector &_target; |
244 | 244 |
const CostVector &_cost; |
245 | 245 |
const IntVector &_state; |
246 | 246 |
const CostVector &_pi; |
247 | 247 |
int &_in_arc; |
248 | 248 |
int _search_arc_num; |
249 | 249 |
|
250 | 250 |
// Pivot rule data |
251 | 251 |
int _next_arc; |
... | ... |
@@ -719,254 +719,254 @@ |
719 | 719 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
720 | 720 |
_lower[_arc_id[a]] = map[a]; |
721 | 721 |
} |
722 | 722 |
return *this; |
723 | 723 |
} |
724 | 724 |
|
725 | 725 |
/// \brief Set the upper bounds (capacities) on the arcs. |
726 | 726 |
/// |
727 | 727 |
/// This function sets the upper bounds (capacities) on the arcs. |
728 | 728 |
/// If it is not used before calling \ref run(), the upper bounds |
729 | 729 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
730 | 730 |
/// unbounded from above on each arc). |
731 | 731 |
/// |
732 | 732 |
/// \param map An arc map storing the upper bounds. |
733 | 733 |
/// Its \c Value type must be convertible to the \c Value type |
734 | 734 |
/// of the algorithm. |
735 | 735 |
/// |
736 | 736 |
/// \return <tt>(*this)</tt> |
737 | 737 |
template<typename UpperMap> |
738 | 738 |
NetworkSimplex& upperMap(const UpperMap& map) { |
739 | 739 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
740 | 740 |
_upper[_arc_id[a]] = map[a]; |
741 | 741 |
} |
742 | 742 |
return *this; |
743 | 743 |
} |
744 | 744 |
|
745 | 745 |
/// \brief Set the costs of the arcs. |
746 | 746 |
/// |
747 | 747 |
/// This function sets the costs of the arcs. |
748 | 748 |
/// If it is not used before calling \ref run(), the costs |
749 | 749 |
/// will be set to \c 1 on all arcs. |
750 | 750 |
/// |
751 | 751 |
/// \param map An arc map storing the costs. |
752 | 752 |
/// Its \c Value type must be convertible to the \c Cost type |
753 | 753 |
/// of the algorithm. |
754 | 754 |
/// |
755 | 755 |
/// \return <tt>(*this)</tt> |
756 | 756 |
template<typename CostMap> |
757 | 757 |
NetworkSimplex& costMap(const CostMap& map) { |
758 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
759 | 759 |
_cost[_arc_id[a]] = map[a]; |
760 | 760 |
} |
761 | 761 |
return *this; |
762 | 762 |
} |
763 | 763 |
|
764 | 764 |
/// \brief Set the supply values of the nodes. |
765 | 765 |
/// |
766 | 766 |
/// This function sets the supply values of the nodes. |
767 | 767 |
/// If neither this function nor \ref stSupply() is used before |
768 | 768 |
/// calling \ref run(), the supply of each node will be set to zero. |
769 | 769 |
/// |
770 | 770 |
/// \param map A node map storing the supply values. |
771 | 771 |
/// Its \c Value type must be convertible to the \c Value type |
772 | 772 |
/// of the algorithm. |
773 | 773 |
/// |
774 | 774 |
/// \return <tt>(*this)</tt> |
775 | 775 |
template<typename SupplyMap> |
776 | 776 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
777 | 777 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
778 | 778 |
_supply[_node_id[n]] = map[n]; |
779 | 779 |
} |
780 | 780 |
return *this; |
781 | 781 |
} |
782 | 782 |
|
783 | 783 |
/// \brief Set single source and target nodes and a supply value. |
784 | 784 |
/// |
785 | 785 |
/// This function sets a single source node and a single target node |
786 | 786 |
/// and the required flow value. |
787 | 787 |
/// If neither this function nor \ref supplyMap() is used before |
788 | 788 |
/// calling \ref run(), the supply of each node will be set to zero. |
789 | 789 |
/// |
790 | 790 |
/// Using this function has the same effect as using \ref supplyMap() |
791 | 791 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
792 | 792 |
/// assigned to \c t and all other nodes have zero supply value. |
793 | 793 |
/// |
794 | 794 |
/// \param s The source node. |
795 | 795 |
/// \param t The target node. |
796 | 796 |
/// \param k The required amount of flow from node \c s to node \c t |
797 | 797 |
