0
11
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup demos |
20 | 20 |
///\file |
21 | 21 |
///\brief Demonstrating graph input and output |
22 | 22 |
/// |
23 | 23 |
/// This program gives an example of how to read and write a digraph |
24 | 24 |
/// and additional maps from/to a stream or a file using the |
25 | 25 |
/// \ref lgf-format "LGF" format. |
26 | 26 |
/// |
27 | 27 |
/// The \c "digraph.lgf" file: |
28 | 28 |
/// \include digraph.lgf |
29 | 29 |
/// |
30 | 30 |
/// And the program which reads it and prints the digraph to the |
31 | 31 |
/// standard output: |
32 | 32 |
/// \include lgf_demo.cc |
33 | 33 |
|
34 | 34 |
#include <iostream> |
35 | 35 |
#include <lemon/smart_graph.h> |
36 | 36 |
#include <lemon/lgf_reader.h> |
37 | 37 |
#include <lemon/lgf_writer.h> |
38 | 38 |
|
39 | 39 |
using namespace lemon; |
40 | 40 |
|
41 | 41 |
int main() { |
42 | 42 |
SmartDigraph g; |
43 | 43 |
SmartDigraph::ArcMap<int> cap(g); |
44 | 44 |
SmartDigraph::Node s, t; |
45 | 45 |
|
46 | 46 |
try { |
47 | 47 |
digraphReader(g, "digraph.lgf"). // read the directed graph into g |
48 | 48 |
arcMap("capacity", cap). // read the 'capacity' arc map into cap |
49 | 49 |
node("source", s). // read 'source' node to s |
50 | 50 |
node("target", t). // read 'target' node to t |
51 | 51 |
run(); |
52 |
} catch ( |
|
52 |
} catch (Exception& error) { // check if there was any error |
|
53 | 53 |
std::cerr << "Error: " << error.what() << std::endl; |
54 | 54 |
return -1; |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
std::cout << "A digraph is read from 'digraph.lgf'." << std::endl; |
58 | 58 |
std::cout << "Number of nodes: " << countNodes(g) << std::endl; |
59 | 59 |
std::cout << "Number of arcs: " << countArcs(g) << std::endl; |
60 | 60 |
|
61 | 61 |
std::cout << "We can write it to the standard output:" << std::endl; |
62 | 62 |
|
63 | 63 |
digraphWriter(g). // write g to the standard output |
64 | 64 |
arcMap("capacity", cap). // write cap into 'capacity' |
65 | 65 |
node("source", s). // write s to 'source' |
66 | 66 |
node("target", t). // write t to 'target' |
67 | 67 |
run(); |
68 | 68 |
|
69 | 69 |
return 0; |
70 | 70 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
20 | 20 |
#define LEMON_ARG_PARSER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <map> |
24 | 24 |
#include <list> |
25 | 25 |
#include <string> |
26 | 26 |
#include <iostream> |
27 | 27 |
#include <sstream> |
28 | 28 |
#include <algorithm> |
29 | 29 |
#include <lemon/assert.h> |
30 | 30 |
|
31 | 31 |
///\ingroup misc |
32 | 32 |
///\file |
33 | 33 |
///\brief A tool to parse command line arguments. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Command line arguments parser |
38 | 38 |
|
39 | 39 |
///\ingroup misc |
40 | 40 |
///Command line arguments parser. |
41 | 41 |
/// |
42 | 42 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
43 | 43 |
class ArgParser { |
44 | 44 |
|
45 | 45 |
static void _showHelp(void *p); |
46 | 46 |
protected: |
47 | 47 |
|
48 | 48 |
int _argc; |
49 | 49 |
const char **_argv; |
50 | 50 |
|
51 | 51 |
enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 }; |
52 | 52 |
|
53 | 53 |
class ParData { |
54 | 54 |
public: |
55 | 55 |
union { |
56 | 56 |
bool *bool_p; |
57 | 57 |
int *int_p; |
58 | 58 |
double *double_p; |
59 | 59 |
std::string *string_p; |
60 | 60 |
struct { |
61 | 61 |
void (*p)(void *); |
62 | 62 |
void *data; |
63 | 63 |
} func_p; |
64 | 64 |
|
65 | 65 |
}; |
66 | 66 |
std::string help; |
67 | 67 |
bool mandatory; |
68 | 68 |
OptType type; |
69 | 69 |
bool set; |
70 | 70 |
bool ingroup; |
71 | 71 |
bool has_syn; |
72 | 72 |
bool syn; |
73 | 73 |
bool self_delete; |
74 | 74 |
ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false), |
75 | 75 |
has_syn(false), syn(false), self_delete(false) {} |
76 | 76 |
}; |
77 | 77 |
|
78 | 78 |
typedef std::map<std::string,ParData> Opts; |
79 | 79 |
Opts _opts; |
80 | 80 |
|
81 | 81 |
class GroupData |
82 | 82 |
{ |
83 | 83 |
public: |
84 | 84 |
typedef std::list<std::string> Opts; |
85 | 85 |
Opts opts; |
86 | 86 |
bool only_one; |
87 | 87 |
bool mandatory; |
88 | 88 |
GroupData() :only_one(false), mandatory(false) {} |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
typedef std::map<std::string,GroupData> Groups; |
92 | 92 |
Groups _groups; |
93 | 93 |
|
94 | 94 |
struct OtherArg |
95 | 95 |
{ |
96 | 96 |
std::string name; |
97 | 97 |
std::string help; |
98 | 98 |
OtherArg(std::string n, std::string h) :name(n), help(h) {} |
99 | 99 |
|
100 | 100 |
}; |
101 | 101 |
|
102 | 102 |
std::vector<OtherArg> _others_help; |
103 | 103 |
std::vector<std::string> _file_args; |
104 | 104 |
std::string _command_name; |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
private: |
108 | 108 |
//Bind a function to an option. |
109 | 109 |
|
110 | 110 |
//\param name The name of the option. The leading '-' must be omitted. |
111 | 111 |
//\param help A help string. |
112 | 112 |
//\retval func The function to be called when the option is given. It |
113 | 113 |
// must be of type "void f(void *)" |
114 | 114 |
//\param data Data to be passed to \c func |
115 | 115 |
ArgParser &funcOption(const std::string &name, |
116 | 116 |
const std::string &help, |
117 | 117 |
void (*func)(void *),void *data); |
118 | 118 |
|
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
///Constructor |
122 | 122 |
ArgParser(int argc, const char **argv); |
123 | 123 |
|
124 | 124 |
~ArgParser(); |
125 | 125 |
|
126 | 126 |
///\name Options |
127 | 127 |
/// |
128 | 128 |
|
129 | 129 |
///@{ |
130 | 130 |
|
131 | 131 |
///Add a new integer type option |
132 | 132 |
|
133 | 133 |
///Add a new integer type option. |
134 | 134 |
///\param name The name of the option. The leading '-' must be omitted. |
135 | 135 |
///\param help A help string. |
136 | 136 |
///\param value A default value for the option. |
137 | 137 |
///\param obl Indicate if the option is mandatory. |
138 | 138 |
ArgParser &intOption(const std::string &name, |
139 | 139 |
const std::string &help, |
140 | 140 |
int value=0, bool obl=false); |
141 | 141 |
|
142 | 142 |
///Add a new floating point type option |
143 | 143 |
|
144 | 144 |
///Add a new floating point type option. |
145 | 145 |
///\param name The name of the option. The leading '-' must be omitted. |
146 | 146 |
///\param help A help string. |
147 | 147 |
///\param value A default value for the option. |
148 | 148 |
///\param obl Indicate if the option is mandatory. |
149 | 149 |
ArgParser &doubleOption(const std::string &name, |
150 | 150 |
const std::string &help, |
151 | 151 |
double value=0, bool obl=false); |
152 | 152 |
|
153 | 153 |
///Add a new bool type option |
154 | 154 |
|
155 | 155 |
///Add a new bool type option. |
156 | 156 |
///\param name The name of the option. The leading '-' must be omitted. |
157 | 157 |
///\param help A help string. |
158 | 158 |
///\param value A default value for the option. |
159 | 159 |
///\param obl Indicate if the option is mandatory. |
160 | 160 |
///\note A mandatory bool obtion is of very little use. |
161 | 161 |
ArgParser &boolOption(const std::string &name, |
162 | 162 |
const std::string &help, |
163 | 163 |
bool value=false, bool obl=false); |
164 | 164 |
|
165 | 165 |
///Add a new string type option |
166 | 166 |
|
167 | 167 |
///Add a new string type option. |
168 | 168 |
///\param name The name of the option. The leading '-' must be omitted. |
169 | 169 |
///\param help A help string. |
170 | 170 |
///\param value A default value for the option. |
171 | 171 |
///\param obl Indicate if the option is mandatory. |
172 | 172 |
ArgParser &stringOption(const std::string &name, |
173 | 173 |
const std::string &help, |
174 | 174 |
std::string value="", bool obl=false); |
175 | 175 |
|
176 | 176 |
///Give help string for non-parsed arguments. |
177 | 177 |
|
178 | 178 |
///With this function you can give help string for non-parsed arguments. |
179 | 179 |
///The parameter \c name will be printed in the short usage line, while |
180 | 180 |
///\c help gives a more detailed description. |
181 | 181 |
ArgParser &other(const std::string &name, |
182 | 182 |
const std::string &help=""); |
183 | 183 |
|
184 | 184 |
///@} |
185 | 185 |
|
186 | 186 |
///\name Options with External Storage |
187 | 187 |
///Using this functions, the value of the option will be directly written |
188 | 188 |
///into a variable once the option appears in the command line. |
189 | 189 |
|
190 | 190 |
///@{ |
191 | 191 |
|
192 | 192 |
///Add a new integer type option with a storage reference |
193 | 193 |
|
194 | 194 |
///Add a new integer type option with a storage reference. |
195 | 195 |
///\param name The name of the option. The leading '-' must be omitted. |
196 | 196 |
///\param help A help string. |
197 | 197 |
///\param obl Indicate if the option is mandatory. |
198 | 198 |
///\retval ref The value of the argument will be written to this variable. |
199 | 199 |
ArgParser &refOption(const std::string &name, |
200 | 200 |
const std::string &help, |
201 | 201 |
int &ref, bool obl=false); |
202 | 202 |
|
203 | 203 |
///Add a new floating type option with a storage reference |
204 | 204 |
|
205 | 205 |
///Add a new floating type option with a storage reference. |
206 | 206 |
///\param name The name of the option. The leading '-' must be omitted. |
207 | 207 |
///\param help A help string. |
208 | 208 |
///\param obl Indicate if the option is mandatory. |
209 | 209 |
///\retval ref The value of the argument will be written to this variable. |
210 | 210 |
ArgParser &refOption(const std::string &name, |
211 | 211 |
const std::string &help, |
212 | 212 |
double &ref, bool obl=false); |
213 | 213 |
|
214 | 214 |
///Add a new bool type option with a storage reference |
215 | 215 |
|
216 | 216 |
///Add a new bool type option with a storage reference. |
217 | 217 |
///\param name The name of the option. The leading '-' must be omitted. |
218 | 218 |
///\param help A help string. |
219 | 219 |
///\param obl Indicate if the option is mandatory. |
220 | 220 |
///\retval ref The value of the argument will be written to this variable. |
221 | 221 |
///\note A mandatory bool obtion is of very little use. |
222 | 222 |
ArgParser &refOption(const std::string &name, |
223 | 223 |
const std::string &help, |
224 | 224 |
bool &ref, bool obl=false); |
225 | 225 |
|
226 | 226 |
///Add a new string type option with a storage reference |
227 | 227 |
|
228 | 228 |
///Add a new string type option with a storage reference. |
229 | 229 |
///\param name The name of the option. The leading '-' must be omitted. |
230 | 230 |
///\param help A help string. |
231 | 231 |
///\param obl Indicate if the option is mandatory. |
232 | 232 |
///\retval ref The value of the argument will be written to this variable. |
233 | 233 |
ArgParser &refOption(const std::string &name, |
234 | 234 |
const std::string &help, |
235 | 235 |
std::string &ref, bool obl=false); |
236 | 236 |
|
237 | 237 |
///@} |
238 | 238 |
|
239 | 239 |
///\name Option Groups and Synonyms |
240 | 240 |
/// |
241 | 241 |
|
242 | 242 |
///@{ |
243 | 243 |
|
244 | 244 |
///Bundle some options into a group |
245 | 245 |
|
246 | 246 |
/// You can group some option by calling this function repeatedly for each |
247 | 247 |
/// option to be grouped with the same groupname. |
248 | 248 |
///\param group The group name. |
249 | 249 |
///\param opt The option name. |
250 | 250 |
ArgParser &optionGroup(const std::string &group, |
251 | 251 |
const std::string &opt); |
252 | 252 |
|
253 | 253 |
///Make the members of a group exclusive |
254 | 254 |
|
255 | 255 |
///If you call this function for a group, than at most one of them can be |
256 | 256 |
///given at the same time. |
257 | 257 |
ArgParser &onlyOneGroup(const std::string &group); |
258 | 258 |
|
259 | 259 |
///Make a group mandatory |
260 | 260 |
|
261 | 261 |
///Using this function, at least one of the members of \c group |
262 | 262 |
///must be given. |
263 | 263 |
ArgParser &mandatoryGroup(const std::string &group); |
264 | 264 |
|
265 | 265 |
///Create synonym to an option |
266 | 266 |
|
267 | 267 |
///With this function you can create a synonym \c syn of the |
268 | 268 |
///option \c opt. |
269 | 269 |
ArgParser &synonym(const std::string &syn, |
270 | 270 |
const std::string &opt); |
271 | 271 |
|
272 | 272 |
///@} |
273 | 273 |
|
274 | 274 |
private: |
275 | 275 |
void show(std::ostream &os,Opts::const_iterator i) const; |
276 | 276 |
void show(std::ostream &os,Groups::const_iterator i) const; |
277 | 277 |
void showHelp(Opts::const_iterator i) const; |
278 | 278 |
void showHelp(std::vector<OtherArg>::const_iterator i) const; |
279 | 279 |
|
280 | 280 |
void unknownOpt(std::string arg) const; |
281 | 281 |
|
282 | 282 |
void requiresValue(std::string arg, OptType t) const; |
283 | 283 |
void checkMandatories() const; |
284 | 284 |
|
285 | 285 |
void shortHelp() const; |
286 | 286 |
void showHelp() const; |
287 | 287 |
public: |
288 | 288 |
|
289 | 289 |
///Start the parsing process |
290 | 290 |
ArgParser &parse(); |
291 | 291 |
|
292 | 292 |
/// Synonym for parse() |
293 | 293 |
ArgParser &run() |
294 | 294 |
{ |
295 | 295 |
return parse(); |
296 | 296 |
} |
297 | 297 |
|
298 | 298 |
///Give back the command name (the 0th argument) |
299 | 299 |
const std::string &commandName() const { return _command_name; } |
300 | 300 |
|
301 | 301 |
///Check if an opion has been given to the command. |
302 | 302 |
bool given(std::string op) const |
303 | 303 |
{ |
304 | 304 |
Opts::const_iterator i = _opts.find(op); |
305 | 305 |
return i!=_opts.end()?i->second.set:false; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
|
309 | 309 |
///Magic type for operator[] |
310 | 310 |
|
311 | 311 |
///This is the type of the return value of ArgParser::operator[](). |
312 | 312 |
///It automatically converts to \c int, \c double, \c bool or |
313 |
///\c std::string if the type of the option matches, otherwise it |
|
314 |
///throws an exception (i.e. it performs runtime type checking). |
|
313 |
///\c std::string if the type of the option matches, which is checked |
|
314 |
///with an \ref LEMON_ASSERT "assertion" (i.e. it performs runtime |
|
315 |
///type checking). |
|
315 | 316 |
class RefType |
316 | 317 |
{ |
317 | 318 |
const ArgParser &_parser; |
318 | 319 |
std::string _name; |
319 | 320 |
public: |
320 | 321 |
///\e |
321 | 322 |
RefType(const ArgParser &p,const std::string &n) :_parser(p),_name(n) {} |
322 | 323 |
///\e |
323 | 324 |
operator bool() |
324 | 325 |
{ |
325 | 326 |
Opts::const_iterator i = _parser._opts.find(_name); |
326 | 327 |
LEMON_ASSERT(i!=_parser._opts.end(), |
327 | 328 |
std::string()+"Unkown option: '"+_name+"'"); |
328 | 329 |
LEMON_ASSERT(i->second.type==ArgParser::BOOL, |
329 | 330 |
std::string()+"'"+_name+"' is a bool option"); |
330 | 331 |
return *(i->second.bool_p); |
331 | 332 |
} |
332 | 333 |
///\e |
333 | 334 |
operator std::string() |
334 | 335 |
{ |
335 | 336 |
Opts::const_iterator i = _parser._opts.find(_name); |
336 | 337 |
LEMON_ASSERT(i!=_parser._opts.end(), |
337 | 338 |
std::string()+"Unkown option: '"+_name+"'"); |
338 | 339 |
LEMON_ASSERT(i->second.type==ArgParser::STRING, |
339 | 340 |
std::string()+"'"+_name+"' is a string option"); |
340 | 341 |
return *(i->second.string_p); |
341 | 342 |
} |
342 | 343 |
///\e |
343 | 344 |
operator double() |
344 | 345 |
{ |
345 | 346 |
Opts::const_iterator i = _parser._opts.find(_name); |
346 | 347 |
LEMON_ASSERT(i!=_parser._opts.end(), |
347 | 348 |
std::string()+"Unkown option: '"+_name+"'"); |
348 | 349 |
LEMON_ASSERT(i->second.type==ArgParser::DOUBLE || |
349 | 350 |
i->second.type==ArgParser::INTEGER, |
350 | 351 |
std::string()+"'"+_name+"' is a floating point option"); |
351 | 352 |
return i->second.type==ArgParser::DOUBLE ? |
352 | 353 |
*(i->second.double_p) : *(i->second.int_p); |
353 | 354 |
} |
354 | 355 |
///\e |
355 | 356 |
operator int() |
356 | 357 |
{ |
357 | 358 |
Opts::const_iterator i = _parser._opts.find(_name); |
358 | 359 |
LEMON_ASSERT(i!=_parser._opts.end(), |
359 | 360 |
std::string()+"Unkown option: '"+_name+"'"); |
360 | 361 |
LEMON_ASSERT(i->second.type==ArgParser::INTEGER, |
361 | 362 |
std::string()+"'"+_name+"' is an integer option"); |
362 | 363 |
return *(i->second.int_p); |
363 | 364 |
} |
364 | 365 |
|
365 | 366 |
}; |
366 | 367 |
|
367 | 368 |
///Give back the value of an option |
368 | 369 |
|
369 | 370 |
///Give back the value of an option. |
370 | 371 |
///\sa RefType |
371 | 372 |
RefType operator[](const std::string &n) const |
372 | 373 |
{ |
373 | 374 |
return RefType(*this, n); |
374 | 375 |
} |
375 | 376 |
|
376 | 377 |
///Give back the non-option type arguments. |
377 | 378 |
|
378 | 379 |
///Give back a reference to a vector consisting of the program arguments |
379 | 380 |
///not starting with a '-' character. |
380 | 381 |
const std::vector<std::string> &files() const { return _file_args; } |
381 | 382 |
|
382 | 383 |
}; |
383 | 384 |
} |
384 | 385 |
|
385 | 386 |
#endif // LEMON_ARG_PARSER_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ASSERT_H |
20 | 20 |
#define LEMON_ASSERT_H |
21 | 21 |
|
22 | 22 |
/// \ingroup exceptions |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Extended assertion handling |
25 | 25 |
|
26 | 26 |
#include <lemon/error.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
inline void assert_fail_abort(const char *file, int line, |
31 | 31 |
const char *function, const char* message, |
32 | 32 |
const char *assertion) |
33 | 33 |
{ |
34 | 34 |
std::cerr << file << ":" << line << ": "; |
35 | 35 |
if (function) |
36 | 36 |
std::cerr << function << ": "; |
37 | 37 |
std::cerr << message; |
38 | 38 |
if (assertion) |
39 | 39 |
std::cerr << " (assertion '" << assertion << "' failed)"; |
40 | 40 |
std::cerr << std::endl; |
41 | 41 |
std::abort(); |
42 | 42 |
} |
43 | 43 |
|
44 | 44 |
namespace _assert_bits { |
45 | 45 |
|
46 | 46 |
|
47 | 47 |
inline const char* cstringify(const std::string& str) { |
48 | 48 |
return str.c_str(); |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
inline const char* cstringify(const char* str) { |
52 | 52 |
return str; |
53 | 53 |
} |
54 | 54 |
} |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
#endif // LEMON_ASSERT_H |
58 | 58 |
|
59 | 59 |
#undef LEMON_ASSERT |
60 | 60 |
#undef LEMON_DEBUG |
61 | 61 |
|
62 | 62 |
#if (defined(LEMON_ASSERT_ABORT) ? 1 : 0) + \ |
63 | 63 |
(defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) > 1 |
64 | 64 |
#error "LEMON assertion system is not set properly" |
65 | 65 |
#endif |
66 | 66 |
|
67 | 67 |
#if ((defined(LEMON_ASSERT_ABORT) ? 1 : 0) + \ |
68 | 68 |
(defined(LEMON_ASSERT_CUSTOM) ? 1 : 0) == 1 || \ |
69 | 69 |
defined(LEMON_ENABLE_ASSERTS)) && \ |
70 | 70 |
(defined(LEMON_DISABLE_ASSERTS) || \ |
71 | 71 |
defined(NDEBUG)) |
72 | 72 |
#error "LEMON assertion system is not set properly" |
73 | 73 |
#endif |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
#if defined LEMON_ASSERT_ABORT |
77 | 77 |
# undef LEMON_ASSERT_HANDLER |
78 | 78 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort |
79 | 79 |
#elif defined LEMON_ASSERT_CUSTOM |
80 | 80 |
# undef LEMON_ASSERT_HANDLER |
81 | 81 |
# ifndef LEMON_CUSTOM_ASSERT_HANDLER |
82 | 82 |
# error "LEMON_CUSTOM_ASSERT_HANDLER is not set" |
83 | 83 |
# endif |
84 | 84 |
# define LEMON_ASSERT_HANDLER LEMON_CUSTOM_ASSERT_HANDLER |
85 | 85 |
#elif defined LEMON_DISABLE_ASSERTS |
86 | 86 |
# undef LEMON_ASSERT_HANDLER |
87 | 87 |
#elif defined NDEBUG |
88 | 88 |
# undef LEMON_ASSERT_HANDLER |
89 | 89 |
#else |
90 | 90 |
# define LEMON_ASSERT_HANDLER ::lemon::assert_fail_abort |
91 | 91 |
#endif |
92 | 92 |
|
93 | 93 |
#ifndef LEMON_FUNCTION_NAME |
94 | 94 |
# if defined __GNUC__ |
95 | 95 |
# define LEMON_FUNCTION_NAME (__PRETTY_FUNCTION__) |
96 | 96 |
# elif defined _MSC_VER |
97 | 97 |
# define LEMON_FUNCTION_NAME (__FUNCSIG__) |
98 | 98 |
# elif __STDC_VERSION__ >= 199901L |
99 | 99 |
# define LEMON_FUNCTION_NAME (__func__) |
100 | 100 |
# else |
101 | 101 |
# define LEMON_FUNCTION_NAME ("<unknown>") |
102 | 102 |
# endif |
103 | 103 |
#endif |
104 | 104 |
|
105 | 105 |
#ifdef DOXYGEN |
106 | 106 |
|
107 | 107 |
/// \ingroup exceptions |
108 | 108 |
/// |
109 | 109 |
/// \brief Macro for assertion with customizable message |
110 | 110 |
/// |
111 |
/// Macro for assertion with customizable message. |
|
111 |
/// Macro for assertion with customizable message. |
|
112 | 112 |
/// \param exp An expression that must be convertible to \c bool. If it is \c |
113 | 113 |
/// false, then an assertion is raised. The concrete behaviour depends on the |
114 | 114 |
/// settings of the assertion system. |
115 | 115 |
/// \param msg A <tt>const char*</tt> parameter, which can be used to provide |
116 | 116 |
/// information about the circumstances of the failed assertion. |
117 | 117 |
/// |
118 | 118 |
/// The assertions are enabled in the default behaviour. |
119 | 119 |
/// You can disable them with the following code: |
120 | 120 |
/// \code |
121 | 121 |
/// #define LEMON_DISABLE_ASSERTS |
122 | 122 |
/// \endcode |
123 | 123 |
/// or with compilation parameters: |
124 | 124 |
/// \code |
125 | 125 |
/// g++ -DLEMON_DISABLE_ASSERTS |
126 | 126 |
/// make CXXFLAGS='-DLEMON_DISABLE_ASSERTS' |
127 | 127 |
/// \endcode |
128 | 128 |
/// The checking is also disabled when the standard macro \c NDEBUG is defined. |
129 | 129 |
/// |
130 | 130 |
/// As a default behaviour the failed assertion prints a short log message to |
131 | 131 |
/// the standard error and aborts the execution. |
132 | 132 |
/// |
133 | 133 |
/// However, the following modes can be used in the assertion system: |
134 | 134 |
/// - \c LEMON_ASSERT_ABORT The failed assertion prints a short log message to |
135 | 135 |
/// the standard error and aborts the program. It is the default behaviour. |
136 | 136 |
/// - \c LEMON_ASSERT_CUSTOM The user can define own assertion handler |
137 | 137 |
/// function. |
138 | 138 |
/// \code |
139 | 139 |
/// void custom_assert_handler(const char* file, int line, |
140 | 140 |
/// const char* function, const char* message, |
141 | 141 |
/// const char* assertion); |
142 | 142 |
/// \endcode |
143 | 143 |
/// The name of the function should be defined as the \c |
144 | 144 |
/// LEMON_CUSTOM_ASSERT_HANDLER macro name. |
145 | 145 |
/// \code |
146 | 146 |
/// #define LEMON_CUSTOM_ASSERT_HANDLER custom_assert_handler |
147 | 147 |
/// \endcode |
148 | 148 |
/// Whenever an assertion is occured, the custom assertion |
149 | 149 |
/// handler is called with appropiate parameters. |
150 | 150 |
/// |
151 | 151 |
/// The assertion mode can also be changed within one compilation unit. |
152 | 152 |
/// If the macros are redefined with other settings and the |
153 | 153 |
/// \ref lemon/assert.h "assert.h" file is reincluded, then the |
154 | 154 |
/// behaviour is changed appropiately to the new settings. |
155 | 155 |
# define LEMON_ASSERT(exp, msg) \ |
156 | 156 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
157 | 157 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
158 | 158 |
LEMON_FUNCTION_NAME, \ |
159 | 159 |
::lemon::_assert_bits::cstringify(msg), #exp), 0))) |
160 | 160 |
|
161 | 161 |
/// \ingroup exceptions |
162 | 162 |
/// |
163 | 163 |
/// \brief Macro for internal assertions |
164 | 164 |
/// |
165 | 165 |
/// Macro for internal assertions, it is used in the library to check |
166 | 166 |
/// the consistency of results of algorithms, several pre- and |
167 | 167 |
/// postconditions and invariants. The checking is disabled by |
168 | 168 |
/// default, but it can be turned on with the macro \c |
169 | 169 |
/// LEMON_ENABLE_DEBUG. |
170 | 170 |
/// \code |
171 | 171 |
/// #define LEMON_ENABLE_DEBUG |
172 | 172 |
/// \endcode |
173 | 173 |
/// or with compilation parameters: |
174 | 174 |
/// \code |
175 | 175 |
/// g++ -DLEMON_ENABLE_DEBUG |
176 | 176 |
/// make CXXFLAGS='-DLEMON_ENABLE_DEBUG' |
177 | 177 |
/// \endcode |
178 | 178 |
/// |
179 | 179 |
/// This macro works like the \c LEMON_ASSERT macro, therefore the |
180 | 180 |
/// current behaviour depends on the settings of \c LEMON_ASSERT |
181 | 181 |
/// macro. |
182 | 182 |
/// |
183 | 183 |
/// \see LEMON_ASSERT |
184 | 184 |
# define LEMON_DEBUG(exp, msg) \ |
185 | 185 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
186 | 186 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
187 | 187 |
LEMON_FUNCTION_NAME, \ |
188 | 188 |
::lemon::_assert_bits::cstringify(msg), #exp), 0))) |
189 | 189 |
|
190 | 190 |
#else |
191 | 191 |
|
192 | 192 |
# ifndef LEMON_ASSERT_HANDLER |
193 | 193 |
# define LEMON_ASSERT(exp, msg) (static_cast<void>(0)) |
194 | 194 |
# define LEMON_DEBUG(exp, msg) (static_cast<void>(0)) |
195 | 195 |
# else |
196 | 196 |
# define LEMON_ASSERT(exp, msg) \ |
197 | 197 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
198 | 198 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
199 | 199 |
LEMON_FUNCTION_NAME, \ |
200 | 200 |
::lemon::_assert_bits::cstringify(msg), \ |
201 | 201 |
#exp), 0))) |
202 | 202 |
# if LEMON_ENABLE_DEBUG |
203 | 203 |
# define LEMON_DEBUG(exp, msg) \ |
204 | 204 |
(static_cast<void> (!!(exp) ? 0 : ( \ |
205 | 205 |
LEMON_ASSERT_HANDLER(__FILE__, __LINE__, \ |
206 | 206 |
LEMON_FUNCTION_NAME, \ |
207 | 207 |
::lemon::_assert_bits::cstringify(msg), \ |
208 | 208 |
#exp), 0))) |
209 | 209 |
# else |
210 | 210 |
# define LEMON_DEBUG(exp, msg) (static_cast<void>(0)) |
211 | 211 |
# endif |
212 | 212 |
# endif |
213 | 213 |
|
214 | 214 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \ref PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 67 |
///Instantiates a \ref ProcessedMap. |
68 | 68 |
|
69 | 69 |
///This function instantiates a \ref ProcessedMap. |
70 | 70 |
///\param g is the digraph, to which |
71 | 71 |
///we would like to define the \ref ProcessedMap |
72 | 72 |
#ifdef DOXYGEN |
73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 74 |
#else |
75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 76 |
#endif |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 | 83 |
///The type of the map that indicates which nodes are reached. |
84 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
85 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 86 |
///Instantiates a \ref ReachedMap. |
87 | 87 |
|
88 | 88 |
///This function instantiates a \ref ReachedMap. |
89 | 89 |
///\param g is the digraph, to which |
90 | 90 |
///we would like to define the \ref ReachedMap. |
91 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 92 |
{ |
93 | 93 |
return new ReachedMap(g); |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
///The type of the map that stores the distances of the nodes. |
97 | 97 |
|
98 | 98 |
///The type of the map that stores the distances of the nodes. |
99 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
100 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 101 |
///Instantiates a \ref DistMap. |
102 | 102 |
|
103 | 103 |
///This function instantiates a \ref DistMap. |
104 | 104 |
///\param g is the digraph, to which we would like to define the |
105 | 105 |
///\ref DistMap. |
106 | 106 |
static DistMap *createDistMap(const Digraph &g) |
107 | 107 |
{ |
108 | 108 |
return new DistMap(g); |
109 | 109 |
} |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
///%BFS algorithm class. |
113 | 113 |
|
114 | 114 |
///\ingroup search |
115 | 115 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 116 |
/// |
117 | 117 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 119 |
///used easier. |
120 | 120 |
/// |
121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 122 |
///The default value is \ref ListDigraph. The value of GR is not used |
123 | 123 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
124 | 124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
125 | 125 |
///The default traits class is |
126 | 126 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
127 | 127 |
///See \ref BfsDefaultTraits for the documentation of |
128 | 128 |
///a Bfs traits class. |
129 | 129 |
#ifdef DOXYGEN |
130 | 130 |
template <typename GR, |
131 | 131 |
typename TR> |
132 | 132 |
#else |
133 | 133 |
template <typename GR=ListDigraph, |
134 | 134 |
typename TR=BfsDefaultTraits<GR> > |
135 | 135 |
#endif |
136 | 136 |
class Bfs { |
137 | 137 |
public: |
138 |
///\ref Exception for uninitialized parameters. |
|
139 |
|
|
140 |
///This error represents problems in the initialization of the |
|
141 |
///parameters of the algorithm. |
|
142 |
class UninitializedParameter : public lemon::UninitializedParameter { |
|
143 |
public: |
|
144 |
virtual const char* what() const throw() { |
|
145 |
return "lemon::Bfs::UninitializedParameter"; |
|
146 |
} |
|
147 |
}; |
|
148 | 138 |
|
149 | 139 |
///The type of the digraph the algorithm runs on. |
150 | 140 |
typedef typename TR::Digraph Digraph; |
151 | 141 |
|
152 | 142 |
///\brief The type of the map that stores the predecessor arcs of the |
153 | 143 |
///shortest paths. |
154 | 144 |
typedef typename TR::PredMap PredMap; |
155 | 145 |
///The type of the map that stores the distances of the nodes. |
156 | 146 |
typedef typename TR::DistMap DistMap; |
157 | 147 |
///The type of the map that indicates which nodes are reached. |
158 | 148 |
typedef typename TR::ReachedMap ReachedMap; |
159 | 149 |
///The type of the map that indicates which nodes are processed. |
160 | 150 |
typedef typename TR::ProcessedMap ProcessedMap; |
161 | 151 |
///The type of the paths. |
162 | 152 |
typedef PredMapPath<Digraph, PredMap> Path; |
163 | 153 |
|
164 | 154 |
///The traits class. |
165 | 155 |
typedef TR Traits; |
166 | 156 |
|
167 | 157 |
private: |
168 | 158 |
|
169 | 159 |
typedef typename Digraph::Node Node; |
170 | 160 |
typedef typename Digraph::NodeIt NodeIt; |
171 | 161 |
typedef typename Digraph::Arc Arc; |
172 | 162 |
typedef typename Digraph::OutArcIt OutArcIt; |
173 | 163 |
|
174 | 164 |
//Pointer to the underlying digraph. |
175 | 165 |
const Digraph *G; |
176 | 166 |
//Pointer to the map of predecessor arcs. |
177 | 167 |
PredMap *_pred; |
178 | 168 |
//Indicates if _pred is locally allocated (true) or not. |
179 | 169 |
bool local_pred; |
180 | 170 |
//Pointer to the map of distances. |
181 | 171 |
DistMap *_dist; |
182 | 172 |
//Indicates if _dist is locally allocated (true) or not. |
183 | 173 |
bool local_dist; |
184 | 174 |
//Pointer to the map of reached status of the nodes. |
185 | 175 |
ReachedMap *_reached; |
186 | 176 |
//Indicates if _reached is locally allocated (true) or not. |
187 | 177 |
bool local_reached; |
188 | 178 |
//Pointer to the map of processed status of the nodes. |
189 | 179 |
ProcessedMap *_processed; |
190 | 180 |
//Indicates if _processed is locally allocated (true) or not. |
191 | 181 |
bool local_processed; |
192 | 182 |
|
193 | 183 |
std::vector<typename Digraph::Node> _queue; |
194 | 184 |
int _queue_head,_queue_tail,_queue_next_dist; |
195 | 185 |
int _curr_dist; |
196 | 186 |
|
197 | 187 |
//Creates the maps if necessary. |
198 | 188 |
void create_maps() |
199 | 189 |
{ |
200 | 190 |
if(!_pred) { |
201 | 191 |
local_pred = true; |
202 | 192 |
_pred = Traits::createPredMap(*G); |
203 | 193 |
} |
204 | 194 |
if(!_dist) { |
205 | 195 |
local_dist = true; |
206 | 196 |
_dist = Traits::createDistMap(*G); |
207 | 197 |
} |
208 | 198 |
if(!_reached) { |
209 | 199 |
local_reached = true; |
210 | 200 |
_reached = Traits::createReachedMap(*G); |
211 | 201 |
} |
212 | 202 |
if(!_processed) { |
213 | 203 |
local_processed = true; |
214 | 204 |
_processed = Traits::createProcessedMap(*G); |
215 | 205 |
} |
216 | 206 |
} |
217 | 207 |
|
218 | 208 |
protected: |
219 | 209 |
|
220 | 210 |
Bfs() {} |
221 | 211 |
|
222 | 212 |
public: |
223 | 213 |
|
224 | 214 |
typedef Bfs Create; |
225 | 215 |
|
226 | 216 |
///\name Named template parameters |
227 | 217 |
|
228 | 218 |
///@{ |
229 | 219 |
|
230 | 220 |
template <class T> |
231 | 221 |
struct SetPredMapTraits : public Traits { |
232 | 222 |
typedef T PredMap; |
233 | 223 |
static PredMap *createPredMap(const Digraph &) |
234 | 224 |
{ |
235 |
|
|
225 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
226 |
return 0; // ignore warnings |
|
236 | 227 |
} |
237 | 228 |
}; |
238 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
239 | 230 |
///\ref PredMap type. |
240 | 231 |
/// |
241 | 232 |
///\ref named-templ-param "Named parameter" for setting |
242 | 233 |
///\ref PredMap type. |
243 | 234 |
template <class T> |
244 | 235 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
245 | 236 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
246 | 237 |
}; |
247 | 238 |
|
248 | 239 |
template <class T> |
249 | 240 |
struct SetDistMapTraits : public Traits { |
250 | 241 |
typedef T DistMap; |
251 | 242 |
static DistMap *createDistMap(const Digraph &) |
252 | 243 |
{ |
253 |
|
|
244 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
245 |
return 0; // ignore warnings |
|
254 | 246 |
} |
255 | 247 |
}; |
256 | 248 |
///\brief \ref named-templ-param "Named parameter" for setting |
257 | 249 |
///\ref DistMap type. |
258 | 250 |
/// |
259 | 251 |
///\ref named-templ-param "Named parameter" for setting |
260 | 252 |
///\ref DistMap type. |
261 | 253 |
template <class T> |
262 | 254 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
263 | 255 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
264 | 256 |
}; |
265 | 257 |
|
266 | 258 |
template <class T> |
267 | 259 |
struct SetReachedMapTraits : public Traits { |
268 | 260 |
typedef T ReachedMap; |
269 | 261 |
static ReachedMap *createReachedMap(const Digraph &) |
270 | 262 |
{ |
271 |
|
|
263 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
|
264 |
return 0; // ignore warnings |
|
272 | 265 |
} |
273 | 266 |
}; |
274 | 267 |
///\brief \ref named-templ-param "Named parameter" for setting |
275 | 268 |
///\ref ReachedMap type. |
276 | 269 |
/// |
277 | 270 |
///\ref named-templ-param "Named parameter" for setting |
278 | 271 |
///\ref ReachedMap type. |
279 | 272 |
template <class T> |
280 | 273 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
281 | 274 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
282 | 275 |
}; |
283 | 276 |
|
284 | 277 |
template <class T> |
285 | 278 |
struct SetProcessedMapTraits : public Traits { |
286 | 279 |
typedef T ProcessedMap; |
287 | 280 |
static ProcessedMap *createProcessedMap(const Digraph &) |
288 | 281 |
{ |
289 |
|
|
