No children
0
2
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
35 | 35 |
/// |
36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
37 | 37 |
/// \tparam GR Digraph type. |
38 | 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
39 | 39 |
/// and supply values. By default it is \c int. |
40 | 40 |
/// \tparam C The number type used for costs and potentials. |
41 | 41 |
/// By default it is the same as \c V. |
42 | 42 |
template <typename GR, typename V = int, typename C = V> |
43 | 43 |
struct CapacityScalingDefaultTraits |
44 | 44 |
{ |
45 | 45 |
/// The type of the digraph |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
48 | 48 |
typedef V Value; |
49 | 49 |
/// The type of the arc costs |
50 | 50 |
typedef C Cost; |
51 | 51 |
|
52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
53 | 53 |
/// |
54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
/// \addtogroup min_cost_flow_algs |
62 | 62 |
/// @{ |
63 | 63 |
|
64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
66 | 66 |
/// |
67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 | 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
70 | 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
71 | 71 |
/// solution method. |
72 | 72 |
/// |
73 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
74 | 74 |
/// can be given using separate functions, and the algorithm can be |
75 | 75 |
/// executed using the \ref run() function. If some parameters are not |
76 | 76 |
/// specified, then default values will be used. |
77 | 77 |
/// |
78 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
79 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
80 | 80 |
/// and supply values in the algorithm. By default, it is \c int. |
81 | 81 |
/// \tparam C The number type used for costs and potentials in the |
82 | 82 |
/// algorithm. By default, it is the same as \c V. |
83 | 83 |
/// \tparam TR The traits class that defines various types used by the |
84 | 84 |
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits |
85 | 85 |
/// "CapacityScalingDefaultTraits<GR, V, C>". |
86 | 86 |
/// In most cases, this parameter should not be set directly, |
87 | 87 |
/// consider to use the named template parameters instead. |
88 | 88 |
/// |
89 | 89 |
/// \warning Both \c V and \c C must be signed number types. |
90 |
/// \warning All input data (capacities, supply values, and costs) must |
|
91 |
/// be integer. |
|
90 |
/// \warning Capacity bounds and supply values must be integer, but |
|
91 |
/// arc costs can be arbitrary real numbers. |
|
92 | 92 |
/// \warning This algorithm does not support negative costs for |
93 | 93 |
/// arcs having infinite upper bound. |
94 | 94 |
#ifdef DOXYGEN |
95 | 95 |
template <typename GR, typename V, typename C, typename TR> |
96 | 96 |
#else |
97 | 97 |
template < typename GR, typename V = int, typename C = V, |
98 | 98 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
99 | 99 |
#endif |
100 | 100 |
class CapacityScaling |
101 | 101 |
{ |
102 | 102 |
public: |
103 | 103 |
|
104 | 104 |
/// The type of the digraph |
105 | 105 |
typedef typename TR::Digraph Digraph; |
106 | 106 |
/// The type of the flow amounts, capacity bounds and supply values |
107 | 107 |
typedef typename TR::Value Value; |
108 | 108 |
/// The type of the arc costs |
109 | 109 |
typedef typename TR::Cost Cost; |
110 | 110 |
|
111 | 111 |
/// The type of the heap used for internal Dijkstra computations |
112 | 112 |
typedef typename TR::Heap Heap; |
113 | 113 |
|
114 | 114 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
115 | 115 |
typedef TR Traits; |
116 | 116 |
|
117 | 117 |
public: |
118 | 118 |
|
119 | 119 |
/// \brief Problem type constants for the \c run() function. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing the problem type constants that can be |
122 | 122 |
/// returned by the \ref run() function of the algorithm. |
123 | 123 |
enum ProblemType { |
124 | 124 |
/// The problem has no feasible solution (flow). |
125 | 125 |
INFEASIBLE, |
126 | 126 |
/// The problem has optimal solution (i.e. it is feasible and |
127 | 127 |
/// bounded), and the algorithm has found optimal flow and node |
128 | 128 |
/// potentials (primal and dual solutions). |
129 | 129 |
OPTIMAL, |
130 | 130 |
/// The digraph contains an arc of negative cost and infinite |
131 | 131 |
/// upper bound. It means that the objective function is unbounded |
132 | 132 |
/// on that arc, however, note that it could actually be bounded |
133 | 133 |
/// over the feasible flows, but this algroithm cannot handle |
134 | 134 |
/// these cases. |
135 | 135 |
UNBOUNDED |
136 | 136 |
}; |
137 | 137 |
|
138 | 138 |
private: |
139 | 139 |
|
140 | 140 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
141 | 141 |
|
142 | 142 |
typedef std::vector<int> IntVector; |
143 | 143 |
typedef std::vector<Value> ValueVector; |
144 | 144 |
typedef std::vector<Cost> CostVector; |
145 | 145 |
typedef std::vector<char> BoolVector; |
146 | 146 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
147 | 147 |
|
148 | 148 |
private: |
149 | 149 |
|
150 | 150 |
// Data related to the underlying digraph |
151 | 151 |
const GR &_graph; |
152 | 152 |
int _node_num; |
153 | 153 |
int _arc_num; |
154 | 154 |
int _res_arc_num; |
155 | 155 |
int _root; |
156 | 156 |
|
157 | 157 |
// Parameters of the problem |
158 | 158 |
bool _have_lower; |
159 | 159 |
Value _sum_supply; |
160 | 160 |
|
161 | 161 |
// Data structures for storing the digraph |
162 | 162 |
IntNodeMap _node_id; |
163 | 163 |
IntArcMap _arc_idf; |
164 | 164 |
IntArcMap _arc_idb; |
165 | 165 |
IntVector _first_out; |
166 | 166 |
BoolVector _forward; |
167 | 167 |
IntVector _source; |
168 | 168 |
IntVector _target; |
169 | 169 |
IntVector _reverse; |
170 | 170 |
|
171 | 171 |
// Node and arc data |
172 | 172 |
ValueVector _lower; |
173 | 173 |
ValueVector _upper; |
174 | 174 |
CostVector _cost; |
175 | 175 |
ValueVector _supply; |
176 | 176 |
|
177 | 177 |
ValueVector _res_cap; |
178 | 178 |
CostVector _pi; |
179 | 179 |
ValueVector _excess; |
180 | 180 |
IntVector _excess_nodes; |
181 | 181 |
IntVector _deficit_nodes; |
182 | 182 |
|
183 | 183 |
Value _delta; |
184 | 184 |
int _factor; |
185 | 185 |
IntVector _pred; |
186 | 186 |
|
187 | 187 |
public: |
188 | 188 |
|
189 | 189 |
/// \brief Constant for infinite upper bounds (capacities). |
190 | 190 |
/// |
191 | 191 |
/// Constant for infinite upper bounds (capacities). |
192 | 192 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
193 | 193 |
/// \c std::numeric_limits<Value>::max() otherwise. |
194 | 194 |
const Value INF; |
195 | 195 |
|
196 | 196 |
private: |
197 | 197 |
|
198 | 198 |
// Special implementation of the Dijkstra algorithm for finding |
199 | 199 |
// shortest paths in the residual network of the digraph with |
200 | 200 |
// respect to the reduced arc costs and modifying the node |
201 | 201 |
// potentials according to the found distance labels. |
202 | 202 |
class ResidualDijkstra |
203 | 203 |
{ |
204 | 204 |
private: |
205 | 205 |
|
206 | 206 |
int _node_num; |
207 | 207 |
bool _geq; |
208 | 208 |
const IntVector &_first_out; |
209 | 209 |
const IntVector &_target; |
210 | 210 |
const CostVector &_cost; |
211 | 211 |
const ValueVector &_res_cap; |
212 | 212 |
const ValueVector &_excess; |
213 | 213 |
CostVector &_pi; |
214 | 214 |
IntVector &_pred; |
215 | 215 |
|
216 | 216 |
IntVector _proc_nodes; |
217 | 217 |
CostVector _dist; |
218 | 218 |
|
219 | 219 |
public: |
220 | 220 |
|
221 | 221 |
ResidualDijkstra(CapacityScaling& cs) : |
222 | 222 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
223 | 223 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
224 | 224 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
225 | 225 |
_pred(cs._pred), _dist(cs._node_num) |
226 | 226 |
{} |
227 | 227 |
|
228 | 228 |
int run(int s, Value delta = 1) { |
229 | 229 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
230 | 230 |
Heap heap(heap_cross_ref); |
231 | 231 |
heap.push(s, 0); |
232 | 232 |
_pred[s] = -1; |
233 | 233 |
_proc_nodes.clear(); |
234 | 234 |
|
235 | 235 |
// Process nodes |
236 | 236 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
237 | 237 |
int u = heap.top(), v; |
238 | 238 |
Cost d = heap.prio() + _pi[u], dn; |
239 | 239 |
_dist[u] = heap.prio(); |
240 | 240 |
_proc_nodes.push_back(u); |
241 | 241 |
heap.pop(); |
242 | 242 |
|
243 | 243 |
// Traverse outgoing residual arcs |
244 | 244 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
245 | 245 |
for (int a = _first_out[u]; a != last_out; ++a) { |
246 | 246 |
if (_res_cap[a] < delta) continue; |
247 | 247 |
v = _target[a]; |
248 | 248 |
switch (heap.state(v)) { |
249 | 249 |
case Heap::PRE_HEAP: |
250 | 250 |
heap.push(v, d + _cost[a] - _pi[v]); |
251 | 251 |
_pred[v] = a; |
252 | 252 |
break; |
253 | 253 |
case Heap::IN_HEAP: |
254 | 254 |
dn = d + _cost[a] - _pi[v]; |
255 | 255 |
if (dn < heap[v]) { |
256 | 256 |
heap.decrease(v, dn); |
257 | 257 |
_pred[v] = a; |
258 | 258 |
} |
259 | 259 |
break; |
260 | 260 |
case Heap::POST_HEAP: |
261 | 261 |
break; |
262 | 262 |
} |
263 | 263 |
} |
264 | 264 |
} |
265 | 265 |
if (heap.empty()) return -1; |
266 | 266 |
|
267 | 267 |
// Update potentials of processed nodes |
268 | 268 |
int t = heap.top(); |
269 | 269 |
Cost dt = heap.prio(); |
270 | 270 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) { |
271 | 271 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
return t; |
275 | 275 |
} |
276 | 276 |
|
277 | 277 |
}; //class ResidualDijkstra |
278 | 278 |
|
279 | 279 |
public: |
280 | 280 |
|
281 | 281 |
/// \name Named Template Parameters |
282 | 282 |
/// @{ |
283 | 283 |
|
284 | 284 |
template <typename T> |
285 | 285 |
struct SetHeapTraits : public Traits { |
286 | 286 |
typedef T Heap; |
287 | 287 |
}; |
288 | 288 |
|
289 | 289 |
/// \brief \ref named-templ-param "Named parameter" for setting |
290 | 290 |
/// \c Heap type. |
291 | 291 |
/// |
292 | 292 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
293 | 293 |
/// type, which is used for internal Dijkstra computations. |
294 | 294 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
295 | 295 |
/// its priority type must be \c Cost and its cross reference type |
296 | 296 |
/// must be \ref RangeMap "RangeMap<int>". |
297 | 297 |
template <typename T> |
298 | 298 |
struct SetHeap |
299 | 299 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > { |
300 | 300 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
301 | 301 |
}; |
302 | 302 |
|
303 | 303 |
/// @} |
304 | 304 |
|
305 | 305 |
protected: |
306 | 306 |
|
307 | 307 |
CapacityScaling() {} |
308 | 308 |
|
309 | 309 |
public: |
310 | 310 |
|
311 | 311 |
/// \brief Constructor. |
312 | 312 |
/// |
313 | 313 |
/// The constructor of the class. |
314 | 314 |
/// |
315 | 315 |
/// \param graph The digraph the algorithm runs on. |
316 | 316 |
