0
1
1
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BELMANN_FORD_H |
|
| 20 |
#define LEMON_BELMANN_FORD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Bellman-Ford algorithm. |
|
| 25 |
/// |
|
| 26 |
|
|
| 27 |
#include <lemon/bits/path_dump.h> |
|
| 28 |
#include <lemon/core.h> |
|
| 29 |
#include <lemon/error.h> |
|
| 30 |
#include <lemon/maps.h> |
|
| 31 |
|
|
| 32 |
#include <limits> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 37 |
/// |
|
| 38 |
/// It defines all computational operations and constants which are |
|
| 39 |
/// used in the Bellman-Ford algorithm. The default implementation |
|
| 40 |
/// is based on the numeric_limits class. If the numeric type does not |
|
| 41 |
/// have infinity value then the maximum value is used as extremal |
|
| 42 |
/// infinity value. |
|
| 43 |
template < |
|
| 44 |
typename Value, |
|
| 45 |
bool has_infinity = std::numeric_limits<Value>::has_infinity> |
|
| 46 |
struct BellmanFordDefaultOperationTraits {
|
|
| 47 |
/// \brief Gives back the zero value of the type. |
|
| 48 |
static Value zero() {
|
|
| 49 |
return static_cast<Value>(0); |
|
| 50 |
} |
|
| 51 |
/// \brief Gives back the positive infinity value of the type. |
|
| 52 |
static Value infinity() {
|
|
| 53 |
return std::numeric_limits<Value>::infinity(); |
|
| 54 |
} |
|
| 55 |
/// \brief Gives back the sum of the given two elements. |
|
| 56 |
static Value plus(const Value& left, const Value& right) {
|
|
| 57 |
return left + right; |
|
| 58 |
} |
|
| 59 |
/// \brief Gives back true only if the first value less than the second. |
|
| 60 |
static bool less(const Value& left, const Value& right) {
|
|
| 61 |
return left < right; |
|
| 62 |
} |
|
| 63 |
}; |
|
| 64 |
|
|
| 65 |
template <typename Value> |
|
| 66 |
struct BellmanFordDefaultOperationTraits<Value, false> {
|
|
| 67 |
static Value zero() {
|
|
| 68 |
return static_cast<Value>(0); |
|
| 69 |
} |
|
| 70 |
static Value infinity() {
|
|
| 71 |
return std::numeric_limits<Value>::max(); |
|
| 72 |
} |
|
| 73 |
static Value plus(const Value& left, const Value& right) {
|
|
| 74 |
if (left == infinity() || right == infinity()) return infinity(); |
|
| 75 |
return left + right; |
|
| 76 |
} |
|
| 77 |
static bool less(const Value& left, const Value& right) {
|
|
| 78 |
return left < right; |
|
| 79 |
} |
|
| 80 |
}; |
|
| 81 |
|
|
| 82 |
/// \brief Default traits class of BellmanFord class. |
|
| 83 |
/// |
|
| 84 |
/// Default traits class of BellmanFord class. |
|
| 85 |
/// \param _Digraph Digraph type. |
|
| 86 |
/// \param _LegthMap Type of length map. |
|
| 87 |
template<class _Digraph, class _LengthMap> |
|
| 88 |
struct BellmanFordDefaultTraits {
|
|
| 89 |
/// The digraph type the algorithm runs on. |
|
| 90 |
typedef _Digraph Digraph; |
|
| 91 |
|
|
| 92 |
/// \brief The type of the map that stores the arc lengths. |
|
| 93 |
/// |
|
| 94 |
/// The type of the map that stores the arc lengths. |
|
| 95 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 96 |
typedef _LengthMap LengthMap; |
|
| 97 |
|
|
| 98 |
// The type of the length of the arcs. |
|
| 99 |
typedef typename _LengthMap::Value Value; |
|
| 100 |
|
|
| 101 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 102 |
/// |
|
| 103 |
/// It defines the infinity type on the given Value type |
|
| 104 |
/// and the used operation. |
|
| 105 |
/// \see BellmanFordDefaultOperationTraits |
|
| 106 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 107 |
|
|
| 108 |
/// \brief The type of the map that stores the last arcs of the |
|
| 109 |
/// shortest paths. |
|
| 110 |
/// |
|
| 111 |
/// The type of the map that stores the last |
|
| 112 |
/// arcs of the shortest paths. |
|
| 113 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 114 |
/// |
|
| 115 |
typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap; |
|
| 116 |
|
|
| 117 |
/// \brief Instantiates a PredMap. |
|
| 118 |
/// |
|
| 119 |
/// This function instantiates a \ref PredMap. |
|
| 120 |
/// \param digraph is the digraph, to which we would like to define the PredMap. |
|
| 121 |
static PredMap *createPredMap(const _Digraph& digraph) {
|
|
| 122 |
return new PredMap(digraph); |
|
| 123 |
} |
|
| 124 |
|
|
| 125 |
/// \brief The type of the map that stores the dists of the nodes. |
|
| 126 |
/// |
|
| 127 |
/// The type of the map that stores the dists of the nodes. |
|
| 128 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 129 |
/// |
|
| 130 |
typedef typename Digraph::template NodeMap<typename _LengthMap::Value> |
|
| 131 |
DistMap; |
|
| 132 |
|
|
| 133 |
/// \brief Instantiates a DistMap. |
|
| 134 |
/// |
|
| 135 |
/// This function instantiates a \ref DistMap. |
|
| 136 |
/// \param digraph is the digraph, to which we would like to define the |
|
| 137 |
/// \ref DistMap |
|
| 138 |
static DistMap *createDistMap(const _Digraph& digraph) {
|
|
| 139 |
return new DistMap(digraph); |
|
| 140 |
} |
|
| 141 |
|
|
| 142 |
}; |
|
| 143 |
|
|
| 144 |
/// \brief %BellmanFord algorithm class. |
|
| 145 |
/// |
|
| 146 |
/// \ingroup shortest_path |
|
| 147 |
/// This class provides an efficient implementation of \c Bellman-Ford |
|
| 148 |
/// algorithm. The arc lengths are passed to the algorithm using a |
|
| 149 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 150 |
/// kind of length. |
|
| 151 |
/// |
|
| 152 |
/// The Bellman-Ford algorithm solves the shortest path from one node |
|
| 153 |
/// problem when the arcs can have negative length but the digraph should |