282 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
|
283 |
return 0; // ignore warnings |
|
290 | 284 |
} |
291 | 285 |
}; |
292 | 286 |
///\brief \ref named-templ-param "Named parameter" for setting |
293 | 287 |
///\ref ProcessedMap type. |
294 | 288 |
/// |
295 | 289 |
///\ref named-templ-param "Named parameter" for setting |
296 | 290 |
///\ref ProcessedMap type. |
297 | 291 |
template <class T> |
298 | 292 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
299 | 293 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
300 | 294 |
}; |
301 | 295 |
|
302 | 296 |
struct SetStandardProcessedMapTraits : public Traits { |
303 | 297 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
304 | 298 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
305 | 299 |
{ |
306 | 300 |
return new ProcessedMap(g); |
301 |
return 0; // ignore warnings |
|
307 | 302 |
} |
308 | 303 |
}; |
309 | 304 |
///\brief \ref named-templ-param "Named parameter" for setting |
310 | 305 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
311 | 306 |
/// |
312 | 307 |
///\ref named-templ-param "Named parameter" for setting |
313 | 308 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
314 | 309 |
///If you don't set it explicitly, it will be automatically allocated. |
315 | 310 |
struct SetStandardProcessedMap : |
316 | 311 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
317 | 312 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
318 | 313 |
}; |
319 | 314 |
|
320 | 315 |
///@} |
321 | 316 |
|
322 | 317 |
public: |
323 | 318 |
|
324 | 319 |
///Constructor. |
325 | 320 |
|
326 | 321 |
///Constructor. |
327 | 322 |
///\param g The digraph the algorithm runs on. |
328 | 323 |
Bfs(const Digraph &g) : |
329 | 324 |
G(&g), |
330 | 325 |
_pred(NULL), local_pred(false), |
331 | 326 |
_dist(NULL), local_dist(false), |
332 | 327 |
_reached(NULL), local_reached(false), |
333 | 328 |
_processed(NULL), local_processed(false) |
334 | 329 |
{ } |
335 | 330 |
|
336 | 331 |
///Destructor. |
337 | 332 |
~Bfs() |
338 | 333 |
{ |
339 | 334 |
if(local_pred) delete _pred; |
340 | 335 |
if(local_dist) delete _dist; |
341 | 336 |
if(local_reached) delete _reached; |
342 | 337 |
if(local_processed) delete _processed; |
343 | 338 |
} |
344 | 339 |
|
345 | 340 |
///Sets the map that stores the predecessor arcs. |
346 | 341 |
|
347 | 342 |
///Sets the map that stores the predecessor arcs. |
348 | 343 |
///If you don't use this function before calling \ref run(), |
349 | 344 |
///it will allocate one. The destructor deallocates this |
350 | 345 |
///automatically allocated map, of course. |
351 | 346 |
///\return <tt> (*this) </tt> |
352 | 347 |
Bfs &predMap(PredMap &m) |
353 | 348 |
{ |
354 | 349 |
if(local_pred) { |
355 | 350 |
delete _pred; |
356 | 351 |
local_pred=false; |
357 | 352 |
} |
358 | 353 |
_pred = &m; |
359 | 354 |
return *this; |
360 | 355 |
} |
361 | 356 |
|
362 | 357 |
///Sets the map that indicates which nodes are reached. |
363 | 358 |
|
364 | 359 |
///Sets the map that indicates which nodes are reached. |
365 | 360 |
///If you don't use this function before calling \ref run(), |
366 | 361 |
///it will allocate one. The destructor deallocates this |
367 | 362 |
///automatically allocated map, of course. |
368 | 363 |
///\return <tt> (*this) </tt> |
369 | 364 |
Bfs &reachedMap(ReachedMap &m) |
370 | 365 |
{ |
371 | 366 |
if(local_reached) { |
372 | 367 |
delete _reached; |
373 | 368 |
local_reached=false; |
374 | 369 |
} |
375 | 370 |
_reached = &m; |
376 | 371 |
return *this; |
377 | 372 |
} |
378 | 373 |
|
379 | 374 |
///Sets the map that indicates which nodes are processed. |
380 | 375 |
|
381 | 376 |
///Sets the map that indicates which nodes are processed. |
382 | 377 |
///If you don't use this function before calling \ref run(), |
383 | 378 |
///it will allocate one. The destructor deallocates this |
384 | 379 |
///automatically allocated map, of course. |
385 | 380 |
///\return <tt> (*this) </tt> |
386 | 381 |
Bfs &processedMap(ProcessedMap &m) |
387 | 382 |
{ |
388 | 383 |
if(local_processed) { |
389 | 384 |
delete _processed; |
390 | 385 |
local_processed=false; |
391 | 386 |
} |
392 | 387 |
_processed = &m; |
393 | 388 |
return *this; |
394 | 389 |
} |
395 | 390 |
|
396 | 391 |
///Sets the map that stores the distances of the nodes. |
397 | 392 |
|
398 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
399 | 394 |
///the algorithm. |
400 | 395 |
///If you don't use this function before calling \ref run(), |
401 | 396 |
///it will allocate one. The destructor deallocates this |
402 | 397 |
///automatically allocated map, of course. |
403 | 398 |
///\return <tt> (*this) </tt> |
404 | 399 |
Bfs &distMap(DistMap &m) |
405 | 400 |
{ |
406 | 401 |
if(local_dist) { |
407 | 402 |
delete _dist; |
408 | 403 |
local_dist=false; |
409 | 404 |
} |
410 | 405 |
_dist = &m; |
411 | 406 |
return *this; |
412 | 407 |
} |
413 | 408 |
|
414 | 409 |
public: |
415 | 410 |
|
416 | 411 |
///\name Execution control |
417 | 412 |
///The simplest way to execute the algorithm is to use |
418 | 413 |
///one of the member functions called \ref lemon::Bfs::run() "run()". |
419 | 414 |
///\n |
420 | 415 |
///If you need more control on the execution, first you must call |
421 | 416 |
///\ref lemon::Bfs::init() "init()", then you can add several source |
422 | 417 |
///nodes with \ref lemon::Bfs::addSource() "addSource()". |
423 | 418 |
///Finally \ref lemon::Bfs::start() "start()" will perform the |
424 | 419 |
///actual path computation. |
425 | 420 |
|
426 | 421 |
///@{ |
427 | 422 |
|
428 | 423 |
///Initializes the internal data structures. |
429 | 424 |
|
430 | 425 |
///Initializes the internal data structures. |
431 | 426 |
/// |
432 | 427 |
void init() |
433 | 428 |
{ |
434 | 429 |
create_maps(); |
435 | 430 |
_queue.resize(countNodes(*G)); |
436 | 431 |
_queue_head=_queue_tail=0; |
437 | 432 |
_curr_dist=1; |
438 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
439 | 434 |
_pred->set(u,INVALID); |
440 | 435 |
_reached->set(u,false); |
441 | 436 |
_processed->set(u,false); |
442 | 437 |
} |
443 | 438 |
} |
444 | 439 |
|
445 | 440 |
///Adds a new source node. |
446 | 441 |
|
447 | 442 |
///Adds a new source node to the set of nodes to be processed. |
448 | 443 |
/// |
449 | 444 |
void addSource(Node s) |
450 | 445 |
{ |
451 | 446 |
if(!(*_reached)[s]) |
452 | 447 |
{ |
453 | 448 |
_reached->set(s,true); |
454 | 449 |
_pred->set(s,INVALID); |
455 | 450 |
_dist->set(s,0); |
456 | 451 |
_queue[_queue_head++]=s; |
457 | 452 |
_queue_next_dist=_queue_head; |
458 | 453 |
} |
459 | 454 |
} |
460 | 455 |
|
461 | 456 |
///Processes the next node. |
462 | 457 |
|
463 | 458 |
///Processes the next node. |
464 | 459 |
/// |
465 | 460 |
///\return The processed node. |
466 | 461 |
/// |
467 | 462 |
///\pre The queue must not be empty. |
468 | 463 |
Node processNextNode() |
469 | 464 |
{ |
470 | 465 |
if(_queue_tail==_queue_next_dist) { |
471 | 466 |
_curr_dist++; |
472 | 467 |
_queue_next_dist=_queue_head; |
473 | 468 |
} |
474 | 469 |
Node n=_queue[_queue_tail++]; |
475 | 470 |
_processed->set(n,true); |
476 | 471 |
Node m; |
477 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
478 | 473 |
if(!(*_reached)[m=G->target(e)]) { |
479 | 474 |
_queue[_queue_head++]=m; |
480 | 475 |
_reached->set(m,true); |
481 | 476 |
_pred->set(m,e); |
482 | 477 |
_dist->set(m,_curr_dist); |
483 | 478 |
} |
484 | 479 |
return n; |
485 | 480 |
} |
486 | 481 |
|
487 | 482 |
///Processes the next node. |
488 | 483 |
|
489 | 484 |
///Processes the next node and checks if the given target node |
490 | 485 |
///is reached. If the target node is reachable from the processed |
491 | 486 |
///node, then the \c reach parameter will be set to \c true. |
492 | 487 |
/// |
493 | 488 |
///\param target The target node. |
494 | 489 |
///\retval reach Indicates if the target node is reached. |
495 | 490 |
///It should be initially \c false. |
496 | 491 |
/// |
497 | 492 |
///\return The processed node. |
498 | 493 |
/// |
499 | 494 |
///\pre The queue must not be empty. |
500 | 495 |
Node processNextNode(Node target, bool& reach) |
501 | 496 |
{ |
502 | 497 |
if(_queue_tail==_queue_next_dist) { |
503 | 498 |
_curr_dist++; |
504 | 499 |
_queue_next_dist=_queue_head; |
505 | 500 |
} |
506 | 501 |
Node n=_queue[_queue_tail++]; |
507 | 502 |
_processed->set(n,true); |
508 | 503 |
Node m; |
509 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
510 | 505 |
if(!(*_reached)[m=G->target(e)]) { |
511 | 506 |
_queue[_queue_head++]=m; |
512 | 507 |
_reached->set(m,true); |
513 | 508 |
_pred->set(m,e); |
514 | 509 |
_dist->set(m,_curr_dist); |
515 | 510 |
reach = reach || (target == m); |
516 | 511 |
} |
517 | 512 |
return n; |
518 | 513 |
} |
519 | 514 |
|
520 | 515 |
///Processes the next node. |
521 | 516 |
|
522 | 517 |
///Processes the next node and checks if at least one of reached |
523 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
524 | 519 |
///with \c true value is reachable from the processed node, then the |
525 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
526 | 521 |
/// |
527 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
528 | 523 |
///possible targets. |
529 | 524 |
///\retval rnode The reached target node. |
530 | 525 |
///It should be initially \c INVALID. |
531 | 526 |
/// |
532 | 527 |
///\return The processed node. |
533 | 528 |
/// |
534 | 529 |
///\pre The queue must not be empty. |
535 | 530 |
template<class NM> |
536 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
537 | 532 |
{ |
538 | 533 |
if(_queue_tail==_queue_next_dist) { |
539 | 534 |
_curr_dist++; |
540 | 535 |
_queue_next_dist=_queue_head; |
541 | 536 |
} |
542 | 537 |
Node n=_queue[_queue_tail++]; |
543 | 538 |
_processed->set(n,true); |
544 | 539 |
Node m; |
545 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
546 | 541 |
if(!(*_reached)[m=G->target(e)]) { |
547 | 542 |
_queue[_queue_head++]=m; |
548 | 543 |
_reached->set(m,true); |
549 | 544 |
_pred->set(m,e); |
550 | 545 |
_dist->set(m,_curr_dist); |
551 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
552 | 547 |
} |
553 | 548 |
return n; |
554 | 549 |
} |
555 | 550 |
|
556 | 551 |
///The next node to be processed. |
557 | 552 |
|
558 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
559 | 554 |
///is empty. |
560 | 555 |
Node nextNode() const |
561 | 556 |
{ |
562 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
563 | 558 |
} |
564 | 559 |
|
565 | 560 |
///\brief Returns \c false if there are nodes |
566 | 561 |
///to be processed. |
567 | 562 |
/// |
568 | 563 |
///Returns \c false if there are nodes |
569 | 564 |
///to be processed in the queue. |
570 | 565 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
571 | 566 |
|
572 | 567 |
///Returns the number of the nodes to be processed. |
573 | 568 |
|
574 | 569 |
///Returns the number of the nodes to be processed in the queue. |
575 | 570 |
int queueSize() const { return _queue_head-_queue_tail; } |
576 | 571 |
|
577 | 572 |
///Executes the algorithm. |
578 | 573 |
|
579 | 574 |
///Executes the algorithm. |
580 | 575 |
/// |
581 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
582 | 577 |
///in order to compute the shortest path to each node. |
583 | 578 |
/// |
584 | 579 |
///The algorithm computes |
585 | 580 |
///- the shortest path tree (forest), |
586 | 581 |
///- the distance of each node from the root(s). |
587 | 582 |
/// |
588 | 583 |
///\pre init() must be called and at least one root node should be |
589 | 584 |
///added with addSource() before using this function. |
590 | 585 |
/// |
591 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
592 | 587 |
///\code |
593 | 588 |
/// while ( !b.emptyQueue() ) { |
594 | 589 |
/// b.processNextNode(); |
595 | 590 |
/// } |
596 | 591 |
///\endcode |
597 | 592 |
void start() |
598 | 593 |
{ |
599 | 594 |
while ( !emptyQueue() ) processNextNode(); |
600 | 595 |
} |
601 | 596 |
|
602 | 597 |
///Executes the algorithm until the given target node is reached. |
603 | 598 |
|
604 | 599 |
///Executes the algorithm until the given target node is reached. |
605 | 600 |
/// |
606 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
607 | 602 |
///in order to compute the shortest path to \c t. |
608 | 603 |
/// |
609 | 604 |
///The algorithm computes |
610 | 605 |
///- the shortest path to \c t, |
611 | 606 |
///- the distance of \c t from the root(s). |
612 | 607 |
/// |
613 | 608 |
///\pre init() must be called and at least one root node should be |
614 | 609 |
///added with addSource() before using this function. |
615 | 610 |
/// |
616 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
617 | 612 |
///\code |
618 | 613 |
/// bool reach = false; |
619 | 614 |
/// while ( !b.emptyQueue() && !reach ) { |
620 | 615 |
/// b.processNextNode(t, reach); |
621 | 616 |
/// } |
622 | 617 |
///\endcode |
623 | 618 |
void start(Node t) |
624 | 619 |
{ |
625 | 620 |
bool reach = false; |
626 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
627 | 622 |
} |
628 | 623 |
|
629 | 624 |
///Executes the algorithm until a condition is met. |
630 | 625 |
|
631 | 626 |
///Executes the algorithm until a condition is met. |
632 | 627 |
/// |
633 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
634 | 629 |
///order to compute the shortest path to a node \c v with |
635 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
636 | 631 |
/// |
637 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
638 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
639 | 634 |
/// |
640 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
641 | 636 |
///\c INVALID if no such node was found. |
642 | 637 |
/// |
643 | 638 |
///\pre init() must be called and at least one root node should be |
644 | 639 |
///added with addSource() before using this function. |
645 | 640 |
/// |
646 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
647 | 642 |
///\code |
648 | 643 |
/// Node rnode = INVALID; |
649 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
650 | 645 |
/// b.processNextNode(nm, rnode); |
651 | 646 |
/// } |
652 | 647 |
/// return rnode; |
653 | 648 |
///\endcode |
654 | 649 |
template<class NodeBoolMap> |
655 | 650 |
Node start(const NodeBoolMap &nm) |
656 | 651 |
{ |
657 | 652 |
Node rnode = INVALID; |
658 | 653 |
while ( !emptyQueue() && rnode == INVALID ) { |
659 | 654 |
processNextNode(nm, rnode); |
660 | 655 |
} |
661 | 656 |
return rnode; |
662 | 657 |
} |
663 | 658 |
|
664 | 659 |
///Runs the algorithm from the given source node. |
665 | 660 |
|
666 | 661 |
///This method runs the %BFS algorithm from node \c s |
667 | 662 |
///in order to compute the shortest path to each node. |
668 | 663 |
/// |
669 | 664 |
///The algorithm computes |
670 | 665 |
///- the shortest path tree, |
671 | 666 |
///- the distance of each node from the root. |
672 | 667 |
/// |
673 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
674 | 669 |
///\code |
675 | 670 |
/// b.init(); |
676 | 671 |
/// b.addSource(s); |
677 | 672 |
/// b.start(); |
678 | 673 |
///\endcode |
679 | 674 |
void run(Node s) { |
680 | 675 |
init(); |
681 | 676 |
addSource(s); |
682 | 677 |
start(); |
683 | 678 |
} |
684 | 679 |
|
685 | 680 |
///Finds the shortest path between \c s and \c t. |
686 | 681 |
|
687 | 682 |
///This method runs the %BFS algorithm from node \c s |
688 | 683 |
///in order to compute the shortest path to node \c t |
689 | 684 |
///(it stops searching when \c t is processed). |
690 | 685 |
/// |
691 | 686 |
///\return \c true if \c t is reachable form \c s. |
692 | 687 |
/// |
693 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
694 | 689 |
///shortcut of the following code. |
695 | 690 |
///\code |
696 | 691 |
/// b.init(); |
697 | 692 |
/// b.addSource(s); |
698 | 693 |
/// b.start(t); |
699 | 694 |
///\endcode |
700 | 695 |
bool run(Node s,Node t) { |
701 | 696 |
init(); |
702 | 697 |
addSource(s); |
703 | 698 |
start(t); |
704 | 699 |
return reached(t); |
705 | 700 |
} |
706 | 701 |
|
707 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
708 | 703 |
|
709 | 704 |
///This method runs the %BFS algorithm in order to |
710 | 705 |
///compute the shortest path to each node. |
711 | 706 |
/// |
712 | 707 |
///The algorithm computes |
713 | 708 |
///- the shortest path tree (forest), |
714 | 709 |
///- the distance of each node from the root(s). |
715 | 710 |
/// |
716 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
717 | 712 |
///\code |
718 | 713 |
/// b.init(); |
719 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
720 | 715 |
/// if (!b.reached(n)) { |
721 | 716 |
/// b.addSource(n); |
722 | 717 |
/// b.start(); |
723 | 718 |
/// } |
724 | 719 |
/// } |
725 | 720 |
///\endcode |
726 | 721 |
void run() { |
727 | 722 |
init(); |
728 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) { |
729 | 724 |
if (!reached(n)) { |
730 | 725 |
addSource(n); |
731 | 726 |
start(); |
732 | 727 |
} |
733 | 728 |
} |
734 | 729 |
} |
735 | 730 |
|
736 | 731 |
///@} |
737 | 732 |
|
738 | 733 |
///\name Query Functions |
739 | 734 |
///The result of the %BFS algorithm can be obtained using these |
740 | 735 |
///functions.\n |
741 | 736 |
///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
742 | 737 |
///"start()" must be called before using them. |
743 | 738 |
|
744 | 739 |
///@{ |
745 | 740 |
|
746 | 741 |
///The shortest path to a node. |
747 | 742 |
|
748 | 743 |
///Returns the shortest path to a node. |
749 | 744 |
/// |
750 | 745 |
///\warning \c t should be reachable from the root(s). |
751 | 746 |
/// |
752 | 747 |
///\pre Either \ref run() or \ref start() must be called before |
753 | 748 |
///using this function. |
754 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
755 | 750 |
|
756 | 751 |
///The distance of a node from the root(s). |
757 | 752 |
|
758 | 753 |
///Returns the distance of a node from the root(s). |
759 | 754 |
/// |
760 | 755 |
///\warning If node \c v is not reachable from the root(s), then |
761 | 756 |
///the return value of this function is undefined. |
762 | 757 |
/// |
763 | 758 |
///\pre Either \ref run() or \ref start() must be called before |
764 | 759 |
///using this function. |
765 | 760 |
int dist(Node v) const { return (*_dist)[v]; } |
766 | 761 |
|
767 | 762 |
///Returns the 'previous arc' of the shortest path tree for a node. |
768 | 763 |
|
769 | 764 |
///This function returns the 'previous arc' of the shortest path |
770 | 765 |
///tree for the node \c v, i.e. it returns the last arc of a |
771 | 766 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
772 | 767 |
///is not reachable from the root(s) or if \c v is a root. |
773 | 768 |
/// |
774 | 769 |
///The shortest path tree used here is equal to the shortest path |
775 | 770 |
///tree used in \ref predNode(). |
776 | 771 |
/// |
777 | 772 |
///\pre Either \ref run() or \ref start() must be called before |
778 | 773 |
///using this function. |
779 | 774 |
Arc predArc(Node v) const { return (*_pred)[v];} |
780 | 775 |
|
781 | 776 |
///Returns the 'previous node' of the shortest path tree for a node. |
782 | 777 |
|
783 | 778 |
///This function returns the 'previous node' of the shortest path |
784 | 779 |
///tree for the node \c v, i.e. it returns the last but one node |
785 | 780 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
786 | 781 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
787 | 782 |
/// |
788 | 783 |
///The shortest path tree used here is equal to the shortest path |
789 | 784 |
///tree used in \ref predArc(). |
790 | 785 |
/// |
791 | 786 |
///\pre Either \ref run() or \ref start() must be called before |
792 | 787 |
///using this function. |
793 | 788 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
794 | 789 |
G->source((*_pred)[v]); } |
795 | 790 |
|
796 | 791 |
///\brief Returns a const reference to the node map that stores the |
797 | 792 |
/// distances of the nodes. |
798 | 793 |
/// |
799 | 794 |
///Returns a const reference to the node map that stores the distances |
800 | 795 |
///of the nodes calculated by the algorithm. |
801 | 796 |
/// |
802 | 797 |
///\pre Either \ref run() or \ref init() |
803 | 798 |
///must be called before using this function. |
804 | 799 |
const DistMap &distMap() const { return *_dist;} |
805 | 800 |
|
806 | 801 |
///\brief Returns a const reference to the node map that stores the |
807 | 802 |
///predecessor arcs. |
808 | 803 |
/// |
809 | 804 |
///Returns a const reference to the node map that stores the predecessor |
810 | 805 |
///arcs, which form the shortest path tree. |
811 | 806 |
/// |
812 | 807 |
///\pre Either \ref run() or \ref init() |
813 | 808 |
///must be called before using this function. |
814 | 809 |
const PredMap &predMap() const { return *_pred;} |
815 | 810 |
|
816 | 811 |
///Checks if a node is reachable from the root(s). |
817 | 812 |
|
818 | 813 |
///Returns \c true if \c v is reachable from the root(s). |
819 | 814 |
///\pre Either \ref run() or \ref start() |
820 | 815 |
///must be called before using this function. |
821 | 816 |
bool reached(Node v) const { return (*_reached)[v]; } |
822 | 817 |
|
823 | 818 |
///@} |
824 | 819 |
}; |
825 | 820 |
|
826 | 821 |
///Default traits class of bfs() function. |
827 | 822 |
|
828 | 823 |
///Default traits class of bfs() function. |
829 | 824 |
///\tparam GR Digraph type. |
830 | 825 |
template<class GR> |
831 | 826 |
struct BfsWizardDefaultTraits |
832 | 827 |
{ |
833 | 828 |
///The type of the digraph the algorithm runs on. |
834 | 829 |
typedef GR Digraph; |
835 | 830 |
|
836 | 831 |
///\brief The type of the map that stores the predecessor |
837 | 832 |
///arcs of the shortest paths. |
838 | 833 |
/// |
839 | 834 |
///The type of the map that stores the predecessor |
840 | 835 |
///arcs of the shortest paths. |
841 | 836 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
842 | 837 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
843 | 838 |
///Instantiates a \ref PredMap. |
844 | 839 |
|
845 | 840 |
///This function instantiates a \ref PredMap. |
846 | 841 |
///\param g is the digraph, to which we would like to define the |
847 | 842 |
///\ref PredMap. |
848 | 843 |
static PredMap *createPredMap(const Digraph &g) |
849 | 844 |
{ |
850 | 845 |
return new PredMap(g); |
851 | 846 |
} |
852 | 847 |
|
853 | 848 |
///The type of the map that indicates which nodes are processed. |
854 | 849 |
|
855 | 850 |
///The type of the map that indicates which nodes are processed. |
856 | 851 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
857 | 852 |
///By default it is a NullMap. |
858 | 853 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
859 | 854 |
///Instantiates a \ref ProcessedMap. |
860 | 855 |
|
861 | 856 |
///This function instantiates a \ref ProcessedMap. |
862 | 857 |
///\param g is the digraph, to which |
863 | 858 |
///we would like to define the \ref ProcessedMap. |
864 | 859 |
#ifdef DOXYGEN |
865 | 860 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
866 | 861 |
#else |
867 | 862 |
static ProcessedMap *createProcessedMap(const Digraph &) |
868 | 863 |
#endif |
869 | 864 |
{ |
870 | 865 |
return new ProcessedMap(); |
871 | 866 |
} |
872 | 867 |
|
873 | 868 |
///The type of the map that indicates which nodes are reached. |
874 | 869 |
|
875 | 870 |
///The type of the map that indicates which nodes are reached. |
876 | 871 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
877 | 872 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
878 | 873 |
///Instantiates a \ref ReachedMap. |
879 | 874 |
|
880 | 875 |
///This function instantiates a \ref ReachedMap. |
881 | 876 |
///\param g is the digraph, to which |
882 | 877 |
///we would like to define the \ref ReachedMap. |
883 | 878 |
static ReachedMap *createReachedMap(const Digraph &g) |
884 | 879 |
{ |
885 | 880 |
return new ReachedMap(g); |
886 | 881 |
} |
887 | 882 |
|
888 | 883 |
///The type of the map that stores the distances of the nodes. |
889 | 884 |
|
890 | 885 |
///The type of the map that stores the distances of the nodes. |
891 | 886 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
892 | 887 |
typedef typename Digraph::template NodeMap<int> DistMap; |
893 | 888 |
///Instantiates a \ref DistMap. |
894 | 889 |
|
895 | 890 |
///This function instantiates a \ref DistMap. |
896 | 891 |
///\param g is the digraph, to which we would like to define |
897 | 892 |
///the \ref DistMap |
898 | 893 |
static DistMap *createDistMap(const Digraph &g) |
899 | 894 |
{ |
900 | 895 |
return new DistMap(g); |
901 | 896 |
} |
902 | 897 |
|
903 | 898 |
///The type of the shortest paths. |
904 | 899 |
|
905 | 900 |
///The type of the shortest paths. |
906 | 901 |
///It must meet the \ref concepts::Path "Path" concept. |
907 | 902 |
typedef lemon::Path<Digraph> Path; |
908 | 903 |
}; |
909 | 904 |
|
910 | 905 |
/// Default traits class used by \ref BfsWizard |
911 | 906 |
|
912 | 907 |
/// To make it easier to use Bfs algorithm |
913 | 908 |
/// we have created a wizard class. |
914 | 909 |
/// This \ref BfsWizard class needs default traits, |
915 | 910 |
/// as well as the \ref Bfs class. |
916 | 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
917 | 912 |
/// \ref BfsWizard class. |
918 | 913 |
template<class GR> |
919 | 914 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
920 | 915 |
{ |
921 | 916 |
|
922 | 917 |
typedef BfsWizardDefaultTraits<GR> Base; |
923 | 918 |
protected: |
924 | 919 |
//The type of the nodes in the digraph. |
925 | 920 |
typedef typename Base::Digraph::Node Node; |
926 | 921 |
|
927 | 922 |
//Pointer to the digraph the algorithm runs on. |
928 | 923 |
void *_g; |
929 | 924 |
//Pointer to the map of reached nodes. |
930 | 925 |
void *_reached; |
931 | 926 |
//Pointer to the map of processed nodes. |
932 | 927 |
void *_processed; |
933 | 928 |
//Pointer to the map of predecessors arcs. |
934 | 929 |
void *_pred; |
935 | 930 |
//Pointer to the map of distances. |
936 | 931 |
void *_dist; |
937 | 932 |
//Pointer to the shortest path to the target node. |
938 | 933 |
void *_path; |
939 | 934 |
//Pointer to the distance of the target node. |
940 | 935 |
int *_di; |
941 | 936 |
|
942 | 937 |
public: |
943 | 938 |
/// Constructor. |
944 | 939 |
|
945 | 940 |
/// This constructor does not require parameters, therefore it initiates |
946 | 941 |
/// all of the attributes to \c 0. |
947 | 942 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
948 | 943 |
_dist(0), _path(0), _di(0) {} |
949 | 944 |
|
950 | 945 |
/// Constructor. |
951 | 946 |
|
952 | 947 |
/// This constructor requires one parameter, |
953 | 948 |
/// others are initiated to \c 0. |
954 | 949 |
/// \param g The digraph the algorithm runs on. |
955 | 950 |
BfsWizardBase(const GR &g) : |
956 | 951 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
957 | 952 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
958 | 953 |
|
959 | 954 |
}; |
960 | 955 |
|
961 | 956 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
962 | 957 |
|
963 | 958 |
/// This auxiliary class is created to implement the |
964 | 959 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
965 | 960 |
/// It does not have own \ref run() method, it uses the functions |
966 | 961 |
/// and features of the plain \ref Bfs. |
967 | 962 |
/// |
968 | 963 |
/// This class should only be used through the \ref bfs() function, |
969 | 964 |
/// which makes it easier to use the algorithm. |
970 | 965 |
template<class TR> |
971 | 966 |
class BfsWizard : public TR |
972 | 967 |
{ |
973 | 968 |
typedef TR Base; |
974 | 969 |
|
975 | 970 |
///The type of the digraph the algorithm runs on. |
976 | 971 |
typedef typename TR::Digraph Digraph; |
977 | 972 |
|
978 | 973 |
typedef typename Digraph::Node Node; |
979 | 974 |
typedef typename Digraph::NodeIt NodeIt; |
980 | 975 |
typedef typename Digraph::Arc Arc; |
981 | 976 |
typedef typename Digraph::OutArcIt OutArcIt; |
982 | 977 |
|
983 | 978 |
///\brief The type of the map that stores the predecessor |
984 | 979 |
///arcs of the shortest paths. |
985 | 980 |
typedef typename TR::PredMap PredMap; |
986 | 981 |
///\brief The type of the map that stores the distances of the nodes. |
987 | 982 |
typedef typename TR::DistMap DistMap; |
988 | 983 |
///\brief The type of the map that indicates which nodes are reached. |
989 | 984 |
typedef typename TR::ReachedMap ReachedMap; |
990 | 985 |
///\brief The type of the map that indicates which nodes are processed. |
991 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
992 | 987 |
///The type of the shortest paths |
993 | 988 |
typedef typename TR::Path Path; |
994 | 989 |
|
995 | 990 |
public: |
996 | 991 |
|
997 | 992 |
/// Constructor. |
998 | 993 |
BfsWizard() : TR() {} |
999 | 994 |
|
1000 | 995 |
/// Constructor that requires parameters. |
1001 | 996 |
|
1002 | 997 |
/// Constructor that requires parameters. |
1003 | 998 |
/// These parameters will be the default values for the traits class. |
1004 | 999 |
/// \param g The digraph the algorithm runs on. |
1005 | 1000 |
BfsWizard(const Digraph &g) : |
1006 | 1001 |
TR(g) {} |
1007 | 1002 |
|
1008 | 1003 |
///Copy constructor |
1009 | 1004 |
BfsWizard(const TR &b) : TR(b) {} |
1010 | 1005 |
|
1011 | 1006 |
~BfsWizard() {} |
1012 | 1007 |
|
1013 | 1008 |
///Runs BFS algorithm from the given source node. |
1014 | 1009 |
|
1015 | 1010 |
///This method runs BFS algorithm from node \c s |
1016 | 1011 |
///in order to compute the shortest path to each node. |
1017 | 1012 |
void run(Node s) |
1018 | 1013 |
{ |
1019 | 1014 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1020 | 1015 |
if (Base::_pred) |
1021 | 1016 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1022 | 1017 |
if (Base::_dist) |
1023 | 1018 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1024 | 1019 |
if (Base::_reached) |
1025 | 1020 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1026 | 1021 |
if (Base::_processed) |
1027 | 1022 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1028 | 1023 |
if (s!=INVALID) |
1029 | 1024 |
alg.run(s); |
1030 | 1025 |
else |
1031 | 1026 |
alg.run(); |
1032 | 1027 |
} |
1033 | 1028 |
|
1034 | 1029 |
///Finds the shortest path between \c s and \c t. |
1035 | 1030 |
|
1036 | 1031 |
///This method runs BFS algorithm from node \c s |
1037 | 1032 |
///in order to compute the shortest path to node \c t |
1038 | 1033 |
///(it stops searching when \c t is processed). |
1039 | 1034 |
/// |
1040 | 1035 |
///\return \c true if \c t is reachable form \c s. |
1041 | 1036 |
bool run(Node s, Node t) |
1042 | 1037 |
{ |
1043 |
if (s==INVALID || t==INVALID) throw UninitializedParameter(); |
|
1044 | 1038 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1045 | 1039 |
if (Base::_pred) |
1046 | 1040 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1047 | 1041 |
if (Base::_dist) |
1048 | 1042 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1049 | 1043 |
if (Base::_reached) |
1050 | 1044 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1051 | 1045 |
if (Base::_processed) |
1052 | 1046 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1053 | 1047 |
alg.run(s,t); |
1054 | 1048 |
if (Base::_path) |
1055 | 1049 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1056 | 1050 |
if (Base::_di) |
1057 | 1051 |
*Base::_di = alg.dist(t); |
1058 | 1052 |
return alg.reached(t); |
1059 | 1053 |
} |
1060 | 1054 |
|
1061 | 1055 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1062 | 1056 |
|
1063 | 1057 |
///This method runs BFS algorithm in order to compute |
1064 | 1058 |
///the shortest path to each node. |
1065 | 1059 |
void run() |
1066 | 1060 |
{ |
1067 | 1061 |
run(INVALID); |
1068 | 1062 |
} |
1069 | 1063 |
|
1070 | 1064 |
template<class T> |
1071 | 1065 |
struct SetPredMapBase : public Base { |
1072 | 1066 |
typedef T PredMap; |
1073 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1074 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1075 | 1069 |
}; |
1076 | 1070 |
///\brief \ref named-func-param "Named parameter" |
1077 | 1071 |
///for setting \ref PredMap object. |
1078 | 1072 |
/// |
1079 | 1073 |
///\ref named-func-param "Named parameter" |
1080 | 1074 |
///for setting \ref PredMap object. |
1081 | 1075 |
template<class T> |
1082 | 1076 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1083 | 1077 |
{ |
1084 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1085 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1086 | 1080 |
} |
1087 | 1081 |
|
1088 | 1082 |
template<class T> |
1089 | 1083 |
struct SetReachedMapBase : public Base { |
1090 | 1084 |
typedef T ReachedMap; |
1091 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1092 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1093 | 1087 |
}; |
1094 | 1088 |
///\brief \ref named-func-param "Named parameter" |
1095 | 1089 |
///for setting \ref ReachedMap object. |
1096 | 1090 |
/// |
1097 | 1091 |
/// \ref named-func-param "Named parameter" |
1098 | 1092 |
///for setting \ref ReachedMap object. |
1099 | 1093 |
template<class T> |
1100 | 1094 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1101 | 1095 |
{ |
1102 | 1096 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1103 | 1097 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1104 | 1098 |
} |
1105 | 1099 |
|
1106 | 1100 |
template<class T> |
1107 | 1101 |
struct SetDistMapBase : public Base { |
1108 | 1102 |
typedef T DistMap; |
1109 | 1103 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1110 | 1104 |
SetDistMapBase(const TR &b) : TR(b) {} |
1111 | 1105 |
}; |
1112 | 1106 |
///\brief \ref named-func-param "Named parameter" |
1113 | 1107 |
///for setting \ref DistMap object. |
1114 | 1108 |
/// |
1115 | 1109 |
/// \ref named-func-param "Named parameter" |
1116 | 1110 |
///for setting \ref DistMap object. |
1117 | 1111 |
template<class T> |
1118 | 1112 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1119 | 1113 |
{ |
1120 | 1114 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1121 | 1115 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1122 | 1116 |
} |
1123 | 1117 |
|
1124 | 1118 |
template<class T> |
1125 | 1119 |
struct SetProcessedMapBase : public Base { |
1126 | 1120 |
typedef T ProcessedMap; |
1127 | 1121 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1128 | 1122 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1129 | 1123 |
}; |
1130 | 1124 |
///\brief \ref named-func-param "Named parameter" |
1131 | 1125 |
///for setting \ref ProcessedMap object. |
1132 | 1126 |
/// |
1133 | 1127 |