CapacityScaling(const GR& graph) : |
317 | 317 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
318 | 318 |
INF(std::numeric_limits<Value>::has_infinity ? |
319 | 319 |
std::numeric_limits<Value>::infinity() : |
320 | 320 |
std::numeric_limits<Value>::max()) |
321 | 321 |
{ |
322 | 322 |
// Check the number types |
323 | 323 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
324 | 324 |
"The flow type of CapacityScaling must be signed"); |
325 | 325 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
326 | 326 |
"The cost type of CapacityScaling must be signed"); |
327 | 327 |
|
328 | 328 |
// Reset data structures |
329 | 329 |
reset(); |
330 | 330 |
} |
331 | 331 |
|
332 | 332 |
/// \name Parameters |
333 | 333 |
/// The parameters of the algorithm can be specified using these |
334 | 334 |
/// functions. |
335 | 335 |
|
336 | 336 |
/// @{ |
337 | 337 |
|
338 | 338 |
/// \brief Set the lower bounds on the arcs. |
339 | 339 |
/// |
340 | 340 |
/// This function sets the lower bounds on the arcs. |
341 | 341 |
/// If it is not used before calling \ref run(), the lower bounds |
342 | 342 |
/// will be set to zero on all arcs. |
343 | 343 |
/// |
344 | 344 |
/// \param map An arc map storing the lower bounds. |
345 | 345 |
/// Its \c Value type must be convertible to the \c Value type |
346 | 346 |
/// of the algorithm. |
347 | 347 |
/// |
348 | 348 |
/// \return <tt>(*this)</tt> |
349 | 349 |
template <typename LowerMap> |
350 | 350 |
CapacityScaling& lowerMap(const LowerMap& map) { |
351 | 351 |
_have_lower = true; |
352 | 352 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
353 | 353 |
_lower[_arc_idf[a]] = map[a]; |
354 | 354 |
_lower[_arc_idb[a]] = map[a]; |
355 | 355 |
} |
356 | 356 |
return *this; |
357 | 357 |
} |
358 | 358 |
|
359 | 359 |
/// \brief Set the upper bounds (capacities) on the arcs. |
360 | 360 |
/// |
361 | 361 |
/// This function sets the upper bounds (capacities) on the arcs. |
362 | 362 |
/// If it is not used before calling \ref run(), the upper bounds |
363 | 363 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
364 | 364 |
/// unbounded from above). |
365 | 365 |
/// |
366 | 366 |
/// \param map An arc map storing the upper bounds. |
367 | 367 |
/// Its \c Value type must be convertible to the \c Value type |
368 | 368 |
/// of the algorithm. |
369 | 369 |
/// |
370 | 370 |
/// \return <tt>(*this)</tt> |
371 | 371 |
template<typename UpperMap> |
372 | 372 |
CapacityScaling& upperMap(const UpperMap& map) { |
373 | 373 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
374 | 374 |
_upper[_arc_idf[a]] = map[a]; |
375 | 375 |
} |
376 | 376 |
return *this; |
377 | 377 |
} |
378 | 378 |
|
379 | 379 |
/// \brief Set the costs of the arcs. |
380 | 380 |
/// |
381 | 381 |
/// This function sets the costs of the arcs. |
382 | 382 |
/// If it is not used before calling \ref run(), the costs |
383 | 383 |
/// will be set to \c 1 on all arcs. |
384 | 384 |
/// |
385 | 385 |
/// \param map An arc map storing the costs. |
386 | 386 |
/// Its \c Value type must be convertible to the \c Cost type |
387 | 387 |
/// of the algorithm. |
388 | 388 |
/// |
389 | 389 |
/// \return <tt>(*this)</tt> |
390 | 390 |
template<typename CostMap> |
391 | 391 |
CapacityScaling& costMap(const CostMap& map) { |
392 | 392 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
393 | 393 |
_cost[_arc_idf[a]] = map[a]; |
394 | 394 |
_cost[_arc_idb[a]] = -map[a]; |
395 | 395 |
} |
396 | 396 |
return *this; |
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Set the supply values of the nodes. |
400 | 400 |
/// |
401 | 401 |
/// This function sets the supply values of the nodes. |
402 | 402 |
/// If neither this function nor \ref stSupply() is used before |
403 | 403 |
/// calling \ref run(), the supply of each node will be set to zero. |
404 | 404 |
/// |
405 | 405 |
/// \param map A node map storing the supply values. |
406 | 406 |
/// Its \c Value type must be convertible to the \c Value type |
407 | 407 |
/// of the algorithm. |
408 | 408 |
/// |
409 | 409 |
/// \return <tt>(*this)</tt> |
410 | 410 |
template<typename SupplyMap> |
411 | 411 |
CapacityScaling& supplyMap(const SupplyMap& map) { |
412 | 412 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
413 | 413 |
_supply[_node_id[n]] = map[n]; |
414 | 414 |
} |
415 | 415 |
return *this; |
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
/// \brief Set single source and target nodes and a supply value. |
419 | 419 |
/// |
420 | 420 |
/// This function sets a single source node and a single target node |
421 | 421 |
/// and the required flow value. |
422 | 422 |
/// If neither this function nor \ref supplyMap() is used before |
423 | 423 |
/// calling \ref run(), the supply of each node will be set to zero. |
424 | 424 |
/// |
425 | 425 |
/// Using this function has the same effect as using \ref supplyMap() |
426 | 426 |
/// with a map in which \c k is assigned to \c s, \c -k is |
427 | 427 |
/// assigned to \c t and all other nodes have zero supply value. |
428 | 428 |
/// |
429 | 429 |
/// \param s The source node. |
430 | 430 |
/// \param t The target node. |
431 | 431 |
/// \param k The required amount of flow from node \c s to node \c t |
432 | 432 |
/// (i.e. the supply of \c s and the demand of \c t). |
433 | 433 |
/// |
434 | 434 |
/// \return <tt>(*this)</tt> |
435 | 435 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
436 | 436 |
for (int i = 0; i != _node_num; ++i) { |
437 | 437 |
_supply[i] = 0; |
438 | 438 |
} |
439 | 439 |
_supply[_node_id[s]] = k; |
440 | 440 |
_supply[_node_id[t]] = -k; |
441 | 441 |
return *this; |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
/// @} |
445 | 445 |
|
446 | 446 |
/// \name Execution control |
447 | 447 |
/// The algorithm can be executed using \ref run(). |
448 | 448 |
|
449 | 449 |
/// @{ |
450 | 450 |
|
451 | 451 |
/// \brief Run the algorithm. |
452 | 452 |
/// |
453 | 453 |
/// This function runs the algorithm. |
454 | 454 |
/// The paramters can be specified using functions \ref lowerMap(), |
455 | 455 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
456 | 456 |
/// For example, |
457 | 457 |
/// \code |
458 | 458 |
/// CapacityScaling<ListDigraph> cs(graph); |
459 | 459 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
460 | 460 |
/// .supplyMap(sup).run(); |
461 | 461 |
/// \endcode |
462 | 462 |
/// |
463 | 463 |
/// This function can be called more than once. All the given parameters |
464 | 464 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
465 | 465 |
/// is used, thus only the modified parameters have to be set again. |
466 | 466 |
/// If the underlying digraph was also modified after the construction |
467 | 467 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
468 | 468 |
/// function must be called. |
469 | 469 |
/// |
470 | 470 |
/// \param factor The capacity scaling factor. It must be larger than |
471 | 471 |
/// one to use scaling. If it is less or equal to one, then scaling |
472 | 472 |
/// will be disabled. |
473 | 473 |
/// |
474 | 474 |
/// \return \c INFEASIBLE if no feasible flow exists, |
475 | 475 |
/// \n \c OPTIMAL if the problem has optimal solution |
476 | 476 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
477 | 477 |
/// optimal flow and node potentials (primal and dual solutions), |
478 | 478 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
479 | 479 |
/// and infinite upper bound. It means that the objective function |
480 | 480 |
/// is unbounded on that arc, however, note that it could actually be |
481 | 481 |
/// bounded over the feasible flows, but this algroithm cannot handle |
482 | 482 |
/// these cases. |
483 | 483 |
/// |
484 | 484 |
/// \see ProblemType |
485 | 485 |
/// \see resetParams(), reset() |
486 | 486 |
ProblemType run(int factor = 4) { |
487 | 487 |
_factor = factor; |
488 | 488 |
ProblemType pt = init(); |
489 | 489 |
if (pt != OPTIMAL) return pt; |
490 | 490 |
return start(); |
491 | 491 |
} |
492 | 492 |
|
493 | 493 |
/// \brief Reset all the parameters that have been given before. |
494 | 494 |
/// |
495 | 495 |
/// This function resets all the paramaters that have been given |
496 | 496 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
497 | 497 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
498 | 498 |
/// |
499 | 499 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
500 | 500 |
/// parameters are kept for the next \ref run() call, unless |
501 | 501 |
/// \ref resetParams() or \ref reset() is used. |
502 | 502 |
/// If the underlying digraph was also modified after the construction |
503 | 503 |
/// of the class or the last \ref reset() call, then the \ref reset() |
504 | 504 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
505 | 505 |
/// |
506 | 506 |
/// For example, |
507 | 507 |
/// \code |
508 | 508 |
/// CapacityScaling<ListDigraph> cs(graph); |
509 | 509 |
/// |
510 | 510 |
/// // First run |
511 | 511 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
512 | 512 |
/// .supplyMap(sup).run(); |
513 | 513 |
/// |
514 | 514 |
/// // Run again with modified cost map (resetParams() is not called, |
515 | 515 |
/// // so only the cost map have to be set again) |
516 | 516 |
/// cost[e] += 100; |
517 | 517 |
/// cs.costMap(cost).run(); |
518 | 518 |
/// |
519 | 519 |
/// // Run again from scratch using resetParams() |
520 | 520 |
/// // (the lower bounds will be set to zero on all arcs) |
521 | 521 |
/// cs.resetParams(); |
522 | 522 |
/// cs.upperMap(capacity).costMap(cost) |
523 | 523 |
/// .supplyMap(sup).run(); |
524 | 524 |
/// \endcode |
525 | 525 |
/// |
526 | 526 |
/// \return <tt>(*this)</tt> |
527 | 527 |
/// |
528 | 528 |
/// \see reset(), run() |
529 | 529 |
CapacityScaling& resetParams() { |
530 | 530 |
for (int i = 0; i != _node_num; ++i) { |
531 | 531 |
_supply[i] = 0; |
532 | 532 |
} |
533 | 533 |
for (int j = 0; j != _res_arc_num; ++j) { |
534 | 534 |
_lower[j] = 0; |
535 | 535 |
_upper[j] = INF; |
536 | 536 |
_cost[j] = _forward[j] ? 1 : -1; |
537 | 537 |
} |
538 | 538 |
_have_lower = false; |
539 | 539 |
return *this; |
540 | 540 |
} |
541 | 541 |
|
542 | 542 |
/// \brief Reset the internal data structures and all the parameters |
543 | 543 |
/// that have been given before. |
544 | 544 |
/// |
545 | 545 |
/// This function resets the internal data structures and all the |
546 | 546 |
/// paramaters that have been given before using functions \ref lowerMap(), |
547 | 547 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
548 | 548 |
/// |
549 | 549 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
550 | 550 |
/// parameters are kept for the next \ref run() call, unless |
551 | 551 |
/// \ref resetParams() or \ref reset() is used. |
552 | 552 |
/// If the underlying digraph was also modified after the construction |
553 | 553 |
/// of the class or the last \ref reset() call, then the \ref reset() |