/// (i.e. the supply of \c s and the demand of \c t). |
798 | 798 |
/// |
799 | 799 |
/// \return <tt>(*this)</tt> |
800 | 800 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
801 | 801 |
for (int i = 0; i != _node_num; ++i) { |
802 | 802 |
_supply[i] = 0; |
803 | 803 |
} |
804 | 804 |
_supply[_node_id[s]] = k; |
805 | 805 |
_supply[_node_id[t]] = -k; |
806 | 806 |
return *this; |
807 | 807 |
} |
808 | 808 |
|
809 | 809 |
/// \brief Set the type of the supply constraints. |
810 | 810 |
/// |
811 | 811 |
/// This function sets the type of the supply/demand constraints. |
812 | 812 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
813 | 813 |
/// type will be used. |
814 | 814 |
/// |
815 |
/// For more information see \ref SupplyType. |
|
815 |
/// For more information, see \ref SupplyType. |
|
816 | 816 |
/// |
817 | 817 |
/// \return <tt>(*this)</tt> |
818 | 818 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
819 | 819 |
_stype = supply_type; |
820 | 820 |
return *this; |
821 | 821 |
} |
822 | 822 |
|
823 | 823 |
/// @} |
824 | 824 |
|
825 | 825 |
/// \name Execution Control |
826 | 826 |
/// The algorithm can be executed using \ref run(). |
827 | 827 |
|
828 | 828 |
/// @{ |
829 | 829 |
|
830 | 830 |
/// \brief Run the algorithm. |
831 | 831 |
/// |
832 | 832 |
/// This function runs the algorithm. |
833 | 833 |
/// The paramters can be specified using functions \ref lowerMap(), |
834 | 834 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
835 | 835 |
/// \ref supplyType(). |
836 | 836 |
/// For example, |
837 | 837 |
/// \code |
838 | 838 |
/// NetworkSimplex<ListDigraph> ns(graph); |
839 | 839 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
840 | 840 |
/// .supplyMap(sup).run(); |
841 | 841 |
/// \endcode |
842 | 842 |
/// |
843 | 843 |
/// This function can be called more than once. All the parameters |
844 | 844 |
/// that have been given are kept for the next call, unless |
845 | 845 |
/// \ref reset() is called, thus only the modified parameters |
846 | 846 |
/// have to be set again. See \ref reset() for examples. |
847 |
/// However the underlying digraph must not be modified after this |
|
847 |
/// However, the underlying digraph must not be modified after this |
|
848 | 848 |
/// class have been constructed, since it copies and extends the graph. |
849 | 849 |
/// |
850 | 850 |
/// \param pivot_rule The pivot rule that will be used during the |
851 |
/// algorithm. For more information see \ref PivotRule. |
|
851 |
/// algorithm. For more information, see \ref PivotRule. |
|
852 | 852 |
/// |
853 | 853 |
/// \return \c INFEASIBLE if no feasible flow exists, |
854 | 854 |
/// \n \c OPTIMAL if the problem has optimal solution |
855 | 855 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
856 | 856 |
/// optimal flow and node potentials (primal and dual solutions), |
857 | 857 |
/// \n \c UNBOUNDED if the objective function of the problem is |
858 | 858 |
/// unbounded, i.e. there is a directed cycle having negative total |
859 | 859 |
/// cost and infinite upper bound. |
860 | 860 |
/// |
861 | 861 |
/// \see ProblemType, PivotRule |
862 | 862 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
863 | 863 |
if (!init()) return INFEASIBLE; |
864 | 864 |
return start(pivot_rule); |
865 | 865 |
} |
866 | 866 |
|
867 | 867 |
/// \brief Reset all the parameters that have been given before. |
868 | 868 |
/// |
869 | 869 |
/// This function resets all the paramaters that have been given |
870 | 870 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
871 | 871 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
872 | 872 |
/// |
873 | 873 |
/// It is useful for multiple run() calls. If this function is not |
874 | 874 |
/// used, all the parameters given before are kept for the next |
875 | 875 |
/// \ref run() call. |
876 |
/// However the underlying digraph must not be modified after this |
|