/// \ref named-func-param "Named parameter" |
1134 | 1128 |
///for setting \ref ProcessedMap object. |
1135 | 1129 |
template<class T> |
1136 | 1130 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1137 | 1131 |
{ |
1138 | 1132 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1139 | 1133 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1140 | 1134 |
} |
1141 | 1135 |
|
1142 | 1136 |
template<class T> |
1143 | 1137 |
struct SetPathBase : public Base { |
1144 | 1138 |
typedef T Path; |
1145 | 1139 |
SetPathBase(const TR &b) : TR(b) {} |
1146 | 1140 |
}; |
1147 | 1141 |
///\brief \ref named-func-param "Named parameter" |
1148 | 1142 |
///for getting the shortest path to the target node. |
1149 | 1143 |
/// |
1150 | 1144 |
///\ref named-func-param "Named parameter" |
1151 | 1145 |
///for getting the shortest path to the target node. |
1152 | 1146 |
template<class T> |
1153 | 1147 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1154 | 1148 |
{ |
1155 | 1149 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1156 | 1150 |
return BfsWizard<SetPathBase<T> >(*this); |
1157 | 1151 |
} |
1158 | 1152 |
|
1159 | 1153 |
///\brief \ref named-func-param "Named parameter" |
1160 | 1154 |
///for getting the distance of the target node. |
1161 | 1155 |
/// |
1162 | 1156 |
///\ref named-func-param "Named parameter" |
1163 | 1157 |
///for getting the distance of the target node. |
1164 | 1158 |
BfsWizard dist(const int &d) |
1165 | 1159 |
{ |
1166 | 1160 |
Base::_di=const_cast<int*>(&d); |
1167 | 1161 |
return *this; |
1168 | 1162 |
} |
1169 | 1163 |
|
1170 | 1164 |
}; |
1171 | 1165 |
|
1172 | 1166 |
///Function-type interface for BFS algorithm. |
1173 | 1167 |
|
1174 | 1168 |
/// \ingroup search |
1175 | 1169 |
///Function-type interface for BFS algorithm. |
1176 | 1170 |
/// |
1177 | 1171 |
///This function also has several \ref named-func-param "named parameters", |
1178 | 1172 |
///they are declared as the members of class \ref BfsWizard. |
1179 | 1173 |
///The following examples show how to use these parameters. |
1180 | 1174 |
///\code |
1181 | 1175 |
/// // Compute shortest path from node s to each node |
1182 | 1176 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1183 | 1177 |
/// |
1184 | 1178 |
/// // Compute shortest path from s to t |
1185 | 1179 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1186 | 1180 |
///\endcode |
1187 | 1181 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1188 | 1182 |
///to the end of the parameter list. |
1189 | 1183 |
///\sa BfsWizard |
1190 | 1184 |
///\sa Bfs |
1191 | 1185 |
template<class GR> |
1192 | 1186 |
BfsWizard<BfsWizardBase<GR> > |
1193 | 1187 |
bfs(const GR &digraph) |
1194 | 1188 |
{ |
1195 | 1189 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1196 | 1190 |
} |
1197 | 1191 |
|
1198 | 1192 |
#ifdef DOXYGEN |
1199 | 1193 |
/// \brief Visitor class for BFS. |
1200 | 1194 |
/// |
1201 | 1195 |
/// This class defines the interface of the BfsVisit events, and |
1202 | 1196 |
/// it could be the base of a real visitor class. |
1203 | 1197 |
template <typename _Digraph> |
1204 | 1198 |
struct BfsVisitor { |
1205 | 1199 |
typedef _Digraph Digraph; |
1206 | 1200 |
typedef typename Digraph::Arc Arc; |
1207 | 1201 |
typedef typename Digraph::Node Node; |
1208 | 1202 |
/// \brief Called for the source node(s) of the BFS. |
1209 | 1203 |
/// |
1210 | 1204 |
/// This function is called for the source node(s) of the BFS. |
1211 | 1205 |
void start(const Node& node) {} |
1212 | 1206 |
/// \brief Called when a node is reached first time. |
1213 | 1207 |
/// |
1214 | 1208 |
/// This function is called when a node is reached first time. |
1215 | 1209 |
void reach(const Node& node) {} |
1216 | 1210 |
/// \brief Called when a node is processed. |
1217 | 1211 |
/// |
1218 | 1212 |
/// This function is called when a node is processed. |
1219 | 1213 |
void process(const Node& node) {} |
1220 | 1214 |
/// \brief Called when an arc reaches a new node. |
1221 | 1215 |
/// |
1222 | 1216 |
/// This function is called when the BFS finds an arc whose target node |
1223 | 1217 |
/// is not reached yet. |
1224 | 1218 |
void discover(const Arc& arc) {} |
1225 | 1219 |
/// \brief Called when an arc is examined but its target node is |
1226 | 1220 |
/// already discovered. |
1227 | 1221 |
/// |
1228 | 1222 |
/// This function is called when an arc is examined but its target node is |
1229 | 1223 |
/// already discovered. |
1230 | 1224 |
void examine(const Arc& arc) {} |
1231 | 1225 |
}; |
1232 | 1226 |
#else |
1233 | 1227 |
template <typename _Digraph> |
1234 | 1228 |
struct BfsVisitor { |
1235 | 1229 |
typedef _Digraph Digraph; |
1236 | 1230 |
typedef typename Digraph::Arc Arc; |
1237 | 1231 |
typedef typename Digraph::Node Node; |
1238 | 1232 |
void start(const Node&) {} |
1239 | 1233 |
void reach(const Node&) {} |
1240 | 1234 |
void process(const Node&) {} |
1241 | 1235 |
void discover(const Arc&) {} |
1242 | 1236 |
void examine(const Arc&) {} |
1243 | 1237 |
|
1244 | 1238 |
template <typename _Visitor> |
1245 | 1239 |
struct Constraints { |
1246 | 1240 |
void constraints() { |
1247 | 1241 |
Arc arc; |
1248 | 1242 |
Node node; |
1249 | 1243 |
visitor.start(node); |
1250 | 1244 |
visitor.reach(node); |
1251 | 1245 |
visitor.process(node); |
1252 | 1246 |
visitor.discover(arc); |
1253 | 1247 |
visitor.examine(arc); |
1254 | 1248 |
} |
1255 | 1249 |
_Visitor& visitor; |
1256 | 1250 |
}; |
1257 | 1251 |
}; |
1258 | 1252 |
#endif |
1259 | 1253 |
|
1260 | 1254 |
/// \brief Default traits class of BfsVisit class. |
1261 | 1255 |
/// |
1262 | 1256 |
/// Default traits class of BfsVisit class. |
1263 | 1257 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1264 | 1258 |
template<class _Digraph> |
1265 | 1259 |
struct BfsVisitDefaultTraits { |
1266 | 1260 |
|
1267 | 1261 |
/// \brief The type of the digraph the algorithm runs on. |
1268 | 1262 |
typedef _Digraph Digraph; |
1269 | 1263 |
|
1270 | 1264 |
/// \brief The type of the map that indicates which nodes are reached. |
1271 | 1265 |
/// |
1272 | 1266 |
/// The type of the map that indicates which nodes are reached. |
1273 | 1267 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1274 | 1268 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1275 | 1269 |
|
1276 | 1270 |
/// \brief Instantiates a \ref ReachedMap. |
1277 | 1271 |
/// |
1278 | 1272 |
/// This function instantiates a \ref ReachedMap. |
1279 | 1273 |
/// \param digraph is the digraph, to which |
1280 | 1274 |
/// we would like to define the \ref ReachedMap. |
1281 | 1275 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1282 | 1276 |
return new ReachedMap(digraph); |
1283 | 1277 |
} |
1284 | 1278 |
|
1285 | 1279 |
}; |
1286 | 1280 |
|
1287 | 1281 |
/// \ingroup search |
1288 | 1282 |
/// |
1289 | 1283 |
/// \brief %BFS algorithm class with visitor interface. |
1290 | 1284 |
/// |
1291 | 1285 |
/// This class provides an efficient implementation of the %BFS algorithm |
1292 | 1286 |
/// with visitor interface. |
1293 | 1287 |
/// |
1294 | 1288 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1295 | 1289 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1296 | 1290 |
/// the member functions of the \c Visitor class on every BFS event. |
1297 | 1291 |
/// |
1298 | 1292 |
/// This interface of the BFS algorithm should be used in special cases |
1299 | 1293 |
/// when extra actions have to be performed in connection with certain |
1300 | 1294 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1301 | 1295 |
/// instead. |
1302 | 1296 |
/// |
1303 | 1297 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1304 | 1298 |
/// The default value is |
1305 | 1299 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1306 | 1300 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
1307 | 1301 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1308 | 1302 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
1309 | 1303 |
/// does not observe the BFS events. If you want to observe the BFS |
1310 | 1304 |
/// events, you should implement your own visitor class. |
1311 | 1305 |
/// \tparam _Traits Traits class to set various data types used by the |
1312 | 1306 |
/// algorithm. The default traits class is |
1313 | 1307 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1314 | 1308 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1315 | 1309 |
/// a BFS visit traits class. |
1316 | 1310 |
#ifdef DOXYGEN |
1317 | 1311 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1318 | 1312 |
#else |
1319 | 1313 |
template <typename _Digraph = ListDigraph, |
1320 | 1314 |
typename _Visitor = BfsVisitor<_Digraph>, |
1321 | 1315 |
typename _Traits = BfsVisitDefaultTraits<_Digraph> > |
1322 | 1316 |
#endif |
1323 | 1317 |
class BfsVisit { |
1324 | 1318 |
public: |
1325 | 1319 |
|
1326 |
/// \brief \ref Exception for uninitialized parameters. |
|
1327 |
/// |
|
1328 |
/// This error represents problems in the initialization |
|
1329 |
/// of the parameters of the algorithm. |
|
1330 |
class UninitializedParameter : public lemon::UninitializedParameter { |
|
1331 |
public: |
|
1332 |
virtual const char* what() const throw() |
|
1333 |
{ |
|
1334 |
return "lemon::BfsVisit::UninitializedParameter"; |
|
1335 |
} |
|
1336 |
}; |
|
1337 |
|
|
1338 | 1320 |
///The traits class. |
1339 | 1321 |
typedef _Traits Traits; |
1340 | 1322 |
|
1341 | 1323 |
///The type of the digraph the algorithm runs on. |
1342 | 1324 |
typedef typename Traits::Digraph Digraph; |
1343 | 1325 |
|
1344 | 1326 |
///The visitor type used by the algorithm. |
1345 | 1327 |
typedef _Visitor Visitor; |
1346 | 1328 |
|
1347 | 1329 |
///The type of the map that indicates which nodes are reached. |
1348 | 1330 |
typedef typename Traits::ReachedMap ReachedMap; |
1349 | 1331 |
|
1350 | 1332 |
private: |
1351 | 1333 |
|
1352 | 1334 |
typedef typename Digraph::Node Node; |
1353 | 1335 |
typedef typename Digraph::NodeIt NodeIt; |
1354 | 1336 |
typedef typename Digraph::Arc Arc; |
1355 | 1337 |
typedef typename Digraph::OutArcIt OutArcIt; |
1356 | 1338 |
|
1357 | 1339 |
//Pointer to the underlying digraph. |
1358 | 1340 |
const Digraph *_digraph; |
1359 | 1341 |
//Pointer to the visitor object. |
1360 | 1342 |
Visitor *_visitor; |
1361 | 1343 |
//Pointer to the map of reached status of the nodes. |
1362 | 1344 |
ReachedMap *_reached; |
1363 | 1345 |
//Indicates if _reached is locally allocated (true) or not. |
1364 | 1346 |
bool local_reached; |
1365 | 1347 |
|
1366 | 1348 |
std::vector<typename Digraph::Node> _list; |
1367 | 1349 |
int _list_front, _list_back; |
1368 | 1350 |
|
1369 | 1351 |
//Creates the maps if necessary. |
1370 | 1352 |
void create_maps() { |
1371 | 1353 |
if(!_reached) { |
1372 | 1354 |
local_reached = true; |
1373 | 1355 |
_reached = Traits::createReachedMap(*_digraph); |
1374 | 1356 |
} |
1375 | 1357 |
} |
1376 | 1358 |
|
1377 | 1359 |
protected: |
1378 | 1360 |
|
1379 | 1361 |
BfsVisit() {} |
1380 | 1362 |
|
1381 | 1363 |
public: |
1382 | 1364 |
|
1383 | 1365 |
typedef BfsVisit Create; |
1384 | 1366 |
|
1385 | 1367 |
/// \name Named template parameters |
1386 | 1368 |
|
1387 | 1369 |
///@{ |
1388 | 1370 |
template <class T> |
1389 | 1371 |
struct SetReachedMapTraits : public Traits { |
1390 | 1372 |
typedef T ReachedMap; |
1391 | 1373 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1392 |
|
|
1374 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
|
1375 |
return 0; // ignore warnings |
|
1393 | 1376 |
} |
1394 | 1377 |
}; |
1395 | 1378 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1396 | 1379 |
/// ReachedMap type. |
1397 | 1380 |
/// |
1398 | 1381 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1399 | 1382 |
template <class T> |
1400 | 1383 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1401 | 1384 |
SetReachedMapTraits<T> > { |
1402 | 1385 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1403 | 1386 |
}; |
1404 | 1387 |
///@} |
1405 | 1388 |
|
1406 | 1389 |
public: |
1407 | 1390 |
|
1408 | 1391 |
/// \brief Constructor. |
1409 | 1392 |
/// |
1410 | 1393 |
/// Constructor. |
1411 | 1394 |
/// |
1412 | 1395 |
/// \param digraph The digraph the algorithm runs on. |
1413 | 1396 |
/// \param visitor The visitor object of the algorithm. |
1414 | 1397 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1415 | 1398 |
: _digraph(&digraph), _visitor(&visitor), |
1416 | 1399 |
_reached(0), local_reached(false) {} |
1417 | 1400 |
|
1418 | 1401 |
/// \brief Destructor. |
1419 | 1402 |
~BfsVisit() { |
1420 | 1403 |
if(local_reached) delete _reached; |
1421 | 1404 |
} |
1422 | 1405 |
|
1423 | 1406 |
/// \brief Sets the map that indicates which nodes are reached. |
1424 | 1407 |
/// |
1425 | 1408 |
/// Sets the map that indicates which nodes are reached. |
1426 | 1409 |
/// If you don't use this function before calling \ref run(), |
1427 | 1410 |
/// it will allocate one. The destructor deallocates this |
1428 | 1411 |
/// automatically allocated map, of course. |
1429 | 1412 |
/// \return <tt> (*this) </tt> |
1430 | 1413 |
BfsVisit &reachedMap(ReachedMap &m) { |
1431 | 1414 |
if(local_reached) { |
1432 | 1415 |
delete _reached; |
1433 | 1416 |
local_reached = false; |
1434 | 1417 |
} |
1435 | 1418 |
_reached = &m; |
1436 | 1419 |
return *this; |
1437 | 1420 |
} |
1438 | 1421 |
|
1439 | 1422 |
public: |
1440 | 1423 |
|
1441 | 1424 |
/// \name Execution control |
1442 | 1425 |
/// The simplest way to execute the algorithm is to use |
1443 | 1426 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
1444 | 1427 |
/// "run()". |
1445 | 1428 |
/// \n |
1446 | 1429 |
/// If you need more control on the execution, first you must call |
1447 | 1430 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
1448 | 1431 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
1449 | 1432 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
1450 | 1433 |
/// actual path computation. |
1451 | 1434 |
|
1452 | 1435 |
/// @{ |
1453 | 1436 |
|
1454 | 1437 |
/// \brief Initializes the internal data structures. |
1455 | 1438 |
/// |
1456 | 1439 |
/// Initializes the internal data structures. |
1457 | 1440 |
void init() { |
1458 | 1441 |
create_maps(); |
1459 | 1442 |
_list.resize(countNodes(*_digraph)); |
1460 | 1443 |
_list_front = _list_back = -1; |
1461 | 1444 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1462 | 1445 |
_reached->set(u, false); |
1463 | 1446 |
} |
1464 | 1447 |
} |
1465 | 1448 |
|
1466 | 1449 |
/// \brief Adds a new source node. |
1467 | 1450 |
/// |
1468 | 1451 |
/// Adds a new source node to the set of nodes to be processed. |
1469 | 1452 |
void addSource(Node s) { |
1470 | 1453 |
if(!(*_reached)[s]) { |
1471 | 1454 |
_reached->set(s,true); |
1472 | 1455 |
_visitor->start(s); |
1473 | 1456 |
_visitor->reach(s); |
1474 | 1457 |
_list[++_list_back] = s; |
1475 | 1458 |
} |
1476 | 1459 |
} |
1477 | 1460 |
|
1478 | 1461 |
/// \brief Processes the next node. |
1479 | 1462 |
/// |
1480 | 1463 |
/// Processes the next node. |
1481 | 1464 |
/// |
1482 | 1465 |
/// \return The processed node. |
1483 | 1466 |
/// |
1484 | 1467 |
/// \pre The queue must not be empty. |
1485 | 1468 |
Node processNextNode() { |
1486 | 1469 |
Node n = _list[++_list_front]; |
1487 | 1470 |
_visitor->process(n); |
1488 | 1471 |
Arc e; |
1489 | 1472 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1490 | 1473 |
Node m = _digraph->target(e); |
1491 | 1474 |
if (!(*_reached)[m]) { |
1492 | 1475 |
_visitor->discover(e); |
1493 | 1476 |
_visitor->reach(m); |
1494 | 1477 |
_reached->set(m, true); |
1495 | 1478 |
_list[++_list_back] = m; |
1496 | 1479 |
} else { |
1497 | 1480 |
_visitor->examine(e); |
1498 | 1481 |
} |
1499 | 1482 |
} |
1500 | 1483 |
return n; |
1501 | 1484 |
} |
1502 | 1485 |
|
1503 | 1486 |
/// \brief Processes the next node. |
1504 | 1487 |
/// |
1505 | 1488 |
/// Processes the next node and checks if the given target node |
1506 | 1489 |
/// is reached. If the target node is reachable from the processed |
1507 | 1490 |
/// node, then the \c reach parameter will be set to \c true. |
1508 | 1491 |
/// |
1509 | 1492 |
/// \param target The target node. |
1510 | 1493 |
/// \retval reach Indicates if the target node is reached. |
1511 | 1494 |
/// It should be initially \c false. |
1512 | 1495 |
/// |
1513 | 1496 |
/// \return The processed node. |
1514 | 1497 |
/// |
1515 | 1498 |
/// \pre The queue must not be empty. |
1516 | 1499 |
Node processNextNode(Node target, bool& reach) { |
1517 | 1500 |
Node n = _list[++_list_front]; |
1518 | 1501 |
_visitor->process(n); |
1519 | 1502 |
Arc e; |
1520 | 1503 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1521 | 1504 |
Node m = _digraph->target(e); |
1522 | 1505 |
if (!(*_reached)[m]) { |
1523 | 1506 |
_visitor->discover(e); |
1524 | 1507 |
_visitor->reach(m); |
1525 | 1508 |
_reached->set(m, true); |
1526 | 1509 |
_list[++_list_back] = m; |
1527 | 1510 |
reach = reach || (target == m); |
1528 | 1511 |
} else { |
1529 | 1512 |
_visitor->examine(e); |
1530 | 1513 |
} |
1531 | 1514 |
} |
1532 | 1515 |
return n; |
1533 | 1516 |
} |
1534 | 1517 |
|
1535 | 1518 |
/// \brief Processes the next node. |
1536 | 1519 |
/// |
1537 | 1520 |
/// Processes the next node and checks if at least one of reached |
1538 | 1521 |
/// nodes has \c true value in the \c nm node map. If one node |
1539 | 1522 |
/// with \c true value is reachable from the processed node, then the |
1540 | 1523 |
/// \c rnode parameter will be set to the first of such nodes. |
1541 | 1524 |
/// |
1542 | 1525 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1543 | 1526 |
/// possible targets. |
1544 | 1527 |
/// \retval rnode The reached target node. |
1545 | 1528 |
/// It should be initially \c INVALID. |
1546 | 1529 |
/// |
1547 | 1530 |
/// \return The processed node. |
1548 | 1531 |
/// |
1549 | 1532 |
/// \pre The queue must not be empty. |
1550 | 1533 |
template <typename NM> |
1551 | 1534 |
Node processNextNode(const NM& nm, Node& rnode) { |
1552 | 1535 |
Node n = _list[++_list_front]; |
1553 | 1536 |
_visitor->process(n); |
1554 | 1537 |
Arc e; |
1555 | 1538 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1556 | 1539 |
Node m = _digraph->target(e); |
1557 | 1540 |
if (!(*_reached)[m]) { |
1558 | 1541 |
_visitor->discover(e); |
1559 | 1542 |
_visitor->reach(m); |
1560 | 1543 |
_reached->set(m, true); |
1561 | 1544 |
_list[++_list_back] = m; |
1562 | 1545 |
if (nm[m] && rnode == INVALID) rnode = m; |
1563 | 1546 |
} else { |
1564 | 1547 |
_visitor->examine(e); |
1565 | 1548 |
} |
1566 | 1549 |
} |
1567 | 1550 |
return n; |
1568 | 1551 |
} |
1569 | 1552 |
|
1570 | 1553 |
/// \brief The next node to be processed. |
1571 | 1554 |
/// |
1572 | 1555 |
/// Returns the next node to be processed or \c INVALID if the queue |
1573 | 1556 |
/// is empty. |
1574 | 1557 |
Node nextNode() const { |
1575 | 1558 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1576 | 1559 |
} |
1577 | 1560 |
|
1578 | 1561 |
/// \brief Returns \c false if there are nodes |
1579 | 1562 |
/// to be processed. |
1580 | 1563 |
/// |
1581 | 1564 |
/// Returns \c false if there are nodes |
1582 | 1565 |
/// to be processed in the queue. |
1583 | 1566 |
bool emptyQueue() const { return _list_front == _list_back; } |
1584 | 1567 |
|
1585 | 1568 |
/// \brief Returns the number of the nodes to be processed. |
1586 | 1569 |
/// |
1587 | 1570 |
/// Returns the number of the nodes to be processed in the queue. |
1588 | 1571 |
int queueSize() const { return _list_back - _list_front; } |
1589 | 1572 |
|
1590 | 1573 |
/// \brief Executes the algorithm. |
1591 | 1574 |
/// |
1592 | 1575 |
/// Executes the algorithm. |
1593 | 1576 |
/// |
1594 | 1577 |
/// This method runs the %BFS algorithm from the root node(s) |
1595 | 1578 |
/// in order to compute the shortest path to each node. |
1596 | 1579 |
/// |
1597 | 1580 |
/// The algorithm computes |
1598 | 1581 |
/// - the shortest path tree (forest), |
1599 | 1582 |
/// - the distance of each node from the root(s). |
1600 | 1583 |
/// |
1601 | 1584 |
/// \pre init() must be called and at least one root node should be added |
1602 | 1585 |
/// with addSource() before using this function. |
1603 | 1586 |
/// |
1604 | 1587 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1605 | 1588 |
/// \code |
1606 | 1589 |
/// while ( !b.emptyQueue() ) { |
1607 | 1590 |
/// b.processNextNode(); |
1608 | 1591 |
/// } |
1609 | 1592 |
/// \endcode |
1610 | 1593 |
void start() { |
1611 | 1594 |
while ( !emptyQueue() ) processNextNode(); |
1612 | 1595 |
} |
1613 | 1596 |
|
1614 | 1597 |
/// \brief Executes the algorithm until the given target node is reached. |
1615 | 1598 |
/// |
1616 | 1599 |
/// Executes the algorithm until the given target node is reached. |
1617 | 1600 |
/// |
1618 | 1601 |
/// This method runs the %BFS algorithm from the root node(s) |
1619 | 1602 |
/// in order to compute the shortest path to \c t. |
1620 | 1603 |
/// |
1621 | 1604 |
/// The algorithm computes |
1622 | 1605 |
/// - the shortest path to \c t, |
1623 | 1606 |
/// - the distance of \c t from the root(s). |
1624 | 1607 |
/// |
1625 | 1608 |
/// \pre init() must be called and at least one root node should be |
1626 | 1609 |
/// added with addSource() before using this function. |
1627 | 1610 |
/// |
1628 | 1611 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1629 | 1612 |
/// \code |
1630 | 1613 |
/// bool reach = false; |
1631 | 1614 |
/// while ( !b.emptyQueue() && !reach ) { |
1632 | 1615 |
/// b.processNextNode(t, reach); |
1633 | 1616 |
/// } |
1634 | 1617 |
/// \endcode |
1635 | 1618 |
void start(Node t) { |
1636 | 1619 |
bool reach = false; |
1637 | 1620 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1638 | 1621 |
} |
1639 | 1622 |
|
1640 | 1623 |
/// \brief Executes the algorithm until a condition is met. |
1641 | 1624 |
/// |
1642 | 1625 |
/// Executes the algorithm until a condition is met. |
1643 | 1626 |
/// |
1644 | 1627 |
/// This method runs the %BFS algorithm from the root node(s) in |
1645 | 1628 |
/// order to compute the shortest path to a node \c v with |
1646 | 1629 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1647 | 1630 |
/// |
1648 | 1631 |
/// \param nm must be a bool (or convertible) node map. The |
1649 | 1632 |
/// algorithm will stop when it reaches a node \c v with |
1650 | 1633 |
/// <tt>nm[v]</tt> true. |
1651 | 1634 |
/// |
1652 | 1635 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1653 | 1636 |
/// \c INVALID if no such node was found. |
1654 | 1637 |
/// |
1655 | 1638 |
/// \pre init() must be called and at least one root node should be |
1656 | 1639 |
/// added with addSource() before using this function. |
1657 | 1640 |
/// |
1658 | 1641 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
1659 | 1642 |
/// \code |
1660 | 1643 |
/// Node rnode = INVALID; |
1661 | 1644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
1662 | 1645 |
/// b.processNextNode(nm, rnode); |
1663 | 1646 |
/// } |
1664 | 1647 |
/// return rnode; |
1665 | 1648 |
/// \endcode |
1666 | 1649 |
template <typename NM> |
1667 | 1650 |
Node start(const NM &nm) { |
1668 | 1651 |
Node rnode = INVALID; |
1669 | 1652 |
while ( !emptyQueue() && rnode == INVALID ) { |
1670 | 1653 |
processNextNode(nm, rnode); |
1671 | 1654 |
} |
1672 | 1655 |
return rnode; |
1673 | 1656 |
} |
1674 | 1657 |
|
1675 | 1658 |
/// \brief Runs the algorithm from the given source node. |
1676 | 1659 |
/// |
1677 | 1660 |
/// This method runs the %BFS algorithm from node \c s |
1678 | 1661 |
/// in order to compute the shortest path to each node. |
1679 | 1662 |
/// |
1680 | 1663 |
/// The algorithm computes |
1681 | 1664 |
/// - the shortest path tree, |
1682 | 1665 |
/// - the distance of each node from the root. |
1683 | 1666 |
/// |
1684 | 1667 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1685 | 1668 |
///\code |
1686 | 1669 |
/// b.init(); |
1687 | 1670 |
/// b.addSource(s); |
1688 | 1671 |
/// b.start(); |
1689 | 1672 |
///\endcode |
1690 | 1673 |
void run(Node s) { |
1691 | 1674 |
init(); |
1692 | 1675 |
addSource(s); |
1693 | 1676 |
start(); |
1694 | 1677 |
} |
1695 | 1678 |
|
1696 | 1679 |
/// \brief Finds the shortest path between \c s and \c t. |
1697 | 1680 |
/// |
1698 | 1681 |
/// This method runs the %BFS algorithm from node \c s |
1699 | 1682 |
/// in order to compute the shortest path to node \c t |
1700 | 1683 |
/// (it stops searching when \c t is processed). |
1701 | 1684 |
/// |
1702 | 1685 |
/// \return \c true if \c t is reachable form \c s. |
1703 | 1686 |
/// |
1704 | 1687 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1705 | 1688 |
/// shortcut of the following code. |
1706 | 1689 |
///\code |
1707 | 1690 |
/// b.init(); |
1708 | 1691 |
/// b.addSource(s); |
1709 | 1692 |
/// b.start(t); |
1710 | 1693 |
///\endcode |
1711 | 1694 |
bool run(Node s,Node t) { |
1712 | 1695 |
init(); |
1713 | 1696 |
addSource(s); |
1714 | 1697 |
start(t); |
1715 | 1698 |
return reached(t); |
1716 | 1699 |
} |
1717 | 1700 |
|
1718 | 1701 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1719 | 1702 |
/// |
1720 | 1703 |
/// This method runs the %BFS algorithm in order to |
1721 | 1704 |
/// compute the shortest path to each node. |
1722 | 1705 |
/// |
1723 | 1706 |
/// The algorithm computes |
1724 | 1707 |
/// - the shortest path tree (forest), |
1725 | 1708 |
/// - the distance of each node from the root(s). |
1726 | 1709 |
/// |
1727 | 1710 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1728 | 1711 |
///\code |
1729 | 1712 |
/// b.init(); |
1730 | 1713 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1731 | 1714 |
/// if (!b.reached(n)) { |
1732 | 1715 |
/// b.addSource(n); |
1733 | 1716 |
/// b.start(); |
1734 | 1717 |
/// } |
1735 | 1718 |
/// } |
1736 | 1719 |
///\endcode |
1737 | 1720 |
void run() { |
1738 | 1721 |
init(); |
1739 | 1722 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1740 | 1723 |
if (!reached(it)) { |
1741 | 1724 |
addSource(it); |
1742 | 1725 |
start(); |
1743 | 1726 |
} |
1744 | 1727 |
} |
1745 | 1728 |
} |
1746 | 1729 |
|
1747 | 1730 |
///@} |
1748 | 1731 |
|
1749 | 1732 |
/// \name Query Functions |
1750 | 1733 |
/// The result of the %BFS algorithm can be obtained using these |
1751 | 1734 |
/// functions.\n |
1752 | 1735 |
/// Either \ref lemon::BfsVisit::run() "run()" or |
1753 | 1736 |
/// \ref lemon::BfsVisit::start() "start()" must be called before |
1754 | 1737 |
/// using them. |
1755 | 1738 |
///@{ |
1756 | 1739 |
|
1757 | 1740 |
/// \brief Checks if a node is reachable from the root(s). |
1758 | 1741 |
/// |
1759 | 1742 |
/// Returns \c true if \c v is reachable from the root(s). |
1760 | 1743 |
/// \pre Either \ref run() or \ref start() |
1761 | 1744 |
/// must be called before using this function. |
1762 | 1745 |
bool reached(Node v) { return (*_reached)[v]; } |
1763 | 1746 |
|
1764 | 1747 |
///@} |
1765 | 1748 |
|
1766 | 1749 |
}; |
1767 | 1750 |
|
1768 | 1751 |
} //END OF NAMESPACE LEMON |
1769 | 1752 |
|
1770 | 1753 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPT_HEAP_H |
24 | 24 |
#define LEMON_CONCEPT_HEAP_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
namespace concepts { |
31 | 31 |
|
32 | 32 |
/// \addtogroup concept |
33 | 33 |
/// @{ |
34 | 34 |
|
35 | 35 |
/// \brief The heap concept. |
36 | 36 |
/// |
37 | 37 |
/// Concept class describing the main interface of heaps. |
38 | 38 |
template <typename Priority, typename ItemIntMap> |
39 | 39 |
class Heap { |
40 | 40 |
public: |
41 | 41 |
|
42 | 42 |
/// Type of the items stored in the heap. |
43 | 43 |
typedef typename ItemIntMap::Key Item; |
44 | 44 |
|
45 | 45 |
/// Type of the priorities. |
46 | 46 |
typedef Priority Prio; |
47 | 47 |
|
48 | 48 |
/// \brief Type to represent the states of the items. |
49 | 49 |
/// |
50 | 50 |
/// Each item has a state associated to it. It can be "in heap", |
51 | 51 |
/// "pre heap" or "post heap". The later two are indifferent |
52 | 52 |
/// from the point of view of the heap, but may be useful for |
53 | 53 |
/// the user. |
54 | 54 |
/// |
55 | 55 |
/// The \c ItemIntMap must be initialized in such a way, that it |
56 | 56 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
57 | 57 |
enum State { |
58 | 58 |
IN_HEAP = 0, |
59 | 59 |
PRE_HEAP = -1, |
60 | 60 |
POST_HEAP = -2 |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
/// \brief The constructor. |
64 | 64 |
/// |
65 | 65 |
/// The constructor. |
66 | 66 |
/// \param map A map that assigns \c int values to keys of type |
67 | 67 |
/// \c Item. It is used internally by the heap implementations to |
68 | 68 |
/// handle the cross references. The assigned value must be |
69 | 69 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
70 | 70 |
explicit Heap(ItemIntMap &map) {} |
71 | 71 |
|
72 | 72 |
/// \brief The number of items stored in the heap. |
73 | 73 |
/// |
74 | 74 |
/// Returns the number of items stored in the heap. |
75 | 75 |
int size() const { return 0; } |
76 | 76 |
|
77 | 77 |
/// \brief Checks if the heap is empty. |
78 | 78 |
/// |
79 | 79 |
/// Returns \c true if the heap is empty. |
80 | 80 |
bool empty() const { return false; } |
81 | 81 |
|
82 | 82 |
/// \brief Makes the heap empty. |
83 | 83 |
/// |
84 | 84 |
/// Makes the heap empty. |
85 | 85 |
void clear(); |
86 | 86 |
|
87 | 87 |
/// \brief Inserts an item into the heap with the given priority. |
88 | 88 |
/// |
89 | 89 |
/// Inserts the given item into the heap with the given priority. |
90 | 90 |
/// \param i The item to insert. |
91 | 91 |
/// \param p The priority of the item. |
92 | 92 |
void push(const Item &i, const Prio &p) {} |
93 | 93 |
|
94 | 94 |
/// \brief Returns the item having minimum priority. |
95 | 95 |
/// |
96 | 96 |
/// Returns the item having minimum priority. |
97 | 97 |
/// \pre The heap must be non-empty. |
98 | 98 |
Item top() const {} |
99 | 99 |
|
100 | 100 |
/// \brief The minimum priority. |
101 | 101 |
/// |
102 | 102 |
/// Returns the minimum priority. |
103 | 103 |
/// \pre The heap must be non-empty. |
104 | 104 |
Prio prio() const {} |
105 | 105 |
|
106 | 106 |
/// \brief Removes the item having minimum priority. |
107 | 107 |
/// |
108 | 108 |
/// Removes the item having minimum priority. |
109 | 109 |
/// \pre The heap must be non-empty. |
110 | 110 |
void pop() {} |
111 | 111 |
|
112 | 112 |
/// \brief Removes an item from the heap. |
113 | 113 |
/// |
114 | 114 |
/// Removes the given item from the heap if it is already stored. |
115 | 115 |
/// \param i The item to delete. |
116 | 116 |
void erase(const Item &i) {} |
117 | 117 |
|
118 | 118 |
/// \brief The priority of an item. |
119 | 119 |
/// |
120 | 120 |
/// Returns the priority of the given item. |
121 | 121 |
/// \pre \c i must be in the heap. |
122 | 122 |
/// \param i The item. |
123 | 123 |
Prio operator[](const Item &i) const {} |
124 | 124 |
|
125 | 125 |
/// \brief Sets the priority of an item or inserts it, if it is |
126 | 126 |
/// not stored in the heap. |
127 | 127 |
/// |
128 | 128 |
/// This method sets the priority of the given item if it is |
129 | 129 |
/// already stored in the heap. |
130 | 130 |
/// Otherwise it inserts the given item with the given priority. |
131 | 131 |
/// |
132 |
/// It may throw an \ref UnderflowPriorityException. |
|
133 | 132 |
/// \param i The item. |
134 | 133 |
/// \param p The priority. |
135 | 134 |
void set(const Item &i, const Prio &p) {} |
136 | 135 |
|
137 | 136 |
/// \brief Decreases the priority of an item to the given value. |
138 | 137 |
/// |
139 | 138 |
/// Decreases the priority of an item to the given value. |
140 | 139 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
141 | 140 |
/// \param i The item. |
142 | 141 |
/// \param p The priority. |
143 | 142 |
void decrease(const Item &i, const Prio &p) {} |
144 | 143 |
|
145 | 144 |
/// \brief Increases the priority of an item to the given value. |
146 | 145 |
/// |
147 | 146 |
/// Increases the priority of an item to the given value. |
148 | 147 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
149 | 148 |
/// \param i The item. |
150 | 149 |
/// \param p The priority. |
151 | 150 |
void increase(const Item &i, const Prio &p) {} |
152 | 151 |
|
153 | 152 |
/// \brief Returns if an item is in, has already been in, or has |
154 | 153 |
/// never been in the heap. |
155 | 154 |
/// |
156 | 155 |
/// This method returns \c PRE_HEAP if the given item has never |
157 | 156 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
158 | 157 |
/// and \c POST_HEAP otherwise. |
159 | 158 |
/// In the latter case it is possible that the item will get back |
160 | 159 |
/// to the heap again. |
161 | 160 |
/// \param i The item. |
162 | 161 |
State state(const Item &i) const {} |
163 | 162 |
|
164 | 163 |
/// \brief Sets the state of an item in the heap. |
165 | 164 |
/// |
166 | 165 |
/// Sets the state of the given item in the heap. It can be used |
167 | 166 |
/// to manually clear the heap when it is important to achive the |
168 | 167 |
/// better time complexity. |
169 | 168 |
/// \param i The item. |
170 | 169 |
/// \param st The state. It should not be \c IN_HEAP. |
171 | 170 |
void state(const Item& i, State st) {} |
172 | 171 |
|
173 | 172 |
|
174 | 173 |
template <typename _Heap> |
175 | 174 |
struct Constraints { |
176 | 175 |
public: |
177 | 176 |
void constraints() { |
178 | 177 |
typedef typename _Heap::Item OwnItem; |
179 | 178 |
typedef typename _Heap::Prio OwnPrio; |
180 | 179 |
typedef typename _Heap::State OwnState; |
181 | 180 |
|
182 | 181 |
Item item; |
183 | 182 |
Prio prio; |
184 | 183 |
item=Item(); |
185 | 184 |
prio=Prio(); |
186 | 185 |
ignore_unused_variable_warning(item); |
187 | 186 |
ignore_unused_variable_warning(prio); |
188 | 187 |
|
189 | 188 |
OwnItem own_item; |
190 | 189 |
OwnPrio own_prio; |
191 | 190 |
OwnState own_state; |
192 | 191 |
own_item=Item(); |
193 | 192 |
own_prio=Prio(); |
194 | 193 |
ignore_unused_variable_warning(own_item); |
195 | 194 |
ignore_unused_variable_warning(own_prio); |
196 | 195 |
ignore_unused_variable_warning(own_state); |
197 | 196 |
|
198 | 197 |
_Heap heap1(map); |
199 | 198 |
_Heap heap2 = heap1; |
200 | 199 |
ignore_unused_variable_warning(heap1); |
201 | 200 |
ignore_unused_variable_warning(heap2); |
202 | 201 |
|
203 | 202 |
int s = heap.size(); |
204 | 203 |
ignore_unused_variable_warning(s); |
205 | 204 |
bool e = heap.empty(); |
206 | 205 |
ignore_unused_variable_warning(e); |
207 | 206 |
|
208 | 207 |
prio = heap.prio(); |
209 | 208 |
