↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22

	
23 23

	
24 24
\page lgf-format LEMON Graph Format (LGF)
25 25

	
26 26
The \e LGF is a <em>column oriented</em>
27 27
file format for storing graphs and associated data like
28 28
node and edge maps.
29 29

	
30 30
Each line with \c '#' first non-whitespace
31 31
character is considered as a comment line.
32 32

	
33 33
Otherwise the file consists of sections starting with
34 34
a header line. The header lines starts with an \c '@' character followed by the
35 35
type of section. The standard section types are \c \@nodes, \c
36 36
\@arcs and \c \@edges
37 37
and \@attributes. Each header line may also have an optional
38 38
\e name, which can be use to distinguish the sections of the same
39 39
type.
40 40

	
41 41
The standard sections are column oriented, each line consists of
42 42
<em>token</em>s separated by whitespaces. A token can be \e plain or
43 43
\e quoted. A plain token is just a sequence of non-whitespace characters,
44 44
while a quoted token is a
45 45
character sequence surrounded by double quotes, and it can also
46 46
contain whitespaces and escape sequences.
47 47

	
48 48
The \c \@nodes section describes a set of nodes and associated
49 49
maps. The first is a header line, its columns are the names of the
50 50
maps appearing in the following lines.
51 51
One of the maps must be called \c
52 52
"label", which plays special role in the file.
53 53
The following
54 54
non-empty lines until the next section describes nodes of the
55 55
graph. Each line contains the values of the node maps
56 56
associated to the current node.
57 57

	
58 58
\code
59 59
 @nodes
60 60
 label  coordinates  size    title
61 61
 1      (10,20)      10      "First node"
62 62
 2      (80,80)      8       "Second node"
63 63
 3      (40,10)      10      "Third node"
64 64
\endcode
65 65

	
66 66
The \c \@arcs section is very similar to the \c \@nodes section, it
67 67
again starts with a header line describing the names of the maps, but
68 68
the \c "label" map is not obligatory here. The following lines
69 69
describe the arcs. The first two tokens of each line are the source
70 70
and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81 81
If there is no map in the \c \@arcs section at all, then it must be
82 82
indicated by a sole '-' sign in the first line.
83 83

	
84 84
\code
85 85
 @arcs
86 86
         -
87 87
 1   2
88 88
 1   3
89 89
 2   3
90 90
\endcode
91 91

	
92 92
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
93 93
also store the edge set of an undirected graph. In such case there is
94 94
a conventional method for store arc maps in the file, if two columns
95 95
have the same caption with \c '+' and \c '-' prefix, then these columns
96 96
can be regarded as the values of an arc map.
97 97

	
98 98
The \c \@attributes section contains key-value pairs, each line
99 99
consists of two tokens, an attribute name, and then an attribute
100 100
value. The value of the attribute could be also a label value of a
101 101
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
102 102
which regards to the forward or backward directed arc of the
103 103
corresponding edge.
104 104

	
105 105
\code
106 106
 @attributes
107 107
 source 1
108 108
 target 3
109 109
 caption "LEMON test digraph"
110 110
\endcode
111 111

	
112 112
The \e LGF can contain extra sections, but there is no restriction on
113 113
the format of such sections.
114 114

	
115 115
*/
116 116
}
117 117

	
118 118
//  LocalWords:  whitespace whitespaces
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
20 20
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/error.h>
24 24

	
25 25
namespace lemon {
26 26

	
27 27
  template <typename _Digraph>
28 28
  class DigraphAdaptorExtender : public _Digraph {
29 29
    typedef _Digraph Parent;
30 30

	
31 31
  public:
32 32

	
33 33
    typedef _Digraph Digraph;
34 34
    typedef DigraphAdaptorExtender Adaptor;
35 35

	
36 36
    // Base extensions
37 37

	
38 38
    typedef typename Parent::Node Node;
39 39
    typedef typename Parent::Arc Arc;
40 40

	
41 41
    int maxId(Node) const {
42 42
      return Parent::maxNodeId();
43 43
    }
44 44

	
45 45
    int maxId(Arc) const {
46 46
      return Parent::maxArcId();
47 47
    }
48 48

	
49 49
    Node fromId(int id, Node) const {
50 50
      return Parent::nodeFromId(id);
51 51
    }
52 52

	
53 53
    Arc fromId(int id, Arc) const {
54 54
      return Parent::arcFromId(id);
55 55
    }
56 56

	
57 57
    Node oppositeNode(const Node &n, const Arc &e) const {
58 58
      if (n == Parent::source(e))
59 59
        return Parent::target(e);
60 60
      else if(n==Parent::target(e))
61 61
        return Parent::source(e);
62 62
      else
63 63
        return INVALID;
64 64
    }
65 65

	
66 66
    class NodeIt : public Node {
67 67
      const Adaptor* _adaptor;
68 68
    public:
69 69

	
70 70
      NodeIt() {}
71 71

	
72 72
      NodeIt(Invalid i) : Node(i) { }
73 73

	
74 74
      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
75 75
        _adaptor->first(static_cast<Node&>(*this));
76 76
      }
77 77

	
78 78
      NodeIt(const Adaptor& adaptor, const Node& node)
79 79
        : Node(node), _adaptor(&adaptor) {}
80 80

	
81 81
      NodeIt& operator++() {
82 82
        _adaptor->next(*this);
83 83
        return *this;
84 84
      }
85 85

	
86 86
    };
87 87

	
88 88

	
89 89
    class ArcIt : public Arc {
90 90
      const Adaptor* _adaptor;
91 91
    public:
92 92

	
93 93
      ArcIt() { }
94 94

	
95 95
      ArcIt(Invalid i) : Arc(i) { }
96 96

	
97 97
      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
98 98
        _adaptor->first(static_cast<Arc&>(*this));
99 99
      }
100 100

	
101 101
      ArcIt(const Adaptor& adaptor, const Arc& e) :
102 102
        Arc(e), _adaptor(&adaptor) { }
103 103

	
104 104
      ArcIt& operator++() {
105 105
        _adaptor->next(*this);
106 106
        return *this;
107 107
      }
108 108

	
109 109
    };
110 110

	
111 111

	
112 112
    class OutArcIt : public Arc {
113 113
      const Adaptor* _adaptor;
114 114
    public:
115 115

	
116 116
      OutArcIt() { }
117 117

	
118 118
      OutArcIt(Invalid i) : Arc(i) { }
119 119

	
120 120
      OutArcIt(const Adaptor& adaptor, const Node& node)
121 121
        : _adaptor(&adaptor) {
122 122
        _adaptor->firstOut(*this, node);
123 123
      }
124 124

	
125 125
      OutArcIt(const Adaptor& adaptor, const Arc& arc)
126 126
        : Arc(arc), _adaptor(&adaptor) {}
127 127

	
128 128
      OutArcIt& operator++() {
129 129
        _adaptor->nextOut(*this);
130 130
        return *this;
131 131
      }
132 132

	
133 133
    };
134 134

	
135 135

	
136 136
    class InArcIt : public Arc {
137 137
      const Adaptor* _adaptor;
138 138
    public:
139 139

	
140 140
      InArcIt() { }
141 141

	
142 142
      InArcIt(Invalid i) : Arc(i) { }
143 143

	
144 144
      InArcIt(const Adaptor& adaptor, const Node& node)
145 145
        : _adaptor(&adaptor) {
146 146
        _adaptor->firstIn(*this, node);
147 147
      }
148 148

	
149 149
      InArcIt(const Adaptor& adaptor, const Arc& arc) :
150 150
        Arc(arc), _adaptor(&adaptor) {}
151 151

	
152 152
      InArcIt& operator++() {
153 153
        _adaptor->nextIn(*this);
154 154
        return *this;
155 155
      }
156 156

	
157 157
    };
158 158

	
159 159
    Node baseNode(const OutArcIt &e) const {
160 160
      return Parent::source(e);
161 161
    }
162 162
    Node runningNode(const OutArcIt &e) const {
163 163
      return Parent::target(e);
164 164
    }
165 165

	
166 166
    Node baseNode(const InArcIt &e) const {
167 167
      return Parent::target(e);
168 168
    }
169 169
    Node runningNode(const InArcIt &e) const {
170 170
      return Parent::source(e);
171 171
    }
172 172

	
173 173
  };
174 174

	
175 175
  template <typename _Graph>
176 176
  class GraphAdaptorExtender : public _Graph {
177 177
    typedef _Graph Parent;
178 178

	
179 179
  public:
180 180

	
181 181
    typedef _Graph Graph;
182 182
    typedef GraphAdaptorExtender Adaptor;
183 183

	
184 184
    typedef True UndirectedTag;
185 185

	
186 186
    typedef typename Parent::Node Node;
187 187
    typedef typename Parent::Arc Arc;
188 188
    typedef typename Parent::Edge Edge;
189 189

	
190 190
    // Graph extension
191 191

	
192 192
    int maxId(Node) const {
193 193
      return Parent::maxNodeId();
194 194
    }
195 195

	
196 196
    int maxId(Arc) const {
197 197
      return Parent::maxArcId();
198 198
    }
199 199

	
200 200
    int maxId(Edge) const {
201 201
      return Parent::maxEdgeId();
202 202
    }
203 203

	
204 204
    Node fromId(int id, Node) const {
205 205
      return Parent::nodeFromId(id);
206 206
    }
207 207

	
208 208
    Arc fromId(int id, Arc) const {
209 209
      return Parent::arcFromId(id);
210 210
    }
211 211

	
212 212
    Edge fromId(int id, Edge) const {
213 213
      return Parent::edgeFromId(id);
214 214
    }
215 215

	
216 216
    Node oppositeNode(const Node &n, const Edge &e) const {
217 217
      if( n == Parent::u(e))
218 218
        return Parent::v(e);
219 219
      else if( n == Parent::v(e))
220 220
        return Parent::u(e);
221 221
      else
222 222
        return INVALID;
223 223
    }
224 224

	
225 225
    Arc oppositeArc(const Arc &a) const {
226 226
      return Parent::direct(a, !Parent::direction(a));
227 227
    }
228 228

	
229 229
    using Parent::direct;
230 230
    Arc direct(const Edge &e, const Node &s) const {
231 231
      return Parent::direct(e, Parent::u(e) == s);
232 232
    }
233 233

	
234 234

	
235 235
    class NodeIt : public Node {
236 236
      const Adaptor* _adaptor;
237 237
    public:
238 238

	
239 239
      NodeIt() {}
240 240

	
241 241
      NodeIt(Invalid i) : Node(i) { }
242 242

	
243 243
      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
244 244
        _adaptor->first(static_cast<Node&>(*this));
245 245
      }
246 246

	
247 247
      NodeIt(const Adaptor& adaptor, const Node& node)
248 248
        : Node(node), _adaptor(&adaptor) {}
249 249

	
250 250
      NodeIt& operator++() {
251 251
        _adaptor->next(*this);
252 252
        return *this;
253 253
      }
254 254

	
255 255
    };
256 256

	
257 257

	
258 258
    class ArcIt : public Arc {
259 259
      const Adaptor* _adaptor;
260 260
    public:
261 261

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_PATH_DUMP_H
20 20
#define LEMON_BITS_PATH_DUMP_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/concept_check.h>
24 24

	
25 25
namespace lemon {
26 26

	
27 27
  template <typename _Digraph, typename _PredMap>
28 28
  class PredMapPath {
29 29
  public:
30 30
    typedef True RevPathTag;
31 31

	
32 32
    typedef _Digraph Digraph;
33 33
    typedef typename Digraph::Arc Arc;
34 34
    typedef _PredMap PredMap;
35 35

	
36 36
    PredMapPath(const Digraph& _digraph, const PredMap& _predMap,
37 37
                typename Digraph::Node _target)
38 38
      : digraph(_digraph), predMap(_predMap), target(_target) {}
39 39

	
40 40
    int length() const {
41 41
      int len = 0;
42 42
      typename Digraph::Node node = target;
43 43
      typename Digraph::Arc arc;
44 44
      while ((arc = predMap[node]) != INVALID) {
45 45
        node = digraph.source(arc);
46 46
        ++len;
47 47
      }
48 48
      return len;
49 49
    }
50 50

	
51 51
    bool empty() const {
52 52
      return predMap[target] == INVALID;
53 53
    }
54 54

	
55 55
    class RevArcIt {
56 56
    public:
57 57
      RevArcIt() {}
58 58
      RevArcIt(Invalid) : path(0), current(INVALID) {}
59 59
      RevArcIt(const PredMapPath& _path)
60 60
        : path(&_path), current(_path.target) {
61 61
        if (path->predMap[current] == INVALID) current = INVALID;
62 62
      }
63 63

	
64 64
      operator const typename Digraph::Arc() const {
65 65
        return path->predMap[current];
66 66
      }
67 67

	
68 68
      RevArcIt& operator++() {
69 69
        current = path->digraph.source(path->predMap[current]);
70 70
        if (path->predMap[current] == INVALID) current = INVALID;
71 71
        return *this;
72 72
      }
73 73

	
74 74
      bool operator==(const RevArcIt& e) const {
75 75
        return current == e.current;
76 76
      }
77 77

	
78 78
      bool operator!=(const RevArcIt& e) const {
79 79
        return current != e.current;
80 80
      }
81 81

	
82 82
      bool operator<(const RevArcIt& e) const {
83 83
        return current < e.current;
84 84
      }
85 85

	
86 86
    private:
87 87
      const PredMapPath* path;
88 88
      typename Digraph::Node current;
89 89
    };
90 90

	
91 91
  private:
92 92
    const Digraph& digraph;
93 93
    const PredMap& predMap;
94 94
    typename Digraph::Node target;
95 95
  };
96 96

	
97 97

	
98 98
  template <typename _Digraph, typename _PredMatrixMap>
99 99
  class PredMatrixMapPath {
100 100
  public:
101 101
    typedef True RevPathTag;
102 102

	
103 103
    typedef _Digraph Digraph;
104 104
    typedef typename Digraph::Arc Arc;
105 105
    typedef _PredMatrixMap PredMatrixMap;
106 106

	
107 107
    PredMatrixMapPath(const Digraph& _digraph,
108 108
                      const PredMatrixMap& _predMatrixMap,
109 109
                      typename Digraph::Node _source,
110 110
                      typename Digraph::Node _target)
111 111
      : digraph(_digraph), predMatrixMap(_predMatrixMap),
112 112
        source(_source), target(_target) {}
113 113

	
114 114
    int length() const {
115 115
      int len = 0;
116 116
      typename Digraph::Node node = target;
117 117
      typename Digraph::Arc arc;
118 118
      while ((arc = predMatrixMap(source, node)) != INVALID) {
119 119
        node = digraph.source(arc);
120 120
        ++len;
121 121
      }
122 122
      return len;
123 123
    }
124 124