|
| 154 |
/// not contain cycles with negative sum of length. If we can assume |
|
| 155 |
/// that all arc is non-negative in the digraph then the dijkstra algorithm |
|
| 156 |
/// should be used rather. |
|
| 157 |
/// |
|
| 158 |
/// The maximal time complexity of the algorithm is \f$ O(ne) \f$. |
|
| 159 |
/// |
|
| 160 |
/// The type of the length is determined by the |
|
| 161 |
/// \ref concepts::ReadMap::Value "Value" of the length map. |
|
| 162 |
/// |
|
| 163 |
/// \param _Digraph The digraph type the algorithm runs on. The default value |
|
| 164 |
/// is \ref ListDigraph. The value of _Digraph is not used directly by |
|
| 165 |
/// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
| 166 |
/// \param _LengthMap This read-only ArcMap determines the lengths of the |
|
| 167 |
/// arcs. The default map type is \ref concepts::Digraph::ArcMap |
|
| 168 |
/// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly |
|
| 169 |
/// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
| 170 |
/// \param _Traits Traits class to set various data types used by the |
|
| 171 |
/// algorithm. The default traits class is \ref BellmanFordDefaultTraits |
|
| 172 |
/// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref |
|
| 173 |
/// BellmanFordDefaultTraits for the documentation of a BellmanFord traits |
|
| 174 |
/// class. |
|
| 175 |
#ifdef DOXYGEN |
|
| 176 |
template <typename _Digraph, typename _LengthMap, typename _Traits> |
|
| 177 |
#else |
|
| 178 |
template <typename _Digraph, |
|
| 179 |
typename _LengthMap=typename _Digraph::template ArcMap<int>, |
|
| 180 |
typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> > |
|
| 181 |
#endif |
|
| 182 |
class BellmanFord {
|
|
| 183 |
public: |
|
| 184 |
|
|
| 185 |
typedef _Traits Traits; |
|
| 186 |
///The type of the underlying digraph. |
|
| 187 |
typedef typename _Traits::Digraph Digraph; |
|
| 188 |
|
|
| 189 |
typedef typename Digraph::Node Node; |
|
| 190 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 191 |
typedef typename Digraph::Arc Arc; |
|
| 192 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 193 |
|
|
| 194 |
/// \brief The type of the length of the arcs. |
|
| 195 |
typedef typename _Traits::LengthMap::Value Value; |
|
| 196 |
/// \brief The type of the map that stores the arc lengths. |
|
| 197 |
typedef typename _Traits::LengthMap LengthMap; |
|
| 198 |
/// \brief The type of the map that stores the last |
|
| 199 |
/// arcs of the shortest paths. |
|
| 200 |
typedef typename _Traits::PredMap PredMap; |
|
| 201 |
/// \brief The type of the map that stores the dists of the nodes. |
|
| 202 |
typedef typename _Traits::DistMap DistMap; |
|
| 203 |
/// \brief The operation traits. |
|
| 204 |
typedef typename _Traits::OperationTraits OperationTraits; |
|
| 205 |
private: |
|
| 206 |
/// Pointer to the underlying digraph. |
|
| 207 |
const Digraph *digraph; |
|
| 208 |
/// Pointer to the length map |
|
| 209 |
const LengthMap *length; |
|
| 210 |
///Pointer to the map of predecessors arcs. |
|
| 211 |
PredMap *_pred; |
|
| 212 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
| 213 |
bool local_pred; |
|
| 214 |
///Pointer to the map of distances. |
|
| 215 |
DistMap *_dist; |
|
| 216 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
| 217 |
bool local_dist; |
|
| 218 |
|
|
| 219 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
| 220 |
MaskMap *_mask; |
|
| 221 |
|
|
| 222 |
std::vector<Node> _process; |
|
| 223 |
|
|
| 224 |
/// Creates the maps if necessary. |
|
| 225 |
void create_maps() {
|
|
| 226 |
if(!_pred) {
|
|
| 227 |
local_pred = true; |
|
| 228 |
_pred = Traits::createPredMap(*digraph); |
|
| 229 |
} |
|
| 230 |
if(!_dist) {
|
|
| 231 |
local_dist = true; |
|
| 232 |
_dist = Traits::createDistMap(*digraph); |
|
| 233 |
} |
|
| 234 |
_mask = new MaskMap(*digraph, false); |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
public : |
|
| 238 |
|
|
| 239 |
typedef BellmanFord Create; |
|
| 240 |
|
|
| 241 |
/// \name Named template parameters |
|
| 242 |
|
|
| 243 |
///@{
|
|
| 244 |
|
|
| 245 |
template <class T> |
|
| 246 |
struct DefPredMapTraits : public Traits {
|
|
| 247 |
typedef T PredMap; |
|
| 248 |
static PredMap *createPredMap(const Digraph&) {
|
|
| 249 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
| 250 |
return 0; // ignore warnings |
|
| 251 |
} |
|
| 252 |
}; |
|
| 253 |
|
|
| 254 |
/// \brief \ref named-templ-param "Named parameter" for setting PredMap |
|
| 255 |
/// type |
|
| 256 |
/// \ref named-templ-param "Named parameter" for setting PredMap type |
|
| 257 |
/// |
|
| 258 |
template <class T> |
|
| 259 |
struct SetPredMap |
|
| 260 |
: public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > {
|
|
| 261 |
typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
|
| 262 |
}; |
|
| 263 |
|
|
| 264 |
template <class T> |
|
| 265 |
struct DefDistMapTraits : public Traits {
|
|
| 266 |
typedef T DistMap; |
|
| 267 |
static DistMap *createDistMap(const Digraph&) {
|
|
| 268 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
| 269 |
return 0; // ignore warnings |
|
| 270 |
} |
|
| 271 |
}; |
|
| 272 |
|
|
| 273 |
/// \brief \ref named-templ-param "Named parameter" for setting DistMap |
|
| 274 |
/// type |
|
| 275 |
/// |
|
| 276 |
/// \ref named-templ-param "Named parameter" for setting DistMap type |
|
| 277 |
/// |
|
| 278 |
template <class T> |
|
| 279 |
struct SetDistMap |
|
| 280 |
