... | ... |
@@ -153,238 +153,295 @@ |
153 | 153 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
for (NodeIt n(gr); n != INVALID; ++n) { |
157 | 157 |
typename SM::Value sum = 0; |
158 | 158 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
159 | 159 |
sum += flow[e]; |
160 | 160 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
161 | 161 |
sum -= flow[e]; |
162 | 162 |
bool b = (type == EQ && sum == supply[n]) || |
163 | 163 |
(type == GEQ && sum >= supply[n]) || |
164 | 164 |
(type == LEQ && sum <= supply[n]); |
165 | 165 |
if (!b) return false; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
return true; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
// Check the feasibility of the given potentials (dual soluiton) |
172 | 172 |
// using the "Complementary Slackness" optimality condition |
173 | 173 |
template < typename GR, typename LM, typename UM, |
174 | 174 |
typename CM, typename SM, typename FM, typename PM > |
175 | 175 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
176 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
177 |
const PM& pi ) |
|
177 |
const PM& pi, SupplyType type ) |
|
178 | 178 |
{ |
179 | 179 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
180 | 180 |
|
181 | 181 |
bool opt = true; |
182 | 182 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
183 | 183 |
typename CM::Value red_cost = |
184 | 184 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
185 | 185 |
opt = red_cost == 0 || |
186 | 186 |
(red_cost > 0 && flow[e] == lower[e]) || |
187 | 187 |
(red_cost < 0 && flow[e] == upper[e]); |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
191 | 191 |
typename SM::Value sum = 0; |
192 | 192 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
193 | 193 |
sum += flow[e]; |
194 | 194 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
195 | 195 |
sum -= flow[e]; |
196 |
|
|
196 |
if (type != LEQ) { |
|
197 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
|
198 |
} else { |
|
199 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
|
200 |
} |
|
197 | 201 |
} |
198 | 202 |
|
199 | 203 |
return opt; |
200 | 204 |
} |
201 | 205 |
|
206 |
// Check whether the dual cost is equal to the primal cost |
|
207 |
template < typename GR, typename LM, typename UM, |
|
208 |
typename CM, typename SM, typename PM > |
|
209 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
|
210 |
const CM& cost, const SM& supply, const PM& pi, |
|
211 |
typename CM::Value total ) |
|
212 |
{ |
|
213 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
214 |
|
|
215 |
typename CM::Value dual_cost = 0; |
|
216 |
SM red_supply(gr); |
|
217 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
218 |
red_supply[n] = supply[n]; |
|
219 |
} |
|
220 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
221 |
if (lower[a] != 0) { |
|
222 |
dual_cost += lower[a] * cost[a]; |
|
223 |
red_supply[gr.source(a)] -= lower[a]; |
|
224 |
red_supply[gr.target(a)] += lower[a]; |
|
225 |
} |
|
226 |
} |
|
227 |
|
|
228 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
229 |
dual_cost -= red_supply[n] * pi[n]; |
|
230 |
} |
|
231 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
232 |
typename CM::Value red_cost = |
|
233 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
|
234 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
|
235 |
} |
|
236 |
|
|
237 |
return dual_cost == total; |
|
238 |
} |
|
239 |
|
|
202 | 240 |
// Run a minimum cost flow algorithm and check the results |
203 | 241 |
template < typename MCF, typename GR, |
204 | 242 |
typename LM, typename UM, |
205 | 243 |
typename CM, typename SM, |
206 | 244 |
typename PT > |
207 | 245 |
void checkMcf( const MCF& mcf, PT mcf_result, |
208 | 246 |
const GR& gr, const LM& lower, const UM& upper, |
209 | 247 |
const CM& cost, const SM& supply, |
210 | 248 |
PT result, bool optimal, typename CM::Value total, |
211 | 249 |
const std::string &test_id = "", |
212 | 250 |
SupplyType type = EQ ) |
213 | 251 |
{ |
214 | 252 |
check(mcf_result == result, "Wrong result " + test_id); |
215 | 253 |
if (optimal) { |
216 | 254 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
217 | 255 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
218 | 256 |
mcf.flowMap(flow); |
219 | 257 |
mcf.potentialMap(pi); |
220 | 258 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
221 | 259 |
"The flow is not feasible " + test_id); |
222 | 260 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
261 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), |
