gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Extend min cost flow test file + check dual costs (#291)
0 1 0
default
1 file changed with 105 insertions and 48 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <iostream>
20 20
#include <fstream>
21 21
#include <limits>
22 22

	
23 23
#include <lemon/list_graph.h>
24 24
#include <lemon/lgf_reader.h>
25 25

	
26 26
#include <lemon/network_simplex.h>
27 27

	
28 28
#include <lemon/concepts/digraph.h>
29 29
#include <lemon/concept_check.h>
30 30

	
31 31
#include "test_tools.h"
32 32

	
33 33
using namespace lemon;
34 34

	
35 35
char test_lgf[] =
36 36
  "@nodes\n"
37 37
  "label  sup1 sup2 sup3 sup4 sup5 sup6\n"
38 38
  "    1    20   27    0   30   20   30\n"
39 39
  "    2    -4    0    0    0   -8   -3\n"
40 40
  "    3     0    0    0    0    0    0\n"
41 41
  "    4     0    0    0    0    0    0\n"
42 42
  "    5     9    0    0    0    6   11\n"
43 43
  "    6    -6    0    0    0   -5   -6\n"
44 44
  "    7     0    0    0    0    0    0\n"
45 45
  "    8     0    0    0    0    0    3\n"
46 46
  "    9     3    0    0    0    0    0\n"
47 47
  "   10    -2    0    0    0   -7   -2\n"
48 48
  "   11     0    0    0    0  -10    0\n"
49 49
  "   12   -20  -27    0  -30  -30  -20\n"
50 50
  "\n"                
51 51
  "@arcs\n"
52 52
  "       cost  cap low1 low2 low3\n"
53 53
  " 1  2    70   11    0    8    8\n"
54 54
  " 1  3   150    3    0    1    0\n"
55 55
  " 1  4    80   15    0    2    2\n"
56 56
  " 2  8    80   12    0    0    0\n"
57 57
  " 3  5   140    5    0    3    1\n"
58 58
  " 4  6    60   10    0    1    0\n"
59 59
  " 4  7    80    2    0    0    0\n"
60 60
  " 4  8   110    3    0    0    0\n"
61 61
  " 5  7    60   14    0    0    0\n"
62 62
  " 5 11   120   12    0    0    0\n"
63 63
  " 6  3     0    3    0    0    0\n"
64 64
  " 6  9   140    4    0    0    0\n"
65 65
  " 6 10    90    8    0    0    0\n"
66 66
  " 7  1    30    5    0    0   -5\n"
67 67
  " 8 12    60   16    0    4    3\n"
68 68
  " 9 12    50    6    0    0    0\n"
69 69
  "10 12    70   13    0    5    2\n"
70 70
  "10  2   100    7    0    0    0\n"
71 71
  "10  7    60   10    0    0   -3\n"
72 72
  "11 10    20   14    0    6  -20\n"
73 73
  "12 11    30   10    0    0  -10\n"
74 74
  "\n"
75 75
  "@attributes\n"
76 76
  "source 1\n"
77 77
  "target 12\n";
78 78

	
79 79

	
80 80
enum SupplyType {
81 81
  EQ,
82 82
  GEQ,
83 83
  LEQ
84 84
};
85 85

	
86 86
// Check the interface of an MCF algorithm
87 87
template <typename GR, typename Value, typename Cost>
88 88
class McfClassConcept
89 89
{
90 90
public:
91 91

	
92 92
  template <typename MCF>
93 93
  struct Constraints {
94 94
    void constraints() {
95 95
      checkConcept<concepts::Digraph, GR>();
96 96

	
97 97
      MCF mcf(g);
98 98
      const MCF& const_mcf = mcf;
99 99

	
100 100
      b = mcf.reset()
101 101
             .lowerMap(lower)
102 102
             .upperMap(upper)
103 103
             .costMap(cost)
104 104
             .supplyMap(sup)
105 105
             .stSupply(n, n, k)
106 106
             .run();
107 107

	
108 108
      c = const_mcf.totalCost();
109 109
      x = const_mcf.template totalCost<double>();
110 110
      v = const_mcf.flow(a);
111 111
      c = const_mcf.potential(n);
112 112
      const_mcf.flowMap(fm);
113 113
      const_mcf.potentialMap(pm);
114 114
    }
115 115

