1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
|
23 | 23 |
|
24 | 24 |
\page lgf-format LEMON Graph Format (LGF) |
25 | 25 |
|
26 | 26 |
The \e LGF is a <em>column oriented</em> |
27 | 27 |
file format for storing graphs and associated data like |
28 | 28 |
node and edge maps. |
29 | 29 |
|
30 | 30 |
Each line with \c '#' first non-whitespace |
31 | 31 |
character is considered as a comment line. |
32 | 32 |
|
33 | 33 |
Otherwise the file consists of sections starting with |
34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
36 | 36 |
\@arcs and \c \@edges |
37 | 37 |
and \@attributes. Each header line may also have an optional |
38 | 38 |
\e name, which can be use to distinguish the sections of the same |
39 | 39 |
type. |
40 | 40 |
|
41 | 41 |
The standard sections are column oriented, each line consists of |
42 | 42 |
<em>token</em>s separated by whitespaces. A token can be \e plain or |
43 | 43 |
\e quoted. A plain token is just a sequence of non-whitespace characters, |
44 | 44 |
while a quoted token is a |
45 | 45 |
character sequence surrounded by double quotes, and it can also |
46 | 46 |
contain whitespaces and escape sequences. |
47 | 47 |
|
48 | 48 |
The \c \@nodes section describes a set of nodes and associated |
49 | 49 |
maps. The first is a header line, its columns are the names of the |
50 | 50 |
maps appearing in the following lines. |
51 | 51 |
One of the maps must be called \c |
52 | 52 |
"label", which plays special role in the file. |
53 | 53 |
The following |
54 | 54 |
non-empty lines until the next section describes nodes of the |
55 | 55 |
graph. Each line contains the values of the node maps |
56 | 56 |
associated to the current node. |
57 | 57 |
|
58 | 58 |
\code |
59 | 59 |
@nodes |
60 | 60 |
label coordinates size title |
61 | 61 |
1 (10,20) 10 "First node" |
62 | 62 |
2 (80,80) 8 "Second node" |
63 | 63 |
3 (40,10) 10 "Third node" |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
The \c \@arcs section is very similar to the \c \@nodes section, it |
67 | 67 |
again starts with a header line describing the names of the maps, but |
68 | 68 |
the \c "label" map is not obligatory here. The following lines |
69 | 69 |
describe the arcs. The first two tokens of each line are the source |
70 | 70 |
and the target node of the arc, respectively, then come the map |
71 | 71 |
values. The source and target tokens must be node labels. |
72 | 72 |
|
73 | 73 |
\code |
74 | 74 |
@arcs |
75 | 75 |
capacity |
76 | 76 |
1 2 16 |
77 | 77 |
1 3 12 |
78 | 78 |
2 3 18 |
79 | 79 |
\endcode |
80 | 80 |
|
81 | 81 |
If there is no map in the \c \@arcs section at all, then it must be |
82 | 82 |
indicated by a sole '-' sign in the first line. |
83 | 83 |
|
84 | 84 |
\code |
85 | 85 |
@arcs |
86 | 86 |
- |
87 | 87 |
1 2 |
88 | 88 |
1 3 |
89 | 89 |
2 3 |
90 | 90 |
\endcode |
91 | 91 |
|
92 | 92 |
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can |
93 | 93 |
also store the edge set of an undirected graph. In such case there is |
94 | 94 |
a conventional method for store arc maps in the file, if two columns |
95 | 95 |
have the same caption with \c '+' and \c '-' prefix, then these columns |
96 | 96 |
can be regarded as the values of an arc map. |
97 | 97 |
|
98 | 98 |
The \c \@attributes section contains key-value pairs, each line |
99 | 99 |
consists of two tokens, an attribute name, and then an attribute |
100 | 100 |
value. The value of the attribute could be also a label value of a |
101 | 101 |
node or an edge, or even an edge label prefixed with \c '+' or \c '-', |
102 | 102 |
which regards to the forward or backward directed arc of the |
103 | 103 |
corresponding edge. |
104 | 104 |
|
105 | 105 |
\code |
106 | 106 |
@attributes |
107 | 107 |
source 1 |
108 | 108 |
target 3 |
109 | 109 |
caption "LEMON test digraph" |
110 | 110 |
\endcode |
111 | 111 |
|
112 | 112 |
The \e LGF can contain extra sections, but there is no restriction on |
113 | 113 |
the format of such sections. |
114 | 114 |
|
115 | 115 |
*/ |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
// LocalWords: whitespace whitespaces |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template <typename _Digraph> |
28 | 28 |
class DigraphAdaptorExtender : public _Digraph { |
29 | 29 |
typedef _Digraph Parent; |
30 | 30 |
|
31 | 31 |
public: |
32 | 32 |
|
33 | 33 |
typedef _Digraph Digraph; |
34 | 34 |
typedef DigraphAdaptorExtender Adaptor; |
35 | 35 |
|
36 | 36 |
// Base extensions |
37 | 37 |
|
38 | 38 |
typedef typename Parent::Node Node; |
39 | 39 |
typedef typename Parent::Arc Arc; |
40 | 40 |
|
41 | 41 |
int maxId(Node) const { |
42 | 42 |
return Parent::maxNodeId(); |
43 | 43 |
} |
44 | 44 |
|
45 | 45 |
int maxId(Arc) const { |
46 | 46 |
return Parent::maxArcId(); |
47 | 47 |
} |
48 | 48 |
|
49 | 49 |
Node fromId(int id, Node) const { |
50 | 50 |
return Parent::nodeFromId(id); |
51 | 51 |
} |
52 | 52 |
|
53 | 53 |
Arc fromId(int id, Arc) const { |
54 | 54 |
return Parent::arcFromId(id); |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
Node oppositeNode(const Node &n, const Arc &e) const { |
58 | 58 |
if (n == Parent::source(e)) |
59 | 59 |
return Parent::target(e); |
60 | 60 |
else if(n==Parent::target(e)) |
61 | 61 |
return Parent::source(e); |
62 | 62 |
else |
63 | 63 |
return INVALID; |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
class NodeIt : public Node { |
67 | 67 |
const Adaptor* _adaptor; |
68 | 68 |
public: |
69 | 69 |
|
70 | 70 |
NodeIt() {} |
71 | 71 |
|
72 | 72 |
NodeIt(Invalid i) : Node(i) { } |
73 | 73 |
|
74 | 74 |
explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
75 | 75 |
_adaptor->first(static_cast<Node&>(*this)); |
76 | 76 |
} |
77 | 77 |
|
78 | 78 |
NodeIt(const Adaptor& adaptor, const Node& node) |
79 | 79 |
: Node(node), _adaptor(&adaptor) {} |
80 | 80 |
|
81 | 81 |
NodeIt& operator++() { |
82 | 82 |
_adaptor->next(*this); |
83 | 83 |
return *this; |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
}; |
87 | 87 |
|
88 | 88 |
|
89 | 89 |
class ArcIt : public Arc { |
90 | 90 |
const Adaptor* _adaptor; |
91 | 91 |
public: |
92 | 92 |
|
93 | 93 |
ArcIt() { } |
94 | 94 |
|
95 | 95 |
ArcIt(Invalid i) : Arc(i) { } |
96 | 96 |
|
97 | 97 |
explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
98 | 98 |
_adaptor->first(static_cast<Arc&>(*this)); |
99 | 99 |
} |
100 | 100 |
|
101 | 101 |
ArcIt(const Adaptor& adaptor, const Arc& e) : |
102 | 102 |
Arc(e), _adaptor(&adaptor) { } |
103 | 103 |
|
104 | 104 |
ArcIt& operator++() { |
105 | 105 |
_adaptor->next(*this); |
106 | 106 |
return *this; |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
|
112 | 112 |
class OutArcIt : public Arc { |
113 | 113 |
const Adaptor* _adaptor; |
114 | 114 |
public: |
115 | 115 |
|
116 | 116 |
OutArcIt() { } |
117 | 117 |
|
118 | 118 |
OutArcIt(Invalid i) : Arc(i) { } |
119 | 119 |
|
120 | 120 |
OutArcIt(const Adaptor& adaptor, const Node& node) |
121 | 121 |
: _adaptor(&adaptor) { |
122 | 122 |
_adaptor->firstOut(*this, node); |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
OutArcIt(const Adaptor& adaptor, const Arc& arc) |
126 | 126 |
: Arc(arc), _adaptor(&adaptor) {} |
127 | 127 |
|
128 | 128 |
OutArcIt& operator++() { |
129 | 129 |
_adaptor->nextOut(*this); |
130 | 130 |
return *this; |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
|
136 | 136 |
class InArcIt : public Arc { |
137 | 137 |
const Adaptor* _adaptor; |
138 | 138 |
public: |
139 | 139 |
|
140 | 140 |
InArcIt() { } |
141 | 141 |
|
142 | 142 |
InArcIt(Invalid i) : Arc(i) { } |
143 | 143 |
|
144 | 144 |
InArcIt(const Adaptor& adaptor, const Node& node) |
145 | 145 |
: _adaptor(&adaptor) { |
146 | 146 |
_adaptor->firstIn(*this, node); |
147 | 147 |
} |
148 | 148 |
|
149 | 149 |
InArcIt(const Adaptor& adaptor, const Arc& arc) : |
150 | 150 |
Arc(arc), _adaptor(&adaptor) {} |
151 | 151 |
|
152 | 152 |
InArcIt& operator++() { |
153 | 153 |
_adaptor->nextIn(*this); |
154 | 154 |
return *this; |
155 | 155 |
} |
156 | 156 |
|
157 | 157 |
}; |
158 | 158 |
|
159 | 159 |
Node baseNode(const OutArcIt &e) const { |
160 | 160 |
return Parent::source(e); |
161 | 161 |
} |
162 | 162 |
Node runningNode(const OutArcIt &e) const { |
163 | 163 |
return Parent::target(e); |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
Node baseNode(const InArcIt &e) const { |
167 | 167 |
return Parent::target(e); |
168 | 168 |
} |
169 | 169 |
Node runningNode(const InArcIt &e) const { |
170 | 170 |
return Parent::source(e); |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
template <typename _Graph> |
176 | 176 |
class GraphAdaptorExtender : public _Graph { |
177 | 177 |
typedef _Graph Parent; |
178 | 178 |
|
179 | 179 |
public: |
180 | 180 |
|
181 | 181 |
typedef _Graph Graph; |
182 | 182 |
typedef GraphAdaptorExtender Adaptor; |
183 | 183 |
|
184 | 184 |
typedef True UndirectedTag; |
185 | 185 |
|
186 | 186 |
typedef typename Parent::Node Node; |
187 | 187 |
typedef typename Parent::Arc Arc; |
188 | 188 |
typedef typename Parent::Edge Edge; |
189 | 189 |
|
190 | 190 |
// Graph extension |
191 | 191 |
|
192 | 192 |
int maxId(Node) const { |
193 | 193 |
return Parent::maxNodeId(); |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
int maxId(Arc) const { |
197 | 197 |
return Parent::maxArcId(); |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
int maxId(Edge) const { |
201 | 201 |
return Parent::maxEdgeId(); |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
Node fromId(int id, Node) const { |
205 | 205 |
return Parent::nodeFromId(id); |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
Arc fromId(int id, Arc) const { |
209 | 209 |
return Parent::arcFromId(id); |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
Edge fromId(int id, Edge) const { |
213 | 213 |
return Parent::edgeFromId(id); |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
Node oppositeNode(const Node &n, const Edge &e) const { |
217 | 217 |
if( n == Parent::u(e)) |
218 | 218 |
return Parent::v(e); |
219 | 219 |
else if( n == Parent::v(e)) |
220 | 220 |
return Parent::u(e); |
221 | 221 |
else |
222 | 222 |
return INVALID; |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
Arc oppositeArc(const Arc &a) const { |
226 | 226 |
return Parent::direct(a, !Parent::direction(a)); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
using Parent::direct; |
230 | 230 |
Arc direct(const Edge &e, const Node &s) const { |
231 | 231 |
return Parent::direct(e, Parent::u(e) == s); |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
|
235 | 235 |
class NodeIt : public Node { |
236 | 236 |
const Adaptor* _adaptor; |
237 | 237 |
public: |
238 | 238 |
|
239 | 239 |
NodeIt() {} |
240 | 240 |
|
241 | 241 |
NodeIt(Invalid i) : Node(i) { } |
242 | 242 |
|
243 | 243 |
explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
244 | 244 |
_adaptor->first(static_cast<Node&>(*this)); |
245 | 245 |
} |
246 | 246 |
|
247 | 247 |
NodeIt(const Adaptor& adaptor, const Node& node) |
248 | 248 |
: Node(node), _adaptor(&adaptor) {} |
249 | 249 |
|
250 | 250 |
NodeIt& operator++() { |
251 | 251 |
_adaptor->next(*this); |
252 | 252 |
return *this; |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
}; |
256 | 256 |
|
257 | 257 |
|
258 | 258 |
class ArcIt : public Arc { |
259 | 259 |
const Adaptor* _adaptor; |
260 | 260 |
public: |
261 | 261 |
|
262 | 262 |
ArcIt() { } |
263 | 263 |
|
264 | 264 |
ArcIt(Invalid i) : Arc(i) { } |
265 | 265 |
|
266 | 266 |
explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
267 | 267 |
_adaptor->first(static_cast<Arc&>(*this)); |
268 | 268 |
} |
269 | 269 |
|
270 | 270 |
ArcIt(const Adaptor& adaptor, const Arc& e) : |
271 | 271 |
Arc(e), _adaptor(&adaptor) { } |
272 | 272 |
|
273 | 273 |
ArcIt& operator++() { |
274 | 274 |
_adaptor->next(*this); |
275 | 275 |
return *this; |
276 | 276 |
} |
277 | 277 |
|
278 | 278 |
}; |
279 | 279 |
|
280 | 280 |
|
281 | 281 |
class OutArcIt : public Arc { |
282 | 282 |
const Adaptor* _adaptor; |
283 | 283 |
public: |
284 | 284 |
|
285 | 285 |
OutArcIt() { } |
286 | 286 |
|
287 | 287 |
OutArcIt(Invalid i) : Arc(i) { } |
288 | 288 |
|
289 | 289 |
OutArcIt(const Adaptor& adaptor, const Node& node) |
290 | 290 |
: _adaptor(&adaptor) { |
291 | 291 |
_adaptor->firstOut(*this, node); |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
OutArcIt(const Adaptor& adaptor, const Arc& arc) |
295 | 295 |
: Arc(arc), _adaptor(&adaptor) {} |
296 | 296 |
|
297 | 297 |
OutArcIt& operator++() { |
298 | 298 |
_adaptor->nextOut(*this); |
299 | 299 |
return *this; |
300 | 300 |
} |
301 | 301 |
|
302 | 302 |
}; |
303 | 303 |
|
304 | 304 |
|
305 | 305 |
class InArcIt : public Arc { |
306 | 306 |
const Adaptor* _adaptor; |
307 | 307 |
public: |
308 | 308 |
|
309 | 309 |
InArcIt() { } |
310 | 310 |
|
311 | 311 |
InArcIt(Invalid i) : Arc(i) { } |
312 | 312 |
|
313 | 313 |
InArcIt(const Adaptor& adaptor, const Node& node) |
314 | 314 |
: _adaptor(&adaptor) { |
315 | 315 |
_adaptor->firstIn(*this, node); |
316 | 316 |
} |
317 | 317 |
|
318 | 318 |
InArcIt(const Adaptor& adaptor, const Arc& arc) : |
319 | 319 |
Arc(arc), _adaptor(&adaptor) {} |
320 | 320 |
|
321 | 321 |
InArcIt& operator++() { |
322 | 322 |
_adaptor->nextIn(*this); |
323 | 323 |
return *this; |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
}; |
327 | 327 |
|
328 | 328 |
class EdgeIt : public Parent::Edge { |
329 | 329 |
const Adaptor* _adaptor; |
330 | 330 |
public: |
331 | 331 |
|
332 | 332 |
EdgeIt() { } |
333 | 333 |
|
334 | 334 |
EdgeIt(Invalid i) : Edge(i) { } |
335 | 335 |
|
336 | 336 |
explicit EdgeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
337 | 337 |
_adaptor->first(static_cast<Edge&>(*this)); |
338 | 338 |
} |
339 | 339 |
|
340 | 340 |
EdgeIt(const Adaptor& adaptor, const Edge& e) : |
341 | 341 |
Edge(e), _adaptor(&adaptor) { } |
342 | 342 |
|
343 | 343 |
EdgeIt& operator++() { |
344 | 344 |
_adaptor->next(*this); |
345 | 345 |
return *this; |
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
}; |
349 | 349 |
|
350 | 350 |
class IncEdgeIt : public Edge { |
351 | 351 |
friend class GraphAdaptorExtender; |
352 | 352 |
const Adaptor* _adaptor; |
353 | 353 |
bool direction; |
354 | 354 |
public: |
355 | 355 |
|
356 | 356 |
IncEdgeIt() { } |
357 | 357 |
|
358 | 358 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
359 | 359 |
|
360 | 360 |
IncEdgeIt(const Adaptor& adaptor, const Node &n) : _adaptor(&adaptor) { |
361 | 361 |
_adaptor->firstInc(static_cast<Edge&>(*this), direction, n); |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
IncEdgeIt(const Adaptor& adaptor, const Edge &e, const Node &n) |
365 | 365 |
: _adaptor(&adaptor), Edge(e) { |
366 | 366 |
direction = (_adaptor->u(e) == n); |
367 | 367 |
} |
368 | 368 |
|
369 | 369 |
IncEdgeIt& operator++() { |
370 | 370 |
_adaptor->nextInc(*this, direction); |
371 | 371 |
return *this; |
372 | 372 |
} |
373 | 373 |
}; |
374 | 374 |
|
375 | 375 |
Node baseNode(const OutArcIt &a) const { |
376 | 376 |
return Parent::source(a); |
377 | 377 |
} |
378 | 378 |
Node runningNode(const OutArcIt &a) const { |
379 | 379 |
return Parent::target(a); |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
Node baseNode(const InArcIt &a) const { |
383 | 383 |
return Parent::target(a); |
384 | 384 |
} |
385 | 385 |
Node runningNode(const InArcIt &a) const { |
386 | 386 |
return Parent::source(a); |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
Node baseNode(const IncEdgeIt &e) const { |
390 | 390 |
return e.direction ? Parent::u(e) : Parent::v(e); |
391 | 391 |
} |
392 | 392 |
Node runningNode(const IncEdgeIt &e) const { |
393 | 393 |
return e.direction ? Parent::v(e) : Parent::u(e); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
}; |
397 | 397 |
|
398 | 398 |
} |
399 | 399 |
|
400 | 400 |
|
401 | 401 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_PATH_DUMP_H |
20 | 20 |
#define LEMON_BITS_PATH_DUMP_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template <typename _Digraph, typename _PredMap> |
28 | 28 |
class PredMapPath { |
29 | 29 |
public: |
30 | 30 |
typedef True RevPathTag; |
31 | 31 |
|
32 | 32 |
typedef _Digraph Digraph; |
33 | 33 |
typedef typename Digraph::Arc Arc; |
34 | 34 |
typedef _PredMap PredMap; |
35 | 35 |
|
36 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
37 | 37 |
typename Digraph::Node _target) |
38 | 38 |
: digraph(_digraph), predMap(_predMap), target(_target) {} |
39 | 39 |
|
40 | 40 |
int length() const { |
41 | 41 |
int len = 0; |
42 | 42 |
typename Digraph::Node node = target; |
43 | 43 |
typename Digraph::Arc arc; |
44 | 44 |
while ((arc = predMap[node]) != INVALID) { |
45 | 45 |
node = digraph.source(arc); |
46 | 46 |
++len; |
47 | 47 |
} |
48 | 48 |
return len; |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
bool empty() const { |
52 | 52 |
return predMap[target] == INVALID; |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
class RevArcIt { |
56 | 56 |
public: |
57 | 57 |
RevArcIt() {} |
58 | 58 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
59 | 59 |
RevArcIt(const PredMapPath& _path) |
60 | 60 |
: path(&_path), current(_path.target) { |
61 | 61 |
if (path->predMap[current] == INVALID) current = INVALID; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
operator const typename Digraph::Arc() const { |
65 | 65 |
return path->predMap[current]; |
66 | 66 |
} |
67 | 67 |
|
68 | 68 |
RevArcIt& operator++() { |
69 | 69 |
current = path->digraph.source(path->predMap[current]); |
70 | 70 |
if (path->predMap[current] == INVALID) current = INVALID; |
71 | 71 |
return *this; |
72 | 72 |
} |
73 | 73 |
|
74 | 74 |
bool operator==(const RevArcIt& e) const { |
75 | 75 |
return current == e.current; |
76 | 76 |
} |
77 | 77 |
|
78 | 78 |
bool operator!=(const RevArcIt& e) const { |
79 | 79 |
return current != e.current; |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
bool operator<(const RevArcIt& e) const { |
83 | 83 |
return current < e.current; |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
private: |
87 | 87 |
const PredMapPath* path; |
88 | 88 |
typename Digraph::Node current; |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
private: |
92 | 92 |
const Digraph& digraph; |
93 | 93 |
const PredMap& predMap; |
94 | 94 |
typename Digraph::Node target; |
95 | 95 |
}; |
96 | 96 |
|
97 | 97 |
|
98 | 98 |
template <typename _Digraph, typename _PredMatrixMap> |
99 | 99 |
class PredMatrixMapPath { |
100 | 100 |
public: |
101 | 101 |
typedef True RevPathTag; |
102 | 102 |
|
103 | 103 |
typedef _Digraph Digraph; |
104 | 104 |
typedef typename Digraph::Arc Arc; |
105 | 105 |
typedef _PredMatrixMap PredMatrixMap; |
106 | 106 |
|
107 | 107 |
PredMatrixMapPath(const Digraph& _digraph, |
108 | 108 |
const PredMatrixMap& _predMatrixMap, |
109 | 109 |
typename Digraph::Node _source, |
110 | 110 |
typename Digraph::Node _target) |
111 | 111 |
: digraph(_digraph), predMatrixMap(_predMatrixMap), |
112 | 112 |
source(_source), target(_target) {} |
113 | 113 |
|
114 | 114 |
int length() const { |
115 | 115 |
int len = 0; |
116 | 116 |
typename Digraph::Node node = target; |
117 | 117 |
typename Digraph::Arc arc; |
118 | 118 |
while ((arc = predMatrixMap(source, node)) != INVALID) { |
119 | 119 |
node = digraph.source(arc); |
120 | 120 |
++len; |
121 | 121 |
} |
122 | 122 |
return len; |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
bool empty() const { |
126 | 126 |
return predMatrixMap(source, target) == INVALID; |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
class RevArcIt { |
130 | 130 |
public: |
131 | 131 |
RevArcIt() {} |
132 | 132 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
133 | 133 |
RevArcIt(const PredMatrixMapPath& _path) |
134 | 134 |
: path(&_path), current(_path.target) { |
135 | 135 |
if (path->predMatrixMap(path->source, current) == INVALID) |
136 | 136 |
current = INVALID; |
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
operator const typename Digraph::Arc() const { |
140 | 140 |
return path->predMatrixMap(path->source, current); |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
RevArcIt& operator++() { |
144 | 144 |
current = |
145 | 145 |
path->digraph.source(path->predMatrixMap(path->source, current)); |
146 | 146 |
if (path->predMatrixMap(path->source, current) == INVALID) |
147 | 147 |
current = INVALID; |
148 | 148 |
return *this; |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
bool operator==(const RevArcIt& e) const { |
152 | 152 |
return current == e.current; |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
bool operator!=(const RevArcIt& e) const { |
156 | 156 |
return current != e.current; |
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
bool operator<(const RevArcIt& e) const { |
160 | 160 |
return current < e.current; |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
private: |
164 | 164 |
const PredMatrixMapPath* path; |
165 | 165 |
typename Digraph::Node current; |
166 | 166 |
}; |
167 | 167 |
|
168 | 168 |
private: |
169 | 169 |
const Digraph& digraph; |
170 | 170 |
const PredMatrixMap& predMatrixMap; |
171 | 171 |
typename Digraph::Node source; |
172 | 172 |
typename Digraph::Node target; |
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/bits/windows.h> |
23 | 23 |
|
24 | 24 |
#ifdef WIN32 |
25 | 25 |
#ifndef WIN32_LEAN_AND_MEAN |
26 | 26 |
#define WIN32_LEAN_AND_MEAN |
27 | 27 |
#endif |
28 | 28 |
#ifndef NOMINMAX |
29 | 29 |
#define NOMINMAX |
30 | 30 |
#endif |
31 | 31 |
#ifdef UNICODE |
32 | 32 |
#undef UNICODE |
33 | 33 |
#endif |
34 | 34 |
#include <windows.h> |
35 | 35 |
#ifdef LOCALE_INVARIANT |
36 | 36 |
#define MY_LOCALE LOCALE_INVARIANT |
37 | 37 |
#else |
38 | 38 |
#define MY_LOCALE LOCALE_NEUTRAL |
39 | 39 |
#endif |
40 | 40 |
#else |
41 | 41 |
#include <unistd.h> |
42 | 42 |
#include <ctime> |
43 | 43 |
#ifndef WIN32 |
44 | 44 |
#include <sys/times.h> |
45 | 45 |
#endif |
46 | 46 |
#include <sys/time.h> |
47 | 47 |
#endif |
48 | 48 |
|
49 | 49 |
#include <cmath> |
50 | 50 |
#include <sstream> |
51 | 51 |
|
52 | 52 |
namespace lemon { |
53 | 53 |
namespace bits { |
54 | 54 |
void getWinProcTimes(double &rtime, |
55 | 55 |
double &utime, double &stime, |
56 | 56 |
double &cutime, double &cstime) |
57 | 57 |
{ |
58 | 58 |
#ifdef WIN32 |
59 | 59 |
static const double ch = 4294967296.0e-7; |
60 | 60 |
static const double cl = 1.0e-7; |
61 | 61 |
|
62 | 62 |
FILETIME system; |
63 | 63 |
GetSystemTimeAsFileTime(&system); |
64 | 64 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
65 | 65 |
|
66 | 66 |
FILETIME create, exit, kernel, user; |
67 | 67 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { |
68 | 68 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
69 | 69 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
70 | 70 |
cutime = 0; |
71 | 71 |
cstime = 0; |
72 | 72 |
} else { |
73 | 73 |
rtime = 0; |
74 | 74 |
utime = 0; |
75 | 75 |
stime = 0; |
76 | 76 |
cutime = 0; |
77 | 77 |
cstime = 0; |
78 | 78 |
} |
79 | 79 |
#else |
80 | 80 |
timeval tv; |
81 | 81 |
gettimeofday(&tv, 0); |
82 | 82 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
83 | 83 |
|
84 | 84 |
tms ts; |
85 | 85 |
double tck=sysconf(_SC_CLK_TCK); |
86 | 86 |
times(&ts); |
87 | 87 |
utime=ts.tms_utime/tck; |
88 | 88 |
stime=ts.tms_stime/tck; |
89 | 89 |
cutime=ts.tms_cutime/tck; |
90 | 90 |
cstime=ts.tms_cstime/tck; |
91 | 91 |
#endif |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
std::string getWinFormattedDate() |
95 | 95 |
{ |
96 | 96 |
std::ostringstream os; |
97 | 97 |
#ifdef WIN32 |
98 | 98 |
SYSTEMTIME time; |
99 | 99 |
GetSystemTime(&time); |
100 | 100 |
char buf1[11], buf2[9], buf3[5]; |
101 | 101 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
102 | 102 |
("ddd MMM dd"), buf1, 11) && |
103 | 103 |
GetTimeFormat(MY_LOCALE, 0, &time, |
104 | 104 |
("HH':'mm':'ss"), buf2, 9) && |
105 | 105 |
GetDateFormat(MY_LOCALE, 0, &time, |
106 | 106 |
("yyyy"), buf3, 5)) { |
107 | 107 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
108 | 108 |
} |
109 | 109 |
else os << "unknown"; |
110 | 110 |
#else |
111 | 111 |
timeval tv; |
112 | 112 |
gettimeofday(&tv, 0); |
113 | 113 |
|
114 | 114 |
char cbuf[26]; |
115 | 115 |
ctime_r(&tv.tv_sec,cbuf); |
116 | 116 |
os << cbuf; |
117 | 117 |
#endif |
118 | 118 |
return os.str(); |
119 | 119 |
} |
120 | 120 |
|
121 | 121 |
int getWinRndSeed() |
122 | 122 |
{ |
123 | 123 |
#ifdef WIN32 |
124 | 124 |
FILETIME time; |
125 | 125 |
GetSystemTimeAsFileTime(&time); |
126 | 126 |
return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime; |
127 | 127 |
#else |
128 | 128 |
timeval tv; |
129 | 129 |
gettimeofday(&tv, 0); |
130 | 130 |
return getpid() + tv.tv_sec + tv.tv_usec; |
131 | 131 |
#endif |
132 | 132 |
} |
133 | 133 |
} |
134 | 134 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COST_SCALING_H |
20 | 20 |
#define LEMON_COST_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <deque> |
28 | 28 |
#include <limits> |
29 | 29 |
|
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
40 | 40 |
/// |
41 | 41 |
/// Default traits class of CostScaling algorithm. |
42 | 42 |
/// \tparam GR Digraph type. |
43 | 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
44 | 44 |
/// and supply values. By default it is \c int. |
45 | 45 |
/// \tparam C The number type used for costs and potentials. |
46 | 46 |
/// By default it is the same as \c V. |
47 | 47 |
#ifdef DOXYGEN |
48 | 48 |
template <typename GR, typename V = int, typename C = V> |
49 | 49 |
#else |
50 | 50 |
template < typename GR, typename V = int, typename C = V, |
51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
52 | 52 |
#endif |
53 | 53 |
struct CostScalingDefaultTraits |
54 | 54 |
{ |
55 | 55 |
/// The type of the digraph |
56 | 56 |
typedef GR Digraph; |
57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
58 | 58 |
typedef V Value; |
59 | 59 |
/// The type of the arc costs |
60 | 60 |
typedef C Cost; |
61 | 61 |
|
62 | 62 |
/// \brief The large cost type used for internal computations |
63 | 63 |
/// |
64 | 64 |
/// The large cost type used for internal computations. |
65 | 65 |
/// It is \c long \c long if the \c Cost type is integer, |
66 | 66 |
/// otherwise it is \c double. |
67 | 67 |
/// \c Cost must be convertible to \c LargeCost. |
68 | 68 |
typedef double LargeCost; |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
// Default traits class for integer cost types |
72 | 72 |
template <typename GR, typename V, typename C> |
73 | 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
74 | 74 |
{ |
75 | 75 |
typedef GR Digraph; |
76 | 76 |
typedef V Value; |
77 | 77 |
typedef C Cost; |
78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
79 | 79 |
typedef long long LargeCost; |
80 | 80 |
#else |
81 | 81 |
typedef long LargeCost; |
82 | 82 |
#endif |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
95 | 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
99 | 99 |
/// |
100 | 100 |
/// Most of the parameters of the problem (except for the digraph) |
101 | 101 |
/// can be given using separate functions, and the algorithm can be |
102 | 102 |
/// executed using the \ref run() function. If some parameters are not |
103 | 103 |
/// specified, then default values will be used. |
104 | 104 |
/// |
105 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
106 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
107 | 107 |
/// and supply values in the algorithm. By default, it is \c int. |
108 | 108 |
/// \tparam C The number type used for costs and potentials in the |
109 | 109 |
/// algorithm. By default, it is the same as \c V. |
110 | 110 |
/// \tparam TR The traits class that defines various types used by the |
111 | 111 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
112 | 112 |
/// "CostScalingDefaultTraits<GR, V, C>". |
113 | 113 |
/// In most cases, this parameter should not be set directly, |
114 | 114 |
/// consider to use the named template parameters instead. |
115 | 115 |
/// |
116 | 116 |
/// \warning Both number types must be signed and all input data must |
117 | 117 |
/// be integer. |
118 | 118 |
/// \warning This algorithm does not support negative costs for such |
119 | 119 |
/// arcs that have infinite upper bound. |
120 | 120 |
/// |
121 | 121 |
/// \note %CostScaling provides three different internal methods, |
122 | 122 |
/// from which the most efficient one is used by default. |
123 | 123 |
/// For more information, see \ref Method. |
124 | 124 |
#ifdef DOXYGEN |
125 | 125 |
template <typename GR, typename V, typename C, typename TR> |
126 | 126 |
#else |
127 | 127 |
template < typename GR, typename V = int, typename C = V, |
128 | 128 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
129 | 129 |
#endif |
130 | 130 |
class CostScaling |
131 | 131 |
{ |
132 | 132 |
public: |
133 | 133 |
|
134 | 134 |
/// The type of the digraph |
135 | 135 |
typedef typename TR::Digraph Digraph; |
136 | 136 |
/// The type of the flow amounts, capacity bounds and supply values |
137 | 137 |
typedef typename TR::Value Value; |
138 | 138 |
/// The type of the arc costs |
139 | 139 |
typedef typename TR::Cost Cost; |
140 | 140 |
|
141 | 141 |
/// \brief The large cost type |
142 | 142 |
/// |
143 | 143 |
/// The large cost type used for internal computations. |
144 | 144 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
145 | 145 |
/// otherwise it is \c double. |
146 | 146 |
typedef typename TR::LargeCost LargeCost; |
147 | 147 |
|
148 | 148 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
149 | 149 |
typedef TR Traits; |
150 | 150 |
|
151 | 151 |
public: |
152 | 152 |
|
153 | 153 |
/// \brief Problem type constants for the \c run() function. |
154 | 154 |
/// |
155 | 155 |
/// Enum type containing the problem type constants that can be |
156 | 156 |
/// returned by the \ref run() function of the algorithm. |
157 | 157 |
enum ProblemType { |
158 | 158 |
/// The problem has no feasible solution (flow). |
159 | 159 |
INFEASIBLE, |
160 | 160 |
/// The problem has optimal solution (i.e. it is feasible and |
161 | 161 |
/// bounded), and the algorithm has found optimal flow and node |
162 | 162 |
/// potentials (primal and dual solutions). |
163 | 163 |
OPTIMAL, |
164 | 164 |
/// The digraph contains an arc of negative cost and infinite |
165 | 165 |
/// upper bound. It means that the objective function is unbounded |
166 | 166 |
/// on that arc, however, note that it could actually be bounded |
167 | 167 |
/// over the feasible flows, but this algroithm cannot handle |
168 | 168 |
/// these cases. |
169 | 169 |
UNBOUNDED |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
/// \brief Constants for selecting the internal method. |
173 | 173 |
/// |
174 | 174 |
/// Enum type containing constants for selecting the internal method |
175 | 175 |
/// for the \ref run() function. |
176 | 176 |
/// |
177 | 177 |
/// \ref CostScaling provides three internal methods that differ mainly |
178 | 178 |
/// in their base operations, which are used in conjunction with the |
179 | 179 |
/// relabel operation. |
180 | 180 |
/// By default, the so called \ref PARTIAL_AUGMENT |
181 | 181 |
/// "Partial Augment-Relabel" method is used, which proved to be |
182 | 182 |
/// the most efficient and the most robust on various test inputs. |
183 | 183 |
/// However, the other methods can be selected using the \ref run() |
184 | 184 |
/// function with the proper parameter. |
185 | 185 |
enum Method { |
186 | 186 |
/// Local push operations are used, i.e. flow is moved only on one |
187 | 187 |
/// admissible arc at once. |
188 | 188 |
PUSH, |
189 | 189 |
/// Augment operations are used, i.e. flow is moved on admissible |
190 | 190 |
/// paths from a node with excess to a node with deficit. |
191 | 191 |
AUGMENT, |
192 | 192 |
/// Partial augment operations are used, i.e. flow is moved on |
193 | 193 |
/// admissible paths started from a node with excess, but the |
194 | 194 |
/// lengths of these paths are limited. This method can be viewed |
195 | 195 |
/// as a combined version of the previous two operations. |
196 | 196 |
PARTIAL_AUGMENT |
197 | 197 |
}; |
198 | 198 |
|
199 | 199 |
private: |
200 | 200 |
|
201 | 201 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
202 | 202 |
|
203 | 203 |
typedef std::vector<int> IntVector; |
204 | 204 |
typedef std::vector<Value> ValueVector; |
205 | 205 |
typedef std::vector<Cost> CostVector; |
206 | 206 |
typedef std::vector<LargeCost> LargeCostVector; |
207 | 207 |
typedef std::vector<char> BoolVector; |
208 | 208 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
209 | 209 |
|
210 | 210 |
private: |
211 | 211 |
|
212 | 212 |
template <typename KT, typename VT> |
213 | 213 |
class StaticVectorMap { |
214 | 214 |
public: |
215 | 215 |
typedef KT Key; |
216 | 216 |
typedef VT Value; |
217 | 217 |
|
218 | 218 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
219 | 219 |
|
220 | 220 |
const Value& operator[](const Key& key) const { |
221 | 221 |
return _v[StaticDigraph::id(key)]; |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
Value& operator[](const Key& key) { |
225 | 225 |
return _v[StaticDigraph::id(key)]; |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
void set(const Key& key, const Value& val) { |
229 | 229 |
_v[StaticDigraph::id(key)] = val; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
private: |
233 | 233 |
std::vector<Value>& _v; |
234 | 234 |
}; |
235 | 235 |
|
236 | 236 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
237 | 237 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
238 | 238 |
|
239 | 239 |
private: |
240 | 240 |
|
241 | 241 |
// Data related to the underlying digraph |
242 | 242 |
const GR &_graph; |
243 | 243 |
int _node_num; |
244 | 244 |
int _arc_num; |
245 | 245 |
int _res_node_num; |
246 | 246 |
int _res_arc_num; |
247 | 247 |
int _root; |
248 | 248 |
|
249 | 249 |
// Parameters of the problem |
250 | 250 |
bool _have_lower; |
251 | 251 |
Value _sum_supply; |
252 | 252 |
int _sup_node_num; |
253 | 253 |
|
254 | 254 |
// Data structures for storing the digraph |
255 | 255 |
IntNodeMap _node_id; |
256 | 256 |
IntArcMap _arc_idf; |
257 | 257 |
IntArcMap _arc_idb; |
258 | 258 |
IntVector _first_out; |
259 | 259 |
BoolVector _forward; |
260 | 260 |
IntVector _source; |
261 | 261 |
IntVector _target; |
262 | 262 |
IntVector _reverse; |
263 | 263 |
|
264 | 264 |
// Node and arc data |
265 | 265 |
ValueVector _lower; |
266 | 266 |
ValueVector _upper; |
267 | 267 |
CostVector _scost; |
268 | 268 |
ValueVector _supply; |
269 | 269 |
|
270 | 270 |
ValueVector _res_cap; |
271 | 271 |
LargeCostVector _cost; |
272 | 272 |
LargeCostVector _pi; |
273 | 273 |
ValueVector _excess; |
274 | 274 |
IntVector _next_out; |
275 | 275 |
std::deque<int> _active_nodes; |
276 | 276 |
|
277 | 277 |
// Data for scaling |
278 | 278 |
LargeCost _epsilon; |
279 | 279 |
int _alpha; |
280 | 280 |
|
281 | 281 |
IntVector _buckets; |
282 | 282 |
IntVector _bucket_next; |
283 | 283 |
IntVector _bucket_prev; |
284 | 284 |
IntVector _rank; |
285 | 285 |
int _max_rank; |
286 | 286 |
|
287 | 287 |
// Data for a StaticDigraph structure |
288 | 288 |
typedef std::pair<int, int> IntPair; |
289 | 289 |
StaticDigraph _sgr; |
290 | 290 |
std::vector<IntPair> _arc_vec; |
291 | 291 |
std::vector<LargeCost> _cost_vec; |
292 | 292 |
LargeCostArcMap _cost_map; |
293 | 293 |
LargeCostNodeMap _pi_map; |
294 | 294 |
|
295 | 295 |
public: |
296 | 296 |
|
297 | 297 |
/// \brief Constant for infinite upper bounds (capacities). |
298 | 298 |
/// |
299 | 299 |
/// Constant for infinite upper bounds (capacities). |
300 | 300 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
301 | 301 |
/// \c std::numeric_limits<Value>::max() otherwise. |
302 | 302 |
const Value INF; |
303 | 303 |
|
304 | 304 |
public: |
305 | 305 |
|
306 | 306 |
/// \name Named Template Parameters |
307 | 307 |
/// @{ |
308 | 308 |
|
309 | 309 |
template <typename T> |
310 | 310 |
struct SetLargeCostTraits : public Traits { |
311 | 311 |
typedef T LargeCost; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
/// \brief \ref named-templ-param "Named parameter" for setting |
315 | 315 |
/// \c LargeCost type. |
316 | 316 |
/// |
317 | 317 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
318 | 318 |
/// type, which is used for internal computations in the algorithm. |
319 | 319 |
/// \c Cost must be convertible to \c LargeCost. |
320 | 320 |
template <typename T> |
321 | 321 |
struct SetLargeCost |
322 | 322 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > { |
323 | 323 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
324 | 324 |
}; |
325 | 325 |
|
326 | 326 |
/// @} |
327 | 327 |
|
328 | 328 |
protected: |
329 | 329 |
|
330 | 330 |
CostScaling() {} |
331 | 331 |
|
332 | 332 |
public: |
333 | 333 |
|
334 | 334 |
/// \brief Constructor. |
335 | 335 |
/// |
336 | 336 |
/// The constructor of the class. |
337 | 337 |
/// |
338 | 338 |
/// \param graph The digraph the algorithm runs on. |
339 | 339 |
CostScaling(const GR& graph) : |
340 | 340 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
341 | 341 |
_cost_map(_cost_vec), _pi_map(_pi), |
342 | 342 |
INF(std::numeric_limits<Value>::has_infinity ? |
343 | 343 |
std::numeric_limits<Value>::infinity() : |
344 | 344 |
std::numeric_limits<Value>::max()) |
345 | 345 |
{ |
346 | 346 |
// Check the number types |
347 | 347 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
