↑ Collapse diff ↑
Ignore white space 6 line context
1
%%%%% Defining LEMON %%%%%
2

	
3
@misc{lemon,
4
  key =          {LEMON},
5
  title =        {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and
6
                  {O}ptimization in {N}etworks},
7
  howpublished = {\url{http://lemon.cs.elte.hu/}},
8
  year =         2009
9
}
10

	
11
@misc{egres,
12
  key =          {EGRES},
13
  title =        {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on
14
                  {C}ombinatorial {O}ptimization},
15
  url =          {http://www.cs.elte.hu/egres/}
16
}
17

	
18
@misc{coinor,
19
  key =          {COIN-OR},
20
  title =        {{COIN-OR} -- {C}omputational {I}nfrastructure for
21
                  {O}perations {R}esearch},
22
  url =          {http://www.coin-or.org/}
23
}
24

	
25

	
26
%%%%% Other libraries %%%%%%
27

	
28
@misc{boost,
29
  key =          {Boost},
30
  title =        {{B}oost {C++} {L}ibraries},
31
  url =          {http://www.boost.org/}
32
}
33

	
34
@book{bglbook,
35
  author =       {Jeremy G. Siek and Lee-Quan Lee and Andrew
36
                  Lumsdaine},
37
  title =        {The Boost Graph Library: User Guide and Reference
38
                  Manual},
39
  publisher =    {Addison-Wesley},
40
  year =         2002
41
}
42

	
43
@misc{leda,
44
  key =          {LEDA},
45
  title =        {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and
46
                  {A}lgorithms},
47
  url =          {http://www.algorithmic-solutions.com/}
48
}
49

	
50
@book{ledabook,
51
  author =       {Kurt Mehlhorn and Stefan N{\"a}her},
52
  title =        {{LEDA}: {A} platform for combinatorial and geometric
53
                  computing},
54
  isbn =         {0-521-56329-1},
55
  publisher =    {Cambridge University Press},
56
  address =      {New York, NY, USA},
57
  year =         1999
58
}
59

	
60

	
61
%%%%% Tools that LEMON depends on %%%%%
62

	
63
@misc{cmake,
64
  key =          {CMake},
65
  title =        {{CMake} -- {C}ross {P}latform {M}ake},
66
  url =          {http://www.cmake.org/}
67
}
68

	
69
@misc{doxygen,
70
  key =          {Doxygen},
71
  title =        {{Doxygen} -- {S}ource code documentation generator
72
                  tool},
73
  url =          {http://www.doxygen.org/}
74
}
75

	
76

	
77
%%%%% LP/MIP libraries %%%%%
78

	
79
@misc{glpk,
80
  key =          {GLPK},
81
  title =        {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it},
82
  url =          {http://www.gnu.org/software/glpk/}
83
}
84

	
85
@misc{clp,
86
  key =          {Clp},
87
  title =        {{Clp} -- {Coin-Or} {L}inear {P}rogramming},
88
  url =          {http://projects.coin-or.org/Clp/}
89
}
90

	
91
@misc{cbc,
92
  key =          {Cbc},
93
  title =        {{Cbc} -- {Coin-Or} {B}ranch and {C}ut},
94
  url =          {http://projects.coin-or.org/Cbc/}
95
}
96

	
97
@misc{cplex,
98
  key =          {CPLEX},
99
  title =        {{ILOG} {CPLEX}},
100
  url =          {http://www.ilog.com/}
101
}
102

	
103
@misc{soplex,
104
  key =          {SoPlex},
105
  title =        {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented
106
                  {S}implex},
107
  url =          {http://soplex.zib.de/}
108
}
109

	
110

	
111
%%%%% General books %%%%%
112

	
113
@book{amo93networkflows,
114
  author =       {Ravindra K. Ahuja and Thomas L. Magnanti and James
115
                  B. Orlin},
116
  title =        {Network Flows: Theory, Algorithms, and Applications},
117
  publisher =    {Prentice-Hall, Inc.},
118
  year =         1993,
119
  month =        feb,
120
  isbn =         {978-0136175490}
121
}
122

	
123
@book{schrijver03combinatorial,
124
  author =       {Alexander Schrijver},
125
  title =        {Combinatorial Optimization: Polyhedra and Efficiency},
126
  publisher =    {Springer-Verlag},
127
  year =         2003,
128
  isbn =         {978-3540443896}
129
}
130

	
131
@book{clrs01algorithms,
132
  author =       {Thomas H. Cormen and Charles E. Leiserson and Ronald
133
                  L. Rivest and Clifford Stein},
134
  title =        {Introduction to Algorithms},
135
  publisher =    {The MIT Press},
136
  year =         2001,
137
  edition =      {2nd}
138
}
139

	
140
@book{stroustrup00cpp,
141
  author =       {Bjarne Stroustrup},
142
  title =        {The C++ Programming Language},
143
  edition =      {3rd},
144
  publisher =    {Addison-Wesley Professional},
145
  isbn =         0201700735,
146
  month =        {February},
147
  year =         2000
148
}
149

	
150

	
151
%%%%% Maximum flow algorithms %%%%%
152

	
153
@article{edmondskarp72theoretical,
154
  author =       {Jack Edmonds and Richard M. Karp},
155
  title =        {Theoretical improvements in algorithmic efficiency
156
                  for network flow problems},
157
  journal =      {Journal of the ACM},
158
  year =         1972,
159
  volume =       19,
160
  number =       2,
161
  pages =        {248-264}
162
}
163

	
164
@article{goldberg88newapproach,
165
  author =       {Andrew V. Goldberg and Robert E. Tarjan},
166
  title =        {A new approach to the maximum flow problem},
167
  journal =      {Journal of the ACM},
168
  year =         1988,
169
  volume =       35,
170
  number =       4,
171
  pages =        {921-940}
172
}
173

	
174
@article{dinic70algorithm,
175
  author =       {E. A. Dinic},
176
  title =        {Algorithm for solution of a problem of maximum flow
177
                  in a network with power estimation},
178
  journal =      {Soviet Math. Doklady},
179
  year =         1970,
180
  volume =       11,
181
  pages =        {1277-1280}
182
}
183

	
184
@article{goldberg08partial,
185
  author =       {Andrew V. Goldberg},
186
  title =        {The Partial Augment-Relabel Algorithm for the
187
                  Maximum Flow Problem},
188
  journal =      {16th Annual European Symposium on Algorithms},
189
  year =         2008,
190
  pages =        {466-477}
191
}
192

	
193
@article{sleator83dynamic,
194
  author =       {Daniel D. Sleator and Robert E. Tarjan},
195
  title =        {A data structure for dynamic trees},
196
  journal =      {Journal of Computer and System Sciences},
197
  year =         1983,
198
  volume =       26,
199
  number =       3,
200
  pages =        {362-391}
201
}
202

	
203

	
204
%%%%% Minimum mean cycle algorithms %%%%%
205

	
206
@article{karp78characterization,
207
  author =       {Richard M. Karp},
208
  title =        {A characterization of the minimum cycle mean in a
209
                  digraph},
210
  journal =      {Discrete Math.},
211
  year =         1978,
212
  volume =       23,
213
  pages =        {309-311}
214
}
215

	
216
@article{dasdan98minmeancycle,
217
  author =       {Ali Dasdan and Rajesh K. Gupta},
218
  title =        {Faster Maximum and Minimum Mean Cycle Alogrithms for
219
                  System Performance Analysis},
220
  journal =      {IEEE Transactions on Computer-Aided Design of
221
                  Integrated Circuits and Systems},
222
  year =         1998,
223
  volume =       17,
224
  number =       10,
225
  pages =        {889-899}
226
}
227

	
228

	
229
%%%%% Minimum cost flow algorithms %%%%%
230

	
231
@article{klein67primal,
232
  author =       {Morton Klein},
233
  title =        {A primal method for minimal cost flows with
234
                  applications to the assignment and transportation
235
                  problems},
236
  journal =      {Management Science},
237
  year =         1967,
238
  volume =       14,
239
  pages =        {205-220}
240
}
241

	
242
@article{goldberg89cyclecanceling,
243
  author =       {Andrew V. Goldberg and Robert E. Tarjan},
244
  title =        {Finding minimum-cost circulations by canceling
245
                  negative cycles},
246
  journal =      {Journal of the ACM},
247
  year =         1989,
248
  volume =       36,
249
  number =       4,
250
  pages =        {873-886}
251
}
252

	
253
@article{goldberg90approximation,
254
  author =       {Andrew V. Goldberg and Robert E. Tarjan},
255
  title =        {Finding Minimum-Cost Circulations by Successive
256
                  Approximation},
257
  journal =      {Mathematics of Operations Research},
258
  year =         1990,
259
  volume =       15,
260
  number =       3,
261
  pages =        {430-466}
262
}
263

	
264
@article{goldberg97efficient,
265
  author =       {Andrew V. Goldberg},
266
  title =        {An Efficient Implementation of a Scaling
267
                  Minimum-Cost Flow Algorithm},
268
  journal =      {Journal of Algorithms},
269
  year =         1997,
270
  volume =       22,
271
  number =       1,
272
  pages =        {1-29}
273
}
274

	
275
@article{bunnagel98efficient,
276
  author =       {Ursula B{\"u}nnagel and Bernhard Korte and Jens
277
                  Vygen},
278
  title =        {Efficient implementation of the {G}oldberg-{T}arjan
279
                  minimum-cost flow algorithm},
280
  journal =      {Optimization Methods and Software},
281
  year =         1998,
282
  volume =       10,
283
  pages =        {157-174}
284
}
285

	
286
@book{dantzig63linearprog,
287
  author =       {George B. Dantzig},
288
  title =        {Linear Programming and Extensions},
289
  publisher =    {Princeton University Press},
290
  year =         1963
291
}
292

	
293
@mastersthesis{kellyoneill91netsimplex,
294
  author =       {Damian J. Kelly and Garrett M. O'Neill},
295
  title =        {The Minimum Cost Flow Problem and The Network
296
                  Simplex Method},
297
  school =       {University College},
298
  address =      {Dublin, Ireland},
299
  year =         1991,
300
  month =        sep,
301
}
Ignore white space 6 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_HARTMANN_ORLIN_H
20
#define LEMON_HARTMANN_ORLIN_H
21

	
22
/// \ingroup min_mean_cycle
23
///
24
/// \file
25
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
26

	
27
#include <vector>
28
#include <limits>
29
#include <lemon/core.h>
30
#include <lemon/path.h>
31
#include <lemon/tolerance.h>
32
#include <lemon/connectivity.h>
33

	
34
namespace lemon {
35

	
36
  /// \brief Default traits class of HartmannOrlin algorithm.
37
  ///
38
  /// Default traits class of HartmannOrlin algorithm.
39
  /// \tparam GR The type of the digraph.
40
  /// \tparam LEN The type of the length map.
41
  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
42
#ifdef DOXYGEN
43
  template <typename GR, typename LEN>
44
#else
45
  template <typename GR, typename LEN,
46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47
#endif
48
  struct HartmannOrlinDefaultTraits
49
  {
50
    /// The type of the digraph
51
    typedef GR Digraph;
52
    /// The type of the length map
53
    typedef LEN LengthMap;
54
    /// The type of the arc lengths
55
    typedef typename LengthMap::Value Value;
56

	
57
    /// \brief The large value type used for internal computations
58
    ///
59
    /// The large value type used for internal computations.
60
    /// It is \c long \c long if the \c Value type is integer,
61
    /// otherwise it is \c double.
62
    /// \c Value must be convertible to \c LargeValue.
63
    typedef double LargeValue;
64

	
65
    /// The tolerance type used for internal computations
66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67

	
68
    /// \brief The path type of the found cycles
69
    ///
70
    /// The path type of the found cycles.
71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72
    /// and it must have an \c addFront() function.
73
    typedef lemon::Path<Digraph> Path;
74
  };
75

	
76
  // Default traits class for integer value types
77
  template <typename GR, typename LEN>
78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
79
  {
80
    typedef GR Digraph;
81
    typedef LEN LengthMap;
82
    typedef typename LengthMap::Value Value;
83
#ifdef LEMON_HAVE_LONG_LONG
84
    typedef long long LargeValue;
85
#else
86
    typedef long LargeValue;
87
#endif
88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89
    typedef lemon::Path<Digraph> Path;
90
  };
91

	
92

	
93
  /// \addtogroup min_mean_cycle
94
  /// @{
95

	
96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97
  /// a minimum mean cycle.
98
  ///
99
  /// This class implements the Hartmann-Orlin algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
103
  /// it applies an efficient early termination scheme.
104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
105
  ///
106
  /// \tparam GR The type of the digraph the algorithm runs on.
107
  /// \tparam LEN The type of the length map. The default
108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109
#ifdef DOXYGEN
110
  template <typename GR, typename LEN, typename TR>
111
#else
112
  template < typename GR,
113
             typename LEN = typename GR::template ArcMap<int>,
114
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
115
#endif
116
  class HartmannOrlin
117
  {
118
  public:
119

	
120
    /// The type of the digraph
121
    typedef typename TR::Digraph Digraph;
122
    /// The type of the length map
123
    typedef typename TR::LengthMap LengthMap;
124
    /// The type of the arc lengths
125
    typedef typename TR::Value Value;
126

	
127
    /// \brief The large value type
128
    ///
129
    /// The large value type used for internal computations.
130
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
131
    /// it is \c long \c long if the \c Value type is integer,
132
    /// otherwise it is \c double.
133
    typedef typename TR::LargeValue LargeValue;
134

	
135
    /// The tolerance type
136
    typedef typename TR::Tolerance Tolerance;
137

	
138
    /// \brief The path type of the found cycles
139
    ///
140
    /// The path type of the found cycles.
141
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
142
    /// it is \ref lemon::Path "Path<Digraph>".
143
    typedef typename TR::Path Path;
144

	
145
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
146
    typedef TR Traits;
147

	
148
  private:
149

	
150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
151

	
152
    // Data sturcture for path data
153
    struct PathData
154
    {
155
      LargeValue dist;
156
      Arc pred;
157
      PathData(LargeValue d, Arc p = INVALID) :
158
        dist(d), pred(p) {}
159
    };
160

	
161
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
162
      PathDataNodeMap;
163

	
164
  private:
165

	
166
    // The digraph the algorithm runs on
167
    const Digraph &_gr;
168
    // The length of the arcs
169
    const LengthMap &_length;
170

	
171
    // Data for storing the strongly connected components
172
    int _comp_num;
173
    typename Digraph::template NodeMap<int> _comp;
174
    std::vector<std::vector<Node> > _comp_nodes;
175
    std::vector<Node>* _nodes;
176
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
177

	
178
    // Data for the found cycles
179
    bool _curr_found, _best_found;
180
    LargeValue _curr_length, _best_length;
181
    int _curr_size, _best_size;
182
    Node _curr_node, _best_node;
183
    int _curr_level, _best_level;
184

	
185
    Path *_cycle_path;
186
    bool _local_path;
187

	
188
    // Node map for storing path data
189
    PathDataNodeMap _data;
190
    // The processed nodes in the last round
191
    std::vector<Node> _process;
192

	
193
    Tolerance _tolerance;
194

	
195
    // Infinite constant
196
    const LargeValue INF;
197

	
198
  public:
199

	
200
    /// \name Named Template Parameters
201
    /// @{
202

	
203
    template <typename T>
204
    struct SetLargeValueTraits : public Traits {
205
      typedef T LargeValue;
206
      typedef lemon::Tolerance<T> Tolerance;
207
    };
208

	
209
    /// \brief \ref named-templ-param "Named parameter" for setting
210
    /// \c LargeValue type.
211
    ///
212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
213
    /// type. It is used for internal computations in the algorithm.
214
    template <typename T>
215
    struct SetLargeValue
216
      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
217
      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
218
    };
219

	
220
    template <typename T>
221
    struct SetPathTraits : public Traits {
222
      typedef T Path;
223
    };
224

	
225
    /// \brief \ref named-templ-param "Named parameter" for setting
226
    /// \c %Path type.
227
    ///
228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
229
    /// type of the found cycles.
230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
231
    /// and it must have an \c addFront() function.
232
    template <typename T>
233
    struct SetPath
234
      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
235
      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
236
    };
237

	
238
    /// @}
239

	
240
  public:
241

	
242
    /// \brief Constructor.
243
    ///
244
    /// The constructor of the class.
245
    ///
246
    /// \param digraph The digraph the algorithm runs on.
247
    /// \param length The lengths (costs) of the arcs.
248
    HartmannOrlin( const Digraph &digraph,
249
                   const LengthMap &length ) :
250
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
251
      _best_found(false), _best_length(0), _best_size(1),
252
      _cycle_path(NULL), _local_path(false), _data(digraph),
253
      INF(std::numeric_limits<LargeValue>::has_infinity ?
254
          std::numeric_limits<LargeValue>::infinity() :
255
          std::numeric_limits<LargeValue>::max())
256
    {}
257

	
258
    /// Destructor.
259
    ~HartmannOrlin() {
260
      if (_local_path) delete _cycle_path;
261
    }
262

	
263
    /// \brief Set the path structure for storing the found cycle.
264
    ///
265
    /// This function sets an external path structure for storing the
266
    /// found cycle.
267
    ///
268
    /// If you don't call this function before calling \ref run() or
269
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
270
    /// structure. The destuctor deallocates this automatically
271
    /// allocated object, of course.
272
    ///
273
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
274
    /// "addFront()" function of the given path structure.
275
    ///
276
    /// \return <tt>(*this)</tt>
277
    HartmannOrlin& cycle(Path &path) {
278
      if (_local_path) {
279
        delete _cycle_path;
280
        _local_path = false;
281
      }
282
      _cycle_path = &path;
283
      return *this;
284
    }
285

	
286
    /// \brief Set the tolerance used by the algorithm.
287
    ///
288
    /// This function sets the tolerance object used by the algorithm.
289
    ///
290
    /// \return <tt>(*this)</tt>
291
    HartmannOrlin& tolerance(const Tolerance& tolerance) {
292
      _tolerance = tolerance;
293
      return *this;
294
    }
295

	
296
    /// \brief Return a const reference to the tolerance.
297
    ///
298
    /// This function returns a const reference to the tolerance object
299
    /// used by the algorithm.
300
    const Tolerance& tolerance() const {
301
      return _tolerance;
302
    }
303

	
304
    /// \name Execution control
305
    /// The simplest way to execute the algorithm is to call the \ref run()
306
    /// function.\n
307
    /// If you only need the minimum mean length, you may call
308
    /// \ref findMinMean().
309

	
310
    /// @{
311

	
312
    /// \brief Run the algorithm.
313
    ///
314
    /// This function runs the algorithm.
315
    /// It can be called more than once (e.g. if the underlying digraph
316
    /// and/or the arc lengths have been modified).
317
    ///
318
    /// \return \c true if a directed cycle exists in the digraph.
319
    ///
320
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
321
    /// \code
322
    ///   return mmc.findMinMean() && mmc.findCycle();
323
    /// \endcode
324
    bool run() {
325
      return findMinMean() && findCycle();
326
    }
327

	
328
    /// \brief Find the minimum cycle mean.
329
    ///
330
    /// This function finds the minimum mean length of the directed
331
    /// cycles in the digraph.
332
    ///
333
    /// \return \c true if a directed cycle exists in the digraph.
334
    bool findMinMean() {
335
      // Initialization and find strongly connected components
336
      init();
337
      findComponents();
338
      
339
      // Find the minimum cycle mean in the components
340
      for (int comp = 0; comp < _comp_num; ++comp) {
341
        if (!initComponent(comp)) continue;
342
        processRounds();
343
        
344
        // Update the best cycle (global minimum mean cycle)
345
        if ( _curr_found && (!_best_found || 
346
             _curr_length * _best_size < _best_length * _curr_size) ) {
347
          _best_found = true;
348
          _best_length = _curr_length;
349
          _best_size = _curr_size;
350
          _best_node = _curr_node;
351
          _best_level = _curr_level;
352
        }
353
      }
354
      return _best_found;
355
    }
356

	
357
    /// \brief Find a minimum mean directed cycle.
358
    ///
359
    /// This function finds a directed cycle of minimum mean length
360
    /// in the digraph using the data computed by findMinMean().
361
    ///
362
    /// \return \c true if a directed cycle exists in the digraph.
363
    ///
364
    /// \pre \ref findMinMean() must be called before using this function.
365
    bool findCycle() {
366
      if (!_best_found) return false;
367
      IntNodeMap reached(_gr, -1);
368
      int r = _best_level + 1;
369
      Node u = _best_node;
370
      while (reached[u] < 0) {
371
        reached[u] = --r;
372
        u = _gr.source(_data[u][r].pred);
373
      }
374
      r = reached[u];
375
      Arc e = _data[u][r].pred;
376
      _cycle_path->addFront(e);
377
      _best_length = _length[e];
378
      _best_size = 1;
379
      Node v;
380
      while ((v = _gr.source(e)) != u) {
381
        e = _data[v][--r].pred;
382
        _cycle_path->addFront(e);
383
        _best_length += _length[e];
384
        ++_best_size;
385
      }
386
      return true;
387
    }
388

	
389
    /// @}
390

	
391
    /// \name Query Functions
392
    /// The results of the algorithm can be obtained using these
393
    /// functions.\n
394
    /// The algorithm should be executed before using them.
395

	
396
    /// @{
397

	
398
    /// \brief Return the total length of the found cycle.
399
    ///
400
    /// This function returns the total length of the found cycle.
401
    ///
402
    /// \pre \ref run() or \ref findMinMean() must be called before
403
    /// using this function.
404
    LargeValue cycleLength() const {
405
      return _best_length;
406
    }
407

	
408
    /// \brief Return the number of arcs on the found cycle.
409
    ///
410
    /// This function returns the number of arcs on the found cycle.
411
    ///
412
    /// \pre \ref run() or \ref findMinMean() must be called before
413
    /// using this function.
414
    int cycleArcNum() const {
415
      return _best_size;
416
    }
417

	
418
    /// \brief Return the mean length of the found cycle.
419
    ///
420
    /// This function returns the mean length of the found cycle.
421
    ///
422
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
423
    /// following code.
424
    /// \code
425
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
426
    /// \endcode
427
    ///
428
    /// \pre \ref run() or \ref findMinMean() must be called before
429
    /// using this function.
430
    double cycleMean() const {
431
      return static_cast<double>(_best_length) / _best_size;
432
    }
433

	
434
    /// \brief Return the found cycle.
435
    ///
436
    /// This function returns a const reference to the path structure
437
    /// storing the found cycle.
438
    ///
439
    /// \pre \ref run() or \ref findCycle() must be called before using
440
    /// this function.
441
    const Path& cycle() const {
442
      return *_cycle_path;
443
    }
444

	
445
    ///@}
446

	
447
  private:
448

	
449
    // Initialization
450
    void init() {
451
      if (!_cycle_path) {
452
        _local_path = true;
453
        _cycle_path = new Path;
454
      }
455
      _cycle_path->clear();
456
      _best_found = false;
457
      _best_length = 0;
458
      _best_size = 1;
459
      _cycle_path->clear();
460
      for (NodeIt u(_gr); u != INVALID; ++u)
461
        _data[u].clear();
462
    }
463

	
464
    // Find strongly connected components and initialize _comp_nodes
465
    // and _out_arcs
466
    void findComponents() {
467
      _comp_num = stronglyConnectedComponents(_gr, _comp);
468
      _comp_nodes.resize(_comp_num);
469
      if (_comp_num == 1) {
470
        _comp_nodes[0].clear();
471
        for (NodeIt n(_gr); n != INVALID; ++n) {
472
          _comp_nodes[0].push_back(n);
473
          _out_arcs[n].clear();
474
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
475
            _out_arcs[n].push_back(a);
476
          }
477
        }
478
      } else {
479
        for (int i = 0; i < _comp_num; ++i)
480
          _comp_nodes[i].clear();
481
        for (NodeIt n(_gr); n != INVALID; ++n) {
482
          int k = _comp[n];
483
          _comp_nodes[k].push_back(n);
484
          _out_arcs[n].clear();
485
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
486
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
487
          }
488
        }
489
      }
490
    }
491

	
492
    // Initialize path data for the current component
493
    bool initComponent(int comp) {
494
      _nodes = &(_comp_nodes[comp]);
495
      int n = _nodes->size();
496
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
497
        return false;
498
      }      
499
      for (int i = 0; i < n; ++i) {
500
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
501
      }
502
      return true;
503
    }
504

	
505
    // Process all rounds of computing path data for the current component.
506
    // _data[v][k] is the length of a shortest directed walk from the root
507
    // node to node v containing exactly k arcs.
508
    void processRounds() {
509
      Node start = (*_nodes)[0];
510
      _data[start][0] = PathData(0);
511
      _process.clear();
512
      _process.push_back(start);
513

	
514
      int k, n = _nodes->size();
515
      int next_check = 4;
516
      bool terminate = false;
517
      for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
518
        processNextBuildRound(k);
519
        if (k == next_check || k == n) {
520
          terminate = checkTermination(k);
521
          next_check = next_check * 3 / 2;
522
        }
523
      }
524
      for ( ; k <= n && !terminate; ++k) {
525
        processNextFullRound(k);
526
        if (k == next_check || k == n) {
527
          terminate = checkTermination(k);
528
          next_check = next_check * 3 / 2;
529
        }
530
      }
531
    }
532

	
533
    // Process one round and rebuild _process
534
    void processNextBuildRound(int k) {
535
      std::vector<Node> next;
536
      Node u, v;
537
      Arc e;
538
      LargeValue d;
539
      for (int i = 0; i < int(_process.size()); ++i) {
540
        u = _process[i];
541
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
542
          e = _out_arcs[u][j];
543
          v = _gr.target(e);
544
          d = _data[u][k-1].dist + _length[e];
545
          if (_tolerance.less(d, _data[v][k].dist)) {
546
            if (_data[v][k].dist == INF) next.push_back(v);
547
            _data[v][k] = PathData(d, e);
548
          }
549
        }
550
      }
551
      _process.swap(next);
552
    }
553

	
554
    // Process one round using _nodes instead of _process
555
    void processNextFullRound(int k) {
556
      Node u, v;
557
      Arc e;
558
      LargeValue d;
559
      for (int i = 0; i < int(_nodes->size()); ++i) {
560
        u = (*_nodes)[i];
561
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
562
          e = _out_arcs[u][j];
563
          v = _gr.target(e);
564
          d = _data[u][k-1].dist + _length[e];
565
          if (_tolerance.less(d, _data[v][k].dist)) {
566
            _data[v][k] = PathData(d, e);
567
          }
568
        }
569
      }
570
    }
571
    
572
    // Check early termination
573
    bool checkTermination(int k) {
574
      typedef std::pair<int, int> Pair;
575
      typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
576
      typename GR::template NodeMap<LargeValue> pi(_gr);
577
      int n = _nodes->size();
578
      LargeValue length;
579
      int size;
580
      Node u;
581
      
582
      // Search for cycles that are already found
583
      _curr_found = false;
584
      for (int i = 0; i < n; ++i) {
585
        u = (*_nodes)[i];
586
        if (_data[u][k].dist == INF) continue;
587
        for (int j = k; j >= 0; --j) {
588
          if (level[u].first == i && level[u].second > 0) {
589
            // A cycle is found
590
            length = _data[u][level[u].second].dist - _data[u][j].dist;
591
            size = level[u].second - j;
592
            if (!_curr_found || length * _curr_size < _curr_length * size) {
593
              _curr_length = length;
594
              _curr_size = size;
595
              _curr_node = u;
596
              _curr_level = level[u].second;
597
              _curr_found = true;
598
            }
599
          }
600
          level[u] = Pair(i, j);
601
          u = _gr.source(_data[u][j].pred);
602
        }
603
      }
604

	
605
      // If at least one cycle is found, check the optimality condition
606
      LargeValue d;
607
      if (_curr_found && k < n) {
608
        // Find node potentials
609
        for (int i = 0; i < n; ++i) {
610
          u = (*_nodes)[i];
611
          pi[u] = INF;
612
          for (int j = 0; j <= k; ++j) {
613
            if (_data[u][j].dist < INF) {
614
              d = _data[u][j].dist * _curr_size - j * _curr_length;
615
              if (_tolerance.less(d, pi[u])) pi[u] = d;
616
            }
617
          }
618
        }
619

	
620
        // Check the optimality condition for all arcs
621
        bool done = true;
622
        for (ArcIt a(_gr); a != INVALID; ++a) {
623
          if (_tolerance.less(_length[a] * _curr_size - _curr_length,
624
                              pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
625
            done = false;
626
            break;
627
          }
628
        }
629
        return done;
630
      }
631
      return (k == n);
632
    }
633

	
634
  }; //class HartmannOrlin
635

	
636
  ///@}
637

	
638
} //namespace lemon
639

	
640
#endif //LEMON_HARTMANN_ORLIN_H
Ignore white space 6 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_HOWARD_H
20
#define LEMON_HOWARD_H
21

	
22
/// \ingroup min_mean_cycle
23
///
24
/// \file
25
/// \brief Howard's algorithm for finding a minimum mean cycle.
26

	
27
#include <vector>
28
#include <limits>
29
#include <lemon/core.h>
30
#include <lemon/path.h>
31
#include <lemon/tolerance.h>
32
#include <lemon/connectivity.h>
33

	
34
namespace lemon {
35

	
36
  /// \brief Default traits class of Howard class.
37
  ///
38
  /// Default traits class of Howard class.
39
  /// \tparam GR The type of the digraph.
40
  /// \tparam LEN The type of the length map.
41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42
#ifdef DOXYGEN
43
  template <typename GR, typename LEN>
44
#else
45
  template <typename GR, typename LEN,
46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47
#endif
48
  struct HowardDefaultTraits
49
  {
50
    /// The type of the digraph
51
    typedef GR Digraph;
52
    /// The type of the length map
53
    typedef LEN LengthMap;
54
    /// The type of the arc lengths
55
    typedef typename LengthMap::Value Value;
56

	
57
    /// \brief The large value type used for internal computations
58
    ///
59
    /// The large value type used for internal computations.
60
    /// It is \c long \c long if the \c Value type is integer,
61
    /// otherwise it is \c double.
62
    /// \c Value must be convertible to \c LargeValue.
63
    typedef double LargeValue;
64

	
65
    /// The tolerance type used for internal computations
66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67

	
68
    /// \brief The path type of the found cycles
69
    ///
70
    /// The path type of the found cycles.
71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72
    /// and it must have an \c addBack() function.
73
    typedef lemon::Path<Digraph> Path;
74
  };
75

	
76
  // Default traits class for integer value types
77
  template <typename GR, typename LEN>
78
  struct HowardDefaultTraits<GR, LEN, true>
79
  {
80
    typedef GR Digraph;
81
    typedef LEN LengthMap;
82
    typedef typename LengthMap::Value Value;
83
#ifdef LEMON_HAVE_LONG_LONG
84
    typedef long long LargeValue;
85
#else
86
    typedef long LargeValue;
87
#endif
88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89
    typedef lemon::Path<Digraph> Path;
90
  };
91

	
92

	
93
  /// \addtogroup min_mean_cycle
94
  /// @{
95

	
96
  /// \brief Implementation of Howard's algorithm for finding a minimum
97
  /// mean cycle.
98
  ///
99
  /// This class implements Howard's policy iteration algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102
  /// This class provides the most efficient algorithm for the
103
  /// minimum mean cycle problem, though the best known theoretical
104
  /// bound on its running time is exponential.
105
  ///
106
  /// \tparam GR The type of the digraph the algorithm runs on.
107
  /// \tparam LEN The type of the length map. The default
108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109
#ifdef DOXYGEN
110
  template <typename GR, typename LEN, typename TR>
111
#else
112
  template < typename GR,
113
             typename LEN = typename GR::template ArcMap<int>,
114
             typename TR = HowardDefaultTraits<GR, LEN> >
115
#endif
116
  class Howard
117
  {
118
  public:
119
  
120
    /// The type of the digraph
121
    typedef typename TR::Digraph Digraph;
122
    /// The type of the length map
123
    typedef typename TR::LengthMap LengthMap;
124
    /// The type of the arc lengths
125
    typedef typename TR::Value Value;
126

	
127
    /// \brief The large value type
128
    ///
129
    /// The large value type used for internal computations.
130
    /// Using the \ref HowardDefaultTraits "default traits class",
131
    /// it is \c long \c long if the \c Value type is integer,
132
    /// otherwise it is \c double.
133
    typedef typename TR::LargeValue LargeValue;
134

	
135
    /// The tolerance type
136
    typedef typename TR::Tolerance Tolerance;
137

	
138
    /// \brief The path type of the found cycles
139
    ///
140
    /// The path type of the found cycles.
141
    /// Using the \ref HowardDefaultTraits "default traits class",
142
    /// it is \ref lemon::Path "Path<Digraph>".
143
    typedef typename TR::Path Path;
144