	
125 125
    bool empty() const {
126 126
      return predMatrixMap(source, target) == INVALID;
127 127
    }
128 128

	
129 129
    class RevArcIt {
130 130
    public:
131 131
      RevArcIt() {}
132 132
      RevArcIt(Invalid) : path(0), current(INVALID) {}
133 133
      RevArcIt(const PredMatrixMapPath& _path)
134 134
        : path(&_path), current(_path.target) {
135 135
        if (path->predMatrixMap(path->source, current) == INVALID)
136 136
          current = INVALID;
137 137
      }
138 138

	
139 139
      operator const typename Digraph::Arc() const {
140 140
        return path->predMatrixMap(path->source, current);
141 141
      }
142 142

	
143 143
      RevArcIt& operator++() {
144 144
        current =
145 145
          path->digraph.source(path->predMatrixMap(path->source, current));
146 146
        if (path->predMatrixMap(path->source, current) == INVALID)
147 147
          current = INVALID;
148 148
        return *this;
149 149
      }
150 150

	
151 151
      bool operator==(const RevArcIt& e) const {
152 152
        return current == e.current;
153 153
      }
154 154

	
155 155
      bool operator!=(const RevArcIt& e) const {
156 156
        return current != e.current;
157 157
      }
158 158

	
159 159
      bool operator<(const RevArcIt& e) const {
160 160
        return current < e.current;
161 161
      }
162 162

	
163 163
    private:
164 164
      const PredMatrixMapPath* path;
165 165
      typename Digraph::Node current;
166 166
    };
167 167

	
168 168
  private:
169 169
    const Digraph& digraph;
170 170
    const PredMatrixMap& predMatrixMap;
171 171
    typename Digraph::Node source;
172 172
    typename Digraph::Node target;
173 173
  };
174 174

	
175 175
}
176 176

	
177 177
#endif
Ignore white space 512 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/bits/windows.h>
23 23

	
24 24
#ifdef WIN32
25 25
#ifndef WIN32_LEAN_AND_MEAN
26 26
#define WIN32_LEAN_AND_MEAN
27 27
#endif
28 28
#ifndef NOMINMAX
29 29
#define NOMINMAX
30 30
#endif
31 31
#ifdef UNICODE
32 32
#undef UNICODE
33 33
#endif
34 34
#include <windows.h>
35 35
#ifdef LOCALE_INVARIANT
36 36
#define MY_LOCALE LOCALE_INVARIANT
37 37
#else
38 38
#define MY_LOCALE LOCALE_NEUTRAL
39 39
#endif
40 40
#else
41 41
#include <unistd.h>
42 42
#include <ctime>
43 43
#ifndef WIN32
44 44
#include <sys/times.h>
45 45
#endif
46 46
#include <sys/time.h>
47 47
#endif
48 48

	
49 49
#include <cmath>
50 50
#include <sstream>
51 51

	
52 52
namespace lemon {
53 53
  namespace bits {
54 54
    void getWinProcTimes(double &rtime,
55 55
                         double &utime, double &stime,
56 56
                         double &cutime, double &cstime)
57 57
    {
58 58
#ifdef WIN32
59 59
      static const double ch = 4294967296.0e-7;
60 60
      static const double cl = 1.0e-7;
61 61

	
62 62
      FILETIME system;
63 63
      GetSystemTimeAsFileTime(&system);
64 64
      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
65 65

	
66 66
      FILETIME create, exit, kernel, user;
67 67
      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
68 68
        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
69 69
        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
70 70
        cutime = 0;
71 71
        cstime = 0;
72 72
      } else {
73 73
        rtime = 0;
74 74
        utime = 0;
75 75
        stime = 0;
76 76
        cutime = 0;
77 77
        cstime = 0;
78 78
      }
79 79
#else
80 80
      timeval tv;
81 81
      gettimeofday(&tv, 0);
82 82
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
83 83

	
84 84
      tms ts;
85 85
      double tck=sysconf(_SC_CLK_TCK);
86 86
      times(&ts);
87 87
      utime=ts.tms_utime/tck;
88 88
      stime=ts.tms_stime/tck;
89 89
      cutime=ts.tms_cutime/tck;
90 90
      cstime=ts.tms_cstime/tck;
91 91
#endif
92 92
    }
93 93

	
94 94
    std::string getWinFormattedDate()
95 95
    {
96 96
      std::ostringstream os;
97 97
#ifdef WIN32
98 98
      SYSTEMTIME time;
99 99
      GetSystemTime(&time);
100 100
      char buf1[11], buf2[9], buf3[5];
101 101
          if (GetDateFormat(MY_LOCALE, 0, &time,
102 102
                        ("ddd MMM dd"), buf1, 11) &&
103 103
          GetTimeFormat(MY_LOCALE, 0, &time,
104 104
                        ("HH':'mm':'ss"), buf2, 9) &&
105 105
          GetDateFormat(MY_LOCALE, 0, &time,
106 106
                        ("yyyy"), buf3, 5)) {
107 107
        os << buf1 << ' ' << buf2 << ' ' << buf3;
108 108
      }
109 109
      else os << "unknown";
110 110
#else
111 111
      timeval tv;
112 112
      gettimeofday(&tv, 0);
113 113

	
114 114
      char cbuf[26];
115 115
      ctime_r(&tv.tv_sec,cbuf);
116 116
      os << cbuf;
117 117
#endif
118 118
      return os.str();
119 119
    }
120 120

	
121 121
    int getWinRndSeed()
122 122
    {
123 123
#ifdef WIN32
124 124
      FILETIME time;
125 125
      GetSystemTimeAsFileTime(&time);
126 126
      return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime;
127 127
#else
128 128
      timeval tv;
129 129
      gettimeofday(&tv, 0);
130 130
      return getpid() + tv.tv_sec + tv.tv_usec;
131 131
#endif
132 132
    }
133 133
  }
134 134
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COST_SCALING_H
20 20
#define LEMON_COST_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <deque>
28 28
#include <limits>
29 29

	
30 30
#include <lemon/core.h>
31 31
#include <lemon/maps.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/circulation.h>
35 35
#include <lemon/bellman_ford.h>
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Default traits class of CostScaling algorithm.
40 40
  ///
41 41
  /// Default traits class of CostScaling algorithm.
42 42
  /// \tparam GR Digraph type.
43 43
  /// \tparam V The number type used for flow amounts, capacity bounds
44 44
  /// and supply values. By default it is \c int.
45 45
  /// \tparam C The number type used for costs and potentials.
46 46
  /// By default it is the same as \c V.
47 47
#ifdef DOXYGEN
48 48
  template <typename GR, typename V = int, typename C = V>
49 49
#else
50 50
  template < typename GR, typename V = int, typename C = V,
51 51
             bool integer = std::numeric_limits<C>::is_integer >
52 52
#endif
53 53
  struct CostScalingDefaultTraits
54 54
  {
55 55
    /// The type of the digraph
56 56
    typedef GR Digraph;
57 57
    /// The type of the flow amounts, capacity bounds and supply values
58 58
    typedef V Value;
59 59
    /// The type of the arc costs
60 60
    typedef C Cost;
61 61

	
62 62
    /// \brief The large cost type used for internal computations
63 63
    ///
64 64
    /// The large cost type used for internal computations.
65 65
    /// It is \c long \c long if the \c Cost type is integer,
66 66
    /// otherwise it is \c double.
67 67
    /// \c Cost must be convertible to \c LargeCost.
68 68
    typedef double LargeCost;
69 69
  };
70 70

	
71 71
  // Default traits class for integer cost types
72 72
  template <typename GR, typename V, typename C>
73 73
  struct CostScalingDefaultTraits<GR, V, C, true>
74 74
  {
75 75
    typedef GR Digraph;
76 76
    typedef V Value;
77 77
    typedef C Cost;
78 78
#ifdef LEMON_HAVE_LONG_LONG
79 79
    typedef long long LargeCost;
80 80
#else
81 81
    typedef long LargeCost;
82 82
#endif
83 83
  };
84 84

	
85 85

	
86 86
  /// \addtogroup min_cost_flow_algs
87 87
  /// @{
88 88

	
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 95
  /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100 100
  /// Most of the parameters of the problem (except for the digraph)
101 101
  /// can be given using separate functions, and the algorithm can be
102 102
  /// executed using the \ref run() function. If some parameters are not
103 103
  /// specified, then default values will be used.
104 104
  ///
105 105
  /// \tparam GR The digraph type the algorithm runs on.
106 106
  /// \tparam V The number type used for flow amounts, capacity bounds
107 107
  /// and supply values in the algorithm. By default, it is \c int.
108 108
  /// \tparam C The number type used for costs and potentials in the
109 109
  /// algorithm. By default, it is the same as \c V.
110 110
  /// \tparam TR The traits class that defines various types used by the
111 111
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
112 112
  /// "CostScalingDefaultTraits<GR, V, C>".
113 113
  /// In most cases, this parameter should not be set directly,
114 114
  /// consider to use the named template parameters instead.
115 115
  ///
116 116
  /// \warning Both number types must be signed and all input data must
117 117
  /// be integer.
118 118
  /// \warning This algorithm does not support negative costs for such
119 119
  /// arcs that have infinite upper bound.
120 120
  ///
121 121
  /// \note %CostScaling provides three different internal methods,
122 122
  /// from which the most efficient one is used by default.
123 123
  /// For more information, see \ref Method.
124 124
#ifdef DOXYGEN
125 125
  template <typename GR, typename V, typename C, typename TR>
126 126
#else
127 127
  template < typename GR, typename V = int, typename C = V,
128 128
             typename TR = CostScalingDefaultTraits<GR, V, C> >
129 129
#endif
130 130
  class CostScaling
131 131
  {
132 132
  public:
133 133

	
134 134
    /// The type of the digraph
135 135
    typedef typename TR::Digraph Digraph;
136 136
    /// The type of the flow amounts, capacity bounds and supply values
137 137
    typedef typename TR::Value Value;
138 138
    /// The type of the arc costs
139 139
    typedef typename TR::Cost Cost;
140 140

	
141 141
    /// \brief The large cost type
142 142
    ///
143 143
    /// The large cost type used for internal computations.
144 144
    /// By default, it is \c long \c long if the \c Cost type is integer,
145 145
    /// otherwise it is \c double.
146 146
    typedef typename TR::LargeCost LargeCost;
147 147

	
148 148
    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
149 149
    typedef TR Traits;
150 150

	
151 151
  public:
152 152

	
153 153
    /// \brief Problem type constants for the \c run() function.
154 154
    ///
155 155
    /// Enum type containing the problem type constants that can be
156 156
    /// returned by the \ref run() function of the algorithm.
157 157
    enum ProblemType {
158 158
      /// The problem has no feasible solution (flow).
159 159
      INFEASIBLE,
160 160
      /// The problem has optimal solution (i.e. it is feasible and
161 161
      /// bounded), and the algorithm has found optimal flow and node
162 162
      /// potentials (primal and dual solutions).
163 163
      OPTIMAL,
164 164
      /// The digraph contains an arc of negative cost and infinite
165 165
      /// upper bound. It means that the objective function is unbounded
166 166
      /// on that arc, however, note that it could actually be bounded
167 167
      /// over the feasible flows, but this algroithm cannot handle
168 168
      /// these cases.
169 169
      UNBOUNDED
170 170
    };
171 171

	
172 172
    /// \brief Constants for selecting the internal method.
173 173
    ///
174 174
    /// Enum type containing constants for selecting the internal method
175 175
    /// for the \ref run() function.
176 176
    ///
177 177
    /// \ref CostScaling provides three internal methods that differ mainly
178 178
    /// in their base operations, which are used in conjunction with the
179 179
    /// relabel operation.
180 180
    /// By default, the so called \ref PARTIAL_AUGMENT
181 181
    /// "Partial Augment-Relabel" method is used, which proved to be
182 182
    /// the most efficient and the most robust on various test inputs.
183 183
    /// However, the other methods can be selected using the \ref run()
184 184
    /// function with the proper parameter.
185 185
    enum Method {
186 186
      /// Local push operations are used, i.e. flow is moved only on one
187 187
      /// admissible arc at once.
188 188
      PUSH,
189 189
      /// Augment operations are used, i.e. flow is moved on admissible
190 190
      /// paths from a node with excess to a node with deficit.
191 191
      AUGMENT,
192 192
      /// Partial augment operations are used, i.e. flow is moved on
193 193
      /// admissible paths started from a node with excess, but the
194 194
      /// lengths of these paths are limited. This method can be viewed
195 195
      /// as a combined version of the previous two operations.
196 196
      PARTIAL_AUGMENT
197 197
    };
198 198

	
199 199
  private:
200 200

	
201 201
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
202 202

	
203 203
    typedef std::vector<int> IntVector;
204 204
    typedef std::vector<Value> ValueVector;
205 205
    typedef std::vector<Cost> CostVector;
206 206
    typedef std::vector<LargeCost> LargeCostVector;
207 207
    typedef std::vector<char> BoolVector;
208 208
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
209 209

	
210 210
  private:
211 211

	
212 212
    template <typename KT, typename VT>
213 213
    class StaticVectorMap {
214 214
    public:
215 215
      typedef KT Key;
216 216
      typedef VT Value;
217 217

	
218 218
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
219 219

	
220 220
      const Value& operator[](const Key& key) const {
221 221
        return _v[StaticDigraph::id(key)];
222 222
      }
223 223

	
224 224
      Value& operator[](const Key& key) {
225 225
        return _v[StaticDigraph::id(key)];
226 226
      }
227 227

	
228 228
      void set(const Key& key, const Value& val) {
229 229
        _v[StaticDigraph::id(key)] = val;
230 230
      }
231 231

	
232 232
    private:
233 233
      std::vector<Value>& _v;
234 234
    };
235 235

	
236 236
    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
237 237
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
238 238

	
239 239
  private:
240 240

	
241 241
    // Data related to the underlying digraph
242 242
    const GR &_graph;
243 243
    int _node_num;
244 244
    int _arc_num;
245 245
    int _res_node_num;
246 246
    int _res_arc_num;
247 247
    int _root;
248 248

	
249 249
    // Parameters of the problem
250 250
    bool _have_lower;
251 251
    Value _sum_supply;
252 252
    int _sup_node_num;
253 253

	
254 254
    // Data structures for storing the digraph
255 255
    IntNodeMap _node_id;
256 256
    IntArcMap _arc_idf;
257 257
    IntArcMap _arc_idb;
258 258
    IntVector _first_out;
259 259
    BoolVector _forward;
260 260
    IntVector _source;
261 261
    IntVector _target;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25
#include <map>
26 26

	
27 27
#include <lemon/core.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  /// \addtogroup maps
36 36
  /// @{
37 37

