gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Port Bellman-Ford algorithm from SVN -r3524 (#51)
0 1 1
default
2 files changed with 1043 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 12 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BELMANN_FORD_H
20
#define LEMON_BELMANN_FORD_H
21

	
22
/// \ingroup shortest_path
23
/// \file
24
/// \brief Bellman-Ford algorithm.
25
///
26

	
27
#include <lemon/bits/path_dump.h>
28
#include <lemon/core.h>
29
#include <lemon/error.h>
30
#include <lemon/maps.h>
31

	
32
#include <limits>
33

	
34
namespace lemon {
35

	
36
  /// \brief Default OperationTraits for the BellmanFord algorithm class.
37
  ///  
38
  /// It defines all computational operations and constants which are
39
  /// used in the Bellman-Ford algorithm. The default implementation
40
  /// is based on the numeric_limits class. If the numeric type does not
41
  /// have infinity value then the maximum value is used as extremal
42
  /// infinity value.
43
  template <
44
    typename Value, 
45
    bool has_infinity = std::numeric_limits<Value>::has_infinity>
46
  struct BellmanFordDefaultOperationTraits {
47
    /// \brief Gives back the zero value of the type.
48
    static Value zero() {
49
      return static_cast<Value>(0);
50
    }
51
    /// \brief Gives back the positive infinity value of the type.
52
    static Value infinity() {
53
      return std::numeric_limits<Value>::infinity();
54
    }
55
    /// \brief Gives back the sum of the given two elements.
56
    static Value plus(const Value& left, const Value& right) {
57
      return left + right;
58
    }
59
    /// \brief Gives back true only if the first value less than the second.
60
    static bool less(const Value& left, const Value& right) {
61
      return left < right;
62
    }
63
  };
64

	
65
  template <typename Value>
66
  struct BellmanFordDefaultOperationTraits<Value, false> {
67
    static Value zero() {
68
      return static_cast<Value>(0);
69
    }
70
    static Value infinity() {
71
      return std::numeric_limits<Value>::max();
72
    }
73
    static Value plus(const Value& left, const Value& right) {
74
      if (left == infinity() || right == infinity()) return infinity();
75
      return left + right;
76
    }
77
    static bool less(const Value& left, const Value& right) {
78
      return left < right;
79
    }
80
  };
81
  
82
  /// \brief Default traits class of BellmanFord class.
83
  ///
84
  /// Default traits class of BellmanFord class.
85
  /// \param _Digraph Digraph type.
86
  /// \param _LegthMap Type of length map.
87
  template<class _Digraph, class _LengthMap>
88
  struct BellmanFordDefaultTraits {
89
    /// The digraph type the algorithm runs on. 
90
    typedef _Digraph Digraph;
91

	
92
    /// \brief The type of the map that stores the arc lengths.
93
    ///
94
    /// The type of the map that stores the arc lengths.
95
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
96
    typedef _LengthMap LengthMap;
97

	
98
    // The type of the length of the arcs.
99
    typedef typename _LengthMap::Value Value;
100

	
101
    /// \brief Operation traits for Bellman-Ford algorithm.
102
    ///
103
    /// It defines the infinity type on the given Value type
104
    /// and the used operation.
105
    /// \see BellmanFordDefaultOperationTraits
106
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
107
 
108
    /// \brief The type of the map that stores the last arcs of the 
109
    /// shortest paths.
110
    /// 
111
    /// The type of the map that stores the last
112
    /// arcs of the shortest paths.
113
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
114
    ///
115
    typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap;
116

	
117
    /// \brief Instantiates a PredMap.
118
    /// 
119
    /// This function instantiates a \ref PredMap. 
120
    /// \param digraph is the digraph, to which we would like to define the PredMap.
121
    static PredMap *createPredMap(const _Digraph& digraph) {
122
      return new PredMap(digraph);
123
    }
124

	
125
    /// \brief The type of the map that stores the dists of the nodes.
126
    ///
127
    /// The type of the map that stores the dists of the nodes.
128
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
129
    ///
130
    typedef typename Digraph::template NodeMap<typename _LengthMap::Value> 
131
    DistMap;
132

	
133
    /// \brief Instantiates a DistMap.
134
    ///
135
    /// This function instantiates a \ref DistMap. 
136
    /// \param digraph is the digraph, to which we would like to define the 
137
    /// \ref DistMap
138
    static DistMap *createDistMap(const _Digraph& digraph) {
139
      return new DistMap(digraph);
140
    }
141