	
145
    /// The \ref HowardDefaultTraits "traits class" of the algorithm
146
    typedef TR Traits;
147

	
148
  private:
149

	
150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
151
  
152
    // The digraph the algorithm runs on
153
    const Digraph &_gr;
154
    // The length of the arcs
155
    const LengthMap &_length;
156

	
157
    // Data for the found cycles
158
    bool _curr_found, _best_found;
159
    LargeValue _curr_length, _best_length;
160
    int _curr_size, _best_size;
161
    Node _curr_node, _best_node;
162

	
163
    Path *_cycle_path;
164
    bool _local_path;
165

	
166
    // Internal data used by the algorithm
167
    typename Digraph::template NodeMap<Arc> _policy;
168
    typename Digraph::template NodeMap<bool> _reached;
169
    typename Digraph::template NodeMap<int> _level;
170
    typename Digraph::template NodeMap<LargeValue> _dist;
171

	
172
    // Data for storing the strongly connected components
173
    int _comp_num;
174
    typename Digraph::template NodeMap<int> _comp;
175
    std::vector<std::vector<Node> > _comp_nodes;
176
    std::vector<Node>* _nodes;
177
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
178
    
179
    // Queue used for BFS search
180
    std::vector<Node> _queue;
181
    int _qfront, _qback;
182

	
183
    Tolerance _tolerance;
184
  
185
    // Infinite constant
186
    const LargeValue INF;
187

	
188
  public:
189
  
190
    /// \name Named Template Parameters
191
    /// @{
192

	
193
    template <typename T>
194
    struct SetLargeValueTraits : public Traits {
195
      typedef T LargeValue;
196
      typedef lemon::Tolerance<T> Tolerance;
197
    };
198

	
199
    /// \brief \ref named-templ-param "Named parameter" for setting
200
    /// \c LargeValue type.
201
    ///
202
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
203
    /// type. It is used for internal computations in the algorithm.
204
    template <typename T>
205
    struct SetLargeValue
206
      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
207
      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
208
    };
209

	
210
    template <typename T>
211
    struct SetPathTraits : public Traits {
212
      typedef T Path;
213
    };
214

	
215
    /// \brief \ref named-templ-param "Named parameter" for setting
216
    /// \c %Path type.
217
    ///
218
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
219
    /// type of the found cycles.
220
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
221
    /// and it must have an \c addBack() function.
222
    template <typename T>
223
    struct SetPath
224
      : public Howard<GR, LEN, SetPathTraits<T> > {
225
      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
226
    };
227
    
228
    /// @}
229

	
230
  public:
231

	
232
    /// \brief Constructor.
233
    ///
234
    /// The constructor of the class.
235
    ///
236
    /// \param digraph The digraph the algorithm runs on.
237
    /// \param length The lengths (costs) of the arcs.
238
    Howard( const Digraph &digraph,
239
            const LengthMap &length ) :
240
      _gr(digraph), _length(length), _best_found(false),
241
      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
242
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
243
      _comp(digraph), _in_arcs(digraph),
244
      INF(std::numeric_limits<LargeValue>::has_infinity ?
245
          std::numeric_limits<LargeValue>::infinity() :
246
          std::numeric_limits<LargeValue>::max())
247
    {}
248

	
249
    /// Destructor.
250
    ~Howard() {
251
      if (_local_path) delete _cycle_path;
252
    }
253

	
254
    /// \brief Set the path structure for storing the found cycle.
255
    ///
256
    /// This function sets an external path structure for storing the
257
    /// found cycle.
258
    ///
259
    /// If you don't call this function before calling \ref run() or
260
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
261
    /// structure. The destuctor deallocates this automatically
262
    /// allocated object, of course.
263
    ///
264
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
265
    /// "addBack()" function of the given path structure.
266
    ///
267
    /// \return <tt>(*this)</tt>
268
    Howard& cycle(Path &path) {
269
      if (_local_path) {
270
        delete _cycle_path;
271
        _local_path = false;
272
      }
273
      _cycle_path = &path;
274
      return *this;
275
    }
276

	
277
    /// \brief Set the tolerance used by the algorithm.
278
    ///
279
    /// This function sets the tolerance object used by the algorithm.
280
    ///
281
    /// \return <tt>(*this)</tt>
282
    Howard& tolerance(const Tolerance& tolerance) {
283
      _tolerance = tolerance;
284
      return *this;
285
    }
286

	
287
    /// \brief Return a const reference to the tolerance.
288
    ///
289
    /// This function returns a const reference to the tolerance object
290
    /// used by the algorithm.
291
    const Tolerance& tolerance() const {
292
      return _tolerance;
293
    }
294

	
295
    /// \name Execution control
296
    /// The simplest way to execute the algorithm is to call the \ref run()
297
    /// function.\n
298
    /// If you only need the minimum mean length, you may call
299
    /// \ref findMinMean().
300

	
301
    /// @{
302

	
303
    /// \brief Run the algorithm.
304
    ///
305
    /// This function runs the algorithm.
306
    /// It can be called more than once (e.g. if the underlying digraph
307
    /// and/or the arc lengths have been modified).
308
    ///
309
    /// \return \c true if a directed cycle exists in the digraph.
310
    ///
311
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
312
    /// \code
313
    ///   return mmc.findMinMean() && mmc.findCycle();
314
    /// \endcode
315
    bool run() {
316
      return findMinMean() && findCycle();
317
    }
318

	
319
    /// \brief Find the minimum cycle mean.
320
    ///
321
    /// This function finds the minimum mean length of the directed
322
    /// cycles in the digraph.
323
    ///
324
    /// \return \c true if a directed cycle exists in the digraph.
325
    bool findMinMean() {
326
      // Initialize and find strongly connected components
327
      init();
328
      findComponents();
329
      
330
      // Find the minimum cycle mean in the components
331
      for (int comp = 0; comp < _comp_num; ++comp) {
332
        // Find the minimum mean cycle in the current component
333
        if (!buildPolicyGraph(comp)) continue;
334
        while (true) {
335
          findPolicyCycle();
336
          if (!computeNodeDistances()) break;
337
        }
338
        // Update the best cycle (global minimum mean cycle)
339
        if ( _curr_found && (!_best_found ||
340
             _curr_length * _best_size < _best_length * _curr_size) ) {
341
          _best_found = true;
342
          _best_length = _curr_length;
343
          _best_size = _curr_size;
344
          _best_node = _curr_node;
345
        }
346
      }
347
      return _best_found;
348
    }
349

	
350
    /// \brief Find a minimum mean directed cycle.
351
    ///
352
    /// This function finds a directed cycle of minimum mean length
353
    /// in the digraph using the data computed by findMinMean().
354
    ///
355
    /// \return \c true if a directed cycle exists in the digraph.
356
    ///
357
    /// \pre \ref findMinMean() must be called before using this function.
358
    bool findCycle() {
359
      if (!_best_found) return false;
360
      _cycle_path->addBack(_policy[_best_node]);
361
      for ( Node v = _best_node;
362
            (v = _gr.target(_policy[v])) != _best_node; ) {
363
        _cycle_path->addBack(_policy[v]);
364
      }
365
      return true;
366
    }
367

	
368
    /// @}
369

	
370
    /// \name Query Functions
371
    /// The results of the algorithm can be obtained using these
372
    /// functions.\n
373
    /// The algorithm should be executed before using them.
374

	
375
    /// @{
376

	
377
    /// \brief Return the total length of the found cycle.
378
    ///
379
    /// This function returns the total length of the found cycle.
380
    ///
381
    /// \pre \ref run() or \ref findMinMean() must be called before
382
    /// using this function.
383
    LargeValue cycleLength() const {
384
      return _best_length;
385
    }
386

	
387
    /// \brief Return the number of arcs on the found cycle.
388
    ///
389
    /// This function returns the number of arcs on the found cycle.
390
    ///
391
    /// \pre \ref run() or \ref findMinMean() must be called before
392
    /// using this function.
393
    int cycleArcNum() const {
394
      return _best_size;
395
    }
396

	
397
    /// \brief Return the mean length of the found cycle.
398
    ///
399
    /// This function returns the mean length of the found cycle.
400
    ///
401
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
402
    /// following code.
403
    /// \code
404
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
405
    /// \endcode
406
    ///
407
    /// \pre \ref run() or \ref findMinMean() must be called before
408
    /// using this function.
409
    double cycleMean() const {
410
      return static_cast<double>(_best_length) / _best_size;
411
    }
412

	
413
    /// \brief Return the found cycle.
414
    ///
415
    /// This function returns a const reference to the path structure
416
    /// storing the found cycle.
417
    ///
418
    /// \pre \ref run() or \ref findCycle() must be called before using
419
    /// this function.
420
    const Path& cycle() const {
421
      return *_cycle_path;
422
    }
423

	
424
    ///@}
425

	
426
  private:
427

	
428
    // Initialize
429
    void init() {
430
      if (!_cycle_path) {
431
        _local_path = true;
432
        _cycle_path = new Path;
433
      }
434
      _queue.resize(countNodes(_gr));
435
      _best_found = false;
436
      _best_length = 0;
437
      _best_size = 1;
438
      _cycle_path->clear();
439
    }
440
    
441
    // Find strongly connected components and initialize _comp_nodes
442
    // and _in_arcs
443
    void findComponents() {
444
      _comp_num = stronglyConnectedComponents(_gr, _comp);
445
      _comp_nodes.resize(_comp_num);
446
      if (_comp_num == 1) {
447
        _comp_nodes[0].clear();
448
        for (NodeIt n(_gr); n != INVALID; ++n) {
449
          _comp_nodes[0].push_back(n);
450
          _in_arcs[n].clear();
451
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
452
            _in_arcs[n].push_back(a);
453
          }
454
        }
455
      } else {
456
        for (int i = 0; i < _comp_num; ++i)
457
          _comp_nodes[i].clear();
458
        for (NodeIt n(_gr); n != INVALID; ++n) {
459
          int k = _comp[n];
460
          _comp_nodes[k].push_back(n);
461
          _in_arcs[n].clear();
462
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
463
            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
464
          }
465
        }
466
      }
467
    }
468

	
469
    // Build the policy graph in the given strongly connected component
470
    // (the out-degree of every node is 1)
471
    bool buildPolicyGraph(int comp) {
472
      _nodes = &(_comp_nodes[comp]);
473
      if (_nodes->size() < 1 ||
474
          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
475
        return false;
476
      }
477
      for (int i = 0; i < int(_nodes->size()); ++i) {
478
        _dist[(*_nodes)[i]] = INF;
479
      }
480
      Node u, v;
481
      Arc e;
482
      for (int i = 0; i < int(_nodes->size()); ++i) {
483
        v = (*_nodes)[i];
484
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
485
          e = _in_arcs[v][j];
486
          u = _gr.source(e);
487
          if (_length[e] < _dist[u]) {
488
            _dist[u] = _length[e];
489
            _policy[u] = e;
490
          }
491
        }
492
      }
493
      return true;
494
    }
495

	
496
    // Find the minimum mean cycle in the policy graph
497
    void findPolicyCycle() {
498
      for (int i = 0; i < int(_nodes->size()); ++i) {
499
        _level[(*_nodes)[i]] = -1;
500
      }
501
      LargeValue clength;
502
      int csize;
503
      Node u, v;
504
      _curr_found = false;
505
      for (int i = 0; i < int(_nodes->size()); ++i) {
506
        u = (*_nodes)[i];
507
        if (_level[u] >= 0) continue;
508
        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
509
          _level[u] = i;
510
        }
511
        if (_level[u] == i) {
512
          // A cycle is found
513
          clength = _length[_policy[u]];
514
          csize = 1;
515
          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
516
            clength += _length[_policy[v]];
517
            ++csize;
518
          }
519
          if ( !_curr_found ||
520
               (clength * _curr_size < _curr_length * csize) ) {
521
            _curr_found = true;
522
            _curr_length = clength;
523
            _curr_size = csize;
524
            _curr_node = u;
525
          }
526
        }
527
      }
528
    }
529

	
530
    // Contract the policy graph and compute node distances
531
    bool computeNodeDistances() {
532
      // Find the component of the main cycle and compute node distances
533
      // using reverse BFS
534
      for (int i = 0; i < int(_nodes->size()); ++i) {
535
        _reached[(*_nodes)[i]] = false;
536
      }
537
      _qfront = _qback = 0;
538
      _queue[0] = _curr_node;
539
      _reached[_curr_node] = true;
540
      _dist[_curr_node] = 0;
541
      Node u, v;
542
      Arc e;
543
      while (_qfront <= _qback) {
544
        v = _queue[_qfront++];
545
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
546
          e = _in_arcs[v][j];
547
          u = _gr.source(e);
548
          if (_policy[u] == e && !_reached[u]) {
549
            _reached[u] = true;
550
            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
551
            _queue[++_qback] = u;
552
          }
553
        }
554
      }
555

	
556
      // Connect all other nodes to this component and compute node
557
      // distances using reverse BFS
558
      _qfront = 0;
559
      while (_qback < int(_nodes->size())-1) {
560
        v = _queue[_qfront++];
561
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
562
          e = _in_arcs[v][j];
563
          u = _gr.source(e);
564
          if (!_reached[u]) {
565
            _reached[u] = true;
566
            _policy[u] = e;
567
            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
568
            _queue[++_qback] = u;
569
          }
570
        }
571
      }
572

	
573
      // Improve node distances
574
      bool improved = false;
575
      for (int i = 0; i < int(_nodes->size()); ++i) {
576
        v = (*_nodes)[i];
577
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
578
          e = _in_arcs[v][j];
579
          u = _gr.source(e);
580
          LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
581
          if (_tolerance.less(delta, _dist[u])) {
582
            _dist[u] = delta;
583
            _policy[u] = e;
584
            improved = true;
585
          }
586
        }
587
      }
588
      return improved;
589
    }
590

	
591
  }; //class Howard
592

	
593
  ///@}
594

	
595
} //namespace lemon
596

	
597
#endif //LEMON_HOWARD_H
Ignore white space 6 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_KARP_H
20
#define LEMON_KARP_H
21

	
22
/// \ingroup min_mean_cycle
23
///
24
/// \file
25
/// \brief Karp's algorithm for finding a minimum mean cycle.
26

	
27
#include <vector>
28
#include <limits>
29
#include <lemon/core.h>
30
#include <lemon/path.h>
31
#include <lemon/tolerance.h>
32
#include <lemon/connectivity.h>
33

	
34
namespace lemon {
35

	
36
  /// \brief Default traits class of Karp algorithm.
37
  ///
38
  /// Default traits class of Karp algorithm.
39
  /// \tparam GR The type of the digraph.
40
  /// \tparam LEN The type of the length map.
41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42
#ifdef DOXYGEN
43
  template <typename GR, typename LEN>
44
#else
45
  template <typename GR, typename LEN,
46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47
#endif
48
  struct KarpDefaultTraits
49
  {
50
    /// The type of the digraph
51
    typedef GR Digraph;
52
    /// The type of the length map
53
    typedef LEN LengthMap;
54
    /// The type of the arc lengths
55
    typedef typename LengthMap::Value Value;
56

	
57
    /// \brief The large value type used for internal computations
58
    ///
59
    /// The large value type used for internal computations.
60
    /// It is \c long \c long if the \c Value type is integer,
61
    /// otherwise it is \c double.
62
    /// \c Value must be convertible to \c LargeValue.
63
    typedef double LargeValue;
64

	
65
    /// The tolerance type used for internal computations
66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67

	
68
    /// \brief The path type of the found cycles
69
    ///
70
    /// The path type of the found cycles.
71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72
    /// and it must have an \c addFront() function.
73
    typedef lemon::Path<Digraph> Path;
74
  };
75

	
76
  // Default traits class for integer value types
77
  template <typename GR, typename LEN>
78
  struct KarpDefaultTraits<GR, LEN, true>
79
  {
80
    typedef GR Digraph;
81
    typedef LEN LengthMap;
82
    typedef typename LengthMap::Value Value;
83
#ifdef LEMON_HAVE_LONG_LONG
84
    typedef long long LargeValue;
85
#else
86
    typedef long LargeValue;
87
#endif
88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89
    typedef lemon::Path<Digraph> Path;
90
  };
91

	
92

	
93
  /// \addtogroup min_mean_cycle
94
  /// @{
95

	
96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97
  /// mean cycle.
98
  ///
99
  /// This class implements Karp's algorithm for finding a directed
100
  /// cycle of minimum mean length (cost) in a digraph
101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
103
  ///
104
  /// \tparam GR The type of the digraph the algorithm runs on.
105
  /// \tparam LEN The type of the length map. The default
106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
107
#ifdef DOXYGEN
108
  template <typename GR, typename LEN, typename TR>
109
#else
110
  template < typename GR,
111
             typename LEN = typename GR::template ArcMap<int>,
112
             typename TR = KarpDefaultTraits<GR, LEN> >
113
#endif
114
  class Karp
115
  {
116
  public:
117

	
118
    /// The type of the digraph
119
    typedef typename TR::Digraph Digraph;
120
    /// The type of the length map
121
    typedef typename TR::LengthMap LengthMap;
122
    /// The type of the arc lengths
123
    typedef typename TR::Value Value;
124

	
125
    /// \brief The large value type
126
    ///
127
    /// The large value type used for internal computations.
128
    /// Using the \ref KarpDefaultTraits "default traits class",
129
    /// it is \c long \c long if the \c Value type is integer,
130
    /// otherwise it is \c double.
131
    typedef typename TR::LargeValue LargeValue;
132

	
133
    /// The tolerance type
134
    typedef typename TR::Tolerance Tolerance;
135

	
136
    /// \brief The path type of the found cycles
137
    ///
138
    /// The path type of the found cycles.
139
    /// Using the \ref KarpDefaultTraits "default traits class",
140
    /// it is \ref lemon::Path "Path<Digraph>".
141
    typedef typename TR::Path Path;
142

	
143
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
144
    typedef TR Traits;
145

	
146
  private:
147

	
148
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
149

	
150
    // Data sturcture for path data
151
    struct PathData
152
    {
153
      LargeValue dist;
154
      Arc pred;
155
      PathData(LargeValue d, Arc p = INVALID) :
156
        dist(d), pred(p) {}
157
    };
158

	
159
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
160
      PathDataNodeMap;
161

	
162
  private:
163

	
164
    // The digraph the algorithm runs on
165
    const Digraph &_gr;
166
    // The length of the arcs
167
    const LengthMap &_length;
168

	
169
    // Data for storing the strongly connected components
170
    int _comp_num;
171
    typename Digraph::template NodeMap<int> _comp;
172
    std::vector<std::vector<Node> > _comp_nodes;
173
    std::vector<Node>* _nodes;
174
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
175

	
176
    // Data for the found cycle
177
    LargeValue _cycle_length;
178
    int _cycle_size;
179
    Node _cycle_node;
180

	
181
    Path *_cycle_path;
182
    bool _local_path;
183

	
184
    // Node map for storing path data
185
    PathDataNodeMap _data;
186
    // The processed nodes in the last round
187
    std::vector<Node> _process;
188

	
189
    Tolerance _tolerance;
190
    
191
    // Infinite constant
192
    const LargeValue INF;
193

	
194
  public:
195

	
196
    /// \name Named Template Parameters
197
    /// @{
198

	
199
    template <typename T>
200
    struct SetLargeValueTraits : public Traits {
201
      typedef T LargeValue;
202
      typedef lemon::Tolerance<T> Tolerance;
203
    };
204

	
205
    /// \brief \ref named-templ-param "Named parameter" for setting
206
    /// \c LargeValue type.
207
    ///
208
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
209
    /// type. It is used for internal computations in the algorithm.
210
    template <typename T>
211
    struct SetLargeValue
212
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
213
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
214
    };
215

	
216
    template <typename T>
217
    struct SetPathTraits : public Traits {
218
      typedef T Path;
219
    };
220

	
221
    /// \brief \ref named-templ-param "Named parameter" for setting
222
    /// \c %Path type.
223
    ///
224
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
225
    /// type of the found cycles.
226
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
227
    /// and it must have an \c addFront() function.
228
    template <typename T>
229
    struct SetPath
230
      : public Karp<GR, LEN, SetPathTraits<T> > {
231
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
232
    };
233

	
234
    /// @}
235

	
236
  public:
237

	
238
    /// \brief Constructor.
239
    ///
240
    /// The constructor of the class.
241
    ///
242
    /// \param digraph The digraph the algorithm runs on.
243
    /// \param length The lengths (costs) of the arcs.
244
    Karp( const Digraph &digraph,
245
          const LengthMap &length ) :
246
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
247
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
248
      _cycle_path(NULL), _local_path(false), _data(digraph),
249
      INF(std::numeric_limits<LargeValue>::has_infinity ?
250
          std::numeric_limits<LargeValue>::infinity() :
251
          std::numeric_limits<LargeValue>::max())
252
    {}
253

	
254
    /// Destructor.
255
    ~Karp() {
256
      if (_local_path) delete _cycle_path;
257
    }
258

	
259
    /// \brief Set the path structure for storing the found cycle.
260
    ///
261
    /// This function sets an external path structure for storing the
262
    /// found cycle.
263
    ///
264
    /// If you don't call this function before calling \ref run() or
265
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
266
    /// structure. The destuctor deallocates this automatically
267
    /// allocated object, of course.
268
    ///
269
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
270
    /// "addFront()" function of the given path structure.
271
    ///
272
    /// \return <tt>(*this)</tt>
273
    Karp& cycle(Path &path) {
274
      if (_local_path) {
275
        delete _cycle_path;
276
        _local_path = false;
277
      }
278
      _cycle_path = &path;
279
      return *this;
280
    }
281

	
282
    /// \brief Set the tolerance used by the algorithm.
283
    ///
284
    /// This function sets the tolerance object used by the algorithm.
285
    ///
286
    /// \return <tt>(*this)</tt>
287
    Karp& tolerance(const Tolerance& tolerance) {
288
      _tolerance = tolerance;
289
      return *this;
290
    }
291

	
292
    /// \brief Return a const reference to the tolerance.
293
    ///
294
    /// This function returns a const reference to the tolerance object
295
    /// used by the algorithm.
296
    const Tolerance& tolerance() const {
297
      return _tolerance;
298
    }
299

	
300
    /// \name Execution control
301
    /// The simplest way to execute the algorithm is to call the \ref run()
302
    /// function.\n
303
    /// If you only need the minimum mean length, you may call
304
    /// \ref findMinMean().
305

	
306
    /// @{
307

	
308
    /// \brief Run the algorithm.
309
    ///
310
    /// This function runs the algorithm.
311
    /// It can be called more than once (e.g. if the underlying digraph
312
    /// and/or the arc lengths have been modified).
313
    ///
314
    /// \return \c true if a directed cycle exists in the digraph.
315
    ///
316
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
317
    /// \code
318
    ///   return mmc.findMinMean() && mmc.findCycle();
319
    /// \endcode
320
    bool run() {
321
      return findMinMean() && findCycle();
322
    }
323

	
324
    /// \brief Find the minimum cycle mean.
325
    ///
326
    /// This function finds the minimum mean length of the directed
327
    /// cycles in the digraph.
328
    ///
329
    /// \return \c true if a directed cycle exists in the digraph.
330
    bool findMinMean() {
331
      // Initialization and find strongly connected components
332
      init();
333
      findComponents();
334
      
335
      // Find the minimum cycle mean in the components
336
      for (int comp = 0; comp < _comp_num; ++comp) {
337
        if (!initComponent(comp)) continue;
338
        processRounds();
339
        updateMinMean();
340
      }
341
      return (_cycle_node != INVALID);
342
    }
343

	
344
    /// \brief Find a minimum mean directed cycle.
345
    ///
346
    /// This function finds a directed cycle of minimum mean length
347
    /// in the digraph using the data computed by findMinMean().
348
    ///
349
    /// \return \c true if a directed cycle exists in the digraph.
350
    ///
351
    /// \pre \ref findMinMean() must be called before using this function.
352
    bool findCycle() {
353
      if (_cycle_node == INVALID) return false;
354
      IntNodeMap reached(_gr, -1);
355
      int r = _data[_cycle_node].size();
356
      Node u = _cycle_node;
357
      while (reached[u] < 0) {
358
        reached[u] = --r;
359
        u = _gr.source(_data[u][r].pred);
360
      }
361
      r = reached[u];
362
      Arc e = _data[u][r].pred;
363
      _cycle_path->addFront(e);
364
      _cycle_length = _length[e];
365
      _cycle_size = 1;
366
      Node v;
367
      while ((v = _gr.source(e)) != u) {
368
        e = _data[v][--r].pred;
369
        _cycle_path->addFront(e);
370
        _cycle_length += _length[e];
371
        ++_cycle_size;
372
      }
373
      return true;
374
    }
375

	
376
    /// @}
377

	
378
    /// \name Query Functions
379
    /// The results of the algorithm can be obtained using these
380
    /// functions.\n
381
    /// The algorithm should be executed before using them.
382

	
383
    /// @{
384

	
385
    /// \brief Return the total length of the found cycle.
386
    ///
387
    /// This function returns the total length of the found cycle.
388
    ///
389
    /// \pre \ref run() or \ref findMinMean() must be called before
390
    /// using this function.
391
    LargeValue cycleLength() const {
392
      return _cycle_length;
393
    }
394

	
395
    /// \brief Return the number of arcs on the found cycle.
396
    ///
397
    /// This function returns the number of arcs on the found cycle.
398
    ///
399
    /// \pre \ref run() or \ref findMinMean() must be called before
400
    /// using this function.
401
    int cycleArcNum() const {
402
      return _cycle_size;
403
    }
404

	
405
    /// \brief Return the mean length of the found cycle.
406
    ///
407
    /// This function returns the mean length of the found cycle.
408
    ///
409
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
410
    /// following code.
411
    /// \code
412
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
413
    /// \endcode
414
    ///
415
    /// \pre \ref run() or \ref findMinMean() must be called before
416
    /// using this function.
417
    double cycleMean() const {
418
      return static_cast<double>(_cycle_length) / _cycle_size;
419
    }
420

	
421
    /// \brief Return the found cycle.
422
    ///
423
    /// This function returns a const reference to the path structure
424
    /// storing the found cycle.
425
    ///
426
    /// \pre \ref run() or \ref findCycle() must be called before using
427
    /// this function.
428
    const Path& cycle() const {
429
      return *_cycle_path;
430
    }
431

	
432
    ///@}
433

	
434
  private:
435

	
436
    // Initialization
437
    void init() {
438
      if (!_cycle_path) {
439
        _local_path = true;
440
        _cycle_path = new Path;
441
      }
442
      _cycle_path->clear();
443
      _cycle_length = 0;
444
      _cycle_size = 1;
445
      _cycle_node = INVALID;
446
      for (NodeIt u(_gr); u != INVALID; ++u)
447
        _data[u].clear();
448
    }
449

	
450
    // Find strongly connected components and initialize _comp_nodes
451
    // and _out_arcs
452
    void findComponents() {
453
      _comp_num = stronglyConnectedComponents(_gr, _comp);
454
      _comp_nodes.resize(_comp_num);
455
      if (_comp_num == 1) {
456
        _comp_nodes[0].clear();
457
        for (NodeIt n(_gr); n != INVALID; ++n) {
458
          _comp_nodes[0].push_back(n);
459
          _out_arcs[n].clear();
460
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
461
            _out_arcs[n].push_back(a);
462
          }
463
        }
464
      } else {
465
        for (int i = 0; i < _comp_num; ++i)
466
          _comp_nodes[i].clear();
467
        for (NodeIt n(_gr); n != INVALID; ++n) {
468
          int k = _comp[n];
469
          _comp_nodes[k].push_back(n);
470
          _out_arcs[n].clear();
471
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
472
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
473
          }
474
        }
475
      }
476
    }
477

	
478
    // Initialize path data for the current component
479
    bool initComponent(int comp) {
480
      _nodes = &(_comp_nodes[comp]);
481
      int n = _nodes->size();
482
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
483
        return false;
484
      }      
485
      for (int i = 0; i < n; ++i) {
486
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
487
      }
488
      return true;
489
    }
490

	
491
    // Process all rounds of computing path data for the current component.
492
    // _data[v][k] is the length of a shortest directed walk from the root
493
    // node to node v containing exactly k arcs.
494
    void processRounds() {
495
      Node start = (*_nodes)[0];
496
      _data[start][0] = PathData(0);
497
      _process.clear();
498
      _process.push_back(start);
499

	
500
      int k, n = _nodes->size();
501
      for (k = 1; k <= n && int(_process.size()) < n; ++k) {
502
        processNextBuildRound(k);
503
      }
504
      for ( ; k <= n; ++k) {
505
        processNextFullRound(k);
506
      }
507
    }
508

	
509
    // Process one round and rebuild _process
510
    void processNextBuildRound(int k) {
511
      std::vector<Node> next;
512
      Node u, v;
513
      Arc e;
514
      LargeValue d;
515
      for (int i = 0; i < int(_process.size()); ++i) {
516
        u = _process[i];
517
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
518
          e = _out_arcs[u][j];
519
          v = _gr.target(e);
520
          d = _data[u][k-1].dist + _length[e];
521
          if (_tolerance.less(d, _data[v][k].dist)) {
522
            if (_data[v][k].dist == INF) next.push_back(v);
523
            _data[v][k] = PathData(d, e);
524
          }
525
        }
526
      }
527
      _process.swap(next);
528
    }
529

	
530
    // Process one round using _nodes instead of _process
531
    void processNextFullRound(int k) {
532
      Node u, v;
533
      Arc e;
534
      LargeValue d;
535
      for (int i = 0; i < int(_nodes->size()); ++i) {
536
        u = (*_nodes)[i];
537
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
538
          e = _out_arcs[u][j];
539
          v = _gr.target(e);
540
          d = _data[u][k-1].dist + _length[e];
541
          if (_tolerance.less(d, _data[v][k].dist)) {
542
            _data[v][k] = PathData(d, e);
543
          }
544
        }
545
      }
546
    }
547

	
548
    // Update the minimum cycle mean
549
    void updateMinMean() {
550
      int n = _nodes->size();
551
      for (int i = 0; i < n; ++i) {
552
        Node u = (*_nodes)[i];
553
        if (_data[u][n].dist == INF) continue;
554
        LargeValue length, max_length = 0;
555
        int size, max_size = 1;
556
        bool found_curr = false;
557
        for (int k = 0; k < n; ++k) {
558
          if (_data[u][k].dist == INF) continue;
559
          length = _data[u][n].dist - _data[u][k].dist;
560
          size = n - k;
561
          if (!found_curr || length * max_size > max_length * size) {
562
            found_curr = true;
563
            max_length = length;
564
            max_size = size;
565
          }
566
        }
567
        if ( found_curr && (_cycle_node == INVALID ||
568
             max_length * _cycle_size < _cycle_length * max_size) ) {
569
          _cycle_length = max_length;
570
          _cycle_size = max_size;
571
          _cycle_node = u;
572
        }
573
      }
574
    }
575

	
576
  }; //class Karp
577

	
578
  ///@}
579

	
580
} //namespace lemon
581

	
582
#endif //LEMON_KARP_H
Ignore white space 6 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_STATIC_GRAPH_H
20
#define LEMON_STATIC_GRAPH_H
21

	
22
///\ingroup graphs
23
///\file
24
///\brief StaticDigraph class.
25

	
26
#include <lemon/core.h>
27
#include <lemon/bits/graph_extender.h>
28

	
29
namespace lemon {
30

	
31
  class StaticDigraphBase {
32
  public:
33

	
34
    StaticDigraphBase() 
35
      : built(false), node_num(0), arc_num(0), 
36
        node_first_out(NULL), node_first_in(NULL),
37
        arc_source(NULL), arc_target(NULL), 
38
        arc_next_in(NULL), arc_next_out(NULL) {}
39
    
40
    ~StaticDigraphBase() {
41
      if (built) {
42
        delete[] node_first_out;
43
        delete[] node_first_in;
44
        delete[] arc_source;
45
        delete[] arc_target;
46
        delete[] arc_next_out;
47
        delete[] arc_next_in;
48
      }
49
    }
50

	
51
    class Node {
52
      friend class StaticDigraphBase;
53
    protected:
54
      int id;
55
      Node(int _id) : id(_id) {}
56
    public:
57
      Node() {}
58
      Node (Invalid) : id(-1) {}
59
      bool operator==(const Node& node) const { return id == node.id; }
60
      bool operator!=(const Node& node) const { return id != node.id; }
61
      bool operator<(const Node& node) const { return id < node.id; }
62
    };
63

	
64
    class Arc {
65
      friend class StaticDigraphBase;      
66
    protected:
67
      int id;
68
      Arc(int _id) : id(_id) {}
69
    public:
70
      Arc() { }
71
      Arc (Invalid) : id(-1) {}
72
      bool operator==(const Arc& arc) const { return id == arc.id; }
73
      bool operator!=(const Arc& arc) const { return id != arc.id; }
74
      bool operator<(const Arc& arc) const { return id < arc.id; }
75
    };
76