	
116 116
    typedef typename GR::Node Node;
117 117
    typedef typename GR::Arc Arc;
118 118
    typedef concepts::ReadMap<Node, Value> NM;
119 119
    typedef concepts::ReadMap<Arc, Value> VAM;
120 120
    typedef concepts::ReadMap<Arc, Cost> CAM;
121 121
    typedef concepts::WriteMap<Arc, Value> FlowMap;
122 122
    typedef concepts::WriteMap<Node, Cost> PotMap;
123 123

	
124 124
    const GR &g;
125 125
    const VAM &lower;
126 126
    const VAM &upper;
127 127
    const CAM &cost;
128 128
    const NM &sup;
129 129
    const Node &n;
130 130
    const Arc &a;
131 131
    const Value &k;
132 132
    FlowMap fm;
133 133
    PotMap pm;
134 134
    bool b;
135 135
    double x;
136 136
    typename MCF::Value v;
137 137
    typename MCF::Cost c;
138 138
  };
139 139

	
140 140
};
141 141

	
142 142

	
143 143
// Check the feasibility of the given flow (primal soluiton)
144 144
template < typename GR, typename LM, typename UM,
145 145
           typename SM, typename FM >
146 146
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
147 147
                const SM& supply, const FM& flow,
148 148
                SupplyType type = EQ )
149 149
{
150 150
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
151 151

	
152 152
  for (ArcIt e(gr); e != INVALID; ++e) {
153 153
    if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
154 154
  }
155 155

	
156 156
  for (NodeIt n(gr); n != INVALID; ++n) {
157 157
    typename SM::Value sum = 0;
158 158
    for (OutArcIt e(gr, n); e != INVALID; ++e)
159 159
      sum += flow[e];
160 160
    for (InArcIt e(gr, n); e != INVALID; ++e)
161 161
      sum -= flow[e];
162 162
    bool b = (type ==  EQ && sum == supply[n]) ||
163 163
             (type == GEQ && sum >= supply[n]) ||
164 164
             (type == LEQ && sum <= supply[n]);
165 165
    if (!b) return false;
166 166
  }
167 167

	
168 168
  return true;
169 169
}
170 170

	
171 171
// Check the feasibility of the given potentials (dual soluiton)
172 172
// using the "Complementary Slackness" optimality condition
173 173
template < typename GR, typename LM, typename UM,
174 174
           typename CM, typename SM, typename FM, typename PM >
175 175
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
176 176
                     const CM& cost, const SM& supply, const FM& flow, 
177
                     const PM& pi )
177
                     const PM& pi, SupplyType type )
178 178
{
179 179
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
180 180

	
181 181
  bool opt = true;
182 182
  for (ArcIt e(gr); opt && e != INVALID; ++e) {
183 183
    typename CM::Value red_cost =
184 184
      cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
185 185
    opt = red_cost == 0 ||
186 186
          (red_cost > 0 && flow[e] == lower[e]) ||
187 187
          (red_cost < 0 && flow[e] == upper[e]);
188 188
  }
189 189
  
190 190
  for (NodeIt n(gr); opt && n != INVALID; ++n) {
191 191
    typename SM::Value sum = 0;
192 192
    for (OutArcIt e(gr, n); e != INVALID; ++e)
193 193
      sum += flow[e];
194 194
    for (InArcIt e(gr, n); e != INVALID; ++e)
195 195
      sum -= flow[e];
196
    opt = (sum == supply[n]) || (pi[n] == 0);
196
    if (type != LEQ) {
197
      opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
198
    } else {
199
      opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
200
    }
197 201
  }
198 202
  
199 203
  return opt;
200 204
}
201 205

	
206
// Check whether the dual cost is equal to the primal cost
207
template < typename GR, typename LM, typename UM,
208
           typename CM, typename SM, typename PM >
209
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
210
                    const CM& cost, const SM& supply, const PM& pi,
211
                    typename CM::Value total )
212
{
213
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
214