: public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > {
|
|
| 281 |
typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
|
| 282 |
}; |
|
| 283 |
|
|
| 284 |
template <class T> |
|
| 285 |
struct DefOperationTraitsTraits : public Traits {
|
|
| 286 |
typedef T OperationTraits; |
|
| 287 |
}; |
|
| 288 |
|
|
| 289 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 290 |
/// OperationTraits type |
|
| 291 |
/// |
|
| 292 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
|
| 293 |
/// type |
|
| 294 |
template <class T> |
|
| 295 |
struct SetOperationTraits |
|
| 296 |
: public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > {
|
|
| 297 |
typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > |
|
| 298 |
Create; |
|
| 299 |
}; |
|
| 300 |
|
|
| 301 |
///@} |
|
| 302 |
|
|
| 303 |
protected: |
|
| 304 |
|
|
| 305 |
BellmanFord() {}
|
|
| 306 |
|
|
| 307 |
public: |
|
| 308 |
|
|
| 309 |
/// \brief Constructor. |
|
| 310 |
/// |
|
| 311 |
/// \param _graph the digraph the algorithm will run on. |
|
| 312 |
/// \param _length the length map used by the algorithm. |
|
| 313 |
BellmanFord(const Digraph& _graph, const LengthMap& _length) : |
|
| 314 |
digraph(&_graph), length(&_length), |
|
| 315 |
_pred(0), local_pred(false), |
|
| 316 |
_dist(0), local_dist(false), _mask(0) {}
|
|
| 317 |
|
|
| 318 |
///Destructor. |
|
| 319 |
~BellmanFord() {
|
|
| 320 |
if(local_pred) delete _pred; |
|
| 321 |
if(local_dist) delete _dist; |
|
| 322 |
if(_mask) delete _mask; |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
/// \brief Sets the length map. |
|
| 326 |
/// |
|
| 327 |
/// Sets the length map. |
|
| 328 |
/// \return \c (*this) |
|
| 329 |
BellmanFord &lengthMap(const LengthMap &m) {
|
|
| 330 |
length = &m; |
|
| 331 |
return *this; |
|
| 332 |
} |
|
| 333 |
|
|
| 334 |
/// \brief Sets the map storing the predecessor arcs. |
|
| 335 |
/// |
|
| 336 |
/// Sets the map storing the predecessor arcs. |
|
| 337 |
/// If you don't use this function before calling \ref run(), |
|
| 338 |
/// it will allocate one. The destuctor deallocates this |
|
| 339 |
/// automatically allocated map, of course. |
|
| 340 |
/// \return \c (*this) |
|
| 341 |
BellmanFord &predMap(PredMap &m) {
|
|
| 342 |
if(local_pred) {
|
|
| 343 |
delete _pred; |
|
| 344 |
local_pred=false; |
|
| 345 |
} |
|
| 346 |
_pred = &m; |
|
| 347 |
return *this; |
|
| 348 |
} |
|
| 349 |
|
|
| 350 |
/// \brief Sets the map storing the distances calculated by the algorithm. |
|
| 351 |
/// |
|
| 352 |
/// Sets the map storing the distances calculated by the algorithm. |
|
| 353 |
/// If you don't use this function before calling \ref run(), |
|
| 354 |
/// it will allocate one. The destuctor deallocates this |
|
| 355 |
/// automatically allocated map, of course. |
|
| 356 |
/// \return \c (*this) |
|
| 357 |
BellmanFord &distMap(DistMap &m) {
|
|
| 358 |
if(local_dist) {
|
|
| 359 |
delete _dist; |
|
| 360 |
local_dist=false; |
|
| 361 |
} |
|
| 362 |
_dist = &m; |
|
| 363 |
return *this; |
|
| 364 |
} |
|
| 365 |
|
|
| 366 |
/// \name Execution control |
|
| 367 |
/// The simplest way to execute the algorithm is to use |
|
| 368 |
/// one of the member functions called \c run(...). |
|
| 369 |
/// \n |
|
| 370 |
/// If you need more control on the execution, |
|
| 371 |
/// first you must call \ref init(), then you can add several source nodes |
|
| 372 |
/// with \ref addSource(). |
|
| 373 |
/// Finally \ref start() will perform the actual path |
|
| 374 |
/// computation. |
|
| 375 |
|
|
| 376 |
///@{
|
|
| 377 |
|
|
| 378 |
/// \brief Initializes the internal data structures. |
|
| 379 |
/// |
|
| 380 |
/// Initializes the internal data structures. |
|
| 381 |
void init(const Value value = OperationTraits::infinity()) {
|
|
| 382 |
create_maps(); |
|
| 383 |
for (NodeIt it(*digraph); it != INVALID; ++it) {
|
|
| 384 |
_pred->set(it, INVALID); |
|
| 385 |
_dist->set(it, value); |
|
| 386 |
} |
|
| 387 |
_process.clear(); |
|
| 388 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
| 389 |
for (NodeIt it(*digraph); it != INVALID; ++it) {
|
|
| 390 |
_process.push_back(it); |
|
| 391 |
_mask->set(it, true); |
|
| 392 |
} |
|
| 393 |
} |
|
| 394 |
} |
|
| 395 |
|
|
| 396 |
/// \brief Adds a new source node. |
|
| 397 |
/// |
|
| 398 |
/// Adds a new source node. The optional second parameter is the |
|
| 399 |
/// initial distance of the node. It just sets the distance of the |
|
| 400 |
/// node to the given value. |
|
| 401 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
| 402 |
_dist->set(source, dst); |
|
| 403 |
if (!(*_mask)[source]) {
|
|
| 404 |
_process.push_back(source); |
|
| 405 |
_mask->set(source, true); |
|
| 406 |
} |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
| 410 |
/// |
|
| 411 |
/// If the algoritm calculated the distances in the previous round |
|
| 412 |
/// exactly for all at most \f$ k \f$ length path lengths then it will |
|
| 413 |
/// calculate the distances exactly for all at most \f$ k + 1 \f$ |
|
| 414 |
/// length path lengths. With \f$ k \f$ iteration this function |
|
| 415 |
/// calculates the at most \f$ k \f$ length path lengths. |
|
| 416 |
/// |
|
| 417 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 418 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
| 419 |
/// need the shortest path and not just the distance you should store |
|
| 420 |
/// after each iteration the \ref predMap() map and manually build |
|
| 421 |
/// the path. |
|
| 422 |
/// |
|