	
77
    Node source(const Arc& e) const { return Node(arc_source[e.id]); }
78
    Node target(const Arc& e) const { return Node(arc_target[e.id]); }
79

	
80
    void first(Node& n) const { n.id = node_num - 1; }
81
    static void next(Node& n) { --n.id; }
82

	
83
    void first(Arc& e) const { e.id = arc_num - 1; }
84
    static void next(Arc& e) { --e.id; }
85

	
86
    void firstOut(Arc& e, const Node& n) const { 
87
      e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? 
88
        node_first_out[n.id] : -1;
89
    }
90
    void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; }
91

	
92
    void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; }
93
    void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; }
94

	
95
    static int id(const Node& n) { return n.id; }
96
    static Node nodeFromId(int id) { return Node(id); }
97
    int maxNodeId() const { return node_num - 1; }
98

	
99
    static int id(const Arc& e) { return e.id; }
100
    static Arc arcFromId(int id) { return Arc(id); }
101
    int maxArcId() const { return arc_num - 1; }
102

	
103
    typedef True NodeNumTag;
104
    typedef True ArcNumTag;
105

	
106
    int nodeNum() const { return node_num; }
107
    int arcNum() const { return arc_num; }
108

	
109
  private:
110

	
111
    template <typename Digraph, typename NodeRefMap>
112
    class ArcLess {
113
    public:
114
      typedef typename Digraph::Arc Arc;
115

	
116
      ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) 
117
        : digraph(_graph), nodeRef(_nodeRef) {}
118
      
119
      bool operator()(const Arc& left, const Arc& right) const {
120
	return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)];
121
      }
122
    private:
123
      const Digraph& digraph;
124
      const NodeRefMap& nodeRef;
125
    };
126
    
127
  public:
128

	
129
    typedef True BuildTag;
130
    
131
    void clear() {
132
      if (built) {
133
        delete[] node_first_out;
134
        delete[] node_first_in;
135
        delete[] arc_source;
136
        delete[] arc_target;
137
        delete[] arc_next_out;
138
        delete[] arc_next_in;
139
      }
140
      built = false;
141
      node_num = 0;
142
      arc_num = 0;
143
    }
144
    
145
    template <typename Digraph, typename NodeRefMap, typename ArcRefMap>
146
    void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
147
      typedef typename Digraph::Node GNode;
148
      typedef typename Digraph::Arc GArc;
149

	
150
      built = true;
151

	
152
      node_num = countNodes(digraph);
153
      arc_num = countArcs(digraph);
154

	
155
      node_first_out = new int[node_num + 1];
156
      node_first_in = new int[node_num];
157

	
158
      arc_source = new int[arc_num];
159
      arc_target = new int[arc_num];
160
      arc_next_out = new int[arc_num];
161
      arc_next_in = new int[arc_num];
162

	
163
      int node_index = 0;
164
      for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
165
        nodeRef[n] = Node(node_index);
166
        node_first_in[node_index] = -1;
167
        ++node_index;
168
      }
169

	
170
      ArcLess<Digraph, NodeRefMap> arcLess(digraph, nodeRef);
171

	
172
      int arc_index = 0;
173
      for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
174
        int source = nodeRef[n].id;
175
        std::vector<GArc> arcs;
176
        for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) {
177
          arcs.push_back(e);
178
        }
179
        if (!arcs.empty()) {
180
          node_first_out[source] = arc_index;
181
          std::sort(arcs.begin(), arcs.end(), arcLess);
182
          for (typename std::vector<GArc>::iterator it = arcs.begin();
183
               it != arcs.end(); ++it) {
184
            int target = nodeRef[digraph.target(*it)].id;
185
            arcRef[*it] = Arc(arc_index);
186
            arc_source[arc_index] = source; 
187
            arc_target[arc_index] = target;
188
            arc_next_in[arc_index] = node_first_in[target];
189
            node_first_in[target] = arc_index;
190
            arc_next_out[arc_index] = arc_index + 1;
191
            ++arc_index;
192
          }
193
          arc_next_out[arc_index - 1] = -1;
194
        } else {
195
          node_first_out[source] = arc_index;
196
        }
197
      }
198
      node_first_out[node_num] = arc_num;
199
    }
200
    
201
    template <typename ArcListIterator>
202
    void build(int n, ArcListIterator first, ArcListIterator last) {
203
      built = true;
204

	
205
      node_num = n;
206
      arc_num = std::distance(first, last);
207

	
208
      node_first_out = new int[node_num + 1];
209
      node_first_in = new int[node_num];
210

	
211
      arc_source = new int[arc_num];
212
      arc_target = new int[arc_num];
213
      arc_next_out = new int[arc_num];
214
      arc_next_in = new int[arc_num];
215
      
216
      for (int i = 0; i != node_num; ++i) {
217
        node_first_in[i] = -1;
218
      }      
219
      
220
      int arc_index = 0;
221
      for (int i = 0; i != node_num; ++i) {
222
        node_first_out[i] = arc_index;
223
        for ( ; first != last && (*first).first == i; ++first) {
224
          int j = (*first).second;
225
          LEMON_ASSERT(j >= 0 && j < node_num,
226
            "Wrong arc list for StaticDigraph::build()");
227
          arc_source[arc_index] = i;
228
          arc_target[arc_index] = j;
229
          arc_next_in[arc_index] = node_first_in[j];
230
          node_first_in[j] = arc_index;
231
          arc_next_out[arc_index] = arc_index + 1;
232
          ++arc_index;
233
        }
234
        if (arc_index > node_first_out[i])
235
          arc_next_out[arc_index - 1] = -1;
236
      }
237
      LEMON_ASSERT(first == last,
238
        "Wrong arc list for StaticDigraph::build()");
239
      node_first_out[node_num] = arc_num;
240
    }
241

	
242
  protected:
243

	
244
    void fastFirstOut(Arc& e, const Node& n) const {
245
      e.id = node_first_out[n.id];
246
    }
247

	
248
    static void fastNextOut(Arc& e) {
249
      ++e.id;
250
    }
251
    void fastLastOut(Arc& e, const Node& n) const {
252
      e.id = node_first_out[n.id + 1];
253
    }
254

	
255
  protected:
256
    bool built;
257
    int node_num;
258
    int arc_num;
259
    int *node_first_out;
260
    int *node_first_in;
261
    int *arc_source;
262
    int *arc_target;
263
    int *arc_next_in;
264
    int *arc_next_out;
265
  };
266

	
267
  typedef DigraphExtender<StaticDigraphBase> ExtendedStaticDigraphBase;
268

	
269

	
270
  /// \ingroup graphs
271
  ///
272
  /// \brief A static directed graph class.
273
  ///
274
  /// \ref StaticDigraph is a highly efficient digraph implementation,
275
  /// but it is fully static.
276
  /// It stores only two \c int values for each node and only four \c int
277
  /// values for each arc. Moreover it provides faster item iteration than
278
  /// \ref ListDigraph and \ref SmartDigraph, especially using \c OutArcIt
279
  /// iterators, since its arcs are stored in an appropriate order.
280
  /// However it only provides build() and clear() functions and does not
281
  /// support any other modification of the digraph.
282
  ///
283
  /// Since this digraph structure is completely static, its nodes and arcs
284
  /// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt>
285
  /// and <tt>[0..arcNum()-1]</tt>, respectively. 
286
  /// The index of an item is the same as its ID, it can be obtained
287
  /// using the corresponding \ref index() or \ref concepts::Digraph::id()
288
  /// "id()" function. A node or arc with a certain index can be obtained
289
  /// using node() or arc().
290
  ///
291
  /// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
292
  /// Most of its member functions and nested classes are documented
293
  /// only in the concept class.
294
  ///
295
  /// \sa concepts::Digraph
296
  class StaticDigraph : public ExtendedStaticDigraphBase {
297
  public:
298

	
299
    typedef ExtendedStaticDigraphBase Parent;
300
  
301
  public:
302
  
303
    /// \brief Constructor
304
    ///
305
    /// Default constructor.
306
    StaticDigraph() : Parent() {}
307

	
308
    /// \brief The node with the given index.
309
    ///
310
    /// This function returns the node with the given index.
311
    /// \sa index()
312
    static Node node(int ix) { return Parent::nodeFromId(ix); }
313

	
314
    /// \brief The arc with the given index.
315
    ///
316
    /// This function returns the arc with the given index.
317
    /// \sa index()
318
    static Arc arc(int ix) { return Parent::arcFromId(ix); }
319

	
320
    /// \brief The index of the given node.
321
    ///
322
    /// This function returns the index of the the given node.
323
    /// \sa node()
324
    static int index(Node node) { return Parent::id(node); }
325

	
326
    /// \brief The index of the given arc.
327
    ///
328
    /// This function returns the index of the the given arc.
329
    /// \sa arc()
330
    static int index(Arc arc) { return Parent::id(arc); }
331

	
332
    /// \brief Number of nodes.
333
    ///
334
    /// This function returns the number of nodes.
335
    int nodeNum() const { return node_num; }
336

	
337
    /// \brief Number of arcs.
338
    ///
339
    /// This function returns the number of arcs.
340
    int arcNum() const { return arc_num; }
341

	
342
    /// \brief Build the digraph copying another digraph.
343
    ///
344
    /// This function builds the digraph copying another digraph of any
345
    /// kind. It can be called more than once, but in such case, the whole
346
    /// structure and all maps will be cleared and rebuilt.
347
    ///
348
    /// This method also makes possible to copy a digraph to a StaticDigraph
349
    /// structure using \ref DigraphCopy.
350
    /// 
351
    /// \param digraph An existing digraph to be copied.
352
    /// \param nodeRef The node references will be copied into this map.
353
    /// Its key type must be \c Digraph::Node and its value type must be
354
    /// \c StaticDigraph::Node.
355
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
356
    /// concept.
357
    /// \param arcRef The arc references will be copied into this map.
358
    /// Its key type must be \c Digraph::Arc and its value type must be
359
    /// \c StaticDigraph::Arc.
360
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
361
    ///
362
    /// \note If you do not need the arc references, then you could use
363
    /// \ref NullMap for the last parameter. However the node references
364
    /// are required by the function itself, thus they must be readable
365
    /// from the map.
366
    template <typename Digraph, typename NodeRefMap, typename ArcRefMap>
367
    void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
368
      if (built) Parent::clear();
369
      Parent::build(digraph, nodeRef, arcRef);
370
    }
371
  
372
    /// \brief Build the digraph from an arc list.
373
    ///
374
    /// This function builds the digraph from the given arc list.
375
    /// It can be called more than once, but in such case, the whole
376
    /// structure and all maps will be cleared and rebuilt.
377
    ///
378
    /// The list of the arcs must be given in the range <tt>[begin, end)</tt>
379
    /// specified by STL compatible itartors whose \c value_type must be
380
    /// <tt>std::pair<int,int></tt>.
381
    /// Each arc must be specified by a pair of integer indices
382
    /// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a
383
    /// non-decreasing order with respect to their first values.</i>
384
    /// If the k-th pair in the list is <tt>(i,j)</tt>, then
385
    /// <tt>arc(k-1)</tt> will connect <tt>node(i)</tt> to <tt>node(j)</tt>.
386
    ///
387
    /// \param n The number of nodes.
388
    /// \param begin An iterator pointing to the beginning of the arc list.
389
    /// \param end An iterator pointing to the end of the arc list.
390
    ///
391
    /// For example, a simple digraph can be constructed like this.
392
    /// \code
393
    ///   std::vector<std::pair<int,int> > arcs;
394
    ///   arcs.push_back(std::make_pair(0,1));
395
    ///   arcs.push_back(std::make_pair(0,2));
396
    ///   arcs.push_back(std::make_pair(1,3));
397
    ///   arcs.push_back(std::make_pair(1,2));
398
    ///   arcs.push_back(std::make_pair(3,0));
399
    ///   StaticDigraph gr;
400
    ///   gr.build(4, arcs.begin(), arcs.end());
401
    /// \endcode
402
    template <typename ArcListIterator>
403
    void build(int n, ArcListIterator begin, ArcListIterator end) {
404
      if (built) Parent::clear();
405
      StaticDigraphBase::build(n, begin, end);
406
      notifier(Node()).build();
407
      notifier(Arc()).build();
408
    }
409

	
410
    /// \brief Clear the digraph.
411
    ///
412
    /// This function erases all nodes and arcs from the digraph.
413
    void clear() {
414
      Parent::clear();
415
    }
416

	
417
  protected:
418

	
419
    using Parent::fastFirstOut;
420
    using Parent::fastNextOut;
421
    using Parent::fastLastOut;
422
    
423
  public:
424

	
425
    class OutArcIt : public Arc {
426
    public:
427

	
428
      OutArcIt() { }
429

	
430
      OutArcIt(Invalid i) : Arc(i) { }
431

	
432
      OutArcIt(const StaticDigraph& digraph, const Node& node) {
433
	digraph.fastFirstOut(*this, node);
434
	digraph.fastLastOut(last, node);
435
        if (last == *this) *this = INVALID;
436
      }
437

	
438
      OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) {
439
        if (arc != INVALID) {
440
          digraph.fastLastOut(last, digraph.source(arc));
441
        }
442
      }
443

	
444
      OutArcIt& operator++() { 
445
        StaticDigraph::fastNextOut(*this);
446
        if (last == *this) *this = INVALID;
447
        return *this; 
448
      }
449

	
450
    private:
451
      Arc last;
452
    };
453

	
454
    Node baseNode(const OutArcIt &arc) const {
455
      return Parent::source(static_cast<const Arc&>(arc));
456
    }
457

	
458
    Node runningNode(const OutArcIt &arc) const {
459
      return Parent::target(static_cast<const Arc&>(arc));
460
    }
461

	
462
    Node baseNode(const InArcIt &arc) const {
463
      return Parent::target(static_cast<const Arc&>(arc));
464
    }
465

	
466
    Node runningNode(const InArcIt &arc) const {
467
      return Parent::source(static_cast<const Arc&>(arc));
468
    }
469

	
470
  };
471

	
472
}
473

	
474
#endif
Ignore white space 6 line context
... ...
@@ -32,12 +32,14 @@
32 32
FIND_PACKAGE(COIN)
33 33

	
34 34
INCLUDE(CheckTypeSize)
35 35
CHECK_TYPE_SIZE("long long" LONG_LONG)
36 36
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG})
37 37

	
38
INCLUDE(FindPythonInterp)
39

	
38 40
ENABLE_TESTING()
39 41

	
40 42
ADD_SUBDIRECTORY(lemon)
41 43
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
42 44
  ADD_SUBDIRECTORY(demo)
43 45
  ADD_SUBDIRECTORY(tools)
Ignore white space 6 line context
... ...
@@ -14,12 +14,13 @@
14 14
	m4/lx_check_coin.m4 \
15 15
	CMakeLists.txt \
16 16
	cmake/FindGhostscript.cmake \
17 17
	cmake/FindCPLEX.cmake \
18 18
	cmake/FindGLPK.cmake \
19 19
	cmake/FindCOIN.cmake \
20
	cmake/LEMONConfig.cmake.in \
20 21
	cmake/version.cmake.in \
21 22
	cmake/version.cmake \
22 23
	cmake/nsis/lemon.ico \
23 24
	cmake/nsis/uninstall.ico
24 25

	
25 26
pkgconfigdir = $(libdir)/pkgconfig
Ignore white space 6 line context
... ...
@@ -38,12 +38,13 @@
38 38
AC_PROG_CXXCPP
39 39
AC_PROG_INSTALL
40 40
AC_DISABLE_SHARED
41 41
AC_PROG_LIBTOOL
42 42

	
43 43
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no])
44
AC_CHECK_PROG([python_found],[python],[yes],[no])
44 45
AC_CHECK_PROG([gs_found],[gs],[yes],[no])
45 46

	
46 47
dnl Detect Intel compiler.
47 48
AC_MSG_CHECKING([whether we are using the Intel C++ compiler])
48 49
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER
49 50
choke me
Ignore white space 6 line context
... ...
@@ -6,13 +6,13 @@
6 6
CONFIGURE_FILE(
7 7
  ${PROJECT_SOURCE_DIR}/doc/Doxyfile.in
8 8
  ${PROJECT_BINARY_DIR}/doc/Doxyfile
9 9
  @ONLY
10 10
)
11 11

	
12
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE)
12
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE)
13 13
  FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
14 14
  SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha)
15 15
  ADD_CUSTOM_TARGET(html
16 16
    COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
17 17
    COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
18 18
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
... ...
@@ -25,12 +25,13 @@
25 25
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
26 26
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
27 27
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
28 28
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
29 29
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
30 30
    COMMAND ${CMAKE_COMMAND} -E remove_directory html
31
    COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
31 32
    COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
32 33
    WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
33 34
  )
34 35

	
35 36
  SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC)
36 37

	
Ignore white space 6 line context
1
# Doxyfile 1.5.7.1
1
# Doxyfile 1.5.9
2 2

	
3 3
#---------------------------------------------------------------------------
4 4
# Project related configuration options
5 5
#---------------------------------------------------------------------------
6 6
DOXYFILE_ENCODING      = UTF-8
7 7
PROJECT_NAME           = @PACKAGE_NAME@
... ...
@@ -18,13 +18,12 @@
18 18
STRIP_FROM_PATH        = "@abs_top_srcdir@"
19 19
STRIP_FROM_INC_PATH    = "@abs_top_srcdir@"
20 20
SHORT_NAMES            = YES
21 21
JAVADOC_AUTOBRIEF      = NO
22 22
QT_AUTOBRIEF           = NO
23 23
MULTILINE_CPP_IS_BRIEF = NO
24
DETAILS_AT_TOP         = YES
25 24
INHERIT_DOCS           = NO
26 25
SEPARATE_MEMBER_PAGES  = NO
27 26
TAB_SIZE               = 8
28 27
ALIASES                = 
29 28
OPTIMIZE_OUTPUT_FOR_C  = NO
30 29
OPTIMIZE_OUTPUT_JAVA   = NO
... ...
@@ -88,13 +87,14 @@
88 87
INPUT                  = "@abs_top_srcdir@/doc" \
89 88
                         "@abs_top_srcdir@/lemon" \
90 89
                         "@abs_top_srcdir@/lemon/bits" \
91 90
                         "@abs_top_srcdir@/lemon/concepts" \
92 91
                         "@abs_top_srcdir@/demo" \
93 92
                         "@abs_top_srcdir@/tools" \
94
                         "@abs_top_srcdir@/test/test_tools.h"
93
                         "@abs_top_srcdir@/test/test_tools.h" \
94
                         "@abs_top_builddir@/doc/references.dox"
95 95
INPUT_ENCODING         = UTF-8
96 96
FILE_PATTERNS          = *.h \
97 97
                         *.cc \
98 98
                         *.dox
99 99
RECURSIVE              = NO
100 100
EXCLUDE                = 
... ...
@@ -220,13 +220,13 @@
220 220
INCLUDE_PATH           = 
221 221
INCLUDE_FILE_PATTERNS  = 
222 222
PREDEFINED             = DOXYGEN
223 223
EXPAND_AS_DEFINED      = 
224 224
SKIP_FUNCTION_MACROS   = YES
225 225
#---------------------------------------------------------------------------
226
# Configuration::additions related to external references   
226
# Options related to the search engine   
227 227
#---------------------------------------------------------------------------
228 228
TAGFILES               = "@abs_top_srcdir@/doc/libstdc++.tag = http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/  "
229 229
GENERATE_TAGFILE       = html/lemon.tag
230 230
ALLEXTERNALS           = NO
231 231
EXTERNAL_GROUPS        = NO
232 232
PERL_PATH              = /usr/bin/perl
Ignore white space 6 line context
... ...
@@ -63,13 +63,25 @@
63 63
	  echo; \
64 64
	  echo "Ghostscript not found."; \
65 65
	  echo; \
66 66
	  exit 1; \
67 67
	fi
68 68

	
69
html-local: $(DOC_PNG_IMAGES)
69
references.dox: doc/references.bib
70
	if test ${python_found} = yes; then \
71
	  cd doc; \
72
	  python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \
73
	  cd ..; \
74
	else \
75
	  echo; \
76
	  echo "Python not found."; \
77
	  echo; \
78
	  exit 1; \
79
	fi
80

	
81
html-local: $(DOC_PNG_IMAGES) references.dox
70 82
	if test ${doxygen_found} = yes; then \
71 83
	  cd doc; \
72 84
	  doxygen Doxyfile; \
73 85
	  cd ..; \
74 86
	else \
75 87
	  echo; \
Ignore white space 6 line context
... ...
@@ -313,21 +313,23 @@
313 313
/**
314 314
@defgroup search Graph Search
315 315
@ingroup algs
316 316
\brief Common graph search algorithms.
317 317

	
318 318
This group contains the common graph search algorithms, namely
319
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
319
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
320
\ref clrs01algorithms.
320 321
*/
321 322

	
322 323
/**
323 324
@defgroup shortest_path Shortest Path Algorithms
324 325
@ingroup algs
325 326
\brief Algorithms for finding shortest paths.
326 327

	
327
This group contains the algorithms for finding shortest paths in digraphs.
328
This group contains the algorithms for finding shortest paths in digraphs
329
\ref clrs01algorithms.
328 330

	
329 331
 - \ref Dijkstra algorithm for finding shortest paths from a source node
330 332
   when all arc lengths are non-negative.
331 333
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
332 334
   from a source node when arc lenghts can be either positive or negative,
333 335
   but the digraph should not contain directed cycles with negative total
... ...
@@ -343,22 +345,22 @@
343 345
/**
344 346
@defgroup spantree Minimum Spanning Tree Algorithms
345 347
@ingroup algs
346 348
\brief Algorithms for finding minimum cost spanning trees and arborescences.
347 349

	
348 350
This group contains the algorithms for finding minimum cost spanning
349
trees and arborescences.
351
trees and arborescences \ref clrs01algorithms.
350 352
*/
351 353

	
352 354
/**
353 355
@defgroup max_flow Maximum Flow Algorithms
354 356
@ingroup algs
355 357
\brief Algorithms for finding maximum flows.
356 358

	
357 359
This group contains the algorithms for finding maximum flows and
358
feasible circulations.
360
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
359 361

	
360 362
The \e maximum \e flow \e problem is to find a flow of maximum value between
361 363
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
362 364
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
363 365
\f$s, t \in V\f$ source and target nodes.
364 366
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
... ...
@@ -367,18 +369,22 @@
367 369
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
368 370
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
369 371
    \quad \forall u\in V\setminus\{s,t\} \f]
370 372
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
371 373

	
372 374
LEMON contains several algorithms for solving maximum flow problems:
373
- \ref EdmondsKarp Edmonds-Karp algorithm.
374
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
375
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
376
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
375
- \ref EdmondsKarp Edmonds-Karp algorithm
376
  \ref edmondskarp72theoretical.
377
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
378
  \ref goldberg88newapproach.
379
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
380
  \ref dinic70algorithm, \ref sleator83dynamic.
381
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
382
  \ref goldberg88newapproach, \ref sleator83dynamic.
377 383

	
378
In most cases the \ref Preflow "Preflow" algorithm provides the
384
In most cases the \ref Preflow algorithm provides the
379 385
fastest method for computing a maximum flow. All implementations
380 386
also provide functions to query the minimum cut, which is the dual
381 387
problem of maximum flow.
382 388

	
383 389
\ref Circulation is a preflow push-relabel algorithm implemented directly 
384 390
for finding feasible circulations, which is a somewhat different problem,
... ...
@@ -390,24 +396,28 @@
390 396
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
391 397
@ingroup algs
392 398

	
393 399
\brief Algorithms for finding minimum cost flows and circulations.
394 400

	
395 401
This group contains the algorithms for finding minimum cost flows and
396
circulations. For more information about this problem and its dual
397
solution see \ref min_cost_flow "Minimum Cost Flow Problem".
402
circulations \ref amo93networkflows. For more information about this
403
problem and its dual solution, see \ref min_cost_flow
404
"Minimum Cost Flow Problem".
398 405

	
399 406
LEMON contains several algorithms for this problem.
400 407
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
401
   pivot strategies.
408
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
402 409
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
403
   cost scaling.
410
   cost scaling \ref goldberg90approximation, \ref goldberg97efficient,
411
   \ref bunnagel98efficient.
404 412
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
405
   capacity scaling.
406
 - \ref CancelAndTighten The Cancel and Tighten algorithm.
407
 - \ref CycleCanceling Cycle-Canceling algorithms.
413
   capacity scaling \ref edmondskarp72theoretical.
414
 - \ref CancelAndTighten The Cancel and Tighten algorithm
415
   \ref goldberg89cyclecanceling.
416
 - \ref CycleCanceling Cycle-Canceling algorithms
417
   \ref klein67primal, \ref goldberg89cyclecanceling.
408 418

	
409 419
In general NetworkSimplex is the most efficient implementation,
410 420
but in special cases other algorithms could be faster.
411 421
For example, if the total supply and/or capacities are rather small,
412 422
CapacityScaling is usually the fastest algorithm (without effective scaling).
413 423
*/
... ...
@@ -440,12 +450,49 @@
440 450

	
441 451
If you want to find minimum cut just between two distinict nodes,
442 452
see the \ref max_flow "maximum flow problem".
443 453
*/
444 454

	
445 455
/**
456
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
457
@ingroup algs
458
\brief Algorithms for finding minimum mean cycles.
459

	
460
This group contains the algorithms for finding minimum mean cycles
461
\ref clrs01algorithms, \ref amo93networkflows.
462

	
463
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
464
of minimum mean length (cost) in a digraph.
465
The mean length of a cycle is the average length of its arcs, i.e. the
466
ratio between the total length of the cycle and the number of arcs on it.
467

	
468
This problem has an important connection to \e conservative \e length
469
\e functions, too. A length function on the arcs of a digraph is called
470
conservative if and only if there is no directed cycle of negative total
471
length. For an arbitrary length function, the negative of the minimum
472
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
473
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
474
function.
475

	
476
LEMON contains three algorithms for solving the minimum mean cycle problem:
477
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
478
  \ref dasdan98minmeancycle.
479
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
480
  version of Karp's algorithm \ref dasdan98minmeancycle.
481
- \ref Howard "Howard"'s policy iteration algorithm
482
  \ref dasdan98minmeancycle.
483

	
484
In practice, the Howard algorithm proved to be by far the most efficient
485
one, though the best known theoretical bound on its running time is
486
exponential.
487
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
488
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
489
applied early termination scheme.
490
*/
491

	
492
/**
446 493
@defgroup matching Matching Algorithms
447 494
@ingroup algs
448 495
\brief Algorithms for finding matchings in graphs and bipartite graphs.
449 496

	
450 497
This group contains the algorithms for calculating
451 498
matchings in graphs and bipartite graphs. The general matching problem is
... ...
@@ -531,19 +578,22 @@
531 578

	
532 579
This group contains some general optimization frameworks
533 580
implemented in LEMON.
534 581
*/
535 582

	
536 583
/**
537
@defgroup lp_group Lp and Mip Solvers
584
@defgroup lp_group LP and MIP Solvers
538 585
@ingroup gen_opt_group
539
\brief Lp and Mip solver interfaces for LEMON.
586
\brief LP and MIP solver interfaces for LEMON.
540 587

	
541
This group contains Lp and Mip solver interfaces for LEMON. The
542
various LP solvers could be used in the same manner with this
543
interface.
588
This group contains LP and MIP solver interfaces for LEMON.
589
Various LP solvers could be used in the same manner with this
590
high-level interface.
591

	
592
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
593
\ref cplex, \ref soplex.
544 594
*/
545 595

	
546 596
/**
547 597
@defgroup lp_utils Tools for Lp and Mip Solvers
548 598
@ingroup lp_group
549 599
\brief Helper tools to the Lp and Mip solvers.
... ...
@@ -676,14 +726,14 @@
676 726

	
677 727
/**
678 728
@defgroup graph_concepts Graph Structure Concepts
679 729
@ingroup concept
680 730
\brief Skeleton and concept checking classes for graph structures
681 731

	
682
This group contains the skeletons and concept checking classes of LEMON's
683
graph structures and helper classes used to implement these.
732
This group contains the skeletons and concept checking classes of
733
graph structures.
684 734
*/
685 735

	
686 736
/**
687 737
@defgroup map_concepts Map Concepts
688 738
@ingroup concept
689 739
\brief Skeleton and concept checking classes for maps
Ignore white space 6 line context
... ...
@@ -18,30 +18,36 @@
18 18

	
19 19
/**
20 20
\mainpage LEMON Documentation
21 21

	
22 22
\section intro Introduction
23 23

	
24
\subsection whatis What is LEMON
25

	
26
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling
27
and <b>O</b>ptimization in <b>N</b>etworks.
28
It is a C++ template
29
library aimed at combinatorial optimization tasks which
30
often involve in working
31
with graphs.
24
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling
25
and <b>O</b>ptimization in <b>N</b>etworks</i>.
26
It is a C++ template library providing efficient implementation of common
27
data structures and algorithms with focus on combinatorial optimization
28
problems in graphs and networks.
32 29

	
33 30
<b>
34 31
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
35 32
project.
36 33
You are free to use it in your commercial or
37 34
non-commercial applications under very permissive
38 35
\ref license "license terms".
39 36
</b>
40 37

	
41
\subsection howtoread How to read the documentation
38
The project is maintained by the 
39
<a href="http://www.cs.elte.hu/egres/">Egerv&aacute;ry Research Group on
40
Combinatorial Optimization</a> \ref egres
41
at the Operations Research Department of the
42
<a href="http://www.elte.hu/">E&ouml;tv&ouml;s Lor&aacute;nd University,
43
Budapest</a>, Hungary.
44
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a>
45
initiative \ref coinor.
46

	
47
\section howtoread How to Read the Documentation
42 48

	
43 49
If you would like to get to know the library, see
44 50
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>.
45 51

	
46 52
If you know what you are looking for, then try to find it under the
47 53
<a class="el" href="modules.html">Modules</a> section.
Ignore white space 6 line context
... ...
@@ -23,13 +23,13 @@
23 23

	
24 24
\section mcf_def Definition (GEQ form)
25 25

	
26 26
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
27 27
minimum total cost from a set of supply nodes to a set of demand nodes
28 28
in a network with capacity constraints (lower and upper bounds)
29
and arc costs.
29
and arc costs \ref amo93networkflows.
30 30

	
31 31
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
32 32
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
33 33
upper bounds for the flow values on the arcs, for which
34 34
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
35 35
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
Ignore white space 6 line context
... ...
@@ -83,13 +83,16 @@
83 83
	lemon/fourary_heap.h \
84 84
	lemon/full_graph.h \
85 85
	lemon/glpk.h \
86 86
	lemon/gomory_hu.h \
87 87
	lemon/graph_to_eps.h \
88 88
	lemon/grid_graph.h \
89
	lemon/hartmann_orlin.h \
90
	lemon/howard.h \
89 91
	lemon/hypercube_graph.h \
92
	lemon/karp.h \
90 93
	lemon/kary_heap.h \
91 94
	lemon/kruskal.h \
92 95
	lemon/hao_orlin.h \
93 96
	lemon/lgf_reader.h \
94 97
	lemon/lgf_writer.h \
95 98
	lemon/list_graph.h \
... ...
@@ -107,12 +110,13 @@
107 110
	lemon/preflow.h \
108 111
	lemon/radix_heap.h \
109 112
	lemon/radix_sort.h \
110 113
	lemon/random.h \
111 114
	lemon/smart_graph.h \
112 115
	lemon/soplex.h \
116
	lemon/static_graph.h \
113 117
	lemon/suurballe.h \
114 118
	lemon/time_measure.h \
115 119
	lemon/tolerance.h \
116 120
	lemon/unionfind.h \
117 121
	lemon/bits/windows.h
118 122

	
Ignore white space 6 line context
... ...
@@ -53,17 +53,17 @@
53 53
    }
54 54

	
55 55
    int maxId(Arc) const {
56 56
      return Parent::maxArcId();
57 57
    }
58 58

	
59
    Node fromId(int id, Node) const {
59
    static Node fromId(int id, Node) {
60 60
      return Parent::nodeFromId(id);
61 61
    }
62 62

	
63
    Arc fromId(int id, Arc) const {
63
    static Arc fromId(int id, Arc) {
64 64
      return Parent::arcFromId(id);
65 65
    }
66 66

	
67 67
    Node oppositeNode(const Node &node, const Arc &arc) const {
68 68
      if (node == Parent::source(arc))
69 69
        return Parent::target(arc);
... ...
@@ -352,21 +352,21 @@
352 352
    }
353 353