	
215
  typename CM::Value dual_cost = 0;
216
  SM red_supply(gr);
217
  for (NodeIt n(gr); n != INVALID; ++n) {
218
    red_supply[n] = supply[n];
219
  }
220
  for (ArcIt a(gr); a != INVALID; ++a) {
221
    if (lower[a] != 0) {
222
      dual_cost += lower[a] * cost[a];
223
      red_supply[gr.source(a)] -= lower[a];
224
      red_supply[gr.target(a)] += lower[a];
225
    }
226
  }
227
  
228
  for (NodeIt n(gr); n != INVALID; ++n) {
229
    dual_cost -= red_supply[n] * pi[n];
230
  }
231
  for (ArcIt a(gr); a != INVALID; ++a) {
232
    typename CM::Value red_cost =
233
      cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
234
    dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
235
  }
236
  
237
  return dual_cost == total;
238
}
239

	
202 240
// Run a minimum cost flow algorithm and check the results
203 241
template < typename MCF, typename GR,
204 242
           typename LM, typename UM,
205 243
           typename CM, typename SM,
206 244
           typename PT >
207 245
void checkMcf( const MCF& mcf, PT mcf_result,
208 246
               const GR& gr, const LM& lower, const UM& upper,
209 247
               const CM& cost, const SM& supply,
210 248
               PT result, bool optimal, typename CM::Value total,
211 249
               const std::string &test_id = "",
212 250
               SupplyType type = EQ )
213 251
{
214 252
  check(mcf_result == result, "Wrong result " + test_id);
215 253
  if (optimal) {
216 254
    typename GR::template ArcMap<typename SM::Value> flow(gr);
217 255
    typename GR::template NodeMap<typename CM::Value> pi(gr);
218 256
    mcf.flowMap(flow);
219 257
    mcf.potentialMap(pi);
220 258
    check(checkFlow(gr, lower, upper, supply, flow, type),
221 259
          "The flow is not feasible " + test_id);
222 260
    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
223
    check(checkPotential(gr, lower, upper, cost, supply, flow, pi),
261
    check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
224 262
          "Wrong potentials " + test_id);
263
    check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
264
          "Wrong dual cost " + test_id);
225 265
  }
226 266
}
227 267

	
228 268
int main()
229 269
{
230 270
  // Check the interfaces
231 271
  {
232 272
    typedef concepts::Digraph GR;
233 273
    checkConcept< McfClassConcept<GR, int, int>,
234 274
                  NetworkSimplex<GR> >();
235 275
    checkConcept< McfClassConcept<GR, double, double>,
236 276
                  NetworkSimplex<GR, double> >();
237 277
    checkConcept< McfClassConcept<GR, int, double>,
238 278
                  NetworkSimplex<GR, int, double> >();
239 279
  }
240 280

	
241 281
  // Run various MCF tests
242 282
  typedef ListDigraph Digraph;
243 283
  DIGRAPH_TYPEDEFS(ListDigraph);
244 284

	
245 285
  // Read the test digraph
246 286
  Digraph gr;
247 287
  Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
248 288
  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
249 289
  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
250 290
  Node v, w;
251 291

	
252 292
  std::istringstream input(test_lgf);
253 293
  DigraphReader<Digraph>(gr, input)
254 294
    .arcMap("cost", c)
255 295
    .arcMap("cap", u)
256 296
    .arcMap("low1", l1)
257 297
    .arcMap("low2", l2)
258 298
    .arcMap("low3", l3)
259 299
    .nodeMap("sup1", s1)
260 300
    .nodeMap("sup2", s2)
261 301
    .nodeMap("sup3", s3)
262 302
    .nodeMap("sup4", s4)
263 303
    .nodeMap("sup5", s5)
264 304
    .nodeMap("sup6", s6)
265 305
    .node("source", v)
266 306
    .node("target", w)
267 307
    .run();
268 308
  
