... | ... |
@@ -1032,97 +1032,97 @@ |
1032 | 1032 |
/// |
1033 | 1033 |
/// \pre \ref run() must be called before using this function. |
1034 | 1034 |
template <typename PotentialMap> |
1035 | 1035 |
void potentialMap(PotentialMap &map) const { |
1036 | 1036 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1037 | 1037 |
map.set(n, _pi[_node_id[n]]); |
1038 | 1038 |
} |
1039 | 1039 |
} |
1040 | 1040 |
|
1041 | 1041 |
/// @} |
1042 | 1042 |
|
1043 | 1043 |
private: |
1044 | 1044 |
|
1045 | 1045 |
// Initialize internal data structures |
1046 | 1046 |
bool init() { |
1047 | 1047 |
if (_node_num == 0) return false; |
1048 | 1048 |
|
1049 | 1049 |
// Check the sum of supply values |
1050 | 1050 |
_sum_supply = 0; |
1051 | 1051 |
for (int i = 0; i != _node_num; ++i) { |
1052 | 1052 |
_sum_supply += _supply[i]; |
1053 | 1053 |
} |
1054 | 1054 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1055 | 1055 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1056 | 1056 |
|
1057 | 1057 |
// Remove non-zero lower bounds |
1058 | 1058 |
if (_have_lower) { |
1059 | 1059 |
for (int i = 0; i != _arc_num; ++i) { |
1060 | 1060 |
Value c = _lower[i]; |
1061 | 1061 |
if (c >= 0) { |
1062 | 1062 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
1063 | 1063 |
} else { |
1064 | 1064 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
1065 | 1065 |
} |
1066 | 1066 |
_supply[_source[i]] -= c; |
1067 | 1067 |
_supply[_target[i]] += c; |
1068 | 1068 |
} |
1069 | 1069 |
} else { |
1070 | 1070 |
for (int i = 0; i != _arc_num; ++i) { |
1071 | 1071 |
_cap[i] = _upper[i]; |
1072 | 1072 |
} |
1073 | 1073 |
} |
1074 | 1074 |
|
1075 | 1075 |
// Initialize artifical cost |
1076 | 1076 |
Cost ART_COST; |
1077 | 1077 |
if (std::numeric_limits<Cost>::is_exact) { |
1078 | 1078 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1079 | 1079 |
} else { |
1080 |
ART_COST = |
|
1080 |
ART_COST = 0; |
|
1081 | 1081 |
for (int i = 0; i != _arc_num; ++i) { |
1082 | 1082 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1083 | 1083 |
} |
1084 | 1084 |
ART_COST = (ART_COST + 1) * _node_num; |
1085 | 1085 |
} |
1086 | 1086 |
|
1087 | 1087 |
// Initialize arc maps |
1088 | 1088 |
for (int i = 0; i != _arc_num; ++i) { |
1089 | 1089 |
_flow[i] = 0; |
1090 | 1090 |
_state[i] = STATE_LOWER; |
1091 | 1091 |
} |
1092 | 1092 |
|
1093 | 1093 |
// Set data for the artificial root node |
1094 | 1094 |
_root = _node_num; |
1095 | 1095 |
_parent[_root] = -1; |
1096 | 1096 |
_pred[_root] = -1; |
1097 | 1097 |
_thread[_root] = 0; |
1098 | 1098 |
_rev_thread[0] = _root; |
1099 | 1099 |
_succ_num[_root] = _node_num + 1; |
1100 | 1100 |
_last_succ[_root] = _root - 1; |
1101 | 1101 |
_supply[_root] = -_sum_supply; |
1102 | 1102 |
_pi[_root] = 0; |
1103 | 1103 |
|
1104 | 1104 |
// Add artificial arcs and initialize the spanning tree data structure |
1105 | 1105 |
if (_sum_supply == 0) { |
1106 | 1106 |
// EQ supply constraints |
1107 | 1107 |
_search_arc_num = _arc_num; |
1108 | 1108 |
_all_arc_num = _arc_num + _node_num; |
1109 | 1109 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1110 | 1110 |
_parent[u] = _root; |
1111 | 1111 |
_pred[u] = e; |
1112 | 1112 |
_thread[u] = u + 1; |
1113 | 1113 |
_rev_thread[u + 1] = u; |
1114 | 1114 |
_succ_num[u] = 1; |
1115 | 1115 |
_last_succ[u] = u; |
1116 | 1116 |
_cap[e] = INF; |