	
354 354
    int maxId(Edge) const {
355 355
      return Parent::maxEdgeId();
356 356
    }
357 357

	
358
    Node fromId(int id, Node) const {
358
    static Node fromId(int id, Node) {
359 359
      return Parent::nodeFromId(id);
360 360
    }
361 361

	
362
    Arc fromId(int id, Arc) const {
362
    static Arc fromId(int id, Arc) {
363 363
      return Parent::arcFromId(id);
364 364
    }
365 365

	
366
    Edge fromId(int id, Edge) const {
366
    static Edge fromId(int id, Edge) {
367 367
      return Parent::edgeFromId(id);
368 368
    }
369 369

	
370 370
    Node oppositeNode(const Node &n, const Edge &e) const {
371 371
      if( n == Parent::u(e))
372 372
        return Parent::v(e);
Ignore white space 6 line context
... ...
@@ -91,12 +91,24 @@
91 91

	
92 92
  int CbcMip::_addRow() {
93 93
    _prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX);
94 94
    return _prob->numberRows() - 1;
95 95
  }
96 96

	
97
  int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
98
    std::vector<int> indexes;
99
    std::vector<Value> values;
100

	
101
    for(ExprIterator it = b; it != e; ++it) {
102
      indexes.push_back(it->first);
103
      values.push_back(it->second);
104
    }
105

	
106
    _prob->addRow(values.size(), &indexes.front(), &values.front(), l, u);
107
    return _prob->numberRows() - 1;
108
  }
97 109

	
98 110
  void CbcMip::_eraseCol(int i) {
99 111
    _prob->deleteColumn(i);
100 112
  }
101 113

	
102 114
  void CbcMip::_eraseRow(int i) {
Ignore white space 6 line context
... ...
@@ -59,12 +59,13 @@
59 59
  protected:
60 60

	
61 61
    virtual const char* _solverName() const;
62 62

	
63 63
    virtual int _addCol();
64 64
    virtual int _addRow();
65
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);
65 66

	
66 67
    virtual void _eraseCol(int i);
67 68
    virtual void _eraseRow(int i);
68 69

	
69 70
    virtual void _eraseColId(int i);
70 71
    virtual void _eraseRowId(int i);
Ignore white space 6 line context
... ...
@@ -75,12 +75,25 @@
75 75

	
76 76
  int ClpLp::_addRow() {
77 77
    _prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX);
78 78
    return _prob->numberRows() - 1;
79 79
  }
80 80

	
81
  int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
82
    std::vector<int> indexes;
83
    std::vector<Value> values;
84

	
85
    for(ExprIterator it = b; it != e; ++it) {
86
      indexes.push_back(it->first);
87
      values.push_back(it->second);
88
    }
89

	
90
    _prob->addRow(values.size(), &indexes.front(), &values.front(), l, u);
91
    return _prob->numberRows() - 1;
92
  }
93

	
81 94

	
82 95
  void ClpLp::_eraseCol(int c) {
83 96
    _col_names_ref.erase(_prob->getColumnName(c));
84 97
    _prob->deleteColumns(1, &c);
85 98
  }
86 99

	
Ignore white space 6 line context
... ...
@@ -72,12 +72,13 @@
72 72
  protected:
73 73

	
74 74
    virtual const char* _solverName() const;
75 75

	
76 76
    virtual int _addCol();
77 77
    virtual int _addRow();
78
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);
78 79

	
79 80
    virtual void _eraseCol(int i);
80 81
    virtual void _eraseRow(int i);
81 82

	
82 83
    virtual void _eraseColId(int i);
83 84
    virtual void _eraseRowId(int i);
Ignore white space 6 line context
... ...
@@ -32,344 +32,342 @@
32 32
  namespace concepts {
33 33

	
34 34
    /// \ingroup graph_concepts
35 35
    ///
36 36
    /// \brief Class describing the concept of directed graphs.
37 37
    ///
38
    /// This class describes the \ref concept "concept" of the
39
    /// immutable directed digraphs.
38
    /// This class describes the common interface of all directed
39
    /// graphs (digraphs).
40 40
    ///
41
    /// Note that actual digraph implementation like @ref ListDigraph or
42
    /// @ref SmartDigraph may have several additional functionality.
41
    /// Like all concept classes, it only provides an interface
42
    /// without any sensible implementation. So any general algorithm for
43
    /// directed graphs should compile with this class, but it will not
44
    /// run properly, of course.
45
    /// An actual digraph implementation like \ref ListDigraph or
46
    /// \ref SmartDigraph may have additional functionality.
43 47
    ///
44
    /// \sa concept
48
    /// \sa Graph
45 49
    class Digraph {
46 50
    private:
47
      ///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
51
      /// Diraphs are \e not copy constructible. Use DigraphCopy instead.
52
      Digraph(const Digraph &) {}
53
      /// \brief Assignment of a digraph to another one is \e not allowed.
54
      /// Use DigraphCopy instead.
55
      void operator=(const Digraph &) {}
48 56

	
49
      ///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
50
      ///
51
      Digraph(const Digraph &) {};
52
      ///\brief Assignment of \ref Digraph "Digraph"s to another ones are
53
      ///\e not allowed. Use DigraphCopy() instead.
57
    public:
58
      /// Default constructor.
59
      Digraph() { }
54 60

	
55
      ///Assignment of \ref Digraph "Digraph"s to another ones are
56
      ///\e not allowed.  Use DigraphCopy() instead.
57

	
58
      void operator=(const Digraph &) {}
59
    public:
60
      ///\e
61

	
62
      /// Defalult constructor.
63

	
64
      /// Defalult constructor.
65
      ///
66
      Digraph() { }
67
      /// Class for identifying a node of the digraph
61
      /// The node type of the digraph
68 62

	
69 63
      /// This class identifies a node of the digraph. It also serves
70 64
      /// as a base class of the node iterators,
71
      /// thus they will convert to this type.
65
      /// thus they convert to this type.
72 66
      class Node {
73 67
      public:
74 68
        /// Default constructor
75 69

	
76
        /// @warning The default constructor sets the iterator
77
        /// to an undefined value.
70
        /// Default constructor.
71
        /// \warning It sets the object to an undefined value.
78 72
        Node() { }
79 73
        /// Copy constructor.
80 74

	
81 75
        /// Copy constructor.
82 76
        ///
83 77
        Node(const Node&) { }
84 78

	
85
        /// Invalid constructor \& conversion.
79
        /// %Invalid constructor \& conversion.
86 80

	
87
        /// This constructor initializes the iterator to be invalid.
81
        /// Initializes the object to be invalid.
88 82
        /// \sa Invalid for more details.
89 83
        Node(Invalid) { }
90 84
        /// Equality operator
91 85

	
86
        /// Equality operator.
87
        ///
92 88
        /// Two iterators are equal if and only if they point to the
93
        /// same object or both are invalid.
89
        /// same object or both are \c INVALID.
94 90
        bool operator==(Node) const { return true; }
95 91

	
96 92
        /// Inequality operator
97 93

	
98
        /// \sa operator==(Node n)
99
        ///
94
        /// Inequality operator.
100 95
        bool operator!=(Node) const { return true; }
101 96

	
102 97
        /// Artificial ordering operator.
103 98

	
104
        /// To allow the use of digraph descriptors as key type in std::map or
105
        /// similar associative container we require this.
99
        /// Artificial ordering operator.
106 100
        ///
107
        /// \note This operator only have to define some strict ordering of
108
        /// the items; this order has nothing to do with the iteration
109
        /// ordering of the items.
101
        /// \note This operator only has to define some strict ordering of
102
        /// the nodes; this order has nothing to do with the iteration
103
        /// ordering of the nodes.
110 104
        bool operator<(Node) const { return false; }
111

	
112 105
      };
113 106

	
114
      /// This iterator goes through each node.
107
      /// Iterator class for the nodes.
115 108

	
116
      /// This iterator goes through each node.
109
      /// This iterator goes through each node of the digraph.
117 110
      /// Its usage is quite simple, for example you can count the number
118
      /// of nodes in digraph \c g of type \c Digraph like this:
111
      /// of nodes in a digraph \c g of type \c %Digraph like this:
119 112
      ///\code
120 113
      /// int count=0;
121 114
      /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
122 115
      ///\endcode
123 116
      class NodeIt : public Node {
124 117
      public:
125 118
        /// Default constructor
126 119

	
127
        /// @warning The default constructor sets the iterator
128
        /// to an undefined value.
120
        /// Default constructor.
121
        /// \warning It sets the iterator to an undefined value.
129 122
        NodeIt() { }
130 123
        /// Copy constructor.
131 124

	
132 125
        /// Copy constructor.
133 126
        ///
134 127
        NodeIt(const NodeIt& n) : Node(n) { }
135
        /// Invalid constructor \& conversion.
128
        /// %Invalid constructor \& conversion.
136 129

	
137
        /// Initialize the iterator to be invalid.
130
        /// Initializes the iterator to be invalid.
138 131
        /// \sa Invalid for more details.
139 132
        NodeIt(Invalid) { }
140 133
        /// Sets the iterator to the first node.
141 134

	
142
        /// Sets the iterator to the first node of \c g.
135
        /// Sets the iterator to the first node of the given digraph.
143 136
        ///
144
        NodeIt(const Digraph&) { }
145
        /// Node -> NodeIt conversion.
137
        explicit NodeIt(const Digraph&) { }
138
        /// Sets the iterator to the given node.
146 139

	
147
        /// Sets the iterator to the node of \c the digraph pointed by
148
        /// the trivial iterator.
149
        /// This feature necessitates that each time we
150
        /// iterate the arc-set, the iteration order is the same.
140
        /// Sets the iterator to the given node of the given digraph.
141
        ///
151 142
        NodeIt(const Digraph&, const Node&) { }
152 143
        /// Next node.
153 144

	
154 145
        /// Assign the iterator to the next node.
155 146
        ///
156 147
        NodeIt& operator++() { return *this; }
157 148
      };
158 149

	
159 150

	
160
      /// Class for identifying an arc of the digraph
151
      /// The arc type of the digraph
161 152

	
162 153
      /// This class identifies an arc of the digraph. It also serves
163 154
      /// as a base class of the arc iterators,
164 155
      /// thus they will convert to this type.
165 156
      class Arc {
166 157
      public:
167 158
        /// Default constructor
168 159

	
169
        /// @warning The default constructor sets the iterator
170
        /// to an undefined value.
160
        /// Default constructor.
161
        /// \warning It sets the object to an undefined value.
171 162
        Arc() { }
172 163
        /// Copy constructor.
173 164

	
174 165
        /// Copy constructor.
175 166
        ///
176 167
        Arc(const Arc&) { }
177
        /// Initialize the iterator to be invalid.
168
        /// %Invalid constructor \& conversion.
178 169

	
179
        /// Initialize the iterator to be invalid.
180
        ///
170
        /// Initializes the object to be invalid.
171
        /// \sa Invalid for more details.
181 172
        Arc(Invalid) { }
182 173
        /// Equality operator
183 174

	
175
        /// Equality operator.
176
        ///
184 177
        /// Two iterators are equal if and only if they point to the
185
        /// same object or both are invalid.
178
        /// same object or both are \c INVALID.
186 179
        bool operator==(Arc) const { return true; }
187 180
        /// Inequality operator
188 181

	
189
        /// \sa operator==(Arc n)
190
        ///
182
        /// Inequality operator.
191 183
        bool operator!=(Arc) const { return true; }
192 184

	
193 185
        /// Artificial ordering operator.
194 186

	
195
        /// To allow the use of digraph descriptors as key type in std::map or
196
        /// similar associative container we require this.
187
        /// Artificial ordering operator.
197 188
        ///
198
        /// \note This operator only have to define some strict ordering of
199
        /// the items; this order has nothing to do with the iteration
200
        /// ordering of the items.
189
        /// \note This operator only has to define some strict ordering of
190
        /// the arcs; this order has nothing to do with the iteration
191
        /// ordering of the arcs.
201 192
        bool operator<(Arc) const { return false; }
202 193
      };
203 194

	
204
      /// This iterator goes trough the outgoing arcs of a node.
195
      /// Iterator class for the outgoing arcs of a node.
205 196

	
206 197
      /// This iterator goes trough the \e outgoing arcs of a certain node
207 198
      /// of a digraph.
208 199
      /// Its usage is quite simple, for example you can count the number
209 200
      /// of outgoing arcs of a node \c n
210
      /// in digraph \c g of type \c Digraph as follows.
201
      /// in a digraph \c g of type \c %Digraph as follows.
211 202
      ///\code
212 203
      /// int count=0;
213
      /// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
204
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
214 205
      ///\endcode
215

	
216 206
      class OutArcIt : public Arc {
217 207
      public:
218 208
        /// Default constructor
219 209

	
220
        /// @warning The default constructor sets the iterator
221
        /// to an undefined value.
210
        /// Default constructor.
211
        /// \warning It sets the iterator to an undefined value.
222 212
        OutArcIt() { }
223 213
        /// Copy constructor.
224 214

	
225 215
        /// Copy constructor.
226 216
        ///
227 217
        OutArcIt(const OutArcIt& e) : Arc(e) { }
228
        /// Initialize the iterator to be invalid.
218
        /// %Invalid constructor \& conversion.
229 219

	
230
        /// Initialize the iterator to be invalid.
220
        /// Initializes the iterator to be invalid.
221
        /// \sa Invalid for more details.
222
        OutArcIt(Invalid) { }
223
        /// Sets the iterator to the first outgoing arc.
224

	
225
        /// Sets the iterator to the first outgoing arc of the given node.
231 226
        ///
232
        OutArcIt(Invalid) { }
233
        /// This constructor sets the iterator to the first outgoing arc.
227
        OutArcIt(const Digraph&, const Node&) { }
228
        /// Sets the iterator to the given arc.
234 229

	
235
        /// This constructor sets the iterator to the first outgoing arc of
236
        /// the node.
237
        OutArcIt(const Digraph&, const Node&) { }
238
        /// Arc -> OutArcIt conversion
239

	
240
        /// Sets the iterator to the value of the trivial iterator.
241
        /// This feature necessitates that each time we
242
        /// iterate the arc-set, the iteration order is the same.
230
        /// Sets the iterator to the given arc of the given digraph.
231
        ///
243 232
        OutArcIt(const Digraph&, const Arc&) { }
244
        ///Next outgoing arc
233
        /// Next outgoing arc
245 234

	
246 235
        /// Assign the iterator to the next
247 236
        /// outgoing arc of the corresponding node.
248 237
        OutArcIt& operator++() { return *this; }
249 238
      };
250 239

	
251
      /// This iterator goes trough the incoming arcs of a node.
240
      /// Iterator class for the incoming arcs of a node.
252 241

	
253 242
      /// This iterator goes trough the \e incoming arcs of a certain node
254 243
      /// of a digraph.
255 244
      /// Its usage is quite simple, for example you can count the number
256
      /// of outgoing arcs of a node \c n
257
      /// in digraph \c g of type \c Digraph as follows.
245
      /// of incoming arcs of a node \c n
246
      /// in a digraph \c g of type \c %Digraph as follows.
258 247
      ///\code
259 248
      /// int count=0;
260
      /// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
249
      /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
261 250
      ///\endcode
262

	
263 251
      class InArcIt : public Arc {
264 252
      public:
265 253
        /// Default constructor
266 254

	
267
        /// @warning The default constructor sets the iterator
268
        /// to an undefined value.
255
        /// Default constructor.
256
        /// \warning It sets the iterator to an undefined value.
269 257
        InArcIt() { }
270 258
        /// Copy constructor.
271 259

	
272 260
        /// Copy constructor.
273 261
        ///
274 262
        InArcIt(const InArcIt& e) : Arc(e) { }
275
        /// Initialize the iterator to be invalid.
263
        /// %Invalid constructor \& conversion.
276 264

	
277
        /// Initialize the iterator to be invalid.
265
        /// Initializes the iterator to be invalid.
266
        /// \sa Invalid for more details.
267
        InArcIt(Invalid) { }
268
        /// Sets the iterator to the first incoming arc.
269

	
270
        /// Sets the iterator to the first incoming arc of the given node.
278 271
        ///
279
        InArcIt(Invalid) { }
280
        /// This constructor sets the iterator to first incoming arc.
272
        InArcIt(const Digraph&, const Node&) { }
273
        /// Sets the iterator to the given arc.
281 274

	
282
        /// This constructor set the iterator to the first incoming arc of
283
        /// the node.
284
        InArcIt(const Digraph&, const Node&) { }
285
        /// Arc -> InArcIt conversion
286

	
287
        /// Sets the iterator to the value of the trivial iterator \c e.
288
        /// This feature necessitates that each time we
289
        /// iterate the arc-set, the iteration order is the same.
275
        /// Sets the iterator to the given arc of the given digraph.
276
        ///
290 277
        InArcIt(const Digraph&, const Arc&) { }
291 278
        /// Next incoming arc
292 279

	
293
        /// Assign the iterator to the next inarc of the corresponding node.
294
        ///
280
        /// Assign the iterator to the next
281
        /// incoming arc of the corresponding node.
295 282
        InArcIt& operator++() { return *this; }
296 283
      };
297
      /// This iterator goes through each arc.
298 284

	
299
      /// This iterator goes through each arc of a digraph.
285
      /// Iterator class for the arcs.
286

	
287
      /// This iterator goes through each arc of the digraph.
300 288
      /// Its usage is quite simple, for example you can count the number
301
      /// of arcs in a digraph \c g of type \c Digraph as follows:
289
      /// of arcs in a digraph \c g of type \c %Digraph as follows:
302 290
      ///\code
303 291
      /// int count=0;
304
      /// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count;
292
      /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;
305 293
      ///\endcode
306 294
      class ArcIt : public Arc {
307 295
      public:
308 296
        /// Default constructor
309 297

	
310
        /// @warning The default constructor sets the iterator
311
        /// to an undefined value.
298
        /// Default constructor.
299
        /// \warning It sets the iterator to an undefined value.
312 300
        ArcIt() { }
313 301
        /// Copy constructor.
314 302

	
315 303
        /// Copy constructor.
316 304
        ///
317 305
        ArcIt(const ArcIt& e) : Arc(e) { }
318
        /// Initialize the iterator to be invalid.
306
        /// %Invalid constructor \& conversion.
319 307

	
320
        /// Initialize the iterator to be invalid.
308
        /// Initializes the iterator to be invalid.
309
        /// \sa Invalid for more details.
310
        ArcIt(Invalid) { }
311
        /// Sets the iterator to the first arc.
312

	
313
        /// Sets the iterator to the first arc of the given digraph.
321 314
        ///
322
        ArcIt(Invalid) { }
323
        /// This constructor sets the iterator to the first arc.
315
        explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
316
        /// Sets the iterator to the given arc.
324 317

	
325
        /// This constructor sets the iterator to the first arc of \c g.
326
        ///@param g the digraph
327
        ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
328
        /// Arc -> ArcIt conversion
329

	
330
        /// Sets the iterator to the value of the trivial iterator \c e.
331
        /// This feature necessitates that each time we
332
        /// iterate the arc-set, the iteration order is the same.
318
        /// Sets the iterator to the given arc of the given digraph.
319
        ///
333 320
        ArcIt(const Digraph&, const Arc&) { }
334
        ///Next arc
321
        /// Next arc
335 322

	
336 323
        /// Assign the iterator to the next arc.
324
        ///
337 325
        ArcIt& operator++() { return *this; }
338 326
      };
339
      ///Gives back the target node of an arc.
340 327

	
341
      ///Gives back the target node of an arc.
328
      /// \brief The source node of the arc.
342 329
      ///
343
      Node target(Arc) const { return INVALID; }
344
      ///Gives back the source node of an arc.
345

	
346
      ///Gives back the source node of an arc.
347
      ///
330
      /// Returns the source node of the given arc.
348 331
      Node source(Arc) const { return INVALID; }
349 332

	
350
      /// \brief Returns the ID of the node.
333
      /// \brief The target node of the arc.
334
      ///
335
      /// Returns the target node of the given arc.
336
      Node target(Arc) const { return INVALID; }
337

	
338
      /// \brief The ID of the node.
339
      ///
340
      /// Returns the ID of the given node.
351 341
      int id(Node) const { return -1; }
352 342

	
353
      /// \brief Returns the ID of the arc.
343
      /// \brief The ID of the arc.
344
      ///
345
      /// Returns the ID of the given arc.
354 346
      int id(Arc) const { return -1; }
355 347

	
356
      /// \brief Returns the node with the given ID.
348
      /// \brief The node with the given ID.
357 349
      ///
358
      /// \pre The argument should be a valid node ID in the graph.
350
      /// Returns the node with the given ID.
351
      /// \pre The argument should be a valid node ID in the digraph.
359 352
      Node nodeFromId(int) const { return INVALID; }
360 353

	
361
      /// \brief Returns the arc with the given ID.
354
      /// \brief The arc with the given ID.
362 355
      ///
363
      /// \pre The argument should be a valid arc ID in the graph.
356
      /// Returns the arc with the given ID.
357
      /// \pre The argument should be a valid arc ID in the digraph.
364 358
      Arc arcFromId(int) const { return INVALID; }
365 359

	
366
      /// \brief Returns an upper bound on the node IDs.
360
      /// \brief An upper bound on the node IDs.
361
      ///
362
      /// Returns an upper bound on the node IDs.
367 363
      int maxNodeId() const { return -1; }
368 364

	
369
      /// \brief Returns an upper bound on the arc IDs.
365
      /// \brief An upper bound on the arc IDs.
366
      ///
367
      /// Returns an upper bound on the arc IDs.
370 368
      int maxArcId() const { return -1; }
371 369

	
372 370
      void first(Node&) const {}
373 371
      void next(Node&) const {}
374 372

	
375 373
      void first(Arc&) const {}
... ...
@@ -389,51 +387,52 @@
389 387

	
390 388
      // Dummy parameter.
391 389
      int maxId(Node) const { return -1; }
392 390
      // Dummy parameter.
393 391
      int maxId(Arc) const { return -1; }
394 392

	
393
      /// \brief The opposite node on the arc.
394
      ///
395
      /// Returns the opposite node on the given arc.
396
      Node oppositeNode(Node, Arc) const { return INVALID; }
397

	
395 398
      /// \brief The base node of the iterator.
396 399
      ///
397
      /// Gives back the base node of the iterator.
398
      /// It is always the target of the pointed arc.
399
      Node baseNode(const InArcIt&) const { return INVALID; }
400
      /// Returns the base node of the given outgoing arc iterator
401
      /// (i.e. the source node of the corresponding arc).
402
      Node baseNode(OutArcIt) const { return INVALID; }
400 403

	
401 404
      /// \brief The running node of the iterator.
402 405
      ///
403
      /// Gives back the running node of the iterator.
404
      /// It is always the source of the pointed arc.
405
      Node runningNode(const InArcIt&) const { return INVALID; }
406
      /// Returns the running node of the given outgoing arc iterator
407
      /// (i.e. the target node of the corresponding arc).
408
      Node runningNode(OutArcIt) const { return INVALID; }
406 409

	
407 410
      /// \brief The base node of the iterator.
408 411
      ///
409
      /// Gives back the base node of the iterator.
410
      /// It is always the source of the pointed arc.
411
      Node baseNode(const OutArcIt&) const { return INVALID; }
412
      /// Returns the base node of the given incomming arc iterator
413
      /// (i.e. the target node of the corresponding arc).
414
      Node baseNode(InArcIt) const { return INVALID; }
412 415

	
413 416
      /// \brief The running node of the iterator.
414 417
      ///
415
      /// Gives back the running node of the iterator.
416
      /// It is always the target of the pointed arc.
417
      Node runningNode(const OutArcIt&) const { return INVALID; }
418
      /// Returns the running node of the given incomming arc iterator
419
      /// (i.e. the source node of the corresponding arc).
420
      Node runningNode(InArcIt) const { return INVALID; }
418 421

	
419
      /// \brief The opposite node on the given arc.
422
      /// \brief Standard graph map type for the nodes.
420 423
      ///
421
      /// Gives back the opposite node on the given arc.
422
      Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
423

	
424
      /// \brief Reference map of the nodes to type \c T.
425
      ///
426
      /// Reference map of the nodes to type \c T.
424
      /// Standard graph map type for the nodes.
425
      /// It conforms to the ReferenceMap concept.
427 426
      template<class T>
428 427
      class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
429 428
      public:
430 429

	
431
        ///\e
432
        NodeMap(const Digraph&) { }
433
        ///\e
430
        /// Constructor
431
        explicit NodeMap(const Digraph&) { }
432
        /// Constructor with given initial value
434 433
        NodeMap(const Digraph&, T) { }
435 434

	
436 435
      private:
437 436
        ///Copy constructor
438 437
        NodeMap(const NodeMap& nm) : 
439 438
          ReferenceMap<Node, T, T&, const T&>(nm) { }
... ...
@@ -442,23 +441,25 @@
442 441
        NodeMap& operator=(const CMap&) {
443 442
          checkConcept<ReadMap<Node, T>, CMap>();
444 443
          return *this;
445 444
        }
446 445
      };
447 446

	
448
      /// \brief Reference map of the arcs to type \c T.
447
      /// \brief Standard graph map type for the arcs.
449 448
      ///
450
      /// Reference map of the arcs to type \c T.
449
      /// Standard graph map type for the arcs.
450
      /// It conforms to the ReferenceMap concept.
451 451
      template<class T>
452 452
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
453 453
      public:
454 454

	
455
        ///\e
456
        ArcMap(const Digraph&) { }
457
        ///\e
455
        /// Constructor
456
        explicit ArcMap(const Digraph&) { }
457
        /// Constructor with given initial value
458 458
        ArcMap(const Digraph&, T) { }
459

	
459 460
      private:
460 461
        ///Copy constructor
461 462
        ArcMap(const ArcMap& em) :
462 463
          ReferenceMap<Arc, T, T&, const T&>(em) { }
463 464
        ///Assignment operator
464 465
        template <typename CMap>
Ignore white space 6 line context
... ...
@@ -15,504 +15,511 @@
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21
///\brief The concept of Undirected Graphs.
21
///\brief The concept of undirected graphs.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_GRAPH_H
24 24
#define LEMON_CONCEPTS_GRAPH_H
25 25

	
26 26
#include <lemon/concepts/graph_components.h>
27
#include <lemon/concepts/maps.h>
28
#include <lemon/concept_check.h>
27 29
#include <lemon/core.h>
28 30

	
29 31
namespace lemon {
30 32
  namespace concepts {
31 33

	
32 34
    /// \ingroup graph_concepts
33 35
    ///
34
    /// \brief Class describing the concept of Undirected Graphs.
36
    /// \brief Class describing the concept of undirected graphs.
35 37
    ///
36
    /// This class describes the common interface of all Undirected
37
    /// Graphs.
38
    /// This class describes the common interface of all undirected
39
    /// graphs.
38 40
    ///
39
    /// As all concept describing classes it provides only interface
40
    /// without any sensible implementation. So any algorithm for
41
    /// undirected graph should compile with this class, but it will not
41
    /// Like all concept classes, it only provides an interface
42
    /// without any sensible implementation. So any general algorithm for
43
    /// undirected graphs should compile with this class, but it will not
42 44
    /// run properly, of course.
45
    /// An actual graph implementation like \ref ListGraph or
46
    /// \ref SmartGraph may have additional functionality.    
43 47
    ///
44
    /// The LEMON undirected graphs also fulfill the concept of
45
    /// directed graphs (\ref lemon::concepts::Digraph "Digraph
46
    /// Concept"). Each edges can be seen as two opposite
47
    /// directed arc and consequently the undirected graph can be
48
    /// seen as the direceted graph of these directed arcs. The
49
    /// Graph has the Edge inner class for the edges and
50
    /// the Arc type for the directed arcs. The Arc type is
51
    /// convertible to Edge or inherited from it so from a directed
52
    /// arc we can get the represented edge.
48
    /// The undirected graphs also fulfill the concept of \ref Digraph
49
    /// "directed graphs", since each edge can also be regarded as two
50
    /// oppositely directed arcs.
51
    /// Undirected graphs provide an Edge type for the undirected edges and
52
    /// an Arc type for the directed arcs. The Arc type is convertible to
53
    /// Edge or inherited from it, i.e. the corresponding edge can be
54
    /// obtained from an arc.
55
    /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
56
    /// and ArcMap classes can be used for the arcs (just like in digraphs).
57
    /// Both InArcIt and OutArcIt iterates on the same edges but with
58
    /// opposite direction. IncEdgeIt also iterates on the same edges
59
    /// as OutArcIt and InArcIt, but it is not convertible to Arc,
60
    /// only to Edge.
53 61
    ///
54
    /// In the sense of the LEMON each edge has a default
55
    /// direction (it should be in every computer implementation,
56
    /// because the order of edge's nodes defines an
57
    /// orientation). With the default orientation we can define that
58
    /// the directed arc is forward or backward directed. With the \c
59
    /// direction() and \c direct() function we can get the direction
60
    /// of the directed arc and we can direct an edge.
62
    /// In LEMON, each undirected edge has an inherent orientation.
63
    /// Thus it can defined if an arc is forward or backward oriented in
64
    /// an undirected graph with respect to this default oriantation of
65
    /// the represented edge.
66
    /// With the direction() and direct() functions the direction
67
    /// of an arc can be obtained and set, respectively.
61 68
    ///
62
    /// The EdgeIt is an iterator for the edges. We can use
63
    /// the EdgeMap to map values for the edges. The InArcIt and
64
    /// OutArcIt iterates on the same edges but with opposite
65
    /// direction. The IncEdgeIt iterates also on the same edges
66
    /// as the OutArcIt and InArcIt but it is not convertible to Arc just
67
    /// to Edge.
69
    /// Only nodes and edges can be added to or removed from an undirected
70
    /// graph and the corresponding arcs are added or removed automatically.
71
    ///
72
    /// \sa Digraph
68 73
    class Graph {
74
    private:
75
      /// Graphs are \e not copy constructible. Use DigraphCopy instead.
76
      Graph(const Graph&) {}
77
      /// \brief Assignment of a graph to another one is \e not allowed.
78
      /// Use DigraphCopy instead.
79
      void operator=(const Graph&) {}
80

	
69 81
    public:
70
      /// \brief The undirected graph should be tagged by the
71
      /// UndirectedTag.
82
      /// Default constructor.
83
      Graph() {}
84

	
85
      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
72 86
      ///
73
      /// The undirected graph should be tagged by the UndirectedTag. This
74
      /// tag helps the enable_if technics to make compile time
87
      /// Undirected graphs should be tagged with \c UndirectedTag.
88
      /// 
89
      /// This tag helps the \c enable_if technics to make compile time
75 90
      /// specializations for undirected graphs.
76 91
      typedef True UndirectedTag;
77 92

	
78
      /// \brief The base type of node iterators,
79
      /// or in other words, the trivial node iterator.
80
      ///
81
      /// This is the base type of each node iterator,
82
      /// thus each kind of node iterator converts to this.
83
      /// More precisely each kind of node iterator should be inherited
84
      /// from the trivial node iterator.
93
      /// The node type of the graph
94

	
95
      /// This class identifies a node of the graph. It also serves
96
      /// as a base class of the node iterators,
97
      /// thus they convert to this type.
85 98
      class Node {
86 99
      public:
87 100
        /// Default constructor
88 101

	
89
        /// @warning The default constructor sets the iterator
90
        /// to an undefined value.
102
        /// Default constructor.
103
        /// \warning It sets the object to an undefined value.
91 104
        Node() { }
92 105
        /// Copy constructor.
93 106

	
94 107
        /// Copy constructor.
95 108
        ///
96 109
        Node(const Node&) { }
97 110

	
98
        /// Invalid constructor \& conversion.
111
        /// %Invalid constructor \& conversion.
99 112

	
100
        /// This constructor initializes the iterator to be invalid.
113
        /// Initializes the object to be invalid.
101 114
        /// \sa Invalid for more details.
102 115
        Node(Invalid) { }
103 116
        /// Equality operator
104 117

	
118
        /// Equality operator.
119
        ///
105 120
        /// Two iterators are equal if and only if they point to the
106
        /// same object or both are invalid.
121
        /// same object or both are \c INVALID.
107 122
        bool operator==(Node) const { return true; }
108 123

	
109 124
        /// Inequality operator
110 125

	
111
        /// \sa operator==(Node n)
112
        ///
126
        /// Inequality operator.
113 127
        bool operator!=(Node) const { return true; }
114 128

	
115 129
        /// Artificial ordering operator.
116 130

	
117
        /// To allow the use of graph descriptors as key type in std::map or
118
        /// similar associative container we require this.
131
        /// Artificial ordering operator.
119 132
        ///
120
        /// \note This operator only have to define some strict ordering of
133
        /// \note This operator only has to define some strict ordering of
121 134
        /// the items; this order has nothing to do with the iteration
122 135
        /// ordering of the items.
123 136
        bool operator<(Node) const { return false; }
124 137