269
  // Build a test digraph for testing negative costs
270
  Digraph ngr;
271
  Node n1 = ngr.addNode();
272
  Node n2 = ngr.addNode();
273
  Node n3 = ngr.addNode();
274
  Node n4 = ngr.addNode();
275
  Node n5 = ngr.addNode();
276
  Node n6 = ngr.addNode();
277
  Node n7 = ngr.addNode();
309
  // Build test digraphs with negative costs
310
  Digraph neg_gr;
311
  Node n1 = neg_gr.addNode();
312
  Node n2 = neg_gr.addNode();
313
  Node n3 = neg_gr.addNode();
314
  Node n4 = neg_gr.addNode();
315
  Node n5 = neg_gr.addNode();
316
  Node n6 = neg_gr.addNode();
317
  Node n7 = neg_gr.addNode();
278 318
  
279
  Arc a1 = ngr.addArc(n1, n2);
280
  Arc a2 = ngr.addArc(n1, n3);
281
  Arc a3 = ngr.addArc(n2, n4);
282
  Arc a4 = ngr.addArc(n3, n4);
283
  Arc a5 = ngr.addArc(n3, n2);
284
  Arc a6 = ngr.addArc(n5, n3);
285
  Arc a7 = ngr.addArc(n5, n6);
286
  Arc a8 = ngr.addArc(n6, n7);
287
  Arc a9 = ngr.addArc(n7, n5);
319
  Arc a1 = neg_gr.addArc(n1, n2);
320
  Arc a2 = neg_gr.addArc(n1, n3);
321
  Arc a3 = neg_gr.addArc(n2, n4);
322
  Arc a4 = neg_gr.addArc(n3, n4);
323
  Arc a5 = neg_gr.addArc(n3, n2);
324
  Arc a6 = neg_gr.addArc(n5, n3);
325
  Arc a7 = neg_gr.addArc(n5, n6);
326
  Arc a8 = neg_gr.addArc(n6, n7);
327
  Arc a9 = neg_gr.addArc(n7, n5);
288 328
  
289
  Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0);
290
  ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000);
291
  Digraph::NodeMap<int> ns(ngr, 0);
329
  Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
330
  ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
331
  Digraph::NodeMap<int> neg_s(neg_gr, 0);
292 332
  
293
  nl2[a7] =  1000;
294
  nl2[a8] = -1000;
333
  neg_l2[a7] =  1000;
334
  neg_l2[a8] = -1000;
295 335
  
296
  ns[n1] =  100;
297
  ns[n4] = -100;
336
  neg_s[n1] =  100;
337
  neg_s[n4] = -100;
298 338
  
299
  nc[a1] =  100;
300
  nc[a2] =   30;
301
  nc[a3] =   20;
302
  nc[a4] =   80;
303
  nc[a5] =   50;
304
  nc[a6] =   10;
305
  nc[a7] =   80;
306
  nc[a8] =   30;
307
  nc[a9] = -120;
339
  neg_c[a1] =  100;
340
  neg_c[a2] =   30;
341
  neg_c[a3] =   20;
342
  neg_c[a4] =   80;
343
  neg_c[a5] =   50;
344
  neg_c[a6] =   10;
345
  neg_c[a7] =   80;
346
  neg_c[a8] =   30;
347
  neg_c[a9] = -120;
348

	
349
  Digraph negs_gr;
350
  Digraph::NodeMap<int> negs_s(negs_gr);
351
  Digraph::ArcMap<int> negs_c(negs_gr);
352
  ConstMap<Arc, int> negs_l(0), negs_u(1000);
353
  n1 = negs_gr.addNode();
354
  n2 = negs_gr.addNode();
355
  negs_s[n1] = 100;
356
  negs_s[n2] = -300;
357
  negs_c[negs_gr.addArc(n1, n2)] = -1;
358

	
308 359

	
309 360
  // A. Test NetworkSimplex with the default pivot rule
310 361
  {
311 362
    NetworkSimplex<Digraph> mcf(gr);
312 363