	
38 38
  /// Base class of maps.
39 39

	
40 40
  /// Base class of maps. It provides the necessary type definitions
41 41
  /// required by the map %concepts.
42 42
  template<typename K, typename V>
43 43
  class MapBase {
44 44
  public:
45 45
    /// \brief The key type of the map.
46 46
    typedef K Key;
47 47
    /// \brief The value type of the map.
48 48
    /// (The type of objects associated with the keys).
49 49
    typedef V Value;
50 50
  };
51 51

	
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map,
57 57
  /// but data written to it is not required (i.e. it will be sent to
58 58
  /// <tt>/dev/null</tt>).
59 59
  /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
60 60
  ///
61 61
  /// \sa ConstMap
62 62
  template<typename K, typename V>
63 63
  class NullMap : public MapBase<K, V> {
64 64
  public:
65 65
    ///\e
66 66
    typedef K Key;
67 67
    ///\e
68 68
    typedef V Value;
69 69

	
70 70
    /// Gives back a default constructed element.
71 71
    Value operator[](const Key&) const { return Value(); }
72 72
    /// Absorbs the value.
73 73
    void set(const Key&, const Value&) {}
74 74
  };
75 75

	
76 76
  /// Returns a \c NullMap class
77 77

	
78 78
  /// This function just returns a \c NullMap class.
79 79
  /// \relates NullMap
80 80
  template <typename K, typename V>
81 81
  NullMap<K, V> nullMap() {
82 82
    return NullMap<K, V>();
83 83
  }
84 84

	
85 85

	
86 86
  /// Constant map.
87 87

	
88 88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
89 89
  /// value to each key.
90 90
  ///
91 91
  /// In other aspects it is equivalent to \c NullMap.
92 92
  /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
93 93
  /// concept, but it absorbs the data written to it.
94 94
  ///
95 95
  /// The simplest way of using this map is through the constMap()
96 96
  /// function.
97 97
  ///
98 98
  /// \sa NullMap
99 99
  /// \sa IdentityMap
100 100
  template<typename K, typename V>
101 101
  class ConstMap : public MapBase<K, V> {
102 102
  private:
103 103
    V _value;
104 104
  public:
105 105
    ///\e
106 106
    typedef K Key;
107 107
    ///\e
108 108
    typedef V Value;
109 109

	
110 110
    /// Default constructor
111 111

	
112 112
    /// Default constructor.
113 113
    /// The value of the map will be default constructed.
114 114
    ConstMap() {}
115 115

	
116 116
    /// Constructor with specified initial value
117 117

	
118 118
    /// Constructor with specified initial value.
119 119
    /// \param v The initial value of the map.
120 120
    ConstMap(const Value &v) : _value(v) {}
121 121

	
122 122
    /// Gives back the specified value.
123 123
    Value operator[](const Key&) const { return _value; }
124 124

	
125 125
    /// Absorbs the value.
126 126
    void set(const Key&, const Value&) {}
127 127

	
128 128
    /// Sets the value that is assigned to each key.
129 129
    void setAll(const Value &v) {
130 130
      _value = v;
131 131
    }
132 132

	
133 133
    template<typename V1>
134 134
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
135 135
  };
136 136

	
137 137
  /// Returns a \c ConstMap class
138 138

	
139 139
  /// This function just returns a \c ConstMap class.
140 140
  /// \relates ConstMap
141 141
  template<typename K, typename V>
142 142
  inline ConstMap<K, V> constMap(const V &v) {
143 143
    return ConstMap<K, V>(v);
144 144
  }
145 145

	
146 146
  template<typename K, typename V>
147 147
  inline ConstMap<K, V> constMap() {
148 148
    return ConstMap<K, V>();
149 149
  }
150 150

	
151 151

	
152 152
  template<typename T, T v>
153 153
  struct Const {};
154 154

	
155 155
  /// Constant map with inlined constant value.
156 156

	
157 157
  /// This \ref concepts::ReadMap "readable map" assigns a specified
158 158
  /// value to each key.
159 159
  ///
160 160
  /// In other aspects it is equivalent to \c NullMap.
161 161
  /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
162 162
  /// concept, but it absorbs the data written to it.
163 163
  ///
164 164
  /// The simplest way of using this map is through the constMap()
165 165
  /// function.
166 166
  ///
167 167
  /// \sa NullMap
168 168
  /// \sa IdentityMap
169 169
  template<typename K, typename V, V v>
170 170
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
171 171
  public:
172 172
    ///\e
173 173
    typedef K Key;
174 174
    ///\e
175 175
    typedef V Value;
176 176

	
177 177
    /// Constructor.
178 178
    ConstMap() {}
179 179

	
180 180
    /// Gives back the specified value.
181 181
    Value operator[](const Key&) const { return v; }
182 182

	
183 183
    /// Absorbs the value.
184 184
    void set(const Key&, const Value&) {}
185 185
  };
186 186

	
187 187
  /// Returns a \c ConstMap class with inlined constant value
188 188

	
189 189
  /// This function just returns a \c ConstMap class with inlined
190 190
  /// constant value.
191 191
  /// \relates ConstMap
192 192
  template<typename K, typename V, V v>
193 193
  inline ConstMap<K, Const<V, v> > constMap() {
194 194
    return ConstMap<K, Const<V, v> >();
195 195
  }
196 196

	
197 197

	
198 198
  /// Identity map.
199 199

	
200 200
  /// This \ref concepts::ReadMap "read-only map" gives back the given
201 201
  /// key as value without any modification.
202 202
  ///
203 203
  /// \sa ConstMap
204 204
  template <typename T>
205 205
  class IdentityMap : public MapBase<T, T> {
206 206
  public:
207 207
    ///\e
208 208
    typedef T Key;
209 209
    ///\e
210 210
    typedef T Value;
211 211

	
212 212
    /// Gives back the given value without any modification.
213 213
    Value operator[](const Key &k) const {
214 214
      return k;
215 215
    }
216 216
  };
217 217

	
218 218
  /// Returns an \c IdentityMap class
219 219

	
220 220
  /// This function just returns an \c IdentityMap class.
221 221
  /// \relates IdentityMap
222 222
  template<typename T>
223 223
  inline IdentityMap<T> identityMap() {
224 224
    return IdentityMap<T>();
225 225
  }
226 226

	
227 227

	
228 228
  /// \brief Map for storing values for integer keys from the range
229 229
  /// <tt>[0..size-1]</tt>.
230 230
  ///
231 231
  /// This map is essentially a wrapper for \c std::vector. It assigns
232 232
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
233 233
  /// It can be used together with some data structures, e.g.
234 234
  /// heap types and \c UnionFind, when the used items are small
235 235
  /// integers. This map conforms to the \ref concepts::ReferenceMap
236 236
  /// "ReferenceMap" concept.
237 237
  ///
238 238
  /// The simplest way of using this map is through the rangeMap()
239 239
  /// function.
240 240
  template <typename V>
241 241
  class RangeMap : public MapBase<int, V> {
242 242
    template <typename V1>
243 243
    friend class RangeMap;
244 244
  private:
245 245

	
246 246
    typedef std::vector<V> Vector;
247 247
    Vector _vector;
248 248

	
249 249
  public:
250 250

	
251 251
    /// Key type
252 252
    typedef int Key;
253 253
    /// Value type
254 254
    typedef V Value;
255 255
    /// Reference type
256 256
    typedef typename Vector::reference Reference;
257 257
    /// Const reference type
258 258
    typedef typename Vector::const_reference ConstReference;
259 259

	
260 260
    typedef True ReferenceMapTag;
261 261

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_PREFLOW_H
20 20
#define LEMON_PREFLOW_H
21 21

	
22 22
#include <lemon/tolerance.h>
23 23
#include <lemon/elevator.h>
24 24

	
25 25
/// \file
26 26
/// \ingroup max_flow
27 27
/// \brief Implementation of the preflow algorithm.
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  /// \brief Default traits class of Preflow class.
32 32
  ///
33 33
  /// Default traits class of Preflow class.
34 34
  /// \tparam GR Digraph type.
35 35
  /// \tparam CAP Capacity map type.
36 36
  template <typename GR, typename CAP>
37 37
  struct PreflowDefaultTraits {
38 38

	
39 39
    /// \brief The type of the digraph the algorithm runs on.
40 40
    typedef GR Digraph;
41 41

	
42 42
    /// \brief The type of the map that stores the arc capacities.
43 43
    ///
44 44
    /// The type of the map that stores the arc capacities.
45 45
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
46 46
    typedef CAP CapacityMap;
47 47

	
48 48
    /// \brief The type of the flow values.
49 49
    typedef typename CapacityMap::Value Value;
50 50

	
51 51
    /// \brief The type of the map that stores the flow values.
52 52
    ///
53 53
    /// The type of the map that stores the flow values.
54 54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
55 55
#ifdef DOXYGEN
56 56
    typedef GR::ArcMap<Value> FlowMap;
57 57
#else
58 58
    typedef typename Digraph::template ArcMap<Value> FlowMap;
59 59
#endif
60 60

	
61 61
    /// \brief Instantiates a FlowMap.
62 62
    ///
63 63
    /// This function instantiates a \ref FlowMap.
64 64
    /// \param digraph The digraph for which we would like to define
65 65
    /// the flow map.
66 66
    static FlowMap* createFlowMap(const Digraph& digraph) {
67 67
      return new FlowMap(digraph);
68 68
    }
69 69

	
70 70
    /// \brief The elevator type used by Preflow algorithm.
71 71
    ///
72 72
    /// The elevator type used by Preflow algorithm.
73 73
    ///
74 74
    /// \sa Elevator, LinkedElevator
75 75
#ifdef DOXYGEN
76 76
    typedef lemon::Elevator<GR, GR::Node> Elevator;
77 77
#else
78 78
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
79 79
#endif
80 80

	
81 81
    /// \brief Instantiates an Elevator.
82 82
    ///
83 83
    /// This function instantiates an \ref Elevator.
84 84
    /// \param digraph The digraph for which we would like to define
85 85
    /// the elevator.
86 86
    /// \param max_level The maximum level of the elevator.
87 87
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
88 88
      return new Elevator(digraph, max_level);
89 89
    }
90 90

	
91 91
    /// \brief The tolerance used by the algorithm
92 92
    ///
93 93
    /// The tolerance used by the algorithm to handle inexact computation.
94 94
    typedef lemon::Tolerance<Value> Tolerance;
95 95

	
96 96
  };
97 97

	
98 98

	
99 99
  /// \ingroup max_flow
100 100
  ///
101 101
  /// \brief %Preflow algorithm class.
102 102
  ///
103 103
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
104 104
  /// \e push-relabel algorithm producing a \ref max_flow
105 105
  /// "flow of maximum value" in a digraph \ref clrs01algorithms,
106 106
  /// \ref amo93networkflows, \ref goldberg88newapproach.
107 107
  /// The preflow algorithms are the fastest known maximum
108 108
  /// flow algorithms. The current implementation uses a mixture of the
109 109
  /// \e "highest label" and the \e "bound decrease" heuristics.
110 110
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
111 111
  ///
112 112
  /// The algorithm consists of two phases. After the first phase
113 113
  /// the maximum flow value and the minimum cut is obtained. The
114 114
  /// second phase constructs a feasible maximum flow on each arc.
115 115
  ///
116 116
  /// \warning This implementation cannot handle infinite or very large
117 117
  /// capacities (e.g. the maximum value of \c CAP::Value).
118 118
  ///
119 119
  /// \tparam GR The type of the digraph the algorithm runs on.
120 120
  /// \tparam CAP The type of the capacity map. The default map
121 121
  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
122 122
  /// \tparam TR The traits class that defines various types used by the
123 123
  /// algorithm. By default, it is \ref PreflowDefaultTraits
124 124
  /// "PreflowDefaultTraits<GR, CAP>".
125 125
  /// In most cases, this parameter should not be set directly,
126 126
  /// consider to use the named template parameters instead.
127 127
#ifdef DOXYGEN
128 128
  template <typename GR, typename CAP, typename TR>
129 129
#else
130 130
  template <typename GR,
131 131
            typename CAP = typename GR::template ArcMap<int>,
132 132
            typename TR = PreflowDefaultTraits<GR, CAP> >
133 133
#endif
134 134
  class Preflow {
135 135
  public:
136 136

	
137 137
    ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
138 138
    typedef TR Traits;
139 139
    ///The type of the digraph the algorithm runs on.
140 140
    typedef typename Traits::Digraph Digraph;
141 141
    ///The type of the capacity map.
142 142
    typedef typename Traits::CapacityMap CapacityMap;
143 143
    ///The type of the flow values.
144 144
    typedef typename Traits::Value Value;
145 145

	
146 146
    ///The type of the flow map.
147 147
    typedef typename Traits::FlowMap FlowMap;
148 148
    ///The type of the elevator.
149 149
    typedef typename Traits::Elevator Elevator;
150 150
    ///The type of the tolerance.
151 151
    typedef typename Traits::Tolerance Tolerance;
152 152

	
153 153
  private:
154 154

	
155 155
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
156 156

	
157 157
    const Digraph& _graph;
158 158
    const CapacityMap* _capacity;
159 159

	
160 160
    int _node_num;
161 161

	
162 162
    Node _source, _target;
163 163

	
164 164
    FlowMap* _flow;
165 165
    bool _local_flow;
166 166

	
167 167
    Elevator* _level;
168 168
    bool _local_level;
169 169

	
170 170
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
171 171
    ExcessMap* _excess;
172 172

	
173 173
    Tolerance _tolerance;
174 174

	
175 175
    bool _phase;
176 176

	
177 177

	
178 178
    void createStructures() {
179 179
      _node_num = countNodes(_graph);
180 180

	
181 181
      if (!_flow) {
182 182
        _flow = Traits::createFlowMap(_graph);
183 183
        _local_flow = true;
184 184
      }
185 185
      if (!_level) {
186 186
        _level = Traits::createElevator(_graph, _node_num);
187 187
        _local_level = true;
188 188
      }
189 189
      if (!_excess) {
190 190
        _excess = new ExcessMap(_graph);
191 191
      }
192 192
    }
193 193

	
194 194
    void destroyStructures() {
195 195
      if (_local_flow) {
196 196
        delete _flow;
197 197
      }
198 198
      if (_local_level) {
199 199
        delete _level;
200 200
      }
201 201
      if (_excess) {
202 202
        delete _excess;
203 203
      }
204 204
    }
205 205

	
206 206
  public:
207 207

	
208 208
    typedef Preflow Create;
209 209

	
210 210
    ///\name Named Template Parameters
211 211

	
212 212
    ///@{
213 213

	
214 214
    template <typename T>
215 215
    struct SetFlowMapTraits : public Traits {
216 216
      typedef T FlowMap;
217 217
      static FlowMap *createFlowMap(const Digraph&) {
218 218
        LEMON_ASSERT(false, "FlowMap is not initialized");
219 219
        return 0; // ignore warnings
220 220
      }
221 221
    };
222 222