| 423 |
/// \return \c true when the algorithm have not found more shorter |
|
| 424 |
/// paths. |
|
| 425 |
bool processNextRound() {
|
|
| 426 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 427 |
_mask->set(_process[i], false); |
|
| 428 |
} |
|
| 429 |
std::vector<Node> nextProcess; |
|
| 430 |
std::vector<Value> values(_process.size()); |
|
| 431 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 432 |
values[i] = (*_dist)[_process[i]]; |
|
| 433 |
} |
|
| 434 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 435 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
|
|
| 436 |
Node target = digraph->target(it); |
|
| 437 |
Value relaxed = OperationTraits::plus(values[i], (*length)[it]); |
|
| 438 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 439 |
_pred->set(target, it); |
|
| 440 |
_dist->set(target, relaxed); |
|
| 441 |
if (!(*_mask)[target]) {
|
|
| 442 |
_mask->set(target, true); |
|
| 443 |
nextProcess.push_back(target); |
|
| 444 |
} |
|
| 445 |
} |
|
| 446 |
} |
|
| 447 |
} |
|
| 448 |
_process.swap(nextProcess); |
|
| 449 |
return _process.empty(); |
|
| 450 |
} |
|
| 451 |
|
|
| 452 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
| 453 |
/// |
|
| 454 |
/// If the algorithm calculated the distances in the |
|
| 455 |
/// previous round at least for all at most k length paths then it will |
|
| 456 |
/// calculate the distances at least for all at most k + 1 length paths. |
|
| 457 |
/// This function does not make it possible to calculate strictly the |
|
| 458 |
/// at most k length minimal paths, this is why it is |
|
| 459 |
/// called just weak round. |
|
| 460 |
/// \return \c true when the algorithm have not found more shorter paths. |
|
| 461 |
bool processNextWeakRound() {
|
|
| 462 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 463 |
_mask->set(_process[i], false); |
|
| 464 |
} |
|
| 465 |
std::vector<Node> nextProcess; |
|
| 466 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 467 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
|
|
| 468 |
Node target = digraph->target(it); |
|
| 469 |
Value relaxed = |
|
| 470 |
OperationTraits::plus((*_dist)[_process[i]], (*length)[it]); |
|
| 471 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 472 |
_pred->set(target, it); |
|
| 473 |
_dist->set(target, relaxed); |
|
| 474 |
if (!(*_mask)[target]) {
|
|
| 475 |
_mask->set(target, true); |
|
| 476 |
nextProcess.push_back(target); |
|
| 477 |
} |
|
| 478 |
} |
|
| 479 |
} |
|
| 480 |
} |
|
| 481 |
_process.swap(nextProcess); |
|
| 482 |
return _process.empty(); |
|
| 483 |
} |
|
| 484 |
|
|
| 485 |
/// \brief Executes the algorithm. |
|
| 486 |
/// |
|
| 487 |
/// \pre init() must be called and at least one node should be added |
|
| 488 |
/// with addSource() before using this function. |
|
| 489 |
/// |
|
| 490 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
| 491 |
/// in order to compute the shortest path to each node. The algorithm |
|
| 492 |
/// computes |
|
| 493 |
/// - The shortest path tree. |
|
| 494 |
/// - The distance of each node from the root(s). |
|
| 495 |
void start() {
|
|
| 496 |
int num = countNodes(*digraph) - 1; |
|
| 497 |
for (int i = 0; i < num; ++i) {
|
|
| 498 |
if (processNextWeakRound()) break; |
|
| 499 |
} |
|
| 500 |
} |
|
| 501 |
|
|
| 502 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
| 503 |
/// |
|
| 504 |
/// \pre init() must be called and at least one node should be added |
|
| 505 |
/// with addSource() before using this function. |
|
| 506 |
/// |
|
| 507 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
| 508 |
/// in order to compute the shortest path to each node. The algorithm |
|
| 509 |
/// computes |
|
| 510 |
/// - The shortest path tree. |
|
| 511 |
/// - The distance of each node from the root(s). |
|
| 512 |
/// |
|
| 513 |
/// \return \c false if there is a negative cycle in the digraph. |
|
| 514 |
bool checkedStart() {
|
|
| 515 |
int num = countNodes(*digraph); |
|
| 516 |
for (int i = 0; i < num; ++i) {
|
|
| 517 |
if (processNextWeakRound()) return true; |
|
| 518 |
} |
|
| 519 |
return _process.empty(); |
|
| 520 |
} |
|
| 521 |
|
|
| 522 |
/// \brief Executes the algorithm with path length limit. |
|
| 523 |
/// |
|
| 524 |
/// \pre init() must be called and at least one node should be added |
|
| 525 |
/// with addSource() before using this function. |
|
| 526 |
/// |
|
| 527 |
/// This method runs the %BellmanFord algorithm from the root |
|
| 528 |
/// node(s) in order to compute the shortest path lengths with at |
|
| 529 |
/// most \c num arc. |
|
| 530 |
/// |
|
| 531 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 532 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
| 533 |
/// need the shortest path and not just the distance you should store |
|
| 534 |
/// after each iteration the \ref predMap() map and manually build |
|
| 535 |
/// the path. |
|
| 536 |
/// |
|
| 537 |
/// The algorithm computes |
|
| 538 |
/// - The predecessor arc from each node. |
|
| 539 |
/// - The limited distance of each node from the root(s). |
|
| 540 |
void limitedStart(int num) {
|
|
| 541 |
for (int i = 0; i < num; ++i) {
|
|
| 542 |
if (processNextRound()) break; |
|
| 543 |
} |
|
| 544 |
} |
|
| 545 |
|
|
| 546 |
/// \brief Runs %BellmanFord algorithm from node \c s. |
|
| 547 |
/// |
|
| 548 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
| 549 |
/// in order to compute the shortest path to each node. The algorithm |
|
| 550 |