	
142
  };
143
  
144
  /// \brief %BellmanFord algorithm class.
145
  ///
146
  /// \ingroup shortest_path
147
  /// This class provides an efficient implementation of \c Bellman-Ford 
148
  /// algorithm. The arc lengths are passed to the algorithm using a
149
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
150
  /// kind of length.
151
  ///
152
  /// The Bellman-Ford algorithm solves the shortest path from one node
153
  /// problem when the arcs can have negative length but the digraph should
154
  /// not contain cycles with negative sum of length. If we can assume
155
  /// that all arc is non-negative in the digraph then the dijkstra algorithm
156
  /// should be used rather.
157
  ///
158
  /// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
159
  ///
160
  /// The type of the length is determined by the
161
  /// \ref concepts::ReadMap::Value "Value" of the length map.
162
  ///
163
  /// \param _Digraph The digraph type the algorithm runs on. The default value
164
  /// is \ref ListDigraph. The value of _Digraph is not used directly by
165
  /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
166
  /// \param _LengthMap This read-only ArcMap determines the lengths of the
167
  /// arcs. The default map type is \ref concepts::Digraph::ArcMap 
168
  /// "Digraph::ArcMap<int>".  The value of _LengthMap is not used directly 
169
  /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.  
170
  /// \param _Traits Traits class to set various data types used by the 
171
  /// algorithm.  The default traits class is \ref BellmanFordDefaultTraits
172
  /// "BellmanFordDefaultTraits<_Digraph,_LengthMap>".  See \ref
173
  /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
174
  /// class.
175
#ifdef DOXYGEN
176
  template <typename _Digraph, typename _LengthMap, typename _Traits>
177
#else
178
  template <typename _Digraph,
179
	    typename _LengthMap=typename _Digraph::template ArcMap<int>,
180
	    typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> >
181
#endif
182
  class BellmanFord {
183
  public:
184

	
185
    typedef _Traits Traits;
186
    ///The type of the underlying digraph.
187
    typedef typename _Traits::Digraph Digraph;
188

	
189
    typedef typename Digraph::Node Node;
190
    typedef typename Digraph::NodeIt NodeIt;
191
    typedef typename Digraph::Arc Arc;
192
    typedef typename Digraph::OutArcIt OutArcIt;
193
    
194
    /// \brief The type of the length of the arcs.
195
    typedef typename _Traits::LengthMap::Value Value;
196
    /// \brief The type of the map that stores the arc lengths.
197
    typedef typename _Traits::LengthMap LengthMap;
198
    /// \brief The type of the map that stores the last
199
    /// arcs of the shortest paths.
200
    typedef typename _Traits::PredMap PredMap;
201
    /// \brief The type of the map that stores the dists of the nodes.
202
    typedef typename _Traits::DistMap DistMap;
203
    /// \brief The operation traits.
204
    typedef typename _Traits::OperationTraits OperationTraits;
205
  private:
206
    /// Pointer to the underlying digraph.
207
    const Digraph *digraph;
208
    /// Pointer to the length map
209
    const LengthMap *length;
210
    ///Pointer to the map of predecessors arcs.
211
    PredMap *_pred;
212
    ///Indicates if \ref _pred is locally allocated (\c true) or not.
213
    bool local_pred;
214
    ///Pointer to the map of distances.
215
    DistMap *_dist;
216
    ///Indicates if \ref _dist is locally allocated (\c true) or not.
217
    bool local_dist;
218

	
219
    typedef typename Digraph::template NodeMap<bool> MaskMap;
220
    MaskMap *_mask;
221

	
222
    std::vector<Node> _process;
223

	
224
    /// Creates the maps if necessary.
225
    void create_maps() {
226
      if(!_pred) {
227
	local_pred = true;
228
	_pred = Traits::createPredMap(*digraph);
229
      }
230
      if(!_dist) {
231
	local_dist = true;
232
	_dist = Traits::createDistMap(*digraph);
233
      }
234
      _mask = new MaskMap(*digraph, false);
235
    }
236
    
237
  public :
238
 
239
    typedef BellmanFord Create;
240

	
241
    /// \name Named template parameters
242

	
243
    ///@{
244

	
245
    template <class T>
246
    struct DefPredMapTraits : public Traits {
247
      typedef T PredMap;
248
      static PredMap *createPredMap(const Digraph&) {
249
        LEMON_ASSERT(false, "PredMap is not initialized");
250
        return 0; // ignore warnings
251
      }
252
    };
253

	
254
    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
255
    /// type
256
    /// \ref named-templ-param "Named parameter" for setting PredMap type
257
    ///
258
    template <class T>
259
    struct SetPredMap 
260
      : public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > {
261
      typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create;
262
    };
263
    
264
    template <class T>
265
    struct DefDistMapTraits : public Traits {
266
      typedef T DistMap;
267
      static DistMap *createDistMap(const Digraph&) {
268
        LEMON_ASSERT(false, "DistMap is not initialized");
269
        return 0; // ignore warnings
270
      }
271
    };
272