876 |
/// However, the underlying digraph must not be modified after this |
|
877 | 877 |
/// class have been constructed, since it copies and extends the graph. |
878 | 878 |
/// |
879 | 879 |
/// For example, |
880 | 880 |
/// \code |
881 | 881 |
/// NetworkSimplex<ListDigraph> ns(graph); |
882 | 882 |
/// |
883 | 883 |
/// // First run |
884 | 884 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
885 | 885 |
/// .supplyMap(sup).run(); |
886 | 886 |
/// |
887 | 887 |
/// // Run again with modified cost map (reset() is not called, |
888 | 888 |
/// // so only the cost map have to be set again) |
889 | 889 |
/// cost[e] += 100; |
890 | 890 |
/// ns.costMap(cost).run(); |
891 | 891 |
/// |
892 | 892 |
/// // Run again from scratch using reset() |
893 | 893 |
/// // (the lower bounds will be set to zero on all arcs) |
894 | 894 |
/// ns.reset(); |
895 | 895 |
/// ns.upperMap(capacity).costMap(cost) |
896 | 896 |
/// .supplyMap(sup).run(); |
897 | 897 |
/// \endcode |
898 | 898 |
/// |
899 | 899 |
/// \return <tt>(*this)</tt> |
900 | 900 |
NetworkSimplex& reset() { |
901 | 901 |
for (int i = 0; i != _node_num; ++i) { |
902 | 902 |
_supply[i] = 0; |
903 | 903 |
} |
904 | 904 |
for (int i = 0; i != _arc_num; ++i) { |
905 | 905 |
_lower[i] = 0; |
906 | 906 |
_upper[i] = INF; |
907 | 907 |
_cost[i] = 1; |
908 | 908 |
} |
909 | 909 |
_have_lower = false; |
910 | 910 |
_stype = GEQ; |
911 | 911 |
return *this; |
912 | 912 |
} |
913 | 913 |
|
914 | 914 |
/// @} |
915 | 915 |
|
916 | 916 |
/// \name Query Functions |
917 | 917 |
/// The results of the algorithm can be obtained using these |
918 | 918 |
/// functions.\n |
919 | 919 |
/// The \ref run() function must be called before using them. |
920 | 920 |
|
921 | 921 |
/// @{ |
922 | 922 |
|
923 | 923 |
/// \brief Return the total cost of the found flow. |
924 | 924 |
/// |
925 | 925 |
/// This function returns the total cost of the found flow. |
926 | 926 |
/// Its complexity is O(e). |
927 | 927 |
/// |
928 | 928 |
/// \note The return type of the function can be specified as a |
929 | 929 |
/// template parameter. For example, |
930 | 930 |
/// \code |
931 | 931 |
/// ns.totalCost<double>(); |
932 | 932 |
/// \endcode |
933 | 933 |
/// It is useful if the total cost cannot be stored in the \c Cost |
934 | 934 |
/// type of the algorithm, which is the default return type of the |
935 | 935 |
/// function. |
936 | 936 |
/// |
937 | 937 |
/// \pre \ref run() must be called before using this function. |
938 | 938 |
template <typename Number> |
939 | 939 |
Number totalCost() const { |
940 | 940 |
Number c = 0; |
941 | 941 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
942 | 942 |
int i = _arc_id[a]; |
943 | 943 |
c += Number(_flow[i]) * Number(_cost[i]); |
944 | 944 |
} |
945 | 945 |
return c; |
946 | 946 |
} |
947 | 947 |
|
948 | 948 |
#ifndef DOXYGEN |
949 | 949 |
Cost totalCost() const { |
950 | 950 |
return totalCost<Cost>(); |
951 | 951 |
} |
952 | 952 |
#endif |
953 | 953 |
|
954 | 954 |
/// \brief Return the flow on the given arc. |
955 | 955 |
/// |
956 | 956 |
/// This function returns the flow on the given arc. |
957 | 957 |
/// |
958 | 958 |
/// \pre \ref run() must be called before using this function. |
959 | 959 |
Value flow(const Arc& a) const { |
960 | 960 |
return _flow[_arc_id[a]]; |
961 | 961 |
} |
962 | 962 |
|
963 | 963 |
/// \brief Return the flow map (the primal solution). |
964 | 964 |
/// |
965 | 965 |
/// This function copies the flow value on each arc into the given |
966 | 966 |
/// map. The \c Value type of the algorithm must be convertible to |
967 | 967 |
/// the \c Value type of the map. |
968 | 968 |
/// |
969 | 969 |
/// \pre \ref run() must be called before using this function. |
970 | 970 |
template <typename FlowMap> |
971 | 971 |
void flowMap(FlowMap &map) const { |
972 | 972 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)