|
224 | 262 |
"Wrong potentials " + test_id); |
263 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
|
264 |
"Wrong dual cost " + test_id); |
|
225 | 265 |
} |
226 | 266 |
} |
227 | 267 |
|
228 | 268 |
int main() |
229 | 269 |
{ |
230 | 270 |
// Check the interfaces |
231 | 271 |
{ |
232 | 272 |
typedef concepts::Digraph GR; |
233 | 273 |
checkConcept< McfClassConcept<GR, int, int>, |
234 | 274 |
NetworkSimplex<GR> >(); |
235 | 275 |
checkConcept< McfClassConcept<GR, double, double>, |
236 | 276 |
NetworkSimplex<GR, double> >(); |
237 | 277 |
checkConcept< McfClassConcept<GR, int, double>, |
238 | 278 |
NetworkSimplex<GR, int, double> >(); |
239 | 279 |
} |
240 | 280 |
|
241 | 281 |
// Run various MCF tests |
242 | 282 |
typedef ListDigraph Digraph; |
243 | 283 |
DIGRAPH_TYPEDEFS(ListDigraph); |
244 | 284 |
|
245 | 285 |
// Read the test digraph |
246 | 286 |
Digraph gr; |
247 | 287 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
248 | 288 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
249 | 289 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
250 | 290 |
Node v, w; |
251 | 291 |
|
252 | 292 |
std::istringstream input(test_lgf); |
253 | 293 |
DigraphReader<Digraph>(gr, input) |
254 | 294 |
.arcMap("cost", c) |
255 | 295 |
.arcMap("cap", u) |
256 | 296 |
.arcMap("low1", l1) |
257 | 297 |
.arcMap("low2", l2) |
258 | 298 |
.arcMap("low3", l3) |
259 | 299 |
.nodeMap("sup1", s1) |
260 | 300 |
.nodeMap("sup2", s2) |
261 | 301 |
.nodeMap("sup3", s3) |
262 | 302 |
.nodeMap("sup4", s4) |
263 | 303 |
.nodeMap("sup5", s5) |
264 | 304 |
.nodeMap("sup6", s6) |
265 | 305 |
.node("source", v) |
266 | 306 |
.node("target", w) |
267 | 307 |
.run(); |
268 | 308 |
|
269 |
// Build a test digraph for testing negative costs |
|
270 |
Digraph ngr; |
|
271 |
Node n1 = ngr.addNode(); |
|
272 |
Node n2 = ngr.addNode(); |
|
273 |
Node n3 = ngr.addNode(); |
|
274 |
Node n4 = ngr.addNode(); |
|
275 |
Node n5 = ngr.addNode(); |
|
276 |
Node n6 = ngr.addNode(); |
|
277 |
|
|
309 |
// Build test digraphs with negative costs |
|
310 |
Digraph neg_gr; |
|
311 |
Node n1 = neg_gr.addNode(); |
|
312 |
Node n2 = neg_gr.addNode(); |
|
313 |
Node n3 = neg_gr.addNode(); |
|
314 |
Node n4 = neg_gr.addNode(); |
|
315 |
Node n5 = neg_gr.addNode(); |
|
316 |
Node n6 = neg_gr.addNode(); |
|
317 |
Node n7 = neg_gr.addNode(); |
|
278 | 318 |
|
279 |
Arc a1 = ngr.addArc(n1, n2); |
|
280 |
Arc a2 = ngr.addArc(n1, n3); |
|
281 |
Arc a3 = ngr.addArc(n2, n4); |
|
282 |
Arc a4 = ngr.addArc(n3, n4); |
|
283 |
Arc a5 = ngr.addArc(n3, n2); |
|
284 |
Arc a6 = ngr.addArc(n5, n3); |
|
285 |
Arc a7 = ngr.addArc(n5, n6); |
|
286 |
Arc a8 = ngr.addArc(n6, n7); |
|
287 |
Arc |
|
319 |
Arc a1 = neg_gr.addArc(n1, n2); |
|
320 |
Arc a2 = neg_gr.addArc(n1, n3); |
|
321 |
Arc a3 = neg_gr.addArc(n2, n4); |
|
322 |
Arc a4 = neg_gr.addArc(n3, n4); |
|
323 |
Arc a5 = neg_gr.addArc(n3, n2); |
|
324 |
Arc a6 = neg_gr.addArc(n5, n3); |
|
325 |
Arc a7 = neg_gr.addArc(n5, n6); |
|
326 |
Arc a8 = neg_gr.addArc(n6, n7); |
|
327 |
Arc a9 = neg_gr.addArc(n7, n5); |
|
288 | 328 |
|
289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
291 |
Digraph:: |
|
329 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
|
330 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
|
331 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
|
292 | 332 |
|
293 |
nl2[a7] = 1000; |
|
294 |
nl2[a8] = -1000; |
|
333 |
neg_l2[a7] = 1000; |
|
334 |
neg_l2[a8] = -1000; |
|
295 | 335 |
|
296 |
ns[n1] = 100; |
|
297 |
ns[n4] = -100; |
|
336 |
neg_s[n1] = 100; |
|
337 |
neg_s[n4] = -100; |
|
298 | 338 |
|
299 |
nc[a1] = 100; |
|
300 |
nc[a2] = 30; |
|
301 |
nc[a3] = 20; |
|
302 |
nc[a4] = 80; |
|
303 |
nc[a5] = 50; |
|
304 |
nc[a6] = 10; |
|
305 |
nc[a7] = 80; |
|
306 |
nc[a8] = 30; |
|
307 |
|
|
339 |
neg_c[a1] = 100; |
|
340 |
neg_c[a2] = 30; |
|
341 |
neg_c[a3] = 20; |
|
342 |
neg_c[a4] = 80; |
|
343 |
neg_c[a5] = 50; |
|
344 |
neg_c[a6] = 10; |
|
345 |
neg_c[a7] = 80; |
|
346 |
neg_c[a8] = 30; |
|
347 |
neg_c[a9] = -120; |
|
348 |
|
|
349 |
Digraph negs_gr; |
|
350 |
Digraph::NodeMap<int> negs_s(negs_gr); |
|
351 |
Digraph::ArcMap<int> negs_c(negs_gr); |
|
352 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
|
353 |
n1 = negs_gr.addNode(); |
|
354 |
n2 = negs_gr.addNode(); |
|
355 |
negs_s[n1] = 100; |
|
356 |
negs_s[n2] = -300; |
|
357 |
negs_c[negs_gr.addArc(n1, n2)] = -1; |
|
358 |
|
|
308 | 359 |
|
309 | 360 |
// A. Test NetworkSimplex with the default pivot rule |
310 | 361 |
