... | ... |
@@ -171,13 +171,13 @@ |
171 | 171 |
// Check the feasibility of the given potentials (dual soluiton) |
172 | 172 |
// using the "Complementary Slackness" optimality condition |
173 | 173 |
template < typename GR, typename LM, typename UM, |
174 | 174 |
typename CM, typename SM, typename FM, typename PM > |
175 | 175 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
176 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
177 |
const PM& pi ) |
|
177 |
const PM& pi, SupplyType type ) |
|
178 | 178 |
{ |
179 | 179 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
180 | 180 |
|
181 | 181 |
bool opt = true; |
182 | 182 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
183 | 183 |
typename CM::Value red_cost = |
... | ... |
@@ -190,18 +190,56 @@ |
190 | 190 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
191 | 191 |
typename SM::Value sum = 0; |
192 | 192 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
193 | 193 |
sum += flow[e]; |
194 | 194 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
195 | 195 |
sum -= flow[e]; |
196 |
|
|
196 |
if (type != LEQ) { |
|
197 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
|
198 |
} else { |
|
199 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
|
200 |
} |
|
197 | 201 |
} |
198 | 202 |
|
199 | 203 |
return opt; |
200 | 204 |
} |
201 | 205 |
|
206 |
// Check whether the dual cost is equal to the primal cost |
|
207 |
template < typename GR, typename LM, typename UM, |
|
208 |
typename CM, typename SM, typename PM > |
|
209 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
|
210 |
const CM& cost, const SM& supply, const PM& pi, |
|
211 |
typename CM::Value total ) |
|
212 |
{ |
|
213 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
214 |
|
|
215 |
typename CM::Value dual_cost = 0; |
|
216 |
SM red_supply(gr); |
|
217 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
218 |
red_supply[n] = supply[n]; |
|
219 |
} |
|
220 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
221 |
if (lower[a] != 0) { |
|
222 |
dual_cost += lower[a] * cost[a]; |
|
223 |
red_supply[gr.source(a)] -= lower[a]; |
|
224 |
red_supply[gr.target(a)] += lower[a]; |
|
225 |
} |
|
226 |
} |
|
227 |
|
|
228 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
229 |
dual_cost -= red_supply[n] * pi[n]; |
|
230 |
} |
|
231 |
for (ArcIt a(gr); a != INVALID; ++a) { |
|
232 |
typename CM::Value red_cost = |
|
233 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
|
234 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
|
235 |
} |
|
236 |
|
|
237 |
return dual_cost == total; |
|
238 |
} |
|
239 |
|
|
202 | 240 |
// Run a minimum cost flow algorithm and check the results |
203 | 241 |
template < typename MCF, typename GR, |
204 | 242 |
typename LM, typename UM, |
205 | 243 |
typename CM, typename SM, |
206 | 244 |
typename PT > |
207 | 245 |
void checkMcf( const MCF& mcf, PT mcf_result, |
... | ... |
@@ -217,14 +255,16 @@ |
217 | 255 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
218 | 256 |
mcf.flowMap(flow); |
219 | 257 |
mcf.potentialMap(pi); |
220 | 258 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
221 | 259 |
"The flow is not feasible " + test_id); |
222 | 260 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
261 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), |
|
224 | 262 |
"Wrong potentials " + test_id); |
263 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
|
264 |
"Wrong dual cost " + test_id); |
|
225 | 265 |
} |
226 | 266 |
} |
227 | 267 |
|
228 | 268 |
int main() |
229 | 269 |
{ |
230 | 270 |
// Check the interfaces |
... | ... |
@@ -263,51 +303,62 @@ |
263 | 303 |
.nodeMap("sup5", s5) |
264 | 304 |
.nodeMap("sup6", s6) |
265 | 305 |
.node("source", v) |
266 | 306 |
.node("target", w) |
267 | 307 |
.run(); |
268 | 308 |
|
269 |
// Build a test digraph for testing negative costs |
|
270 |
Digraph ngr; |
|
271 |
Node n1 = ngr.addNode(); |
|
272 |
Node n2 = ngr.addNode(); |
|
273 |
Node n3 = ngr.addNode(); |
|
274 |
Node n4 = ngr.addNode(); |
|
275 |
Node n5 = ngr.addNode(); |
|
276 |
Node n6 = ngr.addNode(); |
|
277 |
|
|
309 |
// Build test digraphs with negative costs |
|
310 |
Digraph neg_gr; |
|
311 |
Node n1 = neg_gr.addNode(); |
|
312 |
Node n2 = neg_gr.addNode(); |
|
313 |
Node n3 = neg_gr.addNode(); |
|
314 |
Node n4 = neg_gr.addNode(); |
|
315 |
Node n5 = neg_gr.addNode(); |
|
316 |
Node n6 = neg_gr.addNode(); |
|
317 |
Node n7 = neg_gr.addNode(); |
|
278 | 318 |
|
279 |
Arc a1 = ngr.addArc(n1, n2); |
|
280 |
Arc a2 = ngr.addArc(n1, n3); |
|