554 | 554 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
555 | 555 |
/// |
556 | 556 |
/// See \ref resetParams() for examples. |
557 | 557 |
/// |
558 | 558 |
/// \return <tt>(*this)</tt> |
559 | 559 |
/// |
560 | 560 |
/// \see resetParams(), run() |
561 | 561 |
CapacityScaling& reset() { |
562 | 562 |
// Resize vectors |
563 | 563 |
_node_num = countNodes(_graph); |
564 | 564 |
_arc_num = countArcs(_graph); |
565 | 565 |
_res_arc_num = 2 * (_arc_num + _node_num); |
566 | 566 |
_root = _node_num; |
567 | 567 |
++_node_num; |
568 | 568 |
|
569 | 569 |
_first_out.resize(_node_num + 1); |
570 | 570 |
_forward.resize(_res_arc_num); |
571 | 571 |
_source.resize(_res_arc_num); |
572 | 572 |
_target.resize(_res_arc_num); |
573 | 573 |
_reverse.resize(_res_arc_num); |
574 | 574 |
|
575 | 575 |
_lower.resize(_res_arc_num); |
576 | 576 |
_upper.resize(_res_arc_num); |
577 | 577 |
_cost.resize(_res_arc_num); |
578 | 578 |
_supply.resize(_node_num); |
579 | 579 |
|
580 | 580 |
_res_cap.resize(_res_arc_num); |
581 | 581 |
_pi.resize(_node_num); |
582 | 582 |
_excess.resize(_node_num); |
583 | 583 |
_pred.resize(_node_num); |
584 | 584 |
|
585 | 585 |
// Copy the graph |
586 | 586 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
587 | 587 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
588 | 588 |
_node_id[n] = i; |
589 | 589 |
} |
590 | 590 |
i = 0; |
591 | 591 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
592 | 592 |
_first_out[i] = j; |
593 | 593 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
594 | 594 |
_arc_idf[a] = j; |
595 | 595 |
_forward[j] = true; |
596 | 596 |
_source[j] = i; |
597 | 597 |
_target[j] = _node_id[_graph.runningNode(a)]; |
598 | 598 |
} |
599 | 599 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
600 | 600 |
_arc_idb[a] = j; |
601 | 601 |
_forward[j] = false; |
602 | 602 |
_source[j] = i; |
603 | 603 |
_target[j] = _node_id[_graph.runningNode(a)]; |
604 | 604 |
} |
605 | 605 |
_forward[j] = false; |
606 | 606 |
_source[j] = i; |
607 | 607 |
_target[j] = _root; |
608 | 608 |
_reverse[j] = k; |
609 | 609 |
_forward[k] = true; |
610 | 610 |
_source[k] = _root; |
611 | 611 |
_target[k] = i; |
612 | 612 |
_reverse[k] = j; |
613 | 613 |
++j; ++k; |
614 | 614 |
} |
615 | 615 |
_first_out[i] = j; |
616 | 616 |
_first_out[_node_num] = k; |
617 | 617 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
618 | 618 |
int fi = _arc_idf[a]; |
619 | 619 |
int bi = _arc_idb[a]; |
620 | 620 |
_reverse[fi] = bi; |
621 | 621 |
_reverse[bi] = fi; |
622 | 622 |
} |
623 | 623 |
|
624 | 624 |
// Reset parameters |
625 | 625 |
resetParams(); |
626 | 626 |
return *this; |
627 | 627 |
} |
628 | 628 |
|
629 | 629 |
/// @} |
630 | 630 |
|
631 | 631 |
/// \name Query Functions |
632 | 632 |
/// The results of the algorithm can be obtained using these |
633 | 633 |
/// functions.\n |
634 | 634 |
/// The \ref run() function must be called before using them. |
635 | 635 |
|
636 | 636 |
/// @{ |
637 | 637 |
|
638 | 638 |
/// \brief Return the total cost of the found flow. |
639 | 639 |
/// |
640 | 640 |
/// This function returns the total cost of the found flow. |
641 | 641 |
/// Its complexity is O(e). |
642 | 642 |
/// |
643 | 643 |
/// \note The return type of the function can be specified as a |
644 | 644 |
/// template parameter. For example, |
645 | 645 |
/// \code |
646 | 646 |
/// cs.totalCost<double>(); |
647 | 647 |
/// \endcode |
648 | 648 |
/// It is useful if the total cost cannot be stored in the \c Cost |
649 | 649 |
/// type of the algorithm, which is the default return type of the |
650 | 650 |
/// function. |
651 | 651 |
/// |
652 | 652 |
/// \pre \ref run() must be called before using this function. |
653 | 653 |
template <typename Number> |
654 | 654 |
Number totalCost() const { |
655 | 655 |
Number c = 0; |
656 | 656 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
657 | 657 |
int i = _arc_idb[a]; |
658 | 658 |
c += static_cast<Number>(_res_cap[i]) * |
659 | 659 |
(-static_cast<Number>(_cost[i])); |
660 | 660 |
} |
661 | 661 |
return c; |
662 | 662 |
} |
663 | 663 |
|
664 | 664 |
#ifndef DOXYGEN |
665 | 665 |
Cost totalCost() const { |
666 | 666 |
return totalCost<Cost>(); |
667 | 667 |
} |
668 | 668 |
#endif |
669 | 669 |
|
670 | 670 |
/// \brief Return the flow on the given arc. |
671 | 671 |
/// |
672 | 672 |
/// This function returns the flow on the given arc. |
673 | 673 |
/// |
674 | 674 |
/// \pre \ref run() must be called before using this function. |
675 | 675 |
Value flow(const Arc& a) const { |
676 | 676 |
return _res_cap[_arc_idb[a]]; |
677 | 677 |
} |
678 | 678 |
|
679 | 679 |
/// \brief Return the flow map (the primal solution). |
680 | 680 |
/// |
681 | 681 |
/// This function copies the flow value on each arc into the given |
682 | 682 |
/// map. The \c Value type of the algorithm must be convertible to |
683 | 683 |
/// the \c Value type of the map. |
684 | 684 |
/// |
685 | 685 |
/// \pre \ref run() must be called before using this function. |
686 | 686 |
template <typename FlowMap> |
687 | 687 |
void flowMap(FlowMap &map) const { |
688 | 688 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
689 | 689 |
map.set(a, _res_cap[_arc_idb[a]]); |
690 | 690 |
} |
691 | 691 |
} |
692 | 692 |
|
693 | 693 |
/// \brief Return the potential (dual value) of the given node. |
694 | 694 |
/// |
695 | 695 |
/// This function returns the potential (dual value) of the |
696 | 696 |
/// given node. |
697 | 697 |
/// |
698 | 698 |
/// \pre \ref run() must be called before using this function. |
699 | 699 |
Cost potential(const Node& n) const { |
700 | 700 |
return _pi[_node_id[n]]; |
701 | 701 |
} |
702 | 702 |
|
703 | 703 |
/// \brief Return the potential map (the dual solution). |
704 | 704 |
/// |
705 | 705 |
/// This function copies the potential (dual value) of each node |
706 | 706 |
/// into the given map. |
707 | 707 |
/// The \c Cost type of the algorithm must be convertible to the |
708 | 708 |
/// \c Value type of the map. |
709 | 709 |
/// |
710 | 710 |
/// \pre \ref run() must be called before using this function. |
711 | 711 |
template <typename PotentialMap> |
712 | 712 |
void potentialMap(PotentialMap &map) const { |
713 | 713 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
714 | 714 |
map.set(n, _pi[_node_id[n]]); |
715 | 715 |
} |
716 | 716 |
} |
717 | 717 |
|
718 | 718 |
/// @} |
719 | 719 |
|
720 | 720 |
private: |
721 | 721 |
|
722 | 722 |
// Initialize the algorithm |
723 | 723 |
ProblemType init() { |
724 | 724 |
if (_node_num <= 1) return INFEASIBLE; |
725 | 725 |
|
726 | 726 |
// Check the sum of supply values |
727 | 727 |
_sum_supply = 0; |
728 | 728 |
for (int i = 0; i != _root; ++i) { |
729 | 729 |
_sum_supply += _supply[i]; |
730 | 730 |
} |
731 | 731 |
if (_sum_supply > 0) return INFEASIBLE; |
732 | 732 |
|
733 | 733 |
// Initialize vectors |
734 | 734 |
for (int i = 0; i != _root; ++i) { |
735 | 735 |
_pi[i] = 0; |
736 | 736 |
_excess[i] = _supply[i]; |
737 | 737 |
} |
738 | 738 |
|
739 | 739 |
// Remove non-zero lower bounds |
740 | 740 |
const Value MAX = std::numeric_limits<Value>::max(); |
741 | 741 |
int last_out; |
742 | 742 |
if (_have_lower) { |
743 | 743 |
for (int i = 0; i != _root; ++i) { |
744 | 744 |
last_out = _first_out[i+1]; |
745 | 745 |
for (int j = _first_out[i]; j != last_out; ++j) { |
746 | 746 |
if (_forward[j]) { |
747 | 747 |
Value c = _lower[j]; |
748 | 748 |
if (c >= 0) { |
749 | 749 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
750 | 750 |
} else { |
751 | 751 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
752 | 752 |
} |
753 | 753 |
_excess[i] -= c; |
754 | 754 |
_excess[_target[j]] += c; |
755 | 755 |
} else { |
756 | 756 |
_res_cap[j] = 0; |
757 | 757 |
} |
758 | 758 |
} |
759 | 759 |
} |
760 | 760 |
} else { |
761 | 761 |
for (int j = 0; j != _res_arc_num; ++j) { |
762 | 762 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
763 | 763 |
} |
764 | 764 |
} |
765 | 765 |
|
766 | 766 |
// Handle negative costs |
767 | 767 |
for (int i = 0; i != _root; ++i) { |
768 | 768 |
last_out = _first_out[i+1] - 1; |
769 | 769 |
for (int j = _first_out[i]; j != last_out; ++j) { |
770 | 770 |
Value rc = _res_cap[j]; |
771 | 771 |
if (_cost[j] < 0 && rc > 0) { |
772 | 772 |
if (rc >= MAX) return UNBOUNDED; |
773 | 773 |
_excess[i] -= rc; |
774 | 774 |
_excess[_target[j]] += rc; |
775 | 775 |
_res_cap[j] = 0; |
776 | 776 |
_res_cap[_reverse[j]] += rc; |
777 | 777 |
} |
778 | 778 |
} |
779 | 779 |
} |
780 | 780 |
|
781 | 781 |
// Handle GEQ supply type |
782 | 782 |
if (_sum_supply < 0) { |
783 | 783 |
_pi[_root] = 0; |
784 | 784 |
_excess[_root] = -_sum_supply; |
785 | 785 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
786 | 786 |
int ra = _reverse[a]; |
787 | 787 |
_res_cap[a] = -_sum_supply + 1; |
788 | 788 |
_res_cap[ra] = 0; |
789 | 789 |
_cost[a] = 0; |
790 | 790 |
_cost[ra] = 0; |
791 | 791 |
} |
792 | 792 |
} else { |
793 | 793 |
_pi[_root] = 0; |
794 | 794 |
_excess[_root] = 0; |
795 | 795 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
796 | 796 |
int ra = _reverse[a]; |
797 | 797 |
_res_cap[a] = 1; |
798 | 798 |
_res_cap[ra] = 0; |
799 | 799 |
_cost[a] = 0; |
800 | 800 |
_cost[ra] = 0; |
801 | 801 |
} |
802 | 802 |
} |
803 | 803 |
|
804 | 804 |
// Initialize delta value |
805 | 805 |
if (_factor > 1) { |
806 | 806 |
// With scaling |
807 | 807 |
Value max_sup = 0, max_dem = 0, max_cap = 0; |
808 | 808 |
for (int i = 0; i != _root; ++i) { |
809 | 809 |
Value ex = _excess[i]; |
810 | 810 |
if ( ex > max_sup) max_sup = ex; |
811 | 811 |
if (-ex > max_dem) max_dem = -ex; |
812 | 812 |
int last_out = _first_out[i+1] - 1; |
813 | 813 |
for (int j = _first_out[i]; j != last_out; ++j) { |
814 | 814 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
815 | 815 |
} |
816 | 816 |
} |
817 | 817 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
818 | 818 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
819 | 819 |
} else { |
820 | 820 |
// Without scaling |
821 | 821 |
_delta = 1; |
822 | 822 |
} |
823 | 823 |
|
824 | 824 |
return OPTIMAL; |
825 | 825 |
} |
826 | 826 |
|
827 | 827 |
ProblemType start() { |
828 | 828 |
// Execute the algorithm |
829 | 829 |
ProblemType pt; |
830 | 830 |
if (_delta > 1) |
831 | 831 |
pt = startWithScaling(); |
832 | 832 |
else |
833 | 833 |
pt = startWithoutScaling(); |
834 | 834 |
|
835 | 835 |
// Handle non-zero lower bounds |
836 | 836 |
if (_have_lower) { |
837 | 837 |
int limit = _first_out[_root]; |
838 | 838 |
for (int j = 0; j != limit; ++j) { |
839 | 839 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
840 | 840 |
} |
841 | 841 |
} |
842 | 842 |
|
843 | 843 |
// Shift potentials if necessary |
844 | 844 |
Cost pr = _pi[_root]; |
845 | 845 |
if (_sum_supply < 0 || pr > 0) { |
846 | 846 |
for (int i = 0; i != _node_num; ++i) { |
847 | 847 |
_pi[i] -= pr; |
848 | 848 |
} |