	
125 138
      };
126 139

	
127
      /// This iterator goes through each node.
140
      /// Iterator class for the nodes.
128 141

	
129
      /// This iterator goes through each node.
142
      /// This iterator goes through each node of the graph.
130 143
      /// Its usage is quite simple, for example you can count the number
131
      /// of nodes in graph \c g of type \c Graph like this:
144
      /// of nodes in a graph \c g of type \c %Graph like this:
132 145
      ///\code
133 146
      /// int count=0;
134 147
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
135 148
      ///\endcode
136 149
      class NodeIt : public Node {
137 150
      public:
138 151
        /// Default constructor
139 152

	
140
        /// @warning The default constructor sets the iterator
141
        /// to an undefined value.
153
        /// Default constructor.
154
        /// \warning It sets the iterator to an undefined value.
142 155
        NodeIt() { }
143 156
        /// Copy constructor.
144 157

	
145 158
        /// Copy constructor.
146 159
        ///
147 160
        NodeIt(const NodeIt& n) : Node(n) { }
148
        /// Invalid constructor \& conversion.
161
        /// %Invalid constructor \& conversion.
149 162

	
150
        /// Initialize the iterator to be invalid.
163
        /// Initializes the iterator to be invalid.
151 164
        /// \sa Invalid for more details.
152 165
        NodeIt(Invalid) { }
153 166
        /// Sets the iterator to the first node.
154 167

	
155
        /// Sets the iterator to the first node of \c g.
168
        /// Sets the iterator to the first node of the given digraph.
156 169
        ///
157
        NodeIt(const Graph&) { }
158
        /// Node -> NodeIt conversion.
170
        explicit NodeIt(const Graph&) { }
171
        /// Sets the iterator to the given node.
159 172

	
160
        /// Sets the iterator to the node of \c the graph pointed by
161
        /// the trivial iterator.
162
        /// This feature necessitates that each time we
163
        /// iterate the arc-set, the iteration order is the same.
173
        /// Sets the iterator to the given node of the given digraph.
174
        ///
164 175
        NodeIt(const Graph&, const Node&) { }
165 176
        /// Next node.
166 177

	
167 178
        /// Assign the iterator to the next node.
168 179
        ///
169 180
        NodeIt& operator++() { return *this; }
170 181
      };
171 182

	
172 183

	
173
      /// The base type of the edge iterators.
184
      /// The edge type of the graph
174 185

	
175
      /// The base type of the edge iterators.
176
      ///
186
      /// This class identifies an edge of the graph. It also serves
187
      /// as a base class of the edge iterators,
188
      /// thus they will convert to this type.
177 189
      class Edge {
178 190
      public:
179 191
        /// Default constructor
180 192

	
181
        /// @warning The default constructor sets the iterator
182
        /// to an undefined value.
193
        /// Default constructor.
194
        /// \warning It sets the object to an undefined value.
183 195
        Edge() { }
184 196
        /// Copy constructor.
185 197

	
186 198
        /// Copy constructor.
187 199
        ///
188 200
        Edge(const Edge&) { }
189
        /// Initialize the iterator to be invalid.
201
        /// %Invalid constructor \& conversion.
190 202

	
191
        /// Initialize the iterator to be invalid.
192
        ///
203
        /// Initializes the object to be invalid.
204
        /// \sa Invalid for more details.
193 205
        Edge(Invalid) { }
194 206
        /// Equality operator
195 207

	
208
        /// Equality operator.
209
        ///
196 210
        /// Two iterators are equal if and only if they point to the
197
        /// same object or both are invalid.
211
        /// same object or both are \c INVALID.
198 212
        bool operator==(Edge) const { return true; }
199 213
        /// Inequality operator
200 214

	
201
        /// \sa operator==(Edge n)
202
        ///
215
        /// Inequality operator.
203 216
        bool operator!=(Edge) const { return true; }
204 217

	
205 218
        /// Artificial ordering operator.
206 219

	
207
        /// To allow the use of graph descriptors as key type in std::map or
208
        /// similar associative container we require this.
220
        /// Artificial ordering operator.
209 221
        ///
210
        /// \note This operator only have to define some strict ordering of
211
        /// the items; this order has nothing to do with the iteration
212
        /// ordering of the items.
222
        /// \note This operator only has to define some strict ordering of
223
        /// the edges; this order has nothing to do with the iteration
224
        /// ordering of the edges.
213 225
        bool operator<(Edge) const { return false; }
214 226
      };
215 227

	
216
      /// This iterator goes through each edge.
228
      /// Iterator class for the edges.
217 229

	
218
      /// This iterator goes through each edge of a graph.
230
      /// This iterator goes through each edge of the graph.
219 231
      /// Its usage is quite simple, for example you can count the number
220
      /// of edges in a graph \c g of type \c Graph as follows:
232
      /// of edges in a graph \c g of type \c %Graph as follows:
221 233
      ///\code
222 234
      /// int count=0;
223 235
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
224 236
      ///\endcode
225 237
      class EdgeIt : public Edge {
226 238
      public:
227 239
        /// Default constructor
228 240

	
229
        /// @warning The default constructor sets the iterator
230
        /// to an undefined value.
241
        /// Default constructor.
242
        /// \warning It sets the iterator to an undefined value.
231 243
        EdgeIt() { }
232 244
        /// Copy constructor.
233 245

	
234 246
        /// Copy constructor.
235 247
        ///
236 248
        EdgeIt(const EdgeIt& e) : Edge(e) { }
237
        /// Initialize the iterator to be invalid.
249
        /// %Invalid constructor \& conversion.
238 250

	
239
        /// Initialize the iterator to be invalid.
251
        /// Initializes the iterator to be invalid.
252
        /// \sa Invalid for more details.
253
        EdgeIt(Invalid) { }
254
        /// Sets the iterator to the first edge.
255

	
256
        /// Sets the iterator to the first edge of the given graph.
240 257
        ///
241
        EdgeIt(Invalid) { }
242
        /// This constructor sets the iterator to the first edge.
258
        explicit EdgeIt(const Graph&) { }
259
        /// Sets the iterator to the given edge.
243 260

	
244
        /// This constructor sets the iterator to the first edge.
245
        EdgeIt(const Graph&) { }
246
        /// Edge -> EdgeIt conversion
247

	
248
        /// Sets the iterator to the value of the trivial iterator.
249
        /// This feature necessitates that each time we
250
        /// iterate the edge-set, the iteration order is the
251
        /// same.
261
        /// Sets the iterator to the given edge of the given graph.
262
        ///
252 263
        EdgeIt(const Graph&, const Edge&) { }
253 264
        /// Next edge
254 265

	
255 266
        /// Assign the iterator to the next edge.
267
        ///
256 268
        EdgeIt& operator++() { return *this; }
257 269
      };
258 270

	
259
      /// \brief This iterator goes trough the incident undirected
260
      /// arcs of a node.
261
      ///
262
      /// This iterator goes trough the incident edges
263
      /// of a certain node of a graph. You should assume that the
264
      /// loop arcs will be iterated twice.
265
      ///
271
      /// Iterator class for the incident edges of a node.
272

	
273
      /// This iterator goes trough the incident undirected edges
274
      /// of a certain node of a graph.
266 275
      /// Its usage is quite simple, for example you can compute the
267
      /// degree (i.e. count the number of incident arcs of a node \c n
268
      /// in graph \c g of type \c Graph as follows.
276
      /// degree (i.e. the number of incident edges) of a node \c n
277
      /// in a graph \c g of type \c %Graph as follows.
269 278
      ///
270 279
      ///\code
271 280
      /// int count=0;
272 281
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
273 282
      ///\endcode
283
      ///
284
      /// \warning Loop edges will be iterated twice.
274 285
      class IncEdgeIt : public Edge {
275 286
      public:
276 287
        /// Default constructor
277 288

	
278
        /// @warning The default constructor sets the iterator
279
        /// to an undefined value.
289
        /// Default constructor.
290
        /// \warning It sets the iterator to an undefined value.
280 291
        IncEdgeIt() { }
281 292
        /// Copy constructor.
282 293

	
283 294
        /// Copy constructor.
284 295
        ///
285 296
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
286
        /// Initialize the iterator to be invalid.
297
        /// %Invalid constructor \& conversion.
287 298

	
288
        /// Initialize the iterator to be invalid.
299
        /// Initializes the iterator to be invalid.
300
        /// \sa Invalid for more details.
301
        IncEdgeIt(Invalid) { }
302
        /// Sets the iterator to the first incident edge.
303

	
304
        /// Sets the iterator to the first incident edge of the given node.
289 305
        ///
290
        IncEdgeIt(Invalid) { }
291
        /// This constructor sets the iterator to first incident arc.
306
        IncEdgeIt(const Graph&, const Node&) { }
307
        /// Sets the iterator to the given edge.
292 308

	
293
        /// This constructor set the iterator to the first incident arc of
294
        /// the node.
295
        IncEdgeIt(const Graph&, const Node&) { }
296
        /// Edge -> IncEdgeIt conversion
309
        /// Sets the iterator to the given edge of the given graph.
310
        ///
311
        IncEdgeIt(const Graph&, const Edge&) { }
312
        /// Next incident edge
297 313

	
298
        /// Sets the iterator to the value of the trivial iterator \c e.
299
        /// This feature necessitates that each time we
300
        /// iterate the arc-set, the iteration order is the same.
301
        IncEdgeIt(const Graph&, const Edge&) { }
302
        /// Next incident arc
303

	
304
        /// Assign the iterator to the next incident arc
314
        /// Assign the iterator to the next incident edge
305 315
        /// of the corresponding node.
306 316
        IncEdgeIt& operator++() { return *this; }
307 317
      };
308 318

	
309
      /// The directed arc type.
319
      /// The arc type of the graph
310 320

	
311
      /// The directed arc type. It can be converted to the
312
      /// edge or it should be inherited from the undirected
313
      /// edge.
321
      /// This class identifies a directed arc of the graph. It also serves
322
      /// as a base class of the arc iterators,
323
      /// thus they will convert to this type.
314 324
      class Arc {
315 325
      public:
316 326
        /// Default constructor
317 327

	
318
        /// @warning The default constructor sets the iterator
319
        /// to an undefined value.
328
        /// Default constructor.
329
        /// \warning It sets the object to an undefined value.
320 330
        Arc() { }
321 331
        /// Copy constructor.
322 332

	
323 333
        /// Copy constructor.
324 334
        ///
325 335
        Arc(const Arc&) { }
326
        /// Initialize the iterator to be invalid.
336
        /// %Invalid constructor \& conversion.
327 337

	
328
        /// Initialize the iterator to be invalid.
329
        ///
338
        /// Initializes the object to be invalid.
339
        /// \sa Invalid for more details.
330 340
        Arc(Invalid) { }
331 341
        /// Equality operator
332 342

	
343
        /// Equality operator.
344
        ///
333 345
        /// Two iterators are equal if and only if they point to the
334
        /// same object or both are invalid.
346
        /// same object or both are \c INVALID.
335 347
        bool operator==(Arc) const { return true; }
336 348
        /// Inequality operator
337 349

	
338
        /// \sa operator==(Arc n)
339
        ///
350
        /// Inequality operator.
340 351
        bool operator!=(Arc) const { return true; }
341 352

	
342 353
        /// Artificial ordering operator.
343 354

	
344
        /// To allow the use of graph descriptors as key type in std::map or
345
        /// similar associative container we require this.
355
        /// Artificial ordering operator.
346 356
        ///
347
        /// \note This operator only have to define some strict ordering of
348
        /// the items; this order has nothing to do with the iteration
349
        /// ordering of the items.
357
        /// \note This operator only has to define some strict ordering of
358
        /// the arcs; this order has nothing to do with the iteration
359
        /// ordering of the arcs.
350 360
        bool operator<(Arc) const { return false; }
351 361

	
352
        /// Converison to Edge
362
        /// Converison to \c Edge
363
        
364
        /// Converison to \c Edge.
365
        ///
353 366
        operator Edge() const { return Edge(); }
354 367
      };
355
      /// This iterator goes through each directed arc.
356 368

	
357
      /// This iterator goes through each arc of a graph.
369
      /// Iterator class for the arcs.
370

	
371
      /// This iterator goes through each directed arc of the graph.
358 372
      /// Its usage is quite simple, for example you can count the number
359
      /// of arcs in a graph \c g of type \c Graph as follows:
373
      /// of arcs in a graph \c g of type \c %Graph as follows:
360 374
      ///\code
361 375
      /// int count=0;
362
      /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
376
      /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
363 377
      ///\endcode
364 378
      class ArcIt : public Arc {
365 379
      public:
366 380
        /// Default constructor
367 381

	
368
        /// @warning The default constructor sets the iterator
369
        /// to an undefined value.
382
        /// Default constructor.
383
        /// \warning It sets the iterator to an undefined value.
370 384
        ArcIt() { }
371 385
        /// Copy constructor.
372 386

	
373 387
        /// Copy constructor.
374 388
        ///
375 389
        ArcIt(const ArcIt& e) : Arc(e) { }
376
        /// Initialize the iterator to be invalid.
390
        /// %Invalid constructor \& conversion.
377 391

	
378
        /// Initialize the iterator to be invalid.
392
        /// Initializes the iterator to be invalid.
393
        /// \sa Invalid for more details.
394
        ArcIt(Invalid) { }
395
        /// Sets the iterator to the first arc.
396

	
397
        /// Sets the iterator to the first arc of the given graph.
379 398
        ///
380
        ArcIt(Invalid) { }
381
        /// This constructor sets the iterator to the first arc.
399
        explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
400
        /// Sets the iterator to the given arc.
382 401

	
383
        /// This constructor sets the iterator to the first arc of \c g.
384
        ///@param g the graph
385
        ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
386
        /// Arc -> ArcIt conversion
387

	
388
        /// Sets the iterator to the value of the trivial iterator \c e.
389
        /// This feature necessitates that each time we
390
        /// iterate the arc-set, the iteration order is the same.
402
        /// Sets the iterator to the given arc of the given graph.
403
        ///
391 404
        ArcIt(const Graph&, const Arc&) { }
392
        ///Next arc
405
        /// Next arc
393 406

	
394 407
        /// Assign the iterator to the next arc.
408
        ///
395 409
        ArcIt& operator++() { return *this; }
396 410
      };
397 411

	
398
      /// This iterator goes trough the outgoing directed arcs of a node.
412
      /// Iterator class for the outgoing arcs of a node.
399 413

	
400
      /// This iterator goes trough the \e outgoing arcs of a certain node
401
      /// of a graph.
414
      /// This iterator goes trough the \e outgoing directed arcs of a
415
      /// certain node of a graph.
402 416
      /// Its usage is quite simple, for example you can count the number
403 417
      /// of outgoing arcs of a node \c n
404
      /// in graph \c g of type \c Graph as follows.
418
      /// in a graph \c g of type \c %Graph as follows.
405 419
      ///\code
406 420
      /// int count=0;
407
      /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
421
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
408 422
      ///\endcode
409

	
410 423
      class OutArcIt : public Arc {
411 424
      public:
412 425
        /// Default constructor
413 426

	
414
        /// @warning The default constructor sets the iterator
415
        /// to an undefined value.
427
        /// Default constructor.
428
        /// \warning It sets the iterator to an undefined value.
416 429
        OutArcIt() { }
417 430
        /// Copy constructor.
418 431

	
419 432
        /// Copy constructor.
420 433
        ///
421 434
        OutArcIt(const OutArcIt& e) : Arc(e) { }
422
        /// Initialize the iterator to be invalid.
435
        /// %Invalid constructor \& conversion.
423 436

	
424
        /// Initialize the iterator to be invalid.
437
        /// Initializes the iterator to be invalid.
438
        /// \sa Invalid for more details.
439
        OutArcIt(Invalid) { }
440
        /// Sets the iterator to the first outgoing arc.
441

	
442
        /// Sets the iterator to the first outgoing arc of the given node.
425 443
        ///
426
        OutArcIt(Invalid) { }
427
        /// This constructor sets the iterator to the first outgoing arc.
428

	
429
        /// This constructor sets the iterator to the first outgoing arc of
430
        /// the node.
431
        ///@param n the node
432
        ///@param g the graph
433 444
        OutArcIt(const Graph& n, const Node& g) {
434 445
          ignore_unused_variable_warning(n);
435 446
          ignore_unused_variable_warning(g);
436 447
        }
437
        /// Arc -> OutArcIt conversion
448
        /// Sets the iterator to the given arc.
438 449

	
439
        /// Sets the iterator to the value of the trivial iterator.
440
        /// This feature necessitates that each time we
441
        /// iterate the arc-set, the iteration order is the same.
450
        /// Sets the iterator to the given arc of the given graph.
451
        ///
442 452
        OutArcIt(const Graph&, const Arc&) { }
443
        ///Next outgoing arc
453
        /// Next outgoing arc
444 454

	
445 455
        /// Assign the iterator to the next
446 456
        /// outgoing arc of the corresponding node.
447 457
        OutArcIt& operator++() { return *this; }
448 458
      };
449 459

	
450
      /// This iterator goes trough the incoming directed arcs of a node.
460
      /// Iterator class for the incoming arcs of a node.
451 461

	
452
      /// This iterator goes trough the \e incoming arcs of a certain node
453
      /// of a graph.
462
      /// This iterator goes trough the \e incoming directed arcs of a
463
      /// certain node of a graph.
454 464
      /// Its usage is quite simple, for example you can count the number
455
      /// of outgoing arcs of a node \c n
456
      /// in graph \c g of type \c Graph as follows.
465
      /// of incoming arcs of a node \c n
466
      /// in a graph \c g of type \c %Graph as follows.
457 467
      ///\code
458 468
      /// int count=0;
459
      /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
469
      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
460 470
      ///\endcode
461

	
462 471
      class InArcIt : public Arc {
463 472
      public:
464 473
        /// Default constructor
465 474

	
466
        /// @warning The default constructor sets the iterator
467
        /// to an undefined value.
475
        /// Default constructor.
476
        /// \warning It sets the iterator to an undefined value.
468 477
        InArcIt() { }
469 478
        /// Copy constructor.
470 479

	
471 480
        /// Copy constructor.
472 481
        ///
473 482
        InArcIt(const InArcIt& e) : Arc(e) { }
474
        /// Initialize the iterator to be invalid.
483
        /// %Invalid constructor \& conversion.
475 484

	
476
        /// Initialize the iterator to be invalid.
485
        /// Initializes the iterator to be invalid.
486
        /// \sa Invalid for more details.
487
        InArcIt(Invalid) { }
488
        /// Sets the iterator to the first incoming arc.
489

	
490
        /// Sets the iterator to the first incoming arc of the given node.
477 491
        ///
478
        InArcIt(Invalid) { }
479
        /// This constructor sets the iterator to first incoming arc.
480

	
481
        /// This constructor set the iterator to the first incoming arc of
482
        /// the node.
483
        ///@param n the node
484
        ///@param g the graph
485 492
        InArcIt(const Graph& g, const Node& n) {
486 493
          ignore_unused_variable_warning(n);
487 494
          ignore_unused_variable_warning(g);
488 495
        }
489
        /// Arc -> InArcIt conversion
496
        /// Sets the iterator to the given arc.
490 497

	
491
        /// Sets the iterator to the value of the trivial iterator \c e.
492
        /// This feature necessitates that each time we
493
        /// iterate the arc-set, the iteration order is the same.
498
        /// Sets the iterator to the given arc of the given graph.
499
        ///
494 500
        InArcIt(const Graph&, const Arc&) { }
495 501
        /// Next incoming arc
496 502

	
497
        /// Assign the iterator to the next inarc of the corresponding node.
498
        ///
503
        /// Assign the iterator to the next
504
        /// incoming arc of the corresponding node.
499 505
        InArcIt& operator++() { return *this; }
500 506
      };
501 507

	
502
      /// \brief Reference map of the nodes to type \c T.
508
      /// \brief Standard graph map type for the nodes.
503 509
      ///
504
      /// Reference map of the nodes to type \c T.
510
      /// Standard graph map type for the nodes.
511
      /// It conforms to the ReferenceMap concept.
505 512
      template<class T>
506 513
      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
507 514
      {
508 515
      public:
509 516

	
510
        ///\e
511
        NodeMap(const Graph&) { }
512
        ///\e
517
        /// Constructor
518
        explicit NodeMap(const Graph&) { }
519
        /// Constructor with given initial value
513 520
        NodeMap(const Graph&, T) { }
514 521

	
515 522
      private:
516 523
        ///Copy constructor
517 524
        NodeMap(const NodeMap& nm) :
518 525
          ReferenceMap<Node, T, T&, const T&>(nm) { }
... ...
@@ -521,161 +528,182 @@
521 528
        NodeMap& operator=(const CMap&) {
522 529
          checkConcept<ReadMap<Node, T>, CMap>();
523 530
          return *this;
524 531
        }
525 532
      };
526 533

	
527
      /// \brief Reference map of the arcs to type \c T.
534
      /// \brief Standard graph map type for the arcs.
528 535
      ///
529
      /// Reference map of the arcs to type \c T.
536
      /// Standard graph map type for the arcs.
537
      /// It conforms to the ReferenceMap concept.
530 538
      template<class T>
531 539
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
532 540
      {
533 541
      public:
534 542

	
535
        ///\e
536
        ArcMap(const Graph&) { }
537
        ///\e
543
        /// Constructor
544
        explicit ArcMap(const Graph&) { }
545
        /// Constructor with given initial value
538 546
        ArcMap(const Graph&, T) { }
547

	
539 548
      private:
540 549
        ///Copy constructor
541 550
        ArcMap(const ArcMap& em) :
542 551
          ReferenceMap<Arc, T, T&, const T&>(em) { }
543 552
        ///Assignment operator
544 553
        template <typename CMap>
545 554
        ArcMap& operator=(const CMap&) {
546 555
          checkConcept<ReadMap<Arc, T>, CMap>();
547 556
          return *this;
548 557
        }
549 558
      };
550 559

	
551
      /// Reference map of the edges to type \c T.
552

	
553
      /// Reference map of the edges to type \c T.
560
      /// \brief Standard graph map type for the edges.
561
      ///
562
      /// Standard graph map type for the edges.
563
      /// It conforms to the ReferenceMap concept.
554 564
      template<class T>
555 565
      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
556 566
      {
557 567
      public:
558 568

	
559
        ///\e
560
        EdgeMap(const Graph&) { }
561
        ///\e
569
        /// Constructor
570
        explicit EdgeMap(const Graph&) { }
571
        /// Constructor with given initial value
562 572
        EdgeMap(const Graph&, T) { }
573

	
563 574
      private:
564 575
        ///Copy constructor
565 576
        EdgeMap(const EdgeMap& em) :
566 577
          ReferenceMap<Edge, T, T&, const T&>(em) {}
567 578
        ///Assignment operator
568 579
        template <typename CMap>
569 580
        EdgeMap& operator=(const CMap&) {
570 581
          checkConcept<ReadMap<Edge, T>, CMap>();
571 582
          return *this;
572 583
        }
573 584
      };
574 585

	
575
      /// \brief Direct the given edge.
586
      /// \brief The first node of the edge.
576 587
      ///
577
      /// Direct the given edge. The returned arc source
578
      /// will be the given node.
579
      Arc direct(const Edge&, const Node&) const {
580
        return INVALID;
581
      }
582

	
583
      /// \brief Direct the given edge.
588
      /// Returns the first node of the given edge.
584 589
      ///
585
      /// Direct the given edge. The returned arc
586
      /// represents the given edge and the direction comes
587
      /// from the bool parameter. The source of the edge and
588
      /// the directed arc is the same when the given bool is true.
589
      Arc direct(const Edge&, bool) const {
590
        return INVALID;
591
      }
592

	
593
      /// \brief Returns true if the arc has default orientation.
594
      ///
595
      /// Returns whether the given directed arc is same orientation as
596
      /// the corresponding edge's default orientation.
597
      bool direction(Arc) const { return true; }
598

	
599
      /// \brief Returns the opposite directed arc.
600
      ///
601
      /// Returns the opposite directed arc.
602
      Arc oppositeArc(Arc) const { return INVALID; }
603

	
604
      /// \brief Opposite node on an arc
605
      ///
606
      /// \return The opposite of the given node on the given edge.
607
      Node oppositeNode(Node, Edge) const { return INVALID; }
608

	
609
      /// \brief First node of the edge.
610
      ///
611
      /// \return The first node of the given edge.
612
      ///
613
      /// Naturally edges don't have direction and thus
614
      /// don't have source and target node. However we use \c u() and \c v()
615
      /// methods to query the two nodes of the arc. The direction of the
616
      /// arc which arises this way is called the inherent direction of the
617
      /// edge, and is used to define the "default" direction
618
      /// of the directed versions of the arcs.
590
      /// Edges don't have source and target nodes, however methods
591
      /// u() and v() are used to query the two end-nodes of an edge.
592
      /// The orientation of an edge that arises this way is called
593
      /// the inherent direction, it is used to define the default
594
      /// direction for the corresponding arcs.
619 595
      /// \sa v()
620 596
      /// \sa direction()
621 597
      Node u(Edge) const { return INVALID; }
622 598

	
623
      /// \brief Second node of the edge.
599
      /// \brief The second node of the edge.
624 600
      ///
625
      /// \return The second node of the given edge.
601
      /// Returns the second node of the given edge.
626 602
      ///
627
      /// Naturally edges don't have direction and thus
628
      /// don't have source and target node. However we use \c u() and \c v()
629
      /// methods to query the two nodes of the arc. The direction of the
630
      /// arc which arises this way is called the inherent direction of the
631
      /// edge, and is used to define the "default" direction
632
      /// of the directed versions of the arcs.
603
      /// Edges don't have source and target nodes, however methods
604
      /// u() and v() are used to query the two end-nodes of an edge.
605
      /// The orientation of an edge that arises this way is called
606
      /// the inherent direction, it is used to define the default
607
      /// direction for the corresponding arcs.
633 608
      /// \sa u()
634 609
      /// \sa direction()
635 610
      Node v(Edge) const { return INVALID; }
636 611

	
637
      /// \brief Source node of the directed arc.
612
      /// \brief The source node of the arc.
613
      ///
614
      /// Returns the source node of the given arc.
638 615
      Node source(Arc) const { return INVALID; }
639 616

	
640
      /// \brief Target node of the directed arc.
617
      /// \brief The target node of the arc.
618
      ///
619
      /// Returns the target node of the given arc.
641 620
      Node target(Arc) const { return INVALID; }
642 621

	
643
      /// \brief Returns the id of the node.
622
      /// \brief The ID of the node.
623
      ///
624
      /// Returns the ID of the given node.
644 625
      int id(Node) const { return -1; }
645 626

	
646
      /// \brief Returns the id of the edge.
627
      /// \brief The ID of the edge.
628
      ///
629
      /// Returns the ID of the given edge.
647 630
      int id(Edge) const { return -1; }
648 631

	
649
      /// \brief Returns the id of the arc.
632
      /// \brief The ID of the arc.
633
      ///
634
      /// Returns the ID of the given arc.
650 635
      int id(Arc) const { return -1; }
651 636

	
652
      /// \brief Returns the node with the given id.
637
      /// \brief The node with the given ID.
653 638
      ///
654
      /// \pre The argument should be a valid node id in the graph.
639
      /// Returns the node with the given ID.
640
      /// \pre The argument should be a valid node ID in the graph.
655 641
      Node nodeFromId(int) const { return INVALID; }
656 642

	
657
      /// \brief Returns the edge with the given id.
643
      /// \brief The edge with the given ID.
658 644
      ///
659
      /// \pre The argument should be a valid edge id in the graph.
645
      /// Returns the edge with the given ID.
646
      /// \pre The argument should be a valid edge ID in the graph.
660 647
      Edge edgeFromId(int) const { return INVALID; }
661 648

	
662
      /// \brief Returns the arc with the given id.
649
      /// \brief The arc with the given ID.
663 650
      ///
664
      /// \pre The argument should be a valid arc id in the graph.
651
      /// Returns the arc with the given ID.
652
      /// \pre The argument should be a valid arc ID in the graph.
665 653
      Arc arcFromId(int) const { return INVALID; }
666 654

	
667
      /// \brief Returns an upper bound on the node IDs.
655
      /// \brief An upper bound on the node IDs.
656
      ///
657
      /// Returns an upper bound on the node IDs.
668 658
      int maxNodeId() const { return -1; }
669 659

	
670
      /// \brief Returns an upper bound on the edge IDs.
660
      /// \brief An upper bound on the edge IDs.
661
      ///
662
      /// Returns an upper bound on the edge IDs.
671 663
      int maxEdgeId() const { return -1; }
672 664

	
673
      /// \brief Returns an upper bound on the arc IDs.
665
      /// \brief An upper bound on the arc IDs.
666
      ///
667
      /// Returns an upper bound on the arc IDs.
674 668
      int maxArcId() const { return -1; }
675 669

	
670
      /// \brief The direction of the arc.
671
      ///
672
      /// Returns \c true if the direction of the given arc is the same as
673
      /// the inherent orientation of the represented edge.
674
      bool direction(Arc) const { return true; }
675

	
676
      /// \brief Direct the edge.
677
      ///
678
      /// Direct the given edge. The returned arc
679
      /// represents the given edge and its direction comes
680
      /// from the bool parameter. If it is \c true, then the direction
681
      /// of the arc is the same as the inherent orientation of the edge.
682
      Arc direct(Edge, bool) const {
683
        return INVALID;
684
      }
685

	
686
      /// \brief Direct the edge.
687
      ///
688
      /// Direct the given edge. The returned arc represents the given
689
      /// edge and its source node is the given node.
690
      Arc direct(Edge, Node) const {
691
        return INVALID;
692
      }
693

	
694
      /// \brief The oppositely directed arc.
695
      ///
696
      /// Returns the oppositely directed arc representing the same edge.
697
      Arc oppositeArc(Arc) const { return INVALID; }
698

	
699
      /// \brief The opposite node on the edge.
700
      ///
701
      /// Returns the opposite node on the given edge.
702
      Node oppositeNode(Node, Edge) const { return INVALID; }
703

	
676 704
      void first(Node&) const {}
677 705
      void next(Node&) const {}
678 706

	
679 707
      void first(Edge&) const {}
680 708
      void next(Edge&) const {}
681 709

	
... ...
@@ -702,53 +730,45 @@
702 730
      int maxId(Node) const { return -1; }
703 731
      // Dummy parameter.
704 732
      int maxId(Edge) const { return -1; }
705 733
      // Dummy parameter.
706 734
      int maxId(Arc) const { return -1; }
707 735

	
708
      /// \brief Base node of the iterator
736
      /// \brief The base node of the iterator.
709 737
      ///
710
      /// Returns the base node (the source in this case) of the iterator
711
      Node baseNode(OutArcIt e) const {
712
        return source(e);
713
      }
714
      /// \brief Running node of the iterator
738
      /// Returns the base node of the given incident edge iterator.
739
      Node baseNode(IncEdgeIt) const { return INVALID; }
740

	
741
      /// \brief The running node of the iterator.
715 742
      ///
716
      /// Returns the running node (the target in this case) of the
717
      /// iterator
718
      Node runningNode(OutArcIt e) const {
719
        return target(e);
720
      }
743
      /// Returns the running node of the given incident edge iterator.
744
      Node runningNode(IncEdgeIt) const { return INVALID; }
721 745

	
722
      /// \brief Base node of the iterator
746
      /// \brief The base node of the iterator.
723 747
      ///
724
      /// Returns the base node (the target in this case) of the iterator
725
      Node baseNode(InArcIt e) const {
726
        return target(e);
727
      }
728
      /// \brief Running node of the iterator
748
      /// Returns the base node of the given outgoing arc iterator
749
      /// (i.e. the source node of the corresponding arc).
750
      Node baseNode(OutArcIt) const { return INVALID; }
751

	
752
      /// \brief The running node of the iterator.
729 753
      ///
730
      /// Returns the running node (the source in this case) of the
731
      /// iterator
732
      Node runningNode(InArcIt e) const {
733
        return source(e);
734
      }
754
      /// Returns the running node of the given outgoing arc iterator
755
      /// (i.e. the target node of the corresponding arc).
756
      Node runningNode(OutArcIt) const { return INVALID; }
735 757

	
736
      /// \brief Base node of the iterator
758
      /// \brief The base node of the iterator.
737 759
      ///
738
      /// Returns the base node of the iterator
739
      Node baseNode(IncEdgeIt) const {
740
        return INVALID;
741
      }
760
      /// Returns the base node of the given incomming arc iterator
761
      /// (i.e. the target node of the corresponding arc).
762
      Node baseNode(InArcIt) const { return INVALID; }
742 763