item = heap.top(); |
210 | 209 |
prio = heap[item]; |
211 | 210 |
own_prio = heap.prio(); |
212 | 211 |
own_item = heap.top(); |
213 | 212 |
own_prio = heap[own_item]; |
214 | 213 |
|
215 | 214 |
heap.push(item, prio); |
216 | 215 |
heap.push(own_item, own_prio); |
217 | 216 |
heap.pop(); |
218 | 217 |
|
219 | 218 |
heap.set(item, prio); |
220 | 219 |
heap.decrease(item, prio); |
221 | 220 |
heap.increase(item, prio); |
222 | 221 |
heap.set(own_item, own_prio); |
223 | 222 |
heap.decrease(own_item, own_prio); |
224 | 223 |
heap.increase(own_item, own_prio); |
225 | 224 |
|
226 | 225 |
heap.erase(item); |
227 | 226 |
heap.erase(own_item); |
228 | 227 |
heap.clear(); |
229 | 228 |
|
230 | 229 |
own_state = heap.state(own_item); |
231 | 230 |
heap.state(own_item, own_state); |
232 | 231 |
|
233 | 232 |
own_state = _Heap::PRE_HEAP; |
234 | 233 |
own_state = _Heap::IN_HEAP; |
235 | 234 |
own_state = _Heap::POST_HEAP; |
236 | 235 |
} |
237 | 236 |
|
238 | 237 |
_Heap& heap; |
239 | 238 |
ItemIntMap& map; |
240 | 239 |
}; |
241 | 240 |
}; |
242 | 241 |
|
243 | 242 |
/// @} |
244 | 243 |
} // namespace lemon |
245 | 244 |
} |
246 | 245 |
#endif // LEMON_CONCEPT_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/assert.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
///Default traits class of Dfs class. |
37 | 37 |
|
38 | 38 |
///Default traits class of Dfs class. |
39 | 39 |
///\tparam GR Digraph type. |
40 | 40 |
template<class GR> |
41 | 41 |
struct DfsDefaultTraits |
42 | 42 |
{ |
43 | 43 |
///The type of the digraph the algorithm runs on. |
44 | 44 |
typedef GR Digraph; |
45 | 45 |
|
46 | 46 |
///\brief The type of the map that stores the predecessor |
47 | 47 |
///arcs of the %DFS paths. |
48 | 48 |
/// |
49 | 49 |
///The type of the map that stores the predecessor |
50 | 50 |
///arcs of the %DFS paths. |
51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
52 | 52 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
53 | 53 |
///Instantiates a \ref PredMap. |
54 | 54 |
|
55 | 55 |
///This function instantiates a \ref PredMap. |
56 | 56 |
///\param g is the digraph, to which we would like to define the |
57 | 57 |
///\ref PredMap. |
58 | 58 |
static PredMap *createPredMap(const Digraph &g) |
59 | 59 |
{ |
60 | 60 |
return new PredMap(g); |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
///The type of the map that indicates which nodes are processed. |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \ref ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \ref ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
91 | 91 |
///we would like to define the \ref ReachedMap. |
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 102 |
///Instantiates a \ref DistMap. |
103 | 103 |
|
104 | 104 |
///This function instantiates a \ref DistMap. |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///\ref DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%DFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default value is \ref ListDigraph. The value of GR is not used |
124 | 124 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
125 | 125 |
///\tparam TR Traits class to set various data types used by the algorithm. |
126 | 126 |
///The default traits class is |
127 | 127 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
128 | 128 |
///See \ref DfsDefaultTraits for the documentation of |
129 | 129 |
///a Dfs traits class. |
130 | 130 |
#ifdef DOXYGEN |
131 | 131 |
template <typename GR, |
132 | 132 |
typename TR> |
133 | 133 |
#else |
134 | 134 |
template <typename GR=ListDigraph, |
135 | 135 |
typename TR=DfsDefaultTraits<GR> > |
136 | 136 |
#endif |
137 | 137 |
class Dfs { |
138 | 138 |
public: |
139 |
///\ref Exception for uninitialized parameters. |
|
140 |
|
|
141 |
///This error represents problems in the initialization of the |
|
142 |
///parameters of the algorithm. |
|
143 |
class UninitializedParameter : public lemon::UninitializedParameter { |
|
144 |
public: |
|
145 |
virtual const char* what() const throw() { |
|
146 |
return "lemon::Dfs::UninitializedParameter"; |
|
147 |
} |
|
148 |
}; |
|
149 | 139 |
|
150 | 140 |
///The type of the digraph the algorithm runs on. |
151 | 141 |
typedef typename TR::Digraph Digraph; |
152 | 142 |
|
153 | 143 |
///\brief The type of the map that stores the predecessor arcs of the |
154 | 144 |
///DFS paths. |
155 | 145 |
typedef typename TR::PredMap PredMap; |
156 | 146 |
///The type of the map that stores the distances of the nodes. |
157 | 147 |
typedef typename TR::DistMap DistMap; |
158 | 148 |
///The type of the map that indicates which nodes are reached. |
159 | 149 |
typedef typename TR::ReachedMap ReachedMap; |
160 | 150 |
///The type of the map that indicates which nodes are processed. |
161 | 151 |
typedef typename TR::ProcessedMap ProcessedMap; |
162 | 152 |
///The type of the paths. |
163 | 153 |
typedef PredMapPath<Digraph, PredMap> Path; |
164 | 154 |
|
165 | 155 |
///The traits class. |
166 | 156 |
typedef TR Traits; |
167 | 157 |
|
168 | 158 |
private: |
169 | 159 |
|
170 | 160 |
typedef typename Digraph::Node Node; |
171 | 161 |
typedef typename Digraph::NodeIt NodeIt; |
172 | 162 |
typedef typename Digraph::Arc Arc; |
173 | 163 |
typedef typename Digraph::OutArcIt OutArcIt; |
174 | 164 |
|
175 | 165 |
//Pointer to the underlying digraph. |
176 | 166 |
const Digraph *G; |
177 | 167 |
//Pointer to the map of predecessor arcs. |
178 | 168 |
PredMap *_pred; |
179 | 169 |
//Indicates if _pred is locally allocated (true) or not. |
180 | 170 |
bool local_pred; |
181 | 171 |
//Pointer to the map of distances. |
182 | 172 |
DistMap *_dist; |
183 | 173 |
//Indicates if _dist is locally allocated (true) or not. |
184 | 174 |
bool local_dist; |
185 | 175 |
//Pointer to the map of reached status of the nodes. |
186 | 176 |
ReachedMap *_reached; |
187 | 177 |
//Indicates if _reached is locally allocated (true) or not. |
188 | 178 |
bool local_reached; |
189 | 179 |
//Pointer to the map of processed status of the nodes. |
190 | 180 |
ProcessedMap *_processed; |
191 | 181 |
//Indicates if _processed is locally allocated (true) or not. |
192 | 182 |
bool local_processed; |
193 | 183 |
|
194 | 184 |
std::vector<typename Digraph::OutArcIt> _stack; |
195 | 185 |
int _stack_head; |
196 | 186 |
|
197 | 187 |
//Creates the maps if necessary. |
198 | 188 |
void create_maps() |
199 | 189 |
{ |
200 | 190 |
if(!_pred) { |
201 | 191 |
local_pred = true; |
202 | 192 |
_pred = Traits::createPredMap(*G); |
203 | 193 |
} |
204 | 194 |
if(!_dist) { |
205 | 195 |
local_dist = true; |
206 | 196 |
_dist = Traits::createDistMap(*G); |
207 | 197 |
} |
208 | 198 |
if(!_reached) { |
209 | 199 |
local_reached = true; |
210 | 200 |
_reached = Traits::createReachedMap(*G); |
211 | 201 |
} |
212 | 202 |
if(!_processed) { |
213 | 203 |
local_processed = true; |
214 | 204 |
_processed = Traits::createProcessedMap(*G); |
215 | 205 |
} |
216 | 206 |
} |
217 | 207 |
|
218 | 208 |
protected: |
219 | 209 |
|
220 | 210 |
Dfs() {} |
221 | 211 |
|
222 | 212 |
public: |
223 | 213 |
|
224 | 214 |
typedef Dfs Create; |
225 | 215 |
|
226 | 216 |
///\name Named template parameters |
227 | 217 |
|
228 | 218 |
///@{ |
229 | 219 |
|
230 | 220 |
template <class T> |
231 | 221 |
struct SetPredMapTraits : public Traits { |
232 | 222 |
typedef T PredMap; |
233 | 223 |
static PredMap *createPredMap(const Digraph &) |
234 | 224 |
{ |
235 |
|
|
225 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
226 |
return 0; // ignore warnings |
|
236 | 227 |
} |
237 | 228 |
}; |
238 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
239 | 230 |
///\ref PredMap type. |
240 | 231 |
/// |
241 | 232 |
///\ref named-templ-param "Named parameter" for setting |
242 | 233 |
///\ref PredMap type. |
243 | 234 |
template <class T> |
244 | 235 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
245 | 236 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
246 | 237 |
}; |
247 | 238 |
|
248 | 239 |
template <class T> |
249 | 240 |
struct SetDistMapTraits : public Traits { |
250 | 241 |
typedef T DistMap; |
251 | 242 |
static DistMap *createDistMap(const Digraph &) |
252 | 243 |
{ |
253 |
|
|
244 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
245 |
return 0; // ignore warnings |
|
254 | 246 |
} |
255 | 247 |
}; |
256 | 248 |
///\brief \ref named-templ-param "Named parameter" for setting |
257 | 249 |
///\ref DistMap type. |
258 | 250 |
/// |
259 | 251 |
///\ref named-templ-param "Named parameter" for setting |
260 | 252 |
///\ref DistMap type. |
261 | 253 |
template <class T> |
262 | 254 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
263 | 255 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
264 | 256 |
}; |
265 | 257 |
|
266 | 258 |
template <class T> |
267 | 259 |
struct SetReachedMapTraits : public Traits { |
268 | 260 |
typedef T ReachedMap; |
269 | 261 |
static ReachedMap *createReachedMap(const Digraph &) |
270 | 262 |
{ |
271 |
|
|
263 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
|
264 |
return 0; // ignore warnings |
|
272 | 265 |
} |
273 | 266 |
}; |
274 | 267 |
///\brief \ref named-templ-param "Named parameter" for setting |
275 | 268 |
///\ref ReachedMap type. |
276 | 269 |
/// |
277 | 270 |
///\ref named-templ-param "Named parameter" for setting |
278 | 271 |
///\ref ReachedMap type. |
279 | 272 |
template <class T> |
280 | 273 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
281 | 274 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
282 | 275 |
}; |
283 | 276 |
|
284 | 277 |
template <class T> |
285 | 278 |
struct SetProcessedMapTraits : public Traits { |
286 | 279 |
typedef T ProcessedMap; |
287 | 280 |
static ProcessedMap *createProcessedMap(const Digraph &) |
288 | 281 |
{ |
289 |
|
|
282 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
|
283 |
return 0; // ignore warnings |
|
290 | 284 |
} |
291 | 285 |
}; |
292 | 286 |
///\brief \ref named-templ-param "Named parameter" for setting |
293 | 287 |
///\ref ProcessedMap type. |
294 | 288 |
/// |
295 | 289 |
///\ref named-templ-param "Named parameter" for setting |
296 | 290 |
///\ref ProcessedMap type. |
297 | 291 |
template <class T> |
298 | 292 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
299 | 293 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
300 | 294 |
}; |
301 | 295 |
|
302 | 296 |
struct SetStandardProcessedMapTraits : public Traits { |
303 | 297 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
304 | 298 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
305 | 299 |
{ |
306 | 300 |
return new ProcessedMap(g); |
307 | 301 |
} |
308 | 302 |
}; |
309 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
310 | 304 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
311 | 305 |
/// |
312 | 306 |
///\ref named-templ-param "Named parameter" for setting |
313 | 307 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
314 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
315 | 309 |
struct SetStandardProcessedMap : |
316 | 310 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
317 | 311 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
318 | 312 |
}; |
319 | 313 |
|
320 | 314 |
///@} |
321 | 315 |
|
322 | 316 |
public: |
323 | 317 |
|
324 | 318 |
///Constructor. |
325 | 319 |
|
326 | 320 |
///Constructor. |
327 | 321 |
///\param g The digraph the algorithm runs on. |
328 | 322 |
Dfs(const Digraph &g) : |
329 | 323 |
G(&g), |
330 | 324 |
_pred(NULL), local_pred(false), |
331 | 325 |
_dist(NULL), local_dist(false), |
332 | 326 |
_reached(NULL), local_reached(false), |
333 | 327 |
_processed(NULL), local_processed(false) |
334 | 328 |
{ } |
335 | 329 |
|
336 | 330 |
///Destructor. |
337 | 331 |
~Dfs() |
338 | 332 |
{ |
339 | 333 |
if(local_pred) delete _pred; |
340 | 334 |
if(local_dist) delete _dist; |
341 | 335 |
if(local_reached) delete _reached; |
342 | 336 |
if(local_processed) delete _processed; |
343 | 337 |
} |
344 | 338 |
|
345 | 339 |
///Sets the map that stores the predecessor arcs. |
346 | 340 |
|
347 | 341 |
///Sets the map that stores the predecessor arcs. |
348 | 342 |
///If you don't use this function before calling \ref run(), |
349 | 343 |
///it will allocate one. The destructor deallocates this |
350 | 344 |
///automatically allocated map, of course. |
351 | 345 |
///\return <tt> (*this) </tt> |
352 | 346 |
Dfs &predMap(PredMap &m) |
353 | 347 |
{ |
354 | 348 |
if(local_pred) { |
355 | 349 |
delete _pred; |
356 | 350 |
local_pred=false; |
357 | 351 |
} |
358 | 352 |
_pred = &m; |
359 | 353 |
return *this; |
360 | 354 |
} |
361 | 355 |
|
362 | 356 |
///Sets the map that indicates which nodes are reached. |
363 | 357 |
|
364 | 358 |
///Sets the map that indicates which nodes are reached. |
365 | 359 |
///If you don't use this function before calling \ref run(), |
366 | 360 |
///it will allocate one. The destructor deallocates this |
367 | 361 |
///automatically allocated map, of course. |
368 | 362 |
///\return <tt> (*this) </tt> |
369 | 363 |
Dfs &reachedMap(ReachedMap &m) |
370 | 364 |
{ |
371 | 365 |
if(local_reached) { |
372 | 366 |
delete _reached; |
373 | 367 |
local_reached=false; |
374 | 368 |
} |
375 | 369 |
_reached = &m; |
376 | 370 |
return *this; |
377 | 371 |
} |
378 | 372 |
|
379 | 373 |
///Sets the map that indicates which nodes are processed. |
380 | 374 |
|
381 | 375 |
///Sets the map that indicates which nodes are processed. |
382 | 376 |
///If you don't use this function before calling \ref run(), |
383 | 377 |
///it will allocate one. The destructor deallocates this |
384 | 378 |
///automatically allocated map, of course. |
385 | 379 |
///\return <tt> (*this) </tt> |
386 | 380 |
Dfs &processedMap(ProcessedMap &m) |
387 | 381 |
{ |
388 | 382 |
if(local_processed) { |
389 | 383 |
delete _processed; |
390 | 384 |
local_processed=false; |
391 | 385 |
} |
392 | 386 |
_processed = &m; |
393 | 387 |
return *this; |
394 | 388 |
} |
395 | 389 |
|
396 | 390 |
///Sets the map that stores the distances of the nodes. |
397 | 391 |
|
398 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
399 | 393 |
///the algorithm. |
400 | 394 |
///If you don't use this function before calling \ref run(), |
401 | 395 |
///it will allocate one. The destructor deallocates this |
402 | 396 |
///automatically allocated map, of course. |
403 | 397 |
///\return <tt> (*this) </tt> |
404 | 398 |
Dfs &distMap(DistMap &m) |
405 | 399 |
{ |
406 | 400 |
if(local_dist) { |
407 | 401 |
delete _dist; |
408 | 402 |
local_dist=false; |
409 | 403 |
} |
410 | 404 |
_dist = &m; |
411 | 405 |
return *this; |
412 | 406 |
} |
413 | 407 |
|
414 | 408 |
public: |
415 | 409 |
|
416 | 410 |
///\name Execution control |
417 | 411 |
///The simplest way to execute the algorithm is to use |
418 | 412 |
///one of the member functions called \ref lemon::Dfs::run() "run()". |
419 | 413 |
///\n |
420 | 414 |
///If you need more control on the execution, first you must call |
421 | 415 |
///\ref lemon::Dfs::init() "init()", then you can add a source node |
422 | 416 |
///with \ref lemon::Dfs::addSource() "addSource()". |
423 | 417 |
///Finally \ref lemon::Dfs::start() "start()" will perform the |
424 | 418 |
///actual path computation. |
425 | 419 |
|
426 | 420 |
///@{ |
427 | 421 |
|
428 | 422 |
///Initializes the internal data structures. |
429 | 423 |
|
430 | 424 |
///Initializes the internal data structures. |
431 | 425 |
/// |
432 | 426 |
void init() |
433 | 427 |
{ |
434 | 428 |
create_maps(); |
435 | 429 |
_stack.resize(countNodes(*G)); |
436 | 430 |
_stack_head=-1; |
437 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
438 | 432 |
_pred->set(u,INVALID); |
439 | 433 |
_reached->set(u,false); |
440 | 434 |
_processed->set(u,false); |
441 | 435 |
} |
442 | 436 |
} |
443 | 437 |
|
444 | 438 |
///Adds a new source node. |
445 | 439 |
|
446 | 440 |
///Adds a new source node to the set of nodes to be processed. |
447 | 441 |
/// |
448 | 442 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
449 | 443 |
///false results.) |
450 | 444 |
/// |
451 | 445 |
///\warning Distances will be wrong (or at least strange) in case of |
452 | 446 |
///multiple sources. |
453 | 447 |
void addSource(Node s) |
454 | 448 |
{ |
455 | 449 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
456 | 450 |
if(!(*_reached)[s]) |
457 | 451 |
{ |
458 | 452 |
_reached->set(s,true); |
459 | 453 |
_pred->set(s,INVALID); |
460 | 454 |
OutArcIt e(*G,s); |
461 | 455 |
if(e!=INVALID) { |
462 | 456 |
_stack[++_stack_head]=e; |
463 | 457 |
_dist->set(s,_stack_head); |
464 | 458 |
} |
465 | 459 |
else { |
466 | 460 |
_processed->set(s,true); |
467 | 461 |
_dist->set(s,0); |
468 | 462 |
} |
469 | 463 |
} |
470 | 464 |
} |
471 | 465 |
|
472 | 466 |
///Processes the next arc. |
473 | 467 |
|
474 | 468 |
///Processes the next arc. |
475 | 469 |
/// |
476 | 470 |
///\return The processed arc. |
477 | 471 |
/// |
478 | 472 |
///\pre The stack must not be empty. |
479 | 473 |
Arc processNextArc() |
480 | 474 |
{ |
481 | 475 |
Node m; |
482 | 476 |
Arc e=_stack[_stack_head]; |
483 | 477 |
if(!(*_reached)[m=G->target(e)]) { |
484 | 478 |
_pred->set(m,e); |
485 | 479 |
_reached->set(m,true); |
486 | 480 |
++_stack_head; |
487 | 481 |
_stack[_stack_head] = OutArcIt(*G, m); |
488 | 482 |
_dist->set(m,_stack_head); |
489 | 483 |
} |
490 | 484 |
else { |
491 | 485 |
m=G->source(e); |
492 | 486 |
++_stack[_stack_head]; |
493 | 487 |
} |
494 | 488 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
495 | 489 |
_processed->set(m,true); |
496 | 490 |
--_stack_head; |
497 | 491 |
if(_stack_head>=0) { |
498 | 492 |
m=G->source(_stack[_stack_head]); |
499 | 493 |
++_stack[_stack_head]; |
500 | 494 |
} |
501 | 495 |
} |
502 | 496 |
return e; |
503 | 497 |
} |
504 | 498 |
|
505 | 499 |
///Next arc to be processed. |
506 | 500 |
|
507 | 501 |
///Next arc to be processed. |
508 | 502 |
/// |
509 | 503 |
///\return The next arc to be processed or \c INVALID if the stack |
510 | 504 |
///is empty. |
511 | 505 |
OutArcIt nextArc() const |
512 | 506 |
{ |
513 | 507 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
514 | 508 |
} |
515 | 509 |
|
516 | 510 |
///\brief Returns \c false if there are nodes |
517 | 511 |
///to be processed. |
518 | 512 |
/// |
519 | 513 |
///Returns \c false if there are nodes |
520 | 514 |
///to be processed in the queue (stack). |
521 | 515 |
bool emptyQueue() const { return _stack_head<0; } |
522 | 516 |
|
523 | 517 |
///Returns the number of the nodes to be processed. |
524 | 518 |
|
525 | 519 |
///Returns the number of the nodes to be processed in the queue (stack). |
526 | 520 |
int queueSize() const { return _stack_head+1; } |
527 | 521 |
|
528 | 522 |
///Executes the algorithm. |
529 | 523 |
|
530 | 524 |
///Executes the algorithm. |
531 | 525 |
/// |
532 | 526 |
///This method runs the %DFS algorithm from the root node |
533 | 527 |
///in order to compute the DFS path to each node. |
534 | 528 |
/// |
535 | 529 |
/// The algorithm computes |
536 | 530 |
///- the %DFS tree, |
537 | 531 |
///- the distance of each node from the root in the %DFS tree. |
538 | 532 |
/// |
539 | 533 |
///\pre init() must be called and a root node should be |
540 | 534 |
///added with addSource() before using this function. |
541 | 535 |
/// |
542 | 536 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
543 | 537 |
///\code |
544 | 538 |
/// while ( !d.emptyQueue() ) { |
545 | 539 |
/// d.processNextArc(); |
546 | 540 |
/// } |
547 | 541 |
///\endcode |
548 | 542 |
void start() |
549 | 543 |
{ |
550 | 544 |
while ( !emptyQueue() ) processNextArc(); |
551 | 545 |
} |
552 | 546 |
|
553 | 547 |
///Executes the algorithm until the given target node is reached. |
554 | 548 |
|
555 | 549 |
///Executes the algorithm until the given target node is reached. |
556 | 550 |
/// |
557 | 551 |
///This method runs the %DFS algorithm from the root node |
558 | 552 |
///in order to compute the DFS path to \c t. |
559 | 553 |
/// |
560 | 554 |
///The algorithm computes |
561 | 555 |
///- the %DFS path to \c t, |
562 | 556 |
///- the distance of \c t from the root in the %DFS tree. |
563 | 557 |
/// |
564 | 558 |
///\pre init() must be called and a root node should be |
565 | 559 |
///added with addSource() before using this function. |
566 | 560 |
void start(Node t) |
567 | 561 |
{ |
568 | 562 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
569 | 563 |
processNextArc(); |
570 | 564 |
} |
571 | 565 |
|
572 | 566 |
///Executes the algorithm until a condition is met. |
573 | 567 |
|
574 | 568 |
///Executes the algorithm until a condition is met. |
575 | 569 |
/// |
576 | 570 |
///This method runs the %DFS algorithm from the root node |
577 | 571 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
578 | 572 |
/// |
579 | 573 |
///\param am A \c bool (or convertible) arc map. The algorithm |
580 | 574 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
581 | 575 |
/// |
582 | 576 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
583 | 577 |
///\c INVALID if no such arc was found. |
584 | 578 |
/// |
585 | 579 |
///\pre init() must be called and a root node should be |
586 | 580 |
///added with addSource() before using this function. |
587 | 581 |
/// |
588 | 582 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
589 | 583 |
///not a node map. |
590 | 584 |
template<class ArcBoolMap> |
591 | 585 |
Arc start(const ArcBoolMap &am) |
592 | 586 |
{ |
593 | 587 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
594 | 588 |
processNextArc(); |
595 | 589 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
596 | 590 |
} |
597 | 591 |
|
598 | 592 |
///Runs the algorithm from the given source node. |
599 | 593 |
|
600 | 594 |
///This method runs the %DFS algorithm from node \c s |
601 | 595 |
///in order to compute the DFS path to each node. |
602 | 596 |
/// |
603 | 597 |
///The algorithm computes |
604 | 598 |
///- the %DFS tree, |
605 | 599 |
///- the distance of each node from the root in the %DFS tree. |
606 | 600 |
/// |
607 | 601 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
608 | 602 |
///\code |
609 | 603 |
/// d.init(); |
610 | 604 |
/// d.addSource(s); |
611 | 605 |
/// d.start(); |
612 | 606 |
///\endcode |
613 | 607 |
void run(Node s) { |
614 | 608 |
init(); |
615 | 609 |
addSource(s); |
616 | 610 |
start(); |
617 | 611 |
} |
618 | 612 |
|
619 | 613 |
///Finds the %DFS path between \c s and \c t. |
620 | 614 |
|
621 | 615 |
///This method runs the %DFS algorithm from node \c s |
622 | 616 |
///in order to compute the DFS path to node \c t |
623 | 617 |
///(it stops searching when \c t is processed) |
624 | 618 |
/// |
625 | 619 |
///\return \c true if \c t is reachable form \c s. |
626 | 620 |
/// |
627 | 621 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
628 | 622 |
///just a shortcut of the following code. |
629 | 623 |
///\code |
630 | 624 |
/// d.init(); |
631 | 625 |
/// d.addSource(s); |
632 | 626 |
/// d.start(t); |
633 | 627 |
///\endcode |
634 | 628 |
bool run(Node s,Node t) { |
635 | 629 |
init(); |
636 | 630 |
addSource(s); |
637 | 631 |
start(t); |
638 | 632 |
return reached(t); |
639 | 633 |
} |
640 | 634 |
|
641 | 635 |
///Runs the algorithm to visit all nodes in the digraph. |
642 | 636 |
|
643 | 637 |
///This method runs the %DFS algorithm in order to compute the |
644 | 638 |
///%DFS path to each node. |
645 | 639 |
/// |
646 | 640 |
///The algorithm computes |
647 | 641 |
///- the %DFS tree, |
648 | 642 |
///- the distance of each node from the root in the %DFS tree. |
649 | 643 |
/// |
650 | 644 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
651 | 645 |
///\code |
652 | 646 |
/// d.init(); |
653 | 647 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
654 | 648 |
/// if (!d.reached(n)) { |
655 | 649 |
/// d.addSource(n); |
656 | 650 |
/// d.start(); |
657 | 651 |
/// } |
658 | 652 |
/// } |
659 | 653 |
///\endcode |
660 | 654 |
void run() { |
661 | 655 |
init(); |
662 | 656 |
for (NodeIt it(*G); it != INVALID; ++it) { |
663 | 657 |
if (!reached(it)) { |
664 | 658 |
addSource(it); |
665 | 659 |
start(); |
666 | 660 |
} |
667 | 661 |
} |
668 | 662 |
} |
669 | 663 |
|
670 | 664 |
///@} |
671 | 665 |
|
672 | 666 |
///\name Query Functions |
673 | 667 |
///The result of the %DFS algorithm can be obtained using these |
674 | 668 |
///functions.\n |
675 | 669 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
676 | 670 |
///"start()" must be called before using them. |
677 | 671 |
|
678 | 672 |
///@{ |
679 | 673 |
|
680 | 674 |
///The DFS path to a node. |
681 | 675 |
|
682 | 676 |
///Returns the DFS path to a node. |
683 | 677 |
/// |
684 | 678 |
///\warning \c t should be reachable from the root. |
685 | 679 |
/// |
686 | 680 |
///\pre Either \ref run() or \ref start() must be called before |
687 | 681 |
///using this function. |
688 | 682 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
689 | 683 |
|
690 | 684 |
///The distance of a node from the root. |
691 | 685 |
|
692 | 686 |
///Returns the distance of a node from the root. |
693 | 687 |
/// |
694 | 688 |
///\warning If node \c v is not reachable from the root, then |
695 | 689 |
///the return value of this function is undefined. |
696 | 690 |
/// |
697 | 691 |
///\pre Either \ref run() or \ref start() must be called before |
698 | 692 |
///using this function. |
699 | 693 |
int dist(Node v) const { return (*_dist)[v]; } |
700 | 694 |
|
701 | 695 |
///Returns the 'previous arc' of the %DFS tree for a node. |
702 | 696 |
|
703 | 697 |
///This function returns the 'previous arc' of the %DFS tree for the |
704 | 698 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
705 | 699 |
///root to \c v. It is \c INVALID |
706 | 700 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
707 | 701 |
/// |
708 | 702 |
///The %DFS tree used here is equal to the %DFS tree used in |
709 | 703 |
///\ref predNode(). |
710 | 704 |
/// |
711 | 705 |
///\pre Either \ref run() or \ref start() must be called before using |
712 | 706 |
///this function. |
713 | 707 |
Arc predArc(Node v) const { return (*_pred)[v];} |
714 | 708 |
|
715 | 709 |
///Returns the 'previous node' of the %DFS tree. |
716 | 710 |
|
717 | 711 |
///This function returns the 'previous node' of the %DFS |
718 | 712 |
///tree for the node \c v, i.e. it returns the last but one node |
719 | 713 |
///from a %DFS path from the root to \c v. It is \c INVALID |
720 | 714 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
721 | 715 |
/// |
722 | 716 |
///The %DFS tree used here is equal to the %DFS tree used in |
723 | 717 |
///\ref predArc(). |
724 | 718 |
/// |
725 | 719 |
///\pre Either \ref run() or \ref start() must be called before |
726 | 720 |
///using this function. |
727 | 721 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
728 | 722 |
G->source((*_pred)[v]); } |
729 | 723 |
|
730 | 724 |
///\brief Returns a const reference to the node map that stores the |
731 | 725 |
///distances of the nodes. |
732 | 726 |
/// |
733 | 727 |
///Returns a const reference to the node map that stores the |
734 | 728 |
///distances of the nodes calculated by the algorithm. |
735 | 729 |
/// |
736 | 730 |
///\pre Either \ref run() or \ref init() |
737 | 731 |
///must be called before using this function. |
738 | 732 |
const DistMap &distMap() const { return *_dist;} |
739 | 733 |
|
740 | 734 |
///\brief Returns a const reference to the node map that stores the |
741 | 735 |
///predecessor arcs. |
742 | 736 |
/// |
743 | 737 |
///Returns a const reference to the node map that stores the predecessor |
744 | 738 |
///arcs, which form the DFS tree. |
745 | 739 |
/// |
746 | 740 |
///\pre Either \ref run() or \ref init() |
747 | 741 |
///must be called before using this function. |
748 | 742 |
const PredMap &predMap() const { return *_pred;} |
749 | 743 |
|
750 | 744 |
///Checks if a node is reachable from the root(s). |
751 | 745 |
|
752 | 746 |
///Returns \c true if \c v is reachable from the root(s). |
753 | 747 |
///\pre Either \ref run() or \ref start() |
754 | 748 |
///must be called before using this function. |
755 | 749 |
bool reached(Node v) const { return (*_reached)[v]; } |
756 | 750 |
|
757 | 751 |
///@} |
758 | 752 |
}; |
759 | 753 |
|
760 | 754 |
///Default traits class of dfs() function. |
761 | 755 |
|
762 | 756 |
///Default traits class of dfs() function. |
763 | 757 |
///\tparam GR Digraph type. |
764 | 758 |
template<class GR> |
765 | 759 |
struct DfsWizardDefaultTraits |
766 | 760 |
{ |
767 | 761 |
///The type of the digraph the algorithm runs on. |
768 | 762 |
typedef GR Digraph; |
769 | 763 |
|
770 | 764 |
///\brief The type of the map that stores the predecessor |
771 | 765 |
///arcs of the %DFS paths. |
772 | 766 |
/// |
773 | 767 |
///The type of the map that stores the predecessor |
774 | 768 |
///arcs of the %DFS paths. |
775 | 769 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
776 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
777 | 771 |
///Instantiates a \ref PredMap. |
778 | 772 |
|
779 | 773 |
///This function instantiates a \ref PredMap. |
780 | 774 |
///\param g is the digraph, to which we would like to define the |
781 | 775 |
///\ref PredMap. |
782 | 776 |
static PredMap *createPredMap(const Digraph &g) |
783 | 777 |
{ |
784 | 778 |
return new PredMap(g); |
785 | 779 |
} |
786 | 780 |
|
787 | 781 |
///The type of the map that indicates which nodes are processed. |
788 | 782 |
|
789 | 783 |
///The type of the map that indicates which nodes are processed. |
790 | 784 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
791 | 785 |
///By default it is a NullMap. |
792 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
793 | 787 |
///Instantiates a \ref ProcessedMap. |
794 | 788 |
|
795 | 789 |
///This function instantiates a \ref ProcessedMap. |
796 | 790 |
///\param g is the digraph, to which |
797 | 791 |
///we would like to define the \ref ProcessedMap. |
798 | 792 |
#ifdef DOXYGEN |
799 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
800 | 794 |
#else |
801 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
802 | 796 |
#endif |
803 | 797 |
{ |
804 | 798 |
return new ProcessedMap(); |
805 | 799 |
} |
806 | 800 |
|
807 | 801 |
///The type of the map that indicates which nodes are reached. |
808 | 802 |
|
809 | 803 |
///The type of the map that indicates which nodes are reached. |
810 | 804 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
811 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
812 | 806 |
///Instantiates a \ref ReachedMap. |
813 | 807 |
|
814 | 808 |
///This function instantiates a \ref ReachedMap. |
815 | 809 |
///\param g is the digraph, to which |
816 | 810 |
///we would like to define the \ref ReachedMap. |
817 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
818 | 812 |
{ |
819 | 813 |
return new ReachedMap(g); |
820 | 814 |
} |
821 | 815 |
|
822 | 816 |
///The type of the map that stores the distances of the nodes. |
823 | 817 |
|
824 | 818 |
///The type of the map that stores the distances of the nodes. |
825 | 819 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
826 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
827 | 821 |
///Instantiates a \ref DistMap. |
828 | 822 |
|
829 | 823 |
///This function instantiates a \ref DistMap. |
830 | 824 |
///\param g is the digraph, to which we would like to define |
831 | 825 |
///the \ref DistMap |
832 | 826 |
static DistMap *createDistMap(const Digraph &g) |
833 | 827 |
{ |
834 | 828 |
return new DistMap(g); |
835 | 829 |
} |
836 | 830 |
|
837 | 831 |
///The type of the DFS paths. |
838 | 832 |
|
839 | 833 |
///The type of the DFS paths. |
840 | 834 |
///It must meet the \ref concepts::Path "Path" concept. |
841 | 835 |
typedef lemon::Path<Digraph> Path; |
842 | 836 |
}; |
843 | 837 |
|
844 | 838 |
/// Default traits class used by \ref DfsWizard |
845 | 839 |
|
846 | 840 |
/// To make it easier to use Dfs algorithm |
847 | 841 |
/// we have created a wizard class. |
848 | 842 |
/// This \ref DfsWizard class needs default traits, |
849 | 843 |
/// as well as the \ref Dfs class. |
850 | 844 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
851 | 845 |
/// \ref DfsWizard class. |
852 | 846 |
template<class GR> |
853 | 847 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
854 | 848 |
{ |
855 | 849 |
|
856 | 850 |
typedef DfsWizardDefaultTraits<GR> Base; |
857 | 851 |
protected: |
858 | 852 |
//The type of the nodes in the digraph. |
859 | 853 |
typedef typename Base::Digraph::Node Node; |
860 | 854 |
|
861 | 855 |
//Pointer to the digraph the algorithm runs on. |
862 | 856 |
void *_g; |
863 | 857 |
//Pointer to the map of reached nodes. |
864 | 858 |
void *_reached; |
865 | 859 |
//Pointer to the map of processed nodes. |
866 | 860 |
void *_processed; |
867 | 861 |
//Pointer to the map of predecessors arcs. |
868 | 862 |
void *_pred; |
869 | 863 |
//Pointer to the map of distances. |
870 | 864 |
void *_dist; |
871 | 865 |
//Pointer to the DFS path to the target node. |
872 | 866 |
void *_path; |
873 | 867 |
//Pointer to the distance of the target node. |
874 | 868 |
int *_di; |
875 | 869 |
|
876 | 870 |
public: |
877 | 871 |
/// Constructor. |
878 | 872 |
|
879 | 873 |
/// This constructor does not require parameters, therefore it initiates |
880 | 874 |
/// all of the attributes to \c 0. |
881 | 875 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
882 | 876 |
_dist(0), _path(0), _di(0) {} |
883 | 877 |
|
884 | 878 |
/// Constructor. |
885 | 879 |
|
886 | 880 |
/// This constructor requires one parameter, |
887 | 881 |
/// others are initiated to \c 0. |
888 | 882 |
/// \param g The digraph the algorithm runs on. |
889 | 883 |
DfsWizardBase(const GR &g) : |
890 | 884 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
891 | 885 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
892 | 886 |
|
893 | 887 |
}; |
894 | 888 |
|
895 | 889 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
896 | 890 |
|
897 | 891 |
/// This auxiliary class is created to implement the |
898 | 892 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
899 | 893 |
/// It does not have own \ref run() method, it uses the functions |
900 | 894 |
/// and features of the plain \ref Dfs. |
901 | 895 |
/// |
902 | 896 |
/// This class should only be used through the \ref dfs() function, |
903 | 897 |
/// which makes it easier to use the algorithm. |
904 | 898 |
template<class TR> |
905 | 899 |
class DfsWizard : public TR |
906 | 900 |
{ |
907 | 901 |
typedef TR Base; |
908 | 902 |
|
909 | 903 |