849 | 849 |
} |
850 | 850 |
|
851 | 851 |
return pt; |
852 | 852 |
} |
853 | 853 |
|
854 | 854 |
// Execute the capacity scaling algorithm |
855 | 855 |
ProblemType startWithScaling() { |
856 | 856 |
// Perform capacity scaling phases |
857 | 857 |
int s, t; |
858 | 858 |
ResidualDijkstra _dijkstra(*this); |
859 | 859 |
while (true) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a highly efficient specialized version of the |
47 | 47 |
/// linear programming simplex method directly for the minimum cost |
48 | 48 |
/// flow problem. |
49 | 49 |
/// |
50 | 50 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
51 | 51 |
/// implementations available in LEMON for this problem. |
52 | 52 |
/// Furthermore, this class supports both directions of the supply/demand |
53 | 53 |
/// inequality constraints. For more information, see \ref SupplyType. |
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
63 | 63 |
/// \tparam C The number type used for costs and potentials in the |
64 | 64 |
/// algorithm. By default, it is the same as \c V. |
65 | 65 |
/// |
66 | 66 |
/// \warning Both \c V and \c C must be signed number types. |
67 | 67 |
/// \warning All input data (capacities, supply values, and costs) must |
68 | 68 |
/// be integer. |
69 | 69 |
/// |
70 | 70 |
/// \note %NetworkSimplex provides five different pivot rule |
71 | 71 |
/// implementations, from which the most efficient one is used |
72 | 72 |
/// by default. For more information, see \ref PivotRule. |
73 | 73 |
template <typename GR, typename V = int, typename C = V> |
74 | 74 |
class NetworkSimplex |
75 | 75 |
{ |
76 | 76 |
public: |
77 | 77 |
|
78 | 78 |
/// The type of the flow amounts, capacity bounds and supply values |
79 | 79 |
typedef V Value; |
80 | 80 |
/// The type of the arc costs |
81 | 81 |
typedef C Cost; |
82 | 82 |
|
83 | 83 |
public: |
84 | 84 |
|
85 | 85 |
/// \brief Problem type constants for the \c run() function. |
86 | 86 |
/// |
87 | 87 |
/// Enum type containing the problem type constants that can be |
88 | 88 |
/// returned by the \ref run() function of the algorithm. |
89 | 89 |
enum ProblemType { |
90 | 90 |
/// The problem has no feasible solution (flow). |
91 | 91 |
INFEASIBLE, |
92 | 92 |
/// The problem has optimal solution (i.e. it is feasible and |
93 | 93 |
/// bounded), and the algorithm has found optimal flow and node |
94 | 94 |
/// potentials (primal and dual solutions). |
95 | 95 |
OPTIMAL, |
96 | 96 |
/// The objective function of the problem is unbounded, i.e. |
97 | 97 |
/// there is a directed cycle having negative total cost and |
98 | 98 |
/// infinite upper bound. |
99 | 99 |
UNBOUNDED |
100 | 100 |
}; |
101 | 101 |
|
102 | 102 |
/// \brief Constants for selecting the type of the supply constraints. |
103 | 103 |
/// |
104 | 104 |
/// Enum type containing constants for selecting the supply type, |
105 | 105 |
/// i.e. the direction of the inequalities in the supply/demand |
106 | 106 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
107 | 107 |
/// |
108 | 108 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
109 | 109 |
/// selected using \ref supplyType(). |
110 | 110 |
/// The equality form is a special case of both supply types. |
111 | 111 |
enum SupplyType { |
112 | 112 |
/// This option means that there are <em>"greater or equal"</em> |
113 | 113 |
/// supply/demand constraints in the definition of the problem. |
114 | 114 |
GEQ, |
115 | 115 |
/// This option means that there are <em>"less or equal"</em> |
116 | 116 |
/// supply/demand constraints in the definition of the problem. |
117 | 117 |
LEQ |
118 | 118 |
}; |
119 | 119 |
|
120 | 120 |
/// \brief Constants for selecting the pivot rule. |
121 | 121 |
/// |
122 | 122 |
/// Enum type containing constants for selecting the pivot rule for |
123 | 123 |
/// the \ref run() function. |
124 | 124 |
/// |
125 |
/// \ref NetworkSimplex provides five different pivot rule |
|
126 |
/// implementations that significantly affect the running time |
|
125 |
/// \ref NetworkSimplex provides five different implementations for |
|
126 |
/// the pivot strategy that significantly affects the running time |
|
127 | 127 |
/// of the algorithm. |
128 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
129 |
/// turend out to be the most efficient and the most robust on various |
|
130 |
/// test inputs. |
|
131 |
/// However, another pivot rule can be selected using the \ref run() |
|
132 |
/// |
|
128 |
/// According to experimental tests conducted on various problem |
|
129 |
/// instances, \ref BLOCK_SEARCH "Block Search" and |
|
130 |
/// \ref ALTERING_LIST "Altering Candidate List" rules turned out |
|
131 |
/// to be the most efficient. |
|
132 |
/// Since \ref BLOCK_SEARCH "Block Search" is a simpler strategy that |
|
133 |
/// seemed to be slightly more robust, it is used by default. |
|
134 |
/// However, another pivot rule can easily be selected using the |
|
135 |
/// \ref run() function with the proper parameter. |
|
133 | 136 |
enum PivotRule { |
134 | 137 |
|
135 | 138 |
/// The \e First \e Eligible pivot rule. |
136 | 139 |
/// The next eligible arc is selected in a wraparound fashion |
137 | 140 |
/// in every iteration. |
138 | 141 |
FIRST_ELIGIBLE, |
139 | 142 |
|
140 | 143 |
/// The \e Best \e Eligible pivot rule. |
141 | 144 |
/// The best eligible arc is selected in every iteration. |
142 | 145 |
BEST_ELIGIBLE, |
143 | 146 |
|
144 | 147 |
/// The \e Block \e Search pivot rule. |
145 | 148 |
/// A specified number of arcs are examined in every iteration |
146 | 149 |
/// in a wraparound fashion and the best eligible arc is selected |
147 | 150 |
/// from this block. |
148 | 151 |
BLOCK_SEARCH, |
149 | 152 |
|
150 | 153 |
/// The \e Candidate \e List pivot rule. |
151 | 154 |
/// In a major iteration a candidate list is built from eligible arcs |
152 | 155 |
/// in a wraparound fashion and in the following minor iterations |
153 | 156 |
/// the best eligible arc is selected from this list. |
154 | 157 |
CANDIDATE_LIST, |
155 | 158 |
|
156 | 159 |
/// The \e Altering \e Candidate \e List pivot rule. |
157 | 160 |
/// It is a modified version of the Candidate List method. |
158 |
/// It keeps only |
|
161 |
/// It keeps only a few of the best eligible arcs from the former |
|
159 | 162 |
/// candidate list and extends this list in every iteration. |
160 | 163 |
ALTERING_LIST |
161 | 164 |
}; |
162 | 165 |
|
163 | 166 |
private: |
164 | 167 |
|
165 | 168 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
166 | 169 |
|
167 | 170 |
typedef std::vector<int> IntVector; |
168 | 171 |
typedef std::vector<Value> ValueVector; |
169 | 172 |
typedef std::vector<Cost> CostVector; |
170 | 173 |
typedef std::vector<signed char> CharVector; |
171 | 174 |
// Note: vector<signed char> is used instead of vector<ArcState> and |
172 | 175 |
// vector<ArcDirection> for efficiency reasons |
173 | 176 |
|
174 | 177 |
// State constants for arcs |
175 | 178 |
enum ArcState { |
176 | 179 |
STATE_UPPER = -1, |
177 | 180 |
STATE_TREE = 0, |
178 | 181 |
STATE_LOWER = 1 |
179 | 182 |
}; |
180 | 183 |
|
181 | 184 |
// Direction constants for tree arcs |
182 | 185 |
enum ArcDirection { |
183 | 186 |
DIR_DOWN = -1, |
184 | 187 |
DIR_UP = 1 |
185 | 188 |
}; |
186 | 189 |
|
187 | 190 |
private: |
188 | 191 |
|
189 | 192 |
// Data related to the underlying digraph |
190 | 193 |
const GR &_graph; |
191 | 194 |
int _node_num; |
192 | 195 |
int _arc_num; |
193 | 196 |
int _all_arc_num; |
194 | 197 |
int _search_arc_num; |
195 | 198 |
|
196 | 199 |
// Parameters of the problem |
197 | 200 |
bool _have_lower; |
198 | 201 |
SupplyType _stype; |
199 | 202 |
Value _sum_supply; |
200 | 203 |
|
201 | 204 |
// Data structures for storing the digraph |
202 | 205 |
IntNodeMap _node_id; |
203 | 206 |
IntArcMap _arc_id; |
204 | 207 |
IntVector _source; |
205 | 208 |
IntVector _target; |
206 | 209 |
bool _arc_mixing; |
207 | 210 |
|
208 | 211 |
// Node and arc data |
209 | 212 |
ValueVector _lower; |
210 | 213 |
ValueVector _upper; |
211 | 214 |
ValueVector _cap; |
212 | 215 |
CostVector _cost; |
213 | 216 |
ValueVector _supply; |
214 | 217 |
ValueVector _flow; |
215 | 218 |
CostVector _pi; |
216 | 219 |
|
217 | 220 |
// Data for storing the spanning tree structure |
218 | 221 |
IntVector _parent; |
219 | 222 |
IntVector _pred; |
220 | 223 |
IntVector _thread; |
221 | 224 |
IntVector _rev_thread; |
222 | 225 |
IntVector _succ_num; |
223 | 226 |
IntVector _last_succ; |
224 | 227 |
CharVector _pred_dir; |
225 | 228 |
CharVector _state; |
226 | 229 |
IntVector _dirty_revs; |
227 | 230 |
int _root; |
228 | 231 |
|
229 | 232 |
// Temporary data used in the current pivot iteration |
230 | 233 |
int in_arc, join, u_in, v_in, u_out, v_out; |
231 | 234 |
Value delta; |
232 | 235 |
|
233 | 236 |
const Value MAX; |
234 | 237 |
|
235 | 238 |
public: |
236 | 239 |
|
237 | 240 |
/// \brief Constant for infinite upper bounds (capacities). |
238 | 241 |
/// |
239 | 242 |
/// Constant for infinite upper bounds (capacities). |
240 | 243 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
241 | 244 |
/// \c std::numeric_limits<Value>::max() otherwise. |
242 | 245 |
const Value INF; |
243 | 246 |
|
244 | 247 |
private: |
245 | 248 |
|
246 | 249 |
// Implementation of the First Eligible pivot rule |
247 | 250 |
class FirstEligiblePivotRule |
248 | 251 |
{ |
249 | 252 |
private: |
250 | 253 |
|
251 | 254 |
// References to the NetworkSimplex class |
252 | 255 |
const IntVector &_source; |
253 | 256 |
const IntVector &_target; |
254 | 257 |
const CostVector &_cost; |
255 | 258 |
const CharVector &_state; |
256 | 259 |
const CostVector &_pi; |
257 | 260 |
int &_in_arc; |
258 | 261 |
int _search_arc_num; |
259 | 262 |
|
260 | 263 |
// Pivot rule data |
261 | 264 |
int _next_arc; |
262 | 265 |
|
263 | 266 |
public: |
264 | 267 |
|
265 | 268 |
// Constructor |
266 | 269 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
267 | 270 |
_source(ns._source), _target(ns._target), |
268 | 271 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
269 | 272 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
270 | 273 |
_next_arc(0) |
271 | 274 |
{} |
272 | 275 |
|
273 | 276 |
// Find next entering arc |
274 | 277 |
bool findEnteringArc() { |
275 | 278 |
Cost c; |
276 | 279 |
for (int e = _next_arc; e != _search_arc_num; ++e) { |
277 | 280 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
278 | 281 |
if (c < 0) { |
279 | 282 |
_in_arc = e; |
280 | 283 |
_next_arc = e + 1; |
281 | 284 |
return true; |
282 | 285 |
} |
283 | 286 |
} |
284 | 287 |
for (int e = 0; e != _next_arc; ++e) { |
285 | 288 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
286 | 289 |
if (c < 0) { |
287 | 290 |
_in_arc = e; |
288 | 291 |
_next_arc = e + 1; |
289 | 292 |
return true; |
290 | 293 |
} |
291 | 294 |
} |
292 | 295 |
return false; |
293 | 296 |
} |
294 | 297 |
|
295 | 298 |