	
273
    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
274
    /// type
275
    ///
276
    /// \ref named-templ-param "Named parameter" for setting DistMap type
277
    ///
278
    template <class T>
279
    struct SetDistMap 
280
      : public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > {
281
      typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create;
282
    };
283
    
284
    template <class T>
285
    struct DefOperationTraitsTraits : public Traits {
286
      typedef T OperationTraits;
287
    };
288
    
289
    /// \brief \ref named-templ-param "Named parameter" for setting 
290
    /// OperationTraits type
291
    ///
292
    /// \ref named-templ-param "Named parameter" for setting OperationTraits
293
    /// type
294
    template <class T>
295
    struct SetOperationTraits
296
      : public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > {
297
      typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> >
298
      Create;
299
    };
300
    
301
    ///@}
302

	
303
  protected:
304
    
305
    BellmanFord() {}
306

	
307
  public:      
308
    
309
    /// \brief Constructor.
310
    ///
311
    /// \param _graph the digraph the algorithm will run on.
312
    /// \param _length the length map used by the algorithm.
313
    BellmanFord(const Digraph& _graph, const LengthMap& _length) :
314
      digraph(&_graph), length(&_length),
315
      _pred(0), local_pred(false),
316
      _dist(0), local_dist(false), _mask(0) {}
317
    
318
    ///Destructor.
319
    ~BellmanFord() {
320
      if(local_pred) delete _pred;
321
      if(local_dist) delete _dist;
322
      if(_mask) delete _mask;
323
    }
324

	
325
    /// \brief Sets the length map.
326
    ///
327
    /// Sets the length map.
328
    /// \return \c (*this)
329
    BellmanFord &lengthMap(const LengthMap &m) {
330
      length = &m;
331
      return *this;
332
    }
333

	
334
    /// \brief Sets the map storing the predecessor arcs.
335
    ///
336
    /// Sets the map storing the predecessor arcs.
337
    /// If you don't use this function before calling \ref run(),
338
    /// it will allocate one. The destuctor deallocates this
339
    /// automatically allocated map, of course.
340
    /// \return \c (*this)
341
    BellmanFord &predMap(PredMap &m) {
342
      if(local_pred) {
343
	delete _pred;
344
	local_pred=false;
345
      }
346
      _pred = &m;
347
      return *this;
348
    }
349

	
350
    /// \brief Sets the map storing the distances calculated by the algorithm.
351
    ///
352
    /// Sets the map storing the distances calculated by the algorithm.
353
    /// If you don't use this function before calling \ref run(),
354
    /// it will allocate one. The destuctor deallocates this
355
    /// automatically allocated map, of course.
356
    /// \return \c (*this)
357
    BellmanFord &distMap(DistMap &m) {
358
      if(local_dist) {
359
	delete _dist;
360
	local_dist=false;
361
      }
362
      _dist = &m;
363
      return *this;
364
    }
365

	
366
    /// \name Execution control
367
    /// The simplest way to execute the algorithm is to use
368
    /// one of the member functions called \c run(...).
369
    /// \n
370
    /// If you need more control on the execution,
371
    /// first you must call \ref init(), then you can add several source nodes
372
    /// with \ref addSource().
373
    /// Finally \ref start() will perform the actual path
374
    /// computation.
375

	
376
    ///@{
377

	
378
    /// \brief Initializes the internal data structures.
379
    /// 
380
    /// Initializes the internal data structures.
381
    void init(const Value value = OperationTraits::infinity()) {
382
      create_maps();
383
      for (NodeIt it(*digraph); it != INVALID; ++it) {
384
	_pred->set(it, INVALID);
385
	_dist->set(it, value);
386
      }
387
      _process.clear();
388
      if (OperationTraits::less(value, OperationTraits::infinity())) {
389
	for (NodeIt it(*digraph); it != INVALID; ++it) {
390
	  _process.push_back(it);
391
	  _mask->set(it, true);
392
	}
393
      }
394
    }
395
    
396
    /// \brief Adds a new source node.
397
    ///
398
    /// Adds a new source node. The optional second parameter is the 
399
    /// initial distance of the node. It just sets the distance of the 
400
    /// node to the given value.
401
    void addSource(Node source, Value dst = OperationTraits::zero()) {
402
      _dist->set(source, dst);
403
      if (!(*_mask)[source]) {
404
	_process.push_back(source);
405
	_mask->set(source, true);
406
      }
407
    }
408