348 | 348 |
"The flow type of CostScaling must be signed"); |
349 | 349 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
350 | 350 |
"The cost type of CostScaling must be signed"); |
351 | 351 |
|
352 | 352 |
// Reset data structures |
353 | 353 |
reset(); |
354 | 354 |
} |
355 | 355 |
|
356 | 356 |
/// \name Parameters |
357 | 357 |
/// The parameters of the algorithm can be specified using these |
358 | 358 |
/// functions. |
359 | 359 |
|
360 | 360 |
/// @{ |
361 | 361 |
|
362 | 362 |
/// \brief Set the lower bounds on the arcs. |
363 | 363 |
/// |
364 | 364 |
/// This function sets the lower bounds on the arcs. |
365 | 365 |
/// If it is not used before calling \ref run(), the lower bounds |
366 | 366 |
/// will be set to zero on all arcs. |
367 | 367 |
/// |
368 | 368 |
/// \param map An arc map storing the lower bounds. |
369 | 369 |
/// Its \c Value type must be convertible to the \c Value type |
370 | 370 |
/// of the algorithm. |
371 | 371 |
/// |
372 | 372 |
/// \return <tt>(*this)</tt> |
373 | 373 |
template <typename LowerMap> |
374 | 374 |
CostScaling& lowerMap(const LowerMap& map) { |
375 | 375 |
_have_lower = true; |
376 | 376 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
377 | 377 |
_lower[_arc_idf[a]] = map[a]; |
378 | 378 |
_lower[_arc_idb[a]] = map[a]; |
379 | 379 |
} |
380 | 380 |
return *this; |
381 | 381 |
} |
382 | 382 |
|
383 | 383 |
/// \brief Set the upper bounds (capacities) on the arcs. |
384 | 384 |
/// |
385 | 385 |
/// This function sets the upper bounds (capacities) on the arcs. |
386 | 386 |
/// If it is not used before calling \ref run(), the upper bounds |
387 | 387 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
388 | 388 |
/// unbounded from above). |
389 | 389 |
/// |
390 | 390 |
/// \param map An arc map storing the upper bounds. |
391 | 391 |
/// Its \c Value type must be convertible to the \c Value type |
392 | 392 |
/// of the algorithm. |
393 | 393 |
/// |
394 | 394 |
/// \return <tt>(*this)</tt> |
395 | 395 |
template<typename UpperMap> |
396 | 396 |
CostScaling& upperMap(const UpperMap& map) { |
397 | 397 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
398 | 398 |
_upper[_arc_idf[a]] = map[a]; |
399 | 399 |
} |
400 | 400 |
return *this; |
401 | 401 |
} |
402 | 402 |
|
403 | 403 |
/// \brief Set the costs of the arcs. |
404 | 404 |
/// |
405 | 405 |
/// This function sets the costs of the arcs. |
406 | 406 |
/// If it is not used before calling \ref run(), the costs |
407 | 407 |
/// will be set to \c 1 on all arcs. |
408 | 408 |
/// |
409 | 409 |
/// \param map An arc map storing the costs. |
410 | 410 |
/// Its \c Value type must be convertible to the \c Cost type |
411 | 411 |
/// of the algorithm. |
412 | 412 |
/// |
413 | 413 |
/// \return <tt>(*this)</tt> |
414 | 414 |
template<typename CostMap> |
415 | 415 |
CostScaling& costMap(const CostMap& map) { |
416 | 416 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
417 | 417 |
_scost[_arc_idf[a]] = map[a]; |
418 | 418 |
_scost[_arc_idb[a]] = -map[a]; |
419 | 419 |
} |
420 | 420 |
return *this; |
421 | 421 |
} |
422 | 422 |
|
423 | 423 |
/// \brief Set the supply values of the nodes. |
424 | 424 |
/// |
425 | 425 |
/// This function sets the supply values of the nodes. |
426 | 426 |
/// If neither this function nor \ref stSupply() is used before |
427 | 427 |
/// calling \ref run(), the supply of each node will be set to zero. |
428 | 428 |
/// |
429 | 429 |
/// \param map A node map storing the supply values. |
430 | 430 |
/// Its \c Value type must be convertible to the \c Value type |
431 | 431 |
/// of the algorithm. |
432 | 432 |
/// |
433 | 433 |
/// \return <tt>(*this)</tt> |
434 | 434 |
template<typename SupplyMap> |
435 | 435 |
CostScaling& supplyMap(const SupplyMap& map) { |
436 | 436 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
437 | 437 |
_supply[_node_id[n]] = map[n]; |
438 | 438 |
} |
439 | 439 |
return *this; |
440 | 440 |
} |
441 | 441 |
|
442 | 442 |
/// \brief Set single source and target nodes and a supply value. |
443 | 443 |
/// |
444 | 444 |
/// This function sets a single source node and a single target node |
445 | 445 |
/// and the required flow value. |
446 | 446 |
/// If neither this function nor \ref supplyMap() is used before |
447 | 447 |
/// calling \ref run(), the supply of each node will be set to zero. |
448 | 448 |
/// |
449 | 449 |
/// Using this function has the same effect as using \ref supplyMap() |
450 | 450 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
451 | 451 |
/// assigned to \c t and all other nodes have zero supply value. |
452 | 452 |
/// |
453 | 453 |
/// \param s The source node. |
454 | 454 |
/// \param t The target node. |
455 | 455 |
/// \param k The required amount of flow from node \c s to node \c t |
456 | 456 |
/// (i.e. the supply of \c s and the demand of \c t). |
457 | 457 |
/// |
458 | 458 |
/// \return <tt>(*this)</tt> |
459 | 459 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) { |
460 | 460 |
for (int i = 0; i != _res_node_num; ++i) { |
461 | 461 |
_supply[i] = 0; |
462 | 462 |
} |
463 | 463 |
_supply[_node_id[s]] = k; |
464 | 464 |
_supply[_node_id[t]] = -k; |
465 | 465 |
return *this; |
466 | 466 |
} |
467 | 467 |
|
468 | 468 |
/// @} |
469 | 469 |
|
470 | 470 |
/// \name Execution control |
471 | 471 |
/// The algorithm can be executed using \ref run(). |
472 | 472 |
|
473 | 473 |
/// @{ |
474 | 474 |
|
475 | 475 |
/// \brief Run the algorithm. |
476 | 476 |
/// |
477 | 477 |
/// This function runs the algorithm. |
478 | 478 |
/// The paramters can be specified using functions \ref lowerMap(), |
479 | 479 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
480 | 480 |
/// For example, |
481 | 481 |
/// \code |
482 | 482 |
/// CostScaling<ListDigraph> cs(graph); |
483 | 483 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
484 | 484 |
/// .supplyMap(sup).run(); |
485 | 485 |
/// \endcode |
486 | 486 |
/// |
487 | 487 |
/// This function can be called more than once. All the given parameters |
488 | 488 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
489 | 489 |
/// is used, thus only the modified parameters have to be set again. |
490 | 490 |
/// If the underlying digraph was also modified after the construction |
491 | 491 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
492 | 492 |
/// function must be called. |
493 | 493 |
/// |
494 | 494 |
/// \param method The internal method that will be used in the |
495 | 495 |
/// algorithm. For more information, see \ref Method. |
496 | 496 |
/// \param factor The cost scaling factor. It must be larger than one. |
497 | 497 |
/// |
498 | 498 |
/// \return \c INFEASIBLE if no feasible flow exists, |
499 | 499 |
/// \n \c OPTIMAL if the problem has optimal solution |
500 | 500 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
501 | 501 |
/// optimal flow and node potentials (primal and dual solutions), |
502 | 502 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
503 | 503 |
/// and infinite upper bound. It means that the objective function |
504 | 504 |
/// is unbounded on that arc, however, note that it could actually be |
505 | 505 |
/// bounded over the feasible flows, but this algroithm cannot handle |
506 | 506 |
/// these cases. |
507 | 507 |
/// |
508 | 508 |
/// \see ProblemType, Method |
509 | 509 |
/// \see resetParams(), reset() |
510 | 510 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { |
511 | 511 |
_alpha = factor; |
512 | 512 |
ProblemType pt = init(); |
513 | 513 |
if (pt != OPTIMAL) return pt; |
514 | 514 |
start(method); |
515 | 515 |
return OPTIMAL; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
/// \brief Reset all the parameters that have been given before. |
519 | 519 |
/// |
520 | 520 |
/// This function resets all the paramaters that have been given |
521 | 521 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
522 | 522 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
523 | 523 |
/// |
524 | 524 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
525 | 525 |
/// parameters are kept for the next \ref run() call, unless |
526 | 526 |
/// \ref resetParams() or \ref reset() is used. |
527 | 527 |
/// If the underlying digraph was also modified after the construction |
528 | 528 |
/// of the class or the last \ref reset() call, then the \ref reset() |
529 | 529 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
530 | 530 |
/// |
531 | 531 |
/// For example, |
532 | 532 |
/// \code |
533 | 533 |
/// CostScaling<ListDigraph> cs(graph); |
534 | 534 |
/// |
535 | 535 |
/// // First run |
536 | 536 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
537 | 537 |
/// .supplyMap(sup).run(); |
538 | 538 |
/// |
539 | 539 |
/// // Run again with modified cost map (resetParams() is not called, |
540 | 540 |
/// // so only the cost map have to be set again) |
541 | 541 |
/// cost[e] += 100; |
542 | 542 |
/// cs.costMap(cost).run(); |
543 | 543 |
/// |
544 | 544 |
/// // Run again from scratch using resetParams() |
545 | 545 |
/// // (the lower bounds will be set to zero on all arcs) |
546 | 546 |
/// cs.resetParams(); |
547 | 547 |
/// cs.upperMap(capacity).costMap(cost) |
548 | 548 |
/// .supplyMap(sup).run(); |
549 | 549 |
/// \endcode |
550 | 550 |
/// |
551 | 551 |
/// \return <tt>(*this)</tt> |
552 | 552 |
/// |
553 | 553 |
/// \see reset(), run() |
554 | 554 |
CostScaling& resetParams() { |
555 | 555 |
for (int i = 0; i != _res_node_num; ++i) { |
556 | 556 |
_supply[i] = 0; |
557 | 557 |
} |
558 | 558 |
int limit = _first_out[_root]; |
559 | 559 |
for (int j = 0; j != limit; ++j) { |
560 | 560 |
_lower[j] = 0; |
561 | 561 |
_upper[j] = INF; |
562 | 562 |
_scost[j] = _forward[j] ? 1 : -1; |
563 | 563 |
} |
564 | 564 |
for (int j = limit; j != _res_arc_num; ++j) { |
565 | 565 |
_lower[j] = 0; |
566 | 566 |
_upper[j] = INF; |
567 | 567 |
_scost[j] = 0; |
568 | 568 |
_scost[_reverse[j]] = 0; |
569 | 569 |
} |
570 | 570 |
_have_lower = false; |
571 | 571 |
return *this; |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
/// \brief Reset all the parameters that have been given before. |
575 | 575 |
/// |
576 | 576 |
/// This function resets all the paramaters that have been given |
577 | 577 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
578 | 578 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
579 | 579 |
/// |
580 | 580 |
/// It is useful for multiple run() calls. If this function is not |
581 | 581 |
/// used, all the parameters given before are kept for the next |
582 | 582 |
/// \ref run() call. |
583 | 583 |
/// However, the underlying digraph must not be modified after this |
584 | 584 |
/// class have been constructed, since it copies and extends the graph. |
585 | 585 |
/// \return <tt>(*this)</tt> |
586 | 586 |
CostScaling& reset() { |
587 | 587 |
// Resize vectors |
588 | 588 |
_node_num = countNodes(_graph); |
589 | 589 |
_arc_num = countArcs(_graph); |
590 | 590 |
_res_node_num = _node_num + 1; |
591 | 591 |
_res_arc_num = 2 * (_arc_num + _node_num); |
592 | 592 |
_root = _node_num; |
593 | 593 |
|
594 | 594 |
_first_out.resize(_res_node_num + 1); |
595 | 595 |
_forward.resize(_res_arc_num); |
596 | 596 |
_source.resize(_res_arc_num); |
597 | 597 |
_target.resize(_res_arc_num); |
598 | 598 |
_reverse.resize(_res_arc_num); |
599 | 599 |
|
600 | 600 |
_lower.resize(_res_arc_num); |
601 | 601 |
_upper.resize(_res_arc_num); |
602 | 602 |
_scost.resize(_res_arc_num); |
603 | 603 |
_supply.resize(_res_node_num); |
604 | 604 |
|
605 | 605 |
_res_cap.resize(_res_arc_num); |
606 | 606 |
_cost.resize(_res_arc_num); |
607 | 607 |
_pi.resize(_res_node_num); |
608 | 608 |
_excess.resize(_res_node_num); |
609 | 609 |
_next_out.resize(_res_node_num); |
610 | 610 |
|
611 | 611 |
_arc_vec.reserve(_res_arc_num); |
612 | 612 |
_cost_vec.reserve(_res_arc_num); |
613 | 613 |
|
614 | 614 |
// Copy the graph |
615 | 615 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
616 | 616 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
617 | 617 |
_node_id[n] = i; |
618 | 618 |
} |
619 | 619 |
i = 0; |
620 | 620 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
621 | 621 |
_first_out[i] = j; |
622 | 622 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
623 | 623 |
_arc_idf[a] = j; |
624 | 624 |
_forward[j] = true; |
625 | 625 |
_source[j] = i; |
626 | 626 |
_target[j] = _node_id[_graph.runningNode(a)]; |
627 | 627 |
} |
628 | 628 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
629 | 629 |
_arc_idb[a] = j; |
630 | 630 |
_forward[j] = false; |
631 | 631 |
_source[j] = i; |
632 | 632 |
_target[j] = _node_id[_graph.runningNode(a)]; |
633 | 633 |
} |
634 | 634 |
_forward[j] = false; |
635 | 635 |
_source[j] = i; |
636 | 636 |
_target[j] = _root; |
637 | 637 |
_reverse[j] = k; |
638 | 638 |
_forward[k] = true; |
639 | 639 |
_source[k] = _root; |
640 | 640 |
_target[k] = i; |
641 | 641 |
_reverse[k] = j; |
642 | 642 |
++j; ++k; |
643 | 643 |
} |
644 | 644 |
_first_out[i] = j; |
645 | 645 |
_first_out[_res_node_num] = k; |
646 | 646 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
647 | 647 |
int fi = _arc_idf[a]; |
648 | 648 |
int bi = _arc_idb[a]; |
649 | 649 |
_reverse[fi] = bi; |
650 | 650 |
_reverse[bi] = fi; |
651 | 651 |
} |
652 | 652 |
|
653 | 653 |
// Reset parameters |
654 | 654 |
resetParams(); |
655 | 655 |
return *this; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// @} |
659 | 659 |
|
660 | 660 |
/// \name Query Functions |
661 | 661 |
/// The results of the algorithm can be obtained using these |
662 | 662 |
/// functions.\n |
663 | 663 |
/// The \ref run() function must be called before using them. |
664 | 664 |
|
665 | 665 |
/// @{ |
666 | 666 |
|
667 | 667 |
/// \brief Return the total cost of the found flow. |
668 | 668 |
/// |
669 | 669 |
/// This function returns the total cost of the found flow. |
670 | 670 |
/// Its complexity is O(e). |
671 | 671 |
/// |
672 | 672 |
/// \note The return type of the function can be specified as a |
673 | 673 |
/// template parameter. For example, |
674 | 674 |
/// \code |
675 | 675 |
/// cs.totalCost<double>(); |
676 | 676 |
/// \endcode |
677 | 677 |
/// It is useful if the total cost cannot be stored in the \c Cost |
678 | 678 |
/// type of the algorithm, which is the default return type of the |
679 | 679 |
/// function. |
680 | 680 |
/// |
681 | 681 |
/// \pre \ref run() must be called before using this function. |
682 | 682 |
template <typename Number> |
683 | 683 |
Number totalCost() const { |
684 | 684 |
Number c = 0; |
685 | 685 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
686 | 686 |
int i = _arc_idb[a]; |
687 | 687 |
c += static_cast<Number>(_res_cap[i]) * |
688 | 688 |
(-static_cast<Number>(_scost[i])); |
689 | 689 |
} |
690 | 690 |
return c; |
691 | 691 |
} |
692 | 692 |
|
693 | 693 |
#ifndef DOXYGEN |
694 | 694 |
Cost totalCost() const { |
695 | 695 |
return totalCost<Cost>(); |
696 | 696 |
} |
697 | 697 |
#endif |
698 | 698 |
|
699 | 699 |
/// \brief Return the flow on the given arc. |
700 | 700 |
/// |
701 | 701 |
/// This function returns the flow on the given arc. |
702 | 702 |
/// |
703 | 703 |
/// \pre \ref run() must be called before using this function. |
704 | 704 |
Value flow(const Arc& a) const { |
705 | 705 |
return _res_cap[_arc_idb[a]]; |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
/// \brief Return the flow map (the primal solution). |
709 | 709 |
/// |
710 | 710 |
/// This function copies the flow value on each arc into the given |
711 | 711 |
/// map. The \c Value type of the algorithm must be convertible to |
712 | 712 |
/// the \c Value type of the map. |
713 | 713 |
/// |
714 | 714 |
/// \pre \ref run() must be called before using this function. |
715 | 715 |
template <typename FlowMap> |
716 | 716 |
void flowMap(FlowMap &map) const { |
717 | 717 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
718 | 718 |
map.set(a, _res_cap[_arc_idb[a]]); |
719 | 719 |
} |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
/// \brief Return the potential (dual value) of the given node. |
723 | 723 |
/// |
724 | 724 |
/// This function returns the potential (dual value) of the |
725 | 725 |
/// given node. |
726 | 726 |
/// |
727 | 727 |
/// \pre \ref run() must be called before using this function. |
728 | 728 |
Cost potential(const Node& n) const { |
729 | 729 |
return static_cast<Cost>(_pi[_node_id[n]]); |
730 | 730 |
} |
731 | 731 |
|
732 | 732 |
/// \brief Return the potential map (the dual solution). |
733 | 733 |
/// |
734 | 734 |
/// This function copies the potential (dual value) of each node |
735 | 735 |
/// into the given map. |
736 | 736 |
/// The \c Cost type of the algorithm must be convertible to the |
737 | 737 |
/// \c Value type of the map. |
738 | 738 |
/// |
739 | 739 |
/// \pre \ref run() must be called before using this function. |
740 | 740 |
template <typename PotentialMap> |
741 | 741 |
void potentialMap(PotentialMap &map) const { |
742 | 742 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
743 | 743 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
744 | 744 |
} |
745 | 745 |
} |
746 | 746 |
|
747 | 747 |
/// @} |
748 | 748 |
|
749 | 749 |
private: |
750 | 750 |
|
751 | 751 |
// Initialize the algorithm |
752 | 752 |
ProblemType init() { |
753 | 753 |
if (_res_node_num <= 1) return INFEASIBLE; |
754 | 754 |
|
755 | 755 |
// Check the sum of supply values |
756 | 756 |
_sum_supply = 0; |
757 | 757 |
for (int i = 0; i != _root; ++i) { |
758 | 758 |
_sum_supply += _supply[i]; |
759 | 759 |
} |
760 | 760 |
if (_sum_supply > 0) return INFEASIBLE; |
761 | 761 |
|
762 | 762 |
|
763 | 763 |
// Initialize vectors |
764 | 764 |
for (int i = 0; i != _res_node_num; ++i) { |
765 | 765 |
_pi[i] = 0; |
766 | 766 |
_excess[i] = _supply[i]; |
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
// Remove infinite upper bounds and check negative arcs |
770 | 770 |
const Value MAX = std::numeric_limits<Value>::max(); |
771 | 771 |
int last_out; |
772 | 772 |
if (_have_lower) { |
773 | 773 |
for (int i = 0; i != _root; ++i) { |
774 | 774 |
last_out = _first_out[i+1]; |
775 | 775 |
for (int j = _first_out[i]; j != last_out; ++j) { |
776 | 776 |
if (_forward[j]) { |
777 | 777 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
778 | 778 |
if (c >= MAX) return UNBOUNDED; |
779 | 779 |
_excess[i] -= c; |
780 | 780 |
_excess[_target[j]] += c; |
781 | 781 |
} |
782 | 782 |
} |
783 | 783 |
} |
784 | 784 |
} else { |
785 | 785 |
for (int i = 0; i != _root; ++i) { |
786 | 786 |
last_out = _first_out[i+1]; |
787 | 787 |
for (int j = _first_out[i]; j != last_out; ++j) { |
788 | 788 |
if (_forward[j] && _scost[j] < 0) { |
789 | 789 |
Value c = _upper[j]; |
790 | 790 |
if (c >= MAX) return UNBOUNDED; |
791 | 791 |
_excess[i] -= c; |
792 | 792 |
_excess[_target[j]] += c; |
793 | 793 |
} |
794 | 794 |
} |
795 | 795 |
} |
796 | 796 |
} |
797 | 797 |
Value ex, max_cap = 0; |
798 | 798 |
for (int i = 0; i != _res_node_num; ++i) { |
799 | 799 |
ex = _excess[i]; |
800 | 800 |
_excess[i] = 0; |
801 | 801 |
if (ex < 0) max_cap -= ex; |
802 | 802 |
} |
803 | 803 |
for (int j = 0; j != _res_arc_num; ++j) { |
804 | 804 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
805 | 805 |
} |
806 | 806 |
|
807 | 807 |
// Initialize the large cost vector and the epsilon parameter |
808 | 808 |
_epsilon = 0; |
809 | 809 |
LargeCost lc; |
810 | 810 |
for (int i = 0; i != _root; ++i) { |
811 | 811 |
last_out = _first_out[i+1]; |
812 | 812 |
for (int j = _first_out[i]; j != last_out; ++j) { |
813 | 813 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
814 | 814 |
_cost[j] = lc; |
815 | 815 |
if (lc > _epsilon) _epsilon = lc; |
816 | 816 |
} |
817 | 817 |
} |
818 | 818 |
_epsilon /= _alpha; |
819 | 819 |
|
820 | 820 |
// Initialize maps for Circulation and remove non-zero lower bounds |
821 | 821 |
ConstMap<Arc, Value> low(0); |
822 | 822 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
823 | 823 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
824 | 824 |
ValueArcMap cap(_graph), flow(_graph); |
825 | 825 |
ValueNodeMap sup(_graph); |
826 | 826 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
827 | 827 |
sup[n] = _supply[_node_id[n]]; |
828 | 828 |
} |
829 | 829 |
if (_have_lower) { |
830 | 830 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
831 | 831 |
int j = _arc_idf[a]; |
832 | 832 |
Value c = _lower[j]; |
833 | 833 |
cap[a] = _upper[j] - c; |
834 | 834 |
sup[_graph.source(a)] -= c; |
835 | 835 |
sup[_graph.target(a)] += c; |
836 | 836 |
} |
837 | 837 |
} else { |
838 | 838 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
839 | 839 |
cap[a] = _upper[_arc_idf[a]]; |
840 | 840 |
} |
841 | 841 |
} |
842 | 842 |
|
843 | 843 |
_sup_node_num = 0; |
844 | 844 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
845 | 845 |
if (sup[n] > 0) ++_sup_node_num; |
846 | 846 |
} |
847 | 847 |
|
848 | 848 |
// Find a feasible flow using Circulation |
849 | 849 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
850 | 850 |
circ(_graph, low, cap, sup); |
851 | 851 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
852 | 852 |
|
853 | 853 |
// Set residual capacities and handle GEQ supply type |
854 | 854 |
if (_sum_supply < 0) { |
855 | 855 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
856 | 856 |
Value fa = flow[a]; |
857 | 857 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
858 | 858 |
_res_cap[_arc_idb[a]] = fa; |
859 | 859 |
sup[_graph.source(a)] -= fa; |
860 | 860 |
sup[_graph.target(a)] += fa; |
861 | 861 |
} |
862 | 862 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
863 | 863 |
_excess[_node_id[n]] = sup[n]; |
864 | 864 |
} |
865 | 865 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
866 | 866 |
int u = _target[a]; |
867 | 867 |
int ra = _reverse[a]; |
868 | 868 |
_res_cap[a] = -_sum_supply + 1; |
869 | 869 |
_res_cap[ra] = -_excess[u]; |
870 | 870 |
_cost[a] = 0; |
871 | 871 |
_cost[ra] = 0; |
872 | 872 |
_excess[u] = 0; |
873 | 873 |
} |
874 | 874 |
} else { |
875 | 875 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
876 | 876 |
Value fa = flow[a]; |
877 | 877 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
878 | 878 |
_res_cap[_arc_idb[a]] = fa; |
879 | 879 |
} |
880 | 880 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
881 | 881 |
int ra = _reverse[a]; |
882 | 882 |
_res_cap[a] = 0; |
883 | 883 |
_res_cap[ra] = 0; |
884 | 884 |
_cost[a] = 0; |
885 | 885 |
_cost[ra] = 0; |
886 | 886 |
} |
887 | 887 |
} |
888 | 888 |
|
889 | 889 |
return OPTIMAL; |
890 | 890 |
} |
891 | 891 |
|
892 | 892 |
// Execute the algorithm and transform the results |
893 | 893 |
void start(Method method) { |
894 | 894 |
// Maximum path length for partial augment |
895 | 895 |
const int MAX_PATH_LENGTH = 4; |
896 | 896 |
|
897 | 897 |
// Initialize data structures for buckets |
898 | 898 |
_max_rank = _alpha * _res_node_num; |
899 | 899 |
_buckets.resize(_max_rank); |
900 | 900 |
_bucket_next.resize(_res_node_num + 1); |
901 | 901 |
_bucket_prev.resize(_res_node_num + 1); |
902 | 902 |
_rank.resize(_res_node_num + 1); |
903 | 903 |
|
904 | 904 |
// Execute the algorithm |
905 | 905 |
switch (method) { |
906 | 906 |
case PUSH: |
907 | 907 |
startPush(); |
908 | 908 |
break; |
909 | 909 |
case AUGMENT: |
910 | 910 |
startAugment(_res_node_num - 1); |
911 | 911 |
break; |
912 | 912 |
case PARTIAL_AUGMENT: |
913 | 913 |
startAugment(MAX_PATH_LENGTH); |
914 | 914 |
break; |
915 | 915 |
} |
916 | 916 |
|
917 | 917 |
// Compute node potentials for the original costs |
918 | 918 |
_arc_vec.clear(); |
919 | 919 |
_cost_vec.clear(); |
920 | 920 |
for (int j = 0; j != _res_arc_num; ++j) { |
921 | 921 |
if (_res_cap[j] > 0) { |
922 | 922 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
923 | 923 |
_cost_vec.push_back(_scost[j]); |
924 | 924 |
} |
925 | 925 |
} |
926 | 926 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
927 | 927 |
|
928 | 928 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
929 | 929 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
930 | 930 |
bf.distMap(_pi_map); |
931 | 931 |
bf.init(0); |
932 | 932 |
bf.start(); |
933 | 933 |
|
934 | 934 |
// Handle non-zero lower bounds |
935 | 935 |
if (_have_lower) { |
936 | 936 |
int limit = _first_out[_root]; |
937 | 937 |
for (int j = 0; j != limit; ++j) { |
938 | 938 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
939 | 939 |
} |
940 | 940 |
} |
941 | 941 |
} |
942 | 942 |
|
943 | 943 |
// Initialize a cost scaling phase |
944 | 944 |
void initPhase() { |
945 | 945 |
// Saturate arcs not satisfying the optimality condition |
946 | 946 |
for (int u = 0; u != _res_node_num; ++u) { |
947 | 947 |
int last_out = _first_out[u+1]; |
948 | 948 |
LargeCost pi_u = _pi[u]; |
949 | 949 |
for (int a = _first_out[u]; a != last_out; ++a) { |
950 | 950 |
int v = _target[a]; |
951 | 951 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
952 | 952 |
Value delta = _res_cap[a]; |
953 | 953 |
_excess[u] -= delta; |
954 | 954 |
_excess[v] += delta; |
955 | 955 |
_res_cap[a] = 0; |
956 | 956 |
_res_cap[_reverse[a]] += delta; |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
// Find active nodes (i.e. nodes with positive excess) |
962 | 962 |
for (int u = 0; u != _res_node_num; ++u) { |
963 | 963 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
964 | 964 |
} |
965 | 965 |
|
966 | 966 |
// Initialize the next arcs |
967 | 967 |
for (int u = 0; u != _res_node_num; ++u) { |
968 | 968 |
_next_out[u] = _first_out[u]; |
969 | 969 |
} |
970 | 970 |
} |
971 | 971 |
|
972 | 972 |
// Early termination heuristic |
973 | 973 |
bool earlyTermination() { |
974 | 974 |
const double EARLY_TERM_FACTOR = 3.0; |
975 | 975 |
|
976 | 976 |
// Build a static residual graph |
977 | 977 |
_arc_vec.clear(); |
978 | 978 |
_cost_vec.clear(); |
979 | 979 |
for (int j = 0; j != _res_arc_num; ++j) { |
980 | 980 |
if (_res_cap[j] > 0) { |
981 | 981 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
982 | 982 |
_cost_vec.push_back(_cost[j] + 1); |
983 | 983 |
} |
984 | 984 |
} |
985 | 985 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
986 | 986 |
|
987 | 987 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
988 | 988 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
989 | 989 |
bf.init(0); |
990 | 990 |
bool done = false; |
991 | 991 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
992 | 992 |
for (int i = 0; i < K && !done; ++i) { |
993 | 993 |
done = bf.processNextWeakRound(); |
994 | 994 |
} |
995 | 995 |
return done; |
996 | 996 |
} |
997 | 997 |
|
998 | 998 |
// Global potential update heuristic |
999 | 999 |
void globalUpdate() { |
1000 | 1000 |
int bucket_end = _root + 1; |
1001 | 1001 |
|
1002 | 1002 |
// Initialize buckets |
1003 | 1003 |
for (int r = 0; r != _max_rank; ++r) { |
1004 | 1004 |
_buckets[r] = bucket_end; |
1005 | 1005 |
} |
1006 | 1006 |
Value total_excess = 0; |
1007 | 1007 |
for (int i = 0; i != _res_node_num; ++i) { |
1008 | 1008 |
if (_excess[i] < 0) { |
1009 | 1009 |
_rank[i] = 0; |
1010 | 1010 |
_bucket_next[i] = _buckets[0]; |
1011 | 1011 |
_bucket_prev[_buckets[0]] = i; |
1012 | 1012 |
_buckets[0] = i; |
1013 | 1013 |
} else { |
1014 | 1014 |
total_excess += _excess[i]; |
1015 | 1015 |
_rank[i] = _max_rank; |
1016 | 1016 |
} |
1017 | 1017 |
} |
1018 | 1018 |
if (total_excess == 0) return; |
1019 | 1019 |
|
1020 | 1020 |
// Search the buckets |
1021 | 1021 |
int r = 0; |
1022 | 1022 |
for ( ; r != _max_rank; ++r) { |
1023 | 1023 |
while (_buckets[r] != bucket_end) { |
1024 | 1024 |
// Remove the first node from the current bucket |
1025 | 1025 |
int u = _buckets[r]; |
1026 | 1026 |
_buckets[r] = _bucket_next[u]; |
1027 | 1027 |
|
1028 | 1028 |
// Search the incomming arcs of u |
1029 | 1029 |
LargeCost pi_u = _pi[u]; |
1030 | 1030 |
int last_out = _first_out[u+1]; |
1031 | 1031 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1032 | 1032 |
int ra = _reverse[a]; |
1033 | 1033 |
if (_res_cap[ra] > 0) { |
1034 | 1034 |
int v = _source[ra]; |
1035 | 1035 |
int old_rank_v = _rank[v]; |
1036 | 1036 |
if (r < old_rank_v) { |
1037 | 1037 |
// Compute the new rank of v |
1038 | 1038 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1039 | 1039 |
int new_rank_v = old_rank_v; |
1040 | 1040 |
if (nrc < LargeCost(_max_rank)) |
1041 | 1041 |
new_rank_v = r + 1 + int(nrc); |
1042 | 1042 |
|
1043 | 1043 |
// Change the rank of v |
1044 | 1044 |
if (new_rank_v < old_rank_v) { |
1045 | 1045 |
_rank[v] = new_rank_v; |
1046 | 1046 |
_next_out[v] = _first_out[v]; |
1047 | 1047 |
|
1048 | 1048 |
// Remove v from its old bucket |
1049 | 1049 |
if (old_rank_v < _max_rank) { |
1050 | 1050 |
if (_buckets[old_rank_v] == v) { |
1051 | 1051 |
_buckets[old_rank_v] = _bucket_next[v]; |
1052 | 1052 |
} else { |
1053 | 1053 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
1054 | 1054 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
1055 | 1055 |
} |
1056 | 1056 |
} |
1057 | 1057 |
|
1058 | 1058 |
// Insert v to its new bucket |
1059 | 1059 |
_bucket_next[v] = _buckets[new_rank_v]; |
1060 | 1060 |
_bucket_prev[_buckets[new_rank_v]] = v; |
1061 | 1061 |
_buckets[new_rank_v] = v; |
1062 | 1062 |
} |
1063 | 1063 |
} |
1064 | 1064 |
} |
1065 | 1065 |
} |
1066 | 1066 |
|
1067 | 1067 |
// Finish search if there are no more active nodes |
1068 | 1068 |
if (_excess[u] > 0) { |
1069 | 1069 |
total_excess -= _excess[u]; |
1070 | 1070 |
if (total_excess <= 0) break; |
1071 | 1071 |
} |
1072 | 1072 |
} |
1073 | 1073 |
if (total_excess <= 0) break; |
1074 | 1074 |
} |
1075 | 1075 |
|
1076 | 1076 |
// Relabel nodes |
1077 | 1077 |
for (int u = 0; u != _res_node_num; ++u) { |
1078 | 1078 |
int k = std::min(_rank[u], r); |
1079 | 1079 |
if (k > 0) { |
1080 | 1080 |
_pi[u] -= _epsilon * k; |
1081 | 1081 |
_next_out[u] = _first_out[u]; |
1082 | 1082 |
} |
1083 | 1083 |
} |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
/// Execute the algorithm performing augment and relabel operations |
1087 | 1087 |
void startAugment(int max_length) { |
1088 | 1088 |
// Paramters for heuristics |
1089 | 1089 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1090 | 1090 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
1091 | 1091 |
|
1092 | 1092 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1093 | 1093 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1094 | 1094 |
int next_update_limit = global_update_freq; |
1095 | 1095 |
|
1096 | 1096 |
int relabel_cnt = 0; |
1097 | 1097 |
|
1098 | 1098 |
// Perform cost scaling phases |
1099 | 1099 |
std::vector<int> path; |
1100 | 1100 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1101 | 1101 |
1 : _epsilon / _alpha ) |
1102 | 1102 |
{ |
1103 | 1103 |
// Early termination heuristic |
1104 | 1104 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1105 | 1105 |
if (earlyTermination()) break; |
1106 | 1106 |
} |
1107 | 1107 |
|
1108 | 1108 |
// Initialize current phase |
1109 | 1109 |
initPhase(); |
1110 | 1110 |
|
1111 | 1111 |
// Perform partial augment and relabel operations |
1112 | 1112 |
while (true) { |
1113 | 1113 |
// Select an active node (FIFO selection) |
1114 | 1114 |
while (_active_nodes.size() > 0 && |
1115 | 1115 |
_excess[_active_nodes.front()] <= 0) { |
1116 | 1116 |
_active_nodes.pop_front(); |
1117 | 1117 |
} |
1118 | 1118 |
if (_active_nodes.size() == 0) break; |
1119 | 1119 |
int start = _active_nodes.front(); |
1120 | 1120 |
|
1121 | 1121 |
// Find an augmenting path from the start node |
1122 | 1122 |
path.clear(); |
1123 | 1123 |
int tip = start; |
1124 | 1124 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) { |
1125 | 1125 |
int u; |
1126 | 1126 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
1127 | 1127 |
int last_out = _first_out[tip+1]; |
1128 | 1128 |
for (int a = _next_out[tip]; a != last_out; ++a) { |
1129 | 1129 |
u = _target[a]; |
1130 | 1130 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { |
1131 | 1131 |
path.push_back(a); |
1132 | 1132 |
_next_out[tip] = a; |
1133 | 1133 |
tip = u; |
1134 | 1134 |
goto next_step; |
1135 | 1135 |
} |
1136 | 1136 |
} |
1137 | 1137 |
|
1138 | 1138 |
// Relabel tip node |
1139 | 1139 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
1140 | 1140 |
if (tip != start) { |
1141 | 1141 |
int ra = _reverse[path.back()]; |
1142 | 1142 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
1143 | 1143 |
} |
1144 | 1144 |
for (int a = _first_out[tip]; a != last_out; ++a) { |
1145 | 1145 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
1146 | 1146 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1147 | 1147 |
min_red_cost = rc; |
1148 | 1148 |
} |
1149 | 1149 |
} |
1150 | 1150 |
_pi[tip] -= min_red_cost + _epsilon; |
1151 | 1151 |
_next_out[tip] = _first_out[tip]; |
1152 | 1152 |
++relabel_cnt; |
1153 | 1153 |
|
1154 | 1154 |
// Step back |
1155 | 1155 |
if (tip != start) { |
1156 | 1156 |
tip = _source[path.back()]; |
1157 | 1157 |
path.pop_back(); |
1158 | 1158 |
} |
1159 | 1159 |
|
1160 | 1160 |
next_step: ; |
1161 | 1161 |
} |
1162 | 1162 |
|
1163 | 1163 |
// Augment along the found path (as much flow as possible) |
1164 | 1164 |
Value delta; |
1165 | 1165 |
int pa, u, v = start; |
1166 | 1166 |
for (int i = 0; i != int(path.size()); ++i) { |
1167 | 1167 |
pa = path[i]; |
1168 | 1168 |
u = v; |
1169 | 1169 |
v = _target[pa]; |
1170 | 1170 |
delta = std::min(_res_cap[pa], _excess[u]); |
1171 | 1171 |
_res_cap[pa] -= delta; |
1172 | 1172 |
_res_cap[_reverse[pa]] += delta; |
1173 | 1173 |
_excess[u] -= delta; |
1174 | 1174 |
_excess[v] += delta; |
1175 | 1175 |
if (_excess[v] > 0 && _excess[v] <= delta) |
1176 | 1176 |
_active_nodes.push_back(v); |
1177 | 1177 |
} |
1178 | 1178 |
|
1179 | 1179 |
// Global update heuristic |
1180 | 1180 |
if (relabel_cnt >= next_update_limit) { |
1181 | 1181 |
globalUpdate(); |
1182 | 1182 |
next_update_limit += global_update_freq; |
1183 | 1183 |
} |
1184 | 1184 |
} |
1185 | 1185 |
} |
1186 | 1186 |
} |
1187 | 1187 |
|
1188 | 1188 |
/// Execute the algorithm performing push and relabel operations |
1189 | 1189 |
void startPush() { |
1190 | 1190 |
// Paramters for heuristics |
1191 | 1191 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1192 | 1192 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
1193 | 1193 |
|
1194 | 1194 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1195 | 1195 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1196 | 1196 |
int next_update_limit = global_update_freq; |
1197 | 1197 |
|
1198 | 1198 |
int relabel_cnt = 0; |
1199 | 1199 |
|
1200 | 1200 |
// Perform cost scaling phases |
1201 | 1201 |
BoolVector hyper(_res_node_num, false); |
1202 | 1202 |
LargeCostVector hyper_cost(_res_node_num); |
1203 | 1203 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1204 | 1204 |
1 : _epsilon / _alpha ) |
1205 | 1205 |
{ |
1206 | 1206 |
// Early termination heuristic |
1207 | 1207 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1208 | 1208 |
if (earlyTermination()) break; |
1209 | 1209 |
} |
1210 | 1210 |
|
1211 | 1211 |
// Initialize current phase |
1212 | 1212 |
initPhase(); |
1213 | 1213 |
|
1214 | 1214 |
// Perform push and relabel operations |
1215 | 1215 |
while (_active_nodes.size() > 0) { |
1216 | 1216 |
LargeCost min_red_cost, rc, pi_n; |
1217 | 1217 |
Value delta; |
1218 | 1218 |
int n, t, a, last_out = _res_arc_num; |
1219 | 1219 |
|
1220 | 1220 |
next_node: |
1221 | 1221 |
// Select an active node (FIFO selection) |
1222 | 1222 |
n = _active_nodes.front(); |
1223 | 1223 |
last_out = _first_out[n+1]; |
1224 | 1224 |
pi_n = _pi[n]; |
1225 | 1225 |
|
1226 | 1226 |
// Perform push operations if there are admissible arcs |
1227 | 1227 |
if (_excess[n] > 0) { |
1228 | 1228 |
for (a = _next_out[n]; a != last_out; ++a) { |
1229 | 1229 |
if (_res_cap[a] > 0 && |
1230 | 1230 |
_cost[a] + pi_n - _pi[_target[a]] < 0) { |
1231 | 1231 |
delta = std::min(_res_cap[a], _excess[n]); |
1232 | 1232 |
t = _target[a]; |
1233 | 1233 |
|
1234 | 1234 |
// Push-look-ahead heuristic |
1235 | 1235 |
Value ahead = -_excess[t]; |
1236 | 1236 |
int last_out_t = _first_out[t+1]; |
1237 | 1237 |
LargeCost pi_t = _pi[t]; |
1238 | 1238 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1239 | 1239 |
if (_res_cap[ta] > 0 && |
1240 | 1240 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
1241 | 1241 |
ahead += _res_cap[ta]; |
1242 | 1242 |
if (ahead >= delta) break; |
1243 | 1243 |
} |
1244 | 1244 |
if (ahead < 0) ahead = 0; |
1245 | 1245 |
|
1246 | 1246 |
// Push flow along the arc |
1247 | 1247 |
if (ahead < delta && !hyper[t]) { |
1248 | 1248 |
_res_cap[a] -= ahead; |
1249 | 1249 |
_res_cap[_reverse[a]] += ahead; |
1250 | 1250 |
_excess[n] -= ahead; |
1251 | 1251 |
_excess[t] += ahead; |
1252 | 1252 |
_active_nodes.push_front(t); |
1253 | 1253 |
hyper[t] = true; |
1254 | 1254 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
1255 | 1255 |
_next_out[n] = a; |
1256 | 1256 |
goto next_node; |
1257 | 1257 |
} else { |
1258 | 1258 |
_res_cap[a] -= delta; |
1259 | 1259 |
_res_cap[_reverse[a]] += delta; |
1260 | 1260 |
_excess[n] -= delta; |
1261 | 1261 |
_excess[t] += delta; |
1262 | 1262 |
if (_excess[t] > 0 && _excess[t] <= delta) |
1263 | 1263 |
_active_nodes.push_back(t); |
1264 | 1264 |
} |
1265 | 1265 |
|
1266 | 1266 |
if (_excess[n] == 0) { |
1267 | 1267 |
_next_out[n] = a; |
1268 | 1268 |
goto remove_nodes; |
1269 | 1269 |
} |
1270 | 1270 |
} |
1271 | 1271 |