}; //class FirstEligiblePivotRule |
296 | 299 |
|
297 | 300 |
|
298 | 301 |
// Implementation of the Best Eligible pivot rule |
299 | 302 |
class BestEligiblePivotRule |
300 | 303 |
{ |
301 | 304 |
private: |
302 | 305 |
|
303 | 306 |
// References to the NetworkSimplex class |
304 | 307 |
const IntVector &_source; |
305 | 308 |
const IntVector &_target; |
306 | 309 |
const CostVector &_cost; |
307 | 310 |
const CharVector &_state; |
308 | 311 |
const CostVector &_pi; |
309 | 312 |
int &_in_arc; |
310 | 313 |
int _search_arc_num; |
311 | 314 |
|
312 | 315 |
public: |
313 | 316 |
|
314 | 317 |
// Constructor |
315 | 318 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
316 | 319 |
_source(ns._source), _target(ns._target), |
317 | 320 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
318 | 321 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
319 | 322 |
{} |
320 | 323 |
|
321 | 324 |
// Find next entering arc |
322 | 325 |
bool findEnteringArc() { |
323 | 326 |
Cost c, min = 0; |
324 | 327 |
for (int e = 0; e != _search_arc_num; ++e) { |
325 | 328 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
326 | 329 |
if (c < min) { |
327 | 330 |
min = c; |
328 | 331 |
_in_arc = e; |
329 | 332 |
} |
330 | 333 |
} |
331 | 334 |
return min < 0; |
332 | 335 |
} |
333 | 336 |
|
334 | 337 |
}; //class BestEligiblePivotRule |
335 | 338 |
|
336 | 339 |
|
337 | 340 |
// Implementation of the Block Search pivot rule |
338 | 341 |
class BlockSearchPivotRule |
339 | 342 |
{ |
340 | 343 |
private: |
341 | 344 |
|
342 | 345 |
// References to the NetworkSimplex class |
343 | 346 |
const IntVector &_source; |
344 | 347 |
const IntVector &_target; |
345 | 348 |
const CostVector &_cost; |
346 | 349 |
const CharVector &_state; |
347 | 350 |
const CostVector &_pi; |
348 | 351 |
int &_in_arc; |
349 | 352 |
int _search_arc_num; |
350 | 353 |
|
351 | 354 |
// Pivot rule data |
352 | 355 |
int _block_size; |
353 | 356 |
int _next_arc; |
354 | 357 |
|
355 | 358 |
public: |
356 | 359 |
|
357 | 360 |
// Constructor |
358 | 361 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
359 | 362 |
_source(ns._source), _target(ns._target), |
360 | 363 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
361 | 364 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
362 | 365 |
_next_arc(0) |
363 | 366 |
{ |
364 | 367 |
// The main parameters of the pivot rule |
365 | 368 |
const double BLOCK_SIZE_FACTOR = 1.0; |
366 | 369 |
const int MIN_BLOCK_SIZE = 10; |
367 | 370 |
|
368 | 371 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
369 | 372 |
std::sqrt(double(_search_arc_num))), |
370 | 373 |
MIN_BLOCK_SIZE ); |
371 | 374 |
} |
372 | 375 |
|
373 | 376 |
// Find next entering arc |
374 | 377 |
bool findEnteringArc() { |
375 | 378 |
Cost c, min = 0; |
376 | 379 |
int cnt = _block_size; |
377 | 380 |
int e; |
378 | 381 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
379 | 382 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
380 | 383 |
if (c < min) { |
381 | 384 |
min = c; |
382 | 385 |
_in_arc = e; |
383 | 386 |
} |
384 | 387 |
if (--cnt == 0) { |
385 | 388 |
if (min < 0) goto search_end; |
386 | 389 |
cnt = _block_size; |
387 | 390 |
} |
388 | 391 |
} |
389 | 392 |
for (e = 0; e != _next_arc; ++e) { |
390 | 393 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
391 | 394 |
if (c < min) { |
392 | 395 |
min = c; |
393 | 396 |
_in_arc = e; |
394 | 397 |
} |
395 | 398 |
if (--cnt == 0) { |
396 | 399 |
if (min < 0) goto search_end; |
397 | 400 |
cnt = _block_size; |
398 | 401 |
} |
399 | 402 |
} |
400 | 403 |
if (min >= 0) return false; |
401 | 404 |
|
402 | 405 |
search_end: |
403 | 406 |
_next_arc = e; |
404 | 407 |
return true; |
405 | 408 |
} |
406 | 409 |
|
407 | 410 |
}; //class BlockSearchPivotRule |
408 | 411 |
|
409 | 412 |
|
410 | 413 |
// Implementation of the Candidate List pivot rule |
411 | 414 |
class CandidateListPivotRule |
412 | 415 |
{ |
413 | 416 |
private: |
414 | 417 |
|
415 | 418 |
// References to the NetworkSimplex class |
416 | 419 |
const IntVector &_source; |
417 | 420 |
const IntVector &_target; |
418 | 421 |
const CostVector &_cost; |
419 | 422 |
const CharVector &_state; |
420 | 423 |
const CostVector &_pi; |
421 | 424 |
int &_in_arc; |
422 | 425 |
int _search_arc_num; |
423 | 426 |
|
424 | 427 |
// Pivot rule data |
425 | 428 |
IntVector _candidates; |
426 | 429 |
int _list_length, _minor_limit; |
427 | 430 |
int _curr_length, _minor_count; |
428 | 431 |
int _next_arc; |
429 | 432 |
|
430 | 433 |
public: |
431 | 434 |
|
432 | 435 |
/// Constructor |
433 | 436 |
CandidateListPivotRule(NetworkSimplex &ns) : |
434 | 437 |
_source(ns._source), _target(ns._target), |
435 | 438 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
436 | 439 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
437 | 440 |
_next_arc(0) |
438 | 441 |
{ |
439 | 442 |
// The main parameters of the pivot rule |
440 | 443 |
const double LIST_LENGTH_FACTOR = 0.25; |
441 | 444 |
const int MIN_LIST_LENGTH = 10; |
442 | 445 |
const double MINOR_LIMIT_FACTOR = 0.1; |
443 | 446 |
const int MIN_MINOR_LIMIT = 3; |
444 | 447 |
|
445 | 448 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
446 | 449 |
std::sqrt(double(_search_arc_num))), |
447 | 450 |
MIN_LIST_LENGTH ); |
448 | 451 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
449 | 452 |
MIN_MINOR_LIMIT ); |
450 | 453 |
_curr_length = _minor_count = 0; |
451 | 454 |
_candidates.resize(_list_length); |
452 | 455 |
} |
453 | 456 |
|
454 | 457 |
/// Find next entering arc |
455 | 458 |
bool findEnteringArc() { |
456 | 459 |
Cost min, c; |
457 | 460 |
int e; |
458 | 461 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
459 | 462 |
// Minor iteration: select the best eligible arc from the |
460 | 463 |
// current candidate list |
461 | 464 |
++_minor_count; |
462 | 465 |
min = 0; |
463 | 466 |
for (int i = 0; i < _curr_length; ++i) { |
464 | 467 |
e = _candidates[i]; |
465 | 468 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
466 | 469 |
if (c < min) { |
467 | 470 |
min = c; |
468 | 471 |
_in_arc = e; |
469 | 472 |
} |
470 | 473 |
else if (c >= 0) { |
471 | 474 |
_candidates[i--] = _candidates[--_curr_length]; |
472 | 475 |
} |
473 | 476 |
} |
474 | 477 |
if (min < 0) return true; |
475 | 478 |
} |
476 | 479 |
|
477 | 480 |
// Major iteration: build a new candidate list |
478 | 481 |
min = 0; |
479 | 482 |
_curr_length = 0; |
480 | 483 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
481 | 484 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
482 | 485 |
if (c < 0) { |
483 | 486 |
_candidates[_curr_length++] = e; |
484 | 487 |
if (c < min) { |
485 | 488 |
min = c; |
486 | 489 |
_in_arc = e; |
487 | 490 |
} |
488 | 491 |
if (_curr_length == _list_length) goto search_end; |
489 | 492 |
} |
490 | 493 |
} |
491 | 494 |
for (e = 0; e != _next_arc; ++e) { |
492 | 495 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
493 | 496 |
if (c < 0) { |
494 | 497 |
_candidates[_curr_length++] = e; |
495 | 498 |
if (c < min) { |
496 | 499 |
min = c; |
497 | 500 |
_in_arc = e; |
498 | 501 |
} |
499 | 502 |
if (_curr_length == _list_length) goto search_end; |
500 | 503 |
} |
501 | 504 |
} |
502 | 505 |
if (_curr_length == 0) return false; |
503 | 506 |
|
504 | 507 |
search_end: |
505 | 508 |
_minor_count = 1; |
506 | 509 |
_next_arc = e; |
507 | 510 |
return true; |
508 | 511 |
} |
509 | 512 |
|
510 | 513 |
}; //class CandidateListPivotRule |
511 | 514 |
|
512 | 515 |
|
513 | 516 |
// Implementation of the Altering Candidate List pivot rule |
514 | 517 |
class AlteringListPivotRule |
515 | 518 |
{ |
516 | 519 |
private: |
517 | 520 |
|
518 | 521 |
// References to the NetworkSimplex class |
519 | 522 |
const IntVector &_source; |
520 | 523 |
const IntVector &_target; |
521 | 524 |
const CostVector &_cost; |
522 | 525 |
const CharVector &_state; |
523 | 526 |
const CostVector &_pi; |
524 | 527 |
int &_in_arc; |
525 | 528 |
int _search_arc_num; |
526 | 529 |
|
527 | 530 |
// Pivot rule data |
528 | 531 |
int _block_size, _head_length, _curr_length; |
529 | 532 |
int _next_arc; |
530 | 533 |
IntVector _candidates; |
531 | 534 |
CostVector _cand_cost; |
532 | 535 |
|
533 | 536 |
// Functor class to compare arcs during sort of the candidate list |
534 | 537 |
class SortFunc |
535 | 538 |
{ |
536 | 539 |
private: |
537 | 540 |
const CostVector &_map; |
538 | 541 |
public: |
539 | 542 |
SortFunc(const CostVector &map) : _map(map) {} |
540 | 543 |
bool operator()(int left, int right) { |
541 |
return _map[left] |
|
544 |
return _map[left] < _map[right]; |
|
542 | 545 |
} |
543 | 546 |
}; |
544 | 547 |
|
545 | 548 |
SortFunc _sort_func; |
546 | 549 |
|
547 | 550 |
public: |
548 | 551 |
|
549 | 552 |
// Constructor |
550 | 553 |
AlteringListPivotRule(NetworkSimplex &ns) : |
551 | 554 |
_source(ns._source), _target(ns._target), |
552 | 555 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
553 | 556 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
554 | 557 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
555 | 558 |
{ |
556 | 559 |
// The main parameters of the pivot rule |
557 | 560 |
const double BLOCK_SIZE_FACTOR = 1.0; |
558 | 561 |
const int MIN_BLOCK_SIZE = 10; |
559 |
const double HEAD_LENGTH_FACTOR = 0. |
|
562 |
const double HEAD_LENGTH_FACTOR = 0.01; |
|
560 | 563 |
const int MIN_HEAD_LENGTH = 3; |
561 | 564 |
|
562 | 565 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
563 | 566 |
std::sqrt(double(_search_arc_num))), |
564 | 567 |
MIN_BLOCK_SIZE ); |
565 | 568 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
566 | 569 |
MIN_HEAD_LENGTH ); |
567 | 570 |
_candidates.resize(_head_length + _block_size); |
568 | 571 |
_curr_length = 0; |
569 | 572 |
} |
570 | 573 |
|
571 | 574 |
// Find next entering arc |
572 | 575 |
bool findEnteringArc() { |
573 | 576 |
// Check the current candidate list |
574 | 577 |
int e; |
575 | 578 |
Cost c; |
576 | 579 |
for (int i = 0; i != _curr_length; ++i) { |
577 | 580 |
e = _candidates[i]; |
578 | 581 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
579 | 582 |
if (c < 0) { |
580 | 583 |
_cand_cost[e] = c; |
581 | 584 |
} else { |
582 | 585 |
_candidates[i--] = _candidates[--_curr_length]; |
583 | 586 |
} |
584 | 587 |
} |
585 | 588 |
|
586 | 589 |
// Extend the list |
587 | 590 |
int cnt = _block_size; |
588 | 591 |
int limit = _head_length; |
589 | 592 |
|
590 | 593 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
591 | 594 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
592 | 595 |
if (c < 0) { |
593 | 596 |
_cand_cost[e] = c; |
594 | 597 |
_candidates[_curr_length++] = e; |
595 | 598 |
} |
596 | 599 |
if (--cnt == 0) { |
597 | 600 |
if (_curr_length > limit) goto search_end; |
598 | 601 |
limit = 0; |
599 | 602 |
cnt = _block_size; |
600 | 603 |
} |
601 | 604 |
} |
602 | 605 |
for (e = 0; e != _next_arc; ++e) { |
603 |
_cand_cost[e] = _state[e] * |
|