	
409
    /// \brief Executes one round from the Bellman-Ford algorithm.
410
    ///
411
    /// If the algoritm calculated the distances in the previous round
412
    /// exactly for all at most \f$ k \f$ length path lengths then it will
413
    /// calculate the distances exactly for all at most \f$ k + 1 \f$
414
    /// length path lengths. With \f$ k \f$ iteration this function
415
    /// calculates the at most \f$ k \f$ length path lengths.
416
    ///
417
    /// \warning The paths with limited arc number cannot be retrieved
418
    /// easily with \ref path() or \ref predArc() functions. If you
419
    /// need the shortest path and not just the distance you should store
420
    /// after each iteration the \ref predMap() map and manually build
421
    /// the path.
422
    ///
423
    /// \return \c true when the algorithm have not found more shorter
424
    /// paths.
425
    bool processNextRound() {
426
      for (int i = 0; i < int(_process.size()); ++i) {
427
	_mask->set(_process[i], false);
428
      }
429
      std::vector<Node> nextProcess;
430
      std::vector<Value> values(_process.size());
431
      for (int i = 0; i < int(_process.size()); ++i) {
432
	values[i] = (*_dist)[_process[i]];
433
      }
434
      for (int i = 0; i < int(_process.size()); ++i) {
435
	for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
436
	  Node target = digraph->target(it);
437
	  Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
438
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
439
	    _pred->set(target, it);
440
	    _dist->set(target, relaxed);
441
	    if (!(*_mask)[target]) {
442
	      _mask->set(target, true);
443
	      nextProcess.push_back(target);
444
	    }
445
	  }	  
446
	}
447
      }
448
      _process.swap(nextProcess);
449
      return _process.empty();
450
    }
451

	
452
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
453
    ///
454
    /// If the algorithm calculated the distances in the
455
    /// previous round at least for all at most k length paths then it will
456
    /// calculate the distances at least for all at most k + 1 length paths.
457
    /// This function does not make it possible to calculate strictly the
458
    /// at most k length minimal paths, this is why it is
459
    /// called just weak round.
460
    /// \return \c true when the algorithm have not found more shorter paths.
461
    bool processNextWeakRound() {
462
      for (int i = 0; i < int(_process.size()); ++i) {
463
	_mask->set(_process[i], false);
464
      }
465
      std::vector<Node> nextProcess;
466
      for (int i = 0; i < int(_process.size()); ++i) {
467
	for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
468
	  Node target = digraph->target(it);
469
	  Value relaxed = 
470
	    OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
471
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
472
	    _pred->set(target, it);
473
	    _dist->set(target, relaxed);
474
	    if (!(*_mask)[target]) {
475
	      _mask->set(target, true);
476
	      nextProcess.push_back(target);
477
	    }
478
	  }	  
479
	}
480
      }
481
      _process.swap(nextProcess);
482
      return _process.empty();
483
    }
484

	
485
    /// \brief Executes the algorithm.
486
    ///
487
    /// \pre init() must be called and at least one node should be added
488
    /// with addSource() before using this function.
489
    ///
490
    /// This method runs the %BellmanFord algorithm from the root node(s)
491
    /// in order to compute the shortest path to each node. The algorithm 
492
    /// computes 
493
    /// - The shortest path tree.
494
    /// - The distance of each node from the root(s).
495
    void start() {
496
      int num = countNodes(*digraph) - 1;
497
      for (int i = 0; i < num; ++i) {
498
	if (processNextWeakRound()) break;
499
      }
500
    }
501

	
502
    /// \brief Executes the algorithm and checks the negative cycles.
503
    ///
504
    /// \pre init() must be called and at least one node should be added
505
    /// with addSource() before using this function. 
506
    ///
507
    /// This method runs the %BellmanFord algorithm from the root node(s)
508
    /// in order to compute the shortest path to each node. The algorithm 
509
    /// computes 
510
    /// - The shortest path tree.
511
    /// - The distance of each node from the root(s).
512
    /// 
513
    /// \return \c false if there is a negative cycle in the digraph.
514
    bool checkedStart() {
515
      int num = countNodes(*digraph);
516
      for (int i = 0; i < num; ++i) {
517
	if (processNextWeakRound()) return true;
518
      }
519
      return _process.empty();
520
    }
521

	
522
    /// \brief Executes the algorithm with path length limit.
523
    ///
524
    /// \pre init() must be called and at least one node should be added
525
    /// with addSource() before using this function.
526
    ///
527
    /// This method runs the %BellmanFord algorithm from the root
528
    /// node(s) in order to compute the shortest path lengths with at
529
    /// most \c num arc.
530
    ///
531
    /// \warning The paths with limited arc number cannot be retrieved
532
    /// easily with \ref path() or \ref predArc() functions. If you
533
    /// need the shortest path and not just the distance you should store
534
    /// after each iteration the \ref predMap() map and manually build
535
    /// the path.
536
    ///
537
    /// The algorithm computes
538
    /// - The predecessor arc from each node.
539
    /// - The limited distance of each node from the root(s).
540
    void limitedStart(int num) {
541
      for (int i = 0; i < num; ++i) {
542
	if (processNextRound()) break;
543
      }
544
    }
545
    