	
743
      /// \brief Running node of the iterator
764
      /// \brief The running node of the iterator.
744 765
      ///
745
      /// Returns the running node of the iterator
746
      Node runningNode(IncEdgeIt) const {
747
        return INVALID;
748
      }
766
      /// Returns the running node of the given incomming arc iterator
767
      /// (i.e. the source node of the corresponding arc).
768
      Node runningNode(InArcIt) const { return INVALID; }
749 769

	
750 770
      template <typename _Graph>
751 771
      struct Constraints {
752 772
        void constraints() {
753 773
          checkConcept<BaseGraphComponent, _Graph>();
754 774
          checkConcept<IterableGraphComponent<>, _Graph>();
Ignore white space 6 line context
... ...
@@ -89,13 +89,13 @@
89 89
      /// \brief Ordering operator.
90 90
      ///
91 91
      /// This operator defines an ordering of the items.
92 92
      /// It makes possible to use graph item types as key types in 
93 93
      /// associative containers (e.g. \c std::map).
94 94
      ///
95
      /// \note This operator only have to define some strict ordering of
95
      /// \note This operator only has to define some strict ordering of
96 96
      /// the items; this order has nothing to do with the iteration
97 97
      /// ordering of the items.
98 98
      bool operator<(const GraphItem&) const { return false; }
99 99

	
100 100
      template<typename _GraphItem>
101 101
      struct Constraints {
Ignore white space 6 line context
... ...
@@ -108,12 +108,45 @@
108 108
    const double ub = INF;
109 109
    const char s = 'L';
110 110
    CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
111 111
    return i;
112 112
  }
113 113

	
114
  int CplexBase::_addRow(Value lb, ExprIterator b, 
115
                         ExprIterator e, Value ub) {
116
    int i = CPXgetnumrows(cplexEnv(), _prob);
117
    if (lb == -INF) {
118
      const char s = 'L';
119
      CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
120
    } else if (ub == INF) {
121
      const char s = 'G';
122
      CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0);
123
    } else if (lb == ub){
124
      const char s = 'E';
125
      CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0);
126
    } else {
127
      const char s = 'R';
128
      double len = ub - lb;
129
      CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0);
130
    }
131

	
132
    std::vector<int> indices;
133
    std::vector<int> rowlist;
134
    std::vector<Value> values;
135

	
136
    for(ExprIterator it=b; it!=e; ++it) {
137
      indices.push_back(it->first);
138
      values.push_back(it->second);
139
      rowlist.push_back(i);
140
    }
141

	
142
    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
143
                   &rowlist.front(), &indices.front(), &values.front());
144

	
145
    return i;
146
  }
114 147

	
115 148
  void CplexBase::_eraseCol(int i) {
116 149
    CPXdelcols(cplexEnv(), _prob, i, i);
117 150
  }
118 151

	
119 152
  void CplexBase::_eraseRow(int i) {
Ignore white space 6 line context
... ...
@@ -90,12 +90,13 @@
90 90
    CplexBase(const CplexEnv&);
91 91
    CplexBase(const CplexBase &);
92 92
    virtual ~CplexBase();
93 93

	
94 94
    virtual int _addCol();
95 95
    virtual int _addRow();
96
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);
96 97

	
97 98
    virtual void _eraseCol(int i);
98 99
    virtual void _eraseRow(int i);
99 100

	
100 101
    virtual void _eraseColId(int i);
101 102
    virtual void _eraseRowId(int i);
Ignore white space 6 line context
... ...
@@ -864,13 +864,13 @@
864 864
    }
865 865

	
866 866
    void first(Arc& arc) const {
867 867
      arc.id = arcs.size() - 1;
868 868
    }
869 869

	
870
    void next(Arc& arc) const {
870
    static void next(Arc& arc) {
871 871
      --arc.id;
872 872
    }
873 873

	
874 874
    void firstOut(Arc& arc, const Node& node) const {
875 875
      arc.id = (*_nodes)[node].first_out;
876 876
    }
... ...
@@ -1170,21 +1170,21 @@
1170 1170
    }
1171 1171

	
1172 1172
    void first(Arc& arc) const {
1173 1173
      arc.id = arcs.size() - 1;
1174 1174
    }
1175 1175

	
1176
    void next(Arc& arc) const {
1176
    static void next(Arc& arc) {
1177 1177
      --arc.id;
1178 1178
    }
1179 1179

	
1180 1180
    void first(Edge& arc) const {
1181 1181
      arc.id = arcs.size() / 2 - 1;
1182 1182
    }
1183 1183

	
1184
    void next(Edge& arc) const {
1184
    static void next(Edge& arc) {
1185 1185
      --arc.id;
1186 1186
    }
1187 1187

	
1188 1188
    void firstOut(Arc& arc, const Node& node) const {
1189 1189
      arc.id = (*_nodes)[node].first_out;
1190 1190
    }
Ignore white space 6 line context
... ...
@@ -21,13 +21,13 @@
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/bits/graph_extender.h>
24 24

	
25 25
///\ingroup graphs
26 26
///\file
27
///\brief FullGraph and FullDigraph classes.
27
///\brief FullDigraph and FullGraph classes.
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  class FullDigraphBase {
32 32
  public:
33 33

	
... ...
@@ -48,13 +48,13 @@
48 48
  public:
49 49

	
50 50
    typedef True NodeNumTag;
51 51
    typedef True ArcNumTag;
52 52

	
53 53
    Node operator()(int ix) const { return Node(ix); }
54
    int index(const Node& node) const { return node._id; }
54
    static int index(const Node& node) { return node._id; }
55 55

	
56 56
    Arc arc(const Node& s, const Node& t) const {
57 57
      return Arc(s._id * _node_num + t._id);
58 58
    }
59 59

	
60 60
    int nodeNum() const { return _node_num; }
... ...
@@ -145,79 +145,83 @@
145 145
  };
146 146

	
147 147
  typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
148 148

	
149 149
  /// \ingroup graphs
150 150
  ///
151
  /// \brief A full digraph class.
151
  /// \brief A directed full graph class.
152 152
  ///
153
  /// This is a simple and fast directed full graph implementation.
154
  /// From each node go arcs to each node (including the source node),
155
  /// therefore the number of the arcs in the digraph is the square of
156
  /// the node number. This digraph type is completely static, so you
157
  /// can neither add nor delete either arcs or nodes, and it needs
158
  /// constant space in memory.
153
  /// FullDigraph is a simple and fast implmenetation of directed full
154
  /// (complete) graphs. It contains an arc from each node to each node
155
  /// (including a loop for each node), therefore the number of arcs
156
  /// is the square of the number of nodes.
157
  /// This class is completely static and it needs constant memory space.
158
  /// Thus you can neither add nor delete nodes or arcs, however
159
  /// the structure can be resized using resize().
159 160
  ///
160
  /// This class fully conforms to the \ref concepts::Digraph
161
  /// "Digraph concept".
161
  /// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
162
  /// Most of its member functions and nested classes are documented
163
  /// only in the concept class.
162 164
  ///
163
  /// The \c FullDigraph and \c FullGraph classes are very similar,
165
  /// \note FullDigraph and FullGraph classes are very similar,
164 166
  /// but there are two differences. While this class conforms only
165
  /// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph
166
  /// class conforms to the \ref concepts::Graph "Graph" concept,
167
  /// moreover \c FullGraph does not contain a loop arc for each
168
  /// node as \c FullDigraph does.
167
  /// to the \ref concepts::Digraph "Digraph" concept, FullGraph
168
  /// conforms to the \ref concepts::Graph "Graph" concept,
169
  /// moreover FullGraph does not contain a loop for each
170
  /// node as this class does.
169 171
  ///
170 172
  /// \sa FullGraph
171 173
  class FullDigraph : public ExtendedFullDigraphBase {
172 174
    typedef ExtendedFullDigraphBase Parent;
173 175

	
174 176
  public:
175 177

	
176
    /// \brief Constructor
178
    /// \brief Default constructor.
179
    ///
180
    /// Default constructor. The number of nodes and arcs will be zero.
177 181
    FullDigraph() { construct(0); }
178 182

	
179 183
    /// \brief Constructor
180 184
    ///
181 185
    /// Constructor.
182 186
    /// \param n The number of the nodes.
183 187
    FullDigraph(int n) { construct(n); }
184 188

	
185 189
    /// \brief Resizes the digraph
186 190
    ///
187
    /// Resizes the digraph. The function will fully destroy and
188
    /// rebuild the digraph. This cause that the maps of the digraph will
191
    /// This function resizes the digraph. It fully destroys and
192
    /// rebuilds the structure, therefore the maps of the digraph will be
189 193
    /// reallocated automatically and the previous values will be lost.
190 194
    void resize(int n) {
191 195
      Parent::notifier(Arc()).clear();
192 196
      Parent::notifier(Node()).clear();
193 197
      construct(n);
194 198
      Parent::notifier(Node()).build();
195 199
      Parent::notifier(Arc()).build();
196 200
    }
197 201

	
198 202
    /// \brief Returns the node with the given index.
199 203
    ///
200
    /// Returns the node with the given index. Since it is a static
201
    /// digraph its nodes can be indexed with integers from the range
202
    /// <tt>[0..nodeNum()-1]</tt>.
204
    /// Returns the node with the given index. Since this structure is 
205
    /// completely static, the nodes can be indexed with integers from
206
    /// the range <tt>[0..nodeNum()-1]</tt>.
203 207
    /// \sa index()
204 208
    Node operator()(int ix) const { return Parent::operator()(ix); }
205 209

	
206 210
    /// \brief Returns the index of the given node.
207 211
    ///
208
    /// Returns the index of the given node. Since it is a static
209
    /// digraph its nodes can be indexed with integers from the range
210
    /// <tt>[0..nodeNum()-1]</tt>.
211
    /// \sa operator()
212
    int index(const Node& node) const { return Parent::index(node); }
212
    /// Returns the index of the given node. Since this structure is 
213
    /// completely static, the nodes can be indexed with integers from
214
    /// the range <tt>[0..nodeNum()-1]</tt>.
215
    /// \sa operator()()
216
    static int index(const Node& node) { return Parent::index(node); }
213 217

	
214 218
    /// \brief Returns the arc connecting the given nodes.
215 219
    ///
216 220
    /// Returns the arc connecting the given nodes.
217
    Arc arc(const Node& u, const Node& v) const {
221
    Arc arc(Node u, Node v) const {
218 222
      return Parent::arc(u, v);
219 223
    }
220 224

	
221 225
    /// \brief Number of nodes.
222 226
    int nodeNum() const { return Parent::nodeNum(); }
223 227
    /// \brief Number of arcs.
... ...
@@ -280,13 +284,13 @@
280 284
      }
281 285
    }
282 286

	
283 287
  public:
284 288

	
285 289
    Node operator()(int ix) const { return Node(ix); }
286
    int index(const Node& node) const { return node._id; }
290
    static int index(const Node& node) { return node._id; }
287 291

	
288 292
    Edge edge(const Node& u, const Node& v) const {
289 293
      if (u._id < v._id) {
290 294
        return Edge(_eid(u._id, v._id));
291 295
      } else if (u._id != v._id) {
292 296
        return Edge(_eid(v._id, u._id));
... ...
@@ -517,47 +521,51 @@
517 521
  typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
518 522

	
519 523
  /// \ingroup graphs
520 524
  ///
521 525
  /// \brief An undirected full graph class.
522 526
  ///
523
  /// This is a simple and fast undirected full graph
524
  /// implementation. From each node go edge to each other node,
525
  /// therefore the number of edges in the graph is \f$n(n-1)/2\f$.
526
  /// This graph type is completely static, so you can neither
527
  /// add nor delete either edges or nodes, and it needs constant
528
  /// space in memory.
527
  /// FullGraph is a simple and fast implmenetation of undirected full
528
  /// (complete) graphs. It contains an edge between every distinct pair
529
  /// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>.
530
  /// This class is completely static and it needs constant memory space.
531
  /// Thus you can neither add nor delete nodes or edges, however
532
  /// the structure can be resized using resize().
529 533
  ///
530
  /// This class fully conforms to the \ref concepts::Graph "Graph concept".
534
  /// This type fully conforms to the \ref concepts::Graph "Graph concept".
535
  /// Most of its member functions and nested classes are documented
536
  /// only in the concept class.
531 537
  ///
532
  /// The \c FullGraph and \c FullDigraph classes are very similar,
533
  /// but there are two differences. While the \c FullDigraph class
538
  /// \note FullDigraph and FullGraph classes are very similar,
539
  /// but there are two differences. While FullDigraph
534 540
  /// conforms only to the \ref concepts::Digraph "Digraph" concept,
535 541
  /// this class conforms to the \ref concepts::Graph "Graph" concept,
536
  /// moreover \c FullGraph does not contain a loop arc for each
537
  /// node as \c FullDigraph does.
542
  /// moreover this class does not contain a loop for each
543
  /// node as FullDigraph does.
538 544
  ///
539 545
  /// \sa FullDigraph
540 546
  class FullGraph : public ExtendedFullGraphBase {
541 547
    typedef ExtendedFullGraphBase Parent;
542 548

	
543 549
  public:
544 550

	
545
    /// \brief Constructor
551
    /// \brief Default constructor.
552
    ///
553
    /// Default constructor. The number of nodes and edges will be zero.
546 554
    FullGraph() { construct(0); }
547 555

	
548 556
    /// \brief Constructor
549 557
    ///
550 558
    /// Constructor.
551 559
    /// \param n The number of the nodes.
552 560
    FullGraph(int n) { construct(n); }
553 561

	
554 562
    /// \brief Resizes the graph
555 563
    ///
556
    /// Resizes the graph. The function will fully destroy and
557
    /// rebuild the graph. This cause that the maps of the graph will
564
    /// This function resizes the graph. It fully destroys and
565
    /// rebuilds the structure, therefore the maps of the graph will be
558 566
    /// reallocated automatically and the previous values will be lost.
559 567
    void resize(int n) {
560 568
      Parent::notifier(Arc()).clear();
561 569
      Parent::notifier(Edge()).clear();
562 570
      Parent::notifier(Node()).clear();
563 571
      construct(n);
... ...
@@ -565,37 +573,37 @@
565 573
      Parent::notifier(Edge()).build();
566 574
      Parent::notifier(Arc()).build();
567 575
    }
568 576

	
569 577
    /// \brief Returns the node with the given index.
570 578
    ///
571
    /// Returns the node with the given index. Since it is a static
572
    /// graph its nodes can be indexed with integers from the range
573
    /// <tt>[0..nodeNum()-1]</tt>.
579
    /// Returns the node with the given index. Since this structure is 
580
    /// completely static, the nodes can be indexed with integers from
581
    /// the range <tt>[0..nodeNum()-1]</tt>.
574 582
    /// \sa index()
575 583
    Node operator()(int ix) const { return Parent::operator()(ix); }
576 584

	
577 585
    /// \brief Returns the index of the given node.
578 586
    ///
579
    /// Returns the index of the given node. Since it is a static
580
    /// graph its nodes can be indexed with integers from the range
581
    /// <tt>[0..nodeNum()-1]</tt>.
582
    /// \sa operator()
583
    int index(const Node& node) const { return Parent::index(node); }
587
    /// Returns the index of the given node. Since this structure is 
588
    /// completely static, the nodes can be indexed with integers from
589
    /// the range <tt>[0..nodeNum()-1]</tt>.
590
    /// \sa operator()()
591
    static int index(const Node& node) { return Parent::index(node); }
584 592

	
585 593
    /// \brief Returns the arc connecting the given nodes.
586 594
    ///
587 595
    /// Returns the arc connecting the given nodes.
588
    Arc arc(const Node& s, const Node& t) const {
596
    Arc arc(Node s, Node t) const {
589 597
      return Parent::arc(s, t);
590 598
    }
591 599

	
592
    /// \brief Returns the edge connects the given nodes.
600
    /// \brief Returns the edge connecting the given nodes.
593 601
    ///
594
    /// Returns the edge connects the given nodes.
595
    Edge edge(const Node& u, const Node& v) const {
602
    /// Returns the edge connecting the given nodes.
603
    Edge edge(Node u, Node v) const {
596 604
      return Parent::edge(u, v);
597 605
    }
598 606

	
599 607
    /// \brief Number of nodes.
600 608
    int nodeNum() const { return Parent::nodeNum(); }
601 609
    /// \brief Number of arcs.
Ignore white space 6 line context
... ...
@@ -56,12 +56,48 @@
56 56
  int GlpkBase::_addRow() {
57 57
    int i = glp_add_rows(lp, 1);
58 58
    glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0);
59 59
    return i;
60 60
  }
61 61

	
62
  int GlpkBase::_addRow(Value lo, ExprIterator b, 
63
                        ExprIterator e, Value up) {
64
    int i = glp_add_rows(lp, 1);
65

	
66
    if (lo == -INF) {
67
      if (up == INF) {
68
        glp_set_row_bnds(lp, i, GLP_FR, lo, up);
69
      } else {
70
        glp_set_row_bnds(lp, i, GLP_UP, lo, up);
71
      }    
72
    } else {
73
      if (up == INF) {
74
        glp_set_row_bnds(lp, i, GLP_LO, lo, up);
75
      } else if (lo != up) {        
76
        glp_set_row_bnds(lp, i, GLP_DB, lo, up);
77
      } else {
78
        glp_set_row_bnds(lp, i, GLP_FX, lo, up);
79
      }
80
    }
81

	
82
    std::vector<int> indexes;
83
    std::vector<Value> values;
84

	
85
    indexes.push_back(0);
86
    values.push_back(0);
87

	
88
    for(ExprIterator it = b; it != e; ++it) {
89
      indexes.push_back(it->first);
90
      values.push_back(it->second);
91
    }
92

	
93
    glp_set_mat_row(lp, i, values.size() - 1,
94
                    &indexes.front(), &values.front());
95
    return i;
96
  }
97

	
62 98
  void GlpkBase::_eraseCol(int i) {
63 99
    int ca[2];
64 100
    ca[1] = i;
65 101
    glp_del_cols(lp, 1, ca);
66 102
  }
67 103

	
Ignore white space 6 line context
... ...
@@ -51,12 +51,13 @@
51 51
    virtual ~GlpkBase();
52 52

	
53 53
  protected:
54 54

	
55 55
    virtual int _addCol();
56 56
    virtual int _addRow();
57
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);
57 58

	
58 59
    virtual void _eraseCol(int i);
59 60
    virtual void _eraseRow(int i);
60 61

	
61 62
    virtual void _eraseColId(int i);
62 63
    virtual void _eraseRowId(int i);
Ignore white space 6 line context
... ...
@@ -467,24 +467,28 @@
467 467
  typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase;
468 468

	
469 469
  /// \ingroup graphs
470 470
  ///
471 471
  /// \brief Grid graph class
472 472
  ///
473
  /// This class implements a special graph type. The nodes of the
474
  /// graph can be indexed by two integer \c (i,j) value where \c i is
475
  /// in the \c [0..width()-1] range and j is in the \c
476
  /// [0..height()-1] range.  Two nodes are connected in the graph if
477
  /// the indexes differ exactly on one position and exactly one is
478
  /// the difference. The nodes of the graph can be indexed by position
479
  /// with the \c operator()() function. The positions of the nodes can be
480
  /// get with \c pos(), \c col() and \c row() members. The outgoing
473
  /// GridGraph implements a special graph type. The nodes of the
474
  /// graph can be indexed by two integer values \c (i,j) where \c i is
475
  /// in the range <tt>[0..width()-1]</tt> and j is in the range
476
  /// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if
477
  /// the indices differ exactly on one position and the difference is
478
  /// also exactly one. The nodes of the graph can be obtained by position
479
  /// using the \c operator()() function and the indices of the nodes can
480
  /// be obtained using \c pos(), \c col() and \c row() members. The outgoing
481 481
  /// arcs can be retrieved with the \c right(), \c up(), \c left()
482 482
  /// and \c down() functions, where the bottom-left corner is the
483 483
  /// origin.
484 484
  ///
485
  /// This class is completely static and it needs constant memory space.
486
  /// Thus you can neither add nor delete nodes or edges, however
487
  /// the structure can be resized using resize().
488
  ///
485 489
  /// \image html grid_graph.png
486 490
  /// \image latex grid_graph.eps "Grid graph" width=\textwidth
487 491
  ///
488 492
  /// A short example about the basic usage:
489 493
  ///\code
490 494
  /// GridGraph graph(rows, cols);
... ...
@@ -493,37 +497,36 @@
493 497
  ///   for (int j = 0; j < graph.height(); ++j) {
494 498
  ///     val[graph(i, j)] = i + j;
495 499
  ///   }
496 500
  /// }
497 501
  ///\endcode
498 502
  ///
499
  /// This graph type fully conforms to the \ref concepts::Graph
500
  /// "Graph concept".
503
  /// This type fully conforms to the \ref concepts::Graph "Graph concept".
504
  /// Most of its member functions and nested classes are documented
505
  /// only in the concept class.
501 506
  class GridGraph : public ExtendedGridGraphBase {
502 507
    typedef ExtendedGridGraphBase Parent;
503 508

	
504 509
  public:
505 510

	
506
    /// \brief Map to get the indices of the nodes as dim2::Point<int>.
511
    /// \brief Map to get the indices of the nodes as \ref dim2::Point
512
    /// "dim2::Point<int>".
507 513
    ///
508
    /// Map to get the indices of the nodes as dim2::Point<int>.
514
    /// Map to get the indices of the nodes as \ref dim2::Point
515
    /// "dim2::Point<int>".
509 516
    class IndexMap {
510 517
    public:
511 518
      /// \brief The key type of the map
512 519
      typedef GridGraph::Node Key;
513 520
      /// \brief The value type of the map
514 521
      typedef dim2::Point<int> Value;
515 522

	
516 523
      /// \brief Constructor
517
      ///
518
      /// Constructor
519 524
      IndexMap(const GridGraph& graph) : _graph(graph) {}
520 525

	
521 526
      /// \brief The subscript operator
522
      ///
523
      /// The subscript operator.
524 527
      Value operator[](Key key) const {
525 528
        return _graph.pos(key);
526 529
      }
527 530

	
528 531
    private:
529 532
      const GridGraph& _graph;
... ...
@@ -537,19 +540,15 @@
537 540
      /// \brief The key type of the map
538 541
      typedef GridGraph::Node Key;
539 542
      /// \brief The value type of the map
540 543
      typedef int Value;
541 544

	
542 545
      /// \brief Constructor
543
      ///
544
      /// Constructor
545 546
      ColMap(const GridGraph& graph) : _graph(graph) {}
546 547

	
547 548
      /// \brief The subscript operator
548
      ///
549
      /// The subscript operator.
550 549
      Value operator[](Key key) const {
551 550
        return _graph.col(key);
552 551
      }
553 552

	
554 553
    private:
555 554
      const GridGraph& _graph;
... ...
@@ -563,38 +562,33 @@
563 562
      /// \brief The key type of the map
564 563
      typedef GridGraph::Node Key;
565 564
      /// \brief The value type of the map
566 565
      typedef int Value;
567 566

	
568 567
      /// \brief Constructor
569
      ///
570
      /// Constructor
571 568
      RowMap(const GridGraph& graph) : _graph(graph) {}
572 569

	
573 570
      /// \brief The subscript operator
574
      ///
575
      /// The subscript operator.
576 571
      Value operator[](Key key) const {
577 572
        return _graph.row(key);
578 573
      }
579 574

	
580 575
    private:
581 576
      const GridGraph& _graph;
582 577
    };
583 578

	
584 579
    /// \brief Constructor
585 580
    ///
586
    /// Construct a grid graph with given size.
581
    /// Construct a grid graph with the given size.
587 582
    GridGraph(int width, int height) { construct(width, height); }
588 583

	
589
    /// \brief Resize the graph
584
    /// \brief Resizes the graph
590 585
    ///
591
    /// Resize the graph. The function will fully destroy and rebuild
592
    /// the graph.  This cause that the maps of the graph will
593
    /// reallocated automatically and the previous values will be
594
    /// lost.
586
    /// This function resizes the graph. It fully destroys and
587
    /// rebuilds the structure, therefore the maps of the graph will be
588
    /// reallocated automatically and the previous values will be lost.
595 589
    void resize(int width, int height) {
596 590
      Parent::notifier(Arc()).clear();
597 591
      Parent::notifier(Edge()).clear();
598 592
      Parent::notifier(Node()).clear();
599 593
      construct(width, height);
600 594
      Parent::notifier(Node()).build();
... ...
@@ -606,72 +600,72 @@
606 600
    ///
607 601
    /// Gives back the node on the given position.
608 602
    Node operator()(int i, int j) const {
609 603
      return Parent::operator()(i, j);
610 604
    }
611 605

	
612
    /// \brief Gives back the column index of the node.
606
    /// \brief The column index of the node.
613 607
    ///
614 608
    /// Gives back the column index of the node.
615 609
    int col(Node n) const {
616 610
      return Parent::col(n);
617 611
    }
618 612

	
619
    /// \brief Gives back the row index of the node.
613
    /// \brief The row index of the node.
620 614
    ///
621 615
    /// Gives back the row index of the node.
622 616
    int row(Node n) const {
623 617
      return Parent::row(n);
624 618
    }
625 619

	
626
    /// \brief Gives back the position of the node.
620
    /// \brief The position of the node.
627 621
    ///
628 622
    /// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair.
629 623
    dim2::Point<int> pos(Node n) const {
630 624
      return Parent::pos(n);
631 625
    }
632 626

	
633
    /// \brief Gives back the number of the columns.
627
    /// \brief The number of the columns.
634 628
    ///
635 629
    /// Gives back the number of the columns.
636 630
    int width() const {
637 631
      return Parent::width();
638 632
    }
639 633

	
640
    /// \brief Gives back the number of the rows.
634
    /// \brief The number of the rows.
641 635
    ///
642 636
    /// Gives back the number of the rows.
643 637
    int height() const {
644 638
      return Parent::height();
645 639
    }
646 640

	
647
    /// \brief Gives back the arc goes right from the node.
641
    /// \brief The arc goes right from the node.
648 642
    ///
649 643
    /// Gives back the arc goes right from the node. If there is not
650 644
    /// outgoing arc then it gives back INVALID.
651 645
    Arc right(Node n) const {
652 646
      return Parent::right(n);
653 647
    }
654 648

	
655
    /// \brief Gives back the arc goes left from the node.
649
    /// \brief The arc goes left from the node.
656 650
    ///
657 651
    /// Gives back the arc goes left from the node. If there is not
658 652
    /// outgoing arc then it gives back INVALID.
659 653
    Arc left(Node n) const {
660 654
      return Parent::left(n);
661 655
    }
662 656

	
663
    /// \brief Gives back the arc goes up from the node.
657
    /// \brief The arc goes up from the node.
664 658
    ///
665 659
    /// Gives back the arc goes up from the node. If there is not
666 660
    /// outgoing arc then it gives back INVALID.
667 661
    Arc up(Node n) const {
668 662
      return Parent::up(n);
669 663
    }
670 664

	
671
    /// \brief Gives back the arc goes down from the node.
665
    /// \brief The arc goes down from the node.
672 666
    ///
673 667
    /// Gives back the arc goes down from the node. If there is not
674 668
    /// outgoing arc then it gives back INVALID.
675 669
    Arc down(Node n) const {
676 670
      return Parent::down(n);
677 671
    }
Ignore white space 6 line context
... ...
@@ -259,13 +259,13 @@
259 259
    }
260 260

	
261 261
    int dimension(Arc arc) const {
262 262
      return arc._id >> _dim;
263 263
    }
264 264

	
265
    int index(Node node) const {
265
    static int index(Node node) {
266 266
      return node._id;
267 267
    }
268 268

	
269 269
    Node operator()(int ix) const {
270 270
      return Node(ix);
271 271
    }
... ...
@@ -279,33 +279,52 @@
279 279
  typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
280 280

	
281 281
  /// \ingroup graphs
282 282
  ///
283 283
  /// \brief Hypercube graph class
284 284
  ///
285
  /// This class implements a special graph type. The nodes of the graph
286
  /// are indiced with integers with at most \c dim binary digits.
285
  /// HypercubeGraph implements a special graph type. The nodes of the
286
  /// graph are indexed with integers having at most \c dim binary digits.
287 287
  /// Two nodes are connected in the graph if and only if their indices
288 288
  /// differ only on one position in the binary form.
289
  /// This class is completely static and it needs constant memory space.
290
  /// Thus you can neither add nor delete nodes or edges, however 
291
  /// the structure can be resized using resize().
292
  ///
293
  /// This type fully conforms to the \ref concepts::Graph "Graph concept".
294
  /// Most of its member functions and nested classes are documented
295
  /// only in the concept class.
289 296
  ///
290 297
  /// \note The type of the indices is chosen to \c int for efficiency
291 298
  /// reasons. Thus the maximum dimension of this implementation is 26
292 299
  /// (assuming that the size of \c int is 32 bit).
293
  ///
294
  /// This graph type fully conforms to the \ref concepts::Graph
295
  /// "Graph concept".
296 300
  class HypercubeGraph : public ExtendedHypercubeGraphBase {
297 301
    typedef ExtendedHypercubeGraphBase Parent;
298 302

	
299 303
  public:
300 304

	
301 305
    /// \brief Constructs a hypercube graph with \c dim dimensions.
302 306
    ///
303 307
    /// Constructs a hypercube graph with \c dim dimensions.
304 308
    HypercubeGraph(int dim) { construct(dim); }
305 309

	
310
    /// \brief Resizes the graph
311
    ///
312
    /// This function resizes the graph. It fully destroys and
313
    /// rebuilds the structure, therefore the maps of the graph will be
314
    /// reallocated automatically and the previous values will be lost.
315
    void resize(int dim) {
316
      Parent::notifier(Arc()).clear();
317
      Parent::notifier(Edge()).clear();
318
      Parent::notifier(Node()).clear();
319
      construct(dim);
320
      Parent::notifier(Node()).build();
321
      Parent::notifier(Edge()).build();
322
      Parent::notifier(Arc()).build();
323
    }
324

	
306 325
    /// \brief The number of dimensions.
307 326
    ///
308 327
    /// Gives back the number of dimensions.
309 328
    int dimension() const {
310 329
      return Parent::dimension();
311 330
    }
... ...
@@ -317,30 +336,30 @@
317 336
      return Parent::projection(node, n);
318 337
    }
319 338

	
320 339
    /// \brief The dimension id of an edge.
321 340
    ///
322 341
    /// Gives back the dimension id of the given edge.
323
    /// It is in the [0..dim-1] range.
342
    /// It is in the range <tt>[0..dim-1]</tt>.
324 343
    int dimension(Edge edge) const {
325 344
      return Parent::dimension(edge);
326 345
    }
327 346

	
328 347
    /// \brief The dimension id of an arc.
329 348
    ///
330 349
    /// Gives back the dimension id of the given arc.
331
    /// It is in the [0..dim-1] range.
350
    /// It is in the range <tt>[0..dim-1]</tt>.
332 351
    int dimension(Arc arc) const {
333 352
      return Parent::dimension(arc);
334 353
    }
335 354

	
336 355
    /// \brief The index of a node.
337 356
    ///
338 357
    /// Gives back the index of the given node.
339 358
    /// The lower bits of the integer describes the node.
340
    int index(Node node) const {
359
    static int index(Node node) {
341 360
      return Parent::index(node);
342 361
    }
343 362

	
344 363
    /// \brief Gives back a node by its index.
345 364
    ///
346 365
    /// Gives back a node by its index.
Ignore white space 6 line context
... ...
@@ -18,23 +18,25 @@
18 18

	
19 19
#ifndef LEMON_LIST_GRAPH_H
20 20
#define LEMON_LIST_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24
///\brief ListDigraph, ListGraph classes.
24
///\brief ListDigraph and ListGraph classes.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/error.h>
28 28
#include <lemon/bits/graph_extender.h>
29 29

	
30 30
#include <vector>
31 31
#include <list>
32 32

	
33 33
namespace lemon {
34 34

	
35
  class ListDigraph;
36

	
35 37
  class ListDigraphBase {
36 38

	
37 39
  protected:
38 40
    struct NodeT {
39 41
      int first_in, first_out;
40 42
      int prev, next;
... ...
@@ -59,12 +61,13 @@
59 61
  public:
60 62

	
61 63
    typedef ListDigraphBase Digraph;
62 64

	
63 65
    class Node {
64 66
      friend class ListDigraphBase;
67
      friend class ListDigraph;
65 68
    protected:
66 69

	
67 70
      int id;
68 71
      explicit Node(int pid) { id = pid;}
69 72

	
70 73
    public:
... ...
@@ -74,12 +77,13 @@
74 77
      bool operator!=(const Node& node) const {return id != node.id;}
75 78
      bool operator<(const Node& node) const {return id < node.id;}
76 79
    };
77 80

	
78 81
    class Arc {
79 82
      friend class ListDigraphBase;
83
      friend class ListDigraph;
80 84
    protected:
81 85