} |
1272 | 1272 |
_next_out[n] = a; |
1273 | 1273 |
} |
1274 | 1274 |
|
1275 | 1275 |
// Relabel the node if it is still active (or hyper) |
1276 | 1276 |
if (_excess[n] > 0 || hyper[n]) { |
1277 | 1277 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
1278 | 1278 |
std::numeric_limits<LargeCost>::max(); |
1279 | 1279 |
for (int a = _first_out[n]; a != last_out; ++a) { |
1280 | 1280 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
1281 | 1281 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1282 | 1282 |
min_red_cost = rc; |
1283 | 1283 |
} |
1284 | 1284 |
} |
1285 | 1285 |
_pi[n] -= min_red_cost + _epsilon; |
1286 | 1286 |
_next_out[n] = _first_out[n]; |
1287 | 1287 |
hyper[n] = false; |
1288 | 1288 |
++relabel_cnt; |
1289 | 1289 |
} |
1290 | 1290 |
|
1291 | 1291 |
// Remove nodes that are not active nor hyper |
1292 | 1292 |
remove_nodes: |
1293 | 1293 |
while ( _active_nodes.size() > 0 && |
1294 | 1294 |
_excess[_active_nodes.front()] <= 0 && |
1295 | 1295 |
!hyper[_active_nodes.front()] ) { |
1296 | 1296 |
_active_nodes.pop_front(); |
1297 | 1297 |
} |
1298 | 1298 |
|
1299 | 1299 |
// Global update heuristic |
1300 | 1300 |
if (relabel_cnt >= next_update_limit) { |
1301 | 1301 |
globalUpdate(); |
1302 | 1302 |
for (int u = 0; u != _res_node_num; ++u) |
1303 | 1303 |
hyper[u] = false; |
1304 | 1304 |
next_update_limit += global_update_freq; |
1305 | 1305 |
} |
1306 | 1306 |
} |
1307 | 1307 |
} |
1308 | 1308 |
} |
1309 | 1309 |
|
1310 | 1310 |
}; //class CostScaling |
1311 | 1311 |
|
1312 | 1312 |
///@} |
1313 | 1313 |
|
1314 | 1314 |
} //namespace lemon |
1315 | 1315 |
|
1316 | 1316 |
#endif //LEMON_COST_SCALING_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
#include <map> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
|
29 | 29 |
///\file |
30 | 30 |
///\ingroup maps |
31 | 31 |
///\brief Miscellaneous property maps |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \addtogroup maps |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// Base class of maps. |
39 | 39 |
|
40 | 40 |
/// Base class of maps. It provides the necessary type definitions |
41 | 41 |
/// required by the map %concepts. |
42 | 42 |
template<typename K, typename V> |
43 | 43 |
class MapBase { |
44 | 44 |
public: |
45 | 45 |
/// \brief The key type of the map. |
46 | 46 |
typedef K Key; |
47 | 47 |
/// \brief The value type of the map. |
48 | 48 |
/// (The type of objects associated with the keys). |
49 | 49 |
typedef V Value; |
50 | 50 |
}; |
51 | 51 |
|
52 | 52 |
|
53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 54 |
|
55 | 55 |
/// This map can be used if you have to provide a map only for |
56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 58 |
/// <tt>/dev/null</tt>). |
59 | 59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
60 | 60 |
/// |
61 | 61 |
/// \sa ConstMap |
62 | 62 |
template<typename K, typename V> |
63 | 63 |
class NullMap : public MapBase<K, V> { |
64 | 64 |
public: |
65 | 65 |
///\e |
66 | 66 |
typedef K Key; |
67 | 67 |
///\e |
68 | 68 |
typedef V Value; |
69 | 69 |
|
70 | 70 |
/// Gives back a default constructed element. |
71 | 71 |
Value operator[](const Key&) const { return Value(); } |
72 | 72 |
/// Absorbs the value. |
73 | 73 |
void set(const Key&, const Value&) {} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
/// Returns a \c NullMap class |
77 | 77 |
|
78 | 78 |
/// This function just returns a \c NullMap class. |
79 | 79 |
/// \relates NullMap |
80 | 80 |
template <typename K, typename V> |
81 | 81 |
NullMap<K, V> nullMap() { |
82 | 82 |
return NullMap<K, V>(); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
92 | 92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
95 | 95 |
/// The simplest way of using this map is through the constMap() |
96 | 96 |
/// function. |
97 | 97 |
/// |
98 | 98 |
/// \sa NullMap |
99 | 99 |
/// \sa IdentityMap |
100 | 100 |
template<typename K, typename V> |
101 | 101 |
class ConstMap : public MapBase<K, V> { |
102 | 102 |
private: |
103 | 103 |
V _value; |
104 | 104 |
public: |
105 | 105 |
///\e |
106 | 106 |
typedef K Key; |
107 | 107 |
///\e |
108 | 108 |
typedef V Value; |
109 | 109 |
|
110 | 110 |
/// Default constructor |
111 | 111 |
|
112 | 112 |
/// Default constructor. |
113 | 113 |
/// The value of the map will be default constructed. |
114 | 114 |
ConstMap() {} |
115 | 115 |
|
116 | 116 |
/// Constructor with specified initial value |
117 | 117 |
|
118 | 118 |
/// Constructor with specified initial value. |
119 | 119 |
/// \param v The initial value of the map. |
120 | 120 |
ConstMap(const Value &v) : _value(v) {} |
121 | 121 |
|
122 | 122 |
/// Gives back the specified value. |
123 | 123 |
Value operator[](const Key&) const { return _value; } |
124 | 124 |
|
125 | 125 |
/// Absorbs the value. |
126 | 126 |
void set(const Key&, const Value&) {} |
127 | 127 |
|
128 | 128 |
/// Sets the value that is assigned to each key. |
129 | 129 |
void setAll(const Value &v) { |
130 | 130 |
_value = v; |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
template<typename V1> |
134 | 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
/// Returns a \c ConstMap class |
138 | 138 |
|
139 | 139 |
/// This function just returns a \c ConstMap class. |
140 | 140 |
/// \relates ConstMap |
141 | 141 |
template<typename K, typename V> |
142 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
143 | 143 |
return ConstMap<K, V>(v); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
template<typename K, typename V> |
147 | 147 |
inline ConstMap<K, V> constMap() { |
148 | 148 |
return ConstMap<K, V>(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
template<typename T, T v> |
153 | 153 |
struct Const {}; |
154 | 154 |
|
155 | 155 |
/// Constant map with inlined constant value. |
156 | 156 |
|
157 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
158 | 158 |
/// value to each key. |
159 | 159 |
/// |
160 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
161 | 161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
162 | 162 |
/// concept, but it absorbs the data written to it. |
163 | 163 |
/// |
164 | 164 |
/// The simplest way of using this map is through the constMap() |
165 | 165 |
/// function. |
166 | 166 |
/// |
167 | 167 |
/// \sa NullMap |
168 | 168 |
/// \sa IdentityMap |
169 | 169 |
template<typename K, typename V, V v> |
170 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
171 | 171 |
public: |
172 | 172 |
///\e |
173 | 173 |
typedef K Key; |
174 | 174 |
///\e |
175 | 175 |
typedef V Value; |
176 | 176 |
|
177 | 177 |
/// Constructor. |
178 | 178 |
ConstMap() {} |
179 | 179 |
|
180 | 180 |
/// Gives back the specified value. |
181 | 181 |
Value operator[](const Key&) const { return v; } |
182 | 182 |
|
183 | 183 |
/// Absorbs the value. |
184 | 184 |
void set(const Key&, const Value&) {} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
188 | 188 |
|
189 | 189 |
/// This function just returns a \c ConstMap class with inlined |
190 | 190 |
/// constant value. |
191 | 191 |
/// \relates ConstMap |
192 | 192 |
template<typename K, typename V, V v> |
193 | 193 |
inline ConstMap<K, Const<V, v> > constMap() { |
194 | 194 |
return ConstMap<K, Const<V, v> >(); |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
|
198 | 198 |
/// Identity map. |
199 | 199 |
|
200 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
201 | 201 |
/// key as value without any modification. |
202 | 202 |
/// |
203 | 203 |
/// \sa ConstMap |
204 | 204 |
template <typename T> |
205 | 205 |
class IdentityMap : public MapBase<T, T> { |
206 | 206 |
public: |
207 | 207 |
///\e |
208 | 208 |
typedef T Key; |
209 | 209 |
///\e |
210 | 210 |
typedef T Value; |
211 | 211 |
|
212 | 212 |
/// Gives back the given value without any modification. |
213 | 213 |
Value operator[](const Key &k) const { |
214 | 214 |
return k; |
215 | 215 |
} |
216 | 216 |
}; |
217 | 217 |
|
218 | 218 |
/// Returns an \c IdentityMap class |
219 | 219 |
|
220 | 220 |
/// This function just returns an \c IdentityMap class. |
221 | 221 |
/// \relates IdentityMap |
222 | 222 |
template<typename T> |
223 | 223 |
inline IdentityMap<T> identityMap() { |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 | 233 |
/// It can be used together with some data structures, e.g. |
234 | 234 |
/// heap types and \c UnionFind, when the used items are small |
235 | 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
236 | 236 |
/// "ReferenceMap" concept. |
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
249 | 249 |
public: |
250 | 250 |
|
251 | 251 |
/// Key type |
252 | 252 |
typedef int Key; |
253 | 253 |
/// Value type |
254 | 254 |
typedef V Value; |
255 | 255 |
/// Reference type |
256 | 256 |
typedef typename Vector::reference Reference; |
257 | 257 |
/// Const reference type |
258 | 258 |
typedef typename Vector::const_reference ConstReference; |
259 | 259 |
|
260 | 260 |
typedef True ReferenceMapTag; |
261 | 261 |
|
262 | 262 |
public: |
263 | 263 |
|
264 | 264 |
/// Constructor with specified default value. |
265 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
266 | 266 |
: _vector(size, value) {} |
267 | 267 |
|
268 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
269 | 269 |
template <typename V1> |
270 | 270 |
RangeMap(const std::vector<V1>& vector) |
271 | 271 |
: _vector(vector.begin(), vector.end()) {} |
272 | 272 |
|
273 | 273 |
/// Constructs the map from another \c RangeMap. |
274 | 274 |
template <typename V1> |
275 | 275 |
RangeMap(const RangeMap<V1> &c) |
276 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {} |
277 | 277 |
|
278 | 278 |
/// Returns the size of the map. |
279 | 279 |
int size() { |
280 | 280 |
return _vector.size(); |
281 | 281 |
} |
282 | 282 |
|
283 | 283 |
/// Resizes the map. |
284 | 284 |
|
285 | 285 |
/// Resizes the underlying \c std::vector container, so changes the |
286 | 286 |
/// keyset of the map. |
287 | 287 |
/// \param size The new size of the map. The new keyset will be the |
288 | 288 |
/// range <tt>[0..size-1]</tt>. |
289 | 289 |
/// \param value The default value to assign to the new keys. |
290 | 290 |
void resize(int size, const Value &value = Value()) { |
291 | 291 |
_vector.resize(size, value); |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
private: |
295 | 295 |
|
296 | 296 |
RangeMap& operator=(const RangeMap&); |
297 | 297 |
|
298 | 298 |
public: |
299 | 299 |
|
300 | 300 |
///\e |
301 | 301 |
Reference operator[](const Key &k) { |
302 | 302 |
return _vector[k]; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
///\e |
306 | 306 |
ConstReference operator[](const Key &k) const { |
307 | 307 |
return _vector[k]; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
///\e |
311 | 311 |
void set(const Key &k, const Value &v) { |
312 | 312 |
_vector[k] = v; |
313 | 313 |
} |
314 | 314 |
}; |
315 | 315 |
|
316 | 316 |
/// Returns a \c RangeMap class |
317 | 317 |
|
318 | 318 |
/// This function just returns a \c RangeMap class. |
319 | 319 |
/// \relates RangeMap |
320 | 320 |
template<typename V> |
321 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
322 | 322 |
return RangeMap<V>(size, value); |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
326 | 326 |
/// \c std::vector |
327 | 327 |
|
328 | 328 |
/// This function just returns a \c RangeMap class created from an |
329 | 329 |
/// appropriate \c std::vector. |
330 | 330 |
/// \relates RangeMap |
331 | 331 |
template<typename V> |
332 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
333 | 333 |
return RangeMap<V>(vector); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
|
337 | 337 |
/// Map type based on \c std::map |
338 | 338 |
|
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 | 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 | 351 |
/// Apart form that, this map can be used in many other cases since it |
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 | 353 |
/// However, keep in mind that it is usually not as efficient as other |
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
360 | 360 |
template <typename K1, typename V1, typename C1> |
361 | 361 |
friend class SparseMap; |
362 | 362 |
public: |
363 | 363 |
|
364 | 364 |
/// Key type |
365 | 365 |
typedef K Key; |
366 | 366 |
/// Value type |
367 | 367 |
typedef V Value; |
368 | 368 |
/// Reference type |
369 | 369 |
typedef Value& Reference; |
370 | 370 |
/// Const reference type |
371 | 371 |
typedef const Value& ConstReference; |
372 | 372 |
|
373 | 373 |
typedef True ReferenceMapTag; |
374 | 374 |
|
375 | 375 |
private: |
376 | 376 |
|
377 | 377 |
typedef std::map<K, V, Comp> Map; |
378 | 378 |
Map _map; |
379 | 379 |
Value _value; |
380 | 380 |
|
381 | 381 |
public: |
382 | 382 |
|
383 | 383 |
/// \brief Constructor with specified default value. |
384 | 384 |
SparseMap(const Value &value = Value()) : _value(value) {} |
385 | 385 |
/// \brief Constructs the map from an appropriate \c std::map, and |
386 | 386 |
/// explicitly specifies a default value. |
387 | 387 |
template <typename V1, typename Comp1> |
388 | 388 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
389 | 389 |
const Value &value = Value()) |
390 | 390 |
: _map(map.begin(), map.end()), _value(value) {} |
391 | 391 |
|
392 | 392 |
/// \brief Constructs the map from another \c SparseMap. |
393 | 393 |
template<typename V1, typename Comp1> |
394 | 394 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
395 | 395 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
396 | 396 |
|
397 | 397 |
private: |
398 | 398 |
|
399 | 399 |
SparseMap& operator=(const SparseMap&); |
400 | 400 |
|
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
///\e |
404 | 404 |
Reference operator[](const Key &k) { |
405 | 405 |
typename Map::iterator it = _map.lower_bound(k); |
406 | 406 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
407 | 407 |
return it->second; |
408 | 408 |
else |
409 | 409 |
return _map.insert(it, std::make_pair(k, _value))->second; |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
///\e |
413 | 413 |
ConstReference operator[](const Key &k) const { |
414 | 414 |
typename Map::const_iterator it = _map.find(k); |
415 | 415 |
if (it != _map.end()) |
416 | 416 |
return it->second; |
417 | 417 |
else |
418 | 418 |
return _value; |
419 | 419 |
} |
420 | 420 |
|
421 | 421 |
///\e |
422 | 422 |
void set(const Key &k, const Value &v) { |
423 | 423 |
typename Map::iterator it = _map.lower_bound(k); |
424 | 424 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
425 | 425 |
it->second = v; |
426 | 426 |
else |
427 | 427 |
_map.insert(it, std::make_pair(k, v)); |
428 | 428 |
} |
429 | 429 |
|
430 | 430 |
///\e |
431 | 431 |
void setAll(const Value &v) { |
432 | 432 |
_value = v; |
433 | 433 |
_map.clear(); |
434 | 434 |
} |
435 | 435 |
}; |
436 | 436 |
|
437 | 437 |
/// Returns a \c SparseMap class |
438 | 438 |
|
439 | 439 |
/// This function just returns a \c SparseMap class with specified |
440 | 440 |
/// default value. |
441 | 441 |
/// \relates SparseMap |
442 | 442 |
template<typename K, typename V, typename Compare> |
443 | 443 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
444 | 444 |
return SparseMap<K, V, Compare>(value); |
445 | 445 |
} |
446 | 446 |
|
447 | 447 |
template<typename K, typename V> |
448 | 448 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
449 | 449 |
return SparseMap<K, V, std::less<K> >(value); |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
/// \brief Returns a \c SparseMap class created from an appropriate |
453 | 453 |
/// \c std::map |
454 | 454 |
|
455 | 455 |
/// This function just returns a \c SparseMap class created from an |
456 | 456 |
/// appropriate \c std::map. |
457 | 457 |
/// \relates SparseMap |
458 | 458 |
template<typename K, typename V, typename Compare> |
459 | 459 |
inline SparseMap<K, V, Compare> |
460 | 460 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
461 | 461 |
{ |
462 | 462 |
return SparseMap<K, V, Compare>(map, value); |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
/// @} |
466 | 466 |
|
467 | 467 |
/// \addtogroup map_adaptors |
468 | 468 |
/// @{ |
469 | 469 |
|
470 | 470 |
/// Composition of two maps |
471 | 471 |
|
472 | 472 |
/// This \ref concepts::ReadMap "read-only map" returns the |
473 | 473 |
/// composition of two given maps. That is to say, if \c m1 is of |
474 | 474 |
/// type \c M1 and \c m2 is of \c M2, then for |
475 | 475 |
/// \code |
476 | 476 |
/// ComposeMap<M1, M2> cm(m1,m2); |
477 | 477 |
/// \endcode |
478 | 478 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
479 | 479 |
/// |
480 | 480 |
/// The \c Key type of the map is inherited from \c M2 and the |
481 | 481 |
/// \c Value type is from \c M1. |
482 | 482 |
/// \c M2::Value must be convertible to \c M1::Key. |
483 | 483 |
/// |
484 | 484 |
/// The simplest way of using this map is through the composeMap() |
485 | 485 |
/// function. |
486 | 486 |
/// |
487 | 487 |
/// \sa CombineMap |
488 | 488 |
template <typename M1, typename M2> |
489 | 489 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
490 | 490 |
const M1 &_m1; |
491 | 491 |
const M2 &_m2; |
492 | 492 |
public: |
493 | 493 |
///\e |
494 | 494 |
typedef typename M2::Key Key; |
495 | 495 |
///\e |
496 | 496 |
typedef typename M1::Value Value; |
497 | 497 |
|
498 | 498 |
/// Constructor |
499 | 499 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
500 | 500 |
|
501 | 501 |
///\e |
502 | 502 |
typename MapTraits<M1>::ConstReturnValue |
503 | 503 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
504 | 504 |
}; |
505 | 505 |
|
506 | 506 |
/// Returns a \c ComposeMap class |
507 | 507 |
|
508 | 508 |
/// This function just returns a \c ComposeMap class. |
509 | 509 |
/// |
510 | 510 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
511 | 511 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
512 | 512 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
513 | 513 |
/// |
514 | 514 |
/// \relates ComposeMap |
515 | 515 |
template <typename M1, typename M2> |
516 | 516 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
517 | 517 |
return ComposeMap<M1, M2>(m1, m2); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
|
521 | 521 |
/// Combination of two maps using an STL (binary) functor. |
522 | 522 |
|
523 | 523 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
524 | 524 |
/// binary functor and returns the combination of the two given maps |
525 | 525 |
/// using the functor. |
526 | 526 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
527 | 527 |
/// and \c f is of \c F, then for |
528 | 528 |
/// \code |
529 | 529 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
530 | 530 |
/// \endcode |
531 | 531 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
532 | 532 |
/// |
533 | 533 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
534 | 534 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
535 | 535 |
/// \c M2::Value and \c M1::Value must be convertible to the |
536 | 536 |
/// corresponding input parameter of \c F and the return type of \c F |
537 | 537 |
/// must be convertible to \c V. |
538 | 538 |
/// |
539 | 539 |
/// The simplest way of using this map is through the combineMap() |
540 | 540 |
/// function. |
541 | 541 |
/// |
542 | 542 |
/// \sa ComposeMap |
543 | 543 |
template<typename M1, typename M2, typename F, |
544 | 544 |
typename V = typename F::result_type> |
545 | 545 |
class CombineMap : public MapBase<typename M1::Key, V> { |
546 | 546 |
const M1 &_m1; |
547 | 547 |
const M2 &_m2; |
548 | 548 |
F _f; |
549 | 549 |
public: |
550 | 550 |
///\e |
551 | 551 |
typedef typename M1::Key Key; |
552 | 552 |
///\e |
553 | 553 |
typedef V Value; |
554 | 554 |
|
555 | 555 |
/// Constructor |
556 | 556 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
557 | 557 |
: _m1(m1), _m2(m2), _f(f) {} |
558 | 558 |
///\e |
559 | 559 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
560 | 560 |
}; |
561 | 561 |
|
562 | 562 |
/// Returns a \c CombineMap class |
563 | 563 |
|
564 | 564 |
/// This function just returns a \c CombineMap class. |
565 | 565 |
/// |
566 | 566 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
567 | 567 |
/// values, then |
568 | 568 |
/// \code |
569 | 569 |
/// combineMap(m1,m2,std::plus<double>()) |
570 | 570 |
/// \endcode |
571 | 571 |
/// is equivalent to |
572 | 572 |
/// \code |
573 | 573 |
/// addMap(m1,m2) |
574 | 574 |
/// \endcode |
575 | 575 |
/// |
576 | 576 |
/// This function is specialized for adaptable binary function |
577 | 577 |
/// classes and C++ functions. |
578 | 578 |
/// |
579 | 579 |
/// \relates CombineMap |
580 | 580 |
template<typename M1, typename M2, typename F, typename V> |
581 | 581 |
inline CombineMap<M1, M2, F, V> |
582 | 582 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
583 | 583 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
template<typename M1, typename M2, typename F> |
587 | 587 |
inline CombineMap<M1, M2, F, typename F::result_type> |
588 | 588 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
589 | 589 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
590 | 590 |
} |
591 | 591 |
|
592 | 592 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
593 | 593 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
594 | 594 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
595 | 595 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
|
599 | 599 |
/// Converts an STL style (unary) functor to a map |
600 | 600 |
|
601 | 601 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
602 | 602 |
/// of a given functor. Actually, it just wraps the functor and |
603 | 603 |
/// provides the \c Key and \c Value typedefs. |
604 | 604 |
/// |
605 | 605 |
/// Template parameters \c K and \c V will become its \c Key and |
606 | 606 |
/// \c Value. In most cases they have to be given explicitly because |
607 | 607 |
/// a functor typically does not provide \c argument_type and |
608 | 608 |
/// \c result_type typedefs. |
609 | 609 |
/// Parameter \c F is the type of the used functor. |
610 | 610 |
/// |
611 | 611 |
/// The simplest way of using this map is through the functorToMap() |
612 | 612 |
/// function. |
613 | 613 |
/// |
614 | 614 |
/// \sa MapToFunctor |
615 | 615 |
template<typename F, |
616 | 616 |
typename K = typename F::argument_type, |
617 | 617 |
typename V = typename F::result_type> |
618 | 618 |
class FunctorToMap : public MapBase<K, V> { |
619 | 619 |
F _f; |
620 | 620 |
public: |
621 | 621 |
///\e |
622 | 622 |
typedef K Key; |
623 | 623 |
///\e |
624 | 624 |
typedef V Value; |
625 | 625 |
|
626 | 626 |
/// Constructor |
627 | 627 |
FunctorToMap(const F &f = F()) : _f(f) {} |
628 | 628 |
///\e |
629 | 629 |
Value operator[](const Key &k) const { return _f(k); } |
630 | 630 |
}; |
631 | 631 |
|
632 | 632 |
/// Returns a \c FunctorToMap class |
633 | 633 |
|
634 | 634 |
/// This function just returns a \c FunctorToMap class. |
635 | 635 |
/// |
636 | 636 |
/// This function is specialized for adaptable binary function |
637 | 637 |
/// classes and C++ functions. |
638 | 638 |
/// |
639 | 639 |
/// \relates FunctorToMap |
640 | 640 |
template<typename K, typename V, typename F> |
641 | 641 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
642 | 642 |
return FunctorToMap<F, K, V>(f); |
643 | 643 |
} |
644 | 644 |
|
645 | 645 |
template <typename F> |
646 | 646 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
647 | 647 |
functorToMap(const F &f) |
648 | 648 |
{ |
649 | 649 |
return FunctorToMap<F, typename F::argument_type, |
650 | 650 |
typename F::result_type>(f); |
651 | 651 |
} |
652 | 652 |
|
653 | 653 |
template <typename K, typename V> |
654 | 654 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
655 | 655 |
return FunctorToMap<V (*)(K), K, V>(f); |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
|
659 | 659 |
/// Converts a map to an STL style (unary) functor |
660 | 660 |
|
661 | 661 |
/// This class converts a map to an STL style (unary) functor. |
662 | 662 |
/// That is it provides an <tt>operator()</tt> to read its values. |
663 | 663 |
/// |
664 | 664 |
/// For the sake of convenience it also works as a usual |
665 | 665 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
666 | 666 |
/// and the \c Key and \c Value typedefs also exist. |
667 | 667 |
/// |
668 | 668 |
/// The simplest way of using this map is through the mapToFunctor() |
669 | 669 |
/// function. |
670 | 670 |
/// |
671 | 671 |
///\sa FunctorToMap |
672 | 672 |
template <typename M> |
673 | 673 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
674 | 674 |
const M &_m; |
675 | 675 |
public: |
676 | 676 |
///\e |
677 | 677 |
typedef typename M::Key Key; |
678 | 678 |
///\e |
679 | 679 |
typedef typename M::Value Value; |
680 | 680 |
|
681 | 681 |
typedef typename M::Key argument_type; |
682 | 682 |
typedef typename M::Value result_type; |
683 | 683 |
|
684 | 684 |
/// Constructor |
685 | 685 |
MapToFunctor(const M &m) : _m(m) {} |
686 | 686 |
///\e |
687 | 687 |
Value operator()(const Key &k) const { return _m[k]; } |
688 | 688 |
///\e |
689 | 689 |
Value operator[](const Key &k) const { return _m[k]; } |
690 | 690 |
}; |
691 | 691 |
|
692 | 692 |
/// Returns a \c MapToFunctor class |
693 | 693 |
|
694 | 694 |
/// This function just returns a \c MapToFunctor class. |
695 | 695 |
/// \relates MapToFunctor |
696 | 696 |
template<typename M> |
697 | 697 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
698 | 698 |
return MapToFunctor<M>(m); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
|
702 | 702 |
/// \brief Map adaptor to convert the \c Value type of a map to |
703 | 703 |
/// another type using the default conversion. |
704 | 704 |
|
705 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
706 | 706 |
/// "readable map" to another type using the default conversion. |
707 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
708 | 708 |
/// type is \c V. |
709 | 709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
710 | 710 |
/// |
711 | 711 |
/// The simplest way of using this map is through the convertMap() |
712 | 712 |
/// function. |
713 | 713 |
template <typename M, typename V> |
714 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> { |
715 | 715 |
const M &_m; |
716 | 716 |
public: |
717 | 717 |
///\e |
718 | 718 |
typedef typename M::Key Key; |
719 | 719 |
///\e |
720 | 720 |
typedef V Value; |
721 | 721 |
|
722 | 722 |
/// Constructor |
723 | 723 |
|
724 | 724 |
/// Constructor. |
725 | 725 |
/// \param m The underlying map. |
726 | 726 |
ConvertMap(const M &m) : _m(m) {} |
727 | 727 |
|
728 | 728 |
///\e |
729 | 729 |
Value operator[](const Key &k) const { return _m[k]; } |
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// Returns a \c ConvertMap class |
733 | 733 |
|
734 | 734 |
/// This function just returns a \c ConvertMap class. |
735 | 735 |
/// \relates ConvertMap |
736 | 736 |
template<typename V, typename M> |
737 | 737 |
inline ConvertMap<M, V> convertMap(const M &map) { |
738 | 738 |
return ConvertMap<M, V>(map); |
739 | 739 |
} |
740 | 740 |
|
741 | 741 |
|
742 | 742 |
/// Applies all map setting operations to two maps |
743 | 743 |
|
744 | 744 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
745 | 745 |
/// and each write request will be passed to both of them. |
746 | 746 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
747 | 747 |
/// operations will return the corresponding values of \c M1. |
748 | 748 |
/// |
749 | 749 |
/// The \c Key and \c Value types are inherited from \c M1. |
750 | 750 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
751 | 751 |
/// of \c M1. |
752 | 752 |
/// |
753 | 753 |
/// The simplest way of using this map is through the forkMap() |
754 | 754 |
/// function. |
755 | 755 |
template<typename M1, typename M2> |
756 | 756 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
757 | 757 |
M1 &_m1; |
758 | 758 |
M2 &_m2; |
759 | 759 |
public: |
760 | 760 |
///\e |
761 | 761 |
typedef typename M1::Key Key; |
762 | 762 |
///\e |
763 | 763 |
typedef typename M1::Value Value; |
764 | 764 |
|
765 | 765 |
/// Constructor |
766 | 766 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
767 | 767 |
/// Returns the value associated with the given key in the first map. |
768 | 768 |
Value operator[](const Key &k) const { return _m1[k]; } |
769 | 769 |
/// Sets the value associated with the given key in both maps. |
770 | 770 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
771 | 771 |
}; |
772 | 772 |
|
773 | 773 |
/// Returns a \c ForkMap class |
774 | 774 |
|
775 | 775 |
/// This function just returns a \c ForkMap class. |
776 | 776 |
/// \relates ForkMap |
777 | 777 |
template <typename M1, typename M2> |
778 | 778 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
779 | 779 |
return ForkMap<M1,M2>(m1,m2); |
780 | 780 |
} |
781 | 781 |
|
782 | 782 |
|
783 | 783 |
/// Sum of two maps |
784 | 784 |
|
785 | 785 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
786 | 786 |
/// of the values of the two given maps. |
787 | 787 |
/// Its \c Key and \c Value types are inherited from \c M1. |
788 | 788 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
789 | 789 |
/// \c M1. |
790 | 790 |
/// |
791 | 791 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
792 | 792 |
/// \code |
793 | 793 |
/// AddMap<M1,M2> am(m1,m2); |
794 | 794 |
/// \endcode |
795 | 795 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
796 | 796 |
/// |
797 | 797 |
/// The simplest way of using this map is through the addMap() |
798 | 798 |
/// function. |
799 | 799 |
/// |
800 | 800 |
/// \sa SubMap, MulMap, DivMap |
801 | 801 |
/// \sa ShiftMap, ShiftWriteMap |
802 | 802 |
template<typename M1, typename M2> |
803 | 803 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
804 | 804 |
const M1 &_m1; |
805 | 805 |
const M2 &_m2; |
806 | 806 |
public: |
807 | 807 |
///\e |
808 | 808 |
typedef typename M1::Key Key; |
809 | 809 |
///\e |
810 | 810 |
typedef typename M1::Value Value; |
811 | 811 |
|
812 | 812 |
/// Constructor |
813 | 813 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
814 | 814 |
///\e |
815 | 815 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
816 | 816 |
}; |
817 | 817 |
|
818 | 818 |
/// Returns an \c AddMap class |
819 | 819 |
|
820 | 820 |
/// This function just returns an \c AddMap class. |
821 | 821 |
/// |
822 | 822 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
823 | 823 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
824 | 824 |
/// <tt>m1[x]+m2[x]</tt>. |
825 | 825 |
/// |
826 | 826 |
/// \relates AddMap |
827 | 827 |
template<typename M1, typename M2> |
828 | 828 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
829 | 829 |
return AddMap<M1, M2>(m1,m2); |
830 | 830 |
} |
831 | 831 |
|
832 | 832 |
|
833 | 833 |
/// Difference of two maps |
834 | 834 |
|
835 | 835 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
836 | 836 |
/// of the values of the two given maps. |
837 | 837 |
/// Its \c Key and \c Value types are inherited from \c M1. |
838 | 838 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
839 | 839 |
/// \c M1. |
840 | 840 |
/// |
841 | 841 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
842 | 842 |
/// \code |
843 | 843 |
/// SubMap<M1,M2> sm(m1,m2); |
844 | 844 |
/// \endcode |
845 | 845 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
846 | 846 |
/// |
847 | 847 |
/// The simplest way of using this map is through the subMap() |
848 | 848 |
/// function. |
849 | 849 |
/// |
850 | 850 |
/// \sa AddMap, MulMap, DivMap |
851 | 851 |
template<typename M1, typename M2> |
852 | 852 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
853 | 853 |
const M1 &_m1; |
854 | 854 |
const M2 &_m2; |
855 | 855 |
public: |
856 | 856 |
///\e |
857 | 857 |
typedef typename M1::Key Key; |
858 | 858 |
///\e |
859 | 859 |
typedef typename M1::Value Value; |
860 | 860 |
|
861 | 861 |
/// Constructor |
862 | 862 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
863 | 863 |
///\e |
864 | 864 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
865 | 865 |
}; |
866 | 866 |
|
867 | 867 |
/// Returns a \c SubMap class |
868 | 868 |
|
869 | 869 |
/// This function just returns a \c SubMap class. |
870 | 870 |
/// |
871 | 871 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
872 | 872 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
873 | 873 |
/// <tt>m1[x]-m2[x]</tt>. |
874 | 874 |
/// |
875 | 875 |
/// \relates SubMap |
876 | 876 |
template<typename M1, typename M2> |
877 | 877 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
878 | 878 |
return SubMap<M1, M2>(m1,m2); |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
|
882 | 882 |
/// Product of two maps |
883 | 883 |
|
884 | 884 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
885 | 885 |
/// of the values of the two given maps. |
886 | 886 |
/// Its \c Key and \c Value types are inherited from \c M1. |
887 | 887 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
888 | 888 |
/// \c M1. |
889 | 889 |
/// |
890 | 890 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
891 | 891 |
/// \code |
892 | 892 |
/// MulMap<M1,M2> mm(m1,m2); |
893 | 893 |
/// \endcode |
894 | 894 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
895 | 895 |
/// |
896 | 896 |
/// The simplest way of using this map is through the mulMap() |
897 | 897 |
/// function. |
898 | 898 |
/// |
899 | 899 |
/// \sa AddMap, SubMap, DivMap |
900 | 900 |
/// \sa ScaleMap, ScaleWriteMap |
901 | 901 |
template<typename M1, typename M2> |
902 | 902 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
903 | 903 |
const M1 &_m1; |
904 | 904 |
const M2 &_m2; |
905 | 905 |
public: |
906 | 906 |
///\e |
907 | 907 |
typedef typename M1::Key Key; |
908 | 908 |
///\e |
909 | 909 |
typedef typename M1::Value Value; |
910 | 910 |
|
911 | 911 |
/// Constructor |
912 | 912 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
913 | 913 |
///\e |
914 | 914 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
915 | 915 |
}; |
916 | 916 |
|
917 | 917 |
/// Returns a \c MulMap class |
918 | 918 |
|
919 | 919 |
/// This function just returns a \c MulMap class. |
920 | 920 |
/// |
921 | 921 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
922 | 922 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
923 | 923 |
/// <tt>m1[x]*m2[x]</tt>. |
924 | 924 |
/// |
925 | 925 |
/// \relates MulMap |
926 | 926 |
template<typename M1, typename M2> |
927 | 927 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
928 | 928 |
return MulMap<M1, M2>(m1,m2); |
929 | 929 |
} |
930 | 930 |
|
931 | 931 |
|
932 | 932 |
/// Quotient of two maps |
933 | 933 |
|
934 | 934 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
935 | 935 |
/// of the values of the two given maps. |
936 | 936 |
/// Its \c Key and \c Value types are inherited from \c M1. |
937 | 937 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
938 | 938 |
/// \c M1. |
939 | 939 |
/// |
940 | 940 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
941 | 941 |
/// \code |
942 | 942 |
/// DivMap<M1,M2> dm(m1,m2); |
943 | 943 |
/// \endcode |
944 | 944 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
945 | 945 |
/// |
946 | 946 |
/// The simplest way of using this map is through the divMap() |
947 | 947 |
/// function. |
948 | 948 |
/// |
949 | 949 |
/// \sa AddMap, SubMap, MulMap |
950 | 950 |
template<typename M1, typename M2> |
951 | 951 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
952 | 952 |
const M1 &_m1; |
953 | 953 |
const M2 &_m2; |
954 | 954 |
public: |
955 | 955 |
///\e |
956 | 956 |
typedef typename M1::Key Key; |
957 | 957 |
///\e |
958 | 958 |
typedef typename M1::Value Value; |
959 | 959 |
|
960 | 960 |
/// Constructor |
961 | 961 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
962 | 962 |
///\e |
963 | 963 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
964 | 964 |
}; |
965 | 965 |
|
966 | 966 |
/// Returns a \c DivMap class |
967 | 967 |
|
968 | 968 |
/// This function just returns a \c DivMap class. |
969 | 969 |
/// |
970 | 970 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
971 | 971 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
972 | 972 |
/// <tt>m1[x]/m2[x]</tt>. |
973 | 973 |
/// |
974 | 974 |
/// \relates DivMap |
975 | 975 |
template<typename M1, typename M2> |
976 | 976 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
977 | 977 |
return DivMap<M1, M2>(m1,m2); |
978 | 978 |
} |
979 | 979 |
|
980 | 980 |
|
981 | 981 |
/// Shifts a map with a constant. |
982 | 982 |
|
983 | 983 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
984 | 984 |
/// the given map and a constant value (i.e. it shifts the map with |
985 | 985 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
986 | 986 |
/// |
987 | 987 |
/// Actually, |
988 | 988 |
/// \code |
989 | 989 |
/// ShiftMap<M> sh(m,v); |
990 | 990 |
/// \endcode |
991 | 991 |
/// is equivalent to |
992 | 992 |
/// \code |
993 | 993 |
/// ConstMap<M::Key, M::Value> cm(v); |
994 | 994 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
995 | 995 |
/// \endcode |
996 | 996 |
/// |
997 | 997 |
/// The simplest way of using this map is through the shiftMap() |
998 | 998 |
/// function. |
999 | 999 |
/// |
1000 | 1000 |
/// \sa ShiftWriteMap |
1001 | 1001 |
template<typename M, typename C = typename M::Value> |