	
223 223
    /// \brief \ref named-templ-param "Named parameter" for setting
224 224
    /// FlowMap type
225 225
    ///
226 226
    /// \ref named-templ-param "Named parameter" for setting FlowMap
227 227
    /// type.
228 228
    template <typename T>
229 229
    struct SetFlowMap
230 230
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
231 231
      typedef Preflow<Digraph, CapacityMap,
232 232
                      SetFlowMapTraits<T> > Create;
233 233
    };
234 234

	
235 235
    template <typename T>
236 236
    struct SetElevatorTraits : public Traits {
237 237
      typedef T Elevator;
238 238
      static Elevator *createElevator(const Digraph&, int) {
239 239
        LEMON_ASSERT(false, "Elevator is not initialized");
240 240
        return 0; // ignore warnings
241 241
      }
242 242
    };
243 243

	
244 244
    /// \brief \ref named-templ-param "Named parameter" for setting
245 245
    /// Elevator type
246 246
    ///
247 247
    /// \ref named-templ-param "Named parameter" for setting Elevator
248 248
    /// type. If this named parameter is used, then an external
249 249
    /// elevator object must be passed to the algorithm using the
250 250
    /// \ref elevator(Elevator&) "elevator()" function before calling
251 251
    /// \ref run() or \ref init().
252 252
    /// \sa SetStandardElevator
253 253
    template <typename T>
254 254
    struct SetElevator
255 255
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
256 256
      typedef Preflow<Digraph, CapacityMap,
257 257
                      SetElevatorTraits<T> > Create;
258 258
    };
259 259

	
260 260
    template <typename T>
261 261
    struct SetStandardElevatorTraits : public Traits {
... ...
@@ -301,544 +301,544 @@
301 301
    /// \param capacity The capacity of the arcs.
302 302
    /// \param source The source node.
303 303
    /// \param target The target node.
304 304
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
305 305
            Node source, Node target)
306 306
      : _graph(digraph), _capacity(&capacity),
307 307
        _node_num(0), _source(source), _target(target),
308 308
        _flow(0), _local_flow(false),
309 309
        _level(0), _local_level(false),
310 310
        _excess(0), _tolerance(), _phase() {}
311 311

	
312 312
    /// \brief Destructor.
313 313
    ///
314 314
    /// Destructor.
315 315
    ~Preflow() {
316 316
      destroyStructures();
317 317
    }
318 318

	
319 319
    /// \brief Sets the capacity map.
320 320
    ///
321 321
    /// Sets the capacity map.
322 322
    /// \return <tt>(*this)</tt>
323 323
    Preflow& capacityMap(const CapacityMap& map) {
324 324
      _capacity = &map;
325 325
      return *this;
326 326
    }
327 327

	
328 328
    /// \brief Sets the flow map.
329 329
    ///
330 330
    /// Sets the flow map.
331 331
    /// If you don't use this function before calling \ref run() or
332 332
    /// \ref init(), an instance will be allocated automatically.
333 333
    /// The destructor deallocates this automatically allocated map,
334 334
    /// of course.
335 335
    /// \return <tt>(*this)</tt>
336 336
    Preflow& flowMap(FlowMap& map) {
337 337
      if (_local_flow) {
338 338
        delete _flow;
339 339
        _local_flow = false;
340 340
      }
341 341
      _flow = &map;
342 342
      return *this;
343 343
    }
344 344

	
345 345
    /// \brief Sets the source node.
346 346
    ///
347 347
    /// Sets the source node.
348 348
    /// \return <tt>(*this)</tt>
349 349
    Preflow& source(const Node& node) {
350 350
      _source = node;
351 351
      return *this;
352 352
    }
353 353

	
354 354
    /// \brief Sets the target node.
355 355
    ///
356 356
    /// Sets the target node.
357 357
    /// \return <tt>(*this)</tt>
358 358
    Preflow& target(const Node& node) {
359 359
      _target = node;
360 360
      return *this;
361 361
    }
362 362

	
363 363
    /// \brief Sets the elevator used by algorithm.
364 364
    ///
365 365
    /// Sets the elevator used by algorithm.
366 366
    /// If you don't use this function before calling \ref run() or
367 367
    /// \ref init(), an instance will be allocated automatically.
368 368
    /// The destructor deallocates this automatically allocated elevator,
369 369
    /// of course.
370 370
    /// \return <tt>(*this)</tt>
371 371
    Preflow& elevator(Elevator& elevator) {
372 372
      if (_local_level) {
373 373
        delete _level;
374 374
        _local_level = false;
375 375
      }
376 376
      _level = &elevator;
377 377
      return *this;
378 378
    }
379 379

	
380 380
    /// \brief Returns a const reference to the elevator.
381 381
    ///
382 382
    /// Returns a const reference to the elevator.
383 383
    ///
384 384
    /// \pre Either \ref run() or \ref init() must be called before
385 385
    /// using this function.
386 386
    const Elevator& elevator() const {
387 387
      return *_level;
388 388
    }
389 389

	
390 390
    /// \brief Sets the tolerance used by the algorithm.
391 391
    ///
392 392
    /// Sets the tolerance object used by the algorithm.
393 393
    /// \return <tt>(*this)</tt>
394 394
    Preflow& tolerance(const Tolerance& tolerance) {
395 395
      _tolerance = tolerance;
396 396
      return *this;
397 397
    }
398 398

	
399 399
    /// \brief Returns a const reference to the tolerance.
400 400
    ///
401 401
    /// Returns a const reference to the tolerance object used by
402 402
    /// the algorithm.
403 403
    const Tolerance& tolerance() const {
404 404
      return _tolerance;
405 405
    }
406 406

	
407 407
    /// \name Execution Control
408 408
    /// The simplest way to execute the preflow algorithm is to use
409 409
    /// \ref run() or \ref runMinCut().\n
410 410
    /// If you need better control on the initial solution or the execution,
411 411
    /// you have to call one of the \ref init() functions first, then
412 412
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
413 413

	
414 414
    ///@{
415 415

	
416 416
    /// \brief Initializes the internal data structures.
417 417
    ///
418 418
    /// Initializes the internal data structures and sets the initial
419 419
    /// flow to zero on each arc.
420 420
    void init() {
421 421
      createStructures();
422 422

	
423 423
      _phase = true;
424 424
      for (NodeIt n(_graph); n != INVALID; ++n) {
425 425
        (*_excess)[n] = 0;
426 426
      }
427 427

	
428 428
      for (ArcIt e(_graph); e != INVALID; ++e) {
429 429
        _flow->set(e, 0);
430 430
      }
431 431

	
432 432
      typename Digraph::template NodeMap<bool> reached(_graph, false);
433 433

	
434 434
      _level->initStart();
435 435
      _level->initAddItem(_target);
436 436

	
437 437
      std::vector<Node> queue;
438 438
      reached[_source] = true;
439 439

	
440 440
      queue.push_back(_target);
441 441
      reached[_target] = true;
442 442
      while (!queue.empty()) {
443 443
        _level->initNewLevel();
444 444
        std::vector<Node> nqueue;
445 445
        for (int i = 0; i < int(queue.size()); ++i) {
446 446
          Node n = queue[i];
447 447
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
448 448
            Node u = _graph.source(e);
449 449
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
450 450
              reached[u] = true;
451 451
              _level->initAddItem(u);
452 452
              nqueue.push_back(u);
453 453
            }
454 454
          }
455 455
        }
456 456
        queue.swap(nqueue);
457 457
      }
458 458
      _level->initFinish();
459 459

	
460 460
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
461 461
        if (_tolerance.positive((*_capacity)[e])) {
462 462
          Node u = _graph.target(e);
463 463
          if ((*_level)[u] == _level->maxLevel()) continue;
464 464
          _flow->set(e, (*_capacity)[e]);
465 465
          (*_excess)[u] += (*_capacity)[e];
466 466
          if (u != _target && !_level->active(u)) {
467 467
            _level->activate(u);
468 468
          }
469 469
        }
470 470
      }
471 471
    }
472 472

	
473 473
    /// \brief Initializes the internal data structures using the
474 474
    /// given flow map.
475 475
    ///
476 476
    /// Initializes the internal data structures and sets the initial
477 477
    /// flow to the given \c flowMap. The \c flowMap should contain a
478 478
    /// flow or at least a preflow, i.e. at each node excluding the
479 479
    /// source node the incoming flow should greater or equal to the
480 480
    /// outgoing flow.
481 481
    /// \return \c false if the given \c flowMap is not a preflow.
482 482
    template <typename FlowMap>
483 483
    bool init(const FlowMap& flowMap) {
484 484
      createStructures();
485 485

	
486 486
      for (ArcIt e(_graph); e != INVALID; ++e) {
487 487
        _flow->set(e, flowMap[e]);
488 488
      }
489 489

	
490 490
      for (NodeIt n(_graph); n != INVALID; ++n) {
491 491
        Value excess = 0;
492 492
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
493 493
          excess += (*_flow)[e];
494 494
        }
495 495
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
496 496
          excess -= (*_flow)[e];
497 497
        }
498 498
        if (excess < 0 && n != _source) return false;
499 499
        (*_excess)[n] = excess;
500 500
      }
501 501

	
502 502
      typename Digraph::template NodeMap<bool> reached(_graph, false);
503 503

	
504 504
      _level->initStart();
505 505
      _level->initAddItem(_target);
506 506

	
507 507
      std::vector<Node> queue;
508 508
      reached[_source] = true;
509 509

	
510 510
      queue.push_back(_target);
511 511
      reached[_target] = true;
512 512
      while (!queue.empty()) {
513 513
        _level->initNewLevel();
514 514
        std::vector<Node> nqueue;
515 515
        for (int i = 0; i < int(queue.size()); ++i) {
516 516
          Node n = queue[i];
517 517
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
518 518
            Node u = _graph.source(e);
519 519
            if (!reached[u] &&
520 520
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
521 521
              reached[u] = true;
522 522
              _level->initAddItem(u);
523 523
              nqueue.push_back(u);
524 524
            }
525 525
          }
526 526
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
527 527
            Node v = _graph.target(e);
528 528
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
529 529
              reached[v] = true;
530 530
              _level->initAddItem(v);
531 531
              nqueue.push_back(v);
532 532
            }
533 533
          }
534 534
        }
535 535
        queue.swap(nqueue);
536 536
      }
537 537
      _level->initFinish();
538 538

	
539 539
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
540 540
        Value rem = (*_capacity)[e] - (*_flow)[e];
541 541
        if (_tolerance.positive(rem)) {
542 542
          Node u = _graph.target(e);
543 543
          if ((*_level)[u] == _level->maxLevel()) continue;
544 544
          _flow->set(e, (*_capacity)[e]);
545 545
          (*_excess)[u] += rem;
546 546
        }
547 547
      }
548 548
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
549 549
        Value rem = (*_flow)[e];
550 550
        if (_tolerance.positive(rem)) {
551 551
          Node v = _graph.source(e);
552 552
          if ((*_level)[v] == _level->maxLevel()) continue;
553 553
          _flow->set(e, 0);
554 554
          (*_excess)[v] += rem;
555 555
        }
556 556
      }
557
      for (NodeIt n(_graph); n != INVALID; ++n) 
557
      for (NodeIt n(_graph); n != INVALID; ++n)
558 558
        if(n!=_source && n!=_target && _tolerance.positive((*_excess)[n]))
559 559
          _level->activate(n);
560
          
560

	
561 561
      return true;
562 562
    }
563 563

	
564 564
    /// \brief Starts the first phase of the preflow algorithm.
565 565
    ///
566 566
    /// The preflow algorithm consists of two phases, this method runs
567 567
    /// the first phase. After the first phase the maximum flow value
568 568
    /// and a minimum value cut can already be computed, although a
569 569
    /// maximum flow is not yet obtained. So after calling this method
570 570
    /// \ref flowValue() returns the value of a maximum flow and \ref
571 571
    /// minCut() returns a minimum cut.
572 572
    /// \pre One of the \ref init() functions must be called before
573 573
    /// using this function.
574 574
    void startFirstPhase() {
575 575
      _phase = true;
576 576

	
577 577
      while (true) {
578 578
        int num = _node_num;
579 579

	
580 580
        Node n = INVALID;
581 581
        int level = -1;
582 582

	
583 583
        while (num > 0) {
584 584
          n = _level->highestActive();
585 585
          if (n == INVALID) goto first_phase_done;
586 586
          level = _level->highestActiveLevel();
587 587
          --num;
588
          
588

	
589 589
          Value excess = (*_excess)[n];
590 590
          int new_level = _level->maxLevel();
591 591

	
592 592
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
593 593
            Value rem = (*_capacity)[e] - (*_flow)[e];
594 594
            if (!_tolerance.positive(rem)) continue;
595 595
            Node v = _graph.target(e);
596 596
            if ((*_level)[v] < level) {
597 597
              if (!_level->active(v) && v != _target) {
598 598
                _level->activate(v);
599 599
              }
600 600
              if (!_tolerance.less(rem, excess)) {
601 601
                _flow->set(e, (*_flow)[e] + excess);
602 602
                (*_excess)[v] += excess;
603 603
                excess = 0;
604 604
                goto no_more_push_1;
605 605
              } else {
606 606
                excess -= rem;
607 607
                (*_excess)[v] += rem;
608 608
                _flow->set(e, (*_capacity)[e]);
609 609
              }
610 610
            } else if (new_level > (*_level)[v]) {
611 611
              new_level = (*_level)[v];
612 612
            }
613 613
          }
614 614

	
615 615
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
616 616
            Value rem = (*_flow)[e];
617 617
            if (!_tolerance.positive(rem)) continue;
618 618
            Node v = _graph.source(e);
619 619
            if ((*_level)[v] < level) {
620 620
              if (!_level->active(v) && v != _target) {
621 621
                _level->activate(v);
622 622
              }
623 623
              if (!_tolerance.less(rem, excess)) {
624 624
                _flow->set(e, (*_flow)[e] - excess);
625 625
                (*_excess)[v] += excess;
626 626
                excess = 0;
627 627
                goto no_more_push_1;
628 628
              } else {
629 629
                excess -= rem;
630 630
                (*_excess)[v] += rem;
631 631
                _flow->set(e, 0);
632 632
              }
633 633
            } else if (new_level > (*_level)[v]) {
634 634
              new_level = (*_level)[v];
635 635
            }
636 636
          }
637 637

	
638 638
        no_more_push_1:
639 639

	
640 640
          (*_excess)[n] = excess;
641 641

	
642 642
          if (excess != 0) {
643 643
            if (new_level + 1 < _level->maxLevel()) {
644 644
              _level->liftHighestActive(new_level + 1);
645 645
            } else {
646 646
              _level->liftHighestActiveToTop();
647 647
            }
648 648
            if (_level->emptyLevel(level)) {
649 649
              _level->liftToTop(level);
650 650
            }
651 651
          } else {
652 652
            _level->deactivate(n);
653 653
          }
654 654
        }
655 655