604 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
605 |
|
|
606 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
607 |
if (c < 0) { |
|
608 |
_cand_cost[e] = c; |
|
606 | 609 |
_candidates[_curr_length++] = e; |
607 | 610 |
} |
608 | 611 |
if (--cnt == 0) { |
609 | 612 |
if (_curr_length > limit) goto search_end; |
610 | 613 |
limit = 0; |
611 | 614 |
cnt = _block_size; |
612 | 615 |
} |
613 | 616 |
} |
614 | 617 |
if (_curr_length == 0) return false; |
615 | 618 |
|
616 | 619 |
search_end: |
617 | 620 |
|
618 |
// Make heap of the candidate list (approximating a partial sort) |
|
619 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
620 |
|
|
621 |
// Perform partial sort operation on the candidate list |
|
622 |
int new_length = std::min(_head_length + 1, _curr_length); |
|
623 |
std::partial_sort(_candidates.begin(), _candidates.begin() + new_length, |
|
624 |
_candidates.begin() + _curr_length, _sort_func); |
|
621 | 625 |
|
622 |
// |
|
626 |
// Select the entering arc and remove it from the list |
|
623 | 627 |
_in_arc = _candidates[0]; |
624 | 628 |
_next_arc = e; |
625 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
626 |
_sort_func ); |
|
627 |
|
|
629 |
_candidates[0] = _candidates[new_length - 1]; |
|
630 |
_curr_length = new_length - 1; |
|
628 | 631 |
return true; |
629 | 632 |
} |
630 | 633 |
|
631 | 634 |
}; //class AlteringListPivotRule |
632 | 635 |
|
633 | 636 |
public: |
634 | 637 |
|
635 | 638 |
/// \brief Constructor. |
636 | 639 |
/// |
637 | 640 |
/// The constructor of the class. |
638 | 641 |
/// |
639 | 642 |
/// \param graph The digraph the algorithm runs on. |
640 | 643 |
/// \param arc_mixing Indicate if the arcs will be stored in a |
641 | 644 |
/// mixed order in the internal data structure. |
642 | 645 |
/// In general, it leads to similar performance as using the original |
643 | 646 |
/// arc order, but it makes the algorithm more robust and in special |
644 | 647 |
/// cases, even significantly faster. Therefore, it is enabled by default. |
645 | 648 |
NetworkSimplex(const GR& graph, bool arc_mixing = true) : |
646 | 649 |
_graph(graph), _node_id(graph), _arc_id(graph), |
647 | 650 |
_arc_mixing(arc_mixing), |
648 | 651 |
MAX(std::numeric_limits<Value>::max()), |
649 | 652 |
INF(std::numeric_limits<Value>::has_infinity ? |
650 | 653 |
std::numeric_limits<Value>::infinity() : MAX) |
651 | 654 |
{ |
652 | 655 |
// Check the number types |
653 | 656 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
654 | 657 |
"The flow type of NetworkSimplex must be signed"); |
655 | 658 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
656 | 659 |
"The cost type of NetworkSimplex must be signed"); |
657 | 660 |
|
658 | 661 |
// Reset data structures |
659 | 662 |
reset(); |
660 | 663 |
} |
661 | 664 |
|
662 | 665 |
/// \name Parameters |
663 | 666 |
/// The parameters of the algorithm can be specified using these |
664 | 667 |
/// functions. |
665 | 668 |
|
666 | 669 |
/// @{ |
667 | 670 |
|
668 | 671 |
/// \brief Set the lower bounds on the arcs. |
669 | 672 |
/// |
670 | 673 |
/// This function sets the lower bounds on the arcs. |
671 | 674 |
/// If it is not used before calling \ref run(), the lower bounds |
672 | 675 |
/// will be set to zero on all arcs. |
673 | 676 |
/// |
674 | 677 |
/// \param map An arc map storing the lower bounds. |
675 | 678 |
/// Its \c Value type must be convertible to the \c Value type |
676 | 679 |
/// of the algorithm. |
677 | 680 |
/// |
678 | 681 |
/// \return <tt>(*this)</tt> |
679 | 682 |
template <typename LowerMap> |
680 | 683 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
681 | 684 |
_have_lower = true; |
682 | 685 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
683 | 686 |
_lower[_arc_id[a]] = map[a]; |
684 | 687 |
} |
685 | 688 |
return *this; |
686 | 689 |
} |
687 | 690 |
|
688 | 691 |
/// \brief Set the upper bounds (capacities) on the arcs. |
689 | 692 |
/// |
690 | 693 |
/// This function sets the upper bounds (capacities) on the arcs. |
691 | 694 |
/// If it is not used before calling \ref run(), the upper bounds |
692 | 695 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
693 | 696 |
/// unbounded from above). |
694 | 697 |
/// |
695 | 698 |
/// \param map An arc map storing the upper bounds. |
696 | 699 |
/// Its \c Value type must be convertible to the \c Value type |
697 | 700 |
/// of the algorithm. |
698 | 701 |
/// |
699 | 702 |
/// \return <tt>(*this)</tt> |
700 | 703 |
template<typename UpperMap> |
701 | 704 |
NetworkSimplex& upperMap(const UpperMap& map) { |
702 | 705 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
703 | 706 |
_upper[_arc_id[a]] = map[a]; |
704 | 707 |
} |
705 | 708 |
return *this; |
706 | 709 |
} |
707 | 710 |
|
708 | 711 |
/// \brief Set the costs of the arcs. |
709 | 712 |
/// |
710 | 713 |
/// This function sets the costs of the arcs. |
711 | 714 |
/// If it is not used before calling \ref run(), the costs |
712 | 715 |
/// will be set to \c 1 on all arcs. |
713 | 716 |
/// |
714 | 717 |
/// \param map An arc map storing the costs. |
715 | 718 |
/// Its \c Value type must be convertible to the \c Cost type |
716 | 719 |
/// of the algorithm. |
717 | 720 |
/// |
718 | 721 |
/// \return <tt>(*this)</tt> |
719 | 722 |
template<typename CostMap> |
720 | 723 |
NetworkSimplex& costMap(const CostMap& map) { |
721 | 724 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
722 | 725 |
_cost[_arc_id[a]] = map[a]; |
723 | 726 |
} |
724 | 727 |
return *this; |
725 | 728 |
} |
726 | 729 |
|
727 | 730 |
/// \brief Set the supply values of the nodes. |
728 | 731 |
/// |
729 | 732 |
/// This function sets the supply values of the nodes. |
730 | 733 |
/// If neither this function nor \ref stSupply() is used before |
731 | 734 |
/// calling \ref run(), the supply of each node will be set to zero. |
732 | 735 |
/// |
733 | 736 |
/// \param map A node map storing the supply values. |
734 | 737 |
/// Its \c Value type must be convertible to the \c Value type |
735 | 738 |
/// of the algorithm. |
736 | 739 |
/// |
737 | 740 |
/// \return <tt>(*this)</tt> |
738 | 741 |
/// |
739 | 742 |
/// \sa supplyType() |
740 | 743 |
template<typename SupplyMap> |
741 | 744 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
742 | 745 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
743 | 746 |
_supply[_node_id[n]] = map[n]; |
744 | 747 |
} |
745 | 748 |
return *this; |
746 | 749 |
} |
747 | 750 |
|
748 | 751 |
/// \brief Set single source and target nodes and a supply value. |
749 | 752 |
/// |
750 | 753 |
/// This function sets a single source node and a single target node |
751 | 754 |
/// and the required flow value. |
752 | 755 |
/// If neither this function nor \ref supplyMap() is used before |
753 | 756 |
/// calling \ref run(), the supply of each node will be set to zero. |
754 | 757 |
/// |
755 | 758 |
/// Using this function has the same effect as using \ref supplyMap() |
756 | 759 |
/// with a map in which \c k is assigned to \c s, \c -k is |
757 | 760 |
/// assigned to \c t and all other nodes have zero supply value. |
758 | 761 |
/// |
759 | 762 |
/// \param s The source node. |
760 | 763 |
/// \param t The target node. |
761 | 764 |
/// \param k The required amount of flow from node \c s to node \c t |
762 | 765 |
/// (i.e. the supply of \c s and the demand of \c t). |
763 | 766 |
/// |
764 | 767 |
/// \return <tt>(*this)</tt> |
765 | 768 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
766 | 769 |
for (int i = 0; i != _node_num; ++i) { |
767 | 770 |
_supply[i] = 0; |
768 | 771 |
} |
769 | 772 |
_supply[_node_id[s]] = k; |
770 | 773 |
_supply[_node_id[t]] = -k; |
771 | 774 |
return *this; |
772 | 775 |
} |
773 | 776 |
|
774 | 777 |
/// \brief Set the type of the supply constraints. |
775 | 778 |
/// |
776 | 779 |
/// This function sets the type of the supply/demand constraints. |
777 | 780 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
778 | 781 |
/// type will be used. |
779 | 782 |
/// |
780 | 783 |
/// For more information, see \ref SupplyType. |
781 | 784 |
/// |
782 | 785 |
/// \return <tt>(*this)</tt> |
783 | 786 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
784 | 787 |
_stype = supply_type; |
785 | 788 |
return *this; |
786 | 789 |
} |
787 | 790 |
|
788 | 791 |
/// @} |
789 | 792 |
|
790 | 793 |
/// \name Execution Control |
791 | 794 |
/// The algorithm can be executed using \ref run(). |
792 | 795 |
|
793 | 796 |
/// @{ |
794 | 797 |
|
795 | 798 |
/// \brief Run the algorithm. |
796 | 799 |
/// |
797 | 800 |
/// This function runs the algorithm. |
798 | 801 |
/// The paramters can be specified using functions \ref lowerMap(), |
799 | 802 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
800 | 803 |
/// \ref supplyType(). |
801 | 804 |
/// For example, |
802 | 805 |
/// \code |
803 | 806 |
/// NetworkSimplex<ListDigraph> ns(graph); |
804 | 807 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
805 | 808 |
/// .supplyMap(sup).run(); |
806 | 809 |
/// \endcode |
807 | 810 |
/// |
808 | 811 |
/// This function can be called more than once. All the given parameters |
809 | 812 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
810 | 813 |
/// is used, thus only the modified parameters have to be set again. |
811 | 814 |
/// If the underlying digraph was also modified after the construction |
812 | 815 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
813 | 816 |
/// function must be called. |
814 | 817 |
/// |
815 | 818 |
/// \param pivot_rule The pivot rule that will be used during the |
816 | 819 |
/// algorithm. For more information, see \ref PivotRule. |
817 | 820 |
/// |
818 | 821 |
/// \return \c INFEASIBLE if no feasible flow exists, |
819 | 822 |
/// \n \c OPTIMAL if the problem has optimal solution |
820 | 823 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
821 | 824 |
/// optimal flow and node potentials (primal and dual solutions), |
822 | 825 |
/// \n \c UNBOUNDED if the objective function of the problem is |
823 | 826 |
/// unbounded, i.e. there is a directed cycle having negative total |
824 | 827 |
/// cost and infinite upper bound. |
825 | 828 |
/// |
826 | 829 |
/// \see ProblemType, PivotRule |
827 | 830 |
/// \see resetParams(), reset() |
828 | 831 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
829 | 832 |
if (!init()) return INFEASIBLE; |
830 | 833 |
return start(pivot_rule); |
831 | 834 |
} |
832 | 835 |
|
833 | 836 |
/// \brief Reset all the parameters that have been given before. |
834 | 837 |
/// |
835 | 838 |
/// This function resets all the paramaters that have been given |
836 | 839 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
837 | 840 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
838 | 841 |
/// |
839 | 842 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
840 | 843 |
/// parameters are kept for the next \ref run() call, unless |
841 | 844 |