1002 | 1002 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
1003 | 1003 |
const M &_m; |
1004 | 1004 |
C _v; |
1005 | 1005 |
public: |
1006 | 1006 |
///\e |
1007 | 1007 |
typedef typename M::Key Key; |
1008 | 1008 |
///\e |
1009 | 1009 |
typedef typename M::Value Value; |
1010 | 1010 |
|
1011 | 1011 |
/// Constructor |
1012 | 1012 |
|
1013 | 1013 |
/// Constructor. |
1014 | 1014 |
/// \param m The undelying map. |
1015 | 1015 |
/// \param v The constant value. |
1016 | 1016 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
1017 | 1017 |
///\e |
1018 | 1018 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1019 | 1019 |
}; |
1020 | 1020 |
|
1021 | 1021 |
/// Shifts a map with a constant (read-write version). |
1022 | 1022 |
|
1023 | 1023 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
1024 | 1024 |
/// of the given map and a constant value (i.e. it shifts the map with |
1025 | 1025 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
1026 | 1026 |
/// It makes also possible to write the map. |
1027 | 1027 |
/// |
1028 | 1028 |
/// The simplest way of using this map is through the shiftWriteMap() |
1029 | 1029 |
/// function. |
1030 | 1030 |
/// |
1031 | 1031 |
/// \sa ShiftMap |
1032 | 1032 |
template<typename M, typename C = typename M::Value> |
1033 | 1033 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1034 | 1034 |
M &_m; |
1035 | 1035 |
C _v; |
1036 | 1036 |
public: |
1037 | 1037 |
///\e |
1038 | 1038 |
typedef typename M::Key Key; |
1039 | 1039 |
///\e |
1040 | 1040 |
typedef typename M::Value Value; |
1041 | 1041 |
|
1042 | 1042 |
/// Constructor |
1043 | 1043 |
|
1044 | 1044 |
/// Constructor. |
1045 | 1045 |
/// \param m The undelying map. |
1046 | 1046 |
/// \param v The constant value. |
1047 | 1047 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1048 | 1048 |
///\e |
1049 | 1049 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1050 | 1050 |
///\e |
1051 | 1051 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
1052 | 1052 |
}; |
1053 | 1053 |
|
1054 | 1054 |
/// Returns a \c ShiftMap class |
1055 | 1055 |
|
1056 | 1056 |
/// This function just returns a \c ShiftMap class. |
1057 | 1057 |
/// |
1058 | 1058 |
/// For example, if \c m is a map with \c double values and \c v is |
1059 | 1059 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
1060 | 1060 |
/// <tt>m[x]+v</tt>. |
1061 | 1061 |
/// |
1062 | 1062 |
/// \relates ShiftMap |
1063 | 1063 |
template<typename M, typename C> |
1064 | 1064 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
1065 | 1065 |
return ShiftMap<M, C>(m,v); |
1066 | 1066 |
} |
1067 | 1067 |
|
1068 | 1068 |
/// Returns a \c ShiftWriteMap class |
1069 | 1069 |
|
1070 | 1070 |
/// This function just returns a \c ShiftWriteMap class. |
1071 | 1071 |
/// |
1072 | 1072 |
/// For example, if \c m is a map with \c double values and \c v is |
1073 | 1073 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
1074 | 1074 |
/// <tt>m[x]+v</tt>. |
1075 | 1075 |
/// Moreover it makes also possible to write the map. |
1076 | 1076 |
/// |
1077 | 1077 |
/// \relates ShiftWriteMap |
1078 | 1078 |
template<typename M, typename C> |
1079 | 1079 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
1080 | 1080 |
return ShiftWriteMap<M, C>(m,v); |
1081 | 1081 |
} |
1082 | 1082 |
|
1083 | 1083 |
|
1084 | 1084 |
/// Scales a map with a constant. |
1085 | 1085 |
|
1086 | 1086 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
1087 | 1087 |
/// the given map multiplied from the left side with a constant value. |
1088 | 1088 |
/// Its \c Key and \c Value are inherited from \c M. |
1089 | 1089 |
/// |
1090 | 1090 |
/// Actually, |
1091 | 1091 |
/// \code |
1092 | 1092 |
/// ScaleMap<M> sc(m,v); |
1093 | 1093 |
/// \endcode |
1094 | 1094 |
/// is equivalent to |
1095 | 1095 |
/// \code |
1096 | 1096 |
/// ConstMap<M::Key, M::Value> cm(v); |
1097 | 1097 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
1098 | 1098 |
/// \endcode |
1099 | 1099 |
/// |
1100 | 1100 |
/// The simplest way of using this map is through the scaleMap() |
1101 | 1101 |
/// function. |
1102 | 1102 |
/// |
1103 | 1103 |
/// \sa ScaleWriteMap |
1104 | 1104 |
template<typename M, typename C = typename M::Value> |
1105 | 1105 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
1106 | 1106 |
const M &_m; |
1107 | 1107 |
C _v; |
1108 | 1108 |
public: |
1109 | 1109 |
///\e |
1110 | 1110 |
typedef typename M::Key Key; |
1111 | 1111 |
///\e |
1112 | 1112 |
typedef typename M::Value Value; |
1113 | 1113 |
|
1114 | 1114 |
/// Constructor |
1115 | 1115 |
|
1116 | 1116 |
/// Constructor. |
1117 | 1117 |
/// \param m The undelying map. |
1118 | 1118 |
/// \param v The constant value. |
1119 | 1119 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
1120 | 1120 |
///\e |
1121 | 1121 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1122 | 1122 |
}; |
1123 | 1123 |
|
1124 | 1124 |
/// Scales a map with a constant (read-write version). |
1125 | 1125 |
|
1126 | 1126 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
1127 | 1127 |
/// the given map multiplied from the left side with a constant value. |
1128 | 1128 |
/// Its \c Key and \c Value are inherited from \c M. |
1129 | 1129 |
/// It can also be used as write map if the \c / operator is defined |
1130 | 1130 |
/// between \c Value and \c C and the given multiplier is not zero. |
1131 | 1131 |
/// |
1132 | 1132 |
/// The simplest way of using this map is through the scaleWriteMap() |
1133 | 1133 |
/// function. |
1134 | 1134 |
/// |
1135 | 1135 |
/// \sa ScaleMap |
1136 | 1136 |
template<typename M, typename C = typename M::Value> |
1137 | 1137 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1138 | 1138 |
M &_m; |
1139 | 1139 |
C _v; |
1140 | 1140 |
public: |
1141 | 1141 |
///\e |
1142 | 1142 |
typedef typename M::Key Key; |
1143 | 1143 |
///\e |
1144 | 1144 |
typedef typename M::Value Value; |
1145 | 1145 |
|
1146 | 1146 |
/// Constructor |
1147 | 1147 |
|
1148 | 1148 |
/// Constructor. |
1149 | 1149 |
/// \param m The undelying map. |
1150 | 1150 |
/// \param v The constant value. |
1151 | 1151 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1152 | 1152 |
///\e |
1153 | 1153 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1154 | 1154 |
///\e |
1155 | 1155 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
1156 | 1156 |
}; |
1157 | 1157 |
|
1158 | 1158 |
/// Returns a \c ScaleMap class |
1159 | 1159 |
|
1160 | 1160 |
/// This function just returns a \c ScaleMap class. |
1161 | 1161 |
/// |
1162 | 1162 |
/// For example, if \c m is a map with \c double values and \c v is |
1163 | 1163 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
1164 | 1164 |
/// <tt>v*m[x]</tt>. |
1165 | 1165 |
/// |
1166 | 1166 |
/// \relates ScaleMap |
1167 | 1167 |
template<typename M, typename C> |
1168 | 1168 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
1169 | 1169 |
return ScaleMap<M, C>(m,v); |
1170 | 1170 |
} |
1171 | 1171 |
|
1172 | 1172 |
/// Returns a \c ScaleWriteMap class |
1173 | 1173 |
|
1174 | 1174 |
/// This function just returns a \c ScaleWriteMap class. |
1175 | 1175 |
/// |
1176 | 1176 |
/// For example, if \c m is a map with \c double values and \c v is |
1177 | 1177 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
1178 | 1178 |
/// <tt>v*m[x]</tt>. |
1179 | 1179 |
/// Moreover it makes also possible to write the map. |
1180 | 1180 |
/// |
1181 | 1181 |
/// \relates ScaleWriteMap |
1182 | 1182 |
template<typename M, typename C> |
1183 | 1183 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
1184 | 1184 |
return ScaleWriteMap<M, C>(m,v); |
1185 | 1185 |
} |
1186 | 1186 |
|
1187 | 1187 |
|
1188 | 1188 |
/// Negative of a map |
1189 | 1189 |
|
1190 | 1190 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
1191 | 1191 |
/// of the values of the given map (using the unary \c - operator). |
1192 | 1192 |
/// Its \c Key and \c Value are inherited from \c M. |
1193 | 1193 |
/// |
1194 | 1194 |
/// If M::Value is \c int, \c double etc., then |
1195 | 1195 |
/// \code |
1196 | 1196 |
/// NegMap<M> neg(m); |
1197 | 1197 |
/// \endcode |
1198 | 1198 |
/// is equivalent to |
1199 | 1199 |
/// \code |
1200 | 1200 |
/// ScaleMap<M> neg(m,-1); |
1201 | 1201 |
/// \endcode |
1202 | 1202 |
/// |
1203 | 1203 |
/// The simplest way of using this map is through the negMap() |
1204 | 1204 |
/// function. |
1205 | 1205 |
/// |
1206 | 1206 |
/// \sa NegWriteMap |
1207 | 1207 |
template<typename M> |
1208 | 1208 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
1209 | 1209 |
const M& _m; |
1210 | 1210 |
public: |
1211 | 1211 |
///\e |
1212 | 1212 |
typedef typename M::Key Key; |
1213 | 1213 |
///\e |
1214 | 1214 |
typedef typename M::Value Value; |
1215 | 1215 |
|
1216 | 1216 |
/// Constructor |
1217 | 1217 |
NegMap(const M &m) : _m(m) {} |
1218 | 1218 |
///\e |
1219 | 1219 |
Value operator[](const Key &k) const { return -_m[k]; } |
1220 | 1220 |
}; |
1221 | 1221 |
|
1222 | 1222 |
/// Negative of a map (read-write version) |
1223 | 1223 |
|
1224 | 1224 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1225 | 1225 |
/// negative of the values of the given map (using the unary \c - |
1226 | 1226 |
/// operator). |
1227 | 1227 |
/// Its \c Key and \c Value are inherited from \c M. |
1228 | 1228 |
/// It makes also possible to write the map. |
1229 | 1229 |
/// |
1230 | 1230 |
/// If M::Value is \c int, \c double etc., then |
1231 | 1231 |
/// \code |
1232 | 1232 |
/// NegWriteMap<M> neg(m); |
1233 | 1233 |
/// \endcode |
1234 | 1234 |
/// is equivalent to |
1235 | 1235 |
/// \code |
1236 | 1236 |
/// ScaleWriteMap<M> neg(m,-1); |
1237 | 1237 |
/// \endcode |
1238 | 1238 |
/// |
1239 | 1239 |
/// The simplest way of using this map is through the negWriteMap() |
1240 | 1240 |
/// function. |
1241 | 1241 |
/// |
1242 | 1242 |
/// \sa NegMap |
1243 | 1243 |
template<typename M> |
1244 | 1244 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1245 | 1245 |
M &_m; |
1246 | 1246 |
public: |
1247 | 1247 |
///\e |
1248 | 1248 |
typedef typename M::Key Key; |
1249 | 1249 |
///\e |
1250 | 1250 |
typedef typename M::Value Value; |
1251 | 1251 |
|
1252 | 1252 |
/// Constructor |
1253 | 1253 |
NegWriteMap(M &m) : _m(m) {} |
1254 | 1254 |
///\e |
1255 | 1255 |
Value operator[](const Key &k) const { return -_m[k]; } |
1256 | 1256 |
///\e |
1257 | 1257 |
void set(const Key &k, const Value &v) { _m.set(k, -v); } |
1258 | 1258 |
}; |
1259 | 1259 |
|
1260 | 1260 |
/// Returns a \c NegMap class |
1261 | 1261 |
|
1262 | 1262 |
/// This function just returns a \c NegMap class. |
1263 | 1263 |
/// |
1264 | 1264 |
/// For example, if \c m is a map with \c double values, then |
1265 | 1265 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1266 | 1266 |
/// |
1267 | 1267 |
/// \relates NegMap |
1268 | 1268 |
template <typename M> |
1269 | 1269 |
inline NegMap<M> negMap(const M &m) { |
1270 | 1270 |
return NegMap<M>(m); |
1271 | 1271 |
} |
1272 | 1272 |
|
1273 | 1273 |
/// Returns a \c NegWriteMap class |
1274 | 1274 |
|
1275 | 1275 |
/// This function just returns a \c NegWriteMap class. |
1276 | 1276 |
/// |
1277 | 1277 |
/// For example, if \c m is a map with \c double values, then |
1278 | 1278 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1279 | 1279 |
/// Moreover it makes also possible to write the map. |
1280 | 1280 |
/// |
1281 | 1281 |
/// \relates NegWriteMap |
1282 | 1282 |
template <typename M> |
1283 | 1283 |
inline NegWriteMap<M> negWriteMap(M &m) { |
1284 | 1284 |
return NegWriteMap<M>(m); |
1285 | 1285 |
} |
1286 | 1286 |
|
1287 | 1287 |
|
1288 | 1288 |
/// Absolute value of a map |
1289 | 1289 |
|
1290 | 1290 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
1291 | 1291 |
/// value of the values of the given map. |
1292 | 1292 |
/// Its \c Key and \c Value are inherited from \c M. |
1293 | 1293 |
/// \c Value must be comparable to \c 0 and the unary \c - |
1294 | 1294 |
/// operator must be defined for it, of course. |
1295 | 1295 |
/// |
1296 | 1296 |
/// The simplest way of using this map is through the absMap() |
1297 | 1297 |
/// function. |
1298 | 1298 |
template<typename M> |
1299 | 1299 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1300 | 1300 |
const M &_m; |
1301 | 1301 |
public: |
1302 | 1302 |
///\e |
1303 | 1303 |
typedef typename M::Key Key; |
1304 | 1304 |
///\e |
1305 | 1305 |
typedef typename M::Value Value; |
1306 | 1306 |
|
1307 | 1307 |
/// Constructor |
1308 | 1308 |
AbsMap(const M &m) : _m(m) {} |
1309 | 1309 |
///\e |
1310 | 1310 |
Value operator[](const Key &k) const { |
1311 | 1311 |
Value tmp = _m[k]; |
1312 | 1312 |
return tmp >= 0 ? tmp : -tmp; |
1313 | 1313 |
} |
1314 | 1314 |
|
1315 | 1315 |
}; |
1316 | 1316 |
|
1317 | 1317 |
/// Returns an \c AbsMap class |
1318 | 1318 |
|
1319 | 1319 |
/// This function just returns an \c AbsMap class. |
1320 | 1320 |
/// |
1321 | 1321 |
/// For example, if \c m is a map with \c double values, then |
1322 | 1322 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
1323 | 1323 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
1324 | 1324 |
/// negative. |
1325 | 1325 |
/// |
1326 | 1326 |
/// \relates AbsMap |
1327 | 1327 |
template<typename M> |
1328 | 1328 |
inline AbsMap<M> absMap(const M &m) { |
1329 | 1329 |
return AbsMap<M>(m); |
1330 | 1330 |
} |
1331 | 1331 |
|
1332 | 1332 |
/// @} |
1333 | 1333 |
|
1334 | 1334 |
// Logical maps and map adaptors: |
1335 | 1335 |
|
1336 | 1336 |
/// \addtogroup maps |
1337 | 1337 |
/// @{ |
1338 | 1338 |
|
1339 | 1339 |
/// Constant \c true map. |
1340 | 1340 |
|
1341 | 1341 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1342 | 1342 |
/// each key. |
1343 | 1343 |
/// |
1344 | 1344 |
/// Note that |
1345 | 1345 |
/// \code |
1346 | 1346 |
/// TrueMap<K> tm; |
1347 | 1347 |
/// \endcode |
1348 | 1348 |
/// is equivalent to |
1349 | 1349 |
/// \code |
1350 | 1350 |
/// ConstMap<K,bool> tm(true); |
1351 | 1351 |
/// \endcode |
1352 | 1352 |
/// |
1353 | 1353 |
/// \sa FalseMap |
1354 | 1354 |
/// \sa ConstMap |
1355 | 1355 |
template <typename K> |
1356 | 1356 |
class TrueMap : public MapBase<K, bool> { |
1357 | 1357 |
public: |
1358 | 1358 |
///\e |
1359 | 1359 |
typedef K Key; |
1360 | 1360 |
///\e |
1361 | 1361 |
typedef bool Value; |
1362 | 1362 |
|
1363 | 1363 |
/// Gives back \c true. |
1364 | 1364 |
Value operator[](const Key&) const { return true; } |
1365 | 1365 |
}; |
1366 | 1366 |
|
1367 | 1367 |
/// Returns a \c TrueMap class |
1368 | 1368 |
|
1369 | 1369 |
/// This function just returns a \c TrueMap class. |
1370 | 1370 |
/// \relates TrueMap |
1371 | 1371 |
template<typename K> |
1372 | 1372 |
inline TrueMap<K> trueMap() { |
1373 | 1373 |
return TrueMap<K>(); |
1374 | 1374 |
} |
1375 | 1375 |
|
1376 | 1376 |
|
1377 | 1377 |
/// Constant \c false map. |
1378 | 1378 |
|
1379 | 1379 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
1380 | 1380 |
/// each key. |
1381 | 1381 |
/// |
1382 | 1382 |
/// Note that |
1383 | 1383 |
/// \code |
1384 | 1384 |
/// FalseMap<K> fm; |
1385 | 1385 |
/// \endcode |
1386 | 1386 |
/// is equivalent to |
1387 | 1387 |
/// \code |
1388 | 1388 |
/// ConstMap<K,bool> fm(false); |
1389 | 1389 |
/// \endcode |
1390 | 1390 |
/// |
1391 | 1391 |
/// \sa TrueMap |
1392 | 1392 |
/// \sa ConstMap |
1393 | 1393 |
template <typename K> |
1394 | 1394 |
class FalseMap : public MapBase<K, bool> { |
1395 | 1395 |
public: |
1396 | 1396 |
///\e |
1397 | 1397 |
typedef K Key; |
1398 | 1398 |
///\e |
1399 | 1399 |
typedef bool Value; |
1400 | 1400 |
|
1401 | 1401 |
/// Gives back \c false. |
1402 | 1402 |
Value operator[](const Key&) const { return false; } |
1403 | 1403 |
}; |
1404 | 1404 |
|
1405 | 1405 |
/// Returns a \c FalseMap class |
1406 | 1406 |
|
1407 | 1407 |
/// This function just returns a \c FalseMap class. |
1408 | 1408 |
/// \relates FalseMap |
1409 | 1409 |
template<typename K> |
1410 | 1410 |
inline FalseMap<K> falseMap() { |
1411 | 1411 |
return FalseMap<K>(); |
1412 | 1412 |
} |
1413 | 1413 |
|
1414 | 1414 |
/// @} |
1415 | 1415 |
|
1416 | 1416 |
/// \addtogroup map_adaptors |
1417 | 1417 |
/// @{ |
1418 | 1418 |
|
1419 | 1419 |
/// Logical 'and' of two maps |
1420 | 1420 |
|
1421 | 1421 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1422 | 1422 |
/// 'and' of the values of the two given maps. |
1423 | 1423 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1424 | 1424 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1425 | 1425 |
/// |
1426 | 1426 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1427 | 1427 |
/// \code |
1428 | 1428 |
/// AndMap<M1,M2> am(m1,m2); |
1429 | 1429 |
/// \endcode |
1430 | 1430 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
1431 | 1431 |
/// |
1432 | 1432 |
/// The simplest way of using this map is through the andMap() |
1433 | 1433 |
/// function. |
1434 | 1434 |
/// |
1435 | 1435 |
/// \sa OrMap |
1436 | 1436 |
/// \sa NotMap, NotWriteMap |
1437 | 1437 |
template<typename M1, typename M2> |
1438 | 1438 |
class AndMap : public MapBase<typename M1::Key, bool> { |
1439 | 1439 |
const M1 &_m1; |
1440 | 1440 |
const M2 &_m2; |
1441 | 1441 |
public: |
1442 | 1442 |
///\e |
1443 | 1443 |
typedef typename M1::Key Key; |
1444 | 1444 |
///\e |
1445 | 1445 |
typedef bool Value; |
1446 | 1446 |
|
1447 | 1447 |
/// Constructor |
1448 | 1448 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1449 | 1449 |
///\e |
1450 | 1450 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
1451 | 1451 |
}; |
1452 | 1452 |
|
1453 | 1453 |
/// Returns an \c AndMap class |
1454 | 1454 |
|
1455 | 1455 |
/// This function just returns an \c AndMap class. |
1456 | 1456 |
/// |
1457 | 1457 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1458 | 1458 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1459 | 1459 |
/// <tt>m1[x]&&m2[x]</tt>. |
1460 | 1460 |
/// |
1461 | 1461 |
/// \relates AndMap |
1462 | 1462 |
template<typename M1, typename M2> |
1463 | 1463 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1464 | 1464 |
return AndMap<M1, M2>(m1,m2); |
1465 | 1465 |
} |
1466 | 1466 |
|
1467 | 1467 |
|
1468 | 1468 |
/// Logical 'or' of two maps |
1469 | 1469 |
|
1470 | 1470 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1471 | 1471 |
/// 'or' of the values of the two given maps. |
1472 | 1472 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1473 | 1473 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1474 | 1474 |
/// |
1475 | 1475 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1476 | 1476 |
/// \code |
1477 | 1477 |
/// OrMap<M1,M2> om(m1,m2); |
1478 | 1478 |
/// \endcode |
1479 | 1479 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1480 | 1480 |
/// |
1481 | 1481 |
/// The simplest way of using this map is through the orMap() |
1482 | 1482 |
/// function. |
1483 | 1483 |
/// |
1484 | 1484 |
/// \sa AndMap |
1485 | 1485 |
/// \sa NotMap, NotWriteMap |
1486 | 1486 |
template<typename M1, typename M2> |
1487 | 1487 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1488 | 1488 |
const M1 &_m1; |
1489 | 1489 |
const M2 &_m2; |
1490 | 1490 |
public: |
1491 | 1491 |
///\e |
1492 | 1492 |
typedef typename M1::Key Key; |
1493 | 1493 |
///\e |
1494 | 1494 |
typedef bool Value; |
1495 | 1495 |
|
1496 | 1496 |
/// Constructor |
1497 | 1497 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1498 | 1498 |
///\e |
1499 | 1499 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1500 | 1500 |
}; |
1501 | 1501 |
|
1502 | 1502 |
/// Returns an \c OrMap class |
1503 | 1503 |
|
1504 | 1504 |
/// This function just returns an \c OrMap class. |
1505 | 1505 |
/// |
1506 | 1506 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1507 | 1507 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1508 | 1508 |
/// <tt>m1[x]||m2[x]</tt>. |
1509 | 1509 |
/// |
1510 | 1510 |
/// \relates OrMap |
1511 | 1511 |
template<typename M1, typename M2> |
1512 | 1512 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1513 | 1513 |
return OrMap<M1, M2>(m1,m2); |
1514 | 1514 |
} |
1515 | 1515 |
|
1516 | 1516 |
|
1517 | 1517 |
/// Logical 'not' of a map |
1518 | 1518 |
|
1519 | 1519 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1520 | 1520 |
/// negation of the values of the given map. |
1521 | 1521 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1522 | 1522 |
/// |
1523 | 1523 |
/// The simplest way of using this map is through the notMap() |
1524 | 1524 |
/// function. |
1525 | 1525 |
/// |
1526 | 1526 |
/// \sa NotWriteMap |
1527 | 1527 |
template <typename M> |
1528 | 1528 |
class NotMap : public MapBase<typename M::Key, bool> { |
1529 | 1529 |
const M &_m; |
1530 | 1530 |
public: |
1531 | 1531 |
///\e |
1532 | 1532 |
typedef typename M::Key Key; |
1533 | 1533 |
///\e |
1534 | 1534 |
typedef bool Value; |
1535 | 1535 |
|
1536 | 1536 |
/// Constructor |
1537 | 1537 |
NotMap(const M &m) : _m(m) {} |
1538 | 1538 |
///\e |
1539 | 1539 |
Value operator[](const Key &k) const { return !_m[k]; } |
1540 | 1540 |
}; |
1541 | 1541 |
|
1542 | 1542 |
/// Logical 'not' of a map (read-write version) |
1543 | 1543 |
|
1544 | 1544 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1545 | 1545 |
/// logical negation of the values of the given map. |
1546 | 1546 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1547 | 1547 |
/// It makes also possible to write the map. When a value is set, |
1548 | 1548 |
/// the opposite value is set to the original map. |
1549 | 1549 |
/// |
1550 | 1550 |
/// The simplest way of using this map is through the notWriteMap() |
1551 | 1551 |
/// function. |
1552 | 1552 |
/// |
1553 | 1553 |
/// \sa NotMap |
1554 | 1554 |
template <typename M> |
1555 | 1555 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1556 | 1556 |
M &_m; |
1557 | 1557 |
public: |
1558 | 1558 |
///\e |
1559 | 1559 |
typedef typename M::Key Key; |
1560 | 1560 |
///\e |
1561 | 1561 |
typedef bool Value; |
1562 | 1562 |
|
1563 | 1563 |
/// Constructor |
1564 | 1564 |
NotWriteMap(M &m) : _m(m) {} |
1565 | 1565 |
///\e |
1566 | 1566 |
Value operator[](const Key &k) const { return !_m[k]; } |
1567 | 1567 |
///\e |
1568 | 1568 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1569 | 1569 |
}; |
1570 | 1570 |
|
1571 | 1571 |
/// Returns a \c NotMap class |
1572 | 1572 |
|
1573 | 1573 |
/// This function just returns a \c NotMap class. |
1574 | 1574 |
/// |
1575 | 1575 |
/// For example, if \c m is a map with \c bool values, then |
1576 | 1576 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1577 | 1577 |
/// |
1578 | 1578 |
/// \relates NotMap |
1579 | 1579 |
template <typename M> |
1580 | 1580 |
inline NotMap<M> notMap(const M &m) { |
1581 | 1581 |
return NotMap<M>(m); |
1582 | 1582 |
} |
1583 | 1583 |
|
1584 | 1584 |
/// Returns a \c NotWriteMap class |
1585 | 1585 |
|
1586 | 1586 |
/// This function just returns a \c NotWriteMap class. |
1587 | 1587 |
/// |
1588 | 1588 |
/// For example, if \c m is a map with \c bool values, then |
1589 | 1589 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1590 | 1590 |
/// Moreover it makes also possible to write the map. |
1591 | 1591 |
/// |
1592 | 1592 |
/// \relates NotWriteMap |
1593 | 1593 |
template <typename M> |
1594 | 1594 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1595 | 1595 |
return NotWriteMap<M>(m); |
1596 | 1596 |
} |
1597 | 1597 |
|
1598 | 1598 |
|
1599 | 1599 |
/// Combination of two maps using the \c == operator |
1600 | 1600 |
|
1601 | 1601 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1602 | 1602 |
/// the keys for which the corresponding values of the two maps are |
1603 | 1603 |
/// equal. |
1604 | 1604 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1605 | 1605 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1606 | 1606 |
/// |
1607 | 1607 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1608 | 1608 |
/// \code |
1609 | 1609 |
/// EqualMap<M1,M2> em(m1,m2); |
1610 | 1610 |
/// \endcode |
1611 | 1611 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1612 | 1612 |
/// |
1613 | 1613 |
/// The simplest way of using this map is through the equalMap() |
1614 | 1614 |
/// function. |
1615 | 1615 |
/// |
1616 | 1616 |
/// \sa LessMap |
1617 | 1617 |
template<typename M1, typename M2> |
1618 | 1618 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1619 | 1619 |
const M1 &_m1; |
1620 | 1620 |
const M2 &_m2; |
1621 | 1621 |
public: |
1622 | 1622 |
///\e |
1623 | 1623 |
typedef typename M1::Key Key; |
1624 | 1624 |
///\e |
1625 | 1625 |
typedef bool Value; |
1626 | 1626 |
|
1627 | 1627 |
/// Constructor |
1628 | 1628 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1629 | 1629 |
///\e |
1630 | 1630 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1631 | 1631 |
}; |
1632 | 1632 |
|
1633 | 1633 |
/// Returns an \c EqualMap class |
1634 | 1634 |
|
1635 | 1635 |
/// This function just returns an \c EqualMap class. |
1636 | 1636 |
/// |
1637 | 1637 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1638 | 1638 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1639 | 1639 |
/// <tt>m1[x]==m2[x]</tt>. |
1640 | 1640 |
/// |
1641 | 1641 |
/// \relates EqualMap |
1642 | 1642 |
template<typename M1, typename M2> |
1643 | 1643 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1644 | 1644 |
return EqualMap<M1, M2>(m1,m2); |
1645 | 1645 |
} |
1646 | 1646 |
|
1647 | 1647 |
|
1648 | 1648 |
/// Combination of two maps using the \c < operator |
1649 | 1649 |
|
1650 | 1650 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1651 | 1651 |
/// the keys for which the corresponding value of the first map is |
1652 | 1652 |
/// less then the value of the second map. |
1653 | 1653 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1654 | 1654 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1655 | 1655 |
/// |
1656 | 1656 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1657 | 1657 |
/// \code |
1658 | 1658 |
/// LessMap<M1,M2> lm(m1,m2); |
1659 | 1659 |
/// \endcode |
1660 | 1660 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1661 | 1661 |
/// |
1662 | 1662 |
/// The simplest way of using this map is through the lessMap() |
1663 | 1663 |
/// function. |
1664 | 1664 |
/// |
1665 | 1665 |
/// \sa EqualMap |
1666 | 1666 |
template<typename M1, typename M2> |
1667 | 1667 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1668 | 1668 |
const M1 &_m1; |
1669 | 1669 |
const M2 &_m2; |
1670 | 1670 |
public: |
1671 | 1671 |
///\e |
1672 | 1672 |
typedef typename M1::Key Key; |
1673 | 1673 |
///\e |
1674 | 1674 |
typedef bool Value; |
1675 | 1675 |
|
1676 | 1676 |
/// Constructor |
1677 | 1677 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1678 | 1678 |
///\e |
1679 | 1679 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1680 | 1680 |
}; |
1681 | 1681 |
|
1682 | 1682 |
/// Returns an \c LessMap class |
1683 | 1683 |
|
1684 | 1684 |
/// This function just returns an \c LessMap class. |
1685 | 1685 |
/// |
1686 | 1686 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1687 | 1687 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1688 | 1688 |
/// <tt>m1[x]<m2[x]</tt>. |
1689 | 1689 |
/// |
1690 | 1690 |
/// \relates LessMap |
1691 | 1691 |
template<typename M1, typename M2> |
1692 | 1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1693 | 1693 |
return LessMap<M1, M2>(m1,m2); |
1694 | 1694 |
} |
1695 | 1695 |
|
1696 | 1696 |
namespace _maps_bits { |
1697 | 1697 |
|
1698 | 1698 |
template <typename _Iterator, typename Enable = void> |
1699 | 1699 |
struct IteratorTraits { |
1700 | 1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1701 | 1701 |
}; |
1702 | 1702 |
|
1703 | 1703 |
template <typename _Iterator> |
1704 | 1704 |
struct IteratorTraits<_Iterator, |
1705 | 1705 |
typename exists<typename _Iterator::container_type>::type> |
1706 | 1706 |
{ |
1707 | 1707 |
typedef typename _Iterator::container_type::value_type Value; |
1708 | 1708 |
}; |
1709 | 1709 |
|
1710 | 1710 |
} |
1711 | 1711 |
|
1712 | 1712 |
/// @} |
1713 | 1713 |
|
1714 | 1714 |
/// \addtogroup maps |
1715 | 1715 |
/// @{ |
1716 | 1716 |
|
1717 | 1717 |
/// \brief Writable bool map for logging each \c true assigned element |
1718 | 1718 |
/// |
1719 | 1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1720 | 1720 |
/// each \c true assigned element, i.e it copies subsequently each |
1721 | 1721 |
/// keys set to \c true to the given iterator. |
1722 | 1722 |
/// The most important usage of it is storing certain nodes or arcs |
1723 | 1723 |
/// that were marked \c true by an algorithm. |
1724 | 1724 |
/// |
1725 | 1725 |
/// There are several algorithms that provide solutions through bool |
1726 | 1726 |
/// maps and most of them assign \c true at most once for each key. |
1727 | 1727 |
/// In these cases it is a natural request to store each \c true |
1728 | 1728 |
/// assigned elements (in order of the assignment), which can be |
1729 | 1729 |
/// easily done with LoggerBoolMap. |
1730 | 1730 |
/// |
1731 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
1732 | 1732 |
/// function. |
1733 | 1733 |
/// |
1734 | 1734 |
/// \tparam IT The type of the iterator. |
1735 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
1736 | 1736 |
/// according to the iterator type should work in most cases. |
1737 | 1737 |
/// |
1738 | 1738 |
/// \note The container of the iterator must contain enough space |
1739 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
1740 | 1740 |
#ifdef DOXYGEN |
1741 | 1741 |
template <typename IT, typename KEY> |
1742 | 1742 |
#else |
1743 | 1743 |
template <typename IT, |
1744 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1745 | 1745 |
#endif |
1746 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1747 | 1747 |
public: |
1748 | 1748 |
|
1749 | 1749 |
///\e |
1750 | 1750 |
typedef KEY Key; |
1751 | 1751 |
///\e |
1752 | 1752 |
typedef bool Value; |
1753 | 1753 |
///\e |
1754 | 1754 |
typedef IT Iterator; |
1755 | 1755 |
|
1756 | 1756 |
/// Constructor |
1757 | 1757 |
LoggerBoolMap(Iterator it) |
1758 | 1758 |
: _begin(it), _end(it) {} |
1759 | 1759 |
|
1760 | 1760 |
/// Gives back the given iterator set for the first key |
1761 | 1761 |
Iterator begin() const { |
1762 | 1762 |
return _begin; |
1763 | 1763 |
} |
1764 | 1764 |
|
1765 | 1765 |
/// Gives back the the 'after the last' iterator |
1766 | 1766 |
Iterator end() const { |
1767 | 1767 |
return _end; |
1768 | 1768 |
} |
1769 | 1769 |
|
1770 | 1770 |
/// The set function of the map |
1771 | 1771 |
void set(const Key& key, Value value) { |
1772 | 1772 |
if (value) { |
1773 | 1773 |
*_end++ = key; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 | 1788 |
/// For example, it makes easier to store the nodes in the processing |
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 | 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 | 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 | 1803 |
/// it cannot be used when a readable map is needed, for example, as |
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
1816 | 1816 |
|
1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1818 | 1818 |
/// |
1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1821 | 1821 |
/// - \b unique: different items get different ids, |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
1828 | 1828 |
/// class \c InverseMap or with the \c operator()() member. |
1829 | 1829 |
/// |
1830 | 1830 |
/// \tparam GR The graph type. |
1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1832 | 1832 |
/// \c GR::Edge). |
1833 | 1833 |
/// |
1834 | 1834 |
/// \see RangeIdMap |
1835 | 1835 |
template <typename GR, typename K> |
1836 | 1836 |
class IdMap : public MapBase<K, int> { |
1837 | 1837 |
public: |
1838 | 1838 |
/// The graph type of IdMap. |
1839 | 1839 |
typedef GR Graph; |
1840 | 1840 |
typedef GR Digraph; |
1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1842 |
typedef K Item; |
1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1844 |
typedef K Key; |
1845 | 1845 |
/// The value type of IdMap. |
1846 | 1846 |
typedef int Value; |
1847 | 1847 |
|
1848 | 1848 |
/// \brief Constructor. |
1849 | 1849 |
/// |
1850 | 1850 |
/// Constructor of the map. |
1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1852 |
|
1853 | 1853 |
/// \brief Gives back the \e id of the item. |
1854 | 1854 |
/// |
1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1857 |
|
1858 | 1858 |
/// \brief Gives back the \e item by its id. |
1859 | 1859 |
/// |
1860 | 1860 |
/// Gives back the \e item by its id. |
1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1862 | 1862 |
|
1863 | 1863 |
private: |
1864 | 1864 |
const Graph* _graph; |
1865 | 1865 |
|
1866 | 1866 |
public: |
1867 | 1867 |
|
1868 | 1868 |
/// \brief The inverse map type of IdMap. |
1869 | 1869 |
/// |
1870 | 1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
1871 | 1871 |
/// an item by its id. |
1872 | 1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
1873 | 1873 |
/// \see inverse() |
1874 | 1874 |
class InverseMap { |
1875 | 1875 |
public: |
1876 | 1876 |
|
1877 | 1877 |
/// \brief Constructor. |
1878 | 1878 |
/// |
1879 | 1879 |
/// Constructor for creating an id-to-item map. |
1880 | 1880 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1881 | 1881 |
|
1882 | 1882 |
/// \brief Constructor. |
1883 | 1883 |
/// |
1884 | 1884 |
/// Constructor for creating an id-to-item map. |
1885 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1886 | 1886 |
|
1887 | 1887 |
/// \brief Gives back an item by its id. |
1888 | 1888 |
/// |
1889 | 1889 |
/// Gives back an item by its id. |
1890 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1891 | 1891 |
|
1892 | 1892 |
private: |
1893 | 1893 |
const Graph* _graph; |
1894 | 1894 |
}; |
1895 | 1895 |
|
1896 | 1896 |
/// \brief Gives back the inverse of the map. |
1897 | 1897 |
/// |
1898 | 1898 |
/// Gives back the inverse of the IdMap. |
1899 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1900 | 1900 |
}; |
1901 | 1901 |
|
1902 | 1902 |
/// \brief Returns an \c IdMap class. |
1903 | 1903 |
/// |
1904 | 1904 |
/// This function just returns an \c IdMap class. |
1905 | 1905 |
/// \relates IdMap |
1906 | 1906 |
template <typename K, typename GR> |
1907 | 1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
1908 | 1908 |
return IdMap<GR, K>(graph); |
1909 | 1909 |
} |
1910 | 1910 |
|
1911 | 1911 |
/// \brief General cross reference graph map type. |
1912 | 1912 |
|
1913 | 1913 |
/// This class provides simple invertable graph maps. |
1914 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1915 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1916 | 1916 |
/// The graph items can be accessed by their values either using |
1917 | 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
1918 | 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
1919 | 1919 |
/// |
1920 | 1920 |
/// This map is intended to be used when all associated values are |
1921 | 1921 |
/// different (the map is actually invertable) or there are only a few |
1922 | 1922 |
/// items with the same value. |
1923 | 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
1924 | 1924 |
/// suitable and more efficient for such cases. It provides iterators |
1925 | 1925 |
/// to traverse the items with the same associated value, but |
1926 | 1926 |
/// it does not have \c InverseMap. |
1927 | 1927 |
/// |
1928 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1929 | 1929 |
/// the subscript operator. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \tparam GR The graph type. |
1932 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1933 | 1933 |
/// \c GR::Edge). |
1934 | 1934 |
/// \tparam V The value type of the map. |
1935 | 1935 |
/// |
1936 | 1936 |
/// \see IterableValueMap |
1937 | 1937 |
template <typename GR, typename K, typename V> |
1938 | 1938 |
class CrossRefMap |
1939 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1940 | 1940 |
private: |
1941 | 1941 |
|
1942 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
1943 | 1943 |
template Map<V>::Type Map; |
1944 | 1944 |
|
1945 | 1945 |
typedef std::multimap<V, K> Container; |
1946 | 1946 |
Container _inv_map; |
1947 | 1947 |
|
1948 | 1948 |
public: |
1949 | 1949 |
|
1950 | 1950 |
/// The graph type of CrossRefMap. |
1951 | 1951 |
typedef GR Graph; |
1952 | 1952 |
typedef GR Digraph; |
1953 | 1953 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1954 | 1954 |
typedef K Item; |
1955 | 1955 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1956 | 1956 |
typedef K Key; |
1957 | 1957 |
/// The value type of CrossRefMap. |
1958 | 1958 |
typedef V Value; |
1959 | 1959 |
|
1960 | 1960 |
/// \brief Constructor. |
1961 | 1961 |
/// |
1962 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
1963 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1964 | 1964 |
|
1965 | 1965 |
/// \brief Forward iterator for values. |
1966 | 1966 |
/// |
1967 | 1967 |
/// This iterator is an STL compatible forward |
1968 | 1968 |
/// iterator on the values of the map. The values can |
1969 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1970 | 1970 |
/// They are considered with multiplicity, so each value is |
1971 | 1971 |
/// traversed for each item it is assigned to. |
1972 | 1972 |
class ValueIt |
1973 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1974 | 1974 |
friend class CrossRefMap; |
1975 | 1975 |
private: |
1976 | 1976 |
ValueIt(typename Container::const_iterator _it) |