	
656 656
        num = _node_num * 20;
657 657
        while (num > 0) {
658 658
          while (level >= 0 && _level->activeFree(level)) {
659 659
            --level;
660 660
          }
661 661
          if (level == -1) {
662 662
            n = _level->highestActive();
663 663
            level = _level->highestActiveLevel();
664 664
            if (n == INVALID) goto first_phase_done;
665 665
          } else {
666 666
            n = _level->activeOn(level);
667 667
          }
668 668
          --num;
669 669

	
670 670
          Value excess = (*_excess)[n];
671 671
          int new_level = _level->maxLevel();
672 672

	
673 673
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
674 674
            Value rem = (*_capacity)[e] - (*_flow)[e];
675 675
            if (!_tolerance.positive(rem)) continue;
676 676
            Node v = _graph.target(e);
677 677
            if ((*_level)[v] < level) {
678 678
              if (!_level->active(v) && v != _target) {
679 679
                _level->activate(v);
680 680
              }
681 681
              if (!_tolerance.less(rem, excess)) {
682 682
                _flow->set(e, (*_flow)[e] + excess);
683 683
                (*_excess)[v] += excess;
684 684
                excess = 0;
685 685
                goto no_more_push_2;
686 686
              } else {
687 687
                excess -= rem;
688 688
                (*_excess)[v] += rem;
689 689
                _flow->set(e, (*_capacity)[e]);
690 690
              }
691 691
            } else if (new_level > (*_level)[v]) {
692 692
              new_level = (*_level)[v];
693 693
            }
694 694
          }
695 695

	
696 696
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
697 697
            Value rem = (*_flow)[e];
698 698
            if (!_tolerance.positive(rem)) continue;
699 699
            Node v = _graph.source(e);
700 700
            if ((*_level)[v] < level) {
701 701
              if (!_level->active(v) && v != _target) {
702 702
                _level->activate(v);
703 703
              }
704 704
              if (!_tolerance.less(rem, excess)) {
705 705
                _flow->set(e, (*_flow)[e] - excess);
706 706
                (*_excess)[v] += excess;
707 707
                excess = 0;
708 708
                goto no_more_push_2;
709 709
              } else {
710 710
                excess -= rem;
711 711
                (*_excess)[v] += rem;
712 712
                _flow->set(e, 0);
713 713
              }
714 714
            } else if (new_level > (*_level)[v]) {
715 715
              new_level = (*_level)[v];
716 716
            }
717 717
          }
718 718

	
719 719
        no_more_push_2:
720 720

	
721 721
          (*_excess)[n] = excess;
722 722

	
723 723
          if (excess != 0) {
724 724
            if (new_level + 1 < _level->maxLevel()) {
725 725
              _level->liftActiveOn(level, new_level + 1);
726 726
            } else {
727 727
              _level->liftActiveToTop(level);
728 728
            }
729 729
            if (_level->emptyLevel(level)) {
730 730
              _level->liftToTop(level);
731 731
            }
732 732
          } else {
733 733
            _level->deactivate(n);
734 734
          }
735 735
        }
736 736
      }
737 737
    first_phase_done:;
738 738
    }
739 739

	
740 740
    /// \brief Starts the second phase of the preflow algorithm.
741 741
    ///
742 742
    /// The preflow algorithm consists of two phases, this method runs
743 743
    /// the second phase. After calling one of the \ref init() functions
744 744
    /// and \ref startFirstPhase() and then \ref startSecondPhase(),
745 745
    /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
746 746
    /// value of a maximum flow, \ref minCut() returns a minimum cut
747 747
    /// \pre One of the \ref init() functions and \ref startFirstPhase()
748 748
    /// must be called before using this function.
749 749
    void startSecondPhase() {
750 750
      _phase = false;
751 751

	
752 752
      typename Digraph::template NodeMap<bool> reached(_graph);
753 753
      for (NodeIt n(_graph); n != INVALID; ++n) {
754 754
        reached[n] = (*_level)[n] < _level->maxLevel();
755 755
      }
756 756

	
757 757
      _level->initStart();
758 758
      _level->initAddItem(_source);
759 759

	
760 760
      std::vector<Node> queue;
761 761
      queue.push_back(_source);
762 762
      reached[_source] = true;
763 763

	
764 764
      while (!queue.empty()) {
765 765
        _level->initNewLevel();
766 766
        std::vector<Node> nqueue;
767 767
        for (int i = 0; i < int(queue.size()); ++i) {
768 768
          Node n = queue[i];
769 769
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
770 770
            Node v = _graph.target(e);
771 771
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
772 772
              reached[v] = true;
773 773
              _level->initAddItem(v);
774 774
              nqueue.push_back(v);
775 775
            }
776 776
          }
777 777
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
778 778
            Node u = _graph.source(e);
779 779
            if (!reached[u] &&
780 780
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
781 781
              reached[u] = true;
782 782
              _level->initAddItem(u);
783 783
              nqueue.push_back(u);
784 784
            }
785 785
          }
786 786
        }
787 787
        queue.swap(nqueue);
788 788
      }
789 789
      _level->initFinish();
790 790

	
791 791
      for (NodeIt n(_graph); n != INVALID; ++n) {
792 792
        if (!reached[n]) {
793 793
          _level->dirtyTopButOne(n);
794 794
        } else if ((*_excess)[n] > 0 && _target != n) {
795 795
          _level->activate(n);
796 796
        }
797 797
      }
798 798

	
799 799
      Node n;
800 800
      while ((n = _level->highestActive()) != INVALID) {
801 801
        Value excess = (*_excess)[n];
802 802
        int level = _level->highestActiveLevel();
803 803
        int new_level = _level->maxLevel();
804 804

	
805 805
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
806 806
          Value rem = (*_capacity)[e] - (*_flow)[e];
807 807
          if (!_tolerance.positive(rem)) continue;
808 808
          Node v = _graph.target(e);
809 809
          if ((*_level)[v] < level) {
810 810
            if (!_level->active(v) && v != _source) {
811 811
              _level->activate(v);
812 812
            }
813 813
            if (!_tolerance.less(rem, excess)) {
814 814
              _flow->set(e, (*_flow)[e] + excess);
815 815
              (*_excess)[v] += excess;
816 816
              excess = 0;
817 817
              goto no_more_push;
818 818
            } else {
819 819
              excess -= rem;
820 820
              (*_excess)[v] += rem;
821 821
              _flow->set(e, (*_capacity)[e]);
822 822
            }
823 823
          } else if (new_level > (*_level)[v]) {
824 824
            new_level = (*_level)[v];
825 825
          }
826 826
        }
827 827

	
828 828
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
829 829
          Value rem = (*_flow)[e];
830 830
          if (!_tolerance.positive(rem)) continue;
831 831
          Node v = _graph.source(e);
832 832
          if ((*_level)[v] < level) {
833 833
            if (!_level->active(v) && v != _source) {
834 834
              _level->activate(v);
835 835
            }
836 836
            if (!_tolerance.less(rem, excess)) {
837 837
              _flow->set(e, (*_flow)[e] - excess);
838 838
              (*_excess)[v] += excess;
839 839
              excess = 0;
840 840
              goto no_more_push;
841 841
            } else {
842 842
              excess -= rem;
843 843
              (*_excess)[v] += rem;
844 844
              _flow->set(e, 0);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/digraph.h>
20 20
#include <lemon/smart_graph.h>
21 21
#include <lemon/list_graph.h>
22 22
#include <lemon/lgf_reader.h>
23 23
#include <lemon/dfs.h>
24 24
#include <lemon/path.h>
25 25

	
26 26
#include "graph_test.h"
27 27
#include "test_tools.h"
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
char test_lgf[] =
32 32
  "@nodes\n"
33 33
  "label\n"
34 34
  "0\n"
35 35
  "1\n"
36 36
  "2\n"
37 37
  "3\n"
38 38
  "4\n"
39 39
  "5\n"
40 40
  "6\n"
41 41
  "@arcs\n"
42 42
  "     label\n"
43 43
  "0 1  0\n"
44 44
  "1 2  1\n"
45 45
  "2 3  2\n"
46 46
  "1 4  3\n"
47 47
  "4 2  4\n"
48 48
  "4 5  5\n"
49 49
  "5 0  6\n"
50 50
  "6 3  7\n"
51 51
  "@attributes\n"
52 52
  "source 0\n"
53 53
  "target 5\n"
54 54
  "source1 6\n"
55 55
  "target1 3\n";
56 56

	
57 57

	
58 58
void checkDfsCompile()
59 59
{
60 60
  typedef concepts::Digraph Digraph;
61 61
  typedef Dfs<Digraph> DType;
62 62
  typedef Digraph::Node Node;
63 63
  typedef Digraph::Arc Arc;
64 64

	
65 65
  Digraph G;
66 66
  Node s, t;
67 67
  Arc e;
68 68
  int l, i;
69 69
  bool b;
70 70
  DType::DistMap d(G);
71 71
  DType::PredMap p(G);
72 72
  Path<Digraph> pp;
73 73
  concepts::ReadMap<Arc,bool> am;
74 74

	
75 75
  {
76 76
    DType dfs_test(G);
77 77
    const DType& const_dfs_test = dfs_test;
78 78

	
79 79
    dfs_test.run(s);
80 80
    dfs_test.run(s,t);
81 81
    dfs_test.run();
82 82

	
83 83
    dfs_test.init();
84 84
    dfs_test.addSource(s);
85 85
    e = dfs_test.processNextArc();
86 86
    e = const_dfs_test.nextArc();
87 87
    b = const_dfs_test.emptyQueue();
88 88
    i = const_dfs_test.queueSize();
89 89

	
90 90
    dfs_test.start();
91 91
    dfs_test.start(t);
92 92
    dfs_test.start(am);
93 93

	
94 94
    l  = const_dfs_test.dist(t);
95 95
    e  = const_dfs_test.predArc(t);
96 96
    s  = const_dfs_test.predNode(t);
97 97
    b  = const_dfs_test.reached(t);
98 98
    d  = const_dfs_test.distMap();
99 99
    p  = const_dfs_test.predMap();
100 100
    pp = const_dfs_test.path(t);
101 101
  }
102 102
  {
103 103
    DType
104 104
      ::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
105 105
      ::SetDistMap<concepts::ReadWriteMap<Node,int> >
106 106
      ::SetReachedMap<concepts::ReadWriteMap<Node,bool> >
107 107
      ::SetStandardProcessedMap
108 108
      ::SetProcessedMap<concepts::WriteMap<Node,bool> >
109 109
      ::Create dfs_test(G);
110 110

	
111 111
    concepts::ReadWriteMap<Node,Arc> pred_map;
112 112
    concepts::ReadWriteMap<Node,int> dist_map;
113 113
    concepts::ReadWriteMap<Node,bool> reached_map;
114 114
    concepts::WriteMap<Node,bool> processed_map;
115 115

	
116 116
    dfs_test
117 117
      .predMap(pred_map)
118 118
      .distMap(dist_map)
119 119
      .reachedMap(reached_map)
120 120
      .processedMap(processed_map);
121 121

	
122 122
    dfs_test.run(s);
123 123
    dfs_test.run(s,t);
124 124
    dfs_test.run();
125 125
    dfs_test.init();
126 126

	
127 127
    dfs_test.addSource(s);
128 128
    e = dfs_test.processNextArc();
129 129
    e = dfs_test.nextArc();
130 130
    b = dfs_test.emptyQueue();
131 131
    i = dfs_test.queueSize();
132 132

	
133 133
    dfs_test.start();
134 134
    dfs_test.start(t);
135 135
    dfs_test.start(am);
136 136

	
137 137
    l  = dfs_test.dist(t);
138 138
    e  = dfs_test.predArc(t);
139 139
    s  = dfs_test.predNode(t);
140 140
    b  = dfs_test.reached(t);
141 141
    pp = dfs_test.path(t);
142 142
  }
143 143
}
144 144

	
145 145
void checkDfsFunctionCompile()
146 146
{
147 147
  typedef int VType;
148 148
  typedef concepts::Digraph Digraph;
149 149
  typedef Digraph::Arc Arc;
150 150
  typedef Digraph::Node Node;
151 151

	
152 152
  Digraph g;
153 153
  bool b;
154 154
  dfs(g).run(Node());
155 155
  b=dfs(g).run(Node(),Node());
156 156
  dfs(g).run();
157 157
  dfs(g)
158 158
    .predMap(concepts::ReadWriteMap<Node,Arc>())
159 159
    .distMap(concepts::ReadWriteMap<Node,VType>())
160 160
    .reachedMap(concepts::ReadWriteMap<Node,bool>())
161 161
    .processedMap(concepts::WriteMap<Node,bool>())
162 162
    .run(Node());
163 163
  b=dfs(g)
164 164
    .predMap(concepts::ReadWriteMap<Node,Arc>())
165 165
    .distMap(concepts::ReadWriteMap<Node,VType>())
166 166
    .reachedMap(concepts::ReadWriteMap<Node,bool>())
167 167
    .processedMap(concepts::WriteMap<Node,bool>())
168 168
    .path(concepts::Path<Digraph>())
169 169
    .dist(VType())
170 170
    .run(Node(),Node());
171 171
  dfs(g)
172 172
    .predMap(concepts::ReadWriteMap<Node,Arc>())
173 173
    .distMap(concepts::ReadWriteMap<Node,VType>())
174 174
    .reachedMap(concepts::ReadWriteMap<Node,bool>())
175 175
    .processedMap(concepts::WriteMap<Node,bool>())
176 176
    .run();
177 177
}
178 178

	
179 179
template <class Digraph>
180 180
void checkDfs() {
181 181
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
182 182

	
183 183
  Digraph G;
184 184
  Node s, t;
185 185
  Node s1, t1;
186 186

	
187 187
  std::istringstream input(test_lgf);
188 188
  digraphReader(G, input).
189 189
    node("source", s).
190 190
    node("target", t).
191 191
    node("source1", s1).
192 192
    node("target1", t1).
193 193
    run();
194 194

	
195 195
  Dfs<Digraph> dfs_test(G);
196 196
  dfs_test.run(s);
197 197

	
198 198
  Path<Digraph> p = dfs_test.path(t);
199 199
  check(p.length() == dfs_test.dist(t),"path() found a wrong path.");
200 200
  check(checkPath(G, p),"path() found a wrong path.");
201 201
  check(pathSource(G, p) == s,"path() found a wrong path.");
202 202
  check(pathTarget(G, p) == t,"path() found a wrong path.");
203 203