/// computes |
|
| 551 |
/// - The shortest path tree. |
|
| 552 |
/// - The distance of each node from the root. |
|
| 553 |
/// |
|
| 554 |
/// \note d.run(s) is just a shortcut of the following code. |
|
| 555 |
///\code |
|
| 556 |
/// d.init(); |
|
| 557 |
/// d.addSource(s); |
|
| 558 |
/// d.start(); |
|
| 559 |
///\endcode |
|
| 560 |
void run(Node s) {
|
|
| 561 |
init(); |
|
| 562 |
addSource(s); |
|
| 563 |
start(); |
|
| 564 |
} |
|
| 565 |
|
|
| 566 |
/// \brief Runs %BellmanFord algorithm with limited path length |
|
| 567 |
/// from node \c s. |
|
| 568 |
/// |
|
| 569 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
| 570 |
/// in order to compute the shortest path with at most \c len arcs |
|
| 571 |
/// to each node. The algorithm computes |
|
| 572 |
/// - The shortest path tree. |
|
| 573 |
/// - The distance of each node from the root. |
|
| 574 |
/// |
|
| 575 |
/// \note d.run(s, num) is just a shortcut of the following code. |
|
| 576 |
///\code |
|
| 577 |
/// d.init(); |
|
| 578 |
/// d.addSource(s); |
|
| 579 |
/// d.limitedStart(num); |
|
| 580 |
///\endcode |
|
| 581 |
void run(Node s, int num) {
|
|
| 582 |
init(); |
|
| 583 |
addSource(s); |
|
| 584 |
limitedStart(num); |
|
| 585 |
} |
|
| 586 |
|
|
| 587 |
///@} |
|
| 588 |
|
|
| 589 |
/// \name Query Functions |
|
| 590 |
/// The result of the %BellmanFord algorithm can be obtained using these |
|
| 591 |
/// functions.\n |
|
| 592 |
/// Before the use of these functions, |
|
| 593 |
/// either run() or start() must be called. |
|
| 594 |
|
|
| 595 |
///@{
|
|
| 596 |
|
|
| 597 |
/// \brief Lemon iterator for get the active nodes. |
|
| 598 |
/// |
|
| 599 |
/// Lemon iterator for get the active nodes. This class provides a |
|
| 600 |
/// common style lemon iterator which gives back a subset of the |
|
| 601 |
/// nodes. The iterated nodes are active in the algorithm after |
|
| 602 |
/// the last phase so these should be checked in the next phase to |
|
| 603 |
/// find augmenting arcs from these. |
|
| 604 |
class ActiveIt {
|
|
| 605 |
public: |
|
| 606 |
|
|
| 607 |
/// \brief Constructor. |
|
| 608 |
/// |
|
| 609 |
/// Constructor for get the nodeset of the variable. |
|
| 610 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
| 611 |
{
|
|
| 612 |
_index = _algorithm->_process.size() - 1; |
|
| 613 |
} |
|
| 614 |
|
|
| 615 |
/// \brief Invalid constructor. |
|
| 616 |
/// |
|
| 617 |
/// Invalid constructor. |
|
| 618 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
| 619 |
|
|
| 620 |
/// \brief Conversion to node. |
|
| 621 |
/// |
|
| 622 |
/// Conversion to node. |
|
| 623 |
operator Node() const {
|
|
| 624 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
| 625 |
} |
|
| 626 |
|
|
| 627 |
/// \brief Increment operator. |
|
| 628 |
/// |
|
| 629 |
/// Increment operator. |
|
| 630 |
ActiveIt& operator++() {
|
|
| 631 |
--_index; |
|
| 632 |
return *this; |
|
| 633 |
} |
|
| 634 |
|
|
| 635 |
bool operator==(const ActiveIt& it) const {
|
|
| 636 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 637 |
} |
|
| 638 |
bool operator!=(const ActiveIt& it) const {
|
|
| 639 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 640 |
} |
|
| 641 |
bool operator<(const ActiveIt& it) const {
|
|
| 642 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
private: |
|
| 646 |
const BellmanFord* _algorithm; |
|
| 647 |
int _index; |
|
| 648 |
}; |
|
| 649 |
|
|
| 650 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 651 |
|
|
| 652 |
/// \brief Gives back the shortest path. |
|
| 653 |
/// |
|
| 654 |
/// Gives back the shortest path. |
|
| 655 |
/// \pre The \c t should be reachable from the source. |
|
| 656 |
Path path(Node t) |
|
| 657 |
{
|
|
| 658 |
return Path(*digraph, *_pred, t); |
|
| 659 |
} |
|
| 660 |
|
|
| 661 |
|
|
| 662 |
// TODO : implement negative cycle |
|
| 663 |
// /// \brief Gives back a negative cycle. |
|
| 664 |
// /// |
|
| 665 |
// /// This function gives back a negative cycle. |
|
| 666 |
// /// If the algorithm have not found yet negative cycle it will give back |
|
| 667 |
// /// an empty path. |
|
| 668 |
// Path negativeCycle() {
|
|
| 669 |
// typename Digraph::template NodeMap<int> state(*digraph, 0); |
|
| 670 |
// for (ActiveIt it(*this); it != INVALID; ++it) {
|
|
| 671 |
// if (state[it] == 0) {
|
|
| 672 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
|
|
| 673 |
// if (state[t] == 0) {
|
|
| 674 |
// state[t] = 1; |
|
| 675 |
// } else if (state[t] == 2) {
|
|
| 676 |
// break; |
|
| 677 |
// } else {
|
|
| 678 |
// p.clear(); |
|
| 679 |
// typename Path::Builder b(p); |
|
| 680 |
// b.setStartNode(t); |
|
| 681 |
// b.pushFront(predArc(t)); |
|
| 682 |
// for(Node s = predNode(t); s != t; s = predNode(s)) {
|
|
| 683 |
// b.pushFront(predArc(s)); |
|
| 684 |
// } |
|
| 685 |
// b.commit(); |
|
| 686 |
// return true; |
|
| 687 |
// } |
|
| 688 |
// } |
|
| 689 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
|
|
| 690 |
// if (state[t] == 1) {
|
|
| 691 |
// state[t] = 2; |
|
| 692 |
// } else {
|
|
| 693 |
// break; |
|
| 694 |
// } |
|
| 695 |
// } |
|
| 696 |
// } |
|
| 697 |
// } |
|
| 698 |
// return false; |
|
| 699 |
// } |
|
| 700 |
|
|
| 701 |
/// \brief The distance of a node from the root. |
|
| 702 |
/// |
|
| 703 |
/// Returns the distance of a node from the root. |
|
| 704 |
/// \pre \ref run() must be called before using this function. |
|
| 705 |
/// \warning If node \c v in unreachable from the root the return value |