1977 | 1977 |
: it(_it) {} |
1978 | 1978 |
public: |
1979 | 1979 |
|
1980 | 1980 |
/// Constructor |
1981 | 1981 |
ValueIt() {} |
1982 | 1982 |
|
1983 | 1983 |
/// \e |
1984 | 1984 |
ValueIt& operator++() { ++it; return *this; } |
1985 | 1985 |
/// \e |
1986 | 1986 |
ValueIt operator++(int) { |
1987 | 1987 |
ValueIt tmp(*this); |
1988 | 1988 |
operator++(); |
1989 | 1989 |
return tmp; |
1990 | 1990 |
} |
1991 | 1991 |
|
1992 | 1992 |
/// \e |
1993 | 1993 |
const Value& operator*() const { return it->first; } |
1994 | 1994 |
/// \e |
1995 | 1995 |
const Value* operator->() const { return &(it->first); } |
1996 | 1996 |
|
1997 | 1997 |
/// \e |
1998 | 1998 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
1999 | 1999 |
/// \e |
2000 | 2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
2001 | 2001 |
|
2002 | 2002 |
private: |
2003 | 2003 |
typename Container::const_iterator it; |
2004 | 2004 |
}; |
2005 | 2005 |
|
2006 | 2006 |
/// Alias for \c ValueIt |
2007 | 2007 |
typedef ValueIt ValueIterator; |
2008 | 2008 |
|
2009 | 2009 |
/// \brief Returns an iterator to the first value. |
2010 | 2010 |
/// |
2011 | 2011 |
/// Returns an STL compatible iterator to the |
2012 | 2012 |
/// first value of the map. The values of the |
2013 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
2014 | 2014 |
/// range. |
2015 | 2015 |
ValueIt beginValue() const { |
2016 | 2016 |
return ValueIt(_inv_map.begin()); |
2017 | 2017 |
} |
2018 | 2018 |
|
2019 | 2019 |
/// \brief Returns an iterator after the last value. |
2020 | 2020 |
/// |
2021 | 2021 |
/// Returns an STL compatible iterator after the |
2022 | 2022 |
/// last value of the map. The values of the |
2023 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
2024 | 2024 |
/// range. |
2025 | 2025 |
ValueIt endValue() const { |
2026 | 2026 |
return ValueIt(_inv_map.end()); |
2027 | 2027 |
} |
2028 | 2028 |
|
2029 | 2029 |
/// \brief Sets the value associated with the given key. |
2030 | 2030 |
/// |
2031 | 2031 |
/// Sets the value associated with the given key. |
2032 | 2032 |
void set(const Key& key, const Value& val) { |
2033 | 2033 |
Value oldval = Map::operator[](key); |
2034 | 2034 |
typename Container::iterator it; |
2035 | 2035 |
for (it = _inv_map.equal_range(oldval).first; |
2036 | 2036 |
it != _inv_map.equal_range(oldval).second; ++it) { |
2037 | 2037 |
if (it->second == key) { |
2038 | 2038 |
_inv_map.erase(it); |
2039 | 2039 |
break; |
2040 | 2040 |
} |
2041 | 2041 |
} |
2042 | 2042 |
_inv_map.insert(std::make_pair(val, key)); |
2043 | 2043 |
Map::set(key, val); |
2044 | 2044 |
} |
2045 | 2045 |
|
2046 | 2046 |
/// \brief Returns the value associated with the given key. |
2047 | 2047 |
/// |
2048 | 2048 |
/// Returns the value associated with the given key. |
2049 | 2049 |
typename MapTraits<Map>::ConstReturnValue |
2050 | 2050 |
operator[](const Key& key) const { |
2051 | 2051 |
return Map::operator[](key); |
2052 | 2052 |
} |
2053 | 2053 |
|
2054 | 2054 |
/// \brief Gives back an item by its value. |
2055 | 2055 |
/// |
2056 | 2056 |
/// This function gives back an item that is assigned to |
2057 | 2057 |
/// the given value or \c INVALID if no such item exists. |
2058 | 2058 |
/// If there are more items with the same associated value, |
2059 | 2059 |
/// only one of them is returned. |
2060 | 2060 |
Key operator()(const Value& val) const { |
2061 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
2062 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
2063 | 2063 |
} |
2064 | 2064 |
|
2065 | 2065 |
/// \brief Returns the number of items with the given value. |
2066 | 2066 |
/// |
2067 | 2067 |
/// This function returns the number of items with the given value |
2068 | 2068 |
/// associated with it. |
2069 | 2069 |
int count(const Value &val) const { |
2070 | 2070 |
return _inv_map.count(val); |
2071 | 2071 |
} |
2072 | 2072 |
|
2073 | 2073 |
protected: |
2074 | 2074 |
|
2075 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
2076 | 2076 |
/// |
2077 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
2078 | 2078 |
/// \c AlterationNotifier. |
2079 | 2079 |
virtual void erase(const Key& key) { |
2080 | 2080 |
Value val = Map::operator[](key); |
2081 | 2081 |
typename Container::iterator it; |
2082 | 2082 |
for (it = _inv_map.equal_range(val).first; |
2083 | 2083 |
it != _inv_map.equal_range(val).second; ++it) { |
2084 | 2084 |
if (it->second == key) { |
2085 | 2085 |
_inv_map.erase(it); |
2086 | 2086 |
break; |
2087 | 2087 |
} |
2088 | 2088 |
} |
2089 | 2089 |
Map::erase(key); |
2090 | 2090 |
} |
2091 | 2091 |
|
2092 | 2092 |
/// \brief Erase more keys from the map and the inverse map. |
2093 | 2093 |
/// |
2094 | 2094 |
/// Erase more keys from the map and the inverse map. It is called by the |
2095 | 2095 |
/// \c AlterationNotifier. |
2096 | 2096 |
virtual void erase(const std::vector<Key>& keys) { |
2097 | 2097 |
for (int i = 0; i < int(keys.size()); ++i) { |
2098 | 2098 |
Value val = Map::operator[](keys[i]); |
2099 | 2099 |
typename Container::iterator it; |
2100 | 2100 |
for (it = _inv_map.equal_range(val).first; |
2101 | 2101 |
it != _inv_map.equal_range(val).second; ++it) { |
2102 | 2102 |
if (it->second == keys[i]) { |
2103 | 2103 |
_inv_map.erase(it); |
2104 | 2104 |
break; |
2105 | 2105 |
} |
2106 | 2106 |
} |
2107 | 2107 |
} |
2108 | 2108 |
Map::erase(keys); |
2109 | 2109 |
} |
2110 | 2110 |
|
2111 | 2111 |
/// \brief Clear the keys from the map and the inverse map. |
2112 | 2112 |
/// |
2113 | 2113 |
/// Clear the keys from the map and the inverse map. It is called by the |
2114 | 2114 |
/// \c AlterationNotifier. |
2115 | 2115 |
virtual void clear() { |
2116 | 2116 |
_inv_map.clear(); |
2117 | 2117 |
Map::clear(); |
2118 | 2118 |
} |
2119 | 2119 |
|
2120 | 2120 |
public: |
2121 | 2121 |
|
2122 | 2122 |
/// \brief The inverse map type of CrossRefMap. |
2123 | 2123 |
/// |
2124 | 2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
2125 | 2125 |
/// back an item by its value. |
2126 | 2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
2127 | 2127 |
/// \see inverse() |
2128 | 2128 |
class InverseMap { |
2129 | 2129 |
public: |
2130 | 2130 |
/// \brief Constructor |
2131 | 2131 |
/// |
2132 | 2132 |
/// Constructor of the InverseMap. |
2133 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
2134 | 2134 |
: _inverted(inverted) {} |
2135 | 2135 |
|
2136 | 2136 |
/// The value type of the InverseMap. |
2137 | 2137 |
typedef typename CrossRefMap::Key Value; |
2138 | 2138 |
/// The key type of the InverseMap. |
2139 | 2139 |
typedef typename CrossRefMap::Value Key; |
2140 | 2140 |
|
2141 | 2141 |
/// \brief Subscript operator. |
2142 | 2142 |
/// |
2143 | 2143 |
/// Subscript operator. It gives back an item |
2144 | 2144 |
/// that is assigned to the given value or \c INVALID |
2145 | 2145 |
/// if no such item exists. |
2146 | 2146 |
Value operator[](const Key& key) const { |
2147 | 2147 |
return _inverted(key); |
2148 | 2148 |
} |
2149 | 2149 |
|
2150 | 2150 |
private: |
2151 | 2151 |
const CrossRefMap& _inverted; |
2152 | 2152 |
}; |
2153 | 2153 |
|
2154 | 2154 |
/// \brief Gives back the inverse of the map. |
2155 | 2155 |
/// |
2156 | 2156 |
/// Gives back the inverse of the CrossRefMap. |
2157 | 2157 |
InverseMap inverse() const { |
2158 | 2158 |
return InverseMap(*this); |
2159 | 2159 |
} |
2160 | 2160 |
|
2161 | 2161 |
}; |
2162 | 2162 |
|
2163 | 2163 |
/// \brief Provides continuous and unique id for the |
2164 | 2164 |
/// items of a graph. |
2165 | 2165 |
/// |
2166 | 2166 |
/// RangeIdMap provides a unique and continuous |
2167 | 2167 |
/// id for each item of a given type (\c Node, \c Arc or |
2168 | 2168 |
/// \c Edge) in a graph. This id is |
2169 | 2169 |
/// - \b unique: different items get different ids, |
2170 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
2171 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2172 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
2173 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
2174 | 2174 |
/// |
2175 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
2176 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
2177 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
2178 | 2178 |
/// or with the \c operator()() member. |
2179 | 2179 |
/// |
2180 | 2180 |
/// \tparam GR The graph type. |
2181 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2182 | 2182 |
/// \c GR::Edge). |
2183 | 2183 |
/// |
2184 | 2184 |
/// \see IdMap |
2185 | 2185 |
template <typename GR, typename K> |
2186 | 2186 |
class RangeIdMap |
2187 | 2187 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2188 | 2188 |
|
2189 | 2189 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2190 | 2190 |
|
2191 | 2191 |
public: |
2192 | 2192 |
/// The graph type of RangeIdMap. |
2193 | 2193 |
typedef GR Graph; |
2194 | 2194 |
typedef GR Digraph; |
2195 | 2195 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2196 | 2196 |
typedef K Item; |
2197 | 2197 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2198 | 2198 |
typedef K Key; |
2199 | 2199 |
/// The value type of RangeIdMap. |
2200 | 2200 |
typedef int Value; |
2201 | 2201 |
|
2202 | 2202 |
/// \brief Constructor. |
2203 | 2203 |
/// |
2204 | 2204 |
/// Constructor. |
2205 | 2205 |
explicit RangeIdMap(const Graph& gr) : Map(gr) { |
2206 | 2206 |
Item it; |
2207 | 2207 |
const typename Map::Notifier* nf = Map::notifier(); |
2208 | 2208 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2209 | 2209 |
Map::set(it, _inv_map.size()); |
2210 | 2210 |
_inv_map.push_back(it); |
2211 | 2211 |
} |
2212 | 2212 |
} |
2213 | 2213 |
|
2214 | 2214 |
protected: |
2215 | 2215 |
|
2216 | 2216 |
/// \brief Adds a new key to the map. |
2217 | 2217 |
/// |
2218 | 2218 |
/// Add a new key to the map. It is called by the |
2219 | 2219 |
/// \c AlterationNotifier. |
2220 | 2220 |
virtual void add(const Item& item) { |
2221 | 2221 |
Map::add(item); |
2222 | 2222 |
Map::set(item, _inv_map.size()); |
2223 | 2223 |
_inv_map.push_back(item); |
2224 | 2224 |
} |
2225 | 2225 |
|
2226 | 2226 |
/// \brief Add more new keys to the map. |
2227 | 2227 |
/// |
2228 | 2228 |
/// Add more new keys to the map. It is called by the |
2229 | 2229 |
/// \c AlterationNotifier. |
2230 | 2230 |
virtual void add(const std::vector<Item>& items) { |
2231 | 2231 |
Map::add(items); |
2232 | 2232 |
for (int i = 0; i < int(items.size()); ++i) { |
2233 | 2233 |
Map::set(items[i], _inv_map.size()); |
2234 | 2234 |
_inv_map.push_back(items[i]); |
2235 | 2235 |
} |
2236 | 2236 |
} |
2237 | 2237 |
|
2238 | 2238 |
/// \brief Erase the key from the map. |
2239 | 2239 |
/// |
2240 | 2240 |
/// Erase the key from the map. It is called by the |
2241 | 2241 |
/// \c AlterationNotifier. |
2242 | 2242 |
virtual void erase(const Item& item) { |
2243 | 2243 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2244 | 2244 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2245 | 2245 |
_inv_map.pop_back(); |
2246 | 2246 |
Map::erase(item); |
2247 | 2247 |
} |
2248 | 2248 |
|
2249 | 2249 |
/// \brief Erase more keys from the map. |
2250 | 2250 |
/// |
2251 | 2251 |
/// Erase more keys from the map. It is called by the |
2252 | 2252 |
/// \c AlterationNotifier. |
2253 | 2253 |
virtual void erase(const std::vector<Item>& items) { |
2254 | 2254 |
for (int i = 0; i < int(items.size()); ++i) { |
2255 | 2255 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2256 | 2256 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2257 | 2257 |
_inv_map.pop_back(); |
2258 | 2258 |
} |
2259 | 2259 |
Map::erase(items); |
2260 | 2260 |
} |
2261 | 2261 |
|
2262 | 2262 |
/// \brief Build the unique map. |
2263 | 2263 |
/// |
2264 | 2264 |
/// Build the unique map. It is called by the |
2265 | 2265 |
/// \c AlterationNotifier. |
2266 | 2266 |
virtual void build() { |
2267 | 2267 |
Map::build(); |
2268 | 2268 |
Item it; |
2269 | 2269 |
const typename Map::Notifier* nf = Map::notifier(); |
2270 | 2270 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2271 | 2271 |
Map::set(it, _inv_map.size()); |
2272 | 2272 |
_inv_map.push_back(it); |
2273 | 2273 |
} |
2274 | 2274 |
} |
2275 | 2275 |
|
2276 | 2276 |
/// \brief Clear the keys from the map. |
2277 | 2277 |
/// |
2278 | 2278 |
/// Clear the keys from the map. It is called by the |
2279 | 2279 |
/// \c AlterationNotifier. |
2280 | 2280 |
virtual void clear() { |
2281 | 2281 |
_inv_map.clear(); |
2282 | 2282 |
Map::clear(); |
2283 | 2283 |
} |
2284 | 2284 |
|
2285 | 2285 |
public: |
2286 | 2286 |
|
2287 | 2287 |
/// \brief Returns the maximal value plus one. |
2288 | 2288 |
/// |
2289 | 2289 |
/// Returns the maximal value plus one in the map. |
2290 | 2290 |
unsigned int size() const { |
2291 | 2291 |
return _inv_map.size(); |
2292 | 2292 |
} |
2293 | 2293 |
|
2294 | 2294 |
/// \brief Swaps the position of the two items in the map. |
2295 | 2295 |
/// |
2296 | 2296 |
/// Swaps the position of the two items in the map. |
2297 | 2297 |
void swap(const Item& p, const Item& q) { |
2298 | 2298 |
int pi = Map::operator[](p); |
2299 | 2299 |
int qi = Map::operator[](q); |
2300 | 2300 |
Map::set(p, qi); |
2301 | 2301 |
_inv_map[qi] = p; |
2302 | 2302 |
Map::set(q, pi); |
2303 | 2303 |
_inv_map[pi] = q; |
2304 | 2304 |
} |
2305 | 2305 |
|
2306 | 2306 |
/// \brief Gives back the \e range \e id of the item |
2307 | 2307 |
/// |
2308 | 2308 |
/// Gives back the \e range \e id of the item. |
2309 | 2309 |
int operator[](const Item& item) const { |
2310 | 2310 |
return Map::operator[](item); |
2311 | 2311 |
} |
2312 | 2312 |
|
2313 | 2313 |
/// \brief Gives back the item belonging to a \e range \e id |
2314 | 2314 |
/// |
2315 | 2315 |
/// Gives back the item belonging to the given \e range \e id. |
2316 | 2316 |
Item operator()(int id) const { |
2317 | 2317 |
return _inv_map[id]; |
2318 | 2318 |
} |
2319 | 2319 |
|
2320 | 2320 |
private: |
2321 | 2321 |
|
2322 | 2322 |
typedef std::vector<Item> Container; |
2323 | 2323 |
Container _inv_map; |
2324 | 2324 |
|
2325 | 2325 |
public: |
2326 | 2326 |
|
2327 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
2328 | 2328 |
/// |
2329 | 2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
2330 | 2330 |
/// back an item by its \e range \e id. |
2331 | 2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
2332 | 2332 |
class InverseMap { |
2333 | 2333 |
public: |
2334 | 2334 |
/// \brief Constructor |
2335 | 2335 |
/// |
2336 | 2336 |
/// Constructor of the InverseMap. |
2337 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
2338 | 2338 |
: _inverted(inverted) {} |
2339 | 2339 |
|
2340 | 2340 |
|
2341 | 2341 |
/// The value type of the InverseMap. |
2342 | 2342 |
typedef typename RangeIdMap::Key Value; |
2343 | 2343 |
/// The key type of the InverseMap. |
2344 | 2344 |
typedef typename RangeIdMap::Value Key; |
2345 | 2345 |
|
2346 | 2346 |
/// \brief Subscript operator. |
2347 | 2347 |
/// |
2348 | 2348 |
/// Subscript operator. It gives back the item |
2349 | 2349 |
/// that the given \e range \e id currently belongs to. |
2350 | 2350 |
Value operator[](const Key& key) const { |
2351 | 2351 |
return _inverted(key); |
2352 | 2352 |
} |
2353 | 2353 |
|
2354 | 2354 |
/// \brief Size of the map. |
2355 | 2355 |
/// |
2356 | 2356 |
/// Returns the size of the map. |
2357 | 2357 |
unsigned int size() const { |
2358 | 2358 |
return _inverted.size(); |
2359 | 2359 |
} |
2360 | 2360 |
|
2361 | 2361 |
private: |
2362 | 2362 |
const RangeIdMap& _inverted; |
2363 | 2363 |
}; |
2364 | 2364 |
|
2365 | 2365 |
/// \brief Gives back the inverse of the map. |
2366 | 2366 |
/// |
2367 | 2367 |
/// Gives back the inverse of the RangeIdMap. |
2368 | 2368 |
const InverseMap inverse() const { |
2369 | 2369 |
return InverseMap(*this); |
2370 | 2370 |
} |
2371 | 2371 |
}; |
2372 | 2372 |
|
2373 | 2373 |
/// \brief Returns a \c RangeIdMap class. |
2374 | 2374 |
/// |
2375 | 2375 |
/// This function just returns an \c RangeIdMap class. |
2376 | 2376 |
/// \relates RangeIdMap |
2377 | 2377 |
template <typename K, typename GR> |
2378 | 2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { |
2379 | 2379 |
return RangeIdMap<GR, K>(graph); |
2380 | 2380 |
} |
2381 | 2381 |
|
2382 | 2382 |
/// \brief Dynamic iterable \c bool map. |
2383 | 2383 |
/// |
2384 | 2384 |
/// This class provides a special graph map type which can store a |
2385 | 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
2386 | 2386 |
/// For both \c true and \c false values it is possible to iterate on |
2387 | 2387 |
/// the keys mapped to the value. |
2388 | 2388 |
/// |
2389 | 2389 |
/// This type is a reference map, so it can be modified with the |
2390 | 2390 |
/// subscript operator. |
2391 | 2391 |
/// |
2392 | 2392 |
/// \tparam GR The graph type. |
2393 | 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2394 | 2394 |
/// \c GR::Edge). |
2395 | 2395 |
/// |
2396 | 2396 |
/// \see IterableIntMap, IterableValueMap |
2397 | 2397 |
/// \see CrossRefMap |
2398 | 2398 |
template <typename GR, typename K> |
2399 | 2399 |
class IterableBoolMap |
2400 | 2400 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2401 | 2401 |
private: |
2402 | 2402 |
typedef GR Graph; |
2403 | 2403 |
|
2404 | 2404 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
2405 | 2405 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
2406 | 2406 |
|
2407 | 2407 |
std::vector<K> _array; |
2408 | 2408 |
int _sep; |
2409 | 2409 |
|
2410 | 2410 |
public: |
2411 | 2411 |
|
2412 | 2412 |
/// Indicates that the map is reference map. |
2413 | 2413 |
typedef True ReferenceMapTag; |
2414 | 2414 |
|
2415 | 2415 |
/// The key type |
2416 | 2416 |
typedef K Key; |
2417 | 2417 |
/// The value type |
2418 | 2418 |
typedef bool Value; |
2419 | 2419 |
/// The const reference type. |
2420 | 2420 |
typedef const Value& ConstReference; |
2421 | 2421 |
|
2422 | 2422 |
private: |
2423 | 2423 |
|
2424 | 2424 |
int position(const Key& key) const { |
2425 | 2425 |
return Parent::operator[](key); |
2426 | 2426 |
} |
2427 | 2427 |
|
2428 | 2428 |
public: |
2429 | 2429 |
|
2430 | 2430 |
/// \brief Reference to the value of the map. |
2431 | 2431 |
/// |
2432 | 2432 |
/// This class is similar to the \c bool type. It can be converted to |
2433 | 2433 |
/// \c bool and it provides the same operators. |
2434 | 2434 |
class Reference { |
2435 | 2435 |
friend class IterableBoolMap; |
2436 | 2436 |
private: |
2437 | 2437 |
Reference(IterableBoolMap& map, const Key& key) |
2438 | 2438 |
: _key(key), _map(map) {} |
2439 | 2439 |
public: |
2440 | 2440 |
|
2441 | 2441 |
Reference& operator=(const Reference& value) { |
2442 | 2442 |
_map.set(_key, static_cast<bool>(value)); |
2443 | 2443 |
return *this; |
2444 | 2444 |
} |
2445 | 2445 |
|
2446 | 2446 |
operator bool() const { |
2447 | 2447 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
2448 | 2448 |
} |
2449 | 2449 |
|
2450 | 2450 |
Reference& operator=(bool value) { |
2451 | 2451 |
_map.set(_key, value); |
2452 | 2452 |
return *this; |
2453 | 2453 |
} |
2454 | 2454 |
Reference& operator&=(bool value) { |
2455 | 2455 |
_map.set(_key, _map[_key] & value); |
2456 | 2456 |
return *this; |
2457 | 2457 |
} |
2458 | 2458 |
Reference& operator|=(bool value) { |
2459 | 2459 |
_map.set(_key, _map[_key] | value); |
2460 | 2460 |
return *this; |
2461 | 2461 |
} |
2462 | 2462 |
Reference& operator^=(bool value) { |
2463 | 2463 |
_map.set(_key, _map[_key] ^ value); |
2464 | 2464 |
return *this; |
2465 | 2465 |
} |
2466 | 2466 |
private: |
2467 | 2467 |
Key _key; |
2468 | 2468 |
IterableBoolMap& _map; |
2469 | 2469 |
}; |
2470 | 2470 |
|
2471 | 2471 |
/// \brief Constructor of the map with a default value. |
2472 | 2472 |
/// |
2473 | 2473 |
/// Constructor of the map with a default value. |
2474 | 2474 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
2475 | 2475 |
: Parent(graph) { |
2476 | 2476 |
typename Parent::Notifier* nf = Parent::notifier(); |
2477 | 2477 |
Key it; |
2478 | 2478 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2479 | 2479 |
Parent::set(it, _array.size()); |
2480 | 2480 |
_array.push_back(it); |
2481 | 2481 |
} |
2482 | 2482 |
_sep = (def ? _array.size() : 0); |
2483 | 2483 |
} |
2484 | 2484 |
|
2485 | 2485 |
/// \brief Const subscript operator of the map. |
2486 | 2486 |
/// |
2487 | 2487 |
/// Const subscript operator of the map. |
2488 | 2488 |
bool operator[](const Key& key) const { |
2489 | 2489 |
return position(key) < _sep; |
2490 | 2490 |
} |
2491 | 2491 |
|
2492 | 2492 |
/// \brief Subscript operator of the map. |
2493 | 2493 |
/// |
2494 | 2494 |
/// Subscript operator of the map. |
2495 | 2495 |
Reference operator[](const Key& key) { |
2496 | 2496 |
return Reference(*this, key); |
2497 | 2497 |
} |
2498 | 2498 |
|
2499 | 2499 |
/// \brief Set operation of the map. |
2500 | 2500 |
/// |
2501 | 2501 |
/// Set operation of the map. |
2502 | 2502 |
void set(const Key& key, bool value) { |
2503 | 2503 |
int pos = position(key); |
2504 | 2504 |
if (value) { |
2505 | 2505 |
if (pos < _sep) return; |
2506 | 2506 |
Key tmp = _array[_sep]; |
2507 | 2507 |
_array[_sep] = key; |
2508 | 2508 |
Parent::set(key, _sep); |
2509 | 2509 |
_array[pos] = tmp; |
2510 | 2510 |
Parent::set(tmp, pos); |
2511 | 2511 |
++_sep; |
2512 | 2512 |
} else { |
2513 | 2513 |
if (pos >= _sep) return; |
2514 | 2514 |
--_sep; |
2515 | 2515 |
Key tmp = _array[_sep]; |
2516 | 2516 |
_array[_sep] = key; |
2517 | 2517 |
Parent::set(key, _sep); |
2518 | 2518 |
_array[pos] = tmp; |
2519 | 2519 |
Parent::set(tmp, pos); |
2520 | 2520 |
} |
2521 | 2521 |
} |
2522 | 2522 |
|
2523 | 2523 |
/// \brief Set all items. |
2524 | 2524 |
/// |
2525 | 2525 |
/// Set all items in the map. |
2526 | 2526 |
/// \note Constant time operation. |
2527 | 2527 |
void setAll(bool value) { |
2528 | 2528 |
_sep = (value ? _array.size() : 0); |
2529 | 2529 |
} |
2530 | 2530 |
|
2531 | 2531 |
/// \brief Returns the number of the keys mapped to \c true. |
2532 | 2532 |
/// |
2533 | 2533 |
/// Returns the number of the keys mapped to \c true. |
2534 | 2534 |
int trueNum() const { |
2535 | 2535 |
return _sep; |
2536 | 2536 |
} |
2537 | 2537 |
|
2538 | 2538 |
/// \brief Returns the number of the keys mapped to \c false. |
2539 | 2539 |
/// |
2540 | 2540 |
/// Returns the number of the keys mapped to \c false. |
2541 | 2541 |
int falseNum() const { |
2542 | 2542 |
return _array.size() - _sep; |
2543 | 2543 |
} |
2544 | 2544 |
|
2545 | 2545 |
/// \brief Iterator for the keys mapped to \c true. |
2546 | 2546 |
/// |
2547 | 2547 |
/// Iterator for the keys mapped to \c true. It works |
2548 | 2548 |
/// like a graph item iterator, it can be converted to |
2549 | 2549 |
/// the key type of the map, incremented with \c ++ operator, and |
2550 | 2550 |
/// if the iterator leaves the last valid key, it will be equal to |
2551 | 2551 |
/// \c INVALID. |
2552 | 2552 |
class TrueIt : public Key { |
2553 | 2553 |
public: |
2554 | 2554 |
typedef Key Parent; |
2555 | 2555 |
|
2556 | 2556 |
/// \brief Creates an iterator. |
2557 | 2557 |
/// |
2558 | 2558 |
/// Creates an iterator. It iterates on the |
2559 | 2559 |
/// keys mapped to \c true. |
2560 | 2560 |
/// \param map The IterableBoolMap. |
2561 | 2561 |
explicit TrueIt(const IterableBoolMap& map) |
2562 | 2562 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
2563 | 2563 |
_map(&map) {} |
2564 | 2564 |
|
2565 | 2565 |
/// \brief Invalid constructor \& conversion. |
2566 | 2566 |
/// |
2567 | 2567 |
/// This constructor initializes the iterator to be invalid. |
2568 | 2568 |
/// \sa Invalid for more details. |
2569 | 2569 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
2570 | 2570 |
|
2571 | 2571 |
/// \brief Increment operator. |
2572 | 2572 |
/// |
2573 | 2573 |
/// Increment operator. |
2574 | 2574 |
TrueIt& operator++() { |
2575 | 2575 |
int pos = _map->position(*this); |
2576 | 2576 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
2577 | 2577 |
return *this; |
2578 | 2578 |
} |
2579 | 2579 |
|
2580 | 2580 |
private: |
2581 | 2581 |
const IterableBoolMap* _map; |
2582 | 2582 |
}; |
2583 | 2583 |
|
2584 | 2584 |
/// \brief Iterator for the keys mapped to \c false. |
2585 | 2585 |
/// |
2586 | 2586 |
/// Iterator for the keys mapped to \c false. It works |
2587 | 2587 |
/// like a graph item iterator, it can be converted to |
2588 | 2588 |
/// the key type of the map, incremented with \c ++ operator, and |
2589 | 2589 |
/// if the iterator leaves the last valid key, it will be equal to |
2590 | 2590 |
/// \c INVALID. |
2591 | 2591 |
class FalseIt : public Key { |
2592 | 2592 |
public: |
2593 | 2593 |
typedef Key Parent; |
2594 | 2594 |
|
2595 | 2595 |
/// \brief Creates an iterator. |
2596 | 2596 |
/// |
2597 | 2597 |
/// Creates an iterator. It iterates on the |
2598 | 2598 |
/// keys mapped to \c false. |
2599 | 2599 |
/// \param map The IterableBoolMap. |
2600 | 2600 |
explicit FalseIt(const IterableBoolMap& map) |
2601 | 2601 |
: Parent(map._sep < int(map._array.size()) ? |
2602 | 2602 |
map._array.back() : INVALID), _map(&map) {} |
2603 | 2603 |
|
2604 | 2604 |
/// \brief Invalid constructor \& conversion. |
2605 | 2605 |
/// |
2606 | 2606 |
/// This constructor initializes the iterator to be invalid. |
2607 | 2607 |
/// \sa Invalid for more details. |
2608 | 2608 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
2609 | 2609 |
|
2610 | 2610 |
/// \brief Increment operator. |
2611 | 2611 |
/// |
2612 | 2612 |
/// Increment operator. |
2613 | 2613 |
FalseIt& operator++() { |
2614 | 2614 |
int pos = _map->position(*this); |
2615 | 2615 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
2616 | 2616 |
return *this; |
2617 | 2617 |
} |
2618 | 2618 |
|
2619 | 2619 |
private: |
2620 | 2620 |
const IterableBoolMap* _map; |
2621 | 2621 |
}; |
2622 | 2622 |
|
2623 | 2623 |
/// \brief Iterator for the keys mapped to a given value. |
2624 | 2624 |
/// |
2625 | 2625 |
/// Iterator for the keys mapped to a given value. It works |
2626 | 2626 |
/// like a graph item iterator, it can be converted to |
2627 | 2627 |
/// the key type of the map, incremented with \c ++ operator, and |
2628 | 2628 |
/// if the iterator leaves the last valid key, it will be equal to |
2629 | 2629 |
/// \c INVALID. |
2630 | 2630 |
class ItemIt : public Key { |
2631 | 2631 |
public: |
2632 | 2632 |
typedef Key Parent; |
2633 | 2633 |
|
2634 | 2634 |
/// \brief Creates an iterator with a value. |
2635 | 2635 |
/// |
2636 | 2636 |
/// Creates an iterator with a value. It iterates on the |
2637 | 2637 |
/// keys mapped to the given value. |
2638 | 2638 |
/// \param map The IterableBoolMap. |
2639 | 2639 |
/// \param value The value. |
2640 | 2640 |
ItemIt(const IterableBoolMap& map, bool value) |
2641 | 2641 |
: Parent(value ? |
2642 | 2642 |
(map._sep > 0 ? |
2643 | 2643 |
map._array[map._sep - 1] : INVALID) : |
2644 | 2644 |
(map._sep < int(map._array.size()) ? |
2645 | 2645 |
map._array.back() : INVALID)), _map(&map) {} |
2646 | 2646 |
|
2647 | 2647 |
/// \brief Invalid constructor \& conversion. |
2648 | 2648 |
/// |
2649 | 2649 |
/// This constructor initializes the iterator to be invalid. |
2650 | 2650 |
/// \sa Invalid for more details. |
2651 | 2651 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
2652 | 2652 |
|
2653 | 2653 |
/// \brief Increment operator. |
2654 | 2654 |
/// |
2655 | 2655 |
/// Increment operator. |
2656 | 2656 |
ItemIt& operator++() { |
2657 | 2657 |
int pos = _map->position(*this); |
2658 | 2658 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
2659 | 2659 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
2660 | 2660 |
return *this; |
2661 | 2661 |
} |
2662 | 2662 |
|
2663 | 2663 |
private: |
2664 | 2664 |
const IterableBoolMap* _map; |
2665 | 2665 |
}; |
2666 | 2666 |
|
2667 | 2667 |
protected: |
2668 | 2668 |
|
2669 | 2669 |
virtual void add(const Key& key) { |
2670 | 2670 |
Parent::add(key); |
2671 | 2671 |
Parent::set(key, _array.size()); |
2672 | 2672 |
_array.push_back(key); |
2673 | 2673 |
} |
2674 | 2674 |
|
2675 | 2675 |
virtual void add(const std::vector<Key>& keys) { |
2676 | 2676 |
Parent::add(keys); |
2677 | 2677 |
for (int i = 0; i < int(keys.size()); ++i) { |
2678 | 2678 |
Parent::set(keys[i], _array.size()); |
2679 | 2679 |
_array.push_back(keys[i]); |
2680 | 2680 |
} |
2681 | 2681 |
} |
2682 | 2682 |
|
2683 | 2683 |
virtual void erase(const Key& key) { |
2684 | 2684 |
int pos = position(key); |
2685 | 2685 |
if (pos < _sep) { |
2686 | 2686 |
--_sep; |
2687 | 2687 |
Parent::set(_array[_sep], pos); |
2688 | 2688 |
_array[pos] = _array[_sep]; |
2689 | 2689 |
Parent::set(_array.back(), _sep); |
2690 | 2690 |
_array[_sep] = _array.back(); |
2691 | 2691 |
_array.pop_back(); |
2692 | 2692 |
} else { |
2693 | 2693 |
Parent::set(_array.back(), pos); |
2694 | 2694 |
_array[pos] = _array.back(); |
2695 | 2695 |
_array.pop_back(); |
2696 | 2696 |
} |
2697 | 2697 |
Parent::erase(key); |
2698 | 2698 |
} |
2699 | 2699 |
|
2700 | 2700 |
virtual void erase(const std::vector<Key>& keys) { |
2701 | 2701 |
for (int i = 0; i < int(keys.size()); ++i) { |
2702 | 2702 |
int pos = position(keys[i]); |
2703 | 2703 |
if (pos < _sep) { |
2704 | 2704 |
--_sep; |
2705 | 2705 |
Parent::set(_array[_sep], pos); |
2706 | 2706 |
_array[pos] = _array[_sep]; |
2707 | 2707 |
Parent::set(_array.back(), _sep); |
2708 | 2708 |
_array[_sep] = _array.back(); |
2709 | 2709 |
_array.pop_back(); |
2710 | 2710 |
} else { |
2711 | 2711 |
Parent::set(_array.back(), pos); |
2712 | 2712 |
_array[pos] = _array.back(); |
2713 | 2713 |
_array.pop_back(); |
2714 | 2714 |
} |
2715 | 2715 |
} |
2716 | 2716 |
Parent::erase(keys); |
2717 | 2717 |
} |
2718 | 2718 |
|
2719 | 2719 |
virtual void build() { |
2720 | 2720 |
Parent::build(); |
2721 | 2721 |
typename Parent::Notifier* nf = Parent::notifier(); |
2722 | 2722 |
Key it; |
2723 | 2723 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2724 | 2724 |
Parent::set(it, _array.size()); |
2725 | 2725 |
_array.push_back(it); |
2726 | 2726 |
} |
2727 | 2727 |
_sep = 0; |
2728 | 2728 |
} |
2729 | 2729 |
|
2730 | 2730 |
virtual void clear() { |
2731 | 2731 |
_array.clear(); |
2732 | 2732 |
_sep = 0; |
2733 | 2733 |
Parent::clear(); |
2734 | 2734 |
} |
2735 | 2735 |
|
2736 | 2736 |
}; |
2737 | 2737 |
|
2738 | 2738 |
|
2739 | 2739 |
namespace _maps_bits { |
2740 | 2740 |
template <typename Item> |
2741 | 2741 |
struct IterableIntMapNode { |
2742 | 2742 |
IterableIntMapNode() : value(-1) {} |
2743 | 2743 |
IterableIntMapNode(int _value) : value(_value) {} |
2744 | 2744 |
Item prev, next; |
2745 | 2745 |
int value; |
2746 | 2746 |
}; |
2747 | 2747 |
} |
2748 | 2748 |
|
2749 | 2749 |
/// \brief Dynamic iterable integer map. |
2750 | 2750 |
/// |
2751 | 2751 |
/// This class provides a special graph map type which can store an |
2752 | 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
2753 | 2753 |
/// For each non-negative value it is possible to iterate on the keys |
2754 | 2754 |
/// mapped to the value. |
2755 | 2755 |
/// |
2756 | 2756 |
/// This map is intended to be used with small integer values, for which |
2757 | 2757 |
/// it is efficient, and supports iteration only for non-negative values. |
2758 | 2758 |
/// If you need large values and/or iteration for negative integers, |
2759 | 2759 |
/// consider to use \ref IterableValueMap instead. |
2760 | 2760 |
/// |
2761 | 2761 |
/// This type is a reference map, so it can be modified with the |
2762 | 2762 |
/// subscript operator. |
2763 | 2763 |
/// |
2764 | 2764 |
/// \note The size of the data structure depends on the largest |
2765 | 2765 |
/// value in the map. |
2766 | 2766 |
/// |
2767 | 2767 |
/// \tparam GR The graph type. |
2768 | 2768 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2769 | 2769 |
/// \c GR::Edge). |
2770 | 2770 |
/// |
2771 | 2771 |
/// \see IterableBoolMap, IterableValueMap |
2772 | 2772 |
/// \see CrossRefMap |
2773 | 2773 |
template <typename GR, typename K> |
2774 | 2774 |
class IterableIntMap |
2775 | 2775 |
: protected ItemSetTraits<GR, K>:: |
2776 | 2776 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
2777 | 2777 |
public: |
2778 | 2778 |
typedef typename ItemSetTraits<GR, K>:: |
2779 | 2779 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
2780 | 2780 |
|
2781 | 2781 |
/// The key type |
2782 | 2782 |
typedef K Key; |
2783 | 2783 |
/// The value type |
2784 | 2784 |
typedef int Value; |
2785 | 2785 |
/// The graph type |
2786 | 2786 |
typedef GR Graph; |
2787 | 2787 |
|
2788 | 2788 |
/// \brief Constructor of the map. |
2789 | 2789 |
/// |
2790 | 2790 |
/// Constructor of the map. It sets all values to -1. |
2791 | 2791 |
explicit IterableIntMap(const Graph& graph) |
2792 | 2792 |
: Parent(graph) {} |
2793 | 2793 |
|
2794 | 2794 |
/// \brief Constructor of the map with a given value. |
2795 | 2795 |
/// |
2796 | 2796 |
/// Constructor of the map with a given value. |
2797 | 2797 |
explicit IterableIntMap(const Graph& graph, int value) |
2798 | 2798 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
2799 | 2799 |
if (value >= 0) { |
2800 | 2800 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
2801 | 2801 |
lace(it); |
2802 | 2802 |
} |
2803 | 2803 |
} |
2804 | 2804 |
} |
2805 | 2805 |
|
2806 | 2806 |
private: |
2807 | 2807 |
|
2808 | 2808 |
void unlace(const Key& key) { |
2809 | 2809 |
typename Parent::Value& node = Parent::operator[](key); |
2810 | 2810 |
if (node.value < 0) return; |
2811 | 2811 |
if (node.prev != INVALID) { |
2812 | 2812 |
Parent::operator[](node.prev).next = node.next; |
2813 | 2813 |
} else { |
2814 | 2814 |
_first[node.value] = node.next; |
2815 | 2815 |
} |
2816 | 2816 |
if (node.next != INVALID) { |
2817 | 2817 |
Parent::operator[](node.next).prev = node.prev; |
2818 | 2818 |
} |
2819 | 2819 |
while (!_first.empty() && _first.back() == INVALID) { |
2820 | 2820 |
_first.pop_back(); |
2821 | 2821 |
} |
2822 | 2822 |
} |
2823 | 2823 |
|
2824 | 2824 |
void lace(const Key& key) { |
2825 | 2825 |
typename Parent::Value& node = Parent::operator[](key); |
2826 | 2826 |
if (node.value < 0) return; |
2827 | 2827 |
if (node.value >= int(_first.size())) { |
2828 | 2828 |
_first.resize(node.value + 1, INVALID); |
2829 | 2829 |
} |
2830 | 2830 |
node.prev = INVALID; |
2831 | 2831 |
node.next = _first[node.value]; |
2832 | 2832 |
if (node.next != INVALID) { |
2833 | 2833 |
Parent::operator[](node.next).prev = key; |
2834 | 2834 |
} |
2835 | 2835 |
_first[node.value] = key; |
2836 | 2836 |
} |
2837 | 2837 |
|
2838 | 2838 |
public: |
2839 | 2839 |
|
2840 | 2840 |
/// Indicates that the map is reference map. |
2841 | 2841 |
typedef True ReferenceMapTag; |
2842 | 2842 |
|
2843 | 2843 |
/// \brief Reference to the value of the map. |
2844 | 2844 |
/// |
2845 | 2845 |
/// This class is similar to the \c int type. It can |
2846 | 2846 |
/// be converted to \c int and it has the same operators. |
2847 | 2847 |
class Reference { |
2848 | 2848 |
friend class IterableIntMap; |
2849 | 2849 |
private: |
2850 | 2850 |
Reference(IterableIntMap& map, const Key& key) |
2851 | 2851 |
: _key(key), _map(map) {} |
2852 | 2852 |
public: |
2853 | 2853 |
|
2854 | 2854 |
Reference& operator=(const Reference& value) { |
2855 | 2855 |
_map.set(_key, static_cast<const int&>(value)); |
2856 | 2856 |
return *this; |
2857 | 2857 |
} |
2858 | 2858 |
|
2859 | 2859 |
operator const int&() const { |
2860 | 2860 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
2861 | 2861 |
} |
2862 | 2862 |
|
2863 | 2863 |
Reference& operator=(int value) { |
2864 | 2864 |
_map.set(_key, value); |
2865 | 2865 |
return *this; |
2866 | 2866 |
} |
2867 | 2867 |
Reference& operator++() { |
2868 | 2868 |
_map.set(_key, _map[_key] + 1); |
2869 | 2869 |
return *this; |
2870 | 2870 |
} |
2871 | 2871 |
int operator++(int) { |
2872 | 2872 |
int value = _map[_key]; |
2873 | 2873 |
_map.set(_key, value + 1); |
2874 | 2874 |
return value; |
2875 | 2875 |
} |
2876 | 2876 |
Reference& operator--() { |
2877 | 2877 |
_map.set(_key, _map[_key] - 1); |
2878 | 2878 |
return *this; |
2879 | 2879 |
} |
2880 | 2880 |
int operator--(int) { |
2881 | 2881 |
int value = _map[_key]; |
2882 | 2882 |
_map.set(_key, value - 1); |
2883 | 2883 |
return value; |
2884 | 2884 |
} |
2885 | 2885 |
Reference& operator+=(int value) { |
2886 | 2886 |
_map.set(_key, _map[_key] + value); |
2887 | 2887 |
return *this; |
2888 | 2888 |
} |
2889 | 2889 |
Reference& operator-=(int value) { |
2890 | 2890 |
_map.set(_key, _map[_key] - value); |
2891 | 2891 |
return *this; |
2892 | 2892 |
} |
2893 | 2893 |
Reference& operator*=(int value) { |
2894 | 2894 |
_map.set(_key, _map[_key] * value); |
2895 | 2895 |
return *this; |
2896 | 2896 |
} |
2897 | 2897 |
Reference& operator/=(int value) { |
2898 | 2898 |
_map.set(_key, _map[_key] / value); |
2899 | 2899 |
return *this; |
2900 | 2900 |
} |
2901 | 2901 |
Reference& operator%=(int value) { |
2902 | 2902 |
_map.set(_key, _map[_key] % value); |
2903 | 2903 |
return *this; |
2904 | 2904 |
} |
2905 | 2905 |
Reference& operator&=(int value) { |
2906 | 2906 |
_map.set(_key, _map[_key] & value); |
2907 | 2907 |
return *this; |
2908 | 2908 |
} |
2909 | 2909 |
Reference& operator|=(int value) { |
2910 | 2910 |
_map.set(_key, _map[_key] | value); |
2911 | 2911 |
return *this; |
2912 | 2912 |
} |
2913 | 2913 |
Reference& operator^=(int value) { |
2914 | 2914 |
_map.set(_key, _map[_key] ^ value); |
2915 | 2915 |
return *this; |
2916 | 2916 |
} |