	
204 204
  for(NodeIt v(G); v!=INVALID; ++v) {
205 205
    if (dfs_test.reached(v)) {
206 206
      check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree.");
207 207
      if (dfs_test.predArc(v)!=INVALID ) {
208 208
        Arc e=dfs_test.predArc(v);
209 209
        Node u=G.source(e);
210 210
        check(u==dfs_test.predNode(v),"Wrong tree.");
211 211
        check(dfs_test.dist(v) - dfs_test.dist(u) == 1,
212 212
              "Wrong distance. (" << dfs_test.dist(u) << "->"
213 213
              << dfs_test.dist(v) << ")");
214 214
      }
215 215
    }
216 216
  }
217 217

	
218 218
  {
219 219
  Dfs<Digraph> dfs(G);
220 220
  check(dfs.run(s1,t1) && dfs.reached(t1),"Node 3 is reachable from Node 6.");
221 221
  }
222
  
222

	
223 223
  {
224 224
    NullMap<Node,Arc> myPredMap;
225 225
    dfs(G).predMap(myPredMap).run(s);
226 226
  }
227 227
}
228 228

	
229 229
int main()
230 230
{
231 231
  checkDfs<ListDigraph>();
232 232
  checkDfs<SmartDigraph>();
233 233
  return 0;
234 234
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/smart_graph.h>
20 20
#include <lemon/list_graph.h>
21 21
#include <lemon/lgf_reader.h>
22 22
#include <lemon/error.h>
23 23

	
24 24
#include "test_tools.h"
25 25

	
26 26
using namespace std;
27 27
using namespace lemon;
28 28

	
29 29
void digraph_copy_test() {
30 30
  const int nn = 10;
31 31

	
32 32
  // Build a digraph
33 33
  SmartDigraph from;
34 34
  SmartDigraph::NodeMap<int> fnm(from);
35 35
  SmartDigraph::ArcMap<int> fam(from);
36 36
  SmartDigraph::Node fn = INVALID;
37 37
  SmartDigraph::Arc fa = INVALID;
38 38

	
39 39
  std::vector<SmartDigraph::Node> fnv;
40 40
  for (int i = 0; i < nn; ++i) {
41 41
    SmartDigraph::Node node = from.addNode();
42 42
    fnv.push_back(node);
43 43
    fnm[node] = i * i;
44 44
    if (i == 0) fn = node;
45 45
  }
46 46

	
47 47
  for (int i = 0; i < nn; ++i) {
48 48
    for (int j = 0; j < nn; ++j) {
49 49
      SmartDigraph::Arc arc = from.addArc(fnv[i], fnv[j]);
50 50
      fam[arc] = i + j * j;
51 51
      if (i == 0 && j == 0) fa = arc;
52 52
    }
53 53
  }
54 54

	
55 55
  // Test digraph copy
56 56
  ListDigraph to;
57 57
  ListDigraph::NodeMap<int> tnm(to);
58 58
  ListDigraph::ArcMap<int> tam(to);
59 59
  ListDigraph::Node tn;
60 60
  ListDigraph::Arc ta;
61 61

	
62 62
  SmartDigraph::NodeMap<ListDigraph::Node> nr(from);
63 63
  SmartDigraph::ArcMap<ListDigraph::Arc> er(from);
64 64

	
65 65
  ListDigraph::NodeMap<SmartDigraph::Node> ncr(to);
66 66
  ListDigraph::ArcMap<SmartDigraph::Arc> ecr(to);
67 67

	
68 68
  digraphCopy(from, to).
69 69
    nodeMap(fnm, tnm).arcMap(fam, tam).
70 70
    nodeRef(nr).arcRef(er).
71 71
    nodeCrossRef(ncr).arcCrossRef(ecr).
72 72
    node(fn, tn).arc(fa, ta).run();
73
  
73

	
74 74
  check(countNodes(from) == countNodes(to), "Wrong copy.");
75 75
  check(countArcs(from) == countArcs(to), "Wrong copy.");
76 76

	
77 77
  for (SmartDigraph::NodeIt it(from); it != INVALID; ++it) {
78 78
    check(ncr[nr[it]] == it, "Wrong copy.");
79 79
    check(fnm[it] == tnm[nr[it]], "Wrong copy.");
80 80
  }
81 81

	
82 82
  for (SmartDigraph::ArcIt it(from); it != INVALID; ++it) {
83 83
    check(ecr[er[it]] == it, "Wrong copy.");
84 84
    check(fam[it] == tam[er[it]], "Wrong copy.");
85 85
    check(nr[from.source(it)] == to.source(er[it]), "Wrong copy.");
86 86
    check(nr[from.target(it)] == to.target(er[it]), "Wrong copy.");
87 87
  }
88 88

	
89 89
  for (ListDigraph::NodeIt it(to); it != INVALID; ++it) {
90 90
    check(nr[ncr[it]] == it, "Wrong copy.");
91 91
  }
92 92

	
93 93
  for (ListDigraph::ArcIt it(to); it != INVALID; ++it) {
94 94
    check(er[ecr[it]] == it, "Wrong copy.");
95 95
  }
96 96
  check(tn == nr[fn], "Wrong copy.");
97 97
  check(ta == er[fa], "Wrong copy.");
98 98

	
99 99
  // Test repeated copy
100 100
  digraphCopy(from, to).run();
101
  
101

	
102 102
  check(countNodes(from) == countNodes(to), "Wrong copy.");
103 103
  check(countArcs(from) == countArcs(to), "Wrong copy.");
104 104
}
105 105

	
106 106
void graph_copy_test() {
107 107
  const int nn = 10;
108 108

	
109 109
  // Build a graph
110 110
  SmartGraph from;
111 111
  SmartGraph::NodeMap<int> fnm(from);
112 112
  SmartGraph::ArcMap<int> fam(from);
113 113
  SmartGraph::EdgeMap<int> fem(from);
114 114
  SmartGraph::Node fn = INVALID;
115 115
  SmartGraph::Arc fa = INVALID;
116 116
  SmartGraph::Edge fe = INVALID;
117 117

	
118 118
  std::vector<SmartGraph::Node> fnv;
119 119
  for (int i = 0; i < nn; ++i) {
120 120
    SmartGraph::Node node = from.addNode();
121 121
    fnv.push_back(node);
122 122
    fnm[node] = i * i;
123 123
    if (i == 0) fn = node;
124 124
  }
125 125

	
126 126
  for (int i = 0; i < nn; ++i) {
127 127
    for (int j = 0; j < nn; ++j) {
128 128
      SmartGraph::Edge edge = from.addEdge(fnv[i], fnv[j]);
129 129
      fem[edge] = i * i + j * j;
130 130
      fam[from.direct(edge, true)] = i + j * j;
131 131
      fam[from.direct(edge, false)] = i * i + j;
132 132
      if (i == 0 && j == 0) fa = from.direct(edge, true);
133 133
      if (i == 0 && j == 0) fe = edge;
134 134
    }
135 135
  }
136 136

	
137 137
  // Test graph copy
138 138
  ListGraph to;
139 139
  ListGraph::NodeMap<int> tnm(to);
140 140
  ListGraph::ArcMap<int> tam(to);
141 141
  ListGraph::EdgeMap<int> tem(to);
142 142
  ListGraph::Node tn;
143 143
  ListGraph::Arc ta;
144 144
  ListGraph::Edge te;
145 145

	
146 146
  SmartGraph::NodeMap<ListGraph::Node> nr(from);
147 147
  SmartGraph::ArcMap<ListGraph::Arc> ar(from);
148 148
  SmartGraph::EdgeMap<ListGraph::Edge> er(from);
149 149

	
150 150
  ListGraph::NodeMap<SmartGraph::Node> ncr(to);
151 151
  ListGraph::ArcMap<SmartGraph::Arc> acr(to);
152 152
  ListGraph::EdgeMap<SmartGraph::Edge> ecr(to);
153 153

	
154 154
  graphCopy(from, to).
155 155
    nodeMap(fnm, tnm).arcMap(fam, tam).edgeMap(fem, tem).
156 156
    nodeRef(nr).arcRef(ar).edgeRef(er).
157 157
    nodeCrossRef(ncr).arcCrossRef(acr).edgeCrossRef(ecr).
158 158
    node(fn, tn).arc(fa, ta).edge(fe, te).run();
159 159

	
160 160
  check(countNodes(from) == countNodes(to), "Wrong copy.");
161 161
  check(countEdges(from) == countEdges(to), "Wrong copy.");
162 162
  check(countArcs(from) == countArcs(to), "Wrong copy.");
163 163

	
164 164
  for (SmartGraph::NodeIt it(from); it != INVALID; ++it) {
165 165
    check(ncr[nr[it]] == it, "Wrong copy.");
166 166
    check(fnm[it] == tnm[nr[it]], "Wrong copy.");
167 167
  }
168 168

	
169 169
  for (SmartGraph::ArcIt it(from); it != INVALID; ++it) {
170 170
    check(acr[ar[it]] == it, "Wrong copy.");
171 171
    check(fam[it] == tam[ar[it]], "Wrong copy.");
172 172
    check(nr[from.source(it)] == to.source(ar[it]), "Wrong copy.");
173 173
    check(nr[from.target(it)] == to.target(ar[it]), "Wrong copy.");
174 174
  }
175 175

	
176 176
  for (SmartGraph::EdgeIt it(from); it != INVALID; ++it) {
177 177
    check(ecr[er[it]] == it, "Wrong copy.");
178 178
    check(fem[it] == tem[er[it]], "Wrong copy.");
179 179
    check(nr[from.u(it)] == to.u(er[it]) || nr[from.u(it)] == to.v(er[it]),
180 180
          "Wrong copy.");
181 181
    check(nr[from.v(it)] == to.u(er[it]) || nr[from.v(it)] == to.v(er[it]),
182 182
          "Wrong copy.");
183 183
    check((from.u(it) != from.v(it)) == (to.u(er[it]) != to.v(er[it])),
184 184
          "Wrong copy.");
185 185
  }
186 186

	
187 187
  for (ListGraph::NodeIt it(to); it != INVALID; ++it) {
188 188
    check(nr[ncr[it]] == it, "Wrong copy.");
189 189
  }
190 190

	
191 191
  for (ListGraph::ArcIt it(to); it != INVALID; ++it) {
192 192
    check(ar[acr[it]] == it, "Wrong copy.");
193 193
  }
194 194
  for (ListGraph::EdgeIt it(to); it != INVALID; ++it) {
195 195
    check(er[ecr[it]] == it, "Wrong copy.");
196 196
  }
197 197
  check(tn == nr[fn], "Wrong copy.");
198 198
  check(ta == ar[fa], "Wrong copy.");
199 199
  check(te == er[fe], "Wrong copy.");
200 200

	
201 201
  // Test repeated copy
202 202
  graphCopy(from, to).run();
203
  
203

	
204 204
  check(countNodes(from) == countNodes(to), "Wrong copy.");
205 205
  check(countEdges(from) == countEdges(to), "Wrong copy.");
206 206
  check(countArcs(from) == countArcs(to), "Wrong copy.");
207 207
}
208 208

	
209 209

	
210 210
int main() {
211 211
  digraph_copy_test();
212 212
  graph_copy_test();
213 213

	
214 214
  return 0;
215 215
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <iostream>
20 20
#include <fstream>
21 21
#include <string>
22 22
#include <vector>
23 23

	
24 24
#include <lemon/concept_check.h>
25 25
#include <lemon/concepts/heap.h>
26 26

	
27 27
#include <lemon/smart_graph.h>
28 28
#include <lemon/lgf_reader.h>
29 29
#include <lemon/dijkstra.h>
30 30
#include <lemon/maps.h>
31 31

	
32 32
#include <lemon/bin_heap.h>
33 33
#include <lemon/quad_heap.h>
34 34
#include <lemon/dheap.h>
35 35
#include <lemon/fib_heap.h>
36 36
#include <lemon/pairing_heap.h>
37 37
#include <lemon/radix_heap.h>
38 38
#include <lemon/binomial_heap.h>
39 39
#include <lemon/bucket_heap.h>
40 40

	
41 41
#include "test_tools.h"
42 42

	
43 43
using namespace lemon;
44 44
using namespace lemon::concepts;
45 45

	
46 46
typedef ListDigraph Digraph;
47 47
DIGRAPH_TYPEDEFS(Digraph);
48 48

	
49 49
char test_lgf[] =
50 50
  "@nodes\n"
51 51
  "label\n"
52 52
  "0\n"
53 53
  "1\n"
54 54
  "2\n"
55 55
  "3\n"
56 56
  "4\n"
57 57
  "5\n"
58 58
  "6\n"
59 59
  "7\n"
60 60
  "8\n"
61 61
  "9\n"
62 62
  "@arcs\n"
63 63
  "                label   capacity\n"
64 64
  "0       5       0       94\n"
65 65
  "3       9       1       11\n"
66 66
  "8       7       2       83\n"
67 67
  "1       2       3       94\n"
68 68
  "5       7       4       35\n"
69 69
  "7       4       5       84\n"
70 70
  "9       5       6       38\n"
71 71
  "0       4       7       96\n"
72 72
  "6       7       8       6\n"
73 73
  "3       1       9       27\n"
74 74
  "5       2       10      77\n"
75 75
  "5       6       11      69\n"
76 76
  "6       5       12      41\n"
77 77
  "4       6       13      70\n"
78 78
  "3       2       14      45\n"
79 79
  "7       9       15      93\n"
80 80
  "5       9       16      50\n"
81 81
  "9       0       17      94\n"
82 82
  "9       6       18      67\n"
83 83
  "0       9       19      86\n"
84 84
  "@attributes\n"
85 85
  "source 3\n";
86 86

	
87 87
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26,  1,  9,  4, 34};
88 88
int test_inc[] = {20, 28, 34, 16,  0, 46, 44,  0, 42, 32, 14,  8,  6, 37};
89 89

	
90 90
int test_len = sizeof(test_seq) / sizeof(test_seq[0]);
91 91

	
92 92
template <typename Heap>
93 93
void heapSortTest() {
94 94
  RangeMap<int> map(test_len, -1);
95 95
  Heap heap(map);
96 96

	
97 97
  std::vector<int> v(test_len);
98 98
  for (int i = 0; i < test_len; ++i) {
99 99
    v[i] = test_seq[i];
100 100
    heap.push(i, v[i]);
101 101
  }
102 102
  std::sort(v.begin(), v.end());
103 103
  for (int i = 0; i < test_len; ++i) {
104 104
    check(v[i] == heap.prio(), "Wrong order in heap sort.");
105 105
    heap.pop();
106 106
  }
107 107
}
108 108

	
109 109
template <typename Heap>
110 110
void heapIncreaseTest() {
111 111
  RangeMap<int> map(test_len, -1);
112 112