|
| 706 |
/// of this funcion is undefined. |
|
| 707 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 708 |
|
|
| 709 |
/// \brief Returns the 'previous arc' of the shortest path tree. |
|
| 710 |
/// |
|
| 711 |
/// For a node \c v it returns the 'previous arc' of the shortest path |
|
| 712 |
/// tree, i.e. it returns the last arc of a shortest path from the root |
|
| 713 |
/// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
|
| 714 |
/// if \c v=s. The shortest path tree used here is equal to the shortest |
|
| 715 |
/// path tree used in \ref predNode(). |
|
| 716 |
/// \pre \ref run() must be called before using |
|
| 717 |
/// this function. |
|
| 718 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 719 |
|
|
| 720 |
/// \brief Returns the 'previous node' of the shortest path tree. |
|
| 721 |
/// |
|
| 722 |
/// For a node \c v it returns the 'previous node' of the shortest path |
|
| 723 |
/// tree, i.e. it returns the last but one node from a shortest path from |
|
| 724 |
/// the root to \c /v. It is INVALID if \c v is unreachable from the root |
|
| 725 |
/// or if \c v=s. The shortest path tree used here is equal to the |
|
| 726 |
/// shortest path tree used in \ref predArc(). \pre \ref run() must be |
|
| 727 |
/// called before using this function. |
|
| 728 |
Node predNode(Node v) const {
|
|
| 729 |
return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); |
|
| 730 |
} |
|
| 731 |
|
|
| 732 |
/// \brief Returns a reference to the NodeMap of distances. |
|
| 733 |
/// |
|
| 734 |
/// Returns a reference to the NodeMap of distances. \pre \ref run() must |
|
| 735 |
/// be called before using this function. |
|
| 736 |
const DistMap &distMap() const { return *_dist;}
|
|
| 737 |
|
|
| 738 |
/// \brief Returns a reference to the shortest path tree map. |
|
| 739 |
/// |
|
| 740 |
/// Returns a reference to the NodeMap of the arcs of the |
|
| 741 |
/// shortest path tree. |
|
| 742 |
/// \pre \ref run() must be called before using this function. |
|
| 743 |
const PredMap &predMap() const { return *_pred; }
|
|
| 744 |
|
|
| 745 |
/// \brief Checks if a node is reachable from the root. |
|
| 746 |
/// |
|
| 747 |
/// Returns \c true if \c v is reachable from the root. |
|
| 748 |
/// \pre \ref run() must be called before using this function. |
|
| 749 |
/// |
|
| 750 |
bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
|
|
| 751 |
|
|
| 752 |
///@} |
|
| 753 |
}; |
|
| 754 |
|
|
| 755 |
/// \brief Default traits class of BellmanFord function. |
|
| 756 |
/// |
|
| 757 |
/// Default traits class of BellmanFord function. |
|
| 758 |
/// \param _Digraph Digraph type. |
|
| 759 |
/// \param _LengthMap Type of length map. |
|
| 760 |
template <typename _Digraph, typename _LengthMap> |
|
| 761 |
struct BellmanFordWizardDefaultTraits {
|
|
| 762 |
/// \brief The digraph type the algorithm runs on. |
|
| 763 |
typedef _Digraph Digraph; |
|
| 764 |
|
|
| 765 |
/// \brief The type of the map that stores the arc lengths. |
|
| 766 |
/// |
|
| 767 |
/// The type of the map that stores the arc lengths. |
|
| 768 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 769 |
typedef _LengthMap LengthMap; |
|
| 770 |
|
|
| 771 |
/// \brief The value type of the length map. |
|
| 772 |
typedef typename _LengthMap::Value Value; |
|
| 773 |
|
|
| 774 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 775 |
/// |
|
| 776 |
/// It defines the infinity type on the given Value type |
|
| 777 |
/// and the used operation. |
|
| 778 |
/// \see BellmanFordDefaultOperationTraits |
|
| 779 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 780 |
|
|
| 781 |
/// \brief The type of the map that stores the last |
|
| 782 |
/// arcs of the shortest paths. |
|
| 783 |
/// |
|
| 784 |
/// The type of the map that stores the last |
|
| 785 |
/// arcs of the shortest paths. |
|
| 786 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 787 |
typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap; |
|
| 788 |
|
|
| 789 |
/// \brief Instantiates a PredMap. |
|
| 790 |
/// |
|
| 791 |
/// This function instantiates a \ref PredMap. |
|
| 792 |
static PredMap *createPredMap(const _Digraph &) {
|
|
| 793 |
return new PredMap(); |
|
| 794 |
} |
|
| 795 |
/// \brief The type of the map that stores the dists of the nodes. |
|
| 796 |
/// |
|
| 797 |
/// The type of the map that stores the dists of the nodes. |
|
| 798 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 799 |
typedef NullMap<typename Digraph::Node, Value> DistMap; |
|
| 800 |
/// \brief Instantiates a DistMap. |
|
| 801 |
/// |
|
| 802 |
/// This function instantiates a \ref DistMap. |
|
| 803 |
static DistMap *createDistMap(const _Digraph &) {
|
|
| 804 |
return new DistMap(); |
|
| 805 |
} |
|
| 806 |
}; |
|
| 807 |
|
|
| 808 |
/// \brief Default traits used by \ref BellmanFordWizard |
|
| 809 |
/// |
|
| 810 |
/// To make it easier to use BellmanFord algorithm |
|
| 811 |
/// we have created a wizard class. |
|
| 812 |
/// This \ref BellmanFordWizard class needs default traits, |
|
| 813 |
/// as well as the \ref BellmanFord class. |
|
| 814 |
/// The \ref BellmanFordWizardBase is a class to be the default traits of the |
|
| 815 |
/// \ref BellmanFordWizard class. |
|
| 816 |
/// \todo More named parameters are required... |
|
| 817 |
template<class _Digraph,class _LengthMap> |
|
| 818 |
class BellmanFordWizardBase |
|
| 819 |
: public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> {
|
|