2917 | 2917 |
Reference& operator<<=(int value) { |
2918 | 2918 |
_map.set(_key, _map[_key] << value); |
2919 | 2919 |
return *this; |
2920 | 2920 |
} |
2921 | 2921 |
Reference& operator>>=(int value) { |
2922 | 2922 |
_map.set(_key, _map[_key] >> value); |
2923 | 2923 |
return *this; |
2924 | 2924 |
} |
2925 | 2925 |
|
2926 | 2926 |
private: |
2927 | 2927 |
Key _key; |
2928 | 2928 |
IterableIntMap& _map; |
2929 | 2929 |
}; |
2930 | 2930 |
|
2931 | 2931 |
/// The const reference type. |
2932 | 2932 |
typedef const Value& ConstReference; |
2933 | 2933 |
|
2934 | 2934 |
/// \brief Gives back the maximal value plus one. |
2935 | 2935 |
/// |
2936 | 2936 |
/// Gives back the maximal value plus one. |
2937 | 2937 |
int size() const { |
2938 | 2938 |
return _first.size(); |
2939 | 2939 |
} |
2940 | 2940 |
|
2941 | 2941 |
/// \brief Set operation of the map. |
2942 | 2942 |
/// |
2943 | 2943 |
/// Set operation of the map. |
2944 | 2944 |
void set(const Key& key, const Value& value) { |
2945 | 2945 |
unlace(key); |
2946 | 2946 |
Parent::operator[](key).value = value; |
2947 | 2947 |
lace(key); |
2948 | 2948 |
} |
2949 | 2949 |
|
2950 | 2950 |
/// \brief Const subscript operator of the map. |
2951 | 2951 |
/// |
2952 | 2952 |
/// Const subscript operator of the map. |
2953 | 2953 |
const Value& operator[](const Key& key) const { |
2954 | 2954 |
return Parent::operator[](key).value; |
2955 | 2955 |
} |
2956 | 2956 |
|
2957 | 2957 |
/// \brief Subscript operator of the map. |
2958 | 2958 |
/// |
2959 | 2959 |
/// Subscript operator of the map. |
2960 | 2960 |
Reference operator[](const Key& key) { |
2961 | 2961 |
return Reference(*this, key); |
2962 | 2962 |
} |
2963 | 2963 |
|
2964 | 2964 |
/// \brief Iterator for the keys with the same value. |
2965 | 2965 |
/// |
2966 | 2966 |
/// Iterator for the keys with the same value. It works |
2967 | 2967 |
/// like a graph item iterator, it can be converted to |
2968 | 2968 |
/// the item type of the map, incremented with \c ++ operator, and |
2969 | 2969 |
/// if the iterator leaves the last valid item, it will be equal to |
2970 | 2970 |
/// \c INVALID. |
2971 | 2971 |
class ItemIt : public Key { |
2972 | 2972 |
public: |
2973 | 2973 |
typedef Key Parent; |
2974 | 2974 |
|
2975 | 2975 |
/// \brief Invalid constructor \& conversion. |
2976 | 2976 |
/// |
2977 | 2977 |
/// This constructor initializes the iterator to be invalid. |
2978 | 2978 |
/// \sa Invalid for more details. |
2979 | 2979 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
2980 | 2980 |
|
2981 | 2981 |
/// \brief Creates an iterator with a value. |
2982 | 2982 |
/// |
2983 | 2983 |
/// Creates an iterator with a value. It iterates on the |
2984 | 2984 |
/// keys mapped to the given value. |
2985 | 2985 |
/// \param map The IterableIntMap. |
2986 | 2986 |
/// \param value The value. |
2987 | 2987 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
2988 | 2988 |
if (value < 0 || value >= int(_map->_first.size())) { |
2989 | 2989 |
Parent::operator=(INVALID); |
2990 | 2990 |
} else { |
2991 | 2991 |
Parent::operator=(_map->_first[value]); |
2992 | 2992 |
} |
2993 | 2993 |
} |
2994 | 2994 |
|
2995 | 2995 |
/// \brief Increment operator. |
2996 | 2996 |
/// |
2997 | 2997 |
/// Increment operator. |
2998 | 2998 |
ItemIt& operator++() { |
2999 | 2999 |
Parent::operator=(_map->IterableIntMap::Parent:: |
3000 | 3000 |
operator[](static_cast<Parent&>(*this)).next); |
3001 | 3001 |
return *this; |
3002 | 3002 |
} |
3003 | 3003 |
|
3004 | 3004 |
private: |
3005 | 3005 |
const IterableIntMap* _map; |
3006 | 3006 |
}; |
3007 | 3007 |
|
3008 | 3008 |
protected: |
3009 | 3009 |
|
3010 | 3010 |
virtual void erase(const Key& key) { |
3011 | 3011 |
unlace(key); |
3012 | 3012 |
Parent::erase(key); |
3013 | 3013 |
} |
3014 | 3014 |
|
3015 | 3015 |
virtual void erase(const std::vector<Key>& keys) { |
3016 | 3016 |
for (int i = 0; i < int(keys.size()); ++i) { |
3017 | 3017 |
unlace(keys[i]); |
3018 | 3018 |
} |
3019 | 3019 |
Parent::erase(keys); |
3020 | 3020 |
} |
3021 | 3021 |
|
3022 | 3022 |
virtual void clear() { |
3023 | 3023 |
_first.clear(); |
3024 | 3024 |
Parent::clear(); |
3025 | 3025 |
} |
3026 | 3026 |
|
3027 | 3027 |
private: |
3028 | 3028 |
std::vector<Key> _first; |
3029 | 3029 |
}; |
3030 | 3030 |
|
3031 | 3031 |
namespace _maps_bits { |
3032 | 3032 |
template <typename Item, typename Value> |
3033 | 3033 |
struct IterableValueMapNode { |
3034 | 3034 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
3035 | 3035 |
Item prev, next; |
3036 | 3036 |
Value value; |
3037 | 3037 |
}; |
3038 | 3038 |
} |
3039 | 3039 |
|
3040 | 3040 |
/// \brief Dynamic iterable map for comparable values. |
3041 | 3041 |
/// |
3042 | 3042 |
/// This class provides a special graph map type which can store a |
3043 | 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
3044 | 3044 |
/// For each value it is possible to iterate on the keys mapped to |
3045 | 3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
3046 | 3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
3047 | 3047 |
/// The map stores a linked list for each value, which contains |
3048 | 3048 |
/// the items mapped to the value, and the used values are stored |
3049 | 3049 |
/// in balanced binary tree (\c std::map). |
3050 | 3050 |
/// |
3051 | 3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
3052 | 3052 |
/// specialized for \c bool and \c int values, respectively. |
3053 | 3053 |
/// |
3054 | 3054 |
/// This type is not reference map, so it cannot be modified with |
3055 | 3055 |
/// the subscript operator. |
3056 | 3056 |
/// |
3057 | 3057 |
/// \tparam GR The graph type. |
3058 | 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
3059 | 3059 |
/// \c GR::Edge). |
3060 | 3060 |
/// \tparam V The value type of the map. It can be any comparable |
3061 | 3061 |
/// value type. |
3062 | 3062 |
/// |
3063 | 3063 |
/// \see IterableBoolMap, IterableIntMap |
3064 | 3064 |
/// \see CrossRefMap |
3065 | 3065 |
template <typename GR, typename K, typename V> |
3066 | 3066 |
class IterableValueMap |
3067 | 3067 |
: protected ItemSetTraits<GR, K>:: |
3068 | 3068 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
3069 | 3069 |
public: |
3070 | 3070 |
typedef typename ItemSetTraits<GR, K>:: |
3071 | 3071 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
3072 | 3072 |
|
3073 | 3073 |
/// The key type |
3074 | 3074 |
typedef K Key; |
3075 | 3075 |
/// The value type |
3076 | 3076 |
typedef V Value; |
3077 | 3077 |
/// The graph type |
3078 | 3078 |
typedef GR Graph; |
3079 | 3079 |
|
3080 | 3080 |
public: |
3081 | 3081 |
|
3082 | 3082 |
/// \brief Constructor of the map with a given value. |
3083 | 3083 |
/// |
3084 | 3084 |
/// Constructor of the map with a given value. |
3085 | 3085 |
explicit IterableValueMap(const Graph& graph, |
3086 | 3086 |
const Value& value = Value()) |
3087 | 3087 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
3088 | 3088 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
3089 | 3089 |
lace(it); |
3090 | 3090 |
} |
3091 | 3091 |
} |
3092 | 3092 |
|
3093 | 3093 |
protected: |
3094 | 3094 |
|
3095 | 3095 |
void unlace(const Key& key) { |
3096 | 3096 |
typename Parent::Value& node = Parent::operator[](key); |
3097 | 3097 |
if (node.prev != INVALID) { |
3098 | 3098 |
Parent::operator[](node.prev).next = node.next; |
3099 | 3099 |
} else { |
3100 | 3100 |
if (node.next != INVALID) { |
3101 | 3101 |
_first[node.value] = node.next; |
3102 | 3102 |
} else { |
3103 | 3103 |
_first.erase(node.value); |
3104 | 3104 |
} |
3105 | 3105 |
} |
3106 | 3106 |
if (node.next != INVALID) { |
3107 | 3107 |
Parent::operator[](node.next).prev = node.prev; |
3108 | 3108 |
} |
3109 | 3109 |
} |
3110 | 3110 |
|
3111 | 3111 |
void lace(const Key& key) { |
3112 | 3112 |
typename Parent::Value& node = Parent::operator[](key); |
3113 | 3113 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
3114 | 3114 |
if (it == _first.end()) { |
3115 | 3115 |
node.prev = node.next = INVALID; |
3116 | 3116 |
_first.insert(std::make_pair(node.value, key)); |
3117 | 3117 |
} else { |
3118 | 3118 |
node.prev = INVALID; |
3119 | 3119 |
node.next = it->second; |
3120 | 3120 |
if (node.next != INVALID) { |
3121 | 3121 |
Parent::operator[](node.next).prev = key; |
3122 | 3122 |
} |
3123 | 3123 |
it->second = key; |
3124 | 3124 |
} |
3125 | 3125 |
} |
3126 | 3126 |
|
3127 | 3127 |
public: |
3128 | 3128 |
|
3129 | 3129 |
/// \brief Forward iterator for values. |
3130 | 3130 |
/// |
3131 | 3131 |
/// This iterator is an STL compatible forward |
3132 | 3132 |
/// iterator on the values of the map. The values can |
3133 | 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
3134 | 3134 |
class ValueIt |
3135 | 3135 |
: public std::iterator<std::forward_iterator_tag, Value> { |
3136 | 3136 |
friend class IterableValueMap; |
3137 | 3137 |
private: |
3138 | 3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
3139 | 3139 |
: it(_it) {} |
3140 | 3140 |
public: |
3141 | 3141 |
|
3142 | 3142 |
/// Constructor |
3143 | 3143 |
ValueIt() {} |
3144 | 3144 |
|
3145 | 3145 |
/// \e |
3146 | 3146 |
ValueIt& operator++() { ++it; return *this; } |
3147 | 3147 |
/// \e |
3148 | 3148 |
ValueIt operator++(int) { |
3149 | 3149 |
ValueIt tmp(*this); |
3150 | 3150 |
operator++(); |
3151 | 3151 |
return tmp; |
3152 | 3152 |
} |
3153 | 3153 |
|
3154 | 3154 |
/// \e |
3155 | 3155 |
const Value& operator*() const { return it->first; } |
3156 | 3156 |
/// \e |
3157 | 3157 |
const Value* operator->() const { return &(it->first); } |
3158 | 3158 |
|
3159 | 3159 |
/// \e |
3160 | 3160 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
3161 | 3161 |
/// \e |
3162 | 3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
3163 | 3163 |
|
3164 | 3164 |
private: |
3165 | 3165 |
typename std::map<Value, Key>::const_iterator it; |
3166 | 3166 |
}; |
3167 | 3167 |
|
3168 | 3168 |
/// \brief Returns an iterator to the first value. |
3169 | 3169 |
/// |
3170 | 3170 |
/// Returns an STL compatible iterator to the |
3171 | 3171 |
/// first value of the map. The values of the |
3172 | 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3173 | 3173 |
/// range. |
3174 | 3174 |
ValueIt beginValue() const { |
3175 | 3175 |
return ValueIt(_first.begin()); |
3176 | 3176 |
} |
3177 | 3177 |
|
3178 | 3178 |
/// \brief Returns an iterator after the last value. |
3179 | 3179 |
/// |
3180 | 3180 |
/// Returns an STL compatible iterator after the |
3181 | 3181 |
/// last value of the map. The values of the |
3182 | 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3183 | 3183 |
/// range. |
3184 | 3184 |
ValueIt endValue() const { |
3185 | 3185 |
return ValueIt(_first.end()); |
3186 | 3186 |
} |
3187 | 3187 |
|
3188 | 3188 |
/// \brief Set operation of the map. |
3189 | 3189 |
/// |
3190 | 3190 |
/// Set operation of the map. |
3191 | 3191 |
void set(const Key& key, const Value& value) { |
3192 | 3192 |
unlace(key); |
3193 | 3193 |
Parent::operator[](key).value = value; |
3194 | 3194 |
lace(key); |
3195 | 3195 |
} |
3196 | 3196 |
|
3197 | 3197 |
/// \brief Const subscript operator of the map. |
3198 | 3198 |
/// |
3199 | 3199 |
/// Const subscript operator of the map. |
3200 | 3200 |
const Value& operator[](const Key& key) const { |
3201 | 3201 |
return Parent::operator[](key).value; |
3202 | 3202 |
} |
3203 | 3203 |
|
3204 | 3204 |
/// \brief Iterator for the keys with the same value. |
3205 | 3205 |
/// |
3206 | 3206 |
/// Iterator for the keys with the same value. It works |
3207 | 3207 |
/// like a graph item iterator, it can be converted to |
3208 | 3208 |
/// the item type of the map, incremented with \c ++ operator, and |
3209 | 3209 |
/// if the iterator leaves the last valid item, it will be equal to |
3210 | 3210 |
/// \c INVALID. |
3211 | 3211 |
class ItemIt : public Key { |
3212 | 3212 |
public: |
3213 | 3213 |
typedef Key Parent; |
3214 | 3214 |
|
3215 | 3215 |
/// \brief Invalid constructor \& conversion. |
3216 | 3216 |
/// |
3217 | 3217 |
/// This constructor initializes the iterator to be invalid. |
3218 | 3218 |
/// \sa Invalid for more details. |
3219 | 3219 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
3220 | 3220 |
|
3221 | 3221 |
/// \brief Creates an iterator with a value. |
3222 | 3222 |
/// |
3223 | 3223 |
/// Creates an iterator with a value. It iterates on the |
3224 | 3224 |
/// keys which have the given value. |
3225 | 3225 |
/// \param map The IterableValueMap |
3226 | 3226 |
/// \param value The value |
3227 | 3227 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
3228 | 3228 |
typename std::map<Value, Key>::const_iterator it = |
3229 | 3229 |
map._first.find(value); |
3230 | 3230 |
if (it == map._first.end()) { |
3231 | 3231 |
Parent::operator=(INVALID); |
3232 | 3232 |
} else { |
3233 | 3233 |
Parent::operator=(it->second); |
3234 | 3234 |
} |
3235 | 3235 |
} |
3236 | 3236 |
|
3237 | 3237 |
/// \brief Increment operator. |
3238 | 3238 |
/// |
3239 | 3239 |
/// Increment Operator. |
3240 | 3240 |
ItemIt& operator++() { |
3241 | 3241 |
Parent::operator=(_map->IterableValueMap::Parent:: |
3242 | 3242 |
operator[](static_cast<Parent&>(*this)).next); |
3243 | 3243 |
return *this; |
3244 | 3244 |
} |
3245 | 3245 |
|
3246 | 3246 |
|
3247 | 3247 |
private: |
3248 | 3248 |
const IterableValueMap* _map; |
3249 | 3249 |
}; |
3250 | 3250 |
|
3251 | 3251 |
protected: |
3252 | 3252 |
|
3253 | 3253 |
virtual void add(const Key& key) { |
3254 | 3254 |
Parent::add(key); |
3255 | 3255 |
lace(key); |
3256 | 3256 |
} |
3257 | 3257 |
|
3258 | 3258 |
virtual void add(const std::vector<Key>& keys) { |
3259 | 3259 |
Parent::add(keys); |
3260 | 3260 |
for (int i = 0; i < int(keys.size()); ++i) { |
3261 | 3261 |
lace(keys[i]); |
3262 | 3262 |
} |
3263 | 3263 |
} |
3264 | 3264 |
|
3265 | 3265 |
virtual void erase(const Key& key) { |
3266 | 3266 |
unlace(key); |
3267 | 3267 |
Parent::erase(key); |
3268 | 3268 |
} |
3269 | 3269 |
|
3270 | 3270 |
virtual void erase(const std::vector<Key>& keys) { |
3271 | 3271 |
for (int i = 0; i < int(keys.size()); ++i) { |
3272 | 3272 |
unlace(keys[i]); |
3273 | 3273 |
} |
3274 | 3274 |
Parent::erase(keys); |
3275 | 3275 |
} |
3276 | 3276 |
|
3277 | 3277 |
virtual void build() { |
3278 | 3278 |
Parent::build(); |
3279 | 3279 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
3280 | 3280 |
lace(it); |
3281 | 3281 |
} |
3282 | 3282 |
} |
3283 | 3283 |
|
3284 | 3284 |
virtual void clear() { |
3285 | 3285 |
_first.clear(); |
3286 | 3286 |
Parent::clear(); |
3287 | 3287 |
} |
3288 | 3288 |
|
3289 | 3289 |
private: |
3290 | 3290 |
std::map<Value, Key> _first; |
3291 | 3291 |
}; |
3292 | 3292 |
|
3293 | 3293 |
/// \brief Map of the source nodes of arcs in a digraph. |
3294 | 3294 |
/// |
3295 | 3295 |
/// SourceMap provides access for the source node of each arc in a digraph, |
3296 | 3296 |
/// which is returned by the \c source() function of the digraph. |
3297 | 3297 |
/// \tparam GR The digraph type. |
3298 | 3298 |
/// \see TargetMap |
3299 | 3299 |
template <typename GR> |
3300 | 3300 |
class SourceMap { |
3301 | 3301 |
public: |
3302 | 3302 |
|
3303 | 3303 |
/// The key type (the \c Arc type of the digraph). |
3304 | 3304 |
typedef typename GR::Arc Key; |
3305 | 3305 |
/// The value type (the \c Node type of the digraph). |
3306 | 3306 |
typedef typename GR::Node Value; |
3307 | 3307 |
|
3308 | 3308 |
/// \brief Constructor |
3309 | 3309 |
/// |
3310 | 3310 |
/// Constructor. |
3311 | 3311 |
/// \param digraph The digraph that the map belongs to. |
3312 | 3312 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
3313 | 3313 |
|
3314 | 3314 |
/// \brief Returns the source node of the given arc. |
3315 | 3315 |
/// |
3316 | 3316 |
/// Returns the source node of the given arc. |
3317 | 3317 |
Value operator[](const Key& arc) const { |
3318 | 3318 |
return _graph.source(arc); |
3319 | 3319 |
} |
3320 | 3320 |
|
3321 | 3321 |
private: |
3322 | 3322 |
const GR& _graph; |
3323 | 3323 |
}; |
3324 | 3324 |
|
3325 | 3325 |
/// \brief Returns a \c SourceMap class. |
3326 | 3326 |
/// |
3327 | 3327 |
/// This function just returns an \c SourceMap class. |
3328 | 3328 |
/// \relates SourceMap |
3329 | 3329 |
template <typename GR> |
3330 | 3330 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
3331 | 3331 |
return SourceMap<GR>(graph); |
3332 | 3332 |
} |
3333 | 3333 |
|
3334 | 3334 |
/// \brief Map of the target nodes of arcs in a digraph. |
3335 | 3335 |
/// |
3336 | 3336 |
/// TargetMap provides access for the target node of each arc in a digraph, |
3337 | 3337 |
/// which is returned by the \c target() function of the digraph. |
3338 | 3338 |
/// \tparam GR The digraph type. |
3339 | 3339 |
/// \see SourceMap |
3340 | 3340 |
template <typename GR> |
3341 | 3341 |
class TargetMap { |
3342 | 3342 |
public: |
3343 | 3343 |
|
3344 | 3344 |
/// The key type (the \c Arc type of the digraph). |
3345 | 3345 |
typedef typename GR::Arc Key; |
3346 | 3346 |
/// The value type (the \c Node type of the digraph). |
3347 | 3347 |
typedef typename GR::Node Value; |
3348 | 3348 |
|
3349 | 3349 |
/// \brief Constructor |
3350 | 3350 |
/// |
3351 | 3351 |
/// Constructor. |
3352 | 3352 |
/// \param digraph The digraph that the map belongs to. |
3353 | 3353 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
3354 | 3354 |
|
3355 | 3355 |
/// \brief Returns the target node of the given arc. |
3356 | 3356 |
/// |
3357 | 3357 |
/// Returns the target node of the given arc. |
3358 | 3358 |
Value operator[](const Key& e) const { |
3359 | 3359 |
return _graph.target(e); |
3360 | 3360 |
} |
3361 | 3361 |
|
3362 | 3362 |
private: |
3363 | 3363 |
const GR& _graph; |
3364 | 3364 |
}; |
3365 | 3365 |
|
3366 | 3366 |
/// \brief Returns a \c TargetMap class. |
3367 | 3367 |
/// |
3368 | 3368 |
/// This function just returns a \c TargetMap class. |
3369 | 3369 |
/// \relates TargetMap |
3370 | 3370 |
template <typename GR> |
3371 | 3371 |
inline TargetMap<GR> targetMap(const GR& graph) { |
3372 | 3372 |
return TargetMap<GR>(graph); |
3373 | 3373 |
} |
3374 | 3374 |
|
3375 | 3375 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
3376 | 3376 |
/// |
3377 | 3377 |
/// ForwardMap provides access for the "forward" directed arc view of |
3378 | 3378 |
/// each edge in a graph, which is returned by the \c direct() function |
3379 | 3379 |
/// of the graph with \c true parameter. |
3380 | 3380 |
/// \tparam GR The graph type. |
3381 | 3381 |
/// \see BackwardMap |
3382 | 3382 |
template <typename GR> |
3383 | 3383 |
class ForwardMap { |
3384 | 3384 |
public: |
3385 | 3385 |
|
3386 | 3386 |
/// The key type (the \c Edge type of the digraph). |
3387 | 3387 |
typedef typename GR::Edge Key; |
3388 | 3388 |
/// The value type (the \c Arc type of the digraph). |
3389 | 3389 |
typedef typename GR::Arc Value; |
3390 | 3390 |
|
3391 | 3391 |
/// \brief Constructor |
3392 | 3392 |
/// |
3393 | 3393 |
/// Constructor. |
3394 | 3394 |
/// \param graph The graph that the map belongs to. |
3395 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
3396 | 3396 |
|
3397 | 3397 |
/// \brief Returns the "forward" directed arc view of the given edge. |
3398 | 3398 |
/// |
3399 | 3399 |
/// Returns the "forward" directed arc view of the given edge. |
3400 | 3400 |
Value operator[](const Key& key) const { |
3401 | 3401 |
return _graph.direct(key, true); |
3402 | 3402 |
} |
3403 | 3403 |
|
3404 | 3404 |
private: |
3405 | 3405 |
const GR& _graph; |
3406 | 3406 |
}; |
3407 | 3407 |
|
3408 | 3408 |
/// \brief Returns a \c ForwardMap class. |
3409 | 3409 |
/// |
3410 | 3410 |
/// This function just returns an \c ForwardMap class. |
3411 | 3411 |
/// \relates ForwardMap |
3412 | 3412 |
template <typename GR> |
3413 | 3413 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
3414 | 3414 |
return ForwardMap<GR>(graph); |
3415 | 3415 |
} |
3416 | 3416 |
|
3417 | 3417 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
3418 | 3418 |
/// |
3419 | 3419 |
/// BackwardMap provides access for the "backward" directed arc view of |
3420 | 3420 |
/// each edge in a graph, which is returned by the \c direct() function |
3421 | 3421 |
/// of the graph with \c false parameter. |
3422 | 3422 |
/// \tparam GR The graph type. |
3423 | 3423 |
/// \see ForwardMap |
3424 | 3424 |
template <typename GR> |
3425 | 3425 |
class BackwardMap { |
3426 | 3426 |
public: |
3427 | 3427 |
|
3428 | 3428 |
/// The key type (the \c Edge type of the digraph). |
3429 | 3429 |
typedef typename GR::Edge Key; |
3430 | 3430 |
/// The value type (the \c Arc type of the digraph). |
3431 | 3431 |
typedef typename GR::Arc Value; |
3432 | 3432 |
|
3433 | 3433 |
/// \brief Constructor |
3434 | 3434 |
/// |
3435 | 3435 |
/// Constructor. |
3436 | 3436 |
/// \param graph The graph that the map belongs to. |
3437 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
3438 | 3438 |
|
3439 | 3439 |
/// \brief Returns the "backward" directed arc view of the given edge. |
3440 | 3440 |
/// |
3441 | 3441 |
/// Returns the "backward" directed arc view of the given edge. |
3442 | 3442 |
Value operator[](const Key& key) const { |
3443 | 3443 |
return _graph.direct(key, false); |
3444 | 3444 |
} |
3445 | 3445 |
|
3446 | 3446 |
private: |
3447 | 3447 |
const GR& _graph; |
3448 | 3448 |
}; |
3449 | 3449 |
|
3450 | 3450 |
/// \brief Returns a \c BackwardMap class |
3451 | 3451 |
|
3452 | 3452 |
/// This function just returns a \c BackwardMap class. |
3453 | 3453 |
/// \relates BackwardMap |
3454 | 3454 |
template <typename GR> |
3455 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
3456 | 3456 |
return BackwardMap<GR>(graph); |
3457 | 3457 |
} |
3458 | 3458 |
|
3459 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
3460 | 3460 |
/// |
3461 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
3462 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3463 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
3464 | 3464 |
/// whenever the digraph changes. |
3465 | 3465 |
/// |
3466 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3467 | 3467 |
/// may provide alternative ways to modify the digraph. |
3468 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
3469 | 3469 |
/// features are used. For example, the functions |
3470 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3471 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3472 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3473 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3474 | 3474 |
/// |
3475 | 3475 |
/// \sa OutDegMap |
3476 | 3476 |
template <typename GR> |
3477 | 3477 |
class InDegMap |
3478 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3479 | 3479 |
::ItemNotifier::ObserverBase { |
3480 | 3480 |
|
3481 | 3481 |
public: |
3482 | 3482 |
|
3483 | 3483 |
/// The graph type of InDegMap |
3484 | 3484 |
typedef GR Graph; |
3485 | 3485 |
typedef GR Digraph; |
3486 | 3486 |
/// The key type |
3487 | 3487 |
typedef typename Digraph::Node Key; |
3488 | 3488 |
/// The value type |
3489 | 3489 |
typedef int Value; |
3490 | 3490 |
|
3491 | 3491 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3492 | 3492 |
::ItemNotifier::ObserverBase Parent; |
3493 | 3493 |
|
3494 | 3494 |
private: |
3495 | 3495 |
|
3496 | 3496 |
class AutoNodeMap |
3497 | 3497 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
3498 | 3498 |
public: |
3499 | 3499 |
|
3500 | 3500 |
typedef typename ItemSetTraits<Digraph, Key>:: |
3501 | 3501 |
template Map<int>::Type Parent; |
3502 | 3502 |
|
3503 | 3503 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
3504 | 3504 |
|
3505 | 3505 |
virtual void add(const Key& key) { |
3506 | 3506 |
Parent::add(key); |
3507 | 3507 |
Parent::set(key, 0); |
3508 | 3508 |
} |
3509 | 3509 |
|
3510 | 3510 |
virtual void add(const std::vector<Key>& keys) { |
3511 | 3511 |
Parent::add(keys); |
3512 | 3512 |
for (int i = 0; i < int(keys.size()); ++i) { |
3513 | 3513 |
Parent::set(keys[i], 0); |
3514 | 3514 |
} |
3515 | 3515 |
} |
3516 | 3516 |
|
3517 | 3517 |
virtual void build() { |
3518 | 3518 |
Parent::build(); |
3519 | 3519 |
Key it; |
3520 | 3520 |
typename Parent::Notifier* nf = Parent::notifier(); |
3521 | 3521 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
3522 | 3522 |
Parent::set(it, 0); |
3523 | 3523 |
} |
3524 | 3524 |
} |
3525 | 3525 |
}; |
3526 | 3526 |
|
3527 | 3527 |
public: |
3528 | 3528 |
|
3529 | 3529 |
/// \brief Constructor. |
3530 | 3530 |
/// |
3531 | 3531 |
/// Constructor for creating an in-degree map. |
3532 | 3532 |
explicit InDegMap(const Digraph& graph) |
3533 | 3533 |
: _digraph(graph), _deg(graph) { |
3534 | 3534 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
3535 | 3535 |
|
3536 | 3536 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3537 | 3537 |
_deg[it] = countInArcs(_digraph, it); |
3538 | 3538 |
} |
3539 | 3539 |
} |
3540 | 3540 |
|
3541 | 3541 |
/// \brief Gives back the in-degree of a Node. |
3542 | 3542 |
/// |
3543 | 3543 |
/// Gives back the in-degree of a Node. |
3544 | 3544 |
int operator[](const Key& key) const { |
3545 | 3545 |
return _deg[key]; |
3546 | 3546 |
} |
3547 | 3547 |
|
3548 | 3548 |
protected: |
3549 | 3549 |
|
3550 | 3550 |
typedef typename Digraph::Arc Arc; |
3551 | 3551 |
|
3552 | 3552 |
virtual void add(const Arc& arc) { |
3553 | 3553 |
++_deg[_digraph.target(arc)]; |
3554 | 3554 |
} |
3555 | 3555 |
|
3556 | 3556 |
virtual void add(const std::vector<Arc>& arcs) { |
3557 | 3557 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3558 | 3558 |
++_deg[_digraph.target(arcs[i])]; |
3559 | 3559 |
} |
3560 | 3560 |
} |
3561 | 3561 |
|
3562 | 3562 |
virtual void erase(const Arc& arc) { |
3563 | 3563 |
--_deg[_digraph.target(arc)]; |
3564 | 3564 |
} |
3565 | 3565 |
|
3566 | 3566 |
virtual void erase(const std::vector<Arc>& arcs) { |
3567 | 3567 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3568 | 3568 |
--_deg[_digraph.target(arcs[i])]; |
3569 | 3569 |
} |
3570 | 3570 |
} |
3571 | 3571 |
|
3572 | 3572 |
virtual void build() { |
3573 | 3573 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3574 | 3574 |
_deg[it] = countInArcs(_digraph, it); |
3575 | 3575 |
} |
3576 | 3576 |
} |
3577 | 3577 |
|
3578 | 3578 |
virtual void clear() { |
3579 | 3579 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3580 | 3580 |
_deg[it] = 0; |
3581 | 3581 |
} |
3582 | 3582 |
} |
3583 | 3583 |
private: |
3584 | 3584 |
|
3585 | 3585 |
const Digraph& _digraph; |
3586 | 3586 |
AutoNodeMap _deg; |
3587 | 3587 |
}; |
3588 | 3588 |
|
3589 | 3589 |
/// \brief Map of the out-degrees of nodes in a digraph. |
3590 | 3590 |
/// |
3591 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
3592 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3593 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
3594 | 3594 |
/// whenever the digraph changes. |
3595 | 3595 |
/// |
3596 | 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3597 | 3597 |
/// may provide alternative ways to modify the digraph. |
3598 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
3599 | 3599 |
/// features are used. For example, the functions |
3600 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3601 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3602 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3603 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3604 | 3604 |
/// |
3605 | 3605 |
/// \sa InDegMap |
3606 | 3606 |
template <typename GR> |
3607 | 3607 |
class OutDegMap |
3608 | 3608 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3609 | 3609 |
::ItemNotifier::ObserverBase { |
3610 | 3610 |
|
3611 | 3611 |
public: |
3612 | 3612 |
|
3613 | 3613 |
/// The graph type of OutDegMap |
3614 | 3614 |
typedef GR Graph; |
3615 | 3615 |
typedef GR Digraph; |
3616 | 3616 |
/// The key type |
3617 | 3617 |
typedef typename Digraph::Node Key; |
3618 | 3618 |
/// The value type |
3619 | 3619 |
typedef int Value; |
3620 | 3620 |
|
3621 | 3621 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3622 | 3622 |
::ItemNotifier::ObserverBase Parent; |
3623 | 3623 |
|
3624 | 3624 |
private: |
3625 | 3625 |
|
3626 | 3626 |
class AutoNodeMap |
3627 | 3627 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
3628 | 3628 |
public: |
3629 | 3629 |
|
3630 | 3630 |
typedef typename ItemSetTraits<Digraph, Key>:: |
3631 | 3631 |
template Map<int>::Type Parent; |
3632 | 3632 |
|
3633 | 3633 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
3634 | 3634 |
|
3635 | 3635 |
virtual void add(const Key& key) { |
3636 | 3636 |
Parent::add(key); |
3637 | 3637 |
Parent::set(key, 0); |
3638 | 3638 |
} |
3639 | 3639 |
virtual void add(const std::vector<Key>& keys) { |
3640 | 3640 |
Parent::add(keys); |
3641 | 3641 |
for (int i = 0; i < int(keys.size()); ++i) { |
3642 | 3642 |
Parent::set(keys[i], 0); |
3643 | 3643 |
} |
3644 | 3644 |
} |
3645 | 3645 |
virtual void build() { |
3646 | 3646 |
Parent::build(); |
3647 | 3647 |
Key it; |
3648 | 3648 |
typename Parent::Notifier* nf = Parent::notifier(); |
3649 | 3649 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
3650 | 3650 |
Parent::set(it, 0); |
3651 | 3651 |
} |
3652 | 3652 |
} |
3653 | 3653 |
}; |
3654 | 3654 |
|
3655 | 3655 |
public: |
3656 | 3656 |
|
3657 | 3657 |
/// \brief Constructor. |
3658 | 3658 |
/// |
3659 | 3659 |
/// Constructor for creating an out-degree map. |
3660 | 3660 |
explicit OutDegMap(const Digraph& graph) |
3661 | 3661 |
: _digraph(graph), _deg(graph) { |
3662 | 3662 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
3663 | 3663 |
|
3664 | 3664 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3665 | 3665 |
_deg[it] = countOutArcs(_digraph, it); |
3666 | 3666 |
} |
3667 | 3667 |
} |
3668 | 3668 |
|
3669 | 3669 |
/// \brief Gives back the out-degree of a Node. |
3670 | 3670 |
/// |
3671 | 3671 |
/// Gives back the out-degree of a Node. |
3672 | 3672 |
int operator[](const Key& key) const { |
3673 | 3673 |
return _deg[key]; |
3674 | 3674 |
} |
3675 | 3675 |
|
3676 | 3676 |
protected: |
3677 | 3677 |
|
3678 | 3678 |
typedef typename Digraph::Arc Arc; |
3679 | 3679 |
|
3680 | 3680 |
virtual void add(const Arc& arc) { |
3681 | 3681 |
++_deg[_digraph.source(arc)]; |
3682 | 3682 |
} |
3683 | 3683 |
|
3684 | 3684 |
virtual void add(const std::vector<Arc>& arcs) { |
3685 | 3685 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3686 | 3686 |
++_deg[_digraph.source(arcs[i])]; |
3687 | 3687 |
} |
3688 | 3688 |
} |
3689 | 3689 |
|
3690 | 3690 |
virtual void erase(const Arc& arc) { |
3691 | 3691 |
--_deg[_digraph.source(arc)]; |
3692 | 3692 |
} |
3693 | 3693 |
|
3694 | 3694 |
virtual void erase(const std::vector<Arc>& arcs) { |
3695 | 3695 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3696 | 3696 |
--_deg[_digraph.source(arcs[i])]; |
3697 | 3697 |
} |
3698 | 3698 |
} |
3699 | 3699 |
|
3700 | 3700 |
virtual void build() { |
3701 | 3701 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3702 | 3702 |
_deg[it] = countOutArcs(_digraph, it); |
3703 | 3703 |
} |
3704 | 3704 |
} |
3705 | 3705 |
|
3706 | 3706 |
virtual void clear() { |
3707 | 3707 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3708 | 3708 |
_deg[it] = 0; |
3709 | 3709 |
} |
3710 | 3710 |
} |
3711 | 3711 |
private: |
3712 | 3712 |
|
3713 | 3713 |
const Digraph& _digraph; |
3714 | 3714 |
AutoNodeMap _deg; |
3715 | 3715 |
}; |
3716 | 3716 |
|
3717 | 3717 |
/// \brief Potential difference map |
3718 | 3718 |
/// |
3719 | 3719 |
/// PotentialDifferenceMap returns the difference between the potentials of |
3720 | 3720 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
3721 | 3721 |
/// \code |
3722 | 3722 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
3723 | 3723 |
/// \endcode |
3724 | 3724 |
/// \tparam GR The digraph type. |
3725 | 3725 |
/// \tparam POT A node map storing the potentials. |
3726 | 3726 |
template <typename GR, typename POT> |
3727 | 3727 |
class PotentialDifferenceMap { |
3728 | 3728 |
public: |
3729 | 3729 |
/// Key type |
3730 | 3730 |
typedef typename GR::Arc Key; |
3731 | 3731 |
/// Value type |
3732 | 3732 |
typedef typename POT::Value Value; |
3733 | 3733 |
|
3734 | 3734 |
/// \brief Constructor |
3735 | 3735 |
/// |
3736 | 3736 |
/// Contructor of the map. |
3737 | 3737 |
explicit PotentialDifferenceMap(const GR& gr, |
3738 | 3738 |
const POT& potential) |
3739 | 3739 |
: _digraph(gr), _potential(potential) {} |
3740 | 3740 |
|
3741 | 3741 |
/// \brief Returns the potential difference for the given arc. |
3742 | 3742 |
/// |
3743 | 3743 |
/// Returns the potential difference for the given arc, i.e. |
3744 | 3744 |
/// \code |
3745 | 3745 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
3746 | 3746 |
/// \endcode |
3747 | 3747 |
Value operator[](const Key& arc) const { |
3748 | 3748 |
return _potential[_digraph.target(arc)] - |
3749 | 3749 |
_potential[_digraph.source(arc)]; |
3750 | 3750 |
} |
3751 | 3751 |
|
3752 | 3752 |
private: |
3753 | 3753 |
const GR& _digraph; |
3754 | 3754 |
const POT& _potential; |
3755 | 3755 |
}; |
3756 | 3756 |
|
3757 | 3757 |
/// \brief Returns a PotentialDifferenceMap. |
3758 | 3758 |
/// |
3759 | 3759 |
/// This function just returns a PotentialDifferenceMap. |
3760 | 3760 |
/// \relates PotentialDifferenceMap |
3761 | 3761 |
template <typename GR, typename POT> |
3762 | 3762 |
PotentialDifferenceMap<GR, POT> |
3763 | 3763 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
3764 | 3764 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
3765 | 3765 |
} |
3766 | 3766 |
|
3767 | 3767 |
|
3768 | 3768 |
/// \brief Copy the values of a graph map to another map. |
3769 | 3769 |
/// |
3770 | 3770 |
/// This function copies the values of a graph map to another graph map. |
3771 | 3771 |
/// \c To::Key must be equal or convertible to \c From::Key and |
3772 | 3772 |
/// \c From::Value must be equal or convertible to \c To::Value. |
3773 | 3773 |
/// |
3774 | 3774 |
/// For example, an edge map of \c int value type can be copied to |
3775 | 3775 |
/// an arc map of \c double value type in an undirected graph, but |
3776 | 3776 |
/// an arc map cannot be copied to an edge map. |
3777 | 3777 |
/// Note that even a \ref ConstMap can be copied to a standard graph map, |
3778 | 3778 |
/// but \ref mapFill() can also be used for this purpose. |
3779 | 3779 |
/// |
3780 | 3780 |
/// \param gr The graph for which the maps are defined. |
3781 | 3781 |
/// \param from The map from which the values have to be copied. |
3782 | 3782 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
3783 | 3783 |
/// \param to The map to which the values have to be copied. |
3784 | 3784 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
3785 | 3785 |
template <typename GR, typename From, typename To> |
3786 | 3786 |
void mapCopy(const GR& gr, const From& from, To& to) { |
3787 | 3787 |
typedef typename To::Key Item; |
3788 | 3788 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3789 | 3789 |
|
3790 | 3790 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3791 | 3791 |
to.set(it, from[it]); |
3792 | 3792 |
} |
3793 | 3793 |
} |
3794 | 3794 |
|
3795 | 3795 |
/// \brief Compare two graph maps. |
3796 | 3796 |
/// |
3797 | 3797 |
/// This function compares the values of two graph maps. It returns |
3798 | 3798 |
/// \c true if the maps assign the same value for all items in the graph. |
3799 | 3799 |
/// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal |
3800 | 3800 |
/// and their \c Value types must be comparable using \c %operator==(). |
3801 | 3801 |
/// |
3802 | 3802 |
/// \param gr The graph for which the maps are defined. |
3803 | 3803 |
/// \param map1 The first map. |
3804 | 3804 |
/// \param map2 The second map. |
3805 | 3805 |
template <typename GR, typename Map1, typename Map2> |
3806 | 3806 |
bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) { |
3807 | 3807 |
typedef typename Map2::Key Item; |
3808 | 3808 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3809 | 3809 |
|
3810 | 3810 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3811 | 3811 |
if (!(map1[it] == map2[it])) return false; |
3812 | 3812 |
} |
3813 | 3813 |
return true; |
3814 | 3814 |
} |
3815 | 3815 |
|
3816 | 3816 |
/// \brief Return an item having minimum value of a graph map. |
3817 | 3817 |
/// |
3818 | 3818 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3819 | 3819 |
/// minimum value of the given graph map. |
3820 | 3820 |
/// If the item set is empty, it returns \c INVALID. |
3821 | 3821 |
/// |
3822 | 3822 |
/// \param gr The graph for which the map is defined. |
3823 | 3823 |
/// \param map The graph map. |
3824 | 3824 |
template <typename GR, typename Map> |
3825 | 3825 |
typename Map::Key mapMin(const GR& gr, const Map& map) { |
3826 | 3826 |
return mapMin(gr, map, std::less<typename Map::Value>()); |
3827 | 3827 |
} |
3828 | 3828 |
|
3829 | 3829 |
/// \brief Return an item having minimum value of a graph map. |
3830 | 3830 |
/// |
3831 | 3831 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3832 | 3832 |
/// minimum value of the given graph map. |
3833 | 3833 |
/// If the item set is empty, it returns \c INVALID. |
3834 | 3834 |
/// |
3835 | 3835 |
/// \param gr The graph for which the map is defined. |
3836 | 3836 |
/// \param map The graph map. |
3837 | 3837 |
/// \param comp Comparison function object. |
3838 | 3838 |
template <typename GR, typename Map, typename Comp> |
3839 | 3839 |
typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) { |