1117 | 1117 |
_state[e] = STATE_TREE; |
1118 | 1118 |
if (_supply[u] >= 0) { |
1119 | 1119 |
_forward[u] = true; |
1120 | 1120 |
_pi[u] = 0; |
1121 | 1121 |
_source[e] = u; |
1122 | 1122 |
_target[e] = _root; |
1123 | 1123 |
_flow[e] = _supply[u]; |
1124 | 1124 |
_cost[e] = 0; |
1125 | 1125 |
} else { |
1126 | 1126 |
_forward[u] = false; |
1127 | 1127 |
_pi[u] = ART_COST; |
1128 | 1128 |
_source[e] = _root; |
... | ... |
@@ -1544,78 +1544,78 @@ |
1544 | 1544 |
case CANDIDATE_LIST: |
1545 | 1545 |
return start<CandidateListPivotRule>(); |
1546 | 1546 |
case ALTERING_LIST: |
1547 | 1547 |
return start<AlteringListPivotRule>(); |
1548 | 1548 |
} |
1549 | 1549 |
return INFEASIBLE; // avoid warning |
1550 | 1550 |
} |
1551 | 1551 |
|
1552 | 1552 |
template <typename PivotRuleImpl> |
1553 | 1553 |
ProblemType start() { |
1554 | 1554 |
PivotRuleImpl pivot(*this); |
1555 | 1555 |
|
1556 | 1556 |
// Perform heuristic initial pivots |
1557 | 1557 |
if (!initialPivots()) return UNBOUNDED; |
1558 | 1558 |
|
1559 | 1559 |
// Execute the Network Simplex algorithm |
1560 | 1560 |
while (pivot.findEnteringArc()) { |
1561 | 1561 |
findJoinNode(); |
1562 | 1562 |
bool change = findLeavingArc(); |
1563 | 1563 |
if (delta >= MAX) return UNBOUNDED; |
1564 | 1564 |
changeFlow(change); |
1565 | 1565 |
if (change) { |
1566 | 1566 |
updateTreeStructure(); |
1567 | 1567 |
updatePotential(); |
1568 | 1568 |
} |
1569 | 1569 |
} |
1570 | 1570 |
|
1571 | 1571 |
// Check feasibility |
1572 | 1572 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1573 | 1573 |
if (_flow[e] != 0) return INFEASIBLE; |
1574 | 1574 |
} |
1575 | 1575 |
|
1576 | 1576 |
// Transform the solution and the supply map to the original form |
1577 | 1577 |
if (_have_lower) { |
1578 | 1578 |
for (int i = 0; i != _arc_num; ++i) { |
1579 | 1579 |
Value c = _lower[i]; |
1580 | 1580 |
if (c != 0) { |
1581 | 1581 |
_flow[i] += c; |
1582 | 1582 |
_supply[_source[i]] += c; |
1583 | 1583 |
_supply[_target[i]] -= c; |
1584 | 1584 |
} |
1585 | 1585 |
} |
1586 | 1586 |
} |
1587 | 1587 |
|
1588 | 1588 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1589 | 1589 |
// optimality conditions |
1590 | 1590 |
if (_sum_supply == 0) { |
1591 | 1591 |
if (_stype == GEQ) { |
1592 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
1592 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
1593 | 1593 |
for (int i = 0; i != _node_num; ++i) { |
1594 | 1594 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1595 | 1595 |
} |
1596 | 1596 |
if (max_pot > 0) { |
1597 | 1597 |
for (int i = 0; i != _node_num; ++i) |
1598 | 1598 |
_pi[i] -= max_pot; |
1599 | 1599 |
} |
1600 | 1600 |
} else { |
1601 | 1601 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1602 | 1602 |
for (int i = 0; i != _node_num; ++i) { |
1603 | 1603 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1604 | 1604 |
} |
1605 | 1605 |
if (min_pot < 0) { |
1606 | 1606 |
for (int i = 0; i != _node_num; ++i) |
1607 | 1607 |
_pi[i] -= min_pot; |
1608 | 1608 |
} |
1609 | 1609 |
} |
1610 | 1610 |
} |
1611 | 1611 |
|
1612 | 1612 |
return OPTIMAL; |
1613 | 1613 |
} |
1614 | 1614 |
|
1615 | 1615 |
}; //class NetworkSimplex |
1616 | 1616 |
|
1617 | 1617 |
///@} |
1618 | 1618 |
|
1619 | 1619 |
} //namespace lemon |
1620 | 1620 |
|
1621 | 1621 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)