///The type of the digraph the algorithm runs on. |
910 | 904 |
typedef typename TR::Digraph Digraph; |
911 | 905 |
|
912 | 906 |
typedef typename Digraph::Node Node; |
913 | 907 |
typedef typename Digraph::NodeIt NodeIt; |
914 | 908 |
typedef typename Digraph::Arc Arc; |
915 | 909 |
typedef typename Digraph::OutArcIt OutArcIt; |
916 | 910 |
|
917 | 911 |
///\brief The type of the map that stores the predecessor |
918 | 912 |
///arcs of the DFS paths. |
919 | 913 |
typedef typename TR::PredMap PredMap; |
920 | 914 |
///\brief The type of the map that stores the distances of the nodes. |
921 | 915 |
typedef typename TR::DistMap DistMap; |
922 | 916 |
///\brief The type of the map that indicates which nodes are reached. |
923 | 917 |
typedef typename TR::ReachedMap ReachedMap; |
924 | 918 |
///\brief The type of the map that indicates which nodes are processed. |
925 | 919 |
typedef typename TR::ProcessedMap ProcessedMap; |
926 | 920 |
///The type of the DFS paths |
927 | 921 |
typedef typename TR::Path Path; |
928 | 922 |
|
929 | 923 |
public: |
930 | 924 |
|
931 | 925 |
/// Constructor. |
932 | 926 |
DfsWizard() : TR() {} |
933 | 927 |
|
934 | 928 |
/// Constructor that requires parameters. |
935 | 929 |
|
936 | 930 |
/// Constructor that requires parameters. |
937 | 931 |
/// These parameters will be the default values for the traits class. |
938 | 932 |
/// \param g The digraph the algorithm runs on. |
939 | 933 |
DfsWizard(const Digraph &g) : |
940 | 934 |
TR(g) {} |
941 | 935 |
|
942 | 936 |
///Copy constructor |
943 | 937 |
DfsWizard(const TR &b) : TR(b) {} |
944 | 938 |
|
945 | 939 |
~DfsWizard() {} |
946 | 940 |
|
947 | 941 |
///Runs DFS algorithm from the given source node. |
948 | 942 |
|
949 | 943 |
///This method runs DFS algorithm from node \c s |
950 | 944 |
///in order to compute the DFS path to each node. |
951 | 945 |
void run(Node s) |
952 | 946 |
{ |
953 | 947 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
954 | 948 |
if (Base::_pred) |
955 | 949 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
956 | 950 |
if (Base::_dist) |
957 | 951 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
958 | 952 |
if (Base::_reached) |
959 | 953 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
960 | 954 |
if (Base::_processed) |
961 | 955 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
962 | 956 |
if (s!=INVALID) |
963 | 957 |
alg.run(s); |
964 | 958 |
else |
965 | 959 |
alg.run(); |
966 | 960 |
} |
967 | 961 |
|
968 | 962 |
///Finds the DFS path between \c s and \c t. |
969 | 963 |
|
970 | 964 |
///This method runs DFS algorithm from node \c s |
971 | 965 |
///in order to compute the DFS path to node \c t |
972 | 966 |
///(it stops searching when \c t is processed). |
973 | 967 |
/// |
974 | 968 |
///\return \c true if \c t is reachable form \c s. |
975 | 969 |
bool run(Node s, Node t) |
976 | 970 |
{ |
977 |
if (s==INVALID || t==INVALID) throw UninitializedParameter(); |
|
978 | 971 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
979 | 972 |
if (Base::_pred) |
980 | 973 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
981 | 974 |
if (Base::_dist) |
982 | 975 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
983 | 976 |
if (Base::_reached) |
984 | 977 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
985 | 978 |
if (Base::_processed) |
986 | 979 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
987 | 980 |
alg.run(s,t); |
988 | 981 |
if (Base::_path) |
989 | 982 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
990 | 983 |
if (Base::_di) |
991 | 984 |
*Base::_di = alg.dist(t); |
992 | 985 |
return alg.reached(t); |
993 | 986 |
} |
994 | 987 |
|
995 | 988 |
///Runs DFS algorithm to visit all nodes in the digraph. |
996 | 989 |
|
997 | 990 |
///This method runs DFS algorithm in order to compute |
998 | 991 |
///the DFS path to each node. |
999 | 992 |
void run() |
1000 | 993 |
{ |
1001 | 994 |
run(INVALID); |
1002 | 995 |
} |
1003 | 996 |
|
1004 | 997 |
template<class T> |
1005 | 998 |
struct SetPredMapBase : public Base { |
1006 | 999 |
typedef T PredMap; |
1007 | 1000 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1008 | 1001 |
SetPredMapBase(const TR &b) : TR(b) {} |
1009 | 1002 |
}; |
1010 | 1003 |
///\brief \ref named-func-param "Named parameter" |
1011 | 1004 |
///for setting \ref PredMap object. |
1012 | 1005 |
/// |
1013 | 1006 |
///\ref named-func-param "Named parameter" |
1014 | 1007 |
///for setting \ref PredMap object. |
1015 | 1008 |
template<class T> |
1016 | 1009 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1017 | 1010 |
{ |
1018 | 1011 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1019 | 1012 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1020 | 1013 |
} |
1021 | 1014 |
|
1022 | 1015 |
template<class T> |
1023 | 1016 |
struct SetReachedMapBase : public Base { |
1024 | 1017 |
typedef T ReachedMap; |
1025 | 1018 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1026 | 1019 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1027 | 1020 |
}; |
1028 | 1021 |
///\brief \ref named-func-param "Named parameter" |
1029 | 1022 |
///for setting \ref ReachedMap object. |
1030 | 1023 |
/// |
1031 | 1024 |
/// \ref named-func-param "Named parameter" |
1032 | 1025 |
///for setting \ref ReachedMap object. |
1033 | 1026 |
template<class T> |
1034 | 1027 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1035 | 1028 |
{ |
1036 | 1029 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1037 | 1030 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1038 | 1031 |
} |
1039 | 1032 |
|
1040 | 1033 |
template<class T> |
1041 | 1034 |
struct SetDistMapBase : public Base { |
1042 | 1035 |
typedef T DistMap; |
1043 | 1036 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1044 | 1037 |
SetDistMapBase(const TR &b) : TR(b) {} |
1045 | 1038 |
}; |
1046 | 1039 |
///\brief \ref named-func-param "Named parameter" |
1047 | 1040 |
///for setting \ref DistMap object. |
1048 | 1041 |
/// |
1049 | 1042 |
/// \ref named-func-param "Named parameter" |
1050 | 1043 |
///for setting \ref DistMap object. |
1051 | 1044 |
template<class T> |
1052 | 1045 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1053 | 1046 |
{ |
1054 | 1047 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1055 | 1048 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1056 | 1049 |
} |
1057 | 1050 |
|
1058 | 1051 |
template<class T> |
1059 | 1052 |
struct SetProcessedMapBase : public Base { |
1060 | 1053 |
typedef T ProcessedMap; |
1061 | 1054 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1062 | 1055 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1063 | 1056 |
}; |
1064 | 1057 |
///\brief \ref named-func-param "Named parameter" |
1065 | 1058 |
///for setting \ref ProcessedMap object. |
1066 | 1059 |
/// |
1067 | 1060 |
/// \ref named-func-param "Named parameter" |
1068 | 1061 |
///for setting \ref ProcessedMap object. |
1069 | 1062 |
template<class T> |
1070 | 1063 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1071 | 1064 |
{ |
1072 | 1065 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1073 | 1066 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1074 | 1067 |
} |
1075 | 1068 |
|
1076 | 1069 |
template<class T> |
1077 | 1070 |
struct SetPathBase : public Base { |
1078 | 1071 |
typedef T Path; |
1079 | 1072 |
SetPathBase(const TR &b) : TR(b) {} |
1080 | 1073 |
}; |
1081 | 1074 |
///\brief \ref named-func-param "Named parameter" |
1082 | 1075 |
///for getting the DFS path to the target node. |
1083 | 1076 |
/// |
1084 | 1077 |
///\ref named-func-param "Named parameter" |
1085 | 1078 |
///for getting the DFS path to the target node. |
1086 | 1079 |
template<class T> |
1087 | 1080 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1088 | 1081 |
{ |
1089 | 1082 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1090 | 1083 |
return DfsWizard<SetPathBase<T> >(*this); |
1091 | 1084 |
} |
1092 | 1085 |
|
1093 | 1086 |
///\brief \ref named-func-param "Named parameter" |
1094 | 1087 |
///for getting the distance of the target node. |
1095 | 1088 |
/// |
1096 | 1089 |
///\ref named-func-param "Named parameter" |
1097 | 1090 |
///for getting the distance of the target node. |
1098 | 1091 |
DfsWizard dist(const int &d) |
1099 | 1092 |
{ |
1100 | 1093 |
Base::_di=const_cast<int*>(&d); |
1101 | 1094 |
return *this; |
1102 | 1095 |
} |
1103 | 1096 |
|
1104 | 1097 |
}; |
1105 | 1098 |
|
1106 | 1099 |
///Function-type interface for DFS algorithm. |
1107 | 1100 |
|
1108 | 1101 |
///\ingroup search |
1109 | 1102 |
///Function-type interface for DFS algorithm. |
1110 | 1103 |
/// |
1111 | 1104 |
///This function also has several \ref named-func-param "named parameters", |
1112 | 1105 |
///they are declared as the members of class \ref DfsWizard. |
1113 | 1106 |
///The following examples show how to use these parameters. |
1114 | 1107 |
///\code |
1115 | 1108 |
/// // Compute the DFS tree |
1116 | 1109 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1117 | 1110 |
/// |
1118 | 1111 |
/// // Compute the DFS path from s to t |
1119 | 1112 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1120 | 1113 |
///\endcode |
1121 | 1114 |
|
1122 | 1115 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1123 | 1116 |
///to the end of the parameter list. |
1124 | 1117 |
///\sa DfsWizard |
1125 | 1118 |
///\sa Dfs |
1126 | 1119 |
template<class GR> |
1127 | 1120 |
DfsWizard<DfsWizardBase<GR> > |
1128 | 1121 |
dfs(const GR &digraph) |
1129 | 1122 |
{ |
1130 | 1123 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1131 | 1124 |
} |
1132 | 1125 |
|
1133 | 1126 |
#ifdef DOXYGEN |
1134 | 1127 |
/// \brief Visitor class for DFS. |
1135 | 1128 |
/// |
1136 | 1129 |
/// This class defines the interface of the DfsVisit events, and |
1137 | 1130 |
/// it could be the base of a real visitor class. |
1138 | 1131 |
template <typename _Digraph> |
1139 | 1132 |
struct DfsVisitor { |
1140 | 1133 |
typedef _Digraph Digraph; |
1141 | 1134 |
typedef typename Digraph::Arc Arc; |
1142 | 1135 |
typedef typename Digraph::Node Node; |
1143 | 1136 |
/// \brief Called for the source node of the DFS. |
1144 | 1137 |
/// |
1145 | 1138 |
/// This function is called for the source node of the DFS. |
1146 | 1139 |
void start(const Node& node) {} |
1147 | 1140 |
/// \brief Called when the source node is leaved. |
1148 | 1141 |
/// |
1149 | 1142 |
/// This function is called when the source node is leaved. |
1150 | 1143 |
void stop(const Node& node) {} |
1151 | 1144 |
/// \brief Called when a node is reached first time. |
1152 | 1145 |
/// |
1153 | 1146 |
/// This function is called when a node is reached first time. |
1154 | 1147 |
void reach(const Node& node) {} |
1155 | 1148 |
/// \brief Called when an arc reaches a new node. |
1156 | 1149 |
/// |
1157 | 1150 |
/// This function is called when the DFS finds an arc whose target node |
1158 | 1151 |
/// is not reached yet. |
1159 | 1152 |
void discover(const Arc& arc) {} |
1160 | 1153 |
/// \brief Called when an arc is examined but its target node is |
1161 | 1154 |
/// already discovered. |
1162 | 1155 |
/// |
1163 | 1156 |
/// This function is called when an arc is examined but its target node is |
1164 | 1157 |
/// already discovered. |
1165 | 1158 |
void examine(const Arc& arc) {} |
1166 | 1159 |
/// \brief Called when the DFS steps back from a node. |
1167 | 1160 |
/// |
1168 | 1161 |
/// This function is called when the DFS steps back from a node. |
1169 | 1162 |
void leave(const Node& node) {} |
1170 | 1163 |
/// \brief Called when the DFS steps back on an arc. |
1171 | 1164 |
/// |
1172 | 1165 |
/// This function is called when the DFS steps back on an arc. |
1173 | 1166 |
void backtrack(const Arc& arc) {} |
1174 | 1167 |
}; |
1175 | 1168 |
#else |
1176 | 1169 |
template <typename _Digraph> |
1177 | 1170 |
struct DfsVisitor { |
1178 | 1171 |
typedef _Digraph Digraph; |
1179 | 1172 |
typedef typename Digraph::Arc Arc; |
1180 | 1173 |
typedef typename Digraph::Node Node; |
1181 | 1174 |
void start(const Node&) {} |
1182 | 1175 |
void stop(const Node&) {} |
1183 | 1176 |
void reach(const Node&) {} |
1184 | 1177 |
void discover(const Arc&) {} |
1185 | 1178 |
void examine(const Arc&) {} |
1186 | 1179 |
void leave(const Node&) {} |
1187 | 1180 |
void backtrack(const Arc&) {} |
1188 | 1181 |
|
1189 | 1182 |
template <typename _Visitor> |
1190 | 1183 |
struct Constraints { |
1191 | 1184 |
void constraints() { |
1192 | 1185 |
Arc arc; |
1193 | 1186 |
Node node; |
1194 | 1187 |
visitor.start(node); |
1195 | 1188 |
visitor.stop(arc); |
1196 | 1189 |
visitor.reach(node); |
1197 | 1190 |
visitor.discover(arc); |
1198 | 1191 |
visitor.examine(arc); |
1199 | 1192 |
visitor.leave(node); |
1200 | 1193 |
visitor.backtrack(arc); |
1201 | 1194 |
} |
1202 | 1195 |
_Visitor& visitor; |
1203 | 1196 |
}; |
1204 | 1197 |
}; |
1205 | 1198 |
#endif |
1206 | 1199 |
|
1207 | 1200 |
/// \brief Default traits class of DfsVisit class. |
1208 | 1201 |
/// |
1209 | 1202 |
/// Default traits class of DfsVisit class. |
1210 | 1203 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1211 | 1204 |
template<class _Digraph> |
1212 | 1205 |
struct DfsVisitDefaultTraits { |
1213 | 1206 |
|
1214 | 1207 |
/// \brief The type of the digraph the algorithm runs on. |
1215 | 1208 |
typedef _Digraph Digraph; |
1216 | 1209 |
|
1217 | 1210 |
/// \brief The type of the map that indicates which nodes are reached. |
1218 | 1211 |
/// |
1219 | 1212 |
/// The type of the map that indicates which nodes are reached. |
1220 | 1213 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1221 | 1214 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1222 | 1215 |
|
1223 | 1216 |
/// \brief Instantiates a \ref ReachedMap. |
1224 | 1217 |
/// |
1225 | 1218 |
/// This function instantiates a \ref ReachedMap. |
1226 | 1219 |
/// \param digraph is the digraph, to which |
1227 | 1220 |
/// we would like to define the \ref ReachedMap. |
1228 | 1221 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1229 | 1222 |
return new ReachedMap(digraph); |
1230 | 1223 |
} |
1231 | 1224 |
|
1232 | 1225 |
}; |
1233 | 1226 |
|
1234 | 1227 |
/// \ingroup search |
1235 | 1228 |
/// |
1236 | 1229 |
/// \brief %DFS algorithm class with visitor interface. |
1237 | 1230 |
/// |
1238 | 1231 |
/// This class provides an efficient implementation of the %DFS algorithm |
1239 | 1232 |
/// with visitor interface. |
1240 | 1233 |
/// |
1241 | 1234 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1242 | 1235 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1243 | 1236 |
/// the member functions of the \c Visitor class on every DFS event. |
1244 | 1237 |
/// |
1245 | 1238 |
/// This interface of the DFS algorithm should be used in special cases |
1246 | 1239 |
/// when extra actions have to be performed in connection with certain |
1247 | 1240 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1248 | 1241 |
/// instead. |
1249 | 1242 |
/// |
1250 | 1243 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1251 | 1244 |
/// The default value is |
1252 | 1245 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1253 | 1246 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
1254 | 1247 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1255 | 1248 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
1256 | 1249 |
/// does not observe the DFS events. If you want to observe the DFS |
1257 | 1250 |
/// events, you should implement your own visitor class. |
1258 | 1251 |
/// \tparam _Traits Traits class to set various data types used by the |
1259 | 1252 |
/// algorithm. The default traits class is |
1260 | 1253 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1261 | 1254 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1262 | 1255 |
/// a DFS visit traits class. |
1263 | 1256 |
#ifdef DOXYGEN |
1264 | 1257 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1265 | 1258 |
#else |
1266 | 1259 |
template <typename _Digraph = ListDigraph, |
1267 | 1260 |
typename _Visitor = DfsVisitor<_Digraph>, |
1268 | 1261 |
typename _Traits = DfsVisitDefaultTraits<_Digraph> > |
1269 | 1262 |
#endif |
1270 | 1263 |
class DfsVisit { |
1271 | 1264 |
public: |
1272 | 1265 |
|
1273 |
/// \brief \ref Exception for uninitialized parameters. |
|
1274 |
/// |
|
1275 |
/// This error represents problems in the initialization |
|
1276 |
/// of the parameters of the algorithm. |
|
1277 |
class UninitializedParameter : public lemon::UninitializedParameter { |
|
1278 |
public: |
|
1279 |
virtual const char* what() const throw() |
|
1280 |
{ |
|
1281 |
return "lemon::DfsVisit::UninitializedParameter"; |
|
1282 |
} |
|
1283 |
}; |
|
1284 |
|
|
1285 | 1266 |
///The traits class. |
1286 | 1267 |
typedef _Traits Traits; |
1287 | 1268 |
|
1288 | 1269 |
///The type of the digraph the algorithm runs on. |
1289 | 1270 |
typedef typename Traits::Digraph Digraph; |
1290 | 1271 |
|
1291 | 1272 |
///The visitor type used by the algorithm. |
1292 | 1273 |
typedef _Visitor Visitor; |
1293 | 1274 |
|
1294 | 1275 |
///The type of the map that indicates which nodes are reached. |
1295 | 1276 |
typedef typename Traits::ReachedMap ReachedMap; |
1296 | 1277 |
|
1297 | 1278 |
private: |
1298 | 1279 |
|
1299 | 1280 |
typedef typename Digraph::Node Node; |
1300 | 1281 |
typedef typename Digraph::NodeIt NodeIt; |
1301 | 1282 |
typedef typename Digraph::Arc Arc; |
1302 | 1283 |
typedef typename Digraph::OutArcIt OutArcIt; |
1303 | 1284 |
|
1304 | 1285 |
//Pointer to the underlying digraph. |
1305 | 1286 |
const Digraph *_digraph; |
1306 | 1287 |
//Pointer to the visitor object. |
1307 | 1288 |
Visitor *_visitor; |
1308 | 1289 |
//Pointer to the map of reached status of the nodes. |
1309 | 1290 |
ReachedMap *_reached; |
1310 | 1291 |
//Indicates if _reached is locally allocated (true) or not. |
1311 | 1292 |
bool local_reached; |
1312 | 1293 |
|
1313 | 1294 |
std::vector<typename Digraph::Arc> _stack; |
1314 | 1295 |
int _stack_head; |
1315 | 1296 |
|
1316 | 1297 |
//Creates the maps if necessary. |
1317 | 1298 |
void create_maps() { |
1318 | 1299 |
if(!_reached) { |
1319 | 1300 |
local_reached = true; |
1320 | 1301 |
_reached = Traits::createReachedMap(*_digraph); |
1321 | 1302 |
} |
1322 | 1303 |
} |
1323 | 1304 |
|
1324 | 1305 |
protected: |
1325 | 1306 |
|
1326 | 1307 |
DfsVisit() {} |
1327 | 1308 |
|
1328 | 1309 |
public: |
1329 | 1310 |
|
1330 | 1311 |
typedef DfsVisit Create; |
1331 | 1312 |
|
1332 | 1313 |
/// \name Named template parameters |
1333 | 1314 |
|
1334 | 1315 |
///@{ |
1335 | 1316 |
template <class T> |
1336 | 1317 |
struct SetReachedMapTraits : public Traits { |
1337 | 1318 |
typedef T ReachedMap; |
1338 | 1319 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1339 |
|
|
1320 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
|
1321 |
return 0; // ignore warnings |
|
1340 | 1322 |
} |
1341 | 1323 |
}; |
1342 | 1324 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1343 | 1325 |
/// ReachedMap type. |
1344 | 1326 |
/// |
1345 | 1327 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1346 | 1328 |
template <class T> |
1347 | 1329 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1348 | 1330 |
SetReachedMapTraits<T> > { |
1349 | 1331 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1350 | 1332 |
}; |
1351 | 1333 |
///@} |
1352 | 1334 |
|
1353 | 1335 |
public: |
1354 | 1336 |
|
1355 | 1337 |
/// \brief Constructor. |
1356 | 1338 |
/// |
1357 | 1339 |
/// Constructor. |
1358 | 1340 |
/// |
1359 | 1341 |
/// \param digraph The digraph the algorithm runs on. |
1360 | 1342 |
/// \param visitor The visitor object of the algorithm. |
1361 | 1343 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1362 | 1344 |
: _digraph(&digraph), _visitor(&visitor), |
1363 | 1345 |
_reached(0), local_reached(false) {} |
1364 | 1346 |
|
1365 | 1347 |
/// \brief Destructor. |
1366 | 1348 |
~DfsVisit() { |
1367 | 1349 |
if(local_reached) delete _reached; |
1368 | 1350 |
} |
1369 | 1351 |
|
1370 | 1352 |
/// \brief Sets the map that indicates which nodes are reached. |
1371 | 1353 |
/// |
1372 | 1354 |
/// Sets the map that indicates which nodes are reached. |
1373 | 1355 |
/// If you don't use this function before calling \ref run(), |
1374 | 1356 |
/// it will allocate one. The destructor deallocates this |
1375 | 1357 |
/// automatically allocated map, of course. |
1376 | 1358 |
/// \return <tt> (*this) </tt> |
1377 | 1359 |
DfsVisit &reachedMap(ReachedMap &m) { |
1378 | 1360 |
if(local_reached) { |
1379 | 1361 |
delete _reached; |
1380 | 1362 |
local_reached=false; |
1381 | 1363 |
} |
1382 | 1364 |
_reached = &m; |
1383 | 1365 |
return *this; |
1384 | 1366 |
} |
1385 | 1367 |
|
1386 | 1368 |
public: |
1387 | 1369 |
|
1388 | 1370 |
/// \name Execution control |
1389 | 1371 |
/// The simplest way to execute the algorithm is to use |
1390 | 1372 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
1391 | 1373 |
/// "run()". |
1392 | 1374 |
/// \n |
1393 | 1375 |
/// If you need more control on the execution, first you must call |
1394 | 1376 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
1395 | 1377 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
1396 | 1378 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
1397 | 1379 |
/// actual path computation. |
1398 | 1380 |
|
1399 | 1381 |
/// @{ |
1400 | 1382 |
|
1401 | 1383 |
/// \brief Initializes the internal data structures. |
1402 | 1384 |
/// |
1403 | 1385 |
/// Initializes the internal data structures. |
1404 | 1386 |
void init() { |
1405 | 1387 |
create_maps(); |
1406 | 1388 |
_stack.resize(countNodes(*_digraph)); |
1407 | 1389 |
_stack_head = -1; |
1408 | 1390 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1409 | 1391 |
_reached->set(u, false); |
1410 | 1392 |
} |
1411 | 1393 |
} |
1412 | 1394 |
|
1413 | 1395 |
///Adds a new source node. |
1414 | 1396 |
|
1415 | 1397 |
///Adds a new source node to the set of nodes to be processed. |
1416 | 1398 |
/// |
1417 | 1399 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
1418 | 1400 |
///false results.) |
1419 | 1401 |
/// |
1420 | 1402 |
///\warning Distances will be wrong (or at least strange) in case of |
1421 | 1403 |
///multiple sources. |
1422 | 1404 |
void addSource(Node s) |
1423 | 1405 |
{ |
1424 | 1406 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1425 | 1407 |
if(!(*_reached)[s]) { |
1426 | 1408 |
_reached->set(s,true); |
1427 | 1409 |
_visitor->start(s); |
1428 | 1410 |
_visitor->reach(s); |
1429 | 1411 |
Arc e; |
1430 | 1412 |
_digraph->firstOut(e, s); |
1431 | 1413 |
if (e != INVALID) { |
1432 | 1414 |
_stack[++_stack_head] = e; |
1433 | 1415 |
} else { |
1434 | 1416 |
_visitor->leave(s); |
1435 | 1417 |
} |
1436 | 1418 |
} |
1437 | 1419 |
} |
1438 | 1420 |
|
1439 | 1421 |
/// \brief Processes the next arc. |
1440 | 1422 |
/// |
1441 | 1423 |
/// Processes the next arc. |
1442 | 1424 |
/// |
1443 | 1425 |
/// \return The processed arc. |
1444 | 1426 |
/// |
1445 | 1427 |
/// \pre The stack must not be empty. |
1446 | 1428 |
Arc processNextArc() { |
1447 | 1429 |
Arc e = _stack[_stack_head]; |
1448 | 1430 |
Node m = _digraph->target(e); |
1449 | 1431 |
if(!(*_reached)[m]) { |
1450 | 1432 |
_visitor->discover(e); |
1451 | 1433 |
_visitor->reach(m); |
1452 | 1434 |
_reached->set(m, true); |
1453 | 1435 |
_digraph->firstOut(_stack[++_stack_head], m); |
1454 | 1436 |
} else { |
1455 | 1437 |
_visitor->examine(e); |
1456 | 1438 |
m = _digraph->source(e); |
1457 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
1458 | 1440 |
} |
1459 | 1441 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1460 | 1442 |
_visitor->leave(m); |
1461 | 1443 |
--_stack_head; |
1462 | 1444 |
if (_stack_head >= 0) { |
1463 | 1445 |
_visitor->backtrack(_stack[_stack_head]); |
1464 | 1446 |
m = _digraph->source(_stack[_stack_head]); |
1465 | 1447 |
_digraph->nextOut(_stack[_stack_head]); |
1466 | 1448 |
} else { |
1467 | 1449 |
_visitor->stop(m); |
1468 | 1450 |
} |
1469 | 1451 |
} |
1470 | 1452 |
return e; |
1471 | 1453 |
} |
1472 | 1454 |
|
1473 | 1455 |
/// \brief Next arc to be processed. |
1474 | 1456 |
/// |
1475 | 1457 |
/// Next arc to be processed. |
1476 | 1458 |
/// |
1477 | 1459 |
/// \return The next arc to be processed or INVALID if the stack is |
1478 | 1460 |
/// empty. |
1479 | 1461 |
Arc nextArc() const { |
1480 | 1462 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1481 | 1463 |
} |
1482 | 1464 |
|
1483 | 1465 |
/// \brief Returns \c false if there are nodes |
1484 | 1466 |
/// to be processed. |
1485 | 1467 |
/// |
1486 | 1468 |
/// Returns \c false if there are nodes |
1487 | 1469 |
/// to be processed in the queue (stack). |
1488 | 1470 |
bool emptyQueue() const { return _stack_head < 0; } |
1489 | 1471 |
|
1490 | 1472 |
/// \brief Returns the number of the nodes to be processed. |
1491 | 1473 |
/// |
1492 | 1474 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1493 | 1475 |
int queueSize() const { return _stack_head + 1; } |
1494 | 1476 |
|
1495 | 1477 |
/// \brief Executes the algorithm. |
1496 | 1478 |
/// |
1497 | 1479 |
/// Executes the algorithm. |
1498 | 1480 |
/// |
1499 | 1481 |
/// This method runs the %DFS algorithm from the root node |
1500 | 1482 |
/// in order to compute the %DFS path to each node. |
1501 | 1483 |
/// |
1502 | 1484 |
/// The algorithm computes |
1503 | 1485 |
/// - the %DFS tree, |
1504 | 1486 |
/// - the distance of each node from the root in the %DFS tree. |
1505 | 1487 |
/// |
1506 | 1488 |
/// \pre init() must be called and a root node should be |
1507 | 1489 |
/// added with addSource() before using this function. |
1508 | 1490 |
/// |
1509 | 1491 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1510 | 1492 |
/// \code |
1511 | 1493 |
/// while ( !d.emptyQueue() ) { |
1512 | 1494 |
/// d.processNextArc(); |
1513 | 1495 |
/// } |
1514 | 1496 |
/// \endcode |
1515 | 1497 |
void start() { |
1516 | 1498 |
while ( !emptyQueue() ) processNextArc(); |
1517 | 1499 |
} |
1518 | 1500 |
|
1519 | 1501 |
/// \brief Executes the algorithm until the given target node is reached. |
1520 | 1502 |
/// |
1521 | 1503 |
/// Executes the algorithm until the given target node is reached. |
1522 | 1504 |
/// |
1523 | 1505 |
/// This method runs the %DFS algorithm from the root node |
1524 | 1506 |
/// in order to compute the DFS path to \c t. |
1525 | 1507 |
/// |
1526 | 1508 |
/// The algorithm computes |
1527 | 1509 |
/// - the %DFS path to \c t, |
1528 | 1510 |
/// - the distance of \c t from the root in the %DFS tree. |
1529 | 1511 |
/// |
1530 | 1512 |
/// \pre init() must be called and a root node should be added |
1531 | 1513 |
/// with addSource() before using this function. |
1532 | 1514 |
void start(Node t) { |
1533 | 1515 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
1534 | 1516 |
processNextArc(); |
1535 | 1517 |
} |
1536 | 1518 |
|
1537 | 1519 |
/// \brief Executes the algorithm until a condition is met. |
1538 | 1520 |
/// |
1539 | 1521 |
/// Executes the algorithm until a condition is met. |
1540 | 1522 |
/// |
1541 | 1523 |
/// This method runs the %DFS algorithm from the root node |
1542 | 1524 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1543 | 1525 |
/// |
1544 | 1526 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1545 | 1527 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1546 | 1528 |
/// |
1547 | 1529 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1548 | 1530 |
/// \c INVALID if no such arc was found. |
1549 | 1531 |
/// |
1550 | 1532 |
/// \pre init() must be called and a root node should be added |
1551 | 1533 |
/// with addSource() before using this function. |
1552 | 1534 |
/// |
1553 | 1535 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1554 | 1536 |
/// not a node map. |
1555 | 1537 |
template <typename AM> |
1556 | 1538 |
Arc start(const AM &am) { |
1557 | 1539 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1558 | 1540 |
processNextArc(); |
1559 | 1541 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1560 | 1542 |
} |
1561 | 1543 |
|
1562 | 1544 |
/// \brief Runs the algorithm from the given source node. |
1563 | 1545 |
/// |
1564 | 1546 |
/// This method runs the %DFS algorithm from node \c s. |
1565 | 1547 |
/// in order to compute the DFS path to each node. |
1566 | 1548 |
/// |
1567 | 1549 |
/// The algorithm computes |
1568 | 1550 |
/// - the %DFS tree, |
1569 | 1551 |
/// - the distance of each node from the root in the %DFS tree. |
1570 | 1552 |
/// |
1571 | 1553 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1572 | 1554 |
///\code |
1573 | 1555 |
/// d.init(); |
1574 | 1556 |
/// d.addSource(s); |
1575 | 1557 |
/// d.start(); |
1576 | 1558 |
///\endcode |
1577 | 1559 |
void run(Node s) { |
1578 | 1560 |
init(); |
1579 | 1561 |
addSource(s); |
1580 | 1562 |
start(); |
1581 | 1563 |
} |
1582 | 1564 |
|
1583 | 1565 |
/// \brief Finds the %DFS path between \c s and \c t. |
1584 | 1566 |
|
1585 | 1567 |
/// This method runs the %DFS algorithm from node \c s |
1586 | 1568 |
/// in order to compute the DFS path to node \c t |
1587 | 1569 |
/// (it stops searching when \c t is processed). |
1588 | 1570 |
/// |
1589 | 1571 |
/// \return \c true if \c t is reachable form \c s. |
1590 | 1572 |
/// |
1591 | 1573 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1592 | 1574 |
/// just a shortcut of the following code. |
1593 | 1575 |
///\code |
1594 | 1576 |
/// d.init(); |
1595 | 1577 |
/// d.addSource(s); |
1596 | 1578 |
/// d.start(t); |
1597 | 1579 |
///\endcode |
1598 | 1580 |
bool run(Node s,Node t) { |
1599 | 1581 |
init(); |
1600 | 1582 |
addSource(s); |
1601 | 1583 |
start(t); |
1602 | 1584 |
return reached(t); |
1603 | 1585 |
} |
1604 | 1586 |
|
1605 | 1587 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1606 | 1588 |
|
1607 | 1589 |
/// This method runs the %DFS algorithm in order to |
1608 | 1590 |
/// compute the %DFS path to each node. |
1609 | 1591 |
/// |
1610 | 1592 |
/// The algorithm computes |
1611 | 1593 |
/// - the %DFS tree, |
1612 | 1594 |
/// - the distance of each node from the root in the %DFS tree. |
1613 | 1595 |
/// |
1614 | 1596 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1615 | 1597 |
///\code |
1616 | 1598 |
/// d.init(); |
1617 | 1599 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1618 | 1600 |
/// if (!d.reached(n)) { |
1619 | 1601 |
/// d.addSource(n); |
1620 | 1602 |
/// d.start(); |
1621 | 1603 |
/// } |
1622 | 1604 |
/// } |
1623 | 1605 |
///\endcode |
1624 | 1606 |
void run() { |
1625 | 1607 |
init(); |
1626 | 1608 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1627 | 1609 |
if (!reached(it)) { |
1628 | 1610 |
addSource(it); |
1629 | 1611 |
start(); |
1630 | 1612 |
} |
1631 | 1613 |
} |
1632 | 1614 |
} |
1633 | 1615 |
|
1634 | 1616 |
///@} |
1635 | 1617 |
|
1636 | 1618 |
/// \name Query Functions |
1637 | 1619 |
/// The result of the %DFS algorithm can be obtained using these |
1638 | 1620 |
/// functions.\n |
1639 | 1621 |
/// Either \ref lemon::DfsVisit::run() "run()" or |
1640 | 1622 |
/// \ref lemon::DfsVisit::start() "start()" must be called before |
1641 | 1623 |
/// using them. |
1642 | 1624 |
///@{ |
1643 | 1625 |
|
1644 | 1626 |
/// \brief Checks if a node is reachable from the root(s). |
1645 | 1627 |
/// |
1646 | 1628 |
/// Returns \c true if \c v is reachable from the root(s). |
1647 | 1629 |
/// \pre Either \ref run() or \ref start() |
1648 | 1630 |
/// must be called before using this function. |
1649 | 1631 |
bool reached(Node v) { return (*_reached)[v]; } |
1650 | 1632 |
|
1651 | 1633 |
///@} |
1652 | 1634 |
|
1653 | 1635 |
}; |
1654 | 1636 |
|
1655 | 1637 |
} //END OF NAMESPACE LEMON |
1656 | 1638 |
|
1657 | 1639 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename Value> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \brief Gives back the zero value of the type. |
44 | 44 |
static Value zero() { |
45 | 45 |
return static_cast<Value>(0); |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value is less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 | 57 |
/// \brief Widest path operation traits for the Dijkstra algorithm class. |
58 | 58 |
/// |
59 | 59 |
/// This operation traits class defines all computational operations and |
60 | 60 |
/// constants which are used in the Dijkstra algorithm for widest path |
61 | 61 |
/// computation. |
62 | 62 |
/// |
63 | 63 |
/// \see DijkstraDefaultOperationTraits |
64 | 64 |
template <typename Value> |
65 | 65 |
struct DijkstraWidestPathOperationTraits { |
66 | 66 |
/// \brief Gives back the maximum value of the type. |
67 | 67 |
static Value zero() { |
68 | 68 |
return std::numeric_limits<Value>::max(); |
69 | 69 |
} |
70 | 70 |
/// \brief Gives back the minimum of the given two elements. |
71 | 71 |
static Value plus(const Value& left, const Value& right) { |
72 | 72 |
return std::min(left, right); |
73 | 73 |
} |
74 | 74 |
/// \brief Gives back true only if the first value is less than the second. |
75 | 75 |
static bool less(const Value& left, const Value& right) { |
76 | 76 |
return left < right; |
77 | 77 |
} |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
///Default traits class of Dijkstra class. |
81 | 81 |
|
82 | 82 |
///Default traits class of Dijkstra class. |
83 | 83 |
///\tparam GR The type of the digraph. |
84 | 84 |
///\tparam LM The type of the length map. |
85 | 85 |
template<class GR, class LM> |
86 | 86 |
struct DijkstraDefaultTraits |
87 | 87 |
{ |
88 | 88 |
///The type of the digraph the algorithm runs on. |
89 | 89 |
typedef GR Digraph; |
90 | 90 |
|
91 | 91 |
///The type of the map that stores the arc lengths. |
92 | 92 |
|
93 | 93 |
///The type of the map that stores the arc lengths. |
94 | 94 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
95 | 95 |
typedef LM LengthMap; |
96 | 96 |
///The type of the length of the arcs. |
97 | 97 |
typedef typename LM::Value Value; |
98 | 98 |
|
99 | 99 |
/// Operation traits for Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
/// This class defines the operations that are used in the algorithm. |
102 | 102 |
/// \see DijkstraDefaultOperationTraits |
103 | 103 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
104 | 104 |
|
105 | 105 |
/// The cross reference type used by the heap. |
106 | 106 |
|
107 | 107 |
/// The cross reference type used by the heap. |
108 | 108 |
/// Usually it is \c Digraph::NodeMap<int>. |
109 | 109 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
110 | 110 |
///Instantiates a \ref HeapCrossRef. |
111 | 111 |
|
112 | 112 |