3840 | 3840 |
typedef typename Map::Key Item; |
3841 | 3841 |
typedef typename Map::Value Value; |
3842 | 3842 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3843 | 3843 |
|
3844 | 3844 |
ItemIt min_item(gr); |
3845 | 3845 |
if (min_item == INVALID) return INVALID; |
3846 | 3846 |
Value min = map[min_item]; |
3847 | 3847 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3848 | 3848 |
if (comp(map[it], min)) { |
3849 | 3849 |
min = map[it]; |
3850 | 3850 |
min_item = it; |
3851 | 3851 |
} |
3852 | 3852 |
} |
3853 | 3853 |
return min_item; |
3854 | 3854 |
} |
3855 | 3855 |
|
3856 | 3856 |
/// \brief Return an item having maximum value of a graph map. |
3857 | 3857 |
/// |
3858 | 3858 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3859 | 3859 |
/// maximum value of the given graph map. |
3860 | 3860 |
/// If the item set is empty, it returns \c INVALID. |
3861 | 3861 |
/// |
3862 | 3862 |
/// \param gr The graph for which the map is defined. |
3863 | 3863 |
/// \param map The graph map. |
3864 | 3864 |
template <typename GR, typename Map> |
3865 | 3865 |
typename Map::Key mapMax(const GR& gr, const Map& map) { |
3866 | 3866 |
return mapMax(gr, map, std::less<typename Map::Value>()); |
3867 | 3867 |
} |
3868 | 3868 |
|
3869 | 3869 |
/// \brief Return an item having maximum value of a graph map. |
3870 | 3870 |
/// |
3871 | 3871 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3872 | 3872 |
/// maximum value of the given graph map. |
3873 | 3873 |
/// If the item set is empty, it returns \c INVALID. |
3874 | 3874 |
/// |
3875 | 3875 |
/// \param gr The graph for which the map is defined. |
3876 | 3876 |
/// \param map The graph map. |
3877 | 3877 |
/// \param comp Comparison function object. |
3878 | 3878 |
template <typename GR, typename Map, typename Comp> |
3879 | 3879 |
typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) { |
3880 | 3880 |
typedef typename Map::Key Item; |
3881 | 3881 |
typedef typename Map::Value Value; |
3882 | 3882 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3883 | 3883 |
|
3884 | 3884 |
ItemIt max_item(gr); |
3885 | 3885 |
if (max_item == INVALID) return INVALID; |
3886 | 3886 |
Value max = map[max_item]; |
3887 | 3887 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3888 | 3888 |
if (comp(max, map[it])) { |
3889 | 3889 |
max = map[it]; |
3890 | 3890 |
max_item = it; |
3891 | 3891 |
} |
3892 | 3892 |
} |
3893 | 3893 |
return max_item; |
3894 | 3894 |
} |
3895 | 3895 |
|
3896 | 3896 |
/// \brief Return the minimum value of a graph map. |
3897 | 3897 |
/// |
3898 | 3898 |
/// This function returns the minimum value of the given graph map. |
3899 | 3899 |
/// The corresponding item set of the graph must not be empty. |
3900 | 3900 |
/// |
3901 | 3901 |
/// \param gr The graph for which the map is defined. |
3902 | 3902 |
/// \param map The graph map. |
3903 | 3903 |
template <typename GR, typename Map> |
3904 | 3904 |
typename Map::Value mapMinValue(const GR& gr, const Map& map) { |
3905 | 3905 |
return map[mapMin(gr, map, std::less<typename Map::Value>())]; |
3906 | 3906 |
} |
3907 | 3907 |
|
3908 | 3908 |
/// \brief Return the minimum value of a graph map. |
3909 | 3909 |
/// |
3910 | 3910 |
/// This function returns the minimum value of the given graph map. |
3911 | 3911 |
/// The corresponding item set of the graph must not be empty. |
3912 | 3912 |
/// |
3913 | 3913 |
/// \param gr The graph for which the map is defined. |
3914 | 3914 |
/// \param map The graph map. |
3915 | 3915 |
/// \param comp Comparison function object. |
3916 | 3916 |
template <typename GR, typename Map, typename Comp> |
3917 | 3917 |
typename Map::Value |
3918 | 3918 |
mapMinValue(const GR& gr, const Map& map, const Comp& comp) { |
3919 | 3919 |
return map[mapMin(gr, map, comp)]; |
3920 | 3920 |
} |
3921 | 3921 |
|
3922 | 3922 |
/// \brief Return the maximum value of a graph map. |
3923 | 3923 |
/// |
3924 | 3924 |
/// This function returns the maximum value of the given graph map. |
3925 | 3925 |
/// The corresponding item set of the graph must not be empty. |
3926 | 3926 |
/// |
3927 | 3927 |
/// \param gr The graph for which the map is defined. |
3928 | 3928 |
/// \param map The graph map. |
3929 | 3929 |
template <typename GR, typename Map> |
3930 | 3930 |
typename Map::Value mapMaxValue(const GR& gr, const Map& map) { |
3931 | 3931 |
return map[mapMax(gr, map, std::less<typename Map::Value>())]; |
3932 | 3932 |
} |
3933 | 3933 |
|
3934 | 3934 |
/// \brief Return the maximum value of a graph map. |
3935 | 3935 |
/// |
3936 | 3936 |
/// This function returns the maximum value of the given graph map. |
3937 | 3937 |
/// The corresponding item set of the graph must not be empty. |
3938 | 3938 |
/// |
3939 | 3939 |
/// \param gr The graph for which the map is defined. |
3940 | 3940 |
/// \param map The graph map. |
3941 | 3941 |
/// \param comp Comparison function object. |
3942 | 3942 |
template <typename GR, typename Map, typename Comp> |
3943 | 3943 |
typename Map::Value |
3944 | 3944 |
mapMaxValue(const GR& gr, const Map& map, const Comp& comp) { |
3945 | 3945 |
return map[mapMax(gr, map, comp)]; |
3946 | 3946 |
} |
3947 | 3947 |
|
3948 | 3948 |
/// \brief Return an item having a specified value in a graph map. |
3949 | 3949 |
/// |
3950 | 3950 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3951 | 3951 |
/// the specified assigned value in the given graph map. |
3952 | 3952 |
/// If no such item exists, it returns \c INVALID. |
3953 | 3953 |
/// |
3954 | 3954 |
/// \param gr The graph for which the map is defined. |
3955 | 3955 |
/// \param map The graph map. |
3956 | 3956 |
/// \param val The value that have to be found. |
3957 | 3957 |
template <typename GR, typename Map> |
3958 | 3958 |
typename Map::Key |
3959 | 3959 |
mapFind(const GR& gr, const Map& map, const typename Map::Value& val) { |
3960 | 3960 |
typedef typename Map::Key Item; |
3961 | 3961 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3962 | 3962 |
|
3963 | 3963 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3964 | 3964 |
if (map[it] == val) return it; |
3965 | 3965 |
} |
3966 | 3966 |
return INVALID; |
3967 | 3967 |
} |
3968 | 3968 |
|
3969 | 3969 |
/// \brief Return an item having value for which a certain predicate is |
3970 | 3970 |
/// true in a graph map. |
3971 | 3971 |
/// |
3972 | 3972 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3973 | 3973 |
/// such assigned value for which the specified predicate is true |
3974 | 3974 |
/// in the given graph map. |
3975 | 3975 |
/// If no such item exists, it returns \c INVALID. |
3976 | 3976 |
/// |
3977 | 3977 |
/// \param gr The graph for which the map is defined. |
3978 | 3978 |
/// \param map The graph map. |
3979 | 3979 |
/// \param pred The predicate function object. |
3980 | 3980 |
template <typename GR, typename Map, typename Pred> |
3981 | 3981 |
typename Map::Key |
3982 | 3982 |
mapFindIf(const GR& gr, const Map& map, const Pred& pred) { |
3983 | 3983 |
typedef typename Map::Key Item; |
3984 | 3984 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3985 | 3985 |
|
3986 | 3986 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3987 | 3987 |
if (pred(map[it])) return it; |
3988 | 3988 |
} |
3989 | 3989 |
return INVALID; |
3990 | 3990 |
} |
3991 | 3991 |
|
3992 | 3992 |
/// \brief Return the number of items having a specified value in a |
3993 | 3993 |
/// graph map. |
3994 | 3994 |
/// |
3995 | 3995 |
/// This function returns the number of items (\c Node, \c Arc or \c Edge) |
3996 | 3996 |
/// having the specified assigned value in the given graph map. |
3997 | 3997 |
/// |
3998 | 3998 |
/// \param gr The graph for which the map is defined. |
3999 | 3999 |
/// \param map The graph map. |
4000 | 4000 |
/// \param val The value that have to be counted. |
4001 | 4001 |
template <typename GR, typename Map> |
4002 | 4002 |
int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) { |
4003 | 4003 |
typedef typename Map::Key Item; |
4004 | 4004 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
4005 | 4005 |
|
4006 | 4006 |
int cnt = 0; |
4007 | 4007 |
for (ItemIt it(gr); it != INVALID; ++it) { |
4008 | 4008 |
if (map[it] == val) ++cnt; |
4009 | 4009 |
} |
4010 | 4010 |
return cnt; |
4011 | 4011 |
} |
4012 | 4012 |
|
4013 | 4013 |
/// \brief Return the number of items having values for which a certain |
4014 | 4014 |
/// predicate is true in a graph map. |
4015 | 4015 |
/// |
4016 | 4016 |
/// This function returns the number of items (\c Node, \c Arc or \c Edge) |
4017 | 4017 |
/// having such assigned values for which the specified predicate is true |
4018 | 4018 |
/// in the given graph map. |
4019 | 4019 |
/// |
4020 | 4020 |
/// \param gr The graph for which the map is defined. |
4021 | 4021 |
/// \param map The graph map. |
4022 | 4022 |
/// \param pred The predicate function object. |
4023 | 4023 |
template <typename GR, typename Map, typename Pred> |
4024 | 4024 |
int mapCountIf(const GR& gr, const Map& map, const Pred& pred) { |
4025 | 4025 |
typedef typename Map::Key Item; |
4026 | 4026 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
4027 | 4027 |
|
4028 | 4028 |
int cnt = 0; |
4029 | 4029 |
for (ItemIt it(gr); it != INVALID; ++it) { |
4030 | 4030 |
if (pred(map[it])) ++cnt; |
4031 | 4031 |
} |
4032 | 4032 |
return cnt; |
4033 | 4033 |
} |
4034 | 4034 |
|
4035 | 4035 |
/// \brief Fill a graph map with a certain value. |
4036 | 4036 |
/// |
4037 | 4037 |
/// This function sets the specified value for all items (\c Node, |
4038 | 4038 |
/// \c Arc or \c Edge) in the given graph map. |
4039 | 4039 |
/// |
4040 | 4040 |
/// \param gr The graph for which the map is defined. |
4041 | 4041 |
/// \param map The graph map. It must conform to the |
4042 | 4042 |
/// \ref concepts::WriteMap "WriteMap" concept. |
4043 | 4043 |
/// \param val The value. |
4044 | 4044 |
template <typename GR, typename Map> |
4045 | 4045 |
void mapFill(const GR& gr, Map& map, const typename Map::Value& val) { |
4046 | 4046 |
typedef typename Map::Key Item; |
4047 | 4047 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
4048 | 4048 |
|
4049 | 4049 |
for (ItemIt it(gr); it != INVALID; ++it) { |
4050 | 4050 |
map.set(it, val); |
4051 | 4051 |
} |
4052 | 4052 |
} |
4053 | 4053 |
|
4054 | 4054 |
/// @} |
4055 | 4055 |
} |
4056 | 4056 |
|
4057 | 4057 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 | 55 |
#ifdef DOXYGEN |
56 | 56 |
typedef GR::ArcMap<Value> FlowMap; |
57 | 57 |
#else |
58 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 | 59 |
#endif |
60 | 60 |
|
61 | 61 |
/// \brief Instantiates a FlowMap. |
62 | 62 |
/// |
63 | 63 |
/// This function instantiates a \ref FlowMap. |
64 | 64 |
/// \param digraph The digraph for which we would like to define |
65 | 65 |
/// the flow map. |
66 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
67 | 67 |
return new FlowMap(digraph); |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
71 | 71 |
/// |
72 | 72 |
/// The elevator type used by Preflow algorithm. |
73 | 73 |
/// |
74 | 74 |
/// \sa Elevator, LinkedElevator |
75 | 75 |
#ifdef DOXYGEN |
76 | 76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
77 | 77 |
#else |
78 | 78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
79 | 79 |
#endif |
80 | 80 |
|
81 | 81 |
/// \brief Instantiates an Elevator. |
82 | 82 |
/// |
83 | 83 |
/// This function instantiates an \ref Elevator. |
84 | 84 |
/// \param digraph The digraph for which we would like to define |
85 | 85 |
/// the elevator. |
86 | 86 |
/// \param max_level The maximum level of the elevator. |
87 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
88 | 88 |
return new Elevator(digraph, max_level); |
89 | 89 |
} |
90 | 90 |
|
91 | 91 |
/// \brief The tolerance used by the algorithm |
92 | 92 |
/// |
93 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
94 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
95 | 95 |
|
96 | 96 |
}; |
97 | 97 |
|
98 | 98 |
|
99 | 99 |
/// \ingroup max_flow |
100 | 100 |
/// |
101 | 101 |
/// \brief %Preflow algorithm class. |
102 | 102 |
/// |
103 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
104 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
105 | 105 |
/// "flow of maximum value" in a digraph \ref clrs01algorithms, |
106 | 106 |
/// \ref amo93networkflows, \ref goldberg88newapproach. |
107 | 107 |
/// The preflow algorithms are the fastest known maximum |
108 | 108 |
/// flow algorithms. The current implementation uses a mixture of the |
109 | 109 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
110 | 110 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
111 | 111 |
/// |
112 | 112 |
/// The algorithm consists of two phases. After the first phase |
113 | 113 |
/// the maximum flow value and the minimum cut is obtained. The |
114 | 114 |
/// second phase constructs a feasible maximum flow on each arc. |
115 | 115 |
/// |
116 | 116 |
/// \warning This implementation cannot handle infinite or very large |
117 | 117 |
/// capacities (e.g. the maximum value of \c CAP::Value). |
118 | 118 |
/// |
119 | 119 |
/// \tparam GR The type of the digraph the algorithm runs on. |
120 | 120 |
/// \tparam CAP The type of the capacity map. The default map |
121 | 121 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
122 | 122 |
/// \tparam TR The traits class that defines various types used by the |
123 | 123 |
/// algorithm. By default, it is \ref PreflowDefaultTraits |
124 | 124 |
/// "PreflowDefaultTraits<GR, CAP>". |
125 | 125 |
/// In most cases, this parameter should not be set directly, |
126 | 126 |
/// consider to use the named template parameters instead. |
127 | 127 |
#ifdef DOXYGEN |
128 | 128 |
template <typename GR, typename CAP, typename TR> |
129 | 129 |
#else |
130 | 130 |
template <typename GR, |
131 | 131 |
typename CAP = typename GR::template ArcMap<int>, |
132 | 132 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
133 | 133 |
#endif |
134 | 134 |
class Preflow { |
135 | 135 |
public: |
136 | 136 |
|
137 | 137 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
138 | 138 |
typedef TR Traits; |
139 | 139 |
///The type of the digraph the algorithm runs on. |
140 | 140 |
typedef typename Traits::Digraph Digraph; |
141 | 141 |
///The type of the capacity map. |
142 | 142 |
typedef typename Traits::CapacityMap CapacityMap; |
143 | 143 |
///The type of the flow values. |
144 | 144 |
typedef typename Traits::Value Value; |
145 | 145 |
|
146 | 146 |
///The type of the flow map. |
147 | 147 |
typedef typename Traits::FlowMap FlowMap; |
148 | 148 |
///The type of the elevator. |
149 | 149 |
typedef typename Traits::Elevator Elevator; |
150 | 150 |
///The type of the tolerance. |
151 | 151 |
typedef typename Traits::Tolerance Tolerance; |
152 | 152 |
|
153 | 153 |
private: |
154 | 154 |
|
155 | 155 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
156 | 156 |
|
157 | 157 |
const Digraph& _graph; |
158 | 158 |
const CapacityMap* _capacity; |
159 | 159 |
|
160 | 160 |
int _node_num; |
161 | 161 |
|
162 | 162 |
Node _source, _target; |
163 | 163 |
|
164 | 164 |
FlowMap* _flow; |
165 | 165 |
bool _local_flow; |
166 | 166 |
|
167 | 167 |
Elevator* _level; |
168 | 168 |
bool _local_level; |
169 | 169 |
|
170 | 170 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
171 | 171 |
ExcessMap* _excess; |
172 | 172 |
|
173 | 173 |
Tolerance _tolerance; |
174 | 174 |
|
175 | 175 |
bool _phase; |
176 | 176 |
|
177 | 177 |
|
178 | 178 |
void createStructures() { |
179 | 179 |
_node_num = countNodes(_graph); |
180 | 180 |
|
181 | 181 |
if (!_flow) { |
182 | 182 |
_flow = Traits::createFlowMap(_graph); |
183 | 183 |
_local_flow = true; |
184 | 184 |
} |
185 | 185 |
if (!_level) { |
186 | 186 |
_level = Traits::createElevator(_graph, _node_num); |
187 | 187 |
_local_level = true; |
188 | 188 |
} |
189 | 189 |
if (!_excess) { |
190 | 190 |
_excess = new ExcessMap(_graph); |
191 | 191 |
} |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
void destroyStructures() { |
195 | 195 |
if (_local_flow) { |
196 | 196 |
delete _flow; |
197 | 197 |
} |
198 | 198 |
if (_local_level) { |
199 | 199 |
delete _level; |
200 | 200 |
} |
201 | 201 |
if (_excess) { |
202 | 202 |
delete _excess; |
203 | 203 |
} |
204 | 204 |
} |
205 | 205 |
|
206 | 206 |
public: |
207 | 207 |
|
208 | 208 |
typedef Preflow Create; |
209 | 209 |
|
210 | 210 |
///\name Named Template Parameters |
211 | 211 |
|
212 | 212 |
///@{ |
213 | 213 |
|
214 | 214 |
template <typename T> |
215 | 215 |
struct SetFlowMapTraits : public Traits { |
216 | 216 |
typedef T FlowMap; |
217 | 217 |
static FlowMap *createFlowMap(const Digraph&) { |
218 | 218 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
219 | 219 |
return 0; // ignore warnings |
220 | 220 |
} |
221 | 221 |
}; |
222 | 222 |
|
223 | 223 |
/// \brief \ref named-templ-param "Named parameter" for setting |
224 | 224 |
/// FlowMap type |
225 | 225 |
/// |
226 | 226 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
227 | 227 |
/// type. |
228 | 228 |
template <typename T> |
229 | 229 |
struct SetFlowMap |
230 | 230 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > { |
231 | 231 |
typedef Preflow<Digraph, CapacityMap, |
232 | 232 |
SetFlowMapTraits<T> > Create; |
233 | 233 |
}; |
234 | 234 |
|
235 | 235 |
template <typename T> |
236 | 236 |
struct SetElevatorTraits : public Traits { |
237 | 237 |
typedef T Elevator; |
238 | 238 |
static Elevator *createElevator(const Digraph&, int) { |
239 | 239 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
240 | 240 |
return 0; // ignore warnings |
241 | 241 |
} |
242 | 242 |
}; |
243 | 243 |
|
244 | 244 |
/// \brief \ref named-templ-param "Named parameter" for setting |
245 | 245 |
/// Elevator type |
246 | 246 |
/// |
247 | 247 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
248 | 248 |
/// type. If this named parameter is used, then an external |
249 | 249 |
/// elevator object must be passed to the algorithm using the |
250 | 250 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
251 | 251 |
/// \ref run() or \ref init(). |
252 | 252 |
/// \sa SetStandardElevator |
253 | 253 |
template <typename T> |
254 | 254 |
struct SetElevator |
255 | 255 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > { |
256 | 256 |
typedef Preflow<Digraph, CapacityMap, |
257 | 257 |
SetElevatorTraits<T> > Create; |
258 | 258 |
}; |
259 | 259 |
|
260 | 260 |
template <typename T> |
261 | 261 |
struct SetStandardElevatorTraits : public Traits { |
262 | 262 |
typedef T Elevator; |
263 | 263 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
264 | 264 |
return new Elevator(digraph, max_level); |
265 | 265 |
} |
266 | 266 |
}; |
267 | 267 |
|
268 | 268 |
/// \brief \ref named-templ-param "Named parameter" for setting |
269 | 269 |
/// Elevator type with automatic allocation |
270 | 270 |
/// |
271 | 271 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
272 | 272 |
/// type with automatic allocation. |
273 | 273 |
/// The Elevator should have standard constructor interface to be |
274 | 274 |
/// able to automatically created by the algorithm (i.e. the |
275 | 275 |
/// digraph and the maximum level should be passed to it). |
276 | 276 |
/// However, an external elevator object could also be passed to the |
277 | 277 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
278 | 278 |
/// before calling \ref run() or \ref init(). |
279 | 279 |
/// \sa SetElevator |
280 | 280 |
template <typename T> |
281 | 281 |
struct SetStandardElevator |
282 | 282 |
: public Preflow<Digraph, CapacityMap, |
283 | 283 |
SetStandardElevatorTraits<T> > { |
284 | 284 |
typedef Preflow<Digraph, CapacityMap, |
285 | 285 |
SetStandardElevatorTraits<T> > Create; |
286 | 286 |
}; |
287 | 287 |
|
288 | 288 |
/// @} |
289 | 289 |
|
290 | 290 |
protected: |
291 | 291 |
|
292 | 292 |
Preflow() {} |
293 | 293 |
|
294 | 294 |
public: |
295 | 295 |
|
296 | 296 |
|
297 | 297 |
/// \brief The constructor of the class. |
298 | 298 |
/// |
299 | 299 |
/// The constructor of the class. |
300 | 300 |
/// \param digraph The digraph the algorithm runs on. |
301 | 301 |
/// \param capacity The capacity of the arcs. |
302 | 302 |
/// \param source The source node. |
303 | 303 |
/// \param target The target node. |
304 | 304 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
305 | 305 |
Node source, Node target) |
306 | 306 |
: _graph(digraph), _capacity(&capacity), |
307 | 307 |
_node_num(0), _source(source), _target(target), |
308 | 308 |
_flow(0), _local_flow(false), |
309 | 309 |
_level(0), _local_level(false), |
310 | 310 |
_excess(0), _tolerance(), _phase() {} |
311 | 311 |
|
312 | 312 |
/// \brief Destructor. |
313 | 313 |
/// |
314 | 314 |
/// Destructor. |
315 | 315 |
~Preflow() { |
316 | 316 |
destroyStructures(); |
317 | 317 |
} |
318 | 318 |
|
319 | 319 |
/// \brief Sets the capacity map. |
320 | 320 |
/// |
321 | 321 |
/// Sets the capacity map. |
322 | 322 |
/// \return <tt>(*this)</tt> |
323 | 323 |
Preflow& capacityMap(const CapacityMap& map) { |
324 | 324 |
_capacity = ↦ |
325 | 325 |
return *this; |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
/// \brief Sets the flow map. |
329 | 329 |
/// |
330 | 330 |
/// Sets the flow map. |
331 | 331 |
/// If you don't use this function before calling \ref run() or |
332 | 332 |
/// \ref init(), an instance will be allocated automatically. |
333 | 333 |
/// The destructor deallocates this automatically allocated map, |
334 | 334 |
/// of course. |
335 | 335 |
/// \return <tt>(*this)</tt> |
336 | 336 |
Preflow& flowMap(FlowMap& map) { |
337 | 337 |
if (_local_flow) { |
338 | 338 |
delete _flow; |
339 | 339 |
_local_flow = false; |
340 | 340 |
} |
341 | 341 |
_flow = ↦ |
342 | 342 |
return *this; |
343 | 343 |
} |
344 | 344 |
|
345 | 345 |
/// \brief Sets the source node. |
346 | 346 |
/// |
347 | 347 |
/// Sets the source node. |
348 | 348 |
/// \return <tt>(*this)</tt> |
349 | 349 |
Preflow& source(const Node& node) { |
350 | 350 |
_source = node; |
351 | 351 |
return *this; |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
/// \brief Sets the target node. |
355 | 355 |
/// |
356 | 356 |
/// Sets the target node. |
357 | 357 |
/// \return <tt>(*this)</tt> |
358 | 358 |
Preflow& target(const Node& node) { |
359 | 359 |
_target = node; |
360 | 360 |
return *this; |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
/// \brief Sets the elevator used by algorithm. |
364 | 364 |
/// |
365 | 365 |
/// Sets the elevator used by algorithm. |
366 | 366 |
/// If you don't use this function before calling \ref run() or |
367 | 367 |
/// \ref init(), an instance will be allocated automatically. |
368 | 368 |
/// The destructor deallocates this automatically allocated elevator, |
369 | 369 |
/// of course. |
370 | 370 |
/// \return <tt>(*this)</tt> |
371 | 371 |
Preflow& elevator(Elevator& elevator) { |
372 | 372 |
if (_local_level) { |
373 | 373 |
delete _level; |
374 | 374 |
_local_level = false; |
375 | 375 |
} |
376 | 376 |
_level = &elevator; |
377 | 377 |
return *this; |
378 | 378 |
} |
379 | 379 |
|
380 | 380 |
/// \brief Returns a const reference to the elevator. |
381 | 381 |
/// |
382 | 382 |
/// Returns a const reference to the elevator. |
383 | 383 |
/// |
384 | 384 |
/// \pre Either \ref run() or \ref init() must be called before |
385 | 385 |
/// using this function. |
386 | 386 |
const Elevator& elevator() const { |
387 | 387 |
return *_level; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
/// \brief Sets the tolerance used by the algorithm. |
391 | 391 |
/// |
392 | 392 |
/// Sets the tolerance object used by the algorithm. |
393 | 393 |
/// \return <tt>(*this)</tt> |
394 | 394 |
Preflow& tolerance(const Tolerance& tolerance) { |
395 | 395 |
_tolerance = tolerance; |
396 | 396 |
return *this; |
397 | 397 |
} |
398 | 398 |
|
399 | 399 |
/// \brief Returns a const reference to the tolerance. |
400 | 400 |
/// |
401 | 401 |
/// Returns a const reference to the tolerance object used by |
402 | 402 |
/// the algorithm. |
403 | 403 |
const Tolerance& tolerance() const { |
404 | 404 |
return _tolerance; |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
/// \name Execution Control |
408 | 408 |
/// The simplest way to execute the preflow algorithm is to use |
409 | 409 |
/// \ref run() or \ref runMinCut().\n |
410 | 410 |
/// If you need better control on the initial solution or the execution, |
411 | 411 |
/// you have to call one of the \ref init() functions first, then |
412 | 412 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
413 | 413 |
|
414 | 414 |
///@{ |
415 | 415 |
|
416 | 416 |
/// \brief Initializes the internal data structures. |
417 | 417 |
/// |
418 | 418 |
/// Initializes the internal data structures and sets the initial |
419 | 419 |
/// flow to zero on each arc. |
420 | 420 |
void init() { |
421 | 421 |
createStructures(); |
422 | 422 |
|
423 | 423 |
_phase = true; |
424 | 424 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
425 | 425 |
(*_excess)[n] = 0; |
426 | 426 |
} |
427 | 427 |
|
428 | 428 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
429 | 429 |
_flow->set(e, 0); |
430 | 430 |
} |
431 | 431 |
|
432 | 432 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
433 | 433 |
|
434 | 434 |
_level->initStart(); |
435 | 435 |
_level->initAddItem(_target); |
436 | 436 |
|
437 | 437 |
std::vector<Node> queue; |
438 | 438 |
reached[_source] = true; |
439 | 439 |
|
440 | 440 |
queue.push_back(_target); |
441 | 441 |
reached[_target] = true; |
442 | 442 |
while (!queue.empty()) { |
443 | 443 |
_level->initNewLevel(); |
444 | 444 |
std::vector<Node> nqueue; |
445 | 445 |
for (int i = 0; i < int(queue.size()); ++i) { |
446 | 446 |
Node n = queue[i]; |
447 | 447 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
448 | 448 |
Node u = _graph.source(e); |
449 | 449 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
450 | 450 |
reached[u] = true; |
451 | 451 |
_level->initAddItem(u); |
452 | 452 |
nqueue.push_back(u); |
453 | 453 |
} |
454 | 454 |
} |
455 | 455 |
} |
456 | 456 |
queue.swap(nqueue); |
457 | 457 |
} |
458 | 458 |
_level->initFinish(); |
459 | 459 |
|
460 | 460 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
461 | 461 |
if (_tolerance.positive((*_capacity)[e])) { |
462 | 462 |
Node u = _graph.target(e); |
463 | 463 |
if ((*_level)[u] == _level->maxLevel()) continue; |
464 | 464 |
_flow->set(e, (*_capacity)[e]); |
465 | 465 |
(*_excess)[u] += (*_capacity)[e]; |
466 | 466 |
if (u != _target && !_level->active(u)) { |
467 | 467 |
_level->activate(u); |
468 | 468 |
} |
469 | 469 |
} |
470 | 470 |
} |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
/// \brief Initializes the internal data structures using the |
474 | 474 |
/// given flow map. |
475 | 475 |
/// |
476 | 476 |
/// Initializes the internal data structures and sets the initial |
477 | 477 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
478 | 478 |
/// flow or at least a preflow, i.e. at each node excluding the |
479 | 479 |
/// source node the incoming flow should greater or equal to the |
480 | 480 |
/// outgoing flow. |
481 | 481 |
/// \return \c false if the given \c flowMap is not a preflow. |
482 | 482 |
template <typename FlowMap> |
483 | 483 |
bool init(const FlowMap& flowMap) { |
484 | 484 |
createStructures(); |
485 | 485 |
|
486 | 486 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
487 | 487 |
_flow->set(e, flowMap[e]); |
488 | 488 |
} |
489 | 489 |
|
490 | 490 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
491 | 491 |
Value excess = 0; |
492 | 492 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
493 | 493 |
excess += (*_flow)[e]; |
494 | 494 |
} |
495 | 495 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
496 | 496 |
excess -= (*_flow)[e]; |
497 | 497 |
} |
498 | 498 |
if (excess < 0 && n != _source) return false; |
499 | 499 |
(*_excess)[n] = excess; |
500 | 500 |
} |
501 | 501 |
|
502 | 502 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
503 | 503 |
|
504 | 504 |
_level->initStart(); |
505 | 505 |
_level->initAddItem(_target); |
506 | 506 |
|
507 | 507 |
std::vector<Node> queue; |
508 | 508 |
reached[_source] = true; |
509 | 509 |
|
510 | 510 |
queue.push_back(_target); |
511 | 511 |
reached[_target] = true; |
512 | 512 |
while (!queue.empty()) { |
513 | 513 |
_level->initNewLevel(); |
514 | 514 |
std::vector<Node> nqueue; |
515 | 515 |
for (int i = 0; i < int(queue.size()); ++i) { |
516 | 516 |
Node n = queue[i]; |
517 | 517 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
518 | 518 |
Node u = _graph.source(e); |
519 | 519 |
if (!reached[u] && |
520 | 520 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
521 | 521 |
reached[u] = true; |
522 | 522 |
_level->initAddItem(u); |
523 | 523 |
nqueue.push_back(u); |
524 | 524 |
} |
525 | 525 |
} |
526 | 526 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
527 | 527 |
Node v = _graph.target(e); |
528 | 528 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
529 | 529 |
reached[v] = true; |
530 | 530 |
_level->initAddItem(v); |
531 | 531 |
nqueue.push_back(v); |
532 | 532 |
} |
533 | 533 |
} |
534 | 534 |
} |
535 | 535 |
queue.swap(nqueue); |
536 | 536 |
} |
537 | 537 |
_level->initFinish(); |
538 | 538 |
|
539 | 539 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
540 | 540 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
541 | 541 |
if (_tolerance.positive(rem)) { |
542 | 542 |
Node u = _graph.target(e); |
543 | 543 |
if ((*_level)[u] == _level->maxLevel()) continue; |
544 | 544 |
_flow->set(e, (*_capacity)[e]); |
545 | 545 |
(*_excess)[u] += rem; |
546 | 546 |
} |
547 | 547 |
} |
548 | 548 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
549 | 549 |
Value rem = (*_flow)[e]; |
550 | 550 |
if (_tolerance.positive(rem)) { |
551 | 551 |
Node v = _graph.source(e); |
552 | 552 |
if ((*_level)[v] == _level->maxLevel()) continue; |
553 | 553 |
_flow->set(e, 0); |
554 | 554 |
(*_excess)[v] += rem; |
555 | 555 |
} |
556 | 556 |
} |
557 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
557 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
558 | 558 |
if(n!=_source && n!=_target && _tolerance.positive((*_excess)[n])) |
559 | 559 |
_level->activate(n); |
560 |
|
|
560 |
|
|
561 | 561 |
return true; |
562 | 562 |
} |
563 | 563 |
|
564 | 564 |
/// \brief Starts the first phase of the preflow algorithm. |
565 | 565 |
/// |
566 | 566 |
/// The preflow algorithm consists of two phases, this method runs |
567 | 567 |
/// the first phase. After the first phase the maximum flow value |
568 | 568 |
/// and a minimum value cut can already be computed, although a |
569 | 569 |
/// maximum flow is not yet obtained. So after calling this method |
570 | 570 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
571 | 571 |
/// minCut() returns a minimum cut. |
572 | 572 |
/// \pre One of the \ref init() functions must be called before |
573 | 573 |
/// using this function. |
574 | 574 |
void startFirstPhase() { |
575 | 575 |
_phase = true; |
576 | 576 |
|
577 | 577 |
while (true) { |
578 | 578 |
int num = _node_num; |
579 | 579 |
|
580 | 580 |
Node n = INVALID; |
581 | 581 |
int level = -1; |
582 | 582 |
|
583 | 583 |
while (num > 0) { |
584 | 584 |
n = _level->highestActive(); |
585 | 585 |
if (n == INVALID) goto first_phase_done; |
586 | 586 |
level = _level->highestActiveLevel(); |
587 | 587 |
--num; |
588 |
|
|
588 |
|
|
589 | 589 |
Value excess = (*_excess)[n]; |
590 | 590 |
int new_level = _level->maxLevel(); |
591 | 591 |
|
592 | 592 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
593 | 593 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
594 | 594 |
if (!_tolerance.positive(rem)) continue; |
595 | 595 |
Node v = _graph.target(e); |
596 | 596 |
if ((*_level)[v] < level) { |
597 | 597 |
if (!_level->active(v) && v != _target) { |
598 | 598 |
_level->activate(v); |
599 | 599 |
} |
600 | 600 |
if (!_tolerance.less(rem, excess)) { |
601 | 601 |
_flow->set(e, (*_flow)[e] + excess); |
602 | 602 |
(*_excess)[v] += excess; |
603 | 603 |
excess = 0; |
604 | 604 |
goto no_more_push_1; |
605 | 605 |
} else { |
606 | 606 |
excess -= rem; |
607 | 607 |
(*_excess)[v] += rem; |
608 | 608 |
_flow->set(e, (*_capacity)[e]); |
609 | 609 |
} |
610 | 610 |
} else if (new_level > (*_level)[v]) { |
611 | 611 |
new_level = (*_level)[v]; |
612 | 612 |
} |
613 | 613 |
} |
614 | 614 |
|
615 | 615 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
616 | 616 |
Value rem = (*_flow)[e]; |
617 | 617 |
if (!_tolerance.positive(rem)) continue; |
618 | 618 |
Node v = _graph.source(e); |
619 | 619 |
if ((*_level)[v] < level) { |
620 | 620 |
if (!_level->active(v) && v != _target) { |
621 | 621 |
_level->activate(v); |
622 | 622 |
} |
623 | 623 |
if (!_tolerance.less(rem, excess)) { |
624 | 624 |
_flow->set(e, (*_flow)[e] - excess); |
625 | 625 |
(*_excess)[v] += excess; |
626 | 626 |
excess = 0; |
627 | 627 |
goto no_more_push_1; |
628 | 628 |
} else { |
629 | 629 |
excess -= rem; |
630 | 630 |
(*_excess)[v] += rem; |
631 | 631 |
_flow->set(e, 0); |
632 | 632 |
} |
633 | 633 |
} else if (new_level > (*_level)[v]) { |
634 | 634 |
new_level = (*_level)[v]; |
635 | 635 |
} |
636 | 636 |
} |
637 | 637 |
|
638 | 638 |
no_more_push_1: |
639 | 639 |
|
640 | 640 |
(*_excess)[n] = excess; |
641 | 641 |
|
642 | 642 |
if (excess != 0) { |
643 | 643 |
if (new_level + 1 < _level->maxLevel()) { |
644 | 644 |
_level->liftHighestActive(new_level + 1); |
645 | 645 |
} else { |
646 | 646 |
_level->liftHighestActiveToTop(); |
647 | 647 |
} |
648 | 648 |
if (_level->emptyLevel(level)) { |
649 | 649 |
_level->liftToTop(level); |
650 | 650 |
} |
651 | 651 |
} else { |
652 | 652 |
_level->deactivate(n); |
653 | 653 |
} |
654 | 654 |
} |
655 | 655 |
|
656 | 656 |
num = _node_num * 20; |
657 | 657 |
while (num > 0) { |
658 | 658 |
while (level >= 0 && _level->activeFree(level)) { |
659 | 659 |
--level; |
660 | 660 |
} |
661 | 661 |
if (level == -1) { |
662 | 662 |
n = _level->highestActive(); |
663 | 663 |
level = _level->highestActiveLevel(); |
664 | 664 |
if (n == INVALID) goto first_phase_done; |
665 | 665 |
} else { |
666 | 666 |
n = _level->activeOn(level); |
667 | 667 |
} |
668 | 668 |
--num; |
669 | 669 |
|
670 | 670 |
Value excess = (*_excess)[n]; |
671 | 671 |
int new_level = _level->maxLevel(); |
672 | 672 |
|
673 | 673 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
674 | 674 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
675 | 675 |
if (!_tolerance.positive(rem)) continue; |
676 | 676 |
Node v = _graph.target(e); |
677 | 677 |
if ((*_level)[v] < level) { |
678 | 678 |
if (!_level->active(v) && v != _target) { |
679 | 679 |
_level->activate(v); |
680 | 680 |
} |
681 | 681 |
if (!_tolerance.less(rem, excess)) { |
682 | 682 |
_flow->set(e, (*_flow)[e] + excess); |
683 | 683 |
(*_excess)[v] += excess; |
684 | 684 |
excess = 0; |
685 | 685 |
goto no_more_push_2; |
686 | 686 |
} else { |
687 | 687 |
excess -= rem; |
688 | 688 |
(*_excess)[v] += rem; |
689 | 689 |
_flow->set(e, (*_capacity)[e]); |
690 | 690 |
} |
691 | 691 |
} else if (new_level > (*_level)[v]) { |
692 | 692 |
new_level = (*_level)[v]; |
693 | 693 |
} |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
697 | 697 |
Value rem = (*_flow)[e]; |
698 | 698 |
if (!_tolerance.positive(rem)) continue; |
699 | 699 |
Node v = _graph.source(e); |
700 | 700 |
if ((*_level)[v] < level) { |
701 | 701 |
if (!_level->active(v) && v != _target) { |
702 | 702 |
_level->activate(v); |
703 | 703 |
} |
704 | 704 |
if (!_tolerance.less(rem, excess)) { |
705 | 705 |
_flow->set(e, (*_flow)[e] - excess); |
706 | 706 |
(*_excess)[v] += excess; |
707 | 707 |
excess = 0; |
708 | 708 |
goto no_more_push_2; |
709 | 709 |
} else { |
710 | 710 |
excess -= rem; |
711 | 711 |
(*_excess)[v] += rem; |
712 | 712 |
_flow->set(e, 0); |
713 | 713 |
} |
714 | 714 |
} else if (new_level > (*_level)[v]) { |
715 | 715 |
new_level = (*_level)[v]; |
716 | 716 |
} |
717 | 717 |
} |
718 | 718 |
|
719 | 719 |
no_more_push_2: |
720 | 720 |
|
721 | 721 |
(*_excess)[n] = excess; |
722 | 722 |
|
723 | 723 |
if (excess != 0) { |
724 | 724 |
if (new_level + 1 < _level->maxLevel()) { |
725 | 725 |
_level->liftActiveOn(level, new_level + 1); |
726 | 726 |
} else { |
727 | 727 |
_level->liftActiveToTop(level); |
728 | 728 |
} |
729 | 729 |
if (_level->emptyLevel(level)) { |
730 | 730 |
_level->liftToTop(level); |
731 | 731 |
} |
732 | 732 |
} else { |
733 | 733 |
_level->deactivate(n); |
734 | 734 |
} |
735 | 735 |
} |
736 | 736 |
} |
737 | 737 |
first_phase_done:; |
738 | 738 |
} |
739 | 739 |
|
740 | 740 |
/// \brief Starts the second phase of the preflow algorithm. |
741 | 741 |
/// |
742 | 742 |
/// The preflow algorithm consists of two phases, this method runs |
743 | 743 |
/// the second phase. After calling one of the \ref init() functions |
744 | 744 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
745 | 745 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
746 | 746 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
747 | 747 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
748 | 748 |
/// must be called before using this function. |
749 | 749 |
void startSecondPhase() { |
750 | 750 |
_phase = false; |
751 | 751 |
|
752 | 752 |
typename Digraph::template NodeMap<bool> reached(_graph); |
753 | 753 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