546
    /// \brief Runs %BellmanFord algorithm from node \c s.
547
    ///    
548
    /// This method runs the %BellmanFord algorithm from a root node \c s
549
    /// in order to compute the shortest path to each node. The algorithm 
550
    /// computes
551
    /// - The shortest path tree.
552
    /// - The distance of each node from the root.
553
    ///
554
    /// \note d.run(s) is just a shortcut of the following code.
555
    ///\code
556
    ///  d.init();
557
    ///  d.addSource(s);
558
    ///  d.start();
559
    ///\endcode
560
    void run(Node s) {
561
      init();
562
      addSource(s);
563
      start();
564
    }
565
    
566
    /// \brief Runs %BellmanFord algorithm with limited path length 
567
    /// from node \c s.
568
    ///    
569
    /// This method runs the %BellmanFord algorithm from a root node \c s
570
    /// in order to compute the shortest path with at most \c len arcs 
571
    /// to each node. The algorithm computes
572
    /// - The shortest path tree.
573
    /// - The distance of each node from the root.
574
    ///
575
    /// \note d.run(s, num) is just a shortcut of the following code.
576
    ///\code
577
    ///  d.init();
578
    ///  d.addSource(s);
579
    ///  d.limitedStart(num);
580
    ///\endcode
581
    void run(Node s, int num) {
582
      init();
583
      addSource(s);
584
      limitedStart(num);
585
    }
586
    
587
    ///@}
588

	
589
    /// \name Query Functions
590
    /// The result of the %BellmanFord algorithm can be obtained using these
591
    /// functions.\n
592
    /// Before the use of these functions,
593
    /// either run() or start() must be called.
594
    
595
    ///@{
596

	
597
    /// \brief Lemon iterator for get the active nodes.
598
    ///
599
    /// Lemon iterator for get the active nodes. This class provides a
600
    /// common style lemon iterator which gives back a subset of the
601
    /// nodes. The iterated nodes are active in the algorithm after
602
    /// the last phase so these should be checked in the next phase to
603
    /// find augmenting arcs from these.
604
    class ActiveIt {
605
    public:
606

	
607
      /// \brief Constructor.
608
      ///
609
      /// Constructor for get the nodeset of the variable. 
610
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
611
      {
612
        _index = _algorithm->_process.size() - 1;
613
      }
614

	
615
      /// \brief Invalid constructor.
616
      ///
617
      /// Invalid constructor.
618
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
619

	
620
      /// \brief Conversion to node.
621
      ///
622
      /// Conversion to node.
623
      operator Node() const { 
624
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
625
      }
626

	
627
      /// \brief Increment operator.
628
      ///
629
      /// Increment operator.
630
      ActiveIt& operator++() {
631
        --_index;
632
        return *this; 
633
      }
634

	
635
      bool operator==(const ActiveIt& it) const { 
636
        return static_cast<Node>(*this) == static_cast<Node>(it); 
637
      }
638
      bool operator!=(const ActiveIt& it) const { 
639
        return static_cast<Node>(*this) != static_cast<Node>(it); 
640
      }
641
      bool operator<(const ActiveIt& it) const { 
642
        return static_cast<Node>(*this) < static_cast<Node>(it); 
643
      }
644
      
645
    private:
646
      const BellmanFord* _algorithm;
647
      int _index;
648
    };
649

	
650
    typedef PredMapPath<Digraph, PredMap> Path;
651

	
652
    /// \brief Gives back the shortest path.
653
    ///    
654
    /// Gives back the shortest path.
655
    /// \pre The \c t should be reachable from the source.
656
    Path path(Node t) 
657
    {
658
      return Path(*digraph, *_pred, t);
659
    }
660