	
82 86
      int id;
83 87
      explicit Arc(int pid) { id = pid;}
84 88

	
85 89
    public:
... ...
@@ -113,26 +117,26 @@
113 117
    }
114 118

	
115 119

	
116 120
    void first(Arc& arc) const {
117 121
      int n;
118 122
      for(n = first_node;
119
          n!=-1 && nodes[n].first_in == -1;
123
          n != -1 && nodes[n].first_out == -1;
120 124
          n = nodes[n].next) {}
121
      arc.id = (n == -1) ? -1 : nodes[n].first_in;
125
      arc.id = (n == -1) ? -1 : nodes[n].first_out;
122 126
    }
123 127

	
124 128
    void next(Arc& arc) const {
125
      if (arcs[arc.id].next_in != -1) {
126
        arc.id = arcs[arc.id].next_in;
129
      if (arcs[arc.id].next_out != -1) {
130
        arc.id = arcs[arc.id].next_out;
127 131
      } else {
128 132
        int n;
129
        for(n = nodes[arcs[arc.id].target].next;
130
            n!=-1 && nodes[n].first_in == -1;
133
        for(n = nodes[arcs[arc.id].source].next;
134
            n != -1 && nodes[n].first_out == -1;
131 135
            n = nodes[n].next) {}
132
        arc.id = (n == -1) ? -1 : nodes[n].first_in;
136
        arc.id = (n == -1) ? -1 : nodes[n].first_out;
133 137
      }
134 138
    }
135 139

	
136 140
    void firstOut(Arc &e, const Node& v) const {
137 141
      e.id = nodes[v.id].first_out;
138 142
    }
... ...
@@ -308,241 +312,248 @@
308 312

	
309 313
  /// \addtogroup graphs
310 314
  /// @{
311 315

	
312 316
  ///A general directed graph structure.
313 317

	
314
  ///\ref ListDigraph is a simple and fast <em>directed graph</em>
315
  ///implementation based on static linked lists that are stored in
318
  ///\ref ListDigraph is a versatile and fast directed graph
319
  ///implementation based on linked lists that are stored in
316 320
  ///\c std::vector structures.
317 321
  ///
318
  ///It conforms to the \ref concepts::Digraph "Digraph concept" and it
319
  ///also provides several useful additional functionalities.
320
  ///Most of the member functions and nested classes are documented
322
  ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
323
  ///and it also provides several useful additional functionalities.
324
  ///Most of its member functions and nested classes are documented
321 325
  ///only in the concept class.
322 326
  ///
323 327
  ///\sa concepts::Digraph
324

	
328
  ///\sa ListGraph
325 329
  class ListDigraph : public ExtendedListDigraphBase {
326 330
    typedef ExtendedListDigraphBase Parent;
327 331

	
328 332
  private:
329
    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
330

	
331
    ///ListDigraph is \e not copy constructible. Use copyDigraph() instead.
332
    ///
333
    /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
333 334
    ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
334
    ///\brief Assignment of ListDigraph to another one is \e not allowed.
335
    ///Use copyDigraph() instead.
336

	
337
    ///Assignment of ListDigraph to another one is \e not allowed.
338
    ///Use copyDigraph() instead.
335
    /// \brief Assignment of a digraph to another one is \e not allowed.
336
    /// Use DigraphCopy instead.
339 337
    void operator=(const ListDigraph &) {}
340 338
  public:
341 339

	
342 340
    /// Constructor
343 341

	
344 342
    /// Constructor.
345 343
    ///
346 344
    ListDigraph() {}
347 345

	
348 346
    ///Add a new node to the digraph.
349 347

	
350
    ///Add a new node to the digraph.
348
    ///This function adds a new node to the digraph.
351 349
    ///\return The new node.
352 350
    Node addNode() { return Parent::addNode(); }
353 351

	
354 352
    ///Add a new arc to the digraph.
355 353

	
356
    ///Add a new arc to the digraph with source node \c s
354
    ///This function adds a new arc to the digraph with source node \c s
357 355
    ///and target node \c t.
358 356
    ///\return The new arc.
359
    Arc addArc(const Node& s, const Node& t) {
357
    Arc addArc(Node s, Node t) {
360 358
      return Parent::addArc(s, t);
361 359
    }
362 360

	
363 361
    ///\brief Erase a node from the digraph.
364 362
    ///
365
    ///Erase a node from the digraph.
366
    ///
367
    void erase(const Node& n) { Parent::erase(n); }
363
    ///This function erases the given node from the digraph.
364
    void erase(Node n) { Parent::erase(n); }
368 365

	
369 366
    ///\brief Erase an arc from the digraph.
370 367
    ///
371
    ///Erase an arc from the digraph.
372
    ///
373
    void erase(const Arc& a) { Parent::erase(a); }
368
    ///This function erases the given arc from the digraph.
369
    void erase(Arc a) { Parent::erase(a); }
374 370

	
375 371
    /// Node validity check
376 372

	
377
    /// This function gives back true if the given node is valid,
378
    /// ie. it is a real node of the graph.
373
    /// This function gives back \c true if the given node is valid,
374
    /// i.e. it is a real node of the digraph.
379 375
    ///
380
    /// \warning A Node pointing to a removed item
381
    /// could become valid again later if new nodes are
382
    /// added to the graph.
376
    /// \warning A removed node could become valid again if new nodes are
377
    /// added to the digraph.
383 378
    bool valid(Node n) const { return Parent::valid(n); }
384 379

	
385 380
    /// Arc validity check
386 381

	
387
    /// This function gives back true if the given arc is valid,
388
    /// ie. it is a real arc of the graph.
382
    /// This function gives back \c true if the given arc is valid,
383
    /// i.e. it is a real arc of the digraph.
389 384
    ///
390
    /// \warning An Arc pointing to a removed item
391
    /// could become valid again later if new nodes are
392
    /// added to the graph.
385
    /// \warning A removed arc could become valid again if new arcs are
386
    /// added to the digraph.
393 387
    bool valid(Arc a) const { return Parent::valid(a); }
394 388

	
395
    /// Change the target of \c a to \c n
389
    /// Change the target node of an arc
396 390

	
397
    /// Change the target of \c a to \c n
391
    /// This function changes the target node of the given arc \c a to \c n.
398 392
    ///
399
    ///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing
400
    ///the changed arc remain valid. However <tt>InArcIt</tt>s are
401
    ///invalidated.
393
    ///\note \c ArcIt and \c OutArcIt iterators referencing the changed
394
    ///arc remain valid, however \c InArcIt iterators are invalidated.
402 395
    ///
403 396
    ///\warning This functionality cannot be used together with the Snapshot
404 397
    ///feature.
405 398
    void changeTarget(Arc a, Node n) {
406 399
      Parent::changeTarget(a,n);
407 400
    }
408
    /// Change the source of \c a to \c n
401
    /// Change the source node of an arc
409 402

	
410
    /// Change the source of \c a to \c n
403
    /// This function changes the source node of the given arc \c a to \c n.
411 404
    ///
412
    ///\note The <tt>InArcIt</tt>s referencing the changed arc remain
413
    ///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are
414
    ///invalidated.
405
    ///\note \c InArcIt iterators referencing the changed arc remain
406
    ///valid, however \c ArcIt and \c OutArcIt iterators are invalidated.
415 407
    ///
416 408
    ///\warning This functionality cannot be used together with the Snapshot
417 409
    ///feature.
418 410
    void changeSource(Arc a, Node n) {
419 411
      Parent::changeSource(a,n);
420 412
    }
421 413

	
422
    /// Invert the direction of an arc.
414
    /// Reverse the direction of an arc.
423 415

	
424
    ///\note The <tt>ArcIt</tt>s referencing the changed arc remain
425
    ///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are
426
    ///invalidated.
416
    /// This function reverses the direction of the given arc.
417
    ///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
418
    ///the changed arc are invalidated.
427 419
    ///
428 420
    ///\warning This functionality cannot be used together with the Snapshot
429 421
    ///feature.
430
    void reverseArc(Arc e) {
431
      Node t=target(e);
432
      changeTarget(e,source(e));
433
      changeSource(e,t);
422
    void reverseArc(Arc a) {
423
      Node t=target(a);
424
      changeTarget(a,source(a));
425
      changeSource(a,t);
434 426
    }
435 427

	
436
    /// Reserve memory for nodes.
437

	
438
    /// Using this function it is possible to avoid the superfluous memory
439
    /// allocation: if you know that the digraph you want to build will
440
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
441
    /// then it is worth reserving space for this amount before starting
442
    /// to build the digraph.
443
    /// \sa reserveArc
444
    void reserveNode(int n) { nodes.reserve(n); };
445

	
446
    /// Reserve memory for arcs.
447

	
448
    /// Using this function it is possible to avoid the superfluous memory
449
    /// allocation: if you know that the digraph you want to build will
450
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
451
    /// then it is worth reserving space for this amount before starting
452
    /// to build the digraph.
453
    /// \sa reserveNode
454
    void reserveArc(int m) { arcs.reserve(m); };
455

	
456 428
    ///Contract two nodes.
457 429

	
458
    ///This function contracts two nodes.
459
    ///Node \p b will be removed but instead of deleting
460
    ///incident arcs, they will be joined to \p a.
461
    ///The last parameter \p r controls whether to remove loops. \c true
462
    ///means that loops will be removed.
430
    ///This function contracts the given two nodes.
431
    ///Node \c v is removed, but instead of deleting its
432
    ///incident arcs, they are joined to node \c u.
433
    ///If the last parameter \c r is \c true (this is the default value),
434
    ///then the newly created loops are removed.
463 435
    ///
464
    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
465
    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s
466
    ///may be invalidated.
436
    ///\note The moved arcs are joined to node \c u using changeSource()
437
    ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
438
    ///invalidated for the outgoing arcs of node \c v and \c InArcIt
439
    ///iterators are invalidated for the incomming arcs of \c v.
440
    ///Moreover all iterators referencing node \c v or the removed 
441
    ///loops are also invalidated. Other iterators remain valid.
467 442
    ///
468 443
    ///\warning This functionality cannot be used together with the Snapshot
469 444
    ///feature.
470
    void contract(Node a, Node b, bool r = true)
445
    void contract(Node u, Node v, bool r = true)
471 446
    {
472
      for(OutArcIt e(*this,b);e!=INVALID;) {
447
      for(OutArcIt e(*this,v);e!=INVALID;) {
473 448
        OutArcIt f=e;
474 449
        ++f;
475
        if(r && target(e)==a) erase(e);
476
        else changeSource(e,a);
450
        if(r && target(e)==u) erase(e);
451
        else changeSource(e,u);
477 452
        e=f;
478 453
      }
479
      for(InArcIt e(*this,b);e!=INVALID;) {
454
      for(InArcIt e(*this,v);e!=INVALID;) {
480 455
        InArcIt f=e;
481 456
        ++f;
482
        if(r && source(e)==a) erase(e);
483
        else changeTarget(e,a);
457
        if(r && source(e)==u) erase(e);
458
        else changeTarget(e,u);
484 459
        e=f;
485 460
      }
486
      erase(b);
461
      erase(v);
487 462
    }
488 463

	
489 464
    ///Split a node.
490 465

	
491
    ///This function splits a node. First a new node is added to the digraph,
492
    ///then the source of each outgoing arc of \c n is moved to this new node.
493
    ///If \c connect is \c true (this is the default value), then a new arc
494
    ///from \c n to the newly created node is also added.
466
    ///This function splits the given node. First, a new node is added
467
    ///to the digraph, then the source of each outgoing arc of node \c n
468
    ///is moved to this new node.
469
    ///If the second parameter \c connect is \c true (this is the default
470
    ///value), then a new arc from node \c n to the newly created node
471
    ///is also added.
495 472
    ///\return The newly created node.
496 473
    ///
497
    ///\note The <tt>ArcIt</tt>s referencing a moved arc remain
498
    ///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may
499
    ///be invalidated.
474
    ///\note All iterators remain valid.
500 475
    ///
501
    ///\warning This functionality cannot be used in conjunction with the
476
    ///\warning This functionality cannot be used together with the
502 477
    ///Snapshot feature.
503 478
    Node split(Node n, bool connect = true) {
504 479
      Node b = addNode();
505
      for(OutArcIt e(*this,n);e!=INVALID;) {
506
        OutArcIt f=e;
507
        ++f;
508
        changeSource(e,b);
509
        e=f;
480
      nodes[b.id].first_out=nodes[n.id].first_out;
481
      nodes[n.id].first_out=-1;
482
      for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
483
        arcs[i].source=b.id;
510 484
      }
511 485
      if (connect) addArc(n,b);
512 486
      return b;
513 487
    }
514 488

	
515 489
    ///Split an arc.
516 490

	
517
    ///This function splits an arc. First a new node \c b is added to
518
    ///the digraph, then the original arc is re-targeted to \c
519
    ///b. Finally an arc from \c b to the original target is added.
491
    ///This function splits the given arc. First, a new node \c v is
492
    ///added to the digraph, then the target node of the original arc
493
    ///is set to \c v. Finally, an arc from \c v to the original target
494
    ///is added.
495
    ///\return The newly created node.
520 496
    ///
521
    ///\return The newly created node.
497
    ///\note \c InArcIt iterators referencing the original arc are
498
    ///invalidated. Other iterators remain valid.
522 499
    ///
523 500
    ///\warning This functionality cannot be used together with the
524 501
    ///Snapshot feature.
525
    Node split(Arc e) {
526
      Node b = addNode();
527
      addArc(b,target(e));
528
      changeTarget(e,b);
529
      return b;
502
    Node split(Arc a) {
503
      Node v = addNode();
504
      addArc(v,target(a));
505
      changeTarget(a,v);
506
      return v;
530 507
    }
531 508

	
509
    ///Clear the digraph.
510

	
511
    ///This function erases all nodes and arcs from the digraph.
512
    ///
513
    void clear() {
514
      Parent::clear();
515
    }
516

	
517
    /// Reserve memory for nodes.
518

	
519
    /// Using this function, it is possible to avoid superfluous memory
520
    /// allocation: if you know that the digraph you want to build will
521
    /// be large (e.g. it will contain millions of nodes and/or arcs),
522
    /// then it is worth reserving space for this amount before starting
523
    /// to build the digraph.
524
    /// \sa reserveArc()
525
    void reserveNode(int n) { nodes.reserve(n); };
526

	
527
    /// Reserve memory for arcs.
528

	
529
    /// Using this function, it is possible to avoid superfluous memory
530
    /// allocation: if you know that the digraph you want to build will
531
    /// be large (e.g. it will contain millions of nodes and/or arcs),
532
    /// then it is worth reserving space for this amount before starting
533
    /// to build the digraph.
534
    /// \sa reserveNode()
535
    void reserveArc(int m) { arcs.reserve(m); };
536

	
532 537
    /// \brief Class to make a snapshot of the digraph and restore
533 538
    /// it later.
534 539
    ///
535 540
    /// Class to make a snapshot of the digraph and restore it later.
536 541
    ///
537 542
    /// The newly added nodes and arcs can be removed using the
538 543
    /// restore() function.
539 544
    ///
540
    /// \warning Arc and node deletions and other modifications (e.g.
541
    /// contracting, splitting, reversing arcs or nodes) cannot be
545
    /// \note After a state is restored, you cannot restore a later state, 
546
    /// i.e. you cannot add the removed nodes and arcs again using
547
    /// another Snapshot instance.
548
    ///
549
    /// \warning Node and arc deletions and other modifications (e.g.
550
    /// reversing, contracting, splitting arcs or nodes) cannot be
542 551
    /// restored. These events invalidate the snapshot.
552
    /// However the arcs and nodes that were added to the digraph after
553
    /// making the current snapshot can be removed without invalidating it.
543 554
    class Snapshot {
544 555
    protected:
545 556

	
546 557
      typedef Parent::NodeNotifier NodeNotifier;
547 558

	
548 559
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
... ...
@@ -706,45 +717,46 @@
706 717

	
707 718
    public:
708 719

	
709 720
      /// \brief Default constructor.
710 721
      ///
711 722
      /// Default constructor.
712
      /// To actually make a snapshot you must call save().
723
      /// You have to call save() to actually make a snapshot.
713 724
      Snapshot()
714 725
        : digraph(0), node_observer_proxy(*this),
715 726
          arc_observer_proxy(*this) {}
716 727

	
717 728
      /// \brief Constructor that immediately makes a snapshot.
718 729
      ///
719
      /// This constructor immediately makes a snapshot of the digraph.
720
      /// \param _digraph The digraph we make a snapshot of.
721
      Snapshot(ListDigraph &_digraph)
730
      /// This constructor immediately makes a snapshot of the given digraph.
731
      Snapshot(ListDigraph &gr)
722 732
        : node_observer_proxy(*this),
723 733
          arc_observer_proxy(*this) {
724
        attach(_digraph);
734
        attach(gr);
725 735
      }
726 736

	
727 737
      /// \brief Make a snapshot.
728 738
      ///
729
      /// Make a snapshot of the digraph.
730
      ///
731
      /// This function can be called more than once. In case of a repeated
739
      /// This function makes a snapshot of the given digraph.
740
      /// It can be called more than once. In case of a repeated
732 741
      /// call, the previous snapshot gets lost.
733
      /// \param _digraph The digraph we make the snapshot of.
734
      void save(ListDigraph &_digraph) {
742
      void save(ListDigraph &gr) {
735 743
        if (attached()) {
736 744
          detach();
737 745
          clear();
738 746
        }
739
        attach(_digraph);
747
        attach(gr);
740 748
      }
741 749

	
742 750
      /// \brief Undo the changes until the last snapshot.
743
      //
744
      /// Undo the changes until the last snapshot created by save().
751
      ///
752
      /// This function undos the changes until the last snapshot
753
      /// created by save() or Snapshot(ListDigraph&).
754
      ///
755
      /// \warning This method invalidates the snapshot, i.e. repeated
756
      /// restoring is not supported unless you call save() again.
745 757
      void restore() {
746 758
        detach();
747 759
        for(std::list<Arc>::iterator it = added_arcs.begin();
748 760
            it != added_arcs.end(); ++it) {
749 761
          digraph->erase(*it);
750 762
        }
... ...
@@ -752,15 +764,15 @@
752 764
            it != added_nodes.end(); ++it) {
753 765
          digraph->erase(*it);
754 766
        }
755 767
        clear();
756 768
      }
757 769

	
758
      /// \brief Gives back true when the snapshot is valid.
770
      /// \brief Returns \c true if the snapshot is valid.
759 771
      ///
760
      /// Gives back true when the snapshot is valid.
772
      /// This function returns \c true if the snapshot is valid.
761 773
      bool valid() const {
762 774
        return attached();
763 775
      }
764 776
    };
765 777

	
766 778
  };
... ...
@@ -792,16 +804,12 @@
792 804
    int first_free_arc;
793 805

	
794 806
  public:
795 807

	
796 808
    typedef ListGraphBase Graph;
797 809

	
798
    class Node;
799
    class Arc;
800
    class Edge;
801

	
802 810
    class Node {
803 811
      friend class ListGraphBase;
804 812
    protected:
805 813

	
806 814
      int id;
807 815
      explicit Node(int pid) { id = pid;}
... ...
@@ -845,14 +853,12 @@
845 853
      Arc (Invalid) { id = -1; }
846 854
      bool operator==(const Arc& arc) const {return id == arc.id;}
847 855
      bool operator!=(const Arc& arc) const {return id != arc.id;}
848 856
      bool operator<(const Arc& arc) const {return id < arc.id;}
849 857
    };
850 858

	
851

	
852

	
853 859
    ListGraphBase()
854 860
      : nodes(), first_node(-1),
855 861
        first_free_node(-1), arcs(), first_free_arc(-1) {}
856 862

	
857 863

	
858 864
    int maxNodeId() const { return nodes.size()-1; }
... ...
@@ -1161,137 +1167,132 @@
1161 1167

	
1162 1168
  /// \addtogroup graphs
1163 1169
  /// @{
1164 1170

	
1165 1171
  ///A general undirected graph structure.
1166 1172

	
1167
  ///\ref ListGraph is a simple and fast <em>undirected graph</em>
1168
  ///implementation based on static linked lists that are stored in
1173
  ///\ref ListGraph is a versatile and fast undirected graph
1174
  ///implementation based on linked lists that are stored in
1169 1175
  ///\c std::vector structures.
1170 1176
  ///
1171
  ///It conforms to the \ref concepts::Graph "Graph concept" and it
1172
  ///also provides several useful additional functionalities.
1173
  ///Most of the member functions and nested classes are documented
1177
  ///This type fully conforms to the \ref concepts::Graph "Graph concept"
1178
  ///and it also provides several useful additional functionalities.
1179
  ///Most of its member functions and nested classes are documented
1174 1180
  ///only in the concept class.
1175 1181
  ///
1176 1182
  ///\sa concepts::Graph
1177

	
1183
  ///\sa ListDigraph
1178 1184
  class ListGraph : public ExtendedListGraphBase {
1179 1185
    typedef ExtendedListGraphBase Parent;
1180 1186

	
1181 1187
  private:
1182
    ///ListGraph is \e not copy constructible. Use copyGraph() instead.
1183

	
1184
    ///ListGraph is \e not copy constructible. Use copyGraph() instead.
1185
    ///
1188
    /// Graphs are \e not copy constructible. Use GraphCopy instead.
1186 1189
    ListGraph(const ListGraph &) :ExtendedListGraphBase()  {};
1187
    ///\brief Assignment of ListGraph to another one is \e not allowed.
1188
    ///Use copyGraph() instead.
1189

	
1190
    ///Assignment of ListGraph to another one is \e not allowed.
1191
    ///Use copyGraph() instead.
1190
    /// \brief Assignment of a graph to another one is \e not allowed.
1191
    /// Use GraphCopy instead.
1192 1192
    void operator=(const ListGraph &) {}
1193 1193
  public:
1194 1194
    /// Constructor
1195 1195

	
1196 1196
    /// Constructor.
1197 1197
    ///
1198 1198
    ListGraph() {}
1199 1199

	
1200 1200
    typedef Parent::OutArcIt IncEdgeIt;
1201 1201

	
1202 1202
    /// \brief Add a new node to the graph.
1203 1203
    ///
1204
    /// Add a new node to the graph.
1204
    /// This function adds a new node to the graph.
1205 1205
    /// \return The new node.
1206 1206
    Node addNode() { return Parent::addNode(); }
1207 1207

	
1208 1208
    /// \brief Add a new edge to the graph.
1209 1209
    ///
1210
    /// Add a new edge to the graph with source node \c s
1211
    /// and target node \c t.
1210
    /// This function adds a new edge to the graph between nodes
1211
    /// \c u and \c v with inherent orientation from node \c u to
1212
    /// node \c v.
1212 1213
    /// \return The new edge.
1213
    Edge addEdge(const Node& s, const Node& t) {
1214
      return Parent::addEdge(s, t);
1214
    Edge addEdge(Node u, Node v) {
1215
      return Parent::addEdge(u, v);
1215 1216
    }
1216 1217

	
1217
    /// \brief Erase a node from the graph.
1218
    ///\brief Erase a node from the graph.
1218 1219
    ///
1219
    /// Erase a node from the graph.
1220
    /// This function erases the given node from the graph.
1221
    void erase(Node n) { Parent::erase(n); }
1222

	
1223
    ///\brief Erase an edge from the graph.
1220 1224
    ///
1221
    void erase(const Node& n) { Parent::erase(n); }
1222

	
1223
    /// \brief Erase an edge from the graph.
1224
    ///
1225
    /// Erase an edge from the graph.
1226
    ///
1227
    void erase(const Edge& e) { Parent::erase(e); }
1225
    /// This function erases the given edge from the graph.
1226
    void erase(Edge e) { Parent::erase(e); }
1228 1227
    /// Node validity check
1229 1228

	
1230
    /// This function gives back true if the given node is valid,
1231
    /// ie. it is a real node of the graph.
1229
    /// This function gives back \c true if the given node is valid,
1230
    /// i.e. it is a real node of the graph.
1232 1231
    ///
1233
    /// \warning A Node pointing to a removed item
1234
    /// could become valid again later if new nodes are
1232
    /// \warning A removed node could become valid again if new nodes are
1235 1233
    /// added to the graph.
1236 1234
    bool valid(Node n) const { return Parent::valid(n); }
1235
    /// Edge validity check
1236

	
1237
    /// This function gives back \c true if the given edge is valid,
1238
    /// i.e. it is a real edge of the graph.
1239
    ///
1240
    /// \warning A removed edge could become valid again if new edges are
1241
    /// added to the graph.
1242
    bool valid(Edge e) const { return Parent::valid(e); }
1237 1243
    /// Arc validity check
1238 1244

	
1239
    /// This function gives back true if the given arc is valid,
1240
    /// ie. it is a real arc of the graph.
1245
    /// This function gives back \c true if the given arc is valid,
1246
    /// i.e. it is a real arc of the graph.
1241 1247
    ///
1242
    /// \warning An Arc pointing to a removed item
1243
    /// could become valid again later if new edges are
1248
    /// \warning A removed arc could become valid again if new edges are
1244 1249
    /// added to the graph.
1245 1250
    bool valid(Arc a) const { return Parent::valid(a); }
1246
    /// Edge validity check
1247 1251

	
1248
    /// This function gives back true if the given edge is valid,
1249
    /// ie. it is a real arc of the graph.
1252
    /// \brief Change the first node of an edge.
1250 1253
    ///
1251
    /// \warning A Edge pointing to a removed item
1252
    /// could become valid again later if new edges are
1253
    /// added to the graph.
1254
    bool valid(Edge e) const { return Parent::valid(e); }
1255
    /// \brief Change the end \c u of \c e to \c n
1254
    /// This function changes the first node of the given edge \c e to \c n.
1256 1255
    ///
1257
    /// This function changes the end \c u of \c e to node \c n.
1258
    ///
1259
    ///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the
1260
    ///changed edge are invalidated and if the changed node is the
1261
    ///base node of an iterator then this iterator is also
1262
    ///invalidated.
1256
    ///\note \c EdgeIt and \c ArcIt iterators referencing the
1257
    ///changed edge are invalidated and all other iterators whose
1258
    ///base node is the changed node are also invalidated.
1263 1259
    ///
1264 1260
    ///\warning This functionality cannot be used together with the
1265 1261
    ///Snapshot feature.
1266 1262
    void changeU(Edge e, Node n) {
1267 1263
      Parent::changeU(e,n);
1268 1264
    }
1269
    /// \brief Change the end \c v of \c e to \c n
1265
    /// \brief Change the second node of an edge.
1270 1266
    ///
1271
    /// This function changes the end \c v of \c e to \c n.
1267
    /// This function changes the second node of the given edge \c e to \c n.
1272 1268
    ///
1273
    ///\note The <tt>EdgeIt</tt>s referencing the changed edge remain
1274
    ///valid, however <tt>ArcIt</tt>s and if the changed node is the
1275
    ///base node of an iterator then this iterator is invalidated.
1269
    ///\note \c EdgeIt iterators referencing the changed edge remain
1270
    ///valid, however \c ArcIt iterators referencing the changed edge and
1271
    ///all other iterators whose base node is the changed node are also
1272
    ///invalidated.
1276 1273
    ///
1277 1274
    ///\warning This functionality cannot be used together with the
1278 1275
    ///Snapshot feature.
1279 1276
    void changeV(Edge e, Node n) {
1280 1277
      Parent::changeV(e,n);
1281 1278
    }
1279

	
1282 1280
    /// \brief Contract two nodes.
1283 1281
    ///
1284
    /// This function contracts two nodes.
1285
    /// Node \p b will be removed but instead of deleting
1286
    /// its neighboring arcs, they will be joined to \p a.
1287
    /// The last parameter \p r controls whether to remove loops. \c true
1288
    /// means that loops will be removed.
1282
    /// This function contracts the given two nodes.
1283
    /// Node \c b is removed, but instead of deleting
1284
    /// its incident edges, they are joined to node \c a.
1285
    /// If the last parameter \c r is \c true (this is the default value),
1286
    /// then the newly created loops are removed.
1289 1287
    ///
1290
    /// \note The <tt>ArcIt</tt>s referencing a moved arc remain
1291
    /// valid.
1288
    /// \note The moved edges are joined to node \c a using changeU()
1289
    /// or changeV(), thus all edge and arc iterators whose base node is
1290
    /// \c b are invalidated.
1291
    /// Moreover all iterators referencing node \c b or the removed 
1292
    /// loops are also invalidated. Other iterators remain valid.
1292 1293
    ///
1293 1294
    ///\warning This functionality cannot be used together with the
1294 1295
    ///Snapshot feature.
1295 1296
    void contract(Node a, Node b, bool r = true) {
1296 1297
      for(IncEdgeIt e(*this, b); e!=INVALID;) {
1297 1298
        IncEdgeIt f = e; ++f;
... ...
@@ -1304,24 +1305,57 @@
1304 1305
        }
1305 1306
        e = f;
1306 1307
      }
1307 1308
      erase(b);
1308 1309
    }
1309 1310

	
1311
    ///Clear the graph.
1312

	
1313
    ///This function erases all nodes and arcs from the graph.
1314
    ///
1315
    void clear() {
1316
      Parent::clear();
1317
    }
1318

	
1319
    /// Reserve memory for nodes.
1320

	
1321
    /// Using this function, it is possible to avoid superfluous memory
1322
    /// allocation: if you know that the graph you want to build will
1323
    /// be large (e.g. it will contain millions of nodes and/or edges),
1324
    /// then it is worth reserving space for this amount before starting
1325
    /// to build the graph.
1326
    /// \sa reserveEdge()
1327
    void reserveNode(int n) { nodes.reserve(n); };
1328

	
1329
    /// Reserve memory for edges.
1330

	
1331
    /// Using this function, it is possible to avoid superfluous memory
1332
    /// allocation: if you know that the graph you want to build will
1333
    /// be large (e.g. it will contain millions of nodes and/or edges),
1334
    /// then it is worth reserving space for this amount before starting
1335
    /// to build the graph.
1336
    /// \sa reserveNode()
1337
    void reserveEdge(int m) { arcs.reserve(2 * m); };
1310 1338

	
1311 1339
    /// \brief Class to make a snapshot of the graph and restore
1312 1340
    /// it later.
1313 1341
    ///
1314 1342
    /// Class to make a snapshot of the graph and restore it later.
1315 1343
    ///
1316 1344
    /// The newly added nodes and edges can be removed
1317 1345
    /// using the restore() function.
1318 1346
    ///
1319
    /// \warning Edge and node deletions and other modifications
1320
    /// (e.g. changing nodes of edges, contracting nodes) cannot be
1321
    /// restored. These events invalidate the snapshot.
1347
    /// \note After a state is restored, you cannot restore a later state, 
1348
    /// i.e. you cannot add the removed nodes and edges again using
1349
    /// another Snapshot instance.
1350
    ///
1351
    /// \warning Node and edge deletions and other modifications
1352
    /// (e.g. changing the end-nodes of edges or contracting nodes)
1353
    /// cannot be restored. These events invalidate the snapshot.
1354
    /// However the edges and nodes that were added to the graph after
1355
    /// making the current snapshot can be removed without invalidating it.
1322 1356
    class Snapshot {
1323 1357
    protected:
1324 1358

	
1325 1359
      typedef Parent::NodeNotifier NodeNotifier;
1326 1360

	
1327 1361
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
... ...
@@ -1485,45 +1519,46 @@
1485 1519

	
1486 1520
    public:
1487 1521

	
1488 1522
      /// \brief Default constructor.
1489 1523
      ///
1490 1524
      /// Default constructor.
1491
      /// To actually make a snapshot you must call save().
1525
      /// You have to call save() to actually make a snapshot.
1492 1526
      Snapshot()
1493 1527
        : graph(0), node_observer_proxy(*this),
1494 1528
          edge_observer_proxy(*this) {}
1495 1529

	
1496 1530
      /// \brief Constructor that immediately makes a snapshot.
1497 1531
      ///
1498
      /// This constructor immediately makes a snapshot of the graph.
1499
      /// \param _graph The graph we make a snapshot of.
1500
      Snapshot(ListGraph &_graph)
1532
      /// This constructor immediately makes a snapshot of the given graph.
1533
      Snapshot(ListGraph &gr)
1501 1534
        : node_observer_proxy(*this),
1502 1535
          edge_observer_proxy(*this) {
1503
        attach(_graph);
1536
        attach(gr);
1504 1537
      }
1505 1538

	
1506 1539
      /// \brief Make a snapshot.
1507 1540
      ///
1508
      /// Make a snapshot of the graph.
1509
      ///
1510
      /// This function can be called more than once. In case of a repeated
1541
      /// This function makes a snapshot of the given graph.
1542
      /// It can be called more than once. In case of a repeated
1511 1543
      /// call, the previous snapshot gets lost.
1512
      /// \param _graph The graph we make the snapshot of.
1513
      void save(ListGraph &_graph) {
1544
      void save(ListGraph &gr) {
1514 1545
        if (attached()) {
1515 1546
          detach();
1516 1547
          clear();
1517 1548
        }
1518
        attach(_graph);
1549
        attach(gr);
1519 1550
      }
1520 1551