	
113 113
  Heap heap(map);
114 114

	
115 115
  std::vector<int> v(test_len);
116 116
  for (int i = 0; i < test_len; ++i) {
117 117
    v[i] = test_seq[i];
118 118
    heap.push(i, v[i]);
119 119
  }
120 120
  for (int i = 0; i < test_len; ++i) {
121 121
    v[i] += test_inc[i];
122 122
    heap.increase(i, v[i]);
123 123
  }
124 124
  std::sort(v.begin(), v.end());
125 125
  for (int i = 0; i < test_len; ++i) {
126 126
    check(v[i] == heap.prio(), "Wrong order in heap increase test.");
127 127
    heap.pop();
128 128
  }
129 129
}
130 130

	
131 131
template <typename Heap>
132 132
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length,
133 133
                      Node source) {
134 134

	
135 135
  typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>::
136 136
    Create dijkstra(digraph, length);
137 137

	
138 138
  dijkstra.run(source);
139 139

	
140 140
  for(ArcIt a(digraph); a != INVALID; ++a) {
141 141
    Node s = digraph.source(a);
142 142
    Node t = digraph.target(a);
143 143
    if (dijkstra.reached(s)) {
144 144
      check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a],
145 145
             "Error in shortest path tree.");
146 146
    }
147 147
  }
148 148

	
149 149
  for(NodeIt n(digraph); n != INVALID; ++n) {
150 150
    if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) {
151 151
      Arc a = dijkstra.predArc(n);
152 152
      Node s = digraph.source(a);
153 153
      check( dijkstra.dist(n) - dijkstra.dist(s) == length[a],
154 154
             "Error in shortest path tree.");
155 155
    }
156 156
  }
157 157

	
158 158
}
159 159

	
160 160
int main() {
161 161

	
162 162
  typedef int Item;
163 163
  typedef int Prio;
164 164
  typedef RangeMap<int> ItemIntMap;
165 165

	
166 166
  Digraph digraph;
167 167
  IntArcMap length(digraph);
168 168
  Node source;
169 169

	
170 170
  std::istringstream input(test_lgf);
171 171
  digraphReader(digraph, input).
172 172
    arcMap("capacity", length).
173 173
    node("source", source).
174 174
    run();
175 175

	
176 176
  // BinHeap
177 177
  {
178 178
    typedef BinHeap<Prio, ItemIntMap> IntHeap;
179 179
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
180 180
    heapSortTest<IntHeap>();
181 181
    heapIncreaseTest<IntHeap>();
182 182

	
183 183
    typedef BinHeap<Prio, IntNodeMap > NodeHeap;
184 184
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
185 185
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
186 186
  }
187 187

	
188 188
  // QuadHeap
189 189
  {
190 190
    typedef QuadHeap<Prio, ItemIntMap> IntHeap;
191 191
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
192 192
    heapSortTest<IntHeap>();
193 193
    heapIncreaseTest<IntHeap>();
194 194

	
195 195
    typedef QuadHeap<Prio, IntNodeMap > NodeHeap;
196 196
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
197 197
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
198 198
  }
199 199

	
200 200
  // DHeap
201 201
  {
202 202
    typedef DHeap<Prio, ItemIntMap> IntHeap;
203 203
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
204 204
    heapSortTest<IntHeap>();
205 205
    heapIncreaseTest<IntHeap>();
206 206

	
207 207
    typedef DHeap<Prio, IntNodeMap > NodeHeap;
208 208
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
209 209
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
210 210
  }
211 211

	
212 212
  // FibHeap
213 213
  {
214 214
    typedef FibHeap<Prio, ItemIntMap> IntHeap;
215 215
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
216 216
    heapSortTest<IntHeap>();
217 217
    heapIncreaseTest<IntHeap>();
218 218

	
219 219
    typedef FibHeap<Prio, IntNodeMap > NodeHeap;
220 220
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
221 221
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
222 222
  }
223 223

	
224 224
  // PairingHeap
225 225
  {
226 226
    typedef PairingHeap<Prio, ItemIntMap> IntHeap;
227 227
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
228 228
    heapSortTest<IntHeap>();
229 229
    heapIncreaseTest<IntHeap>();
230 230

	
231 231
    typedef PairingHeap<Prio, IntNodeMap > NodeHeap;
232 232
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
233 233
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
234 234
  }
235 235

	
236 236
  // RadixHeap
237 237
  {
238 238
    typedef RadixHeap<ItemIntMap> IntHeap;
239 239
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
240 240
    heapSortTest<IntHeap>();
241 241
    heapIncreaseTest<IntHeap>();
242 242

	
243 243
    typedef RadixHeap<IntNodeMap > NodeHeap;
244 244
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
245 245
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
246 246
  }
247 247

	
248 248
  // BinomialHeap
249 249
  {
250 250
    typedef BinomialHeap<Prio, ItemIntMap> IntHeap;
251 251
    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
252 252
    heapSortTest<IntHeap>();
253 253
    heapIncreaseTest<IntHeap>();
254 254

	
255 255
    typedef BinomialHeap<Prio, IntNodeMap > NodeHeap;
256 256
    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
257 257
    dijkstraHeapTest<NodeHeap>(digraph, length, source);
258 258
  }
259 259

	
260 260
  // BucketHeap, SimpleBucketHeap
261 261
  {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/list_graph.h>
20 20
#include <lemon/lgf_reader.h>
21 21
#include "test_tools.h"
22 22

	
23 23
using namespace lemon;
24 24

	
25 25
char test_lgf[] =
26 26
  "@nodes\n"
27 27
  "label\n"
28 28
  "0\n"
29 29
  "1\n"
30 30
  "@arcs\n"
31 31
  "     label\n"
32 32
  "0 1  0\n"
33 33
  "1 0  1\n"
34 34
  "@attributes\n"
35 35
  "source 0\n"
36 36
  "target 1\n";
37 37

	
38 38
char test_lgf_nomap[] =
39 39
  "@nodes\n"
40 40
  "label\n"
41 41
  "0\n"
42 42
  "1\n"
43 43
  "@arcs\n"
44 44
  "     -\n"
45 45
  "0 1\n";
46 46

	
47 47
char test_lgf_bad1[] =
48 48
  "@nodes\n"
49 49
  "label\n"
50 50
  "0\n"
51 51
  "1\n"
52 52
  "@arcs\n"
53 53
  "     - another\n"
54 54
  "0 1\n";
55 55

	
56 56
char test_lgf_bad2[] =
57 57
  "@nodes\n"
58 58
  "label\n"
59 59
  "0\n"
60 60
  "1\n"
61 61
  "@arcs\n"
62 62
  "     label -\n"
63 63
  "0 1\n";
64 64

	
65 65

	
66
int main() 
66
int main()
67 67
{
68 68
  {
69
    ListDigraph d; 
69
    ListDigraph d;
70 70
    ListDigraph::Node s,t;
71 71
    ListDigraph::ArcMap<int> label(d);
72 72
    std::istringstream input(test_lgf);
73 73
    digraphReader(d, input).
74 74
      node("source", s).
75 75
      node("target", t).
76 76
      arcMap("label", label).
77 77
      run();
78 78
    check(countNodes(d) == 2,"There should be 2 nodes");
79 79
    check(countArcs(d) == 2,"There should be 2 arcs");
80 80
  }
81 81
  {
82 82
    ListGraph g;
83 83
    ListGraph::Node s,t;
84 84
    ListGraph::EdgeMap<int> label(g);
85 85
    std::istringstream input(test_lgf);
86 86
    graphReader(g, input).
87 87
      node("source", s).
88 88
      node("target", t).
89 89
      edgeMap("label", label).
90 90
      run();
91 91
    check(countNodes(g) == 2,"There should be 2 nodes");
92 92
    check(countEdges(g) == 2,"There should be 2 arcs");
93 93
  }
94 94

	
95 95
  {
96
    ListDigraph d; 
96
    ListDigraph d;
97 97
    std::istringstream input(test_lgf_nomap);
98 98
    digraphReader(d, input).
99 99
      run();
100 100
    check(countNodes(d) == 2,"There should be 2 nodes");
101 101
    check(countArcs(d) == 1,"There should be 1 arc");
102 102
  }
103 103
  {
104 104
    ListGraph g;
105 105
    std::istringstream input(test_lgf_nomap);
106 106
    graphReader(g, input).
107 107
      run();
108 108
    check(countNodes(g) == 2,"There should be 2 nodes");
109 109
    check(countEdges(g) == 1,"There should be 1 edge");
110 110
  }
111 111

	
112 112
  {
113
    ListDigraph d; 
113
    ListDigraph d;
114 114
    std::istringstream input(test_lgf_bad1);
115 115
    bool ok=false;
116 116
    try {
117 117
      digraphReader(d, input).
118 118
        run();
119 119
    }
120
    catch (FormatError& error) 
120
    catch (FormatError& error)
121 121
      {
122 122
        ok = true;
123 123
      }
124 124
    check(ok,"FormatError exception should have occured");
125 125
  }
126 126
  {
127 127
    ListGraph g;
128 128
    std::istringstream input(test_lgf_bad1);
129 129
    bool ok=false;
130 130
    try {
131 131
      graphReader(g, input).
132 132
        run();
133 133
    }
134 134
    catch (FormatError& error)
135 135
      {
136 136
        ok = true;
137 137
      }
138 138
    check(ok,"FormatError exception should have occured");
139 139
  }
140 140

	
141 141
  {
142
    ListDigraph d; 
142
    ListDigraph d;
143 143
    std::istringstream input(test_lgf_bad2);
144 144
    bool ok=false;
145 145
    try {
146 146
      digraphReader(d, input).
147 147
        run();
148 148
    }
149 149
    catch (FormatError& error)
150 150
      {
151 151
        ok = true;
152 152
      }
153 153
    check(ok,"FormatError exception should have occured");
154 154
  }
155 155
  {
156 156
    ListGraph g;
157 157
    std::istringstream input(test_lgf_bad2);
158 158
    bool ok=false;
159 159
    try {
160 160
      graphReader(g, input).
161 161
        run();
162 162
    }
163 163
    catch (FormatError& error)
164 164
      {
165 165
        ok = true;
166 166
      }
167 167
    check(ok,"FormatError exception should have occured");
168 168
  }
169 169
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <deque>
20 20
#include <set>
21 21

	
22 22
#include <lemon/concept_check.h>
23 23
#include <lemon/concepts/maps.h>
24 24
#include <lemon/maps.h>
25 25
#include <lemon/list_graph.h>
26 26
#include <lemon/smart_graph.h>
27 27
#include <lemon/adaptors.h>
28 28
#include <lemon/dfs.h>
29 29
#include <algorithm>
30 30

	
31 31
#include "test_tools.h"
32 32

	
33 33
using namespace lemon;
34 34
using namespace lemon::concepts;
35 35

	
36 36
struct A {};
37 37
inline bool operator<(A, A) { return true; }
38 38
struct B {};
39 39

	
40 40
class C {
41 41
  int _x;
42 42
public:
43 43
  C(int x) : _x(x) {}
44 44
  int get() const { return _x; }
45 45
};
46 46
inline bool operator<(C c1, C c2) { return c1.get() < c2.get(); }
47 47
inline bool operator==(C c1, C c2) { return c1.get() == c2.get(); }
48 48

	
49 49
C createC(int x) { return C(x); }
50 50

	
51 51
template <typename T>
52 52
class Less {
53 53
  T _t;
54 54
public:
55 55
  Less(T t): _t(t) {}
56 56
  bool operator()(const T& t) const { return t < _t; }
57 57
};
58 58

	
59 59
class F {
60 60
public:
61 61
  typedef A argument_type;
62 62
  typedef B result_type;
63 63

	
64 64
  B operator()(const A&) const { return B(); }
65 65
private:
66 66
  F& operator=(const F&);
67 67
};
68 68

	
69 69
int func(A) { return 3; }
70 70

	
71 71
int binc(int a, B) { return a+1; }
72 72

	
73 73
template <typename T>
74 74
class Sum {
75 75
  T& _sum;
76 76
public:
77 77
  Sum(T& sum) : _sum(sum) {}
78 78
  void operator()(const T& t) { _sum += t; }
79 79
};
80 80

	
81 81
typedef ReadMap<A, double> DoubleMap;
82 82
typedef ReadWriteMap<A, double> DoubleWriteMap;
83 83
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap;
84 84

	
85 85
typedef ReadMap<A, bool> BoolMap;
86 86
typedef ReadWriteMap<A, bool> BoolWriteMap;
87 87
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap;
88 88

	
89 89
int main()
90 90
{
91 91
  // Map concepts
92 92
  checkConcept<ReadMap<A,B>, ReadMap<A,B> >();
93 93
  checkConcept<ReadMap<A,C>, ReadMap<A,C> >();
94 94
  checkConcept<WriteMap<A,B>, WriteMap<A,B> >();
95 95
  checkConcept<WriteMap<A,C>, WriteMap<A,C> >();
96 96
  checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >();
97 97
  checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >();
98 98
  checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >();
99 99
  checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >();
100 100

	
101 101
  // NullMap
102 102
  {
103 103
    checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >();
104 104
    NullMap<A,B> map1;
105 105
    NullMap<A,B> map2 = map1;
106 106
    map1 = nullMap<A,B>();
107 107
  }
108 108

	
109 109
  // ConstMap
110 110
  {
111 111
    checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >();
112 112
    checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >();
113 113
    ConstMap<A,B> map1;
114 114
    ConstMap<A,B> map2 = B();
115 115
    ConstMap<A,B> map3 = map1;
116 116
    map1 = constMap<A>(B());
117 117
    map1 = constMap<A,B>();
118 118
    map1.setAll(B());
119 119
    ConstMap<A,C> map4(C(1));
120 120
    ConstMap<A,C> map5 = map4;
121 121
    map4 = constMap<A>(C(2));
122 122
    map4.setAll(C(3));
123 123

	
124 124
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >();
125 125
    check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap");
126 126

	
127 127
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >();
128 128
    ConstMap<A,Const<int,10> > map6;
129 129
    ConstMap<A,Const<int,10> > map7 = map6;
130 130
    map6 = constMap<A,int,10>();
131 131
    map7 = constMap<A,Const<int,10> >();
132 132
    check(map6[A()] == 10 && map7[A()] == 10,
133 133
          "Something is wrong with ConstMap");
134 134
  }
135 135

	
136 136
  // IdentityMap
137 137
  {
138 138
    checkConcept<ReadMap<A,A>, IdentityMap<A> >();
139 139
    IdentityMap<A> map1;
140 140
    IdentityMap<A> map2 = map1;
141 141
    map1 = identityMap<A>();
142 142

	
143 143
    checkConcept<ReadMap<double,double>, IdentityMap<double> >();
144 144
    check(identityMap<double>()[1.0] == 1.0 &&
145 145
          identityMap<double>()[3.14] == 3.14,
146 146
          "Something is wrong with IdentityMap");
147 147
  }
148 148