	
313 364
    // Check the equality form
314 365
    mcf.upperMap(u).costMap(c);
315 366
    checkMcf(mcf, mcf.supplyMap(s1).run(),
316 367
             gr, l1, u, c, s1, mcf.OPTIMAL, true,   5240, "#A1");
317 368
    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
318 369
             gr, l1, u, c, s2, mcf.OPTIMAL, true,   7620, "#A2");
319 370
    mcf.lowerMap(l2);
320 371
    checkMcf(mcf, mcf.supplyMap(s1).run(),
321 372
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#A3");
322 373
    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
323 374
             gr, l2, u, c, s2, mcf.OPTIMAL, true,   8010, "#A4");
324 375
    mcf.reset();
325 376
    checkMcf(mcf, mcf.supplyMap(s1).run(),
326 377
             gr, l1, cu, cc, s1, mcf.OPTIMAL, true,   74, "#A5");
327 378
    checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
328 379
             gr, l2, cu, cc, s2, mcf.OPTIMAL, true,   94, "#A6");
329 380
    mcf.reset();
330 381
    checkMcf(mcf, mcf.run(),
331 382
             gr, l1, cu, cc, s3, mcf.OPTIMAL, true,    0, "#A7");
332 383
    checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
333 384
             gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
334 385
    mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
335 386
    checkMcf(mcf, mcf.run(),
336 387
             gr, l3, u, c, s4, mcf.OPTIMAL, true,   6360, "#A9");
337 388

	
338 389
    // Check the GEQ form
339 390
    mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
340 391
    checkMcf(mcf, mcf.run(),
341 392
             gr, l1, u, c, s5, mcf.OPTIMAL, true,   3530, "#A10", GEQ);
342 393
    mcf.supplyType(mcf.GEQ);
343 394
    checkMcf(mcf, mcf.lowerMap(l2).run(),
344 395
             gr, l2, u, c, s5, mcf.OPTIMAL, true,   4540, "#A11", GEQ);
345
    mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6);
396
    mcf.supplyMap(s6);
346 397
    checkMcf(mcf, mcf.run(),
347 398
             gr, l2, u, c, s6, mcf.INFEASIBLE, false,  0, "#A12", GEQ);
348 399

	
349 400
    // Check the LEQ form
350 401
    mcf.reset().supplyType(mcf.LEQ);
351 402
    mcf.upperMap(u).costMap(c).supplyMap(s6);
352 403
    checkMcf(mcf, mcf.run(),
353 404
             gr, l1, u, c, s6, mcf.OPTIMAL, true,   5080, "#A13", LEQ);
354 405
    checkMcf(mcf, mcf.lowerMap(l2).run(),
355 406
             gr, l2, u, c, s6, mcf.OPTIMAL, true,   5930, "#A14", LEQ);
356
    mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5);
407
    mcf.supplyMap(s5);
357 408
    checkMcf(mcf, mcf.run(),
358 409
             gr, l2, u, c, s5, mcf.INFEASIBLE, false,  0, "#A15", LEQ);
359 410

	
360 411
    // Check negative costs
361
    NetworkSimplex<Digraph> nmcf(ngr);
362
    nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns);
363
    checkMcf(nmcf, nmcf.run(),
364
      ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false,    0, "#A16");
365
    checkMcf(nmcf, nmcf.upperMap(nu2).run(),
366
      ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true,  -40000, "#A17");
367
    nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns);
368
    checkMcf(nmcf, nmcf.run(),
369
      ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false,    0, "#A18");
412
    NetworkSimplex<Digraph> neg_mcf(neg_gr);
413
    neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
414
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
415
      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A16");
416
    neg_mcf.upperMap(neg_u2);
417
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
418
      neg_c, neg_s, neg_mcf.OPTIMAL, true,  -40000, "#A17");
419
    neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
420
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
421
      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A18");
422
      
423
    NetworkSimplex<Digraph> negs_mcf(negs_gr);
424
    negs_mcf.costMap(negs_c).supplyMap(negs_s);
425
    checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
426
      negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
370 427
  }
371 428

	
372 429
  // B. Test NetworkSimplex with each pivot rule
373 430
  {
374 431
    NetworkSimplex<Digraph> mcf(gr);
375 432
    mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
376 433

	
377 434
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
378 435
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B1");
379 436
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
380 437
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B2");
381 438
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
382 439
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B3");
383 440
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
384 441
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B4");
385 442
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
386 443
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B5");
387 444
  }
388 445

	
389 446
  return 0;
390 447
}
0 comments (0 inline)