///This function instantiates a \ref HeapCrossRef. |
113 | 113 |
/// \param g is the digraph, to which we would like to define the |
114 | 114 |
/// \ref HeapCrossRef. |
115 | 115 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
116 | 116 |
{ |
117 | 117 |
return new HeapCrossRef(g); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
///The heap type used by the Dijkstra algorithm. |
121 | 121 |
|
122 | 122 |
///The heap type used by the Dijkstra algorithm. |
123 | 123 |
/// |
124 | 124 |
///\sa BinHeap |
125 | 125 |
///\sa Dijkstra |
126 | 126 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
127 | 127 |
///Instantiates a \ref Heap. |
128 | 128 |
|
129 | 129 |
///This function instantiates a \ref Heap. |
130 | 130 |
static Heap *createHeap(HeapCrossRef& r) |
131 | 131 |
{ |
132 | 132 |
return new Heap(r); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
///\brief The type of the map that stores the predecessor |
136 | 136 |
///arcs of the shortest paths. |
137 | 137 |
/// |
138 | 138 |
///The type of the map that stores the predecessor |
139 | 139 |
///arcs of the shortest paths. |
140 | 140 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
141 | 141 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
142 | 142 |
///Instantiates a \ref PredMap. |
143 | 143 |
|
144 | 144 |
///This function instantiates a \ref PredMap. |
145 | 145 |
///\param g is the digraph, to which we would like to define the |
146 | 146 |
///\ref PredMap. |
147 | 147 |
static PredMap *createPredMap(const Digraph &g) |
148 | 148 |
{ |
149 | 149 |
return new PredMap(g); |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
///The type of the map that indicates which nodes are processed. |
153 | 153 |
|
154 | 154 |
///The type of the map that indicates which nodes are processed. |
155 | 155 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
156 | 156 |
///By default it is a NullMap. |
157 | 157 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
158 | 158 |
///Instantiates a \ref ProcessedMap. |
159 | 159 |
|
160 | 160 |
///This function instantiates a \ref ProcessedMap. |
161 | 161 |
///\param g is the digraph, to which |
162 | 162 |
///we would like to define the \ref ProcessedMap |
163 | 163 |
#ifdef DOXYGEN |
164 | 164 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
165 | 165 |
#else |
166 | 166 |
static ProcessedMap *createProcessedMap(const Digraph &) |
167 | 167 |
#endif |
168 | 168 |
{ |
169 | 169 |
return new ProcessedMap(); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
///The type of the map that stores the distances of the nodes. |
173 | 173 |
|
174 | 174 |
///The type of the map that stores the distances of the nodes. |
175 | 175 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
176 | 176 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
177 | 177 |
///Instantiates a \ref DistMap. |
178 | 178 |
|
179 | 179 |
///This function instantiates a \ref DistMap. |
180 | 180 |
///\param g is the digraph, to which we would like to define |
181 | 181 |
///the \ref DistMap |
182 | 182 |
static DistMap *createDistMap(const Digraph &g) |
183 | 183 |
{ |
184 | 184 |
return new DistMap(g); |
185 | 185 |
} |
186 | 186 |
}; |
187 | 187 |
|
188 | 188 |
///%Dijkstra algorithm class. |
189 | 189 |
|
190 | 190 |
/// \ingroup shortest_path |
191 | 191 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
192 | 192 |
/// |
193 | 193 |
///The arc lengths are passed to the algorithm using a |
194 | 194 |
///\ref concepts::ReadMap "ReadMap", |
195 | 195 |
///so it is easy to change it to any kind of length. |
196 | 196 |
///The type of the length is determined by the |
197 | 197 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
198 | 198 |
///It is also possible to change the underlying priority heap. |
199 | 199 |
/// |
200 | 200 |
///There is also a \ref dijkstra() "function-type interface" for the |
201 | 201 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
202 | 202 |
///it can be used easier. |
203 | 203 |
/// |
204 | 204 |
///\tparam GR The type of the digraph the algorithm runs on. |
205 | 205 |
///The default value is \ref ListDigraph. |
206 | 206 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
207 | 207 |
///passed to \ref DijkstraDefaultTraits. |
208 | 208 |
///\tparam LM A readable arc map that determines the lengths of the |
209 | 209 |
///arcs. It is read once for each arc, so the map may involve in |
210 | 210 |
///relatively time consuming process to compute the arc lengths if |
211 | 211 |
///it is necessary. The default map type is \ref |
212 | 212 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
213 | 213 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
214 | 214 |
///passed to \ref DijkstraDefaultTraits. |
215 | 215 |
///\tparam TR Traits class to set various data types used by the algorithm. |
216 | 216 |
///The default traits class is \ref DijkstraDefaultTraits |
217 | 217 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
218 | 218 |
///for the documentation of a Dijkstra traits class. |
219 | 219 |
#ifdef DOXYGEN |
220 | 220 |
template <typename GR, typename LM, typename TR> |
221 | 221 |
#else |
222 | 222 |
template <typename GR=ListDigraph, |
223 | 223 |
typename LM=typename GR::template ArcMap<int>, |
224 | 224 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
225 | 225 |
#endif |
226 | 226 |
class Dijkstra { |
227 | 227 |
public: |
228 |
///\ref Exception for uninitialized parameters. |
|
229 |
|
|
230 |
///This error represents problems in the initialization of the |
|
231 |
///parameters of the algorithm. |
|
232 |
class UninitializedParameter : public lemon::UninitializedParameter { |
|
233 |
public: |
|
234 |
virtual const char* what() const throw() { |
|
235 |
return "lemon::Dijkstra::UninitializedParameter"; |
|
236 |
} |
|
237 |
}; |
|
238 | 228 |
|
239 | 229 |
///The type of the digraph the algorithm runs on. |
240 | 230 |
typedef typename TR::Digraph Digraph; |
241 | 231 |
|
242 | 232 |
///The type of the length of the arcs. |
243 | 233 |
typedef typename TR::LengthMap::Value Value; |
244 | 234 |
///The type of the map that stores the arc lengths. |
245 | 235 |
typedef typename TR::LengthMap LengthMap; |
246 | 236 |
///\brief The type of the map that stores the predecessor arcs of the |
247 | 237 |
///shortest paths. |
248 | 238 |
typedef typename TR::PredMap PredMap; |
249 | 239 |
///The type of the map that stores the distances of the nodes. |
250 | 240 |
typedef typename TR::DistMap DistMap; |
251 | 241 |
///The type of the map that indicates which nodes are processed. |
252 | 242 |
typedef typename TR::ProcessedMap ProcessedMap; |
253 | 243 |
///The type of the paths. |
254 | 244 |
typedef PredMapPath<Digraph, PredMap> Path; |
255 | 245 |
///The cross reference type used for the current heap. |
256 | 246 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
257 | 247 |
///The heap type used by the algorithm. |
258 | 248 |
typedef typename TR::Heap Heap; |
259 | 249 |
///The operation traits class. |
260 | 250 |
typedef typename TR::OperationTraits OperationTraits; |
261 | 251 |
|
262 | 252 |
///The traits class. |
263 | 253 |
typedef TR Traits; |
264 | 254 |
|
265 | 255 |
private: |
266 | 256 |
|
267 | 257 |
typedef typename Digraph::Node Node; |
268 | 258 |
typedef typename Digraph::NodeIt NodeIt; |
269 | 259 |
typedef typename Digraph::Arc Arc; |
270 | 260 |
typedef typename Digraph::OutArcIt OutArcIt; |
271 | 261 |
|
272 | 262 |
//Pointer to the underlying digraph. |
273 | 263 |
const Digraph *G; |
274 | 264 |
//Pointer to the length map. |
275 | 265 |
const LengthMap *length; |
276 | 266 |
//Pointer to the map of predecessors arcs. |
277 | 267 |
PredMap *_pred; |
278 | 268 |
//Indicates if _pred is locally allocated (true) or not. |
279 | 269 |
bool local_pred; |
280 | 270 |
//Pointer to the map of distances. |
281 | 271 |
DistMap *_dist; |
282 | 272 |
//Indicates if _dist is locally allocated (true) or not. |
283 | 273 |
bool local_dist; |
284 | 274 |
//Pointer to the map of processed status of the nodes. |
285 | 275 |
ProcessedMap *_processed; |
286 | 276 |
//Indicates if _processed is locally allocated (true) or not. |
287 | 277 |
bool local_processed; |
288 | 278 |
//Pointer to the heap cross references. |
289 | 279 |
HeapCrossRef *_heap_cross_ref; |
290 | 280 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
291 | 281 |
bool local_heap_cross_ref; |
292 | 282 |
//Pointer to the heap. |
293 | 283 |
Heap *_heap; |
294 | 284 |
//Indicates if _heap is locally allocated (true) or not. |
295 | 285 |
bool local_heap; |
296 | 286 |
|
297 | 287 |
//Creates the maps if necessary. |
298 | 288 |
void create_maps() |
299 | 289 |
{ |
300 | 290 |
if(!_pred) { |
301 | 291 |
local_pred = true; |
302 | 292 |
_pred = Traits::createPredMap(*G); |
303 | 293 |
} |
304 | 294 |
if(!_dist) { |
305 | 295 |
local_dist = true; |
306 | 296 |
_dist = Traits::createDistMap(*G); |
307 | 297 |
} |
308 | 298 |
if(!_processed) { |
309 | 299 |
local_processed = true; |
310 | 300 |
_processed = Traits::createProcessedMap(*G); |
311 | 301 |
} |
312 | 302 |
if (!_heap_cross_ref) { |
313 | 303 |
local_heap_cross_ref = true; |
314 | 304 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
315 | 305 |
} |
316 | 306 |
if (!_heap) { |
317 | 307 |
local_heap = true; |
318 | 308 |
_heap = Traits::createHeap(*_heap_cross_ref); |
319 | 309 |
} |
320 | 310 |
} |
321 | 311 |
|
322 | 312 |
public: |
323 | 313 |
|
324 | 314 |
typedef Dijkstra Create; |
325 | 315 |
|
326 | 316 |
///\name Named template parameters |
327 | 317 |
|
328 | 318 |
///@{ |
329 | 319 |
|
330 | 320 |
template <class T> |
331 | 321 |
struct SetPredMapTraits : public Traits { |
332 | 322 |
typedef T PredMap; |
333 | 323 |
static PredMap *createPredMap(const Digraph &) |
334 | 324 |
{ |
335 |
|
|
325 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
326 |
return 0; // ignore warnings |
|
336 | 327 |
} |
337 | 328 |
}; |
338 | 329 |
///\brief \ref named-templ-param "Named parameter" for setting |
339 | 330 |
///\ref PredMap type. |
340 | 331 |
/// |
341 | 332 |
///\ref named-templ-param "Named parameter" for setting |
342 | 333 |
///\ref PredMap type. |
343 | 334 |
template <class T> |
344 | 335 |
struct SetPredMap |
345 | 336 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
346 | 337 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
347 | 338 |
}; |
348 | 339 |
|
349 | 340 |
template <class T> |
350 | 341 |
struct SetDistMapTraits : public Traits { |
351 | 342 |
typedef T DistMap; |
352 | 343 |
static DistMap *createDistMap(const Digraph &) |
353 | 344 |
{ |
354 |
|
|
345 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
346 |
return 0; // ignore warnings |
|
355 | 347 |
} |
356 | 348 |
}; |
357 | 349 |
///\brief \ref named-templ-param "Named parameter" for setting |
358 | 350 |
///\ref DistMap type. |
359 | 351 |
/// |
360 | 352 |
///\ref named-templ-param "Named parameter" for setting |
361 | 353 |
///\ref DistMap type. |
362 | 354 |
template <class T> |
363 | 355 |
struct SetDistMap |
364 | 356 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
365 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
366 | 358 |
}; |
367 | 359 |
|
368 | 360 |
template <class T> |
369 | 361 |
struct SetProcessedMapTraits : public Traits { |
370 | 362 |
typedef T ProcessedMap; |
371 | 363 |
static ProcessedMap *createProcessedMap(const Digraph &) |
372 | 364 |
{ |
373 |
|
|
365 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
|
366 |
return 0; // ignore warnings |
|
374 | 367 |
} |
375 | 368 |
}; |
376 | 369 |
///\brief \ref named-templ-param "Named parameter" for setting |
377 | 370 |
///\ref ProcessedMap type. |
378 | 371 |
/// |
379 | 372 |
///\ref named-templ-param "Named parameter" for setting |
380 | 373 |
///\ref ProcessedMap type. |
381 | 374 |
template <class T> |
382 | 375 |
struct SetProcessedMap |
383 | 376 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
384 | 377 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
385 | 378 |
}; |
386 | 379 |
|
387 | 380 |
struct SetStandardProcessedMapTraits : public Traits { |
388 | 381 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
389 | 382 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
390 | 383 |
{ |
391 | 384 |
return new ProcessedMap(g); |
392 | 385 |
} |
393 | 386 |
}; |
394 | 387 |
///\brief \ref named-templ-param "Named parameter" for setting |
395 | 388 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
396 | 389 |
/// |
397 | 390 |
///\ref named-templ-param "Named parameter" for setting |
398 | 391 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
399 | 392 |
///If you don't set it explicitly, it will be automatically allocated. |
400 | 393 |
struct SetStandardProcessedMap |
401 | 394 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
402 | 395 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
403 | 396 |
Create; |
404 | 397 |
}; |
405 | 398 |
|
406 | 399 |
template <class H, class CR> |
407 | 400 |
struct SetHeapTraits : public Traits { |
408 | 401 |
typedef CR HeapCrossRef; |
409 | 402 |
typedef H Heap; |
410 | 403 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
411 |
|
|
404 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
|
405 |
return 0; // ignore warnings |
|
412 | 406 |
} |
413 | 407 |
static Heap *createHeap(HeapCrossRef &) |
414 | 408 |
{ |
415 |
|
|
409 |
LEMON_ASSERT(false, "Heap is not initialized"); |
|
410 |
return 0; // ignore warnings |
|
416 | 411 |
} |
417 | 412 |
}; |
418 | 413 |
///\brief \ref named-templ-param "Named parameter" for setting |
419 | 414 |
///heap and cross reference type |
420 | 415 |
/// |
421 | 416 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
422 | 417 |
///reference type. |
423 | 418 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
424 | 419 |
struct SetHeap |
425 | 420 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
426 | 421 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
427 | 422 |
}; |
428 | 423 |
|
429 | 424 |
template <class H, class CR> |
430 | 425 |
struct SetStandardHeapTraits : public Traits { |
431 | 426 |
typedef CR HeapCrossRef; |
432 | 427 |
typedef H Heap; |
433 | 428 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
434 | 429 |
return new HeapCrossRef(G); |
435 | 430 |
} |
436 | 431 |
static Heap *createHeap(HeapCrossRef &R) |
437 | 432 |
{ |
438 | 433 |
return new Heap(R); |
439 | 434 |
} |
440 | 435 |
}; |
441 | 436 |
///\brief \ref named-templ-param "Named parameter" for setting |
442 | 437 |
///heap and cross reference type with automatic allocation |
443 | 438 |
/// |
444 | 439 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
445 | 440 |
///reference type. It can allocate the heap and the cross reference |
446 | 441 |
///object if the cross reference's constructor waits for the digraph as |
447 | 442 |
///parameter and the heap's constructor waits for the cross reference. |
448 | 443 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
449 | 444 |
struct SetStandardHeap |
450 | 445 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
451 | 446 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
452 | 447 |
Create; |
453 | 448 |
}; |
454 | 449 |
|
455 | 450 |
template <class T> |
456 | 451 |
struct SetOperationTraitsTraits : public Traits { |
457 | 452 |
typedef T OperationTraits; |
458 | 453 |
}; |
459 | 454 |
|
460 | 455 |
/// \brief \ref named-templ-param "Named parameter" for setting |
461 | 456 |
///\ref OperationTraits type |
462 | 457 |
/// |
463 | 458 |
///\ref named-templ-param "Named parameter" for setting |
464 | 459 |
///\ref OperationTraits type. |
465 | 460 |
template <class T> |
466 | 461 |
struct SetOperationTraits |
467 | 462 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
468 | 463 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
469 | 464 |
Create; |
470 | 465 |
}; |
471 | 466 |
|
472 | 467 |
///@} |
473 | 468 |
|
474 | 469 |
protected: |
475 | 470 |
|
476 | 471 |
Dijkstra() {} |
477 | 472 |
|
478 | 473 |
public: |
479 | 474 |
|
480 | 475 |
///Constructor. |
481 | 476 |
|
482 | 477 |
///Constructor. |
483 | 478 |
///\param _g The digraph the algorithm runs on. |
484 | 479 |
///\param _length The length map used by the algorithm. |
485 | 480 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
486 | 481 |
G(&_g), length(&_length), |
487 | 482 |
_pred(NULL), local_pred(false), |
488 | 483 |
_dist(NULL), local_dist(false), |
489 | 484 |
_processed(NULL), local_processed(false), |
490 | 485 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
491 | 486 |
_heap(NULL), local_heap(false) |
492 | 487 |
{ } |
493 | 488 |
|
494 | 489 |
///Destructor. |
495 | 490 |
~Dijkstra() |
496 | 491 |
{ |
497 | 492 |
if(local_pred) delete _pred; |
498 | 493 |
if(local_dist) delete _dist; |
499 | 494 |
if(local_processed) delete _processed; |
500 | 495 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
501 | 496 |
if(local_heap) delete _heap; |
502 | 497 |
} |
503 | 498 |
|
504 | 499 |
///Sets the length map. |
505 | 500 |
|
506 | 501 |
///Sets the length map. |
507 | 502 |
///\return <tt> (*this) </tt> |
508 | 503 |
Dijkstra &lengthMap(const LengthMap &m) |
509 | 504 |
{ |
510 | 505 |
length = &m; |
511 | 506 |
return *this; |
512 | 507 |
} |
513 | 508 |
|
514 | 509 |
///Sets the map that stores the predecessor arcs. |
515 | 510 |
|
516 | 511 |
///Sets the map that stores the predecessor arcs. |
517 | 512 |
///If you don't use this function before calling \ref run(), |
518 | 513 |
///it will allocate one. The destructor deallocates this |
519 | 514 |
///automatically allocated map, of course. |
520 | 515 |
///\return <tt> (*this) </tt> |
521 | 516 |
Dijkstra &predMap(PredMap &m) |
522 | 517 |
{ |
523 | 518 |
if(local_pred) { |
524 | 519 |
delete _pred; |
525 | 520 |
local_pred=false; |
526 | 521 |
} |
527 | 522 |
_pred = &m; |
528 | 523 |
return *this; |
529 | 524 |
} |
530 | 525 |
|
531 | 526 |
///Sets the map that indicates which nodes are processed. |
532 | 527 |
|
533 | 528 |
///Sets the map that indicates which nodes are processed. |
534 | 529 |
///If you don't use this function before calling \ref run(), |
535 | 530 |
///it will allocate one. The destructor deallocates this |
536 | 531 |
///automatically allocated map, of course. |
537 | 532 |
///\return <tt> (*this) </tt> |
538 | 533 |
Dijkstra &processedMap(ProcessedMap &m) |
539 | 534 |
{ |
540 | 535 |
if(local_processed) { |
541 | 536 |
delete _processed; |
542 | 537 |
local_processed=false; |
543 | 538 |
} |
544 | 539 |
_processed = &m; |
545 | 540 |
return *this; |
546 | 541 |
} |
547 | 542 |
|
548 | 543 |
///Sets the map that stores the distances of the nodes. |
549 | 544 |
|
550 | 545 |
///Sets the map that stores the distances of the nodes calculated by the |
551 | 546 |
///algorithm. |
552 | 547 |
///If you don't use this function before calling \ref run(), |
553 | 548 |
///it will allocate one. The destructor deallocates this |
554 | 549 |
///automatically allocated map, of course. |
555 | 550 |
///\return <tt> (*this) </tt> |
556 | 551 |
Dijkstra &distMap(DistMap &m) |
557 | 552 |
{ |
558 | 553 |
if(local_dist) { |
559 | 554 |
delete _dist; |
560 | 555 |
local_dist=false; |
561 | 556 |
} |
562 | 557 |
_dist = &m; |
563 | 558 |
return *this; |
564 | 559 |
} |
565 | 560 |
|
566 | 561 |
///Sets the heap and the cross reference used by algorithm. |
567 | 562 |
|
568 | 563 |
///Sets the heap and the cross reference used by algorithm. |
569 | 564 |
///If you don't use this function before calling \ref run(), |
570 | 565 |
///it will allocate one. The destructor deallocates this |
571 | 566 |
///automatically allocated heap and cross reference, of course. |
572 | 567 |
///\return <tt> (*this) </tt> |
573 | 568 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
574 | 569 |
{ |
575 | 570 |
if(local_heap_cross_ref) { |
576 | 571 |
delete _heap_cross_ref; |
577 | 572 |
local_heap_cross_ref=false; |
578 | 573 |
} |
579 | 574 |
_heap_cross_ref = &cr; |
580 | 575 |
if(local_heap) { |
581 | 576 |
delete _heap; |
582 | 577 |
local_heap=false; |
583 | 578 |
} |
584 | 579 |
_heap = &hp; |
585 | 580 |
return *this; |
586 | 581 |
} |
587 | 582 |
|
588 | 583 |
private: |
589 | 584 |
|
590 | 585 |
void finalizeNodeData(Node v,Value dst) |
591 | 586 |
{ |
592 | 587 |
_processed->set(v,true); |
593 | 588 |
_dist->set(v, dst); |
594 | 589 |
} |
595 | 590 |
|
596 | 591 |
public: |
597 | 592 |
|
598 | 593 |
///\name Execution control |
599 | 594 |
///The simplest way to execute the algorithm is to use one of the |
600 | 595 |
///member functions called \ref lemon::Dijkstra::run() "run()". |
601 | 596 |
///\n |
602 | 597 |
///If you need more control on the execution, first you must call |
603 | 598 |
///\ref lemon::Dijkstra::init() "init()", then you can add several |
604 | 599 |
///source nodes with \ref lemon::Dijkstra::addSource() "addSource()". |
605 | 600 |
///Finally \ref lemon::Dijkstra::start() "start()" will perform the |
606 | 601 |
///actual path computation. |
607 | 602 |
|
608 | 603 |
///@{ |
609 | 604 |
|
610 | 605 |
///Initializes the internal data structures. |
611 | 606 |
|
612 | 607 |
///Initializes the internal data structures. |
613 | 608 |
/// |
614 | 609 |
void init() |
615 | 610 |
{ |
616 | 611 |
create_maps(); |
617 | 612 |
_heap->clear(); |
618 | 613 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
619 | 614 |
_pred->set(u,INVALID); |
620 | 615 |
_processed->set(u,false); |
621 | 616 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
622 | 617 |
} |
623 | 618 |
} |
624 | 619 |
|
625 | 620 |
///Adds a new source node. |
626 | 621 |
|
627 | 622 |
///Adds a new source node to the priority heap. |
628 | 623 |
///The optional second parameter is the initial distance of the node. |
629 | 624 |
/// |
630 | 625 |
///The function checks if the node has already been added to the heap and |
631 | 626 |
///it is pushed to the heap only if either it was not in the heap |
632 | 627 |
///or the shortest path found till then is shorter than \c dst. |
633 | 628 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
634 | 629 |
{ |
635 | 630 |
if(_heap->state(s) != Heap::IN_HEAP) { |
636 | 631 |
_heap->push(s,dst); |
637 | 632 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
638 | 633 |
_heap->set(s,dst); |
639 | 634 |
_pred->set(s,INVALID); |
640 | 635 |
} |
641 | 636 |
} |
642 | 637 |
|
643 | 638 |
///Processes the next node in the priority heap |
644 | 639 |
|
645 | 640 |
///Processes the next node in the priority heap. |
646 | 641 |
/// |
647 | 642 |
///\return The processed node. |
648 | 643 |
/// |
649 | 644 |
///\warning The priority heap must not be empty. |
650 | 645 |
Node processNextNode() |
651 | 646 |
{ |
652 | 647 |
Node v=_heap->top(); |
653 | 648 |
Value oldvalue=_heap->prio(); |
654 | 649 |
_heap->pop(); |
655 | 650 |
finalizeNodeData(v,oldvalue); |
656 | 651 |
|
657 | 652 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
658 | 653 |
Node w=G->target(e); |
659 | 654 |
switch(_heap->state(w)) { |
660 | 655 |
case Heap::PRE_HEAP: |
661 | 656 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
662 | 657 |
_pred->set(w,e); |
663 | 658 |
break; |
664 | 659 |
case Heap::IN_HEAP: |
665 | 660 |
{ |
666 | 661 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
667 | 662 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
668 | 663 |
_heap->decrease(w, newvalue); |
669 | 664 |
_pred->set(w,e); |
670 | 665 |
} |
671 | 666 |
} |
672 | 667 |
break; |
673 | 668 |
case Heap::POST_HEAP: |
674 | 669 |
break; |
675 | 670 |
} |
676 | 671 |
} |
677 | 672 |
return v; |
678 | 673 |
} |
679 | 674 |
|
680 | 675 |
///The next node to be processed. |
681 | 676 |
|
682 | 677 |
///Returns the next node to be processed or \c INVALID if the |
683 | 678 |
///priority heap is empty. |
684 | 679 |
Node nextNode() const |
685 | 680 |
{ |
686 | 681 |
return !_heap->empty()?_heap->top():INVALID; |
687 | 682 |
} |
688 | 683 |
|
689 | 684 |
///\brief Returns \c false if there are nodes |
690 | 685 |
///to be processed. |
691 | 686 |
/// |
692 | 687 |
///Returns \c false if there are nodes |
693 | 688 |
///to be processed in the priority heap. |
694 | 689 |
bool emptyQueue() const { return _heap->empty(); } |
695 | 690 |
|
696 | 691 |
///Returns the number of the nodes to be processed in the priority heap |
697 | 692 |
|
698 | 693 |
///Returns the number of the nodes to be processed in the priority heap. |
699 | 694 |
/// |
700 | 695 |
int queueSize() const { return _heap->size(); } |
701 | 696 |
|
702 | 697 |
///Executes the algorithm. |
703 | 698 |
|
704 | 699 |
///Executes the algorithm. |
705 | 700 |
/// |
706 | 701 |
///This method runs the %Dijkstra algorithm from the root node(s) |
707 | 702 |
///in order to compute the shortest path to each node. |
708 | 703 |
/// |
709 | 704 |
///The algorithm computes |
710 | 705 |
///- the shortest path tree (forest), |
711 | 706 |
///- the distance of each node from the root(s). |
712 | 707 |
/// |
713 | 708 |
///\pre init() must be called and at least one root node should be |
714 | 709 |
///added with addSource() before using this function. |
715 | 710 |
/// |
716 | 711 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
717 | 712 |
///\code |
718 | 713 |
/// while ( !d.emptyQueue() ) { |
719 | 714 |
/// d.processNextNode(); |
720 | 715 |
/// } |
721 | 716 |
///\endcode |
722 | 717 |
void start() |
723 | 718 |
{ |
724 | 719 |
while ( !emptyQueue() ) processNextNode(); |
725 | 720 |
} |
726 | 721 |
|
727 | 722 |
///Executes the algorithm until the given target node is processed. |
728 | 723 |
|
729 | 724 |
///Executes the algorithm until the given target node is processed. |
730 | 725 |
/// |
731 | 726 |
///This method runs the %Dijkstra algorithm from the root node(s) |
732 | 727 |
///in order to compute the shortest path to \c t. |
733 | 728 |
/// |
734 | 729 |
///The algorithm computes |
735 | 730 |
///- the shortest path to \c t, |
736 | 731 |
///- the distance of \c t from the root(s). |
737 | 732 |
/// |
738 | 733 |
///\pre init() must be called and at least one root node should be |
739 | 734 |
///added with addSource() before using this function. |
740 | 735 |
void start(Node t) |
741 | 736 |
{ |
742 | 737 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
743 | 738 |
if ( !_heap->empty() ) { |
744 | 739 |
finalizeNodeData(_heap->top(),_heap->prio()); |
745 | 740 |
_heap->pop(); |
746 | 741 |
} |
747 | 742 |
} |
748 | 743 |
|
749 | 744 |
///Executes the algorithm until a condition is met. |
750 | 745 |
|
751 | 746 |
///Executes the algorithm until a condition is met. |
752 | 747 |
/// |
753 | 748 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
754 | 749 |
///order to compute the shortest path to a node \c v with |
755 | 750 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
756 | 751 |
/// |
757 | 752 |
///\param nm A \c bool (or convertible) node map. The algorithm |
758 | 753 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
759 | 754 |
/// |
760 | 755 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
761 | 756 |
///\c INVALID if no such node was found. |
762 | 757 |
/// |
763 | 758 |
///\pre init() must be called and at least one root node should be |
764 | 759 |
///added with addSource() before using this function. |
765 | 760 |
template<class NodeBoolMap> |
766 | 761 |
Node start(const NodeBoolMap &nm) |
767 | 762 |
{ |
768 | 763 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
769 | 764 |
if ( _heap->empty() ) return INVALID; |
770 | 765 |
finalizeNodeData(_heap->top(),_heap->prio()); |
771 | 766 |
return _heap->top(); |
772 | 767 |
} |
773 | 768 |
|
774 | 769 |
///Runs the algorithm from the given source node. |
775 | 770 |
|
776 | 771 |
///This method runs the %Dijkstra algorithm from node \c s |
777 | 772 |
///in order to compute the shortest path to each node. |
778 | 773 |
/// |
779 | 774 |
///The algorithm computes |
780 | 775 |
///- the shortest path tree, |
781 | 776 |
///- the distance of each node from the root. |
782 | 777 |
/// |
783 | 778 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
784 | 779 |
///\code |
785 | 780 |
/// d.init(); |
786 | 781 |
/// d.addSource(s); |
787 | 782 |
/// d.start(); |
788 | 783 |
///\endcode |
789 | 784 |
void run(Node s) { |
790 | 785 |
init(); |
791 | 786 |
addSource(s); |
792 | 787 |
start(); |
793 | 788 |
} |
794 | 789 |
|
795 | 790 |
///Finds the shortest path between \c s and \c t. |
796 | 791 |
|
797 | 792 |
///This method runs the %Dijkstra algorithm from node \c s |
798 | 793 |
///in order to compute the shortest path to node \c t |
799 | 794 |
///(it stops searching when \c t is processed). |
800 | 795 |
/// |
801 | 796 |
///\return \c true if \c t is reachable form \c s. |
802 | 797 |
/// |
803 | 798 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
804 | 799 |
///shortcut of the following code. |
805 | 800 |
///\code |
806 | 801 |
/// d.init(); |
807 | 802 |
/// d.addSource(s); |
808 | 803 |
/// d.start(t); |
809 | 804 |
///\endcode |
810 | 805 |
bool run(Node s,Node t) { |
811 | 806 |
init(); |
812 | 807 |
addSource(s); |
813 | 808 |
start(t); |
814 | 809 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
815 | 810 |
} |
816 | 811 |
|
817 | 812 |
///@} |
818 | 813 |
|
819 | 814 |
///\name Query Functions |
820 | 815 |
///The result of the %Dijkstra algorithm can be obtained using these |
821 | 816 |
///functions.\n |
822 | 817 |
///Either \ref lemon::Dijkstra::run() "run()" or |
823 | 818 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
824 | 819 |
///using them. |
825 | 820 |
|
826 | 821 |
///@{ |
827 | 822 |
|
828 | 823 |
///The shortest path to a node. |
829 | 824 |
|
830 | 825 |
///Returns the shortest path to a node. |
831 | 826 |
/// |
832 | 827 |
///\warning \c t should be reachable from the root(s). |
833 | 828 |
/// |
834 | 829 |
///\pre Either \ref run() or \ref start() must be called before |
835 | 830 |
///using this function. |
836 | 831 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
837 | 832 |
|
838 | 833 |
///The distance of a node from the root(s). |
839 | 834 |
|
840 | 835 |
///Returns the distance of a node from the root(s). |
841 | 836 |
/// |
842 | 837 |
///\warning If node \c v is not reachable from the root(s), then |
843 | 838 |
///the return value of this function is undefined. |
844 | 839 |
/// |
845 | 840 |
///\pre Either \ref run() or \ref start() must be called before |
846 | 841 |
///using this function. |
847 | 842 |
Value dist(Node v) const { return (*_dist)[v]; } |
848 | 843 |
|
849 | 844 |
///Returns the 'previous arc' of the shortest path tree for a node. |
850 | 845 |
|
851 | 846 |
///This function returns the 'previous arc' of the shortest path |
852 | 847 |
///tree for the node \c v, i.e. it returns the last arc of a |
853 | 848 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
854 | 849 |
///is not reachable from the root(s) or if \c v is a root. |
855 | 850 |
/// |
856 | 851 |
///The shortest path tree used here is equal to the shortest path |
857 | 852 |
///tree used in \ref predNode(). |
858 | 853 |
/// |
859 | 854 |
///\pre Either \ref run() or \ref start() must be called before |
860 | 855 |
///using this function. |
861 | 856 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
862 | 857 |
|
863 | 858 |
///Returns the 'previous node' of the shortest path tree for a node. |
864 | 859 |
|
865 | 860 |
///This function returns the 'previous node' of the shortest path |
866 | 861 |
///tree for the node \c v, i.e. it returns the last but one node |
867 | 862 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
868 | 863 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
869 | 864 |
/// |
870 | 865 |
///The shortest path tree used here is equal to the shortest path |
871 | 866 |
///tree used in \ref predArc(). |
872 | 867 |
/// |
873 | 868 |
///\pre Either \ref run() or \ref start() must be called before |
874 | 869 |
///using this function. |
875 | 870 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
876 | 871 |
G->source((*_pred)[v]); } |
877 | 872 |
|
878 | 873 |
///\brief Returns a const reference to the node map that stores the |
879 | 874 |
///distances of the nodes. |
880 | 875 |
/// |
881 | 876 |
///Returns a const reference to the node map that stores the distances |
882 | 877 |
///of the nodes calculated by the algorithm. |
883 | 878 |
/// |
884 | 879 |
///\pre Either \ref run() or \ref init() |
885 | 880 |
///must be called before using this function. |
886 | 881 |
const DistMap &distMap() const { return *_dist;} |
887 | 882 |
|
888 | 883 |
///\brief Returns a const reference to the node map that stores the |
889 | 884 |
///predecessor arcs. |
890 | 885 |
/// |
891 | 886 |
///Returns a const reference to the node map that stores the predecessor |
892 | 887 |
///arcs, which form the shortest path tree. |
893 | 888 |
/// |
894 | 889 |
///\pre Either \ref run() or \ref init() |
895 | 890 |
///must be called before using this function. |
896 | 891 |
const PredMap &predMap() const { return *_pred;} |
897 | 892 |
|
898 | 893 |
///Checks if a node is reachable from the root(s). |
899 | 894 |
|
900 | 895 |
///Returns \c true if \c v is reachable from the root(s). |
901 | 896 |
///\pre Either \ref run() or \ref start() |
902 | 897 |
///must be called before using this function. |
903 | 898 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
904 | 899 |
Heap::PRE_HEAP; } |
905 | 900 |
|
906 | 901 |
///Checks if a node is processed. |
907 | 902 |
|
908 | 903 |
///Returns \c true if \c v is processed, i.e. the shortest |
909 | 904 |
///path to \c v has already found. |
910 | 905 |
///\pre Either \ref run() or \ref init() |
911 | 906 |
///must be called before using this function. |
912 | 907 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
913 | 908 |
Heap::POST_HEAP; } |
914 | 909 |
|
915 | 910 |
///The current distance of a node from the root(s). |
916 | 911 |
|
917 | 912 |
///Returns the current distance of a node from the root(s). |
918 | 913 |
///It may be decreased in the following processes. |
919 | 914 |
///\pre Either \ref run() or \ref init() |
920 | 915 |
///must be called before using this function and |
921 | 916 |
///node \c v must be reached but not necessarily processed. |
922 | 917 |
Value currentDist(Node v) const { |
923 | 918 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
924 | 919 |
} |
925 | 920 |
|
926 | 921 |
///@} |
927 | 922 |
}; |
928 | 923 |
|
929 | 924 |
|
930 | 925 |
///Default traits class of dijkstra() function. |
931 | 926 |
|