	
149 149
  // RangeMap
150 150
  {
151 151
    checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >();
152 152
    RangeMap<B> map1;
153 153
    RangeMap<B> map2(10);
154 154
    RangeMap<B> map3(10,B());
155 155
    RangeMap<B> map4 = map1;
156 156
    RangeMap<B> map5 = rangeMap<B>();
157 157
    RangeMap<B> map6 = rangeMap<B>(10);
158 158
    RangeMap<B> map7 = rangeMap(10,B());
159 159

	
160 160
    checkConcept< ReferenceMap<int, double, double&, const double&>,
161 161
                  RangeMap<double> >();
162 162
    std::vector<double> v(10, 0);
163 163
    v[5] = 100;
164 164
    RangeMap<double> map8(v);
165 165
    RangeMap<double> map9 = rangeMap(v);
166 166
    check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100,
167 167
          "Something is wrong with RangeMap");
168 168
  }
169 169

	
170 170
  // SparseMap
171 171
  {
172 172
    checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >();
173 173
    SparseMap<A,B> map1;
174 174
    SparseMap<A,B> map2 = B();
175 175
    SparseMap<A,B> map3 = sparseMap<A,B>();
176 176
    SparseMap<A,B> map4 = sparseMap<A>(B());
177 177

	
178 178
    checkConcept< ReferenceMap<double, int, int&, const int&>,
179 179
                  SparseMap<double, int> >();
180 180
    std::map<double, int> m;
181 181
    SparseMap<double, int> map5(m);
182 182
    SparseMap<double, int> map6(m,10);
183 183
    SparseMap<double, int> map7 = sparseMap(m);
184 184
    SparseMap<double, int> map8 = sparseMap(m,10);
185 185

	
186 186
    check(map5[1.0] == 0 && map5[3.14] == 0 &&
187 187
          map6[1.0] == 10 && map6[3.14] == 10,
188 188
          "Something is wrong with SparseMap");
189 189
    map5[1.0] = map6[3.14] = 100;
190 190
    check(map5[1.0] == 100 && map5[3.14] == 0 &&
191 191
          map6[1.0] == 10 && map6[3.14] == 100,
192 192
          "Something is wrong with SparseMap");
193 193
  }
194 194

	
195 195
  // ComposeMap
196 196
  {
197 197
    typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap;
198 198
    checkConcept<ReadMap<B,double>, CompMap>();
199 199
    CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>());
200 200
    CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>());
201 201

	
202 202
    SparseMap<double, bool> m1(false); m1[3.14] = true;
203 203
    RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14;
204 204
    check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1],
205 205
          "Something is wrong with ComposeMap")
206 206
  }
207 207

	
208 208
  // CombineMap
209 209
  {
210 210
    typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap;
211 211
    checkConcept<ReadMap<A,double>, CombMap>();
212 212
    CombMap map1 = CombMap(DoubleMap(), DoubleMap());
213 213
    CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>());
214 214

	
215 215
    check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3,
216 216
          "Something is wrong with CombineMap");
217 217
  }
218 218

	
219 219
  // FunctorToMap, MapToFunctor
220 220
  {
221 221
    checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >();
222 222
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
223 223
    FunctorToMap<F> map1;
224 224
    FunctorToMap<F> map2 = FunctorToMap<F>(F());
225 225
    B b = functorToMap(F())[A()];
226 226

	
227 227
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
228 228
    MapToFunctor<ReadMap<A,B> > map =
229 229
      MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
230 230

	
231 231
    check(functorToMap(&func)[A()] == 3,
232 232
          "Something is wrong with FunctorToMap");
233 233
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2,
234 234
          "Something is wrong with MapToFunctor");
235 235
    check(mapToFunctor(functorToMap(&func))(A()) == 3 &&
236 236
          mapToFunctor(functorToMap(&func))[A()] == 3,
237 237
          "Something is wrong with FunctorToMap or MapToFunctor");
238 238
    check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2,
239 239
          "Something is wrong with FunctorToMap or MapToFunctor");
240 240
  }
241 241

	
242 242
  // ConvertMap
243 243
  {
244 244
    checkConcept<ReadMap<double,double>,
245 245
      ConvertMap<ReadMap<double, int>, double> >();
246 246
    ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true));
247 247
    ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false));
248 248
  }
249 249

	
250 250
  // ForkMap
251 251
  {
252 252
    checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >();
253 253

	
254 254
    typedef RangeMap<double> RM;
255 255
    typedef SparseMap<int, double> SM;
256 256
    RM m1(10, -1);
257 257
    SM m2(-1);
258 258
    checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >();
259 259
    checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >();
260 260
    ForkMap<RM, SM> map1(m1,m2);
261 261
    ForkMap<SM, RM> map2 = forkMap(m2,m1);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2010
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <iostream>
20 20

	
21 21
#include "test_tools.h"
22 22
#include <lemon/smart_graph.h>
23 23
#include <lemon/preflow.h>
24 24
#include <lemon/concepts/digraph.h>
25 25
#include <lemon/concepts/maps.h>
26 26
#include <lemon/lgf_reader.h>
27 27
#include <lemon/elevator.h>
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
char test_lgf[] =
32 32
  "@nodes\n"
33 33
  "label\n"
34 34
  "0\n"
35 35
  "1\n"
36 36
  "2\n"
37 37
  "3\n"
38 38
  "4\n"
39 39
  "5\n"
40 40
  "6\n"
41 41
  "7\n"
42 42
  "8\n"
43 43
  "9\n"
44 44
  "@arcs\n"
45 45
  "    label capacity\n"
46 46
  "0 1 0     20\n"
47 47
  "0 2 1     0\n"
48 48
  "1 1 2     3\n"
49 49
  "1 2 3     8\n"
50 50
  "1 3 4     8\n"
51 51
  "2 5 5     5\n"
52 52
  "3 2 6     5\n"
53 53
  "3 5 7     5\n"
54 54
  "3 6 8     5\n"
55 55
  "4 3 9     3\n"
56 56
  "5 7 10    3\n"
57 57
  "5 6 11    10\n"
58 58
  "5 8 12    10\n"
59 59
  "6 8 13    8\n"
60 60
  "8 9 14    20\n"
61 61
  "8 1 15    5\n"
62 62
  "9 5 16    5\n"
63 63
  "@attributes\n"
64 64
  "source 1\n"
65 65
  "target 8\n";
66 66

	
67 67
void checkPreflowCompile()
68 68
{
69 69
  typedef int VType;
70 70
  typedef concepts::Digraph Digraph;
71 71

	
72 72
  typedef Digraph::Node Node;
73 73
  typedef Digraph::Arc Arc;
74 74
  typedef concepts::ReadMap<Arc,VType> CapMap;
75 75
  typedef concepts::ReadWriteMap<Arc,VType> FlowMap;
76 76
  typedef concepts::WriteMap<Node,bool> CutMap;
77 77

	
78 78
  typedef Elevator<Digraph, Digraph::Node> Elev;
79 79
  typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev;
80 80

	
81 81
  Digraph g;
82 82
  Node n;
83 83
  Arc e;
84 84
  CapMap cap;
85 85
  FlowMap flow;
86 86
  CutMap cut;
87 87
  VType v;
88 88
  bool b;
89 89

	
90 90
  typedef Preflow<Digraph, CapMap>
91 91
            ::SetFlowMap<FlowMap>
92 92
            ::SetElevator<Elev>
93 93
            ::SetStandardElevator<LinkedElev>
94 94
            ::Create PreflowType;
95 95
  PreflowType preflow_test(g, cap, n, n);
96 96
  const PreflowType& const_preflow_test = preflow_test;
97 97

	
98 98
  const PreflowType::Elevator& elev = const_preflow_test.elevator();
99 99
  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
100 100
  PreflowType::Tolerance tol = const_preflow_test.tolerance();
101 101
  preflow_test.tolerance(tol);
102 102

	
103 103
  preflow_test
104 104
    .capacityMap(cap)
105 105
    .flowMap(flow)
106 106
    .source(n)
107 107
    .target(n);
108 108

	
109 109
  preflow_test.init();
110 110
  preflow_test.init(cap);
111 111
  preflow_test.startFirstPhase();
112 112
  preflow_test.startSecondPhase();
113 113
  preflow_test.run();
114 114
  preflow_test.runMinCut();
115 115

	
116 116
  v = const_preflow_test.flowValue();
117 117
  v = const_preflow_test.flow(e);
118 118
  const FlowMap& fm = const_preflow_test.flowMap();
119 119
  b = const_preflow_test.minCut(n);
120 120
  const_preflow_test.minCutMap(cut);
121 121

	
122 122
  ignore_unused_variable_warning(fm);
123 123
}
124 124

	
125 125
int cutValue (const SmartDigraph& g,
126 126
              const SmartDigraph::NodeMap<bool>& cut,
127 127
              const SmartDigraph::ArcMap<int>& cap) {
128 128

	
129 129
  int c=0;
130 130
  for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
131 131
    if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e];
132 132
  }
133 133
  return c;
134 134
}
135 135

	
136 136
bool checkFlow(const SmartDigraph& g,
137 137
               const SmartDigraph::ArcMap<int>& flow,
138 138
               const SmartDigraph::ArcMap<int>& cap,
139 139
               SmartDigraph::Node s, SmartDigraph::Node t) {
140 140

	
141 141
  for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
142 142
    if (flow[e] < 0 || flow[e] > cap[e]) return false;
143 143
  }
144 144

	
145 145
  for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
146 146
    if (n == s || n == t) continue;
147 147
    int sum = 0;
148 148
    for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
149 149
      sum += flow[e];
150 150
    }
151 151
    for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
152 152
      sum -= flow[e];
153 153
    }
154 154
    if (sum != 0) return false;
155 155
  }
156 156
  return true;
157 157
}
158 158

	
159 159
void initFlowTest()
160 160
{
161 161
  DIGRAPH_TYPEDEFS(SmartDigraph);
162
  
162

	
163 163
  SmartDigraph g;
164 164
  SmartDigraph::ArcMap<int> cap(g),iflow(g);
165 165
  Node s=g.addNode(); Node t=g.addNode();
166 166
  Node n1=g.addNode(); Node n2=g.addNode();
167 167
  Arc a;
168 168
  a=g.addArc(s,n1); cap[a]=20; iflow[a]=20;
169 169
  a=g.addArc(n1,n2); cap[a]=10; iflow[a]=0;
170 170
  a=g.addArc(n2,t); cap[a]=20; iflow[a]=0;
171 171

	
172 172
  Preflow<SmartDigraph> pre(g,cap,s,t);
173 173
  pre.init(iflow);
174 174
  pre.startFirstPhase();
175 175
  check(pre.flowValue() == 10, "The incorrect max flow value.");
176 176
  check(pre.minCut(s), "Wrong min cut (Node s).");
177 177
  check(pre.minCut(n1), "Wrong min cut (Node n1).");
178 178
  check(!pre.minCut(n2), "Wrong min cut (Node n2).");
179 179
  check(!pre.minCut(t), "Wrong min cut (Node t).");
180 180
}
181 181

	
182 182

	
183 183
int main() {
184 184

	
185 185
  typedef SmartDigraph Digraph;
186 186

	
187 187
  typedef Digraph::Node Node;
188 188
  typedef Digraph::NodeIt NodeIt;
189 189
  typedef Digraph::ArcIt ArcIt;
190 190
  typedef Digraph::ArcMap<int> CapMap;
191 191
  typedef Digraph::ArcMap<int> FlowMap;
192 192
  typedef Digraph::NodeMap<bool> CutMap;
193 193

	
194 194
  typedef Preflow<Digraph, CapMap> PType;
195 195

	
196 196
  Digraph g;
197 197
  Node s, t;
198 198
  CapMap cap(g);
199 199
  std::istringstream input(test_lgf);
200 200
  DigraphReader<Digraph>(g,input).
201 201
    arcMap("capacity", cap).
202 202
    node("source",s).
203 203
    node("target",t).
204 204
    run();
205 205

	
206 206
  PType preflow_test(g, cap, s, t);
207 207
  preflow_test.run();
208 208

	
209 209
  check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
210 210
        "The flow is not feasible.");
211 211

	
212 212
  CutMap min_cut(g);
213 213
  preflow_test.minCutMap(min_cut);
214 214
  int min_cut_value=cutValue(g,min_cut,cap);
215 215

	
216 216
  check(preflow_test.flowValue() == min_cut_value,
217 217
        "The max flow value is not equal to the three min cut values.");
218 218

	
219 219
  FlowMap flow(g);
220 220
  for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e];
221 221

	
222 222
  int flow_value=preflow_test.flowValue();
223 223

	
224 224
  for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e];
225 225
  preflow_test.init(flow);
226 226
  preflow_test.startFirstPhase();
227 227

	
228 228
  CutMap min_cut1(g);
229 229
  preflow_test.minCutMap(min_cut1);
230 230
  min_cut_value=cutValue(g,min_cut1,cap);
231 231

	
232 232
  check(preflow_test.flowValue() == min_cut_value &&
233 233
        min_cut_value == 2*flow_value,
234 234
        "The max flow value or the min cut value is wrong.");
235 235

	
236 236
  preflow_test.startSecondPhase();
237 237

	
238 238
  check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
239 239
        "The flow is not feasible.");
240 240

	
241 241
  CutMap min_cut2(g);
242 242
  preflow_test.minCutMap(min_cut2);
243 243
  min_cut_value=cutValue(g,min_cut2,cap);
244 244

	
245 245
  check(preflow_test.flowValue() == min_cut_value &&
246 246
        min_cut_value == 2*flow_value,
247 247
        "The max flow value or the three min cut values were not doubled");
248 248

	
249 249

	
250 250
  preflow_test.flowMap(flow);
251 251

	
252 252
  NodeIt tmp1(g,s);
253 253
  ++tmp1;
254 254
  if ( tmp1 != INVALID ) s=tmp1;
255 255

	
256 256
  NodeIt tmp2(g,t);
257 257
  ++tmp2;
258 258
  if ( tmp2 != INVALID ) t=tmp2;
259 259

	
260 260
  preflow_test.source(s);
261 261
  preflow_test.target(t);
262 262

	
263 263
  preflow_test.run();
264 264

	
265 265
  CutMap min_cut3(g);
266 266
  preflow_test.minCutMap(min_cut3);
267 267
  min_cut_value=cutValue(g,min_cut3,cap);
268 268

	
269 269

	
270 270
  check(preflow_test.flowValue() == min_cut_value,
271 271
        "The max flow value or the three min cut values are incorrect.");
272 272

	
273 273
  initFlowTest();
274
  
274

	
275 275
  return 0;
276 276
}
0 comments (0 inline)