754 | 754 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
755 | 755 |
} |
756 | 756 |
|
757 | 757 |
_level->initStart(); |
758 | 758 |
_level->initAddItem(_source); |
759 | 759 |
|
760 | 760 |
std::vector<Node> queue; |
761 | 761 |
queue.push_back(_source); |
762 | 762 |
reached[_source] = true; |
763 | 763 |
|
764 | 764 |
while (!queue.empty()) { |
765 | 765 |
_level->initNewLevel(); |
766 | 766 |
std::vector<Node> nqueue; |
767 | 767 |
for (int i = 0; i < int(queue.size()); ++i) { |
768 | 768 |
Node n = queue[i]; |
769 | 769 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
770 | 770 |
Node v = _graph.target(e); |
771 | 771 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
772 | 772 |
reached[v] = true; |
773 | 773 |
_level->initAddItem(v); |
774 | 774 |
nqueue.push_back(v); |
775 | 775 |
} |
776 | 776 |
} |
777 | 777 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
778 | 778 |
Node u = _graph.source(e); |
779 | 779 |
if (!reached[u] && |
780 | 780 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
781 | 781 |
reached[u] = true; |
782 | 782 |
_level->initAddItem(u); |
783 | 783 |
nqueue.push_back(u); |
784 | 784 |
} |
785 | 785 |
} |
786 | 786 |
} |
787 | 787 |
queue.swap(nqueue); |
788 | 788 |
} |
789 | 789 |
_level->initFinish(); |
790 | 790 |
|
791 | 791 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
792 | 792 |
if (!reached[n]) { |
793 | 793 |
_level->dirtyTopButOne(n); |
794 | 794 |
} else if ((*_excess)[n] > 0 && _target != n) { |
795 | 795 |
_level->activate(n); |
796 | 796 |
} |
797 | 797 |
} |
798 | 798 |
|
799 | 799 |
Node n; |
800 | 800 |
while ((n = _level->highestActive()) != INVALID) { |
801 | 801 |
Value excess = (*_excess)[n]; |
802 | 802 |
int level = _level->highestActiveLevel(); |
803 | 803 |
int new_level = _level->maxLevel(); |
804 | 804 |
|
805 | 805 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
806 | 806 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
807 | 807 |
if (!_tolerance.positive(rem)) continue; |
808 | 808 |
Node v = _graph.target(e); |
809 | 809 |
if ((*_level)[v] < level) { |
810 | 810 |
if (!_level->active(v) && v != _source) { |
811 | 811 |
_level->activate(v); |
812 | 812 |
} |
813 | 813 |
if (!_tolerance.less(rem, excess)) { |
814 | 814 |
_flow->set(e, (*_flow)[e] + excess); |
815 | 815 |
(*_excess)[v] += excess; |
816 | 816 |
excess = 0; |
817 | 817 |
goto no_more_push; |
818 | 818 |
} else { |
819 | 819 |
excess -= rem; |
820 | 820 |
(*_excess)[v] += rem; |
821 | 821 |
_flow->set(e, (*_capacity)[e]); |
822 | 822 |
} |
823 | 823 |
} else if (new_level > (*_level)[v]) { |
824 | 824 |
new_level = (*_level)[v]; |
825 | 825 |
} |
826 | 826 |
} |
827 | 827 |
|
828 | 828 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
829 | 829 |
Value rem = (*_flow)[e]; |
830 | 830 |
if (!_tolerance.positive(rem)) continue; |
831 | 831 |
Node v = _graph.source(e); |
832 | 832 |
if ((*_level)[v] < level) { |
833 | 833 |
if (!_level->active(v) && v != _source) { |
834 | 834 |
_level->activate(v); |
835 | 835 |
} |
836 | 836 |
if (!_tolerance.less(rem, excess)) { |
837 | 837 |
_flow->set(e, (*_flow)[e] - excess); |
838 | 838 |
(*_excess)[v] += excess; |
839 | 839 |
excess = 0; |
840 | 840 |
goto no_more_push; |
841 | 841 |
} else { |
842 | 842 |
excess -= rem; |
843 | 843 |
(*_excess)[v] += rem; |
844 | 844 |
_flow->set(e, 0); |
845 | 845 |
} |
846 | 846 |
} else if (new_level > (*_level)[v]) { |
847 | 847 |
new_level = (*_level)[v]; |
848 | 848 |
} |
849 | 849 |
} |
850 | 850 |
|
851 | 851 |
no_more_push: |
852 | 852 |
|
853 | 853 |
(*_excess)[n] = excess; |
854 | 854 |
|
855 | 855 |
if (excess != 0) { |
856 | 856 |
if (new_level + 1 < _level->maxLevel()) { |
857 | 857 |
_level->liftHighestActive(new_level + 1); |
858 | 858 |
} else { |
859 | 859 |
// Calculation error |
860 | 860 |
_level->liftHighestActiveToTop(); |
861 | 861 |
} |
862 | 862 |
if (_level->emptyLevel(level)) { |
863 | 863 |
// Calculation error |
864 | 864 |
_level->liftToTop(level); |
865 | 865 |
} |
866 | 866 |
} else { |
867 | 867 |
_level->deactivate(n); |
868 | 868 |
} |
869 | 869 |
|
870 | 870 |
} |
871 | 871 |
} |
872 | 872 |
|
873 | 873 |
/// \brief Runs the preflow algorithm. |
874 | 874 |
/// |
875 | 875 |
/// Runs the preflow algorithm. |
876 | 876 |
/// \note pf.run() is just a shortcut of the following code. |
877 | 877 |
/// \code |
878 | 878 |
/// pf.init(); |
879 | 879 |
/// pf.startFirstPhase(); |
880 | 880 |
/// pf.startSecondPhase(); |
881 | 881 |
/// \endcode |
882 | 882 |
void run() { |
883 | 883 |
init(); |
884 | 884 |
startFirstPhase(); |
885 | 885 |
startSecondPhase(); |
886 | 886 |
} |
887 | 887 |
|
888 | 888 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
889 | 889 |
/// |
890 | 890 |
/// Runs the preflow algorithm to compute the minimum cut. |
891 | 891 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
892 | 892 |
/// \code |
893 | 893 |
/// pf.init(); |
894 | 894 |
/// pf.startFirstPhase(); |
895 | 895 |
/// \endcode |
896 | 896 |
void runMinCut() { |
897 | 897 |
init(); |
898 | 898 |
startFirstPhase(); |
899 | 899 |
} |
900 | 900 |
|
901 | 901 |
/// @} |
902 | 902 |
|
903 | 903 |
/// \name Query Functions |
904 | 904 |
/// The results of the preflow algorithm can be obtained using these |
905 | 905 |
/// functions.\n |
906 | 906 |
/// Either one of the \ref run() "run*()" functions or one of the |
907 | 907 |
/// \ref startFirstPhase() "start*()" functions should be called |
908 | 908 |
/// before using them. |
909 | 909 |
|
910 | 910 |
///@{ |
911 | 911 |
|
912 | 912 |
/// \brief Returns the value of the maximum flow. |
913 | 913 |
/// |
914 | 914 |
/// Returns the value of the maximum flow by returning the excess |
915 | 915 |
/// of the target node. This value equals to the value of |
916 | 916 |
/// the maximum flow already after the first phase of the algorithm. |
917 | 917 |
/// |
918 | 918 |
/// \pre Either \ref run() or \ref init() must be called before |
919 | 919 |
/// using this function. |
920 | 920 |
Value flowValue() const { |
921 | 921 |
return (*_excess)[_target]; |
922 | 922 |
} |
923 | 923 |
|
924 | 924 |
/// \brief Returns the flow value on the given arc. |
925 | 925 |
/// |
926 | 926 |
/// Returns the flow value on the given arc. This method can |
927 | 927 |
/// be called after the second phase of the algorithm. |
928 | 928 |
/// |
929 | 929 |
/// \pre Either \ref run() or \ref init() must be called before |
930 | 930 |
/// using this function. |
931 | 931 |
Value flow(const Arc& arc) const { |
932 | 932 |
return (*_flow)[arc]; |
933 | 933 |
} |
934 | 934 |
|
935 | 935 |
/// \brief Returns a const reference to the flow map. |
936 | 936 |
/// |
937 | 937 |
/// Returns a const reference to the arc map storing the found flow. |
938 | 938 |
/// This method can be called after the second phase of the algorithm. |
939 | 939 |
/// |
940 | 940 |
/// \pre Either \ref run() or \ref init() must be called before |
941 | 941 |
/// using this function. |
942 | 942 |
const FlowMap& flowMap() const { |
943 | 943 |
return *_flow; |
944 | 944 |
} |
945 | 945 |
|
946 | 946 |
/// \brief Returns \c true when the node is on the source side of the |
947 | 947 |
/// minimum cut. |
948 | 948 |
/// |
949 | 949 |
/// Returns true when the node is on the source side of the found |
950 | 950 |
/// minimum cut. This method can be called both after running \ref |
951 | 951 |
/// startFirstPhase() and \ref startSecondPhase(). |
952 | 952 |
/// |
953 | 953 |
/// \pre Either \ref run() or \ref init() must be called before |
954 | 954 |
/// using this function. |
955 | 955 |
bool minCut(const Node& node) const { |
956 | 956 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
957 | 957 |
} |
958 | 958 |
|
959 | 959 |
/// \brief Gives back a minimum value cut. |
960 | 960 |
/// |
961 | 961 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
962 | 962 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
963 | 963 |
/// node map with \c bool (or convertible) value type. |
964 | 964 |
/// |
965 | 965 |
/// This method can be called both after running \ref startFirstPhase() |
966 | 966 |
/// and \ref startSecondPhase(). The result after the second phase |
967 | 967 |
/// could be slightly different if inexact computation is used. |
968 | 968 |
/// |
969 | 969 |
/// \note This function calls \ref minCut() for each node, so it runs in |
970 | 970 |
/// O(n) time. |
971 | 971 |
/// |
972 | 972 |
/// \pre Either \ref run() or \ref init() must be called before |
973 | 973 |
/// using this function. |
974 | 974 |
template <typename CutMap> |
975 | 975 |
void minCutMap(CutMap& cutMap) const { |
976 | 976 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
977 | 977 |
cutMap.set(n, minCut(n)); |
978 | 978 |
} |
979 | 979 |
} |
980 | 980 |
|
981 | 981 |
/// @} |
982 | 982 |
}; |
983 | 983 |
} |
984 | 984 |
|
985 | 985 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dfs.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
|
26 | 26 |
#include "graph_test.h" |
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
38 | 38 |
"4\n" |
39 | 39 |
"5\n" |
40 | 40 |
"6\n" |
41 | 41 |
"@arcs\n" |
42 | 42 |
" label\n" |
43 | 43 |
"0 1 0\n" |
44 | 44 |
"1 2 1\n" |
45 | 45 |
"2 3 2\n" |
46 | 46 |
"1 4 3\n" |
47 | 47 |
"4 2 4\n" |
48 | 48 |
"4 5 5\n" |
49 | 49 |
"5 0 6\n" |
50 | 50 |
"6 3 7\n" |
51 | 51 |
"@attributes\n" |
52 | 52 |
"source 0\n" |
53 | 53 |
"target 5\n" |
54 | 54 |
"source1 6\n" |
55 | 55 |
"target1 3\n"; |
56 | 56 |
|
57 | 57 |
|
58 | 58 |
void checkDfsCompile() |
59 | 59 |
{ |
60 | 60 |
typedef concepts::Digraph Digraph; |
61 | 61 |
typedef Dfs<Digraph> DType; |
62 | 62 |
typedef Digraph::Node Node; |
63 | 63 |
typedef Digraph::Arc Arc; |
64 | 64 |
|
65 | 65 |
Digraph G; |
66 | 66 |
Node s, t; |
67 | 67 |
Arc e; |
68 | 68 |
int l, i; |
69 | 69 |
bool b; |
70 | 70 |
DType::DistMap d(G); |
71 | 71 |
DType::PredMap p(G); |
72 | 72 |
Path<Digraph> pp; |
73 | 73 |
concepts::ReadMap<Arc,bool> am; |
74 | 74 |
|
75 | 75 |
{ |
76 | 76 |
DType dfs_test(G); |
77 | 77 |
const DType& const_dfs_test = dfs_test; |
78 | 78 |
|
79 | 79 |
dfs_test.run(s); |
80 | 80 |
dfs_test.run(s,t); |
81 | 81 |
dfs_test.run(); |
82 | 82 |
|
83 | 83 |
dfs_test.init(); |
84 | 84 |
dfs_test.addSource(s); |
85 | 85 |
e = dfs_test.processNextArc(); |
86 | 86 |
e = const_dfs_test.nextArc(); |
87 | 87 |
b = const_dfs_test.emptyQueue(); |
88 | 88 |
i = const_dfs_test.queueSize(); |
89 | 89 |
|
90 | 90 |
dfs_test.start(); |
91 | 91 |
dfs_test.start(t); |
92 | 92 |
dfs_test.start(am); |
93 | 93 |
|
94 | 94 |
l = const_dfs_test.dist(t); |
95 | 95 |
e = const_dfs_test.predArc(t); |
96 | 96 |
s = const_dfs_test.predNode(t); |
97 | 97 |
b = const_dfs_test.reached(t); |
98 | 98 |
d = const_dfs_test.distMap(); |
99 | 99 |
p = const_dfs_test.predMap(); |
100 | 100 |
pp = const_dfs_test.path(t); |
101 | 101 |
} |
102 | 102 |
{ |
103 | 103 |
DType |
104 | 104 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
106 | 106 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
107 | 107 |
::SetStandardProcessedMap |
108 | 108 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
109 | 109 |
::Create dfs_test(G); |
110 | 110 |
|
111 | 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
112 | 112 |
concepts::ReadWriteMap<Node,int> dist_map; |
113 | 113 |
concepts::ReadWriteMap<Node,bool> reached_map; |
114 | 114 |
concepts::WriteMap<Node,bool> processed_map; |
115 | 115 |
|
116 | 116 |
dfs_test |
117 | 117 |
.predMap(pred_map) |
118 | 118 |
.distMap(dist_map) |
119 | 119 |
.reachedMap(reached_map) |
120 | 120 |
.processedMap(processed_map); |
121 | 121 |
|
122 | 122 |
dfs_test.run(s); |
123 | 123 |
dfs_test.run(s,t); |
124 | 124 |
dfs_test.run(); |
125 | 125 |
dfs_test.init(); |
126 | 126 |
|
127 | 127 |
dfs_test.addSource(s); |
128 | 128 |
e = dfs_test.processNextArc(); |
129 | 129 |
e = dfs_test.nextArc(); |
130 | 130 |
b = dfs_test.emptyQueue(); |
131 | 131 |
i = dfs_test.queueSize(); |
132 | 132 |
|
133 | 133 |
dfs_test.start(); |
134 | 134 |
dfs_test.start(t); |
135 | 135 |
dfs_test.start(am); |
136 | 136 |
|
137 | 137 |
l = dfs_test.dist(t); |
138 | 138 |
e = dfs_test.predArc(t); |
139 | 139 |
s = dfs_test.predNode(t); |
140 | 140 |
b = dfs_test.reached(t); |
141 | 141 |
pp = dfs_test.path(t); |
142 | 142 |
} |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
void checkDfsFunctionCompile() |
146 | 146 |
{ |
147 | 147 |
typedef int VType; |
148 | 148 |
typedef concepts::Digraph Digraph; |
149 | 149 |
typedef Digraph::Arc Arc; |
150 | 150 |
typedef Digraph::Node Node; |
151 | 151 |
|
152 | 152 |
Digraph g; |
153 | 153 |
bool b; |
154 | 154 |
dfs(g).run(Node()); |
155 | 155 |
b=dfs(g).run(Node(),Node()); |
156 | 156 |
dfs(g).run(); |
157 | 157 |
dfs(g) |
158 | 158 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
159 | 159 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
160 | 160 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
161 | 161 |
.processedMap(concepts::WriteMap<Node,bool>()) |
162 | 162 |
.run(Node()); |
163 | 163 |
b=dfs(g) |
164 | 164 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
165 | 165 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
166 | 166 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
167 | 167 |
.processedMap(concepts::WriteMap<Node,bool>()) |
168 | 168 |
.path(concepts::Path<Digraph>()) |
169 | 169 |
.dist(VType()) |
170 | 170 |
.run(Node(),Node()); |
171 | 171 |
dfs(g) |
172 | 172 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
173 | 173 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
174 | 174 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
175 | 175 |
.processedMap(concepts::WriteMap<Node,bool>()) |
176 | 176 |
.run(); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
template <class Digraph> |
180 | 180 |
void checkDfs() { |
181 | 181 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
182 | 182 |
|
183 | 183 |
Digraph G; |
184 | 184 |
Node s, t; |
185 | 185 |
Node s1, t1; |
186 | 186 |
|
187 | 187 |
std::istringstream input(test_lgf); |
188 | 188 |
digraphReader(G, input). |
189 | 189 |
node("source", s). |
190 | 190 |
node("target", t). |
191 | 191 |
node("source1", s1). |
192 | 192 |
node("target1", t1). |
193 | 193 |
run(); |
194 | 194 |
|
195 | 195 |
Dfs<Digraph> dfs_test(G); |
196 | 196 |
dfs_test.run(s); |
197 | 197 |
|
198 | 198 |
Path<Digraph> p = dfs_test.path(t); |
199 | 199 |
check(p.length() == dfs_test.dist(t),"path() found a wrong path."); |
200 | 200 |
check(checkPath(G, p),"path() found a wrong path."); |
201 | 201 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
202 | 202 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
203 | 203 |
|
204 | 204 |
for(NodeIt v(G); v!=INVALID; ++v) { |
205 | 205 |
if (dfs_test.reached(v)) { |
206 | 206 |
check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree."); |
207 | 207 |
if (dfs_test.predArc(v)!=INVALID ) { |
208 | 208 |
Arc e=dfs_test.predArc(v); |
209 | 209 |
Node u=G.source(e); |
210 | 210 |
check(u==dfs_test.predNode(v),"Wrong tree."); |
211 | 211 |
check(dfs_test.dist(v) - dfs_test.dist(u) == 1, |
212 | 212 |
"Wrong distance. (" << dfs_test.dist(u) << "->" |
213 | 213 |
<< dfs_test.dist(v) << ")"); |
214 | 214 |
} |
215 | 215 |
} |
216 | 216 |
} |
217 | 217 |
|
218 | 218 |
{ |
219 | 219 |
Dfs<Digraph> dfs(G); |
220 | 220 |
check(dfs.run(s1,t1) && dfs.reached(t1),"Node 3 is reachable from Node 6."); |
221 | 221 |
} |
222 |
|
|
222 |
|
|
223 | 223 |
{ |
224 | 224 |
NullMap<Node,Arc> myPredMap; |
225 | 225 |
dfs(G).predMap(myPredMap).run(s); |
226 | 226 |
} |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
int main() |
230 | 230 |
{ |
231 | 231 |
checkDfs<ListDigraph>(); |
232 | 232 |
checkDfs<SmartDigraph>(); |
233 | 233 |
return 0; |
234 | 234 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/smart_graph.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/lgf_reader.h> |
22 | 22 |
#include <lemon/error.h> |
23 | 23 |
|
24 | 24 |
#include "test_tools.h" |
25 | 25 |
|
26 | 26 |
using namespace std; |
27 | 27 |
using namespace lemon; |
28 | 28 |
|
29 | 29 |
void digraph_copy_test() { |
30 | 30 |
const int nn = 10; |
31 | 31 |
|
32 | 32 |
// Build a digraph |
33 | 33 |
SmartDigraph from; |
34 | 34 |
SmartDigraph::NodeMap<int> fnm(from); |
35 | 35 |
SmartDigraph::ArcMap<int> fam(from); |
36 | 36 |
SmartDigraph::Node fn = INVALID; |
37 | 37 |
SmartDigraph::Arc fa = INVALID; |
38 | 38 |
|
39 | 39 |
std::vector<SmartDigraph::Node> fnv; |
40 | 40 |
for (int i = 0; i < nn; ++i) { |
41 | 41 |
SmartDigraph::Node node = from.addNode(); |
42 | 42 |
fnv.push_back(node); |
43 | 43 |
fnm[node] = i * i; |
44 | 44 |
if (i == 0) fn = node; |
45 | 45 |
} |
46 | 46 |
|
47 | 47 |
for (int i = 0; i < nn; ++i) { |
48 | 48 |
for (int j = 0; j < nn; ++j) { |
49 | 49 |
SmartDigraph::Arc arc = from.addArc(fnv[i], fnv[j]); |
50 | 50 |
fam[arc] = i + j * j; |
51 | 51 |
if (i == 0 && j == 0) fa = arc; |
52 | 52 |
} |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
// Test digraph copy |
56 | 56 |
ListDigraph to; |
57 | 57 |
ListDigraph::NodeMap<int> tnm(to); |
58 | 58 |
ListDigraph::ArcMap<int> tam(to); |
59 | 59 |
ListDigraph::Node tn; |
60 | 60 |
ListDigraph::Arc ta; |
61 | 61 |
|
62 | 62 |
SmartDigraph::NodeMap<ListDigraph::Node> nr(from); |
63 | 63 |
SmartDigraph::ArcMap<ListDigraph::Arc> er(from); |
64 | 64 |
|
65 | 65 |
ListDigraph::NodeMap<SmartDigraph::Node> ncr(to); |
66 | 66 |
ListDigraph::ArcMap<SmartDigraph::Arc> ecr(to); |
67 | 67 |
|
68 | 68 |
digraphCopy(from, to). |
69 | 69 |
nodeMap(fnm, tnm).arcMap(fam, tam). |
70 | 70 |
nodeRef(nr).arcRef(er). |
71 | 71 |
nodeCrossRef(ncr).arcCrossRef(ecr). |
72 | 72 |
node(fn, tn).arc(fa, ta).run(); |
73 |
|
|
73 |
|
|
74 | 74 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
75 | 75 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
76 | 76 |
|
77 | 77 |
for (SmartDigraph::NodeIt it(from); it != INVALID; ++it) { |
78 | 78 |
check(ncr[nr[it]] == it, "Wrong copy."); |
79 | 79 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
for (SmartDigraph::ArcIt it(from); it != INVALID; ++it) { |
83 | 83 |
check(ecr[er[it]] == it, "Wrong copy."); |
84 | 84 |
check(fam[it] == tam[er[it]], "Wrong copy."); |
85 | 85 |
check(nr[from.source(it)] == to.source(er[it]), "Wrong copy."); |
86 | 86 |
check(nr[from.target(it)] == to.target(er[it]), "Wrong copy."); |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
for (ListDigraph::NodeIt it(to); it != INVALID; ++it) { |
90 | 90 |
check(nr[ncr[it]] == it, "Wrong copy."); |
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
for (ListDigraph::ArcIt it(to); it != INVALID; ++it) { |
94 | 94 |
check(er[ecr[it]] == it, "Wrong copy."); |
95 | 95 |
} |
96 | 96 |
check(tn == nr[fn], "Wrong copy."); |
97 | 97 |
check(ta == er[fa], "Wrong copy."); |
98 | 98 |
|
99 | 99 |
// Test repeated copy |
100 | 100 |
digraphCopy(from, to).run(); |
101 |
|
|
101 |
|
|
102 | 102 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
103 | 103 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
void graph_copy_test() { |
107 | 107 |
const int nn = 10; |
108 | 108 |
|
109 | 109 |
// Build a graph |
110 | 110 |
SmartGraph from; |
111 | 111 |
SmartGraph::NodeMap<int> fnm(from); |
112 | 112 |
SmartGraph::ArcMap<int> fam(from); |
113 | 113 |
SmartGraph::EdgeMap<int> fem(from); |
114 | 114 |
SmartGraph::Node fn = INVALID; |
115 | 115 |
SmartGraph::Arc fa = INVALID; |
116 | 116 |
SmartGraph::Edge fe = INVALID; |
117 | 117 |
|
118 | 118 |
std::vector<SmartGraph::Node> fnv; |
119 | 119 |
for (int i = 0; i < nn; ++i) { |
120 | 120 |
SmartGraph::Node node = from.addNode(); |
121 | 121 |
fnv.push_back(node); |
122 | 122 |
fnm[node] = i * i; |
123 | 123 |
if (i == 0) fn = node; |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
for (int i = 0; i < nn; ++i) { |
127 | 127 |
for (int j = 0; j < nn; ++j) { |
128 | 128 |
SmartGraph::Edge edge = from.addEdge(fnv[i], fnv[j]); |
129 | 129 |
fem[edge] = i * i + j * j; |
130 | 130 |
fam[from.direct(edge, true)] = i + j * j; |
131 | 131 |
fam[from.direct(edge, false)] = i * i + j; |
132 | 132 |
if (i == 0 && j == 0) fa = from.direct(edge, true); |
133 | 133 |
if (i == 0 && j == 0) fe = edge; |
134 | 134 |
} |
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
// Test graph copy |
138 | 138 |
ListGraph to; |
139 | 139 |
ListGraph::NodeMap<int> tnm(to); |
140 | 140 |
ListGraph::ArcMap<int> tam(to); |
141 | 141 |
ListGraph::EdgeMap<int> tem(to); |
142 | 142 |
ListGraph::Node tn; |
143 | 143 |
ListGraph::Arc ta; |
144 | 144 |
ListGraph::Edge te; |
145 | 145 |
|
146 | 146 |
SmartGraph::NodeMap<ListGraph::Node> nr(from); |
147 | 147 |
SmartGraph::ArcMap<ListGraph::Arc> ar(from); |
148 | 148 |
SmartGraph::EdgeMap<ListGraph::Edge> er(from); |
149 | 149 |
|
150 | 150 |
ListGraph::NodeMap<SmartGraph::Node> ncr(to); |
151 | 151 |
ListGraph::ArcMap<SmartGraph::Arc> acr(to); |
152 | 152 |
ListGraph::EdgeMap<SmartGraph::Edge> ecr(to); |
153 | 153 |
|
154 | 154 |
graphCopy(from, to). |
155 | 155 |
nodeMap(fnm, tnm).arcMap(fam, tam).edgeMap(fem, tem). |
156 | 156 |
nodeRef(nr).arcRef(ar).edgeRef(er). |
157 | 157 |
nodeCrossRef(ncr).arcCrossRef(acr).edgeCrossRef(ecr). |
158 | 158 |
node(fn, tn).arc(fa, ta).edge(fe, te).run(); |
159 | 159 |
|
160 | 160 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
161 | 161 |
check(countEdges(from) == countEdges(to), "Wrong copy."); |
162 | 162 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
163 | 163 |
|
164 | 164 |
for (SmartGraph::NodeIt it(from); it != INVALID; ++it) { |
165 | 165 |
check(ncr[nr[it]] == it, "Wrong copy."); |
166 | 166 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
167 | 167 |
} |
168 | 168 |
|
169 | 169 |
for (SmartGraph::ArcIt it(from); it != INVALID; ++it) { |
170 | 170 |
check(acr[ar[it]] == it, "Wrong copy."); |
171 | 171 |
check(fam[it] == tam[ar[it]], "Wrong copy."); |
172 | 172 |
check(nr[from.source(it)] == to.source(ar[it]), "Wrong copy."); |
173 | 173 |
check(nr[from.target(it)] == to.target(ar[it]), "Wrong copy."); |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
for (SmartGraph::EdgeIt it(from); it != INVALID; ++it) { |
177 | 177 |
check(ecr[er[it]] == it, "Wrong copy."); |
178 | 178 |
check(fem[it] == tem[er[it]], "Wrong copy."); |
179 | 179 |
check(nr[from.u(it)] == to.u(er[it]) || nr[from.u(it)] == to.v(er[it]), |
180 | 180 |
"Wrong copy."); |
181 | 181 |
check(nr[from.v(it)] == to.u(er[it]) || nr[from.v(it)] == to.v(er[it]), |
182 | 182 |
"Wrong copy."); |
183 | 183 |
check((from.u(it) != from.v(it)) == (to.u(er[it]) != to.v(er[it])), |
184 | 184 |
"Wrong copy."); |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
for (ListGraph::NodeIt it(to); it != INVALID; ++it) { |
188 | 188 |
check(nr[ncr[it]] == it, "Wrong copy."); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
for (ListGraph::ArcIt it(to); it != INVALID; ++it) { |
192 | 192 |
check(ar[acr[it]] == it, "Wrong copy."); |
193 | 193 |
} |
194 | 194 |
for (ListGraph::EdgeIt it(to); it != INVALID; ++it) { |
195 | 195 |
check(er[ecr[it]] == it, "Wrong copy."); |
196 | 196 |
} |
197 | 197 |
check(tn == nr[fn], "Wrong copy."); |
198 | 198 |
check(ta == ar[fa], "Wrong copy."); |
199 | 199 |
check(te == er[fe], "Wrong copy."); |
200 | 200 |
|
201 | 201 |
// Test repeated copy |
202 | 202 |
graphCopy(from, to).run(); |
203 |
|
|
203 |
|
|
204 | 204 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
205 | 205 |
check(countEdges(from) == countEdges(to), "Wrong copy."); |
206 | 206 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
|
210 | 210 |
int main() { |
211 | 211 |
digraph_copy_test(); |
212 | 212 |
graph_copy_test(); |
213 | 213 |
|
214 | 214 |
return 0; |
215 | 215 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 | 28 |
#include <lemon/lgf_reader.h> |
29 | 29 |
#include <lemon/dijkstra.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bin_heap.h> |
33 | 33 |
#include <lemon/quad_heap.h> |
34 | 34 |
#include <lemon/dheap.h> |
35 | 35 |
#include <lemon/fib_heap.h> |
36 | 36 |
#include <lemon/pairing_heap.h> |
37 | 37 |
#include <lemon/radix_heap.h> |
38 | 38 |
#include <lemon/binomial_heap.h> |
39 | 39 |
#include <lemon/bucket_heap.h> |
40 | 40 |
|
41 | 41 |
#include "test_tools.h" |
42 | 42 |
|
43 | 43 |
using namespace lemon; |
44 | 44 |
using namespace lemon::concepts; |
45 | 45 |
|
46 | 46 |
typedef ListDigraph Digraph; |
47 | 47 |
DIGRAPH_TYPEDEFS(Digraph); |
48 | 48 |
|
49 | 49 |
char test_lgf[] = |
50 | 50 |
"@nodes\n" |
51 | 51 |
"label\n" |
52 | 52 |
"0\n" |
53 | 53 |
"1\n" |
54 | 54 |
"2\n" |
55 | 55 |
"3\n" |
56 | 56 |
"4\n" |
57 | 57 |
"5\n" |
58 | 58 |
"6\n" |
59 | 59 |
"7\n" |
60 | 60 |
"8\n" |
61 | 61 |
"9\n" |
62 | 62 |
"@arcs\n" |
63 | 63 |
" label capacity\n" |
64 | 64 |
"0 5 0 94\n" |
65 | 65 |
"3 9 1 11\n" |
66 | 66 |
"8 7 2 83\n" |
67 | 67 |
"1 2 3 94\n" |
68 | 68 |
"5 7 4 35\n" |
69 | 69 |
"7 4 5 84\n" |
70 | 70 |
"9 5 6 38\n" |
71 | 71 |
"0 4 7 96\n" |
72 | 72 |
"6 7 8 6\n" |
73 | 73 |
"3 1 9 27\n" |
74 | 74 |
"5 2 10 77\n" |
75 | 75 |
"5 6 11 69\n" |
76 | 76 |
"6 5 12 41\n" |
77 | 77 |
"4 6 13 70\n" |
78 | 78 |
"3 2 14 45\n" |
79 | 79 |
"7 9 15 93\n" |
80 | 80 |
"5 9 16 50\n" |
81 | 81 |
"9 0 17 94\n" |
82 | 82 |
"9 6 18 67\n" |
83 | 83 |
"0 9 19 86\n" |
84 | 84 |
"@attributes\n" |
85 | 85 |
"source 3\n"; |
86 | 86 |
|
87 | 87 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34}; |
88 | 88 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37}; |
89 | 89 |
|
90 | 90 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
91 | 91 |
|
92 | 92 |
template <typename Heap> |
93 | 93 |
void heapSortTest() { |
94 | 94 |
RangeMap<int> map(test_len, -1); |
95 | 95 |
Heap heap(map); |
96 | 96 |
|
97 | 97 |
std::vector<int> v(test_len); |
98 | 98 |
for (int i = 0; i < test_len; ++i) { |
99 | 99 |
v[i] = test_seq[i]; |
100 | 100 |
heap.push(i, v[i]); |
101 | 101 |
} |
102 | 102 |
std::sort(v.begin(), v.end()); |
103 | 103 |
for (int i = 0; i < test_len; ++i) { |
104 | 104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
105 | 105 |
heap.pop(); |
106 | 106 |
} |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
template <typename Heap> |
110 | 110 |
void heapIncreaseTest() { |
111 | 111 |
RangeMap<int> map(test_len, -1); |
112 | 112 |
|
113 | 113 |
Heap heap(map); |
114 | 114 |
|
115 | 115 |
std::vector<int> v(test_len); |
116 | 116 |
for (int i = 0; i < test_len; ++i) { |
117 | 117 |
v[i] = test_seq[i]; |
118 | 118 |
heap.push(i, v[i]); |
119 | 119 |
} |
120 | 120 |
for (int i = 0; i < test_len; ++i) { |
121 | 121 |
v[i] += test_inc[i]; |
122 | 122 |
heap.increase(i, v[i]); |
123 | 123 |
} |
124 | 124 |
std::sort(v.begin(), v.end()); |
125 | 125 |
for (int i = 0; i < test_len; ++i) { |
126 | 126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
127 | 127 |
heap.pop(); |
128 | 128 |
} |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
template <typename Heap> |
132 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
133 | 133 |
Node source) { |
134 | 134 |
|
135 | 135 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
136 | 136 |
Create dijkstra(digraph, length); |
137 | 137 |
|
138 | 138 |
dijkstra.run(source); |
139 | 139 |
|
140 | 140 |
for(ArcIt a(digraph); a != INVALID; ++a) { |
141 | 141 |
Node s = digraph.source(a); |
142 | 142 |
Node t = digraph.target(a); |
143 | 143 |
if (dijkstra.reached(s)) { |
144 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
145 | 145 |
"Error in shortest path tree."); |
146 | 146 |
} |
147 | 147 |
} |
148 | 148 |
|
149 | 149 |
for(NodeIt n(digraph); n != INVALID; ++n) { |
150 | 150 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) { |
151 | 151 |
Arc a = dijkstra.predArc(n); |
152 | 152 |
Node s = digraph.source(a); |
153 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
154 | 154 |
"Error in shortest path tree."); |
155 | 155 |
} |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
int main() { |
161 | 161 |
|
162 | 162 |
typedef int Item; |
163 | 163 |
typedef int Prio; |
164 | 164 |
typedef RangeMap<int> ItemIntMap; |
165 | 165 |
|
166 | 166 |
Digraph digraph; |
167 | 167 |
IntArcMap length(digraph); |
168 | 168 |
Node source; |
169 | 169 |
|
170 | 170 |
std::istringstream input(test_lgf); |
171 | 171 |
digraphReader(digraph, input). |
172 | 172 |
arcMap("capacity", length). |
173 | 173 |
node("source", source). |
174 | 174 |
run(); |
175 | 175 |
|
176 | 176 |
// BinHeap |
177 | 177 |
{ |
178 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
179 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
180 | 180 |
heapSortTest<IntHeap>(); |
181 | 181 |
heapIncreaseTest<IntHeap>(); |
182 | 182 |
|
183 | 183 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
184 | 184 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
185 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
// QuadHeap |
189 | 189 |
{ |
190 | 190 |
typedef QuadHeap<Prio, ItemIntMap> IntHeap; |
191 | 191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
192 | 192 |
heapSortTest<IntHeap>(); |
193 | 193 |
heapIncreaseTest<IntHeap>(); |
194 | 194 |
|
195 | 195 |
typedef QuadHeap<Prio, IntNodeMap > NodeHeap; |
196 | 196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
197 | 197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
// DHeap |
201 | 201 |
{ |
202 | 202 |
typedef DHeap<Prio, ItemIntMap> IntHeap; |
203 | 203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
204 | 204 |
heapSortTest<IntHeap>(); |
205 | 205 |
heapIncreaseTest<IntHeap>(); |
206 | 206 |
|
207 | 207 |
typedef DHeap<Prio, IntNodeMap > NodeHeap; |
208 | 208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
209 | 209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
// FibHeap |
213 | 213 |
{ |
214 | 214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
215 | 215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
216 | 216 |
heapSortTest<IntHeap>(); |
217 | 217 |
heapIncreaseTest<IntHeap>(); |
218 | 218 |
|
219 | 219 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
220 | 220 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
221 | 221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
// PairingHeap |
225 | 225 |
{ |
226 | 226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
227 | 227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
228 | 228 |
heapSortTest<IntHeap>(); |
229 | 229 |
heapIncreaseTest<IntHeap>(); |
230 | 230 |
|
231 | 231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
232 | 232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
233 | 233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
// RadixHeap |
237 | 237 |
{ |
238 | 238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
239 | 239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
240 | 240 |
heapSortTest<IntHeap>(); |
241 | 241 |
heapIncreaseTest<IntHeap>(); |
242 | 242 |
|
243 | 243 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
244 | 244 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
245 | 245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
246 | 246 |
} |
247 | 247 |
|
248 | 248 |
// BinomialHeap |
249 | 249 |
{ |
250 | 250 |
typedef BinomialHeap<Prio, ItemIntMap> IntHeap; |
251 | 251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
252 | 252 |
heapSortTest<IntHeap>(); |
253 | 253 |
heapIncreaseTest<IntHeap>(); |
254 | 254 |
|
255 | 255 |
typedef BinomialHeap<Prio, IntNodeMap > NodeHeap; |
256 | 256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
257 | 257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
// BucketHeap, SimpleBucketHeap |
261 | 261 |
{ |
262 | 262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
263 | 263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
264 | 264 |
heapSortTest<IntHeap>(); |
265 | 265 |
heapIncreaseTest<IntHeap>(); |
266 | 266 |
|
267 | 267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
268 | 268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
269 | 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
270 | 270 |
|
271 | 271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
272 | 272 |
heapSortTest<SimpleIntHeap>(); |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
{ |
276 | 276 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
277 | 277 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
278 | 278 |
heapSortTest<IntHeap>(); |
279 | 279 |
heapIncreaseTest<IntHeap>(); |
280 | 280 |
|
281 | 281 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
282 | 282 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
283 | 283 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
{ |
287 | 287 |
typedef RadixHeap<ItemIntMap> IntHeap; |
288 | 288 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
289 | 289 |
heapSortTest<IntHeap>(); |
290 | 290 |
heapIncreaseTest<IntHeap>(); |
291 | 291 |
|
292 | 292 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
293 | 293 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
294 | 294 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
295 | 295 |
} |
296 | 296 |
|
297 | 297 |
{ |
298 | 298 |
typedef BucketHeap<ItemIntMap> IntHeap; |
299 | 299 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
300 | 300 |
heapSortTest<IntHeap>(); |
301 | 301 |
heapIncreaseTest<IntHeap>(); |
302 | 302 |
|
303 | 303 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
304 | 304 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
305 | 305 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
|
309 | 309 |
return 0; |
310 | 310 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2011 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/list_graph.h> |
20 | 20 |
#include <lemon/lgf_reader.h> |
21 | 21 |
#include "test_tools.h" |
22 | 22 |
|
23 | 23 |
using namespace lemon; |
24 | 24 |
|
25 | 25 |
char test_lgf[] = |
26 | 26 |
"@nodes\n" |
27 | 27 |
"label\n" |
28 | 28 |
"0\n" |
29 | 29 |
"1\n" |
30 | 30 |
"@arcs\n" |
31 | 31 |
" label\n" |
32 | 32 |
"0 1 0\n" |
33 | 33 |
"1 0 1\n" |
34 | 34 |
"@attributes\n" |
35 | 35 |
"source 0\n" |
36 | 36 |
"target 1\n"; |
37 | 37 |
|
38 | 38 |
char test_lgf_nomap[] = |
39 | 39 |
"@nodes\n" |
40 | 40 |
"label\n" |
41 | 41 |
"0\n" |
42 | 42 |
"1\n" |
43 | 43 |
"@arcs\n" |
44 | 44 |
" -\n" |
45 | 45 |
"0 1\n"; |
46 | 46 |
|
47 | 47 |
char test_lgf_bad1[] = |
48 | 48 |
"@nodes\n" |
49 | 49 |
"label\n" |
50 | 50 |
"0\n" |
51 | 51 |
"1\n" |
52 | 52 |
"@arcs\n" |
53 | 53 |
" - another\n" |
54 | 54 |
"0 1\n"; |
55 | 55 |
|
56 | 56 |
char test_lgf_bad2[] = |
57 | 57 |
"@nodes\n" |
58 | 58 |
"label\n" |
59 | 59 |
"0\n" |
60 | 60 |
"1\n" |
61 | 61 |
"@arcs\n" |
62 | 62 |
" label -\n" |
63 | 63 |
"0 1\n"; |
64 | 64 |
|
65 | 65 |
|
66 |
int main() |
|
66 |
int main() |
|
67 | 67 |
{ |
68 | 68 |
{ |
69 |
ListDigraph d; |
|
69 |
ListDigraph d; |
|
70 | 70 |
ListDigraph::Node s,t; |
71 | 71 |
ListDigraph::ArcMap<int> label(d); |
72 | 72 |
std::istringstream input(test_lgf); |
73 | 73 |
digraphReader(d, input). |
74 | 74 |
node("source", s). |
75 | 75 |
node("target", t). |
76 | 76 |
arcMap("label", label). |
77 | 77 |
run(); |
78 | 78 |
check(countNodes(d) == 2,"There should be 2 nodes"); |
79 | 79 |
check(countArcs(d) == 2,"There should be 2 arcs"); |
80 | 80 |
} |
81 | 81 |
{ |
82 | 82 |
ListGraph g; |
83 | 83 |
ListGraph::Node s,t; |
84 | 84 |
ListGraph::EdgeMap<int> label(g); |
85 | 85 |
std::istringstream input(test_lgf); |
86 | 86 |
graphReader(g, input). |
87 | 87 |
node("source", s). |
88 | 88 |
node("target", t). |
89 | 89 |
edgeMap("label", label). |
90 | 90 |
run(); |
91 | 91 |
check(countNodes(g) == 2,"There should be 2 nodes"); |
92 | 92 |
check(countEdges(g) == 2,"There should be 2 arcs"); |
93 | 93 |
} |
94 | 94 |
|
95 | 95 |
{ |
96 |
ListDigraph d; |
|
96 |
ListDigraph d; |
|
97 | 97 |
std::istringstream input(test_lgf_nomap); |
98 | 98 |
digraphReader(d, input). |
99 | 99 |
run(); |
100 | 100 |
check(countNodes(d) == 2,"There should be 2 nodes"); |
101 | 101 |
check(countArcs(d) == 1,"There should be 1 arc"); |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
ListGraph g; |
105 | 105 |
std::istringstream input(test_lgf_nomap); |
106 | 106 |
graphReader(g, input). |
107 | 107 |
run(); |
108 | 108 |
check(countNodes(g) == 2,"There should be 2 nodes"); |
109 | 109 |
check(countEdges(g) == 1,"There should be 1 edge"); |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
{ |
113 |
ListDigraph d; |
|
113 |
ListDigraph d; |
|
114 | 114 |
std::istringstream input(test_lgf_bad1); |
115 | 115 |
bool ok=false; |
116 | 116 |
try { |
117 | 117 |
digraphReader(d, input). |
118 | 118 |
run(); |
119 | 119 |
} |
120 |
catch (FormatError& error) |
|
120 |
catch (FormatError& error) |
|
121 | 121 |
{ |
122 | 122 |
ok = true; |
123 | 123 |
} |
124 | 124 |
check(ok,"FormatError exception should have occured"); |
125 | 125 |
} |
126 | 126 |
{ |
127 | 127 |
ListGraph g; |
128 | 128 |
std::istringstream input(test_lgf_bad1); |
129 | 129 |
bool ok=false; |
130 | 130 |
try { |
131 | 131 |
graphReader(g, input). |
132 | 132 |
run(); |
133 | 133 |
} |
134 | 134 |
catch (FormatError& error) |
135 | 135 |
{ |
136 | 136 |
ok = true; |
137 | 137 |
} |
138 | 138 |
check(ok,"FormatError exception should have occured"); |
139 | 139 |
} |
140 | 140 |
|
141 | 141 |
{ |
142 |
ListDigraph d; |
|
142 |
ListDigraph d; |
|
143 | 143 |
std::istringstream input(test_lgf_bad2); |
144 | 144 |
bool ok=false; |
145 | 145 |
try { |
146 | 146 |
digraphReader(d, input). |
147 | 147 |