/// \ref resetParams() or \ref reset() is used. |
842 | 845 |
/// If the underlying digraph was also modified after the construction |
843 | 846 |
/// of the class or the last \ref reset() call, then the \ref reset() |
844 | 847 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
845 | 848 |
/// |
846 | 849 |
/// For example, |
847 | 850 |
/// \code |
848 | 851 |
/// NetworkSimplex<ListDigraph> ns(graph); |
849 | 852 |
/// |
850 | 853 |
/// // First run |
851 | 854 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
852 | 855 |
/// .supplyMap(sup).run(); |
853 | 856 |
/// |
854 | 857 |
/// // Run again with modified cost map (resetParams() is not called, |
855 | 858 |
/// // so only the cost map have to be set again) |
856 | 859 |
/// cost[e] += 100; |
857 | 860 |
/// ns.costMap(cost).run(); |
858 | 861 |
/// |
859 | 862 |
/// // Run again from scratch using resetParams() |
860 | 863 |
/// // (the lower bounds will be set to zero on all arcs) |
861 | 864 |
/// ns.resetParams(); |
862 | 865 |
/// ns.upperMap(capacity).costMap(cost) |
863 | 866 |
/// .supplyMap(sup).run(); |
864 | 867 |
/// \endcode |
865 | 868 |
/// |
866 | 869 |
/// \return <tt>(*this)</tt> |
867 | 870 |
/// |
868 | 871 |
/// \see reset(), run() |
869 | 872 |
NetworkSimplex& resetParams() { |
870 | 873 |
for (int i = 0; i != _node_num; ++i) { |
871 | 874 |
_supply[i] = 0; |
872 | 875 |
} |
873 | 876 |
for (int i = 0; i != _arc_num; ++i) { |
874 | 877 |
_lower[i] = 0; |
875 | 878 |
_upper[i] = INF; |
876 | 879 |
_cost[i] = 1; |
877 | 880 |
} |
878 | 881 |
_have_lower = false; |
879 | 882 |
_stype = GEQ; |
880 | 883 |
return *this; |
881 | 884 |
} |
882 | 885 |
|
883 | 886 |
/// \brief Reset the internal data structures and all the parameters |
884 | 887 |
/// that have been given before. |
885 | 888 |
/// |
886 | 889 |
/// This function resets the internal data structures and all the |
887 | 890 |
/// paramaters that have been given before using functions \ref lowerMap(), |
888 | 891 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
889 | 892 |
/// \ref supplyType(). |
890 | 893 |
/// |
891 | 894 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
892 | 895 |
/// parameters are kept for the next \ref run() call, unless |
893 | 896 |
/// \ref resetParams() or \ref reset() is used. |
894 | 897 |
/// If the underlying digraph was also modified after the construction |
895 | 898 |
/// of the class or the last \ref reset() call, then the \ref reset() |
896 | 899 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
897 | 900 |
/// |
898 | 901 |
/// See \ref resetParams() for examples. |
899 | 902 |
/// |
900 | 903 |
/// \return <tt>(*this)</tt> |
901 | 904 |
/// |
902 | 905 |
/// \see resetParams(), run() |
903 | 906 |
NetworkSimplex& reset() { |
904 | 907 |
// Resize vectors |
905 | 908 |
_node_num = countNodes(_graph); |
906 | 909 |
_arc_num = countArcs(_graph); |
907 | 910 |
int all_node_num = _node_num + 1; |
908 | 911 |
int max_arc_num = _arc_num + 2 * _node_num; |
909 | 912 |
|
910 | 913 |
_source.resize(max_arc_num); |
911 | 914 |
_target.resize(max_arc_num); |
912 | 915 |
|
913 | 916 |
_lower.resize(_arc_num); |
914 | 917 |
_upper.resize(_arc_num); |
915 | 918 |
_cap.resize(max_arc_num); |
916 | 919 |
_cost.resize(max_arc_num); |
917 | 920 |
_supply.resize(all_node_num); |
918 | 921 |
_flow.resize(max_arc_num); |
919 | 922 |
_pi.resize(all_node_num); |
920 | 923 |
|
921 | 924 |
_parent.resize(all_node_num); |
922 | 925 |
_pred.resize(all_node_num); |
923 | 926 |
_pred_dir.resize(all_node_num); |
924 | 927 |
_thread.resize(all_node_num); |
925 | 928 |
_rev_thread.resize(all_node_num); |
926 | 929 |
_succ_num.resize(all_node_num); |
927 | 930 |
_last_succ.resize(all_node_num); |
928 | 931 |
_state.resize(max_arc_num); |
929 | 932 |
|
930 | 933 |
// Copy the graph |
931 | 934 |
int i = 0; |
932 | 935 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
933 | 936 |
_node_id[n] = i; |
934 | 937 |
} |
935 | 938 |
if (_arc_mixing) { |
936 | 939 |
// Store the arcs in a mixed order |
937 | 940 |
const int skip = std::max(_arc_num / _node_num, 3); |
938 | 941 |
int i = 0, j = 0; |
939 | 942 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
940 | 943 |
_arc_id[a] = i; |
941 | 944 |
_source[i] = _node_id[_graph.source(a)]; |
942 | 945 |
_target[i] = _node_id[_graph.target(a)]; |
943 | 946 |
if ((i += skip) >= _arc_num) i = ++j; |
944 | 947 |
} |
945 | 948 |
} else { |
946 | 949 |
// Store the arcs in the original order |
947 | 950 |
int i = 0; |
948 | 951 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
949 | 952 |
_arc_id[a] = i; |
950 | 953 |
_source[i] = _node_id[_graph.source(a)]; |
951 | 954 |
_target[i] = _node_id[_graph.target(a)]; |
952 | 955 |
} |
953 | 956 |
} |
954 | 957 |
|
955 | 958 |
// Reset parameters |
956 | 959 |
resetParams(); |
957 | 960 |
return *this; |
958 | 961 |
} |
959 | 962 |
|
960 | 963 |
/// @} |
961 | 964 |
|
962 | 965 |
/// \name Query Functions |
963 | 966 |
/// The results of the algorithm can be obtained using these |
964 | 967 |
/// functions.\n |
965 | 968 |
/// The \ref run() function must be called before using them. |
966 | 969 |
|
967 | 970 |
/// @{ |
968 | 971 |
|
969 | 972 |
/// \brief Return the total cost of the found flow. |
970 | 973 |
/// |
971 | 974 |
/// This function returns the total cost of the found flow. |
972 | 975 |
/// Its complexity is O(e). |
973 | 976 |
/// |
974 | 977 |
/// \note The return type of the function can be specified as a |
975 | 978 |
/// template parameter. For example, |
976 | 979 |
/// \code |
977 | 980 |
/// ns.totalCost<double>(); |
978 | 981 |
/// \endcode |
979 | 982 |
/// It is useful if the total cost cannot be stored in the \c Cost |
980 | 983 |
/// type of the algorithm, which is the default return type of the |
981 | 984 |
/// function. |
982 | 985 |
/// |
983 | 986 |
/// \pre \ref run() must be called before using this function. |
984 | 987 |
template <typename Number> |
985 | 988 |
Number totalCost() const { |
986 | 989 |
Number c = 0; |
987 | 990 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
988 | 991 |
int i = _arc_id[a]; |
989 | 992 |
c += Number(_flow[i]) * Number(_cost[i]); |
990 | 993 |
} |
991 | 994 |
return c; |
992 | 995 |
} |
993 | 996 |
|
994 | 997 |
#ifndef DOXYGEN |
995 | 998 |
Cost totalCost() const { |
996 | 999 |
return totalCost<Cost>(); |
997 | 1000 |
} |
998 | 1001 |
#endif |
999 | 1002 |
|
1000 | 1003 |
/// \brief Return the flow on the given arc. |
1001 | 1004 |
/// |
1002 | 1005 |
/// This function returns the flow on the given arc. |
1003 | 1006 |
/// |
1004 | 1007 |
/// \pre \ref run() must be called before using this function. |
1005 | 1008 |
Value flow(const Arc& a) const { |
1006 | 1009 |
return _flow[_arc_id[a]]; |
1007 | 1010 |
} |
1008 | 1011 |
|
1009 | 1012 |
/// \brief Return the flow map (the primal solution). |
1010 | 1013 |
/// |
1011 | 1014 |
/// This function copies the flow value on each arc into the given |
1012 | 1015 |
/// map. The \c Value type of the algorithm must be convertible to |
1013 | 1016 |
/// the \c Value type of the map. |
1014 | 1017 |
/// |
1015 | 1018 |
/// \pre \ref run() must be called before using this function. |
1016 | 1019 |
template <typename FlowMap> |
1017 | 1020 |
void flowMap(FlowMap &map) const { |
1018 | 1021 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
1019 | 1022 |
map.set(a, _flow[_arc_id[a]]); |
1020 | 1023 |
} |
1021 | 1024 |
} |
1022 | 1025 |
|
1023 | 1026 |
/// \brief Return the potential (dual value) of the given node. |
1024 | 1027 |
/// |
1025 | 1028 |
/// This function returns the potential (dual value) of the |
1026 | 1029 |
/// given node. |
1027 | 1030 |
/// |
1028 | 1031 |
/// \pre \ref run() must be called before using this function. |
1029 | 1032 |
Cost potential(const Node& n) const { |
1030 | 1033 |
return _pi[_node_id[n]]; |
1031 | 1034 |
} |
1032 | 1035 |
|
1033 | 1036 |
/// \brief Return the potential map (the dual solution). |
1034 | 1037 |
/// |
1035 | 1038 |
/// This function copies the potential (dual value) of each node |
1036 | 1039 |
/// into the given map. |
1037 | 1040 |
/// The \c Cost type of the algorithm must be convertible to the |
1038 | 1041 |
/// \c Value type of the map. |
1039 | 1042 |
/// |
1040 | 1043 |
/// \pre \ref run() must be called before using this function. |
1041 | 1044 |
template <typename PotentialMap> |
1042 | 1045 |
void potentialMap(PotentialMap &map) const { |
1043 | 1046 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1044 | 1047 |
map.set(n, _pi[_node_id[n]]); |
1045 | 1048 |
} |
1046 | 1049 |
} |
1047 | 1050 |
|
1048 | 1051 |
/// @} |
1049 | 1052 |
|
1050 | 1053 |
private: |
1051 | 1054 |
|
1052 | 1055 |
// Initialize internal data structures |
1053 | 1056 |
bool init() { |
1054 | 1057 |
if (_node_num == 0) return false; |
1055 | 1058 |
|
1056 | 1059 |
// Check the sum of supply values |
1057 | 1060 |
_sum_supply = 0; |
1058 | 1061 |
for (int i = 0; i != _node_num; ++i) { |
1059 | 1062 |
_sum_supply += _supply[i]; |
1060 | 1063 |
} |
1061 | 1064 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1062 | 1065 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1063 | 1066 |
|
1064 | 1067 |
// Remove non-zero lower bounds |
1065 | 1068 |
if (_have_lower) { |
1066 | 1069 |
for (int i = 0; i != _arc_num; ++i) { |
1067 | 1070 |
Value c = _lower[i]; |
1068 | 1071 |
if (c >= 0) { |
1069 | 1072 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
1070 | 1073 |
} else { |
1071 | 1074 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
1072 | 1075 |
} |
1073 | 1076 |
_supply[_source[i]] -= c; |
1074 | 1077 |
_supply[_target[i]] += c; |
1075 | 1078 |
} |
1076 | 1079 |
} else { |
1077 | 1080 |
for (int i = 0; i != _arc_num; ++i) { |
1078 | 1081 |
_cap[i] = _upper[i]; |
1079 | 1082 |
} |
1080 | 1083 |
} |
1081 | 1084 |
|
1082 | 1085 |
// Initialize artifical cost |
1083 | 1086 |
Cost ART_COST; |
1084 | 1087 |
if (std::numeric_limits<Cost>::is_exact) { |
1085 | 1088 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1086 | 1089 |
} else { |
1087 | 1090 |
ART_COST = 0; |
1088 | 1091 |
for (int i = 0; i != _arc_num; ++i) { |
1089 | 1092 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1090 | 1093 |
} |
1091 | 1094 |
ART_COST = (ART_COST + 1) * _node_num; |
1092 | 1095 |
} |
1093 | 1096 |
|
1094 | 1097 |
// Initialize arc maps |
1095 | 1098 |
for (int i = 0; i != _arc_num; ++i) { |
1096 | 1099 |
_flow[i] = 0; |
1097 | 1100 |
_state[i] = STATE_LOWER; |
1098 | 1101 |
} |
1099 | 1102 |
|
1100 | 1103 |
// Set data for the artificial root node |
1101 | 1104 |
_root = _node_num; |
1102 | 1105 |
_parent[_root] = -1; |
1103 | 1106 |
_pred[_root] = -1; |
1104 | 1107 |
_thread[_root] = 0; |
1105 | 1108 |
_rev_thread[0] = _root; |
1106 | 1109 |
_succ_num[_root] = _node_num + 1; |
1107 | 1110 |
_last_succ[_root] = _root - 1; |
1108 | 1111 |
_supply[_root] = -_sum_supply; |