	
1521 1552
      /// \brief Undo the changes until the last snapshot.
1522
      //
1523
      /// Undo the changes until the last snapshot created by save().
1553
      ///
1554
      /// This function undos the changes until the last snapshot
1555
      /// created by save() or Snapshot(ListGraph&).
1556
      ///
1557
      /// \warning This method invalidates the snapshot, i.e. repeated
1558
      /// restoring is not supported unless you call save() again.
1524 1559
      void restore() {
1525 1560
        detach();
1526 1561
        for(std::list<Edge>::iterator it = added_edges.begin();
1527 1562
            it != added_edges.end(); ++it) {
1528 1563
          graph->erase(*it);
1529 1564
        }
... ...
@@ -1531,15 +1566,15 @@
1531 1566
            it != added_nodes.end(); ++it) {
1532 1567
          graph->erase(*it);
1533 1568
        }
1534 1569
        clear();
1535 1570
      }
1536 1571

	
1537
      /// \brief Gives back true when the snapshot is valid.
1572
      /// \brief Returns \c true if the snapshot is valid.
1538 1573
      ///
1539
      /// Gives back true when the snapshot is valid.
1574
      /// This function returns \c true if the snapshot is valid.
1540 1575
      bool valid() const {
1541 1576
        return attached();
1542 1577
      }
1543 1578
    };
1544 1579
  };
1545 1580

	
Ignore white space 6 line context
... ...
@@ -940,12 +940,20 @@
940 940
    virtual void _eraseColId(int col) { cols.eraseIndex(col); }
941 941
    virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
942 942

	
943 943
    virtual int _addCol() = 0;
944 944
    virtual int _addRow() = 0;
945 945

	
946
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
947
      int row = _addRow();
948
      _setRowCoeffs(row, b, e);
949
      _setRowLowerBound(row, l);
950
      _setRowUpperBound(row, u);
951
      return row;
952
    }
953

	
946 954
    virtual void _eraseCol(int col) = 0;
947 955
    virtual void _eraseRow(int row) = 0;
948 956

	
949 957
    virtual void _getColName(int col, std::string& name) const = 0;
950 958
    virtual void _setColName(int col, const std::string& name) = 0;
951 959
    virtual int _colByName(const std::string& name) const = 0;
... ...
@@ -1204,24 +1212,30 @@
1204 1212

	
1205 1213
    ///\param l is the lower bound (-\ref INF means no bound)
1206 1214
    ///\param e is a linear expression (see \ref Expr)
1207 1215
    ///\param u is the upper bound (\ref INF means no bound)
1208 1216
    ///\return The created row.
1209 1217
    Row addRow(Value l,const Expr &e, Value u) {
1210
      Row r=addRow();
1211
      row(r,l,e,u);
1218
      Row r;
1219
      e.simplify();
1220
      r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols),
1221
                                ExprIterator(e.comps.end(), cols), u - *e));
1212 1222
      return r;
1213 1223
    }
1214 1224

	
1215 1225
    ///Add a new row (i.e a new constraint) to the LP
1216 1226

	
1217 1227
    ///\param c is a linear expression (see \ref Constr)
1218 1228
    ///\return The created row.
1219 1229
    Row addRow(const Constr &c) {
1220
      Row r=addRow();
1221
      row(r,c);
1230
      Row r;
1231
      c.expr().simplify();
1232
      r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound():-INF, 
1233
                                ExprIterator(c.expr().comps.begin(), cols),
1234
                                ExprIterator(c.expr().comps.end(), cols),
1235
                                c.upperBounded()?c.upperBound():INF));
1222 1236
      return r;
1223 1237
    }
1224 1238
    ///Erase a column (i.e a variable) from the LP
1225 1239

	
1226 1240
    ///\param c is the column to be deleted
1227 1241
    void erase(Col c) {
Ignore white space 6 line context
... ...
@@ -29,12 +29,17 @@
29 29

	
30 30
  int SkeletonSolverBase::_addRow()
31 31
  {
32 32
    return ++row_num;
33 33
  }
34 34

	
35
  int SkeletonSolverBase::_addRow(Value, ExprIterator, ExprIterator, Value)
36
  {
37
    return ++row_num;
38
  }
39

	
35 40
  void SkeletonSolverBase::_eraseCol(int) {}
36 41
  void SkeletonSolverBase::_eraseRow(int) {}
37 42

	
38 43
  void SkeletonSolverBase::_getColName(int, std::string &) const {}
39 44
  void SkeletonSolverBase::_setColName(int, const std::string &) {}
40 45
  int SkeletonSolverBase::_colByName(const std::string&) const { return -1; }
Ignore white space 12 line context
... ...
@@ -42,12 +42,14 @@
42 42

	
43 43
    /// \e
44 44
    virtual int _addCol();
45 45
    /// \e
46 46
    virtual int _addRow();
47 47
    /// \e
48
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);
49
    /// \e
48 50
    virtual void _eraseCol(int i);
49 51
    /// \e
50 52
    virtual void _eraseRow(int i);
51 53

	
52 54
    /// \e
53 55
    virtual void _getColName(int col, std::string& name) const;
Ignore white space 6 line context
... ...
@@ -37,13 +37,15 @@
37 37
  /// @{
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
40 40
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 41
  ///
42 42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43
  /// for finding a \ref min_cost_flow "minimum cost flow".
43
  /// for finding a \ref min_cost_flow "minimum cost flow"
44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
45
  /// \ref kellyoneill91netsimplex.
44 46
  /// This algorithm is a specialized version of the linear programming
45 47
  /// simplex method directly for the minimum cost flow problem.
46 48
  /// It is one of the most efficient solution methods.
47 49
  ///
48 50
  /// In general this class is the fastest implementation available
49 51
  /// in LEMON for the minimum cost flow problem.
Ignore white space 6 line context
... ...
@@ -1012,24 +1012,26 @@
1012 1012
    }
1013 1013
    return true;
1014 1014
  }
1015 1015

	
1016 1016
  /// \brief The source of a path
1017 1017
  ///
1018
  /// This function returns the source of the given path.
1018
  /// This function returns the source node of the given path.
1019
  /// If the path is empty, then it returns \c INVALID.
1019 1020
  template <typename Digraph, typename Path>
1020 1021
  typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
1021
    return digraph.source(path.front());
1022
    return path.empty() ? INVALID : digraph.source(path.front());
1022 1023
  }
1023 1024

	
1024 1025
  /// \brief The target of a path
1025 1026
  ///
1026
  /// This function returns the target of the given path.
1027
  /// This function returns the target node of the given path.
1028
  /// If the path is empty, then it returns \c INVALID.
1027 1029
  template <typename Digraph, typename Path>
1028 1030
  typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
1029
    return digraph.target(path.back());
1031
    return path.empty() ? INVALID : digraph.target(path.back());
1030 1032
  }
1031 1033

	
1032 1034
  /// \brief Class which helps to iterate through the nodes of a path
1033 1035
  ///
1034 1036
  /// In a sense, the path can be treated as a list of arcs. The
1035 1037
  /// lemon path type stores only this list. As a consequence, it
Ignore white space 6 line context
... ...
@@ -99,13 +99,14 @@
99 99
  /// \ingroup max_flow
100 100
  ///
101 101
  /// \brief %Preflow algorithm class.
102 102
  ///
103 103
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
104 104
  /// \e push-relabel algorithm producing a \ref max_flow
105
  /// "flow of maximum value" in a digraph.
105
  /// "flow of maximum value" in a digraph \ref clrs01algorithms,
106
  /// \ref amo93networkflows, \ref goldberg88newapproach.
106 107
  /// The preflow algorithms are the fastest known maximum
107 108
  /// flow algorithms. The current implementation uses a mixture of the
108 109
  /// \e "highest label" and the \e "bound decrease" heuristics.
109 110
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
110 111
  ///
111 112
  /// The algorithm consists of two phases. After the first phase
Ignore white space 6 line context
... ...
@@ -29,16 +29,13 @@
29 29
#include <lemon/error.h>
30 30
#include <lemon/bits/graph_extender.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  class SmartDigraph;
35
  ///Base of SmartDigraph
36 35

	
37
  ///Base of SmartDigraph
38
  ///
39 36
  class SmartDigraphBase {
40 37
  protected:
41 38

	
42 39
    struct NodeT
43 40
    {
44 41
      int first_in, first_out;
... ...
@@ -184,119 +181,87 @@
184 181
  typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase;
185 182

	
186 183
  ///\ingroup graphs
187 184
  ///
188 185
  ///\brief A smart directed graph class.
189 186
  ///
190
  ///This is a simple and fast digraph implementation.
191
  ///It is also quite memory efficient, but at the price
192
  ///that <b> it does support only limited (only stack-like)
193
  ///node and arc deletions</b>.
194
  ///It fully conforms to the \ref concepts::Digraph "Digraph concept".
187
  ///\ref SmartDigraph is a simple and fast digraph implementation.
188
  ///It is also quite memory efficient but at the price
189
  ///that it does not support node and arc deletion 
190
  ///(except for the Snapshot feature).
195 191
  ///
196
  ///\sa concepts::Digraph.
192
  ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
193
  ///and it also provides some additional functionalities.
194
  ///Most of its member functions and nested classes are documented
195
  ///only in the concept class.
196
  ///
197
  ///\sa concepts::Digraph
198
  ///\sa SmartGraph
197 199
  class SmartDigraph : public ExtendedSmartDigraphBase {
198 200
    typedef ExtendedSmartDigraphBase Parent;
199 201

	
200 202
  private:
201

	
202
    ///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead.
203

	
204
    ///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead.
205
    ///
203
    /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
206 204
    SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
207
    ///\brief Assignment of SmartDigraph to another one is \e not allowed.
208
    ///Use DigraphCopy() instead.
209

	
210
    ///Assignment of SmartDigraph to another one is \e not allowed.
211
    ///Use DigraphCopy() instead.
205
    /// \brief Assignment of a digraph to another one is \e not allowed.
206
    /// Use DigraphCopy instead.
212 207
    void operator=(const SmartDigraph &) {}
213 208

	
214 209
  public:
215 210

	
216 211
    /// Constructor
217 212

	
218 213
    /// Constructor.
219 214
    ///
220 215
    SmartDigraph() {};
221 216

	
222 217
    ///Add a new node to the digraph.
223 218

	
224
    /// Add a new node to the digraph.
225
    /// \return The new node.
219
    ///This function adds a new node to the digraph.
220
    ///\return The new node.
226 221
    Node addNode() { return Parent::addNode(); }
227 222

	
228 223
    ///Add a new arc to the digraph.
229 224

	
230
    ///Add a new arc to the digraph with source node \c s
225
    ///This function adds a new arc to the digraph with source node \c s
231 226
    ///and target node \c t.
232 227
    ///\return The new arc.
233
    Arc addArc(const Node& s, const Node& t) {
228
    Arc addArc(Node s, Node t) {
234 229
      return Parent::addArc(s, t);
235 230
    }
236 231

	
237
    /// \brief Using this it is possible to avoid the superfluous memory
238
    /// allocation.
239

	
240
    /// Using this it is possible to avoid the superfluous memory
241
    /// allocation: if you know that the digraph you want to build will
242
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
243
    /// then it is worth reserving space for this amount before starting
244
    /// to build the digraph.
245
    /// \sa reserveArc
246
    void reserveNode(int n) { nodes.reserve(n); };
247

	
248
    /// \brief Using this it is possible to avoid the superfluous memory
249
    /// allocation.
250

	
251
    /// Using this it is possible to avoid the superfluous memory
252
    /// allocation: if you know that the digraph you want to build will
253
    /// be very large (e.g. it will contain millions of nodes and/or arcs)
254
    /// then it is worth reserving space for this amount before starting
255
    /// to build the digraph.
256
    /// \sa reserveNode
257
    void reserveArc(int m) { arcs.reserve(m); };
258

	
259 232
    /// \brief Node validity check
260 233
    ///
261
    /// This function gives back true if the given node is valid,
262
    /// ie. it is a real node of the graph.
234
    /// This function gives back \c true if the given node is valid,
235
    /// i.e. it is a real node of the digraph.
263 236
    ///
264 237
    /// \warning A removed node (using Snapshot) could become valid again
265
    /// when new nodes are added to the graph.
238
    /// if new nodes are added to the digraph.
266 239
    bool valid(Node n) const { return Parent::valid(n); }
267 240

	
268 241
    /// \brief Arc validity check
269 242
    ///
270
    /// This function gives back true if the given arc is valid,
271
    /// ie. it is a real arc of the graph.
243
    /// This function gives back \c true if the given arc is valid,
244
    /// i.e. it is a real arc of the digraph.
272 245
    ///
273 246
    /// \warning A removed arc (using Snapshot) could become valid again
274
    /// when new arcs are added to the graph.
247
    /// if new arcs are added to the graph.
275 248
    bool valid(Arc a) const { return Parent::valid(a); }
276 249

	
277
    ///Clear the digraph.
278

	
279
    ///Erase all the nodes and arcs from the digraph.
280
    ///
281
    void clear() {
282
      Parent::clear();
283
    }
284

	
285 250
    ///Split a node.
286 251

	
287
    ///This function splits a node. First a new node is added to the digraph,
288
    ///then the source of each outgoing arc of \c n is moved to this new node.
289
    ///If \c connect is \c true (this is the default value), then a new arc
290
    ///from \c n to the newly created node is also added.
252
    ///This function splits the given node. First, a new node is added
253
    ///to the digraph, then the source of each outgoing arc of node \c n
254
    ///is moved to this new node.
255
    ///If the second parameter \c connect is \c true (this is the default
256
    ///value), then a new arc from node \c n to the newly created node
257
    ///is also added.
291 258
    ///\return The newly created node.
292 259
    ///
293
    ///\note The <tt>Arc</tt>s
294
    ///referencing a moved arc remain
295
    ///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s
296
    ///may be invalidated.
260
    ///\note All iterators remain valid.
261
    ///
297 262
    ///\warning This functionality cannot be used together with the Snapshot
298 263
    ///feature.
299 264
    Node split(Node n, bool connect = true)
300 265
    {
301 266
      Node b = addNode();
302 267
      nodes[b._id].first_out=nodes[n._id].first_out;
... ...
@@ -305,12 +270,40 @@
305 270
        arcs[i].source=b._id;
306 271
      }
307 272
      if(connect) addArc(n,b);
308 273
      return b;
309 274
    }
310 275

	
276
    ///Clear the digraph.
277

	
278
    ///This function erases all nodes and arcs from the digraph.
279
    ///
280
    void clear() {
281
      Parent::clear();
282
    }
283

	
284
    /// Reserve memory for nodes.
285

	
286
    /// Using this function, it is possible to avoid superfluous memory
287
    /// allocation: if you know that the digraph you want to build will
288
    /// be large (e.g. it will contain millions of nodes and/or arcs),
289
    /// then it is worth reserving space for this amount before starting
290
    /// to build the digraph.
291
    /// \sa reserveArc()
292
    void reserveNode(int n) { nodes.reserve(n); };
293

	
294
    /// Reserve memory for arcs.
295

	
296
    /// Using this function, it is possible to avoid superfluous memory
297
    /// allocation: if you know that the digraph you want to build will
298
    /// be large (e.g. it will contain millions of nodes and/or arcs),
299
    /// then it is worth reserving space for this amount before starting
300
    /// to build the digraph.
301
    /// \sa reserveNode()
302
    void reserveArc(int m) { arcs.reserve(m); };
303

	
311 304
  public:
312 305

	
313 306
    class Snapshot;
314 307

	
315 308
  protected:
316 309

	
... ...
@@ -329,70 +322,66 @@
329 322
        nodes.pop_back();
330 323
      }
331 324
    }
332 325

	
333 326
  public:
334 327

	
335
    ///Class to make a snapshot of the digraph and to restrore to it later.
328
    ///Class to make a snapshot of the digraph and to restore it later.
336 329

	
337
    ///Class to make a snapshot of the digraph and to restrore to it later.
330
    ///Class to make a snapshot of the digraph and to restore it later.
338 331
    ///
339 332
    ///The newly added nodes and arcs can be removed using the
340
    ///restore() function.
341
    ///\note After you restore a state, you cannot restore
342
    ///a later state, in other word you cannot add again the arcs deleted
343
    ///by restore() using another one Snapshot instance.
333
    ///restore() function. This is the only way for deleting nodes and/or
334
    ///arcs from a SmartDigraph structure.
344 335
    ///
345
    ///\warning If you do not use correctly the snapshot that can cause
346
    ///either broken program, invalid state of the digraph, valid but
347
    ///not the restored digraph or no change. Because the runtime performance
348
    ///the validity of the snapshot is not stored.
336
    ///\note After a state is restored, you cannot restore a later state, 
337
    ///i.e. you cannot add the removed nodes and arcs again using
338
    ///another Snapshot instance.
339
    ///
340
    ///\warning Node splitting cannot be restored.
341
    ///\warning The validity of the snapshot is not stored due to
342
    ///performance reasons. If you do not use the snapshot correctly,
343
    ///it can cause broken program, invalid or not restored state of
344
    ///the digraph or no change.
349 345
    class Snapshot
350 346
    {
351 347
      SmartDigraph *_graph;
352 348
    protected:
353 349
      friend class SmartDigraph;
354 350
      unsigned int node_num;
355 351
      unsigned int arc_num;
356 352
    public:
357 353
      ///Default constructor.
358 354

	
359 355
      ///Default constructor.
360
      ///To actually make a snapshot you must call save().
361
      ///
356
      ///You have to call save() to actually make a snapshot.
362 357
      Snapshot() : _graph(0) {}
363 358
      ///Constructor that immediately makes a snapshot
364 359

	
365
      ///This constructor immediately makes a snapshot of the digraph.
366
      ///\param graph The digraph we make a snapshot of.
367
      Snapshot(SmartDigraph &graph) : _graph(&graph) {
360
      ///This constructor immediately makes a snapshot of the given digraph.
361
      ///
362
      Snapshot(SmartDigraph &gr) : _graph(&gr) {
368 363
        node_num=_graph->nodes.size();
369 364
        arc_num=_graph->arcs.size();
370 365
      }
371 366

	
372 367
      ///Make a snapshot.
373 368

	
374
      ///Make a snapshot of the digraph.
375
      ///
376
      ///This function can be called more than once. In case of a repeated
369
      ///This function makes a snapshot of the given digraph.
370
      ///It can be called more than once. In case of a repeated
377 371
      ///call, the previous snapshot gets lost.
378
      ///\param graph The digraph we make the snapshot of.
379
      void save(SmartDigraph &graph)
380
      {
381
        _graph=&graph;
372
      void save(SmartDigraph &gr) {
373
        _graph=&gr;
382 374
        node_num=_graph->nodes.size();
383 375
        arc_num=_graph->arcs.size();
384 376
      }
385 377

	
386 378
      ///Undo the changes until a snapshot.
387 379

	
388
      ///Undo the changes until a snapshot created by save().
389
      ///
390
      ///\note After you restored a state, you cannot restore
391
      ///a later state, in other word you cannot add again the arcs deleted
392
      ///by restore().
380
      ///This function undos the changes until the last snapshot
381
      ///created by save() or Snapshot(SmartDigraph&).
393 382
      void restore()
394 383
      {
395 384
        _graph->restoreSnapshot(*this);
396 385
      }
397 386
    };
398 387
  };
... ...
@@ -505,29 +494,29 @@
505 494
    }
506 495

	
507 496
    void first(Node& node) const {
508 497
      node._id = nodes.size() - 1;
509 498
    }
510 499

	
511
    void next(Node& node) const {
500
    static void next(Node& node) {
512 501
      --node._id;
513 502
    }
514 503

	
515 504
    void first(Arc& arc) const {
516 505
      arc._id = arcs.size() - 1;
517 506
    }
518 507

	
519
    void next(Arc& arc) const {
508
    static void next(Arc& arc) {
520 509
      --arc._id;
521 510
    }
522 511

	
523 512
    void first(Edge& arc) const {
524 513
      arc._id = arcs.size() / 2 - 1;
525 514
    }
526 515

	
527
    void next(Edge& arc) const {
516
    static void next(Edge& arc) {
528 517
      --arc._id;
529 518
    }
530 519

	
531 520
    void firstOut(Arc &arc, const Node& v) const {
532 521
      arc._id = nodes[v._id].first_out;
533 522
    }
... ...
@@ -618,95 +607,113 @@
618 607
  typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase;
619 608

	
620 609
  /// \ingroup graphs
621 610
  ///
622 611
  /// \brief A smart undirected graph class.
623 612
  ///
624
  /// This is a simple and fast graph implementation.
625
  /// It is also quite memory efficient, but at the price
626
  /// that <b> it does support only limited (only stack-like)
627
  /// node and arc deletions</b>.
628
  /// It fully conforms to the \ref concepts::Graph "Graph concept".
613
  /// \ref SmartGraph is a simple and fast graph implementation.
614
  /// It is also quite memory efficient but at the price
615
  /// that it does not support node and edge deletion 
616
  /// (except for the Snapshot feature).
629 617
  ///
630
  /// \sa concepts::Graph.
618
  /// This type fully conforms to the \ref concepts::Graph "Graph concept"
619
  /// and it also provides some additional functionalities.
620
  /// Most of its member functions and nested classes are documented
621
  /// only in the concept class.
622
  ///
623
  /// \sa concepts::Graph
624
  /// \sa SmartDigraph
631 625
  class SmartGraph : public ExtendedSmartGraphBase {
632 626
    typedef ExtendedSmartGraphBase Parent;
633 627

	
634 628
  private:
635

	
636
    ///SmartGraph is \e not copy constructible. Use GraphCopy() instead.
637

	
638
    ///SmartGraph is \e not copy constructible. Use GraphCopy() instead.
639
    ///
629
    /// Graphs are \e not copy constructible. Use GraphCopy instead.
640 630
    SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
641

	
642
    ///\brief Assignment of SmartGraph to another one is \e not allowed.
643
    ///Use GraphCopy() instead.
644

	
645
    ///Assignment of SmartGraph to another one is \e not allowed.
646
    ///Use GraphCopy() instead.
631
    /// \brief Assignment of a graph to another one is \e not allowed.
632
    /// Use GraphCopy instead.
647 633
    void operator=(const SmartGraph &) {}
648 634

	
649 635
  public:
650 636

	
651 637
    /// Constructor
652 638

	
653 639
    /// Constructor.
654 640
    ///
655 641
    SmartGraph() {}
656 642

	
657
    ///Add a new node to the graph.
658

	
659
    /// Add a new node to the graph.
643
    /// \brief Add a new node to the graph.
644
    ///
645
    /// This function adds a new node to the graph.
660 646
    /// \return The new node.
661 647
    Node addNode() { return Parent::addNode(); }
662 648

	
663
    ///Add a new edge to the graph.
664

	
665
    ///Add a new edge to the graph with node \c s
666
    ///and \c t.
667
    ///\return The new edge.
668
    Edge addEdge(const Node& s, const Node& t) {
669
      return Parent::addEdge(s, t);
649
    /// \brief Add a new edge to the graph.
650
    ///
651
    /// This function adds a new edge to the graph between nodes
652
    /// \c u and \c v with inherent orientation from node \c u to
653
    /// node \c v.
654
    /// \return The new edge.
655
    Edge addEdge(Node u, Node v) {
656
      return Parent::addEdge(u, v);
670 657
    }
671 658

	
672 659
    /// \brief Node validity check
673 660
    ///
674
    /// This function gives back true if the given node is valid,
675
    /// ie. it is a real node of the graph.
661
    /// This function gives back \c true if the given node is valid,
662
    /// i.e. it is a real node of the graph.
676 663
    ///
677 664
    /// \warning A removed node (using Snapshot) could become valid again
678
    /// when new nodes are added to the graph.
665
    /// if new nodes are added to the graph.
679 666
    bool valid(Node n) const { return Parent::valid(n); }
680 667

	
668
    /// \brief Edge validity check
669
    ///
670
    /// This function gives back \c true if the given edge is valid,
671
    /// i.e. it is a real edge of the graph.
672
    ///
673
    /// \warning A removed edge (using Snapshot) could become valid again
674
    /// if new edges are added to the graph.
675
    bool valid(Edge e) const { return Parent::valid(e); }
676

	
681 677
    /// \brief Arc validity check
682 678
    ///
683
    /// This function gives back true if the given arc is valid,
684
    /// ie. it is a real arc of the graph.
679
    /// This function gives back \c true if the given arc is valid,
680
    /// i.e. it is a real arc of the graph.
685 681
    ///
686 682
    /// \warning A removed arc (using Snapshot) could become valid again
687
    /// when new edges are added to the graph.
683
    /// if new edges are added to the graph.
688 684
    bool valid(Arc a) const { return Parent::valid(a); }
689 685

	
690
    /// \brief Edge validity check
691
    ///
692
    /// This function gives back true if the given edge is valid,
693
    /// ie. it is a real edge of the graph.
694
    ///
695
    /// \warning A removed edge (using Snapshot) could become valid again
696
    /// when new edges are added to the graph.
697
    bool valid(Edge e) const { return Parent::valid(e); }
698

	
699 686
    ///Clear the graph.
700 687

	
701
    ///Erase all the nodes and edges from the graph.
688
    ///This function erases all nodes and arcs from the graph.
702 689
    ///
703 690
    void clear() {
704 691
      Parent::clear();
705 692
    }
706 693

	
694
    /// Reserve memory for nodes.
695

	
696
    /// Using this function, it is possible to avoid superfluous memory
697
    /// allocation: if you know that the graph you want to build will
698
    /// be large (e.g. it will contain millions of nodes and/or edges),
699
    /// then it is worth reserving space for this amount before starting
700
    /// to build the graph.
701
    /// \sa reserveEdge()
702
    void reserveNode(int n) { nodes.reserve(n); };
703

	
704
    /// Reserve memory for edges.
705

	
706
    /// Using this function, it is possible to avoid superfluous memory
707
    /// allocation: if you know that the graph you want to build will
708
    /// be large (e.g. it will contain millions of nodes and/or edges),
709
    /// then it is worth reserving space for this amount before starting
710
    /// to build the graph.
711
    /// \sa reserveNode()
712
    void reserveEdge(int m) { arcs.reserve(2 * m); };
713

	
707 714
  public:
708 715

	
709 716
    class Snapshot;
710 717

	
711 718
  protected:
712 719

	
... ...
@@ -739,68 +746,63 @@
739 746
        nodes.pop_back();
740 747
      }
741 748
    }
742 749

	
743 750
  public:
744 751

	
745
    ///Class to make a snapshot of the digraph and to restrore to it later.
752
    ///Class to make a snapshot of the graph and to restore it later.
746 753

	
747
    ///Class to make a snapshot of the digraph and to restrore to it later.
754
    ///Class to make a snapshot of the graph and to restore it later.
748 755
    ///
749
    ///The newly added nodes and arcs can be removed using the
750
    ///restore() function.
756
    ///The newly added nodes and edges can be removed using the
757
    ///restore() function. This is the only way for deleting nodes and/or
758
    ///edges from a SmartGraph structure.
751 759
    ///
752
    ///\note After you restore a state, you cannot restore
753
    ///a later state, in other word you cannot add again the arcs deleted
754
    ///by restore() using another one Snapshot instance.
760
    ///\note After a state is restored, you cannot restore a later state, 
761
    ///i.e. you cannot add the removed nodes and edges again using
762
    ///another Snapshot instance.
755 763
    ///
756
    ///\warning If you do not use correctly the snapshot that can cause
757
    ///either broken program, invalid state of the digraph, valid but
758
    ///not the restored digraph or no change. Because the runtime performance
759
    ///the validity of the snapshot is not stored.
764
    ///\warning The validity of the snapshot is not stored due to
765
    ///performance reasons. If you do not use the snapshot correctly,
766
    ///it can cause broken program, invalid or not restored state of
767
    ///the graph or no change.
760 768
    class Snapshot
761 769
    {
762 770
      SmartGraph *_graph;
763 771
    protected:
764 772
      friend class SmartGraph;
765 773
      unsigned int node_num;
766 774
      unsigned int arc_num;
767 775
    public:
768 776
      ///Default constructor.
769 777

	
770 778
      ///Default constructor.
771
      ///To actually make a snapshot you must call save().
772
      ///
779
      ///You have to call save() to actually make a snapshot.
773 780
      Snapshot() : _graph(0) {}
774 781
      ///Constructor that immediately makes a snapshot
775 782

	
776
      ///This constructor immediately makes a snapshot of the digraph.
777
      ///\param graph The digraph we make a snapshot of.
778
      Snapshot(SmartGraph &graph) {
779
        graph.saveSnapshot(*this);
783
      /// This constructor immediately makes a snapshot of the given graph.
784
      ///
785
      Snapshot(SmartGraph &gr) {
786
        gr.saveSnapshot(*this);
780 787
      }
781 788

	
782 789
      ///Make a snapshot.
783 790

	
784
      ///Make a snapshot of the graph.
785
      ///
786
      ///This function can be called more than once. In case of a repeated
791
      ///This function makes a snapshot of the given graph.
792
      ///It can be called more than once. In case of a repeated
787 793
      ///call, the previous snapshot gets lost.
788
      ///\param graph The digraph we make the snapshot of.
789
      void save(SmartGraph &graph)
794
      void save(SmartGraph &gr)
790 795
      {
791
        graph.saveSnapshot(*this);
796
        gr.saveSnapshot(*this);
792 797
      }
793 798

	
794
      ///Undo the changes until a snapshot.
799
      ///Undo the changes until the last snapshot.
795 800

	
796
      ///Undo the changes until a snapshot created by save().
797
      ///
798
      ///\note After you restored a state, you cannot restore
799
      ///a later state, in other word you cannot add again the arcs deleted
800
      ///by restore().
801
      ///This function undos the changes until the last snapshot
802
      ///created by save() or Snapshot(SmartGraph&).
801 803
      void restore()
802 804
      {
803 805
        _graph->restoreSnapshot(*this);
804 806
      }
805 807
    };
806 808
  };
Ignore white space 6 line context
... ...
@@ -88,12 +88,25 @@
88 88

	
89 89
    _row_names.push_back(std::string());
90 90

	
91 91
    return soplex->nRows() - 1;
92 92
  }
93 93

	
94
  int SoplexLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
95
    soplex::DSVector v;
96
    for (ExprIterator it = b; it != e; ++it) {
97
      v.add(it->first, it->second);
98
    }
99
    soplex::LPRow r(l, v, u);
100
    soplex->addRow(r);
101

	
102
    _row_names.push_back(std::string());
103

	
104
    return soplex->nRows() - 1;
105
  }
106

	
94 107

	
95 108
  void SoplexLp::_eraseCol(int i) {
96 109
    soplex->removeCol(i);
97 110
    _col_names_ref.erase(_col_names[i]);
98 111
    _col_names[i] = _col_names.back();
99 112
    _col_names_ref[_col_names.back()] = i;
Ignore white space 6 line context
... ...
@@ -81,12 +81,13 @@
81 81
  protected:
82 82

	
83 83
    virtual const char* _solverName() const;
84 84

	
85 85
    virtual int _addCol();
86 86
    virtual int _addRow();
87
    virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u);
87 88

	
88 89
    virtual void _eraseCol(int i);
89 90
    virtual void _eraseRow(int i);
90 91

	
91 92
    virtual void _eraseColId(int i);
92 93
    virtual void _eraseRowId(int i);
Ignore white space 6 line context
... ...
@@ -85,13 +85,13 @@
85 85

	
86 86
      if test x"$with_coin_libdir" != x"no"; then
87 87
        CBC_LDFLAGS="-L$with_coin_libdir"
88 88
      elif test x"$with_coin" != x"yes"; then
89 89
        CBC_LDFLAGS="-L$with_coin/lib"
90 90
      fi
91
      CBC_LIBS="-lOsi -lCbc -lOsiCbc -lCbcSolver -lClp -lOsiClp -lCoinUtils -lVol -lOsiVol -lCgl -lm -llapack -lblas"
91
      CBC_LIBS="-lOsi -lCbc -lCbcSolver -lClp -lOsiClp -lCoinUtils -lVol -lOsiVol -lCgl -lm -llapack -lblas"
92 92

	
93 93
      lx_save_cxxflags="$CXXFLAGS"
94 94
      lx_save_ldflags="$LDFLAGS"
95 95
      lx_save_libs="$LIBS"
96 96
      CXXFLAGS="$CBC_CXXFLAGS"
97 97
      LDFLAGS="$CBC_LDFLAGS"

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)