| 820 |
|
|
| 821 |
typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base; |
|
| 822 |
protected: |
|
| 823 |
/// Type of the nodes in the digraph. |
|
| 824 |
typedef typename Base::Digraph::Node Node; |
|
| 825 |
|
|
| 826 |
/// Pointer to the underlying digraph. |
|
| 827 |
void *_graph; |
|
| 828 |
/// Pointer to the length map |
|
| 829 |
void *_length; |
|
| 830 |
///Pointer to the map of predecessors arcs. |
|
| 831 |
void *_pred; |
|
| 832 |
///Pointer to the map of distances. |
|
| 833 |
void *_dist; |
|
| 834 |
///Pointer to the source node. |
|
| 835 |
Node _source; |
|
| 836 |
|
|
| 837 |
public: |
|
| 838 |
/// Constructor. |
|
| 839 |
|
|
| 840 |
/// This constructor does not require parameters, therefore it initiates |
|
| 841 |
/// all of the attributes to default values (0, INVALID). |
|
| 842 |
BellmanFordWizardBase() : _graph(0), _length(0), _pred(0), |
|
| 843 |
_dist(0), _source(INVALID) {}
|
|
| 844 |
|
|
| 845 |
/// Constructor. |
|
| 846 |
|
|
| 847 |
/// This constructor requires some parameters, |
|
| 848 |
/// listed in the parameters list. |
|
| 849 |
/// Others are initiated to 0. |
|
| 850 |
/// \param digraph is the initial value of \ref _graph |
|
| 851 |
/// \param length is the initial value of \ref _length |
|
| 852 |
/// \param source is the initial value of \ref _source |
|
| 853 |
BellmanFordWizardBase(const _Digraph& digraph, |
|
| 854 |
const _LengthMap& length, |
|
| 855 |
Node source = INVALID) : |
|
| 856 |
_graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), |
|
| 857 |
_length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), |
|
| 858 |
_pred(0), _dist(0), _source(source) {}
|
|
| 859 |
|
|
| 860 |
}; |
|
| 861 |
|
|
| 862 |
/// A class to make the usage of BellmanFord algorithm easier |
|
| 863 |
|
|
| 864 |
/// This class is created to make it easier to use BellmanFord algorithm. |
|
| 865 |
/// It uses the functions and features of the plain \ref BellmanFord, |
|
| 866 |
/// but it is much simpler to use it. |
|
| 867 |
/// |
|
| 868 |
/// Simplicity means that the way to change the types defined |
|
| 869 |
/// in the traits class is based on functions that returns the new class |
|
| 870 |
/// and not on templatable built-in classes. |
|
| 871 |
/// When using the plain \ref BellmanFord |
|
| 872 |
/// the new class with the modified type comes from |
|
| 873 |
/// the original class by using the :: |
|
| 874 |
/// operator. In the case of \ref BellmanFordWizard only |
|
| 875 |
/// a function have to be called and it will |
|
| 876 |
/// return the needed class. |
|
| 877 |
/// |
|
| 878 |
/// It does not have own \ref run method. When its \ref run method is called |
|
| 879 |
/// it initiates a plain \ref BellmanFord class, and calls the \ref |
|
| 880 |
/// BellmanFord::run method of it. |
|
| 881 |
template<class _Traits> |
|
| 882 |
class BellmanFordWizard : public _Traits {
|
|
| 883 |
typedef _Traits Base; |
|
| 884 |
|
|
| 885 |
///The type of the underlying digraph. |
|
| 886 |
typedef typename _Traits::Digraph Digraph; |
|
| 887 |
|
|
| 888 |
typedef typename Digraph::Node Node; |
|
| 889 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 890 |
typedef typename Digraph::Arc Arc; |
|
| 891 |
typedef typename Digraph::OutArcIt ArcIt; |
|
| 892 |
|
|
| 893 |
///The type of the map that stores the arc lengths. |
|
| 894 |
typedef typename _Traits::LengthMap LengthMap; |
|
| 895 |
|
|
| 896 |
///The type of the length of the arcs. |
|
| 897 |
typedef typename LengthMap::Value Value; |
|
| 898 |
|
|
| 899 |
///\brief The type of the map that stores the last |
|
| 900 |
///arcs of the shortest paths. |
|
| 901 |
typedef typename _Traits::PredMap PredMap; |
|
| 902 |
|
|
| 903 |
///The type of the map that stores the dists of the nodes. |
|
| 904 |
typedef typename _Traits::DistMap DistMap; |
|
| 905 |
|
|
| 906 |
public: |
|
| 907 |
/// Constructor. |
|
| 908 |
BellmanFordWizard() : _Traits() {}
|
|
| 909 |
|
|
| 910 |
/// \brief Constructor that requires parameters. |
|
| 911 |
/// |
|
| 912 |
/// Constructor that requires parameters. |
|
| 913 |
/// These parameters will be the default values for the traits class. |
|
| 914 |
BellmanFordWizard(const Digraph& digraph, const LengthMap& length, |
|
| 915 |
Node src = INVALID) |
|
| 916 |
: _Traits(digraph, length, src) {}
|
|
| 917 |
|
|
| 918 |
/// \brief Copy constructor |
|
| 919 |
BellmanFordWizard(const _Traits &b) : _Traits(b) {}
|
|
| 920 |
|
|
| 921 |
~BellmanFordWizard() {}
|
|
| 922 |
|
|
| 923 |
/// \brief Runs BellmanFord algorithm from a given node. |
|
| 924 |
/// |
|
| 925 |
/// Runs BellmanFord algorithm from a given node. |
|
| 926 |
/// The node can be given by the \ref source function. |
|
| 927 |
void run() {
|
|
| 928 |
LEMON_ASSERT(Base::_source != INVALID, "Source node is not given"); |
|
| 929 |
BellmanFord<Digraph,LengthMap,_Traits> |
|
| 930 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 931 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 932 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 933 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 934 |
bf.run(Base::_source); |
|
| 935 |
} |
|
| 936 |
|
|
| 937 |
/// \brief Runs BellmanFord algorithm from the given node. |
|
| 938 |
/// |
|
| 939 |
/// Runs BellmanFord algorithm from the given node. |
|
| 940 |
/// \param src is the given source. |
|
| 941 |
void run(Node src) {
|
|
| 942 |
Base::_source = src; |
|
| 943 |
run(); |
|
| 944 |
} |
|
| 945 |
|
|
| 946 |