1109 | 1112 |
_pi[_root] = 0; |
1110 | 1113 |
|
1111 | 1114 |
// Add artificial arcs and initialize the spanning tree data structure |
1112 | 1115 |
if (_sum_supply == 0) { |
1113 | 1116 |
// EQ supply constraints |
1114 | 1117 |
_search_arc_num = _arc_num; |
1115 | 1118 |
_all_arc_num = _arc_num + _node_num; |
1116 | 1119 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1117 | 1120 |
_parent[u] = _root; |
1118 | 1121 |
_pred[u] = e; |
1119 | 1122 |
_thread[u] = u + 1; |
1120 | 1123 |
_rev_thread[u + 1] = u; |
1121 | 1124 |
_succ_num[u] = 1; |
1122 | 1125 |
_last_succ[u] = u; |
1123 | 1126 |
_cap[e] = INF; |
1124 | 1127 |
_state[e] = STATE_TREE; |
1125 | 1128 |
if (_supply[u] >= 0) { |
1126 | 1129 |
_pred_dir[u] = DIR_UP; |
1127 | 1130 |
_pi[u] = 0; |
1128 | 1131 |
_source[e] = u; |
1129 | 1132 |
_target[e] = _root; |
1130 | 1133 |
_flow[e] = _supply[u]; |
1131 | 1134 |
_cost[e] = 0; |
1132 | 1135 |
} else { |
1133 | 1136 |
_pred_dir[u] = DIR_DOWN; |
1134 | 1137 |
_pi[u] = ART_COST; |
1135 | 1138 |
_source[e] = _root; |
1136 | 1139 |
_target[e] = u; |
1137 | 1140 |
_flow[e] = -_supply[u]; |
1138 | 1141 |
_cost[e] = ART_COST; |
1139 | 1142 |
} |
1140 | 1143 |
} |
1141 | 1144 |
} |
1142 | 1145 |
else if (_sum_supply > 0) { |
1143 | 1146 |
// LEQ supply constraints |
1144 | 1147 |
_search_arc_num = _arc_num + _node_num; |
1145 | 1148 |
int f = _arc_num + _node_num; |
1146 | 1149 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1147 | 1150 |
_parent[u] = _root; |
1148 | 1151 |
_thread[u] = u + 1; |
1149 | 1152 |
_rev_thread[u + 1] = u; |
1150 | 1153 |
_succ_num[u] = 1; |
1151 | 1154 |
_last_succ[u] = u; |
1152 | 1155 |
if (_supply[u] >= 0) { |
1153 | 1156 |
_pred_dir[u] = DIR_UP; |
1154 | 1157 |
_pi[u] = 0; |
1155 | 1158 |
_pred[u] = e; |
1156 | 1159 |
_source[e] = u; |
1157 | 1160 |
_target[e] = _root; |
1158 | 1161 |
_cap[e] = INF; |
1159 | 1162 |
_flow[e] = _supply[u]; |
1160 | 1163 |
_cost[e] = 0; |
1161 | 1164 |
_state[e] = STATE_TREE; |
1162 | 1165 |
} else { |
1163 | 1166 |
_pred_dir[u] = DIR_DOWN; |
1164 | 1167 |
_pi[u] = ART_COST; |
1165 | 1168 |
_pred[u] = f; |
1166 | 1169 |
_source[f] = _root; |
1167 | 1170 |
_target[f] = u; |
1168 | 1171 |
_cap[f] = INF; |
1169 | 1172 |
_flow[f] = -_supply[u]; |
1170 | 1173 |
_cost[f] = ART_COST; |
1171 | 1174 |
_state[f] = STATE_TREE; |
1172 | 1175 |
_source[e] = u; |
1173 | 1176 |
_target[e] = _root; |
1174 | 1177 |
_cap[e] = INF; |
1175 | 1178 |
_flow[e] = 0; |
1176 | 1179 |
_cost[e] = 0; |
1177 | 1180 |
_state[e] = STATE_LOWER; |
1178 | 1181 |
++f; |
1179 | 1182 |
} |
1180 | 1183 |
} |
1181 | 1184 |
_all_arc_num = f; |
1182 | 1185 |
} |
1183 | 1186 |
else { |
1184 | 1187 |
// GEQ supply constraints |
1185 | 1188 |
_search_arc_num = _arc_num + _node_num; |
1186 | 1189 |
int f = _arc_num + _node_num; |
1187 | 1190 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1188 | 1191 |
_parent[u] = _root; |
1189 | 1192 |
_thread[u] = u + 1; |
1190 | 1193 |
_rev_thread[u + 1] = u; |
1191 | 1194 |
_succ_num[u] = 1; |
1192 | 1195 |
_last_succ[u] = u; |
1193 | 1196 |
if (_supply[u] <= 0) { |
1194 | 1197 |
_pred_dir[u] = DIR_DOWN; |
1195 | 1198 |
_pi[u] = 0; |
1196 | 1199 |
_pred[u] = e; |
1197 | 1200 |
_source[e] = _root; |
1198 | 1201 |
_target[e] = u; |
1199 | 1202 |
_cap[e] = INF; |
1200 | 1203 |
_flow[e] = -_supply[u]; |
1201 | 1204 |
_cost[e] = 0; |
1202 | 1205 |
_state[e] = STATE_TREE; |
1203 | 1206 |
} else { |
1204 | 1207 |
_pred_dir[u] = DIR_UP; |
1205 | 1208 |
_pi[u] = -ART_COST; |
1206 | 1209 |
_pred[u] = f; |
1207 | 1210 |
_source[f] = u; |
1208 | 1211 |
_target[f] = _root; |
1209 | 1212 |
_cap[f] = INF; |
1210 | 1213 |
_flow[f] = _supply[u]; |
1211 | 1214 |
_state[f] = STATE_TREE; |
1212 | 1215 |
_cost[f] = ART_COST; |
1213 | 1216 |
_source[e] = _root; |
1214 | 1217 |
_target[e] = u; |
1215 | 1218 |
_cap[e] = INF; |
1216 | 1219 |
_flow[e] = 0; |
1217 | 1220 |
_cost[e] = 0; |
1218 | 1221 |
_state[e] = STATE_LOWER; |
1219 | 1222 |
++f; |
1220 | 1223 |
} |
1221 | 1224 |
} |
1222 | 1225 |
_all_arc_num = f; |
1223 | 1226 |
} |
1224 | 1227 |
|
1225 | 1228 |
return true; |
1226 | 1229 |
} |
1227 | 1230 |
|
1228 | 1231 |
// Find the join node |
1229 | 1232 |
void findJoinNode() { |
1230 | 1233 |
int u = _source[in_arc]; |
1231 | 1234 |
int v = _target[in_arc]; |
1232 | 1235 |
while (u != v) { |
1233 | 1236 |
if (_succ_num[u] < _succ_num[v]) { |
1234 | 1237 |
u = _parent[u]; |
1235 | 1238 |
} else { |
1236 | 1239 |
v = _parent[v]; |
1237 | 1240 |
} |
1238 | 1241 |
} |
1239 | 1242 |
join = u; |
1240 | 1243 |
} |
1241 | 1244 |
|
1242 | 1245 |
// Find the leaving arc of the cycle and returns true if the |
1243 | 1246 |
// leaving arc is not the same as the entering arc |
1244 | 1247 |
bool findLeavingArc() { |
1245 | 1248 |
// Initialize first and second nodes according to the direction |
1246 | 1249 |
// of the cycle |
1247 | 1250 |
int first, second; |
1248 | 1251 |
if (_state[in_arc] == STATE_LOWER) { |
1249 | 1252 |
first = _source[in_arc]; |
1250 | 1253 |
second = _target[in_arc]; |
1251 | 1254 |
} else { |
1252 | 1255 |
first = _target[in_arc]; |
1253 | 1256 |
second = _source[in_arc]; |
1254 | 1257 |
} |
1255 | 1258 |
delta = _cap[in_arc]; |
1256 | 1259 |
int result = 0; |
1257 | 1260 |
Value c, d; |
1258 | 1261 |
int e; |
1259 | 1262 |
|
1260 | 1263 |
// Search the cycle form the first node to the join node |
1261 | 1264 |
for (int u = first; u != join; u = _parent[u]) { |
1262 | 1265 |
e = _pred[u]; |
1263 | 1266 |
d = _flow[e]; |
1264 | 1267 |
if (_pred_dir[u] == DIR_DOWN) { |
1265 | 1268 |
c = _cap[e]; |
1266 | 1269 |
d = c >= MAX ? INF : c - d; |
1267 | 1270 |
} |
1268 | 1271 |
if (d < delta) { |
1269 | 1272 |
delta = d; |
1270 | 1273 |
u_out = u; |
1271 | 1274 |
result = 1; |
1272 | 1275 |
} |
1273 | 1276 |
} |
1274 | 1277 |
|
1275 | 1278 |
// Search the cycle form the second node to the join node |
1276 | 1279 |
for (int u = second; u != join; u = _parent[u]) { |
1277 | 1280 |
e = _pred[u]; |
1278 | 1281 |
d = _flow[e]; |
1279 | 1282 |
if (_pred_dir[u] == DIR_UP) { |
1280 | 1283 |
c = _cap[e]; |
1281 | 1284 |
d = c >= MAX ? INF : c - d; |
1282 | 1285 |
} |
1283 | 1286 |
if (d <= delta) { |
1284 | 1287 |
delta = d; |
1285 | 1288 |
u_out = u; |
1286 | 1289 |
result = 2; |
1287 | 1290 |
} |
1288 | 1291 |
} |
1289 | 1292 |
|
1290 | 1293 |
if (result == 1) { |
1291 | 1294 |
u_in = first; |
1292 | 1295 |
v_in = second; |
1293 | 1296 |
} else { |
1294 | 1297 |
u_in = second; |
1295 | 1298 |
v_in = first; |
1296 | 1299 |
} |
1297 | 1300 |
return result != 0; |
1298 | 1301 |
} |
1299 | 1302 |
|
1300 | 1303 |
// Change _flow and _state vectors |
1301 | 1304 |
void changeFlow(bool change) { |
1302 | 1305 |
// Augment along the cycle |
1303 | 1306 |
if (delta > 0) { |
1304 | 1307 |
Value val = _state[in_arc] * delta; |
1305 | 1308 |
_flow[in_arc] += val; |
1306 | 1309 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1307 | 1310 |
_flow[_pred[u]] -= _pred_dir[u] * val; |
1308 | 1311 |
} |
1309 | 1312 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1310 | 1313 |
_flow[_pred[u]] += _pred_dir[u] * val; |
1311 | 1314 |
} |
1312 | 1315 |
} |
1313 | 1316 |
// Update the state of the entering and leaving arcs |
1314 | 1317 |
if (change) { |
1315 | 1318 |
_state[in_arc] = STATE_TREE; |
1316 | 1319 |
_state[_pred[u_out]] = |
1317 | 1320 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1318 | 1321 |
} else { |
1319 | 1322 |
_state[in_arc] = -_state[in_arc]; |
1320 | 1323 |
} |
1321 | 1324 |
} |
1322 | 1325 |
|
1323 | 1326 |
// Update the tree structure |
1324 | 1327 |
void updateTreeStructure() { |
1325 | 1328 |
int old_rev_thread = _rev_thread[u_out]; |
1326 | 1329 |
int old_succ_num = _succ_num[u_out]; |
1327 | 1330 |
int old_last_succ = _last_succ[u_out]; |
1328 | 1331 |
v_out = _parent[u_out]; |
1329 | 1332 |
|
1330 | 1333 |
// Check if u_in and u_out coincide |
1331 | 1334 |
if (u_in == u_out) { |
1332 | 1335 |
// Update _parent, _pred, _pred_dir |
1333 | 1336 |
_parent[u_in] = v_in; |
1334 | 1337 |
_pred[u_in] = in_arc; |
1335 | 1338 |
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; |
1336 | 1339 |
|
1337 | 1340 |
// Update _thread and _rev_thread |
1338 | 1341 |
if (_thread[v_in] != u_out) { |
1339 | 1342 |
int after = _thread[old_last_succ]; |
1340 | 1343 |
_thread[old_rev_thread] = after; |
1341 | 1344 |
_rev_thread[after] = old_rev_thread; |
1342 | 1345 |
after = _thread[v_in]; |
1343 | 1346 |
_thread[v_in] = u_out; |
1344 | 1347 |
_rev_thread[u_out] = v_in; |
1345 | 1348 |
_thread[old_last_succ] = after; |
1346 | 1349 |
_rev_thread[after] = old_last_succ; |
1347 | 1350 |
} |
1348 | 1351 |
} else { |
1349 | 1352 |
// Handle the case when old_rev_thread equals to v_in |
1350 | 1353 |
// (it also means that join and v_out coincide) |
1351 | 1354 |
int thread_continue = old_rev_thread == v_in ? |
1352 | 1355 |
_thread[old_last_succ] : _thread[v_in]; |
1353 | 1356 |
|
1354 | 1357 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1355 | 1358 |
// between u_in and u_out, whose parent have to be changed) |
1356 | 1359 |
int stem = u_in; // the current stem node |
1357 | 1360 |
int par_stem = v_in; // the new parent of stem |
1358 | 1361 |
int next_stem; // the next stem node |
1359 | 1362 |
int last = _last_succ[u_in]; // the last successor of stem |
1360 | 1363 |
int before, after = _thread[last]; |
1361 | 1364 |
_thread[v_in] = u_in; |
1362 | 1365 |
_dirty_revs.clear(); |
1363 | 1366 |
_dirty_revs.push_back(v_in); |
1364 | 1367 |
while (stem != u_out) { |
1365 | 1368 |
// Insert the next stem node into the thread list |
1366 | 1369 |
next_stem = _parent[stem]; |
1367 | 1370 |
_thread[last] = next_stem; |
1368 | 1371 |
_dirty_revs.push_back(last); |
1369 | 1372 |
|
1370 | 1373 |
// Remove the subtree of stem from the thread list |
1371 | 1374 |
before = _rev_thread[stem]; |
1372 | 1375 |
_thread[before] = after; |
1373 | 1376 |
_rev_thread[after] = before; |
1374 | 1377 |
|
1375 | 1378 |
// Change the parent node and shift stem nodes |
1376 | 1379 |
_parent[stem] = par_stem; |
1377 | 1380 |
par_stem = stem; |
1378 | 1381 |
stem = next_stem; |
1379 | 1382 |
|
1380 | 1383 |
// Update last and after |
1381 | 1384 |
last = _last_succ[stem] == _last_succ[par_stem] ? |
1382 | 1385 |
_rev_thread[par_stem] : _last_succ[stem]; |
1383 | 1386 |
after = _thread[last]; |
1384 | 1387 |
} |
1385 | 1388 |
_parent[u_out] = par_stem; |
1386 | 1389 |
_thread[last] = thread_continue; |
1387 | 1390 |
_rev_thread[thread_continue] = last; |
1388 | 1391 |
_last_succ[u_out] = last; |
1389 | 1392 |
|
1390 | 1393 |
// Remove the subtree of u_out from the thread list except for |
1391 | 1394 |
// the case when old_rev_thread equals to v_in |
1392 | 1395 |
if (old_rev_thread != v_in) { |
1393 | 1396 |
_thread[old_rev_thread] = after; |
1394 | 1397 |
_rev_thread[after] = old_rev_thread; |
1395 | 1398 |
} |
0 comments (0 inline)