	
661

	
662
    // TODO : implement negative cycle
663
//     /// \brief Gives back a negative cycle.
664
//     ///    
665
//     /// This function gives back a negative cycle.
666
//     /// If the algorithm have not found yet negative cycle it will give back
667
//     /// an empty path.
668
//     Path negativeCycle() {
669
//       typename Digraph::template NodeMap<int> state(*digraph, 0);
670
//       for (ActiveIt it(*this); it != INVALID; ++it) {
671
//         if (state[it] == 0) {
672
//           for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
673
//             if (state[t] == 0) {
674
//               state[t] = 1;
675
//             } else if (state[t] == 2) {
676
//               break;
677
//             } else {
678
//               p.clear();
679
//               typename Path::Builder b(p);
680
//               b.setStartNode(t);
681
//               b.pushFront(predArc(t));
682
//               for(Node s = predNode(t); s != t; s = predNode(s)) {
683
//                 b.pushFront(predArc(s));
684
//               }
685
//               b.commit();
686
//               return true;
687
//             }
688
//           }
689
//           for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
690
//             if (state[t] == 1) {
691
//               state[t] = 2;
692
//             } else {
693
//               break;
694
//             }
695
//           }
696
//         }
697
//       }
698
//       return false;
699
//     }
700
	  
701
    /// \brief The distance of a node from the root.
702
    ///
703
    /// Returns the distance of a node from the root.
704
    /// \pre \ref run() must be called before using this function.
705
    /// \warning If node \c v in unreachable from the root the return value
706
    /// of this funcion is undefined.
707
    Value dist(Node v) const { return (*_dist)[v]; }
708

	
709
    /// \brief Returns the 'previous arc' of the shortest path tree.
710
    ///
711
    /// For a node \c v it returns the 'previous arc' of the shortest path 
712
    /// tree, i.e. it returns the last arc of a shortest path from the root 
713
    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
714
    /// if \c v=s. The shortest path tree used here is equal to the shortest 
715
    /// path tree used in \ref predNode(). 
716
    /// \pre \ref run() must be called before using
717
    /// this function.
718
    Arc predArc(Node v) const { return (*_pred)[v]; }
719

	
720
    /// \brief Returns the 'previous node' of the shortest path tree.
721
    ///
722
    /// For a node \c v it returns the 'previous node' of the shortest path 
723
    /// tree, i.e. it returns the last but one node from a shortest path from 
724
    /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
725
    /// or if \c v=s. The shortest path tree used here is equal to the 
726
    /// shortest path tree used in \ref predArc().  \pre \ref run() must be 
727
    /// called before using this function.
728
    Node predNode(Node v) const { 
729
      return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); 
730
    }
731
    
732
    /// \brief Returns a reference to the NodeMap of distances.
733
    ///
734
    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
735
    /// be called before using this function.
736
    const DistMap &distMap() const { return *_dist;}
737
 
738
    /// \brief Returns a reference to the shortest path tree map.
739
    ///
740
    /// Returns a reference to the NodeMap of the arcs of the
741
    /// shortest path tree.
742
    /// \pre \ref run() must be called before using this function.
743
    const PredMap &predMap() const { return *_pred; }
744
 
745
    /// \brief Checks if a node is reachable from the root.
746
    ///
747
    /// Returns \c true if \c v is reachable from the root.
748
    /// \pre \ref run() must be called before using this function.
749
    ///
750
    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
751
    
752
    ///@}
753
  };
754
 
755
  /// \brief Default traits class of BellmanFord function.
756
  ///
757
  /// Default traits class of BellmanFord function.
758
  /// \param _Digraph Digraph type.
759
  /// \param _LengthMap Type of length map.
760
  template <typename _Digraph, typename _LengthMap>
761
  struct BellmanFordWizardDefaultTraits {
762
    /// \brief The digraph type the algorithm runs on. 
763
    typedef _Digraph Digraph;
764

	
765
    /// \brief The type of the map that stores the arc lengths.
766
    ///
767
    /// The type of the map that stores the arc lengths.
768
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
769
    typedef _LengthMap LengthMap;
770

	
771
    /// \brief The value type of the length map.
772
    typedef typename _LengthMap::Value Value;
773

	
774
    /// \brief Operation traits for Bellman-Ford algorithm.
775
    ///
776
    /// It defines the infinity type on the given Value type
777
    /// and the used operation.
778
    /// \see BellmanFordDefaultOperationTraits
779
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
780

	
781
    /// \brief The type of the map that stores the last
782
    /// arcs of the shortest paths.
783
    /// 
784
    /// The type of the map that stores the last
785
    /// arcs of the shortest paths.
786
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
787
    typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap;
788

	
789
    /// \brief Instantiates a PredMap.
790
    /// 
791
    /// This function instantiates a \ref PredMap. 
792
    static PredMap *createPredMap(const _Digraph &) {
793
      return new PredMap();
794
    }
795
    /// \brief The type of the map that stores the dists of the nodes.
796
    ///
797
    /// The type of the map that stores the dists of the nodes.
798
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
799
    typedef NullMap<typename Digraph::Node, Value> DistMap;
800
    /// \brief Instantiates a DistMap.
801
    ///
802
    /// This function instantiates a \ref DistMap. 
803
    static DistMap *createDistMap(const _Digraph &) {
804
      return new DistMap();
805
    }
806
  };
807
  