template<class T> |
|
| 947 |
struct DefPredMapBase : public Base {
|
|
| 948 |
typedef T PredMap; |
|
| 949 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
| 950 |
DefPredMapBase(const _Traits &b) : _Traits(b) {}
|
|
| 951 |
}; |
|
| 952 |
|
|
| 953 |
///\brief \ref named-templ-param "Named parameter" |
|
| 954 |
///function for setting PredMap type |
|
| 955 |
/// |
|
| 956 |
/// \ref named-templ-param "Named parameter" |
|
| 957 |
///function for setting PredMap type |
|
| 958 |
/// |
|
| 959 |
template<class T> |
|
| 960 |
BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) |
|
| 961 |
{
|
|
| 962 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 963 |
return BellmanFordWizard<DefPredMapBase<T> >(*this); |
|
| 964 |
} |
|
| 965 |
|
|
| 966 |
template<class T> |
|
| 967 |
struct DefDistMapBase : public Base {
|
|
| 968 |
typedef T DistMap; |
|
| 969 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
| 970 |
DefDistMapBase(const _Traits &b) : _Traits(b) {}
|
|
| 971 |
}; |
|
| 972 |
|
|
| 973 |
///\brief \ref named-templ-param "Named parameter" |
|
| 974 |
///function for setting DistMap type |
|
| 975 |
/// |
|
| 976 |
/// \ref named-templ-param "Named parameter" |
|
| 977 |
///function for setting DistMap type |
|
| 978 |
/// |
|
| 979 |
template<class T> |
|
| 980 |
BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
|
|
| 981 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 982 |
return BellmanFordWizard<DefDistMapBase<T> >(*this); |
|
| 983 |
} |
|
| 984 |
|
|
| 985 |
template<class T> |
|
| 986 |
struct DefOperationTraitsBase : public Base {
|
|
| 987 |
typedef T OperationTraits; |
|
| 988 |
DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
|
|
| 989 |
}; |
|
| 990 |
|
|
| 991 |
///\brief \ref named-templ-param "Named parameter" |
|
| 992 |
///function for setting OperationTraits type |
|
| 993 |
/// |
|
| 994 |
/// \ref named-templ-param "Named parameter" |
|
| 995 |
///function for setting OperationTraits type |
|
| 996 |
/// |
|
| 997 |
template<class T> |
|
| 998 |
BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
|
|
| 999 |
return BellmanFordWizard<DefDistMapBase<T> >(*this); |
|
| 1000 |
} |
|
| 1001 |
|
|
| 1002 |
/// \brief Sets the source node, from which the BellmanFord algorithm runs. |
|
| 1003 |
/// |
|
| 1004 |
/// Sets the source node, from which the BellmanFord algorithm runs. |
|
| 1005 |
/// \param src is the source node. |
|
| 1006 |
BellmanFordWizard<_Traits>& source(Node src) {
|
|
| 1007 |
Base::_source = src; |
|
| 1008 |
return *this; |
|
| 1009 |
} |
|
| 1010 |
|
|
| 1011 |
}; |
|
| 1012 |
|
|
| 1013 |
/// \brief Function type interface for BellmanFord algorithm. |
|
| 1014 |
/// |
|
| 1015 |
/// \ingroup shortest_path |
|
| 1016 |
/// Function type interface for BellmanFord algorithm. |
|
| 1017 |
/// |
|
| 1018 |
/// This function also has several \ref named-templ-func-param |
|
| 1019 |
/// "named parameters", they are declared as the members of class |
|
| 1020 |
/// \ref BellmanFordWizard. |
|
| 1021 |
/// The following |
|
| 1022 |
/// example shows how to use these parameters. |
|
| 1023 |
///\code |
|
| 1024 |
/// bellmanford(g,length,source).predMap(preds).run(); |
|
| 1025 |
///\endcode |
|
| 1026 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
| 1027 |
/// to the end of the parameter list. |
|
| 1028 |
/// \sa BellmanFordWizard |
|
| 1029 |
/// \sa BellmanFord |
|
| 1030 |
template<class _Digraph, class _LengthMap> |
|
| 1031 |
BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
| 1032 |
bellmanFord(const _Digraph& digraph, |
|
| 1033 |
const _LengthMap& length, |
|
| 1034 |
typename _Digraph::Node source = INVALID) {
|
|
| 1035 |
return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
| 1036 |
(digraph, length, source); |
|
| 1037 |
} |
|
| 1038 |
|
|
| 1039 |
} //END OF NAMESPACE LEMON |
|
| 1040 |
|
|
| 1041 |
#endif |
|
| 1042 |
|
| ... | ... |
@@ -36,48 +36,49 @@ |
| 36 | 36 |
if HAVE_GLPK |
| 37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
| 38 | 38 |
endif |
| 39 | 39 |
|
| 40 | 40 |
if HAVE_CPLEX |
| 41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
| 42 | 42 |
endif |
| 43 | 43 |
|
| 44 | 44 |
if HAVE_SOPLEX |
| 45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
| 46 | 46 |
endif |
| 47 | 47 |
|
| 48 | 48 |
if HAVE_CLP |
| 49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
| 50 | 50 |
endif |
| 51 | 51 |
|
| 52 | 52 |
if HAVE_CBC |
| 53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
| 54 | 54 |
endif |
| 55 | 55 |
|
| 56 | 56 |
lemon_HEADERS += \ |
| 57 | 57 |
lemon/adaptors.h \ |
| 58 | 58 |
lemon/arg_parser.h \ |
| 59 | 59 |
lemon/assert.h \ |
| 60 |
lemon/bellman_ford.h \ |
|
| 60 | 61 |
lemon/bfs.h \ |
| 61 | 62 |
lemon/bin_heap.h \ |
| 62 | 63 |
lemon/bucket_heap.h \ |
| 63 | 64 |
lemon/cbc.h \ |
| 64 | 65 |
lemon/circulation.h \ |
| 65 | 66 |
lemon/clp.h \ |
| 66 | 67 |
lemon/color.h \ |
| 67 | 68 |
lemon/concept_check.h \ |
| 68 | 69 |
lemon/connectivity.h \ |
| 69 | 70 |
lemon/counter.h \ |
| 70 | 71 |
lemon/core.h \ |
| 71 | 72 |
lemon/cplex.h \ |
| 72 | 73 |
lemon/dfs.h \ |
| 73 | 74 |
lemon/dijkstra.h \ |
| 74 | 75 |
lemon/dim2.h \ |
| 75 | 76 |
lemon/dimacs.h \ |
| 76 | 77 |
lemon/edge_set.h \ |
| 77 | 78 |
lemon/elevator.h \ |
| 78 | 79 |
lemon/error.h \ |
| 79 | 80 |
lemon/euler.h \ |
| 80 | 81 |
lemon/fib_heap.h \ |
| 81 | 82 |
lemon/full_graph.h \ |
| 82 | 83 |
lemon/glpk.h \ |
| 83 | 84 |
lemon/gomory_hu.h \ |
0 comments (0 inline)