932 | 927 |
///Default traits class of dijkstra() function. |
933 | 928 |
///\tparam GR The type of the digraph. |
934 | 929 |
///\tparam LM The type of the length map. |
935 | 930 |
template<class GR, class LM> |
936 | 931 |
struct DijkstraWizardDefaultTraits |
937 | 932 |
{ |
938 | 933 |
///The type of the digraph the algorithm runs on. |
939 | 934 |
typedef GR Digraph; |
940 | 935 |
///The type of the map that stores the arc lengths. |
941 | 936 |
|
942 | 937 |
///The type of the map that stores the arc lengths. |
943 | 938 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
944 | 939 |
typedef LM LengthMap; |
945 | 940 |
///The type of the length of the arcs. |
946 | 941 |
typedef typename LM::Value Value; |
947 | 942 |
|
948 | 943 |
/// Operation traits for Dijkstra algorithm. |
949 | 944 |
|
950 | 945 |
/// This class defines the operations that are used in the algorithm. |
951 | 946 |
/// \see DijkstraDefaultOperationTraits |
952 | 947 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
953 | 948 |
|
954 | 949 |
/// The cross reference type used by the heap. |
955 | 950 |
|
956 | 951 |
/// The cross reference type used by the heap. |
957 | 952 |
/// Usually it is \c Digraph::NodeMap<int>. |
958 | 953 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
959 | 954 |
///Instantiates a \ref HeapCrossRef. |
960 | 955 |
|
961 | 956 |
///This function instantiates a \ref HeapCrossRef. |
962 | 957 |
/// \param g is the digraph, to which we would like to define the |
963 | 958 |
/// HeapCrossRef. |
964 | 959 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
965 | 960 |
{ |
966 | 961 |
return new HeapCrossRef(g); |
967 | 962 |
} |
968 | 963 |
|
969 | 964 |
///The heap type used by the Dijkstra algorithm. |
970 | 965 |
|
971 | 966 |
///The heap type used by the Dijkstra algorithm. |
972 | 967 |
/// |
973 | 968 |
///\sa BinHeap |
974 | 969 |
///\sa Dijkstra |
975 | 970 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
976 | 971 |
std::less<Value> > Heap; |
977 | 972 |
|
978 | 973 |
///Instantiates a \ref Heap. |
979 | 974 |
|
980 | 975 |
///This function instantiates a \ref Heap. |
981 | 976 |
/// \param r is the HeapCrossRef which is used. |
982 | 977 |
static Heap *createHeap(HeapCrossRef& r) |
983 | 978 |
{ |
984 | 979 |
return new Heap(r); |
985 | 980 |
} |
986 | 981 |
|
987 | 982 |
///\brief The type of the map that stores the predecessor |
988 | 983 |
///arcs of the shortest paths. |
989 | 984 |
/// |
990 | 985 |
///The type of the map that stores the predecessor |
991 | 986 |
///arcs of the shortest paths. |
992 | 987 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
993 | 988 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
994 | 989 |
///Instantiates a \ref PredMap. |
995 | 990 |
|
996 | 991 |
///This function instantiates a \ref PredMap. |
997 | 992 |
///\param g is the digraph, to which we would like to define the |
998 | 993 |
///\ref PredMap. |
999 | 994 |
static PredMap *createPredMap(const Digraph &g) |
1000 | 995 |
{ |
1001 | 996 |
return new PredMap(g); |
1002 | 997 |
} |
1003 | 998 |
|
1004 | 999 |
///The type of the map that indicates which nodes are processed. |
1005 | 1000 |
|
1006 | 1001 |
///The type of the map that indicates which nodes are processed. |
1007 | 1002 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1008 | 1003 |
///By default it is a NullMap. |
1009 | 1004 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1010 | 1005 |
///Instantiates a \ref ProcessedMap. |
1011 | 1006 |
|
1012 | 1007 |
///This function instantiates a \ref ProcessedMap. |
1013 | 1008 |
///\param g is the digraph, to which |
1014 | 1009 |
///we would like to define the \ref ProcessedMap. |
1015 | 1010 |
#ifdef DOXYGEN |
1016 | 1011 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1017 | 1012 |
#else |
1018 | 1013 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1019 | 1014 |
#endif |
1020 | 1015 |
{ |
1021 | 1016 |
return new ProcessedMap(); |
1022 | 1017 |
} |
1023 | 1018 |
|
1024 | 1019 |
///The type of the map that stores the distances of the nodes. |
1025 | 1020 |
|
1026 | 1021 |
///The type of the map that stores the distances of the nodes. |
1027 | 1022 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1028 | 1023 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
1029 | 1024 |
///Instantiates a \ref DistMap. |
1030 | 1025 |
|
1031 | 1026 |
///This function instantiates a \ref DistMap. |
1032 | 1027 |
///\param g is the digraph, to which we would like to define |
1033 | 1028 |
///the \ref DistMap |
1034 | 1029 |
static DistMap *createDistMap(const Digraph &g) |
1035 | 1030 |
{ |
1036 | 1031 |
return new DistMap(g); |
1037 | 1032 |
} |
1038 | 1033 |
|
1039 | 1034 |
///The type of the shortest paths. |
1040 | 1035 |
|
1041 | 1036 |
///The type of the shortest paths. |
1042 | 1037 |
///It must meet the \ref concepts::Path "Path" concept. |
1043 | 1038 |
typedef lemon::Path<Digraph> Path; |
1044 | 1039 |
}; |
1045 | 1040 |
|
1046 | 1041 |
/// Default traits class used by \ref DijkstraWizard |
1047 | 1042 |
|
1048 | 1043 |
/// To make it easier to use Dijkstra algorithm |
1049 | 1044 |
/// we have created a wizard class. |
1050 | 1045 |
/// This \ref DijkstraWizard class needs default traits, |
1051 | 1046 |
/// as well as the \ref Dijkstra class. |
1052 | 1047 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
1053 | 1048 |
/// \ref DijkstraWizard class. |
1054 | 1049 |
template<class GR,class LM> |
1055 | 1050 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1056 | 1051 |
{ |
1057 | 1052 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1058 | 1053 |
protected: |
1059 | 1054 |
//The type of the nodes in the digraph. |
1060 | 1055 |
typedef typename Base::Digraph::Node Node; |
1061 | 1056 |
|
1062 | 1057 |
//Pointer to the digraph the algorithm runs on. |
1063 | 1058 |
void *_g; |
1064 | 1059 |
//Pointer to the length map. |
1065 | 1060 |
void *_length; |
1066 | 1061 |
//Pointer to the map of processed nodes. |
1067 | 1062 |
void *_processed; |
1068 | 1063 |
//Pointer to the map of predecessors arcs. |
1069 | 1064 |
void *_pred; |
1070 | 1065 |
//Pointer to the map of distances. |
1071 | 1066 |
void *_dist; |
1072 | 1067 |
//Pointer to the shortest path to the target node. |
1073 | 1068 |
void *_path; |
1074 | 1069 |
//Pointer to the distance of the target node. |
1075 | 1070 |
void *_di; |
1076 | 1071 |
|
1077 | 1072 |
public: |
1078 | 1073 |
/// Constructor. |
1079 | 1074 |
|
1080 | 1075 |
/// This constructor does not require parameters, therefore it initiates |
1081 | 1076 |
/// all of the attributes to \c 0. |
1082 | 1077 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1083 | 1078 |
_dist(0), _path(0), _di(0) {} |
1084 | 1079 |
|
1085 | 1080 |
/// Constructor. |
1086 | 1081 |
|
1087 | 1082 |
/// This constructor requires two parameters, |
1088 | 1083 |
/// others are initiated to \c 0. |
1089 | 1084 |
/// \param g The digraph the algorithm runs on. |
1090 | 1085 |
/// \param l The length map. |
1091 | 1086 |
DijkstraWizardBase(const GR &g,const LM &l) : |
1092 | 1087 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1093 | 1088 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1094 | 1089 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1095 | 1090 |
|
1096 | 1091 |
}; |
1097 | 1092 |
|
1098 | 1093 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1099 | 1094 |
|
1100 | 1095 |
/// This auxiliary class is created to implement the |
1101 | 1096 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1102 | 1097 |
/// It does not have own \ref run() method, it uses the functions |
1103 | 1098 |
/// and features of the plain \ref Dijkstra. |
1104 | 1099 |
/// |
1105 | 1100 |
/// This class should only be used through the \ref dijkstra() function, |
1106 | 1101 |
/// which makes it easier to use the algorithm. |
1107 | 1102 |
template<class TR> |
1108 | 1103 |
class DijkstraWizard : public TR |
1109 | 1104 |
{ |
1110 | 1105 |
typedef TR Base; |
1111 | 1106 |
|
1112 | 1107 |
///The type of the digraph the algorithm runs on. |
1113 | 1108 |
typedef typename TR::Digraph Digraph; |
1114 | 1109 |
|
1115 | 1110 |
typedef typename Digraph::Node Node; |
1116 | 1111 |
typedef typename Digraph::NodeIt NodeIt; |
1117 | 1112 |
typedef typename Digraph::Arc Arc; |
1118 | 1113 |
typedef typename Digraph::OutArcIt OutArcIt; |
1119 | 1114 |
|
1120 | 1115 |
///The type of the map that stores the arc lengths. |
1121 | 1116 |
typedef typename TR::LengthMap LengthMap; |
1122 | 1117 |
///The type of the length of the arcs. |
1123 | 1118 |
typedef typename LengthMap::Value Value; |
1124 | 1119 |
///\brief The type of the map that stores the predecessor |
1125 | 1120 |
///arcs of the shortest paths. |
1126 | 1121 |
typedef typename TR::PredMap PredMap; |
1127 | 1122 |
///The type of the map that stores the distances of the nodes. |
1128 | 1123 |
typedef typename TR::DistMap DistMap; |
1129 | 1124 |
///The type of the map that indicates which nodes are processed. |
1130 | 1125 |
typedef typename TR::ProcessedMap ProcessedMap; |
1131 | 1126 |
///The type of the shortest paths |
1132 | 1127 |
typedef typename TR::Path Path; |
1133 | 1128 |
///The heap type used by the dijkstra algorithm. |
1134 | 1129 |
typedef typename TR::Heap Heap; |
1135 | 1130 |
|
1136 | 1131 |
public: |
1137 | 1132 |
|
1138 | 1133 |
/// Constructor. |
1139 | 1134 |
DijkstraWizard() : TR() {} |
1140 | 1135 |
|
1141 | 1136 |
/// Constructor that requires parameters. |
1142 | 1137 |
|
1143 | 1138 |
/// Constructor that requires parameters. |
1144 | 1139 |
/// These parameters will be the default values for the traits class. |
1145 | 1140 |
/// \param g The digraph the algorithm runs on. |
1146 | 1141 |
/// \param l The length map. |
1147 | 1142 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1148 | 1143 |
TR(g,l) {} |
1149 | 1144 |
|
1150 | 1145 |
///Copy constructor |
1151 | 1146 |
DijkstraWizard(const TR &b) : TR(b) {} |
1152 | 1147 |
|
1153 | 1148 |
~DijkstraWizard() {} |
1154 | 1149 |
|
1155 | 1150 |
///Runs Dijkstra algorithm from the given source node. |
1156 | 1151 |
|
1157 | 1152 |
///This method runs %Dijkstra algorithm from the given source node |
1158 | 1153 |
///in order to compute the shortest path to each node. |
1159 | 1154 |
void run(Node s) |
1160 | 1155 |
{ |
1161 |
if (s==INVALID) throw UninitializedParameter(); |
|
1162 | 1156 |
Dijkstra<Digraph,LengthMap,TR> |
1163 | 1157 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1164 | 1158 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1165 | 1159 |
if (Base::_pred) |
1166 | 1160 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1167 | 1161 |
if (Base::_dist) |
1168 | 1162 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1169 | 1163 |
if (Base::_processed) |
1170 | 1164 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1171 | 1165 |
dijk.run(s); |
1172 | 1166 |
} |
1173 | 1167 |
|
1174 | 1168 |
///Finds the shortest path between \c s and \c t. |
1175 | 1169 |
|
1176 | 1170 |
///This method runs the %Dijkstra algorithm from node \c s |
1177 | 1171 |
///in order to compute the shortest path to node \c t |
1178 | 1172 |
///(it stops searching when \c t is processed). |
1179 | 1173 |
/// |
1180 | 1174 |
///\return \c true if \c t is reachable form \c s. |
1181 | 1175 |
bool run(Node s, Node t) |
1182 | 1176 |
{ |
1183 |
if (s==INVALID || t==INVALID) throw UninitializedParameter(); |
|
1184 | 1177 |
Dijkstra<Digraph,LengthMap,TR> |
1185 | 1178 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1186 | 1179 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1187 | 1180 |
if (Base::_pred) |
1188 | 1181 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1189 | 1182 |
if (Base::_dist) |
1190 | 1183 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1191 | 1184 |
if (Base::_processed) |
1192 | 1185 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1193 | 1186 |
dijk.run(s,t); |
1194 | 1187 |
if (Base::_path) |
1195 | 1188 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1196 | 1189 |
if (Base::_di) |
1197 | 1190 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1198 | 1191 |
return dijk.reached(t); |
1199 | 1192 |
} |
1200 | 1193 |
|
1201 | 1194 |
template<class T> |
1202 | 1195 |
struct SetPredMapBase : public Base { |
1203 | 1196 |
typedef T PredMap; |
1204 | 1197 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1205 | 1198 |
SetPredMapBase(const TR &b) : TR(b) {} |
1206 | 1199 |
}; |
1207 | 1200 |
///\brief \ref named-func-param "Named parameter" |
1208 | 1201 |
///for setting \ref PredMap object. |
1209 | 1202 |
/// |
1210 | 1203 |
///\ref named-func-param "Named parameter" |
1211 | 1204 |
///for setting \ref PredMap object. |
1212 | 1205 |
template<class T> |
1213 | 1206 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1214 | 1207 |
{ |
1215 | 1208 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1216 | 1209 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1217 | 1210 |
} |
1218 | 1211 |
|
1219 | 1212 |
template<class T> |
1220 | 1213 |
struct SetDistMapBase : public Base { |
1221 | 1214 |
typedef T DistMap; |
1222 | 1215 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1223 | 1216 |
SetDistMapBase(const TR &b) : TR(b) {} |
1224 | 1217 |
}; |
1225 | 1218 |
///\brief \ref named-func-param "Named parameter" |
1226 | 1219 |
///for setting \ref DistMap object. |
1227 | 1220 |
/// |
1228 | 1221 |
///\ref named-func-param "Named parameter" |
1229 | 1222 |
///for setting \ref DistMap object. |
1230 | 1223 |
template<class T> |
1231 | 1224 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1232 | 1225 |
{ |
1233 | 1226 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1234 | 1227 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1235 | 1228 |
} |
1236 | 1229 |
|
1237 | 1230 |
template<class T> |
1238 | 1231 |
struct SetProcessedMapBase : public Base { |
1239 | 1232 |
typedef T ProcessedMap; |
1240 | 1233 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1241 | 1234 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1242 | 1235 |
}; |
1243 | 1236 |
///\brief \ref named-func-param "Named parameter" |
1244 | 1237 |
///for setting \ref ProcessedMap object. |
1245 | 1238 |
/// |
1246 | 1239 |
/// \ref named-func-param "Named parameter" |
1247 | 1240 |
///for setting \ref ProcessedMap object. |
1248 | 1241 |
template<class T> |
1249 | 1242 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1250 | 1243 |
{ |
1251 | 1244 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1252 | 1245 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1253 | 1246 |
} |
1254 | 1247 |
|
1255 | 1248 |
template<class T> |
1256 | 1249 |
struct SetPathBase : public Base { |
1257 | 1250 |
typedef T Path; |
1258 | 1251 |
SetPathBase(const TR &b) : TR(b) {} |
1259 | 1252 |
}; |
1260 | 1253 |
///\brief \ref named-func-param "Named parameter" |
1261 | 1254 |
///for getting the shortest path to the target node. |
1262 | 1255 |
/// |
1263 | 1256 |
///\ref named-func-param "Named parameter" |
1264 | 1257 |
///for getting the shortest path to the target node. |
1265 | 1258 |
template<class T> |
1266 | 1259 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1267 | 1260 |
{ |
1268 | 1261 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1269 | 1262 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1270 | 1263 |
} |
1271 | 1264 |
|
1272 | 1265 |
///\brief \ref named-func-param "Named parameter" |
1273 | 1266 |
///for getting the distance of the target node. |
1274 | 1267 |
/// |
1275 | 1268 |
///\ref named-func-param "Named parameter" |
1276 | 1269 |
///for getting the distance of the target node. |
1277 | 1270 |
DijkstraWizard dist(const Value &d) |
1278 | 1271 |
{ |
1279 | 1272 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1280 | 1273 |
return *this; |
1281 | 1274 |
} |
1282 | 1275 |
|
1283 | 1276 |
}; |
1284 | 1277 |
|
1285 | 1278 |
///Function-type interface for Dijkstra algorithm. |
1286 | 1279 |
|
1287 | 1280 |
/// \ingroup shortest_path |
1288 | 1281 |
///Function-type interface for Dijkstra algorithm. |
1289 | 1282 |
/// |
1290 | 1283 |
///This function also has several \ref named-func-param "named parameters", |
1291 | 1284 |
///they are declared as the members of class \ref DijkstraWizard. |
1292 | 1285 |
///The following examples show how to use these parameters. |
1293 | 1286 |
///\code |
1294 | 1287 |
/// // Compute shortest path from node s to each node |
1295 | 1288 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1296 | 1289 |
/// |
1297 | 1290 |
/// // Compute shortest path from s to t |
1298 | 1291 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1299 | 1292 |
///\endcode |
1300 | 1293 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
1301 | 1294 |
///to the end of the parameter list. |
1302 | 1295 |
///\sa DijkstraWizard |
1303 | 1296 |
///\sa Dijkstra |
1304 | 1297 |
template<class GR, class LM> |
1305 | 1298 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1306 | 1299 |
dijkstra(const GR &digraph, const LM &length) |
1307 | 1300 |
{ |
1308 | 1301 |
return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length); |
1309 | 1302 |
} |
1310 | 1303 |
|
1311 | 1304 |
} //END OF NAMESPACE LEMON |
1312 | 1305 |
|
1313 | 1306 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ERROR_H |
20 | 20 |
#define LEMON_ERROR_H |
21 | 21 |
|
22 | 22 |
/// \ingroup exceptions |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Basic exception classes and error handling. |
25 | 25 |
|
26 | 26 |
#include <exception> |
27 | 27 |
#include <string> |
28 | 28 |
#include <sstream> |
29 | 29 |
#include <iostream> |
30 | 30 |
#include <cstdlib> |
31 | 31 |
#include <memory> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \addtogroup exceptions |
36 | 36 |
/// @{ |
37 | 37 |
|
38 |
/// \brief |
|
38 |
/// \brief Generic exception class. |
|
39 | 39 |
/// |
40 |
/// Exception safe wrapper class to implement the members of exceptions. |
|
41 |
template <typename _Type> |
|
42 |
class ExceptionMember { |
|
43 |
public: |
|
44 |
typedef _Type Type; |
|
45 |
|
|
46 |
ExceptionMember() throw() { |
|
47 |
try { |
|
48 |
ptr.reset(new Type()); |
|
49 |
} catch (...) {} |
|
50 |
} |
|
51 |
|
|
52 |
ExceptionMember(const Type& type) throw() { |
|
53 |
try { |
|
54 |
ptr.reset(new Type()); |
|
55 |
if (ptr.get() == 0) return; |
|
56 |
*ptr = type; |
|
57 |
} catch (...) {} |
|
58 |
} |
|
59 |
|
|
60 |
ExceptionMember(const ExceptionMember& copy) throw() { |
|
61 |
try { |
|
62 |
if (!copy.valid()) return; |
|
63 |
ptr.reset(new Type()); |
|
64 |
if (ptr.get() == 0) return; |
|
65 |
*ptr = copy.get(); |
|
66 |
} catch (...) {} |
|
67 |
} |
|
68 |
|
|
69 |
ExceptionMember& operator=(const ExceptionMember& copy) throw() { |
|
70 |
if (ptr.get() == 0) return; |
|
71 |
try { |
|
72 |
if (!copy.valid()) return; |
|
73 |
*ptr = copy.get(); |
|
74 |
} catch (...) {} |
|
75 |
} |
|
76 |
|
|
77 |
void set(const Type& type) throw() { |
|
78 |
if (ptr.get() == 0) return; |
|
79 |
try { |
|
80 |
*ptr = type; |
|
81 |
} catch (...) {} |
|
82 |
} |
|
83 |
|
|
84 |
const Type& get() const { |
|
85 |
return *ptr; |
|
86 |
} |
|
87 |
|
|
88 |
bool valid() const throw() { |
|
89 |
return ptr.get() != 0; |
|
90 |
} |
|
91 |
|
|
92 |
private: |
|
93 |
std::auto_ptr<_Type> ptr; |
|
94 |
}; |
|
95 |
|
|
96 |
/// Exception-safe convenient error message builder class. |
|
97 |
|
|
98 |
/// Helper class which provides a convenient ostream-like (operator << |
|
99 |
/// based) interface to create a string message. Mostly useful in |
|
100 |
/// exception classes (therefore the name). |
|
101 |
class ErrorMessage { |
|
102 |
protected: |
|
103 |
///\e |
|
104 |
|
|
105 |
mutable std::auto_ptr<std::ostringstream> buf; |
|
106 |
|
|
107 |
///\e |
|
108 |
bool init() throw() { |
|
109 |
try { |
|
110 |
buf.reset(new std::ostringstream); |
|
111 |
} |
|
112 |
catch(...) { |
|
113 |
buf.reset(); |
|
114 |
} |
|
115 |
return buf.get(); |
|
116 |
} |
|
117 |
|
|
118 |
public: |
|
119 |
|
|
120 |
///\e |
|
121 |
ErrorMessage() throw() { init(); } |
|
122 |
|
|
123 |
ErrorMessage(const ErrorMessage& em) throw() : buf(em.buf) { } |
|
124 |
|
|
125 |
///\e |
|
126 |
ErrorMessage(const char *msg) throw() { |
|
127 |
init(); |
|
128 |
*this << msg; |
|
129 |
} |
|
130 |
|
|
131 |
///\e |
|
132 |
ErrorMessage(const std::string &msg) throw() { |
|
133 |
init(); |
|
134 |
*this << msg; |
|
135 |
} |
|
136 |
|
|
137 |
///\e |
|
138 |
template <typename T> |
|
139 |
ErrorMessage& operator<<(const T &t) throw() { |
|
140 |
if( ! buf.get() ) return *this; |
|
141 |
|
|
142 |
try { |
|
143 |
*buf << t; |
|
144 |
} |
|
145 |
catch(...) { |
|
146 |
buf.reset(); |
|
147 |
} |
|
148 |
return *this; |
|
149 |
} |
|
150 |
|
|
151 |
///\e |
|
152 |
const char* message() throw() { |
|
153 |
if( ! buf.get() ) return 0; |
|
154 |
|
|
155 |
const char* mes = 0; |
|
156 |
try { |
|
157 |
mes = buf->str().c_str(); |
|
158 |
} |
|
159 |
catch(...) {} |
|
160 |
return mes; |
|
161 |
} |
|
162 |
|
|
163 |
}; |
|
164 |
|
|
165 |
/// Generic exception class. |
|
166 |
|
|
167 | 40 |
/// Base class for exceptions used in LEMON. |
168 | 41 |
/// |
169 | 42 |
class Exception : public std::exception { |
170 | 43 |
public: |
171 |
///\e |
|
172 |
Exception() {} |
|
173 |
/// |
|
44 |
///Constructor |
|
45 |
Exception() throw() {} |
|
46 |
///Virtual destructor |
|
174 | 47 |
virtual ~Exception() throw() {} |
175 |
/// |
|
48 |
///A short description of the exception |
|
176 | 49 |
virtual const char* what() const throw() { |
177 | 50 |
return "lemon::Exception"; |
178 | 51 |
} |
179 | 52 |
}; |
180 | 53 |
|
181 |
/// |
|
54 |
/// \brief Input-Output error |
|
55 |
/// |
|
56 |
/// This exception is thrown when a file operation cannot be |
|
57 |
/// succeeded. |
|
58 |
class IoError : public Exception { |
|
59 |
protected: |
|
60 |
std::string _message; |
|
61 |
std::string _file; |
|
182 | 62 |
|
183 |
/// Logic errors represent problems in the internal logic of a program; |
|
184 |
/// in theory, these are preventable, and even detectable before the |
|
185 |
/// program runs (e.g. violations of class invariants). |
|
186 |
/// |
|
187 |
/// A typical example for this is \ref UninitializedParameter. |
|
188 |
class LogicError : public Exception { |
|
63 |
mutable std::string _what; |
|
189 | 64 |
public: |
65 |
|
|
66 |
/// Copy constructor |
|
67 |
IoError(const IoError &error) throw() : Exception() { |
|
68 |
message(error._message); |
|
69 |
file(error._file); |
|
70 |
} |
|
71 |
|
|
72 |
/// Constructor |
|
73 |
explicit IoError(const char *message) throw() { |
|
74 |
IoError::message(message); |
|
75 |
} |
|
76 |
|
|
77 |
/// Constructor |
|
78 |
explicit IoError(const std::string &message) throw() { |
|
79 |
IoError::message(message); |
|
80 |
} |
|
81 |
|
|
82 |
/// Constructor |
|
83 |
explicit IoError(const char *message, |
|
84 |
const std::string &file) throw() { |
|
85 |
IoError::message(message); |
|
86 |
IoError::file(file); |
|
87 |
} |
|
88 |
|
|
89 |
/// Constructor |
|
90 |
explicit IoError(const std::string &message, |
|
91 |
const std::string &file) throw() { |
|
92 |
IoError::message(message); |
|
93 |
IoError::file(file); |
|
94 |
} |
|
95 |
|
|
96 |
/// Virtual destructor |
|
97 |
virtual ~IoError() throw() {} |
|
98 |
|
|
99 |
/// Set the error message |
|
100 |
void message(const char *message) throw() { |
|
101 |
try { |
|
102 |
_message = message; |
|
103 |
} catch (...) {} |
|
104 |
} |
|
105 |
|
|
106 |
/// Set the error message |
|
107 |
void message(const std::string& message) throw() { |
|
108 |
try { |
|
109 |
_message = message; |
|
110 |
} catch (...) {} |
|
111 |
} |
|
112 |
|
|
113 |
/// Set the file name |
|
114 |
void file(const std::string &file) throw() { |
|
115 |
try { |
|
116 |
_file = file; |
|
117 |
} catch (...) {} |
|
118 |
} |
|
119 |
|
|
120 |
/// Returns the error message |
|
121 |
const std::string& message() const throw() { |
|
122 |
return _message; |
|
123 |
} |
|
124 |
|
|
125 |
/// \brief Returns the filename |
|
126 |
/// |
|
127 |
/// Returns the filename or an empty string if it was not specified. |
|
128 |
const std::string& file() const throw() { |
|
129 |
return _file; |
|
130 |
} |
|
131 |
|
|
132 |
/// \brief Returns a short error message |
|
133 |
/// |
|
134 |
/// Returns a short error message which contains the message and the |
|
135 |
/// file name. |
|
190 | 136 |
virtual const char* what() const throw() { |
191 |
|
|
137 |
try { |
|
138 |
_what.clear(); |
|
139 |
std::ostringstream oss; |
|
140 |
oss << "lemon:IoError" << ": "; |
|
141 |
oss << _message; |
|
142 |
if (!_file.empty()) { |
|
143 |
oss << " ('" << _file << "')"; |
|
144 |
} |
|
145 |
_what = oss.str(); |
|
146 |
} |
|
147 |
catch (...) {} |
|
148 |
if (!_what.empty()) return _what.c_str(); |
|
149 |
else return "lemon:IoError"; |
|
192 | 150 |
} |
151 |
|
|
193 | 152 |
}; |
194 | 153 |
|
195 |
/// \ref Exception for uninitialized parameters. |
|
196 |
|
|
197 |
/// This error represents problems in the initialization |
|
198 |
/// of the parameters of the algorithms. |
|
199 |
class UninitializedParameter : public LogicError { |
|
200 |
public: |
|
201 |
virtual const char* what() const throw() { |
|
202 |
return "lemon::UninitializedParameter"; |
|
203 |
} |
|
204 |
}; |
|
205 |
|
|
206 |
|
|
207 |
/// One of the two main subclasses of \ref Exception. |
|
208 |
|
|
209 |
/// Runtime errors represent problems outside the scope of a program; |
|
210 |
/// they cannot be easily predicted and can generally only be caught |
|
211 |
/// as the program executes. |
|
212 |
class RuntimeError : public Exception { |
|
213 |
public: |
|
214 |
virtual const char* what() const throw() { |
|
215 |
return "lemon::RuntimeError"; |
|
216 |
} |
|
217 |
}; |
|
218 |
|
|
219 |
///\e |
|
220 |
class RangeError : public RuntimeError { |
|
221 |
public: |
|
222 |
virtual const char* what() const throw() { |
|
223 |
return "lemon::RangeError"; |
|
224 |
} |
|
225 |
}; |
|
226 |
|
|
227 |
///\e |
|
228 |
class IoError : public RuntimeError { |
|
229 |
public: |
|
230 |
virtual const char* what() const throw() { |
|
231 |
return "lemon::IoError"; |
|
232 |
} |
|
233 |
}; |
|
234 |
|
|
235 |
///\e |
|
236 |
class DataFormatError : public IoError { |
|
154 |
/// \brief Format error |
|
155 |
/// |
|
156 |
/// This exception is thrown when an input file has wrong |
|
157 |
/// format or a data representation is not legal. |
|
158 |
class FormatError : public Exception { |
|
237 | 159 |
protected: |
238 |
ExceptionMember<std::string> _message; |
|
239 |
ExceptionMember<std::string> _file; |
|
160 |
std::string _message; |
|
161 |
std::string _file; |
|
240 | 162 |
int _line; |
241 | 163 |
|
242 |
mutable |
|
164 |
mutable std::string _what; |
|
243 | 165 |
public: |
244 | 166 |
|
245 |
DataFormatError(const DataFormatError &dfe) : |
|
246 |
IoError(dfe), _message(dfe._message), _file(dfe._file), |
|
247 |
_line(dfe._line) {} |
|
248 |
|
|
249 |
///\e |
|
250 |
explicit DataFormatError(const char *the_message) |
|
251 |
: _message(the_message), _line(0) {} |
|
252 |
|
|
253 |
///\e |
|
254 |
DataFormatError(const std::string &file_name, int line_num, |
|
255 |
const char *the_message) |
|
256 |
: _message(the_message), _line(line_num) { file(file_name); } |
|
257 |
|
|
258 |
///\e |
|
259 |
void line(int ln) { _line = ln; } |
|
260 |
///\e |
|
261 |
void message(const std::string& msg) { _message.set(msg); } |
|
262 |
///\e |
|
263 |
void file(const std::string &fl) { _file.set(fl); } |
|
264 |
|
|
265 |
///\e |
|
266 |
int line() const { return _line; } |
|
267 |
///\e |
|
268 |
const char* message() const { |
|
269 |
if (_message.valid() && !_message.get().empty()) { |
|
270 |
return _message.get().c_str(); |
|
271 |
} else { |
|
272 |
return 0; |
|
273 |
|
|
167 |
/// Copy constructor |
|
168 |
FormatError(const FormatError &error) throw() : Exception() { |
|
169 |
message(error._message); |
|
170 |
file(error._file); |
|
171 |
line(error._line); |
|
274 | 172 |
} |
275 | 173 |
|
276 |
/// \brief Returns the filename. |
|
277 |
/// |
|
278 |
/// Returns \e null if the filename was not specified. |
|
279 |
const char* file() const { |
|
280 |
if (_file.valid() && !_file.get().empty()) { |
|
281 |
return _file.get().c_str(); |
|
282 |
} else { |
|
283 |
return 0; |
|
284 |
|
|
174 |
/// Constructor |
|
175 |
explicit FormatError(const char *message) throw() { |
|
176 |
FormatError::message(message); |
|
177 |
_line = 0; |
|
285 | 178 |
} |
286 | 179 |
|
287 |
/// |
|
180 |
/// Constructor |
|
181 |
explicit FormatError(const std::string &message) throw() { |
|
182 |
FormatError::message(message); |
|
183 |
_line = 0; |
|
184 |
} |
|
185 |
|
|
186 |
/// Constructor |
|
187 |
explicit FormatError(const char *message, |
|
188 |
const std::string &file, int line = 0) throw() { |
|
189 |
FormatError::message(message); |
|
190 |
FormatError::file(file); |
|
191 |
FormatError::line(line); |
|
192 |
} |
|
193 |
|
|
194 |
/// Constructor |
|
195 |
explicit FormatError(const std::string &message, |
|
196 |
const std::string &file, int line = 0) throw() { |
|
197 |
FormatError::message(message); |
|
198 |
FormatError::file(file); |
|
199 |
FormatError::line(line); |
|
200 |
} |
|
201 |
|
|
202 |
/// Virtual destructor |
|
203 |
virtual ~FormatError() throw() {} |
|
204 |
|
|
205 |
/// Set the line number |
|
206 |
void line(int line) throw() { _line = line; } |
|
207 |
|
|
208 |
/// Set the error message |
|
209 |
void message(const char *message) throw() { |
|
210 |
try { |
|
211 |
_message = message; |
|
212 |
} catch (...) {} |
|
213 |
} |
|
214 |
|
|
215 |
/// Set the error message |
|
216 |
void message(const std::string& message) throw() { |
|
217 |
try { |
|
218 |
_message = message; |
|
219 |
} catch (...) {} |
|
220 |
} |
|
221 |
|
|
222 |
/// Set the file name |
|
223 |
void file(const std::string &file) throw() { |
|
224 |
try { |
|
225 |
_file = file; |
|
226 |
} catch (...) {} |
|
227 |
} |
|
228 |
|
|
229 |
/// \brief Returns the line number |
|
230 |
/// |
|
231 |
/// Returns the line number or zero if it was not specified. |
|
232 |
int line() const throw() { return _line; } |
|
233 |
|
|
234 |
/// Returns the error message |
|
235 |
const std::string& message() const throw() { |
|
236 |
return _message; |
|
237 |
} |
|
238 |
|
|
239 |
/// \brief Returns the filename |
|
240 |
/// |
|
241 |
/// Returns the filename or an empty string if it was not specified. |
|
242 |
const std::string& file() const throw() { |
|
243 |
return _file; |
|
244 |
} |
|
245 |
|
|
246 |
/// \brief Returns a short error message |
|
247 |
/// |
|
248 |
/// Returns a short error message which contains the message, the |
|
249 |
/// file name and the line number. |
|
288 | 250 |
virtual const char* what() const throw() { |
289 | 251 |
try { |
290 |
std::ostringstream ostr; |
|
291 |
ostr << "lemon:DataFormatError" << ": "; |
|
292 |
if (message()) ostr << message(); |
|
293 |
if( file() || line() != 0 ) { |
|
294 |
ostr << " ("; |
|
295 |
if( file() ) ostr << "in file '" << file() << "'"; |
|
296 |
if( file() && line() != 0 ) ostr << " "; |
|
297 |
if( line() != 0 ) ostr << "at line " << line(); |
|
298 |
|
|
252 |
_what.clear(); |
|
253 |
std::ostringstream oss; |
|
254 |
oss << "lemon:FormatError" << ": "; |
|
255 |
oss << _message; |
|
256 |
if (!_file.empty() || _line != 0) { |
|
257 |
oss << " ("; |
|
258 |
if (!_file.empty()) oss << "in file '" << _file << "'"; |
|
259 |
if (!_file.empty() && _line != 0) oss << " "; |
|
260 |
if (_line != 0) oss << "at line " << _line; |
|
261 |
oss << ")"; |
|
299 | 262 |
} |
300 |
|
|
263 |
_what = oss.str(); |
|
301 | 264 |
} |
302 | 265 |
catch (...) {} |
303 |
if( _message_holder.valid()) return _message_holder.get().c_str(); |
|
304 |
return "lemon:DataFormatError"; |
|
266 |
if (!_what.empty()) return _what.c_str(); |
|
267 |
else return "lemon:FormatError"; |
|
305 | 268 |
} |
306 | 269 |
|
307 |
virtual ~DataFormatError() throw() {} |
|
308 |
}; |
|
309 |
|
|
310 |
///\e |
|
311 |
class FileOpenError : public IoError { |
|
312 |
protected: |
|
313 |
ExceptionMember<std::string> _file; |
|
314 |
|
|
315 |
mutable ExceptionMember<std::string> _message_holder; |
|
316 |
public: |
|
317 |
|
|
318 |
FileOpenError(const FileOpenError &foe) : |
|
319 |
IoError(foe), _file(foe._file) {} |
|
320 |
|
|
321 |
///\e |
|
322 |
explicit FileOpenError(const std::string& fl) |
|
323 |
: _file(fl) {} |
|
324 |
|
|
325 |
|
|
326 |
///\e |
|
327 |
void file(const std::string &fl) { _file.set(fl); } |
|
328 |
|
|
329 |
/// \brief Returns the filename. |
|
330 |
/// |
|
331 |
/// Returns \e null if the filename was not specified. |
|
332 |
const char* file() const { |
|
333 |
if (_file.valid() && !_file.get().empty()) { |
|
334 |
return _file.get().c_str(); |
|
335 |
} else { |
|
336 |
return 0; |
|
337 |
} |
|
338 |
} |
|
339 |
|
|
340 |
///\e |
|
341 |
virtual const char* what() const throw() { |
|
342 |
try { |
|
343 |
std::ostringstream ostr; |
|
344 |
ostr << "lemon::FileOpenError" << ": "; |
|
345 |
ostr << "Cannot open file - " << file(); |
|
346 |
_message_holder.set(ostr.str()); |
|
347 |
} |
|
348 |
catch (...) {} |
|
349 |
if( _message_holder.valid()) return _message_holder.get().c_str(); |
|
350 |
return "lemon::FileOpenError"; |
|
351 |
} |
|
352 |
virtual ~FileOpenError() throw() {} |
|
353 |
}; |
|
354 |
|
|
355 |
class IoParameterError : public IoError { |
|
356 |
protected: |
|
357 |
ExceptionMember<std::string> _message; |
|
358 |
ExceptionMember<std::string> _file; |
|
359 |
|
|
360 |
mutable ExceptionMember<std::string> _message_holder; |
|
361 |
public: |
|
362 |
|
|
363 |
IoParameterError(const IoParameterError &ile) : |
|
364 |
IoError(ile), _message(ile._message), _file(ile._file) {} |
|
365 |
|
|
366 |
///\e |
|
367 |
explicit IoParameterError(const char *the_message) |
|
368 |
: _message(the_message) {} |
|
369 |
|
|
370 |
///\e |
|
371 |
IoParameterError(const char *file_name, const char *the_message) |
|
372 |
: _message(the_message), _file(file_name) {} |
|
373 |
|
|
374 |
///\e |
|
375 |
void message(const std::string& msg) { _message.set(msg); } |
|
376 |
///\e |
|
377 |
void file(const std::string &fl) { _file.set(fl); } |
|
378 |
|
|
379 |
///\e |
|
380 |
const char* message() const { |
|
381 |
if (_message.valid()) { |
|
382 |
return _message.get().c_str(); |
|
383 |
} else { |
|
384 |
return 0; |
|
385 |
} |
|
386 |
} |
|
387 |
|
|
388 |
/// \brief Returns the filename. |