{ |
311 | 362 |
NetworkSimplex<Digraph> mcf(gr); |
312 | 363 |
|
313 | 364 |
// Check the equality form |
314 | 365 |
mcf.upperMap(u).costMap(c); |
315 | 366 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
316 | 367 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
317 | 368 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
318 | 369 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
319 | 370 |
mcf.lowerMap(l2); |
320 | 371 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
321 | 372 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
322 | 373 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
323 | 374 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
324 | 375 |
mcf.reset(); |
325 | 376 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
326 | 377 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
327 | 378 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
328 | 379 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
329 | 380 |
mcf.reset(); |
330 | 381 |
checkMcf(mcf, mcf.run(), |
331 | 382 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
332 | 383 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
333 | 384 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
334 | 385 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
335 | 386 |
checkMcf(mcf, mcf.run(), |
336 | 387 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
337 | 388 |
|
338 | 389 |
// Check the GEQ form |
339 | 390 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
340 | 391 |
checkMcf(mcf, mcf.run(), |
341 | 392 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
342 | 393 |
mcf.supplyType(mcf.GEQ); |
343 | 394 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
344 | 395 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
345 |
mcf. |
|
396 |
mcf.supplyMap(s6); |
|
346 | 397 |
checkMcf(mcf, mcf.run(), |
347 | 398 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
348 | 399 |
|
349 | 400 |
// Check the LEQ form |
350 | 401 |
mcf.reset().supplyType(mcf.LEQ); |
351 | 402 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
352 | 403 |
checkMcf(mcf, mcf.run(), |
353 | 404 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
354 | 405 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
355 | 406 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
356 |
mcf. |
|
407 |
mcf.supplyMap(s5); |
|
357 | 408 |
checkMcf(mcf, mcf.run(), |
358 | 409 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
359 | 410 |
|
360 | 411 |
// Check negative costs |
361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
363 |
checkMcf(nmcf, nmcf.run(), |
|
364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
368 |
checkMcf(nmcf, nmcf.run(), |
|
369 |
|
|
412 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
|
413 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
|
414 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
|
415 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
|
416 |
neg_mcf.upperMap(neg_u2); |
|
417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
|
418 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
|
419 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
|
420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
|
421 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
|
422 |
|
|
423 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
|
424 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
|
425 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
|
426 |
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); |
|
370 | 427 |
} |
371 | 428 |
|
372 | 429 |
// B. Test NetworkSimplex with each pivot rule |
373 | 430 |
{ |
374 | 431 |
NetworkSimplex<Digraph> mcf(gr); |
375 | 432 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
376 | 433 |
|
377 | 434 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
378 | 435 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
379 | 436 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
380 | 437 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
381 | 438 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
382 | 439 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
383 | 440 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
384 | 441 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
385 | 442 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
386 | 443 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
387 | 444 |
} |
388 | 445 |
|
389 | 446 |
return 0; |
390 | 447 |
} |
0 comments (0 inline)