281 |
Arc a3 = ngr.addArc(n2, n4); |
|
282 |
Arc a4 = ngr.addArc(n3, n4); |
|
283 |
Arc a5 = ngr.addArc(n3, n2); |
|
284 |
Arc a6 = ngr.addArc(n5, n3); |
|
285 |
Arc a7 = ngr.addArc(n5, n6); |
|
286 |
Arc a8 = ngr.addArc(n6, n7); |
|
287 |
Arc |
|
319 |
Arc a1 = neg_gr.addArc(n1, n2); |
|
320 |
Arc a2 = neg_gr.addArc(n1, n3); |
|
321 |
Arc a3 = neg_gr.addArc(n2, n4); |
|
322 |
Arc a4 = neg_gr.addArc(n3, n4); |
|
323 |
Arc a5 = neg_gr.addArc(n3, n2); |
|
324 |
Arc a6 = neg_gr.addArc(n5, n3); |
|
325 |
Arc a7 = neg_gr.addArc(n5, n6); |
|
326 |
Arc a8 = neg_gr.addArc(n6, n7); |
|
327 |
Arc a9 = neg_gr.addArc(n7, n5); |
|
288 | 328 |
|
289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
291 |
Digraph:: |
|
329 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
|
330 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
|
331 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
|
292 | 332 |
|
293 |
nl2[a7] = 1000; |
|
294 |
nl2[a8] = -1000; |
|
333 |
neg_l2[a7] = 1000; |
|
334 |
neg_l2[a8] = -1000; |
|
295 | 335 |
|
296 |
ns[n1] = 100; |
|
297 |
ns[n4] = -100; |
|
336 |
neg_s[n1] = 100; |
|
337 |
neg_s[n4] = -100; |
|
298 | 338 |
|
299 |
nc[a1] = 100; |
|
300 |
nc[a2] = 30; |
|
301 |
nc[a3] = 20; |
|
302 |
nc[a4] = 80; |
|
303 |
nc[a5] = 50; |
|
304 |
nc[a6] = 10; |
|
305 |
nc[a7] = 80; |
|
306 |
nc[a8] = 30; |
|
307 |
|
|
339 |
neg_c[a1] = 100; |
|
340 |
neg_c[a2] = 30; |
|
341 |
neg_c[a3] = 20; |
|
342 |
neg_c[a4] = 80; |
|
343 |
neg_c[a5] = 50; |
|
344 |
neg_c[a6] = 10; |
|
345 |
neg_c[a7] = 80; |
|
346 |
neg_c[a8] = 30; |
|
347 |
neg_c[a9] = -120; |
|
348 |
|
|
349 |
Digraph negs_gr; |
|
350 |
Digraph::NodeMap<int> negs_s(negs_gr); |
|
351 |
Digraph::ArcMap<int> negs_c(negs_gr); |
|
352 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
|
353 |
n1 = negs_gr.addNode(); |
|
354 |
n2 = negs_gr.addNode(); |
|
355 |
negs_s[n1] = 100; |
|
356 |
negs_s[n2] = -300; |
|
357 |
negs_c[negs_gr.addArc(n1, n2)] = -1; |
|
358 |
|
|
308 | 359 |
|
309 | 360 |
// A. Test NetworkSimplex with the default pivot rule |
310 | 361 |
{ |
311 | 362 |
NetworkSimplex<Digraph> mcf(gr); |
312 | 363 |
|
313 | 364 |
// Check the equality form |
... | ... |
@@ -339,37 +390,43 @@ |
339 | 390 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
340 | 391 |
checkMcf(mcf, mcf.run(), |
341 | 392 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
342 | 393 |
mcf.supplyType(mcf.GEQ); |
343 | 394 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
344 | 395 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
345 |
mcf. |
|
396 |
mcf.supplyMap(s6); |
|
346 | 397 |
checkMcf(mcf, mcf.run(), |
347 | 398 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
348 | 399 |
|
349 | 400 |
// Check the LEQ form |
350 | 401 |
mcf.reset().supplyType(mcf.LEQ); |
351 | 402 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
352 | 403 |
checkMcf(mcf, mcf.run(), |
353 | 404 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
354 | 405 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
355 | 406 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
356 |
mcf. |
|
407 |
mcf.supplyMap(s5); |
|
357 | 408 |
checkMcf(mcf, mcf.run(), |
358 | 409 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
359 | 410 |
|
360 | 411 |
// Check negative costs |
361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
363 |
checkMcf(nmcf, nmcf.run(), |
|
364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
368 |
checkMcf(nmcf, nmcf.run(), |
|
369 |
|
|
412 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
|
413 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
|
414 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
|
415 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
|
416 |
neg_mcf.upperMap(neg_u2); |
|
417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
|
418 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
|
419 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
|
420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
|
421 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
|
422 |
|
|
423 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
|
424 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
|
425 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
|
426 |
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); |
|
370 | 427 |
} |
371 | 428 |
|
372 | 429 |
// B. Test NetworkSimplex with each pivot rule |
373 | 430 |
{ |
374 | 431 |
NetworkSimplex<Digraph> mcf(gr); |
375 | 432 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
0 comments (0 inline)