|
389 |
/// |
|
390 |
/// Returns \c 0 if the filename was not specified. |
|
391 |
const char* file() const { |
|
392 |
if (_file.valid()) { |
|
393 |
return _file.get().c_str(); |
|
394 |
} else { |
|
395 |
return 0; |
|
396 |
} |
|
397 |
} |
|
398 |
|
|
399 |
///\e |
|
400 |
virtual const char* what() const throw() { |
|
401 |
try { |
|
402 |
std::ostringstream ostr; |
|
403 |
if (message()) ostr << message(); |
|
404 |
if (file()) ostr << "(when reading file '" << file() << "')"; |
|
405 |
_message_holder.set(ostr.str()); |
|
406 |
} |
|
407 |
catch (...) {} |
|
408 |
if( _message_holder.valid() ) return _message_holder.get().c_str(); |
|
409 |
return "lemon:IoParameterError"; |
|
410 |
} |
|
411 |
virtual ~IoParameterError() throw() {} |
|
412 | 270 |
}; |
413 | 271 |
|
414 | 272 |
/// @} |
415 | 273 |
|
416 | 274 |
} |
417 | 275 |
|
418 | 276 |
#endif // LEMON_ERROR_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#define WIN32_LEAN_AND_MEAN |
33 | 33 |
#define NOMINMAX |
34 | 34 |
#include<windows.h> |
35 | 35 |
#endif |
36 | 36 |
|
37 | 37 |
#include<lemon/math.h> |
38 | 38 |
#include<lemon/core.h> |
39 | 39 |
#include<lemon/dim2.h> |
40 | 40 |
#include<lemon/maps.h> |
41 | 41 |
#include<lemon/color.h> |
42 | 42 |
#include<lemon/bits/bezier.h> |
43 |
#include<lemon/error.h> |
|
43 | 44 |
|
44 | 45 |
|
45 | 46 |
///\ingroup eps_io |
46 | 47 |
///\file |
47 | 48 |
///\brief A well configurable tool for visualizing graphs |
48 | 49 |
|
49 | 50 |
namespace lemon { |
50 | 51 |
|
51 | 52 |
namespace _graph_to_eps_bits { |
52 | 53 |
template<class MT> |
53 | 54 |
class _NegY { |
54 | 55 |
public: |
55 | 56 |
typedef typename MT::Key Key; |
56 | 57 |
typedef typename MT::Value Value; |
57 | 58 |
const MT ↦ |
58 | 59 |
int yscale; |
59 | 60 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
60 | 61 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
61 | 62 |
}; |
62 | 63 |
} |
63 | 64 |
|
64 | 65 |
///Default traits class of \ref GraphToEps |
65 | 66 |
|
66 | 67 |
///Default traits class of \ref GraphToEps. |
67 | 68 |
/// |
68 | 69 |
///\c G is the type of the underlying graph. |
69 | 70 |
template<class G> |
70 | 71 |
struct DefaultGraphToEpsTraits |
71 | 72 |
{ |
72 | 73 |
typedef G Graph; |
73 | 74 |
typedef typename Graph::Node Node; |
74 | 75 |
typedef typename Graph::NodeIt NodeIt; |
75 | 76 |
typedef typename Graph::Arc Arc; |
76 | 77 |
typedef typename Graph::ArcIt ArcIt; |
77 | 78 |
typedef typename Graph::InArcIt InArcIt; |
78 | 79 |
typedef typename Graph::OutArcIt OutArcIt; |
79 | 80 |
|
80 | 81 |
|
81 | 82 |
const Graph &g; |
82 | 83 |
|
83 | 84 |
std::ostream& os; |
84 | 85 |
|
85 | 86 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
86 | 87 |
CoordsMapType _coords; |
87 | 88 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
88 | 89 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
89 | 90 |
|
90 | 91 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
91 | 92 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
92 | 93 |
|
93 | 94 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
94 | 95 |
|
95 | 96 |
double _arcWidthScale; |
96 | 97 |
|
97 | 98 |
double _nodeScale; |
98 | 99 |
double _xBorder, _yBorder; |
99 | 100 |
double _scale; |
100 | 101 |
double _nodeBorderQuotient; |
101 | 102 |
|
102 | 103 |
bool _drawArrows; |
103 | 104 |
double _arrowLength, _arrowWidth; |
104 | 105 |
|
105 | 106 |
bool _showNodes, _showArcs; |
106 | 107 |
|
107 | 108 |
bool _enableParallel; |
108 | 109 |
double _parArcDist; |
109 | 110 |
|
110 | 111 |
bool _showNodeText; |
111 | 112 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
112 | 113 |
double _nodeTextSize; |
113 | 114 |
|
114 | 115 |
bool _showNodePsText; |
115 | 116 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
116 | 117 |
char *_nodePsTextsPreamble; |
117 | 118 |
|
118 | 119 |
bool _undirected; |
119 | 120 |
|
120 | 121 |
bool _pleaseRemoveOsStream; |
121 | 122 |
|
122 | 123 |
bool _scaleToA4; |
123 | 124 |
|
124 | 125 |
std::string _title; |
125 | 126 |
std::string _copyright; |
126 | 127 |
|
127 | 128 |
enum NodeTextColorType |
128 | 129 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
129 | 130 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
130 | 131 |
|
131 | 132 |
bool _autoNodeScale; |
132 | 133 |
bool _autoArcWidthScale; |
133 | 134 |
|
134 | 135 |
bool _absoluteNodeSizes; |
135 | 136 |
bool _absoluteArcWidths; |
136 | 137 |
|
137 | 138 |
bool _negY; |
138 | 139 |
|
139 | 140 |
bool _preScale; |
140 | 141 |
///Constructor |
141 | 142 |
|
142 | 143 |
///Constructor |
143 | 144 |
///\param _g Reference to the graph to be printed. |
144 | 145 |
///\param _os Reference to the output stream. |
145 | 146 |
///\param _os Reference to the output stream. |
146 | 147 |
///By default it is <tt>std::cout</tt>. |
147 | 148 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
148 | 149 |
///will be explicitly deallocated by the destructor. |
149 | 150 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
150 | 151 |
bool _pros=false) : |
151 | 152 |
g(_g), os(_os), |
152 | 153 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
153 | 154 |
_nodeColors(WHITE), _arcColors(BLACK), |
154 | 155 |
_arcWidths(1.0), _arcWidthScale(0.003), |
155 | 156 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
156 | 157 |
_nodeBorderQuotient(.1), |
157 | 158 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
158 | 159 |
_showNodes(true), _showArcs(true), |
159 | 160 |
_enableParallel(false), _parArcDist(1), |
160 | 161 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
161 | 162 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
162 | 163 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
163 | 164 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
164 | 165 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
165 | 166 |
_autoNodeScale(false), |
166 | 167 |
_autoArcWidthScale(false), |
167 | 168 |
_absoluteNodeSizes(false), |
168 | 169 |
_absoluteArcWidths(false), |
169 | 170 |
_negY(false), |
170 | 171 |
_preScale(true) |
171 | 172 |
{} |
172 | 173 |
}; |
173 | 174 |
|
174 | 175 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
175 | 176 |
|
176 | 177 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
177 | 178 |
/// |
178 | 179 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
179 | 180 |
template<class T> class GraphToEps : public T |
180 | 181 |
{ |
181 | 182 |
// Can't believe it is required by the C++ standard |
182 | 183 |
using T::g; |
183 | 184 |
using T::os; |
184 | 185 |
|
185 | 186 |
using T::_coords; |
186 | 187 |
using T::_nodeSizes; |
187 | 188 |
using T::_nodeShapes; |
188 | 189 |
using T::_nodeColors; |
189 | 190 |
using T::_arcColors; |
190 | 191 |
using T::_arcWidths; |
191 | 192 |
|
192 | 193 |
using T::_arcWidthScale; |
193 | 194 |
using T::_nodeScale; |
194 | 195 |
using T::_xBorder; |
195 | 196 |
using T::_yBorder; |
196 | 197 |
using T::_scale; |
197 | 198 |
using T::_nodeBorderQuotient; |
198 | 199 |
|
199 | 200 |
using T::_drawArrows; |
200 | 201 |
using T::_arrowLength; |
201 | 202 |
using T::_arrowWidth; |
202 | 203 |
|
203 | 204 |
using T::_showNodes; |
204 | 205 |
using T::_showArcs; |
205 | 206 |
|
206 | 207 |
using T::_enableParallel; |
207 | 208 |
using T::_parArcDist; |
208 | 209 |
|
209 | 210 |
using T::_showNodeText; |
210 | 211 |
using T::_nodeTexts; |
211 | 212 |
using T::_nodeTextSize; |
212 | 213 |
|
213 | 214 |
using T::_showNodePsText; |
214 | 215 |
using T::_nodePsTexts; |
215 | 216 |
using T::_nodePsTextsPreamble; |
216 | 217 |
|
217 | 218 |
using T::_undirected; |
218 | 219 |
|
219 | 220 |
using T::_pleaseRemoveOsStream; |
220 | 221 |
|
221 | 222 |
using T::_scaleToA4; |
222 | 223 |
|
223 | 224 |
using T::_title; |
224 | 225 |
using T::_copyright; |
225 | 226 |
|
226 | 227 |
using T::NodeTextColorType; |
227 | 228 |
using T::CUST_COL; |
228 | 229 |
using T::DIST_COL; |
229 | 230 |
using T::DIST_BW; |
230 | 231 |
using T::_nodeTextColorType; |
231 | 232 |
using T::_nodeTextColors; |
232 | 233 |
|
233 | 234 |
using T::_autoNodeScale; |
234 | 235 |
using T::_autoArcWidthScale; |
235 | 236 |
|
236 | 237 |
using T::_absoluteNodeSizes; |
237 | 238 |
using T::_absoluteArcWidths; |
238 | 239 |
|
239 | 240 |
|
240 | 241 |
using T::_negY; |
241 | 242 |
using T::_preScale; |
242 | 243 |
|
243 | 244 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
244 | 245 |
|
245 | 246 |
typedef typename T::Graph Graph; |
246 | 247 |
typedef typename Graph::Node Node; |
247 | 248 |
typedef typename Graph::NodeIt NodeIt; |
248 | 249 |
typedef typename Graph::Arc Arc; |
249 | 250 |
typedef typename Graph::ArcIt ArcIt; |
250 | 251 |
typedef typename Graph::InArcIt InArcIt; |
251 | 252 |
typedef typename Graph::OutArcIt OutArcIt; |
252 | 253 |
|
253 | 254 |
static const int INTERPOL_PREC; |
254 | 255 |
static const double A4HEIGHT; |
255 | 256 |
static const double A4WIDTH; |
256 | 257 |
static const double A4BORDER; |
257 | 258 |
|
258 | 259 |
bool dontPrint; |
259 | 260 |
|
260 | 261 |
public: |
261 | 262 |
///Node shapes |
262 | 263 |
|
263 | 264 |
///Node shapes. |
264 | 265 |
/// |
265 | 266 |
enum NodeShapes { |
266 | 267 |
/// = 0 |
267 | 268 |
///\image html nodeshape_0.png |
268 | 269 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
269 | 270 |
CIRCLE=0, |
270 | 271 |
/// = 1 |
271 | 272 |
///\image html nodeshape_1.png |
272 | 273 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
273 | 274 |
/// |
274 | 275 |
SQUARE=1, |
275 | 276 |
/// = 2 |
276 | 277 |
///\image html nodeshape_2.png |
277 | 278 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
278 | 279 |
/// |
279 | 280 |
DIAMOND=2, |
280 | 281 |
/// = 3 |
281 | 282 |
///\image html nodeshape_3.png |
282 | 283 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
283 | 284 |
/// |
284 | 285 |
MALE=3, |
285 | 286 |
/// = 4 |
286 | 287 |
///\image html nodeshape_4.png |
287 | 288 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
288 | 289 |
/// |
289 | 290 |
FEMALE=4 |
290 | 291 |
}; |
291 | 292 |
|
292 | 293 |
private: |
293 | 294 |
class arcLess { |
294 | 295 |
const Graph &g; |
295 | 296 |
public: |
296 | 297 |
arcLess(const Graph &_g) : g(_g) {} |
297 | 298 |
bool operator()(Arc a,Arc b) const |
298 | 299 |
{ |
299 | 300 |
Node ai=std::min(g.source(a),g.target(a)); |
300 | 301 |
Node aa=std::max(g.source(a),g.target(a)); |
301 | 302 |
Node bi=std::min(g.source(b),g.target(b)); |
302 | 303 |
Node ba=std::max(g.source(b),g.target(b)); |
303 | 304 |
return ai<bi || |
304 | 305 |
(ai==bi && (aa < ba || |
305 | 306 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
306 | 307 |
} |
307 | 308 |
}; |
308 | 309 |
bool isParallel(Arc e,Arc f) const |
309 | 310 |
{ |
310 | 311 |
return (g.source(e)==g.source(f)&& |
311 | 312 |
g.target(e)==g.target(f)) || |
312 | 313 |
(g.source(e)==g.target(f)&& |
313 | 314 |
g.target(e)==g.source(f)); |
314 | 315 |
} |
315 | 316 |
template<class TT> |
316 | 317 |
static std::string psOut(const dim2::Point<TT> &p) |
317 | 318 |
{ |
318 | 319 |
std::ostringstream os; |
319 | 320 |
os << p.x << ' ' << p.y; |
320 | 321 |
return os.str(); |
321 | 322 |
} |
322 | 323 |
static std::string psOut(const Color &c) |
323 | 324 |
{ |
324 | 325 |
std::ostringstream os; |
325 | 326 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
326 | 327 |
return os.str(); |
327 | 328 |
} |
328 | 329 |
|
329 | 330 |
public: |
330 | 331 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
331 | 332 |
|
332 | 333 |
template<class X> struct CoordsTraits : public T { |
333 | 334 |
typedef X CoordsMapType; |
334 | 335 |
const X &_coords; |
335 | 336 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
336 | 337 |
}; |
337 | 338 |
///Sets the map of the node coordinates |
338 | 339 |
|
339 | 340 |
///Sets the map of the node coordinates. |
340 | 341 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
341 | 342 |
///\ref dim2::Point "dim2::Point<int>" values. |
342 | 343 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
343 | 344 |
dontPrint=true; |
344 | 345 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
345 | 346 |
} |
346 | 347 |
template<class X> struct NodeSizesTraits : public T { |
347 | 348 |
const X &_nodeSizes; |
348 | 349 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
349 | 350 |
}; |
350 | 351 |
///Sets the map of the node sizes |
351 | 352 |
|
352 | 353 |
///Sets the map of the node sizes. |
353 | 354 |
///\param x must be a node map with \c double (or convertible) values. |
354 | 355 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
355 | 356 |
{ |
356 | 357 |
dontPrint=true; |
357 | 358 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
358 | 359 |
} |
359 | 360 |
template<class X> struct NodeShapesTraits : public T { |
360 | 361 |
const X &_nodeShapes; |
361 | 362 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
362 | 363 |
}; |
363 | 364 |
///Sets the map of the node shapes |
364 | 365 |
|
365 | 366 |
///Sets the map of the node shapes. |
366 | 367 |
///The available shape values |
367 | 368 |
///can be found in \ref NodeShapes "enum NodeShapes". |
368 | 369 |
///\param x must be a node map with \c int (or convertible) values. |
369 | 370 |
///\sa NodeShapes |
370 | 371 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
371 | 372 |
{ |
372 | 373 |
dontPrint=true; |
373 | 374 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
374 | 375 |
} |
375 | 376 |
template<class X> struct NodeTextsTraits : public T { |
376 | 377 |
const X &_nodeTexts; |
377 | 378 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
378 | 379 |
}; |
379 | 380 |
///Sets the text printed on the nodes |
380 | 381 |
|
381 | 382 |
///Sets the text printed on the nodes. |
382 | 383 |
///\param x must be a node map with type that can be pushed to a standard |
383 | 384 |
///\c ostream. |
384 | 385 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
385 | 386 |
{ |
386 | 387 |
dontPrint=true; |
387 | 388 |
_showNodeText=true; |
388 | 389 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
389 | 390 |
} |
390 | 391 |
template<class X> struct NodePsTextsTraits : public T { |
391 | 392 |
const X &_nodePsTexts; |
392 | 393 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
393 | 394 |
}; |
394 | 395 |
///Inserts a PostScript block to the nodes |
395 | 396 |
|
396 | 397 |
///With this command it is possible to insert a verbatim PostScript |
397 | 398 |
///block to the nodes. |
398 | 399 |
///The PS current point will be moved to the center of the node before |
399 | 400 |
///the PostScript block inserted. |
400 | 401 |
/// |
401 | 402 |
///Before and after the block a newline character is inserted so you |
402 | 403 |
///don't have to bother with the separators. |
403 | 404 |
/// |
404 | 405 |
///\param x must be a node map with type that can be pushed to a standard |
405 | 406 |
///\c ostream. |
406 | 407 |
/// |
407 | 408 |
///\sa nodePsTextsPreamble() |
408 | 409 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
409 | 410 |
{ |
410 | 411 |
dontPrint=true; |
411 | 412 |
_showNodePsText=true; |
412 | 413 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
413 | 414 |
} |
414 | 415 |
template<class X> struct ArcWidthsTraits : public T { |
415 | 416 |
const X &_arcWidths; |
416 | 417 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
417 | 418 |
}; |
418 | 419 |
///Sets the map of the arc widths |
419 | 420 |
|
420 | 421 |
///Sets the map of the arc widths. |
421 | 422 |
///\param x must be an arc map with \c double (or convertible) values. |
422 | 423 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
423 | 424 |
{ |
424 | 425 |
dontPrint=true; |
425 | 426 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
426 | 427 |
} |
... | ... |
@@ -785,407 +786,417 @@ |
785 | 786 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" |
786 | 787 |
<< " bind def\n"; |
787 | 788 |
//x y r |
788 | 789 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
789 | 790 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
790 | 791 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
791 | 792 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
792 | 793 |
<< " closepath pop pop pop} bind def\n"; |
793 | 794 |
//x y r |
794 | 795 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
795 | 796 |
<< " 2 index 2 index 2 index add lineto\n" |
796 | 797 |
<< " 2 index 1 index sub 2 index lineto\n" |
797 | 798 |
<< " 2 index 2 index 2 index sub lineto\n" |
798 | 799 |
<< " closepath pop pop pop} bind def\n"; |
799 | 800 |
// x y r cr cg cb |
800 | 801 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
801 | 802 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
802 | 803 |
<< " } bind def\n"; |
803 | 804 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
804 | 805 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
805 | 806 |
<< " } bind def\n"; |
806 | 807 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
807 | 808 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
808 | 809 |
<< " } bind def\n"; |
809 | 810 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
810 | 811 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
811 | 812 |
<< " 1.5 mul mul setlinewidth\n" |
812 | 813 |
<< " newpath 5 index 5 index moveto " |
813 | 814 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
814 | 815 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
815 | 816 |
<< " moveto\n" |
816 | 817 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
817 | 818 |
<< "stroke\n" |
818 | 819 |
<< " 5 index 5 index 5 index c fill\n" |
819 | 820 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
820 | 821 |
<< " } bind def\n"; |
821 | 822 |
os << "/nmale {\n" |
822 | 823 |
<< " 0 0 0 setrgbcolor 3 index " |
823 | 824 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
824 | 825 |
<<" 1.5 mul mul setlinewidth\n" |
825 | 826 |
<< " newpath 5 index 5 index moveto\n" |
826 | 827 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
827 | 828 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
828 | 829 |
<< " 1 index 1 index lineto\n" |
829 | 830 |
<< " 1 index 1 index 7 index sub moveto\n" |
830 | 831 |
<< " 1 index 1 index lineto\n" |
831 | 832 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
832 | 833 |
<< " lineto\n" |
833 | 834 |
<< " stroke\n" |
834 | 835 |
<< " 5 index 5 index 5 index c fill\n" |
835 | 836 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
836 | 837 |
<< " } bind def\n"; |
837 | 838 |
|
838 | 839 |
|
839 | 840 |
os << "/arrl " << _arrowLength << " def\n"; |
840 | 841 |
os << "/arrw " << _arrowWidth << " def\n"; |
841 | 842 |
// l dx_norm dy_norm |
842 | 843 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n"; |
843 | 844 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
844 | 845 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx " |
845 | 846 |
<< "exch def\n" |
846 | 847 |
<< " /w exch def /len exch def\n" |
847 | 848 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
848 | 849 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
849 | 850 |
<< " len w sub arrl sub dx dy lrl\n" |
850 | 851 |
<< " arrw dy dx neg lrl\n" |
851 | 852 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
852 | 853 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
853 | 854 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
854 | 855 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
855 | 856 |
<< " arrw dy dx neg lrl\n" |
856 | 857 |
<< " len w sub arrl sub neg dx dy lrl\n" |
857 | 858 |
<< " closepath fill } bind def\n"; |
858 | 859 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n" |
859 | 860 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
860 | 861 |
|
861 | 862 |
os << "\ngsave\n"; |
862 | 863 |
if(_scaleToA4) |
863 | 864 |
if(bb.height()>bb.width()) { |
864 | 865 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
865 | 866 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
866 | 867 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
867 | 868 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
868 | 869 |
<< " translate\n" |
869 | 870 |
<< sc << " dup scale\n" |
870 | 871 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
871 | 872 |
} |
872 | 873 |
else { |
873 | 874 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
874 | 875 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
875 | 876 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
876 | 877 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
877 | 878 |
<< " translate\n" |
878 | 879 |
<< sc << " dup scale\n90 rotate\n" |
879 | 880 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
880 | 881 |
} |
881 | 882 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
882 | 883 |
|
883 | 884 |
if(_showArcs) { |
884 | 885 |
os << "%Arcs:\ngsave\n"; |
885 | 886 |
if(_enableParallel) { |
886 | 887 |
std::vector<Arc> el; |
887 | 888 |
for(ArcIt e(g);e!=INVALID;++e) |
888 | 889 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
889 | 890 |
&&g.source(e)!=g.target(e)) |
890 | 891 |
el.push_back(e); |
891 | 892 |
std::sort(el.begin(),el.end(),arcLess(g)); |
892 | 893 |
|
893 | 894 |
typename std::vector<Arc>::iterator j; |
894 | 895 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) { |
895 | 896 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
896 | 897 |
|
897 | 898 |
double sw=0; |
898 | 899 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
899 | 900 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
900 | 901 |
sw-=_parArcDist; |
901 | 902 |
sw/=-2.0; |
902 | 903 |
dim2::Point<double> |
903 | 904 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
904 | 905 |
double l=std::sqrt(dvec.normSquare()); |
905 | 906 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
906 | 907 |
dim2::Point<double> m; |
907 | 908 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
908 | 909 |
// mycoords[g.source(*i)])/2.0; |
909 | 910 |
|
910 | 911 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
911 | 912 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
912 | 913 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
913 | 914 |
|
914 | 915 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
915 | 916 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
916 | 917 |
|
917 | 918 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) { |
918 | 919 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
919 | 920 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
920 | 921 |
if(_drawArrows) { |
921 | 922 |
int node_shape; |
922 | 923 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
923 | 924 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
924 | 925 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
925 | 926 |
node_shape=_nodeShapes[g.target(*e)]; |
926 | 927 |
dim2::Bezier3 bez(s,mm,mm,t); |
927 | 928 |
double t1=0,t2=1; |
928 | 929 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
929 | 930 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
930 | 931 |
else t1=(t1+t2)/2; |
931 | 932 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
932 | 933 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
933 | 934 |
rn*=rn; |
934 | 935 |
t2=(t1+t2)/2;t1=0; |
935 | 936 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
936 | 937 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
937 | 938 |
else t2=(t1+t2)/2; |
938 | 939 |
dim2::Point<double> linend=bez((t1+t2)/2); |
939 | 940 |
bez=bez.before((t1+t2)/2); |
940 | 941 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
941 | 942 |
// node_shape=_nodeShapes[g.source(*e)]; |
942 | 943 |
// t1=0;t2=1; |
943 | 944 |
// for(int i=0;i<INTERPOL_PREC;++i) |
944 | 945 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
945 | 946 |
// t1=(t1+t2)/2; |
946 | 947 |
// else t2=(t1+t2)/2; |
947 | 948 |
// bez=bez.after((t1+t2)/2); |
948 | 949 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
949 | 950 |
<< _arcColors[*e].red() << ' ' |
950 | 951 |
<< _arcColors[*e].green() << ' ' |
951 | 952 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
952 | 953 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
953 | 954 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
954 | 955 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
955 | 956 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
956 | 957 |
dim2::Point<double> dd(rot90(linend-apoint)); |
957 | 958 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
958 | 959 |
std::sqrt(dd.normSquare()); |
959 | 960 |
os << "newpath " << psOut(apoint) << " moveto " |
960 | 961 |
<< psOut(linend+dd) << " lineto " |
961 | 962 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
962 | 963 |
} |
963 | 964 |
else { |
964 | 965 |
os << mycoords[g.source(*e)].x << ' ' |
965 | 966 |
<< mycoords[g.source(*e)].y << ' ' |
966 | 967 |
<< mm.x << ' ' << mm.y << ' ' |
967 | 968 |
<< mycoords[g.target(*e)].x << ' ' |
968 | 969 |
<< mycoords[g.target(*e)].y << ' ' |
969 | 970 |
<< _arcColors[*e].red() << ' ' |
970 | 971 |
<< _arcColors[*e].green() << ' ' |
971 | 972 |
<< _arcColors[*e].blue() << ' ' |
972 | 973 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
973 | 974 |
} |
974 | 975 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
975 | 976 |
} |
976 | 977 |
} |
977 | 978 |
} |
978 | 979 |
else for(ArcIt e(g);e!=INVALID;++e) |
979 | 980 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
980 | 981 |
&&g.source(e)!=g.target(e)) { |
981 | 982 |
if(_drawArrows) { |
982 | 983 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
983 | 984 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
984 | 985 |
int node_shape=_nodeShapes[g.target(e)]; |
985 | 986 |
double t1=0,t2=1; |
986 | 987 |
for(int i=0;i<INTERPOL_PREC;++i) |
987 | 988 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
988 | 989 |
else t2=(t1+t2)/2; |
989 | 990 |
double l=std::sqrt(d.normSquare()); |
990 | 991 |
d/=l; |
991 | 992 |
|
992 | 993 |
os << l*(1-(t1+t2)/2) << ' ' |
993 | 994 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
994 | 995 |
<< d.x << ' ' << d.y << ' ' |
995 | 996 |
<< mycoords[g.source(e)].x << ' ' |
996 | 997 |
<< mycoords[g.source(e)].y << ' ' |
997 | 998 |
<< _arcColors[e].red() << ' ' |
998 | 999 |
<< _arcColors[e].green() << ' ' |
999 | 1000 |
<< _arcColors[e].blue() << " arr\n"; |
1000 | 1001 |
} |
1001 | 1002 |
else os << mycoords[g.source(e)].x << ' ' |
1002 | 1003 |
<< mycoords[g.source(e)].y << ' ' |
1003 | 1004 |
<< mycoords[g.target(e)].x << ' ' |
1004 | 1005 |
<< mycoords[g.target(e)].y << ' ' |
1005 | 1006 |
<< _arcColors[e].red() << ' ' |
1006 | 1007 |
<< _arcColors[e].green() << ' ' |
1007 | 1008 |
<< _arcColors[e].blue() << ' ' |
1008 | 1009 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
1009 | 1010 |
} |
1010 | 1011 |
os << "grestore\n"; |
1011 | 1012 |
} |
1012 | 1013 |
if(_showNodes) { |
1013 | 1014 |
os << "%Nodes:\ngsave\n"; |
1014 | 1015 |
for(NodeIt n(g);n!=INVALID;++n) { |
1015 | 1016 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
1016 | 1017 |
<< _nodeSizes[n]*_nodeScale << ' ' |
1017 | 1018 |
<< _nodeColors[n].red() << ' ' |
1018 | 1019 |
<< _nodeColors[n].green() << ' ' |
1019 | 1020 |
<< _nodeColors[n].blue() << ' '; |
1020 | 1021 |
switch(_nodeShapes[n]) { |
1021 | 1022 |
case CIRCLE: |
1022 | 1023 |
os<< "nc";break; |
1023 | 1024 |
case SQUARE: |
1024 | 1025 |
os<< "nsq";break; |
1025 | 1026 |
case DIAMOND: |
1026 | 1027 |
os<< "ndi";break; |
1027 | 1028 |
case MALE: |
1028 | 1029 |
os<< "nmale";break; |
1029 | 1030 |
case FEMALE: |
1030 | 1031 |
os<< "nfemale";break; |
1031 | 1032 |
} |
1032 | 1033 |
os<<'\n'; |
1033 | 1034 |
} |
1034 | 1035 |
os << "grestore\n"; |
1035 | 1036 |
} |
1036 | 1037 |
if(_showNodeText) { |
1037 | 1038 |
os << "%Node texts:\ngsave\n"; |
1038 | 1039 |
os << "/fosi " << _nodeTextSize << " def\n"; |
1039 | 1040 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
1040 | 1041 |
for(NodeIt n(g);n!=INVALID;++n) { |
1041 | 1042 |
switch(_nodeTextColorType) { |
1042 | 1043 |
case DIST_COL: |
1043 | 1044 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
1044 | 1045 |
break; |
1045 | 1046 |
case DIST_BW: |
1046 | 1047 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
1047 | 1048 |
break; |
1048 | 1049 |
case CUST_COL: |
1049 | 1050 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
1050 | 1051 |
break; |
1051 | 1052 |
default: |
1052 | 1053 |
os << "0 0 0 setrgbcolor\n"; |
1053 | 1054 |
} |
1054 | 1055 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1055 | 1056 |
<< " (" << _nodeTexts[n] << ") cshow\n"; |
1056 | 1057 |
} |
1057 | 1058 |
os << "grestore\n"; |
1058 | 1059 |
} |
1059 | 1060 |
if(_showNodePsText) { |
1060 | 1061 |
os << "%Node PS blocks:\ngsave\n"; |
1061 | 1062 |
for(NodeIt n(g);n!=INVALID;++n) |
1062 | 1063 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1063 | 1064 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
1064 | 1065 |
os << "grestore\n"; |
1065 | 1066 |
} |
1066 | 1067 |
|
1067 | 1068 |
os << "grestore\nshowpage\n"; |
1068 | 1069 |
|
1069 | 1070 |
//CleanUp: |
1070 | 1071 |
if(_pleaseRemoveOsStream) {delete &os;} |
1071 | 1072 |
} |
1072 | 1073 |
|
1073 | 1074 |
///\name Aliases |
1074 | 1075 |
///These are just some aliases to other parameter setting functions. |
1075 | 1076 |
|
1076 | 1077 |
///@{ |
1077 | 1078 |
|
1078 | 1079 |
///An alias for arcWidths() |
1079 | 1080 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
1080 | 1081 |
{ |
1081 | 1082 |
return arcWidths(x); |
1082 | 1083 |
} |
1083 | 1084 |
|
1084 | 1085 |
///An alias for arcColors() |
1085 | 1086 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
1086 | 1087 |
edgeColors(const X &x) |
1087 | 1088 |
{ |
1088 | 1089 |
return arcColors(x); |
1089 | 1090 |
} |
1090 | 1091 |
|
1091 | 1092 |
///An alias for arcWidthScale() |
1092 | 1093 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);} |
1093 | 1094 |
|
1094 | 1095 |
///An alias for autoArcWidthScale() |
1095 | 1096 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
1096 | 1097 |
{ |
1097 | 1098 |
return autoArcWidthScale(b); |
1098 | 1099 |
} |
1099 | 1100 |
|
1100 | 1101 |
///An alias for absoluteArcWidths() |
1101 | 1102 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
1102 | 1103 |
{ |
1103 | 1104 |
return absoluteArcWidths(b); |
1104 | 1105 |
} |
1105 | 1106 |
|
1106 | 1107 |
///An alias for parArcDist() |
1107 | 1108 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1108 | 1109 |
|
1109 | 1110 |
///An alias for hideArcs() |
1110 | 1111 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1111 | 1112 |
|
1112 | 1113 |
///@} |
1113 | 1114 |
}; |
1114 | 1115 |
|
1115 | 1116 |
template<class T> |
1116 | 1117 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1117 | 1118 |
template<class T> |
1118 | 1119 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1119 | 1120 |
template<class T> |
1120 | 1121 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1121 | 1122 |
template<class T> |
1122 | 1123 |
const double GraphToEps<T>::A4BORDER = 15; |
1123 | 1124 |
|
1124 | 1125 |
|
1125 | 1126 |
///Generates an EPS file from a graph |
1126 | 1127 |
|
1127 | 1128 |
///\ingroup eps_io |
1128 | 1129 |
///Generates an EPS file from a graph. |
1129 | 1130 |
///\param g Reference to the graph to be printed. |
1130 | 1131 |
///\param os Reference to the output stream. |
1131 | 1132 |
///By default it is <tt>std::cout</tt>. |
1132 | 1133 |
/// |
1133 | 1134 |
///This function also has a lot of |
1134 | 1135 |
///\ref named-templ-func-param "named parameters", |
1135 | 1136 |
///they are declared as the members of class \ref GraphToEps. The following |
1136 | 1137 |
///example shows how to use these parameters. |
1137 | 1138 |
///\code |
1138 | 1139 |
/// graphToEps(g,os).scale(10).coords(coords) |
1139 | 1140 |
/// .nodeScale(2).nodeSizes(sizes) |
1140 | 1141 |
/// .arcWidthScale(.4).run(); |
1141 | 1142 |
///\endcode |
1142 | 1143 |
/// |
1143 | 1144 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
1144 | 1145 |
/// |
1145 | 1146 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1146 | 1147 |
///to the end of the parameter list. |
1147 | 1148 |
///\sa GraphToEps |
1148 | 1149 |
///\sa graphToEps(G &g, const char *file_name) |
1149 | 1150 |
template<class G> |
1150 | 1151 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1151 | 1152 |
graphToEps(G &g, std::ostream& os=std::cout) |
1152 | 1153 |
{ |
1153 | 1154 |
return |
1154 | 1155 |
GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os)); |
1155 | 1156 |
} |
1156 | 1157 |
|
1157 | 1158 |
///Generates an EPS file from a graph |
1158 | 1159 |
|
1159 | 1160 |
///\ingroup eps_io |
1160 | 1161 |
///This function does the same as |
1161 | 1162 |
///\ref graphToEps(G &g,std::ostream& os) |
1162 | 1163 |
///but it writes its output into the file \c file_name |
1163 | 1164 |
///instead of a stream. |
1164 | 1165 |
///\sa graphToEps(G &g, std::ostream& os) |
1165 | 1166 |
template<class G> |
1166 | 1167 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1167 | 1168 |
graphToEps(G &g,const char *file_name) |
1168 | 1169 |
{ |
1170 |
std::ostream* os = new std::ofstream(file_name); |
|
1171 |
if (!(*os)) { |
|
1172 |
delete os; |
|
1173 |
throw IoError("Cannot write file", file_name); |
|
1174 |
} |
|
1169 | 1175 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1170 |
(DefaultGraphToEpsTraits<G>(g,* |
|
1176 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
|
1171 | 1177 |
} |
1172 | 1178 |
|
1173 | 1179 |
///Generates an EPS file from a graph |
1174 | 1180 |
|
1175 | 1181 |
///\ingroup eps_io |
1176 | 1182 |
///This function does the same as |
1177 | 1183 |
///\ref graphToEps(G &g,std::ostream& os) |
1178 | 1184 |
///but it writes its output into the file \c file_name |
1179 | 1185 |
///instead of a stream. |
1180 | 1186 |
///\sa graphToEps(G &g, std::ostream& os) |
1181 | 1187 |
template<class G> |
1182 | 1188 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1183 | 1189 |
graphToEps(G &g,const std::string& file_name) |
1184 | 1190 |
{ |
1191 |
std::ostream* os = new std::ofstream(file_name.c_str()); |
|
1192 |
if (!(*os)) { |
|
1193 |
delete os; |
|
1194 |
throw IoError("Cannot write file", file_name); |
|
1195 |
} |
|
1185 | 1196 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1186 |
(DefaultGraphToEpsTraits<G>(g,* |
|
1197 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
|
1187 | 1198 |
} |
1188 | 1199 |
|
1189 | 1200 |
} //END OF NAMESPACE LEMON |
1190 | 1201 |
|
1191 | 1202 |
#endif // LEMON_GRAPH_TO_EPS_H |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)