808
  /// \brief Default traits used by \ref BellmanFordWizard
809
  ///
810
  /// To make it easier to use BellmanFord algorithm
811
  /// we have created a wizard class.
812
  /// This \ref BellmanFordWizard class needs default traits,
813
  /// as well as the \ref BellmanFord class.
814
  /// The \ref BellmanFordWizardBase is a class to be the default traits of the
815
  /// \ref BellmanFordWizard class.
816
  /// \todo More named parameters are required...
817
  template<class _Digraph,class _LengthMap>
818
  class BellmanFordWizardBase 
819
    : public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> {
820

	
821
    typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base;
822
  protected:
823
    /// Type of the nodes in the digraph.
824
    typedef typename Base::Digraph::Node Node;
825

	
826
    /// Pointer to the underlying digraph.
827
    void *_graph;
828
    /// Pointer to the length map
829
    void *_length;
830
    ///Pointer to the map of predecessors arcs.
831
    void *_pred;
832
    ///Pointer to the map of distances.
833
    void *_dist;
834
    ///Pointer to the source node.
835
    Node _source;
836

	
837
    public:
838
    /// Constructor.
839
    
840
    /// This constructor does not require parameters, therefore it initiates
841
    /// all of the attributes to default values (0, INVALID).
842
    BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
843
			   _dist(0), _source(INVALID) {}
844

	
845
    /// Constructor.
846
    
847
    /// This constructor requires some parameters,
848
    /// listed in the parameters list.
849
    /// Others are initiated to 0.
850
    /// \param digraph is the initial value of  \ref _graph
851
    /// \param length is the initial value of  \ref _length
852
    /// \param source is the initial value of  \ref _source
853
    BellmanFordWizardBase(const _Digraph& digraph, 
854
			  const _LengthMap& length, 
855
			  Node source = INVALID) :
856
      _graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), 
857
      _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), 
858
      _pred(0), _dist(0), _source(source) {}
859

	
860
  };
861
  
862
  /// A class to make the usage of BellmanFord algorithm easier
863

	
864
  /// This class is created to make it easier to use BellmanFord algorithm.
865
  /// It uses the functions and features of the plain \ref BellmanFord,
866
  /// but it is much simpler to use it.
867
  ///
868
  /// Simplicity means that the way to change the types defined
869
  /// in the traits class is based on functions that returns the new class
870
  /// and not on templatable built-in classes.
871
  /// When using the plain \ref BellmanFord
872
  /// the new class with the modified type comes from
873
  /// the original class by using the ::
874
  /// operator. In the case of \ref BellmanFordWizard only
875
  /// a function have to be called and it will
876
  /// return the needed class.
877
  ///
878
  /// It does not have own \ref run method. When its \ref run method is called
879
  /// it initiates a plain \ref BellmanFord class, and calls the \ref 
880
  /// BellmanFord::run method of it.
881
  template<class _Traits>
882
  class BellmanFordWizard : public _Traits {
883
    typedef _Traits Base;
884

	
885
    ///The type of the underlying digraph.
886
    typedef typename _Traits::Digraph Digraph;
887

	
888
    typedef typename Digraph::Node Node;
889
    typedef typename Digraph::NodeIt NodeIt;
890
    typedef typename Digraph::Arc Arc;
891
    typedef typename Digraph::OutArcIt ArcIt;
892
    
893
    ///The type of the map that stores the arc lengths.
894
    typedef typename _Traits::LengthMap LengthMap;
895

	
896
    ///The type of the length of the arcs.
897
    typedef typename LengthMap::Value Value;
898

	
899
    ///\brief The type of the map that stores the last
900
    ///arcs of the shortest paths.
901
    typedef typename _Traits::PredMap PredMap;
902

	
903
    ///The type of the map that stores the dists of the nodes.
904
    typedef typename _Traits::DistMap DistMap;
905

	
906
  public:
907
    /// Constructor.
908
    BellmanFordWizard() : _Traits() {}
909

	
910
    /// \brief Constructor that requires parameters.
911
    ///
912
    /// Constructor that requires parameters.
913
    /// These parameters will be the default values for the traits class.
914
    BellmanFordWizard(const Digraph& digraph, const LengthMap& length, 
915
		      Node src = INVALID) 
916
      : _Traits(digraph, length, src) {}
917

	
918
    /// \brief Copy constructor
919
    BellmanFordWizard(const _Traits &b) : _Traits(b) {}
920

	
921
    ~BellmanFordWizard() {}
922

	
923
    /// \brief Runs BellmanFord algorithm from a given node.
924
    ///    
925
    /// Runs BellmanFord algorithm from a given node.
926
    /// The node can be given by the \ref source function.
927
    void run() {
928
      LEMON_ASSERT(Base::_source != INVALID, "Source node is not given");
929
      BellmanFord<Digraph,LengthMap,_Traits> 
930
	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
931
           *reinterpret_cast<const LengthMap*>(Base::_length));
932
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
933
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
934
      bf.run(Base::_source);
935
    }
936

	
937
    /// \brief Runs BellmanFord algorithm from the given node.
938
    ///
939
    /// Runs BellmanFord algorithm from the given node.
940
    /// \param src is the given source.
941
    void run(Node src) {
942
      Base::_source = src;
943
      run();
944
    }
945

	
946
    template<class T>
947
    struct DefPredMapBase : public Base {
948
      typedef T PredMap;
949
      static PredMap *createPredMap(const Digraph &) { return 0; };
950
      DefPredMapBase(const _Traits &b) : _Traits(b) {}
951
    };
952
    
953
    ///\brief \ref named-templ-param "Named parameter"
954
    ///function for setting PredMap type
955
    ///
956
    /// \ref named-templ-param "Named parameter"
957
    ///function for setting PredMap type
958
    ///
959
    template<class T>
960
    BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) 
961
    {
962
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
963
      return BellmanFordWizard<DefPredMapBase<T> >(*this);
964
    }
965
    
966
    template<class T>
967
    struct DefDistMapBase : public Base {
968
      typedef T DistMap;
969
      static DistMap *createDistMap(const Digraph &) { return 0; };
970
      DefDistMapBase(const _Traits &b) : _Traits(b) {}
971
    };
972
    
973
    ///\brief \ref named-templ-param "Named parameter"
974
    ///function for setting DistMap type
975
    ///
976
    /// \ref named-templ-param "Named parameter"
977
    ///function for setting DistMap type
978
    ///
979
    template<class T>
980
    BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
981
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
982
      return BellmanFordWizard<DefDistMapBase<T> >(*this);
983
    }
984

	
985
    template<class T>
986
    struct DefOperationTraitsBase : public Base {
987
      typedef T OperationTraits;
988
      DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
989
    };
990
    
991
    ///\brief \ref named-templ-param "Named parameter"
992
    ///function for setting OperationTraits type
993
    ///
994
    /// \ref named-templ-param "Named parameter"
995
    ///function for setting OperationTraits type
996
    ///
997
    template<class T>
998
    BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
999
      return BellmanFordWizard<DefDistMapBase<T> >(*this);
1000
    }
1001
    
1002
    /// \brief Sets the source node, from which the BellmanFord algorithm runs.
1003
    ///
1004
    /// Sets the source node, from which the BellmanFord algorithm runs.
1005
    /// \param src is the source node.
1006
    BellmanFordWizard<_Traits>& source(Node src) {
1007
      Base::_source = src;
1008
      return *this;
1009
    }
1010
    
1011
  };
1012
  
1013
  /// \brief Function type interface for BellmanFord algorithm.
1014
  ///
1015
  /// \ingroup shortest_path
1016
  /// Function type interface for BellmanFord algorithm.
1017
  ///
1018
  /// This function also has several \ref named-templ-func-param 
1019
  /// "named parameters", they are declared as the members of class 
1020
  /// \ref BellmanFordWizard.
1021
  /// The following
1022
  /// example shows how to use these parameters.
1023
  ///\code
1024
  /// bellmanford(g,length,source).predMap(preds).run();
1025
  ///\endcode
1026
  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1027
  /// to the end of the parameter list.
1028
  /// \sa BellmanFordWizard
1029
  /// \sa BellmanFord
1030
  template<class _Digraph, class _LengthMap>
1031
  BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
1032
  bellmanFord(const _Digraph& digraph,
1033
	      const _LengthMap& length, 
1034
	      typename _Digraph::Node source = INVALID) {
1035
    return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
1036
      (digraph, length, source);
1037
  }
1038

	
1039
} //END OF NAMESPACE LEMON
1040

	
1041
#endif
1042

	
Ignore white space 12 line context
... ...
@@ -54,12 +54,13 @@
54 54
endif
55 55

	
56 56
lemon_HEADERS += \
57 57
	lemon/adaptors.h \
58 58
	lemon/arg_parser.h \
59 59
	lemon/assert.h \
60
	lemon/bellman_ford.h \
60 61
	lemon/bfs.h \
61 62
	lemon/bin_heap.h \
62 63
	lemon/bucket_heap.h \
63 64
	lemon/cbc.h \
64 65
	lemon/circulation.h \
65 66
	lemon/clp.h \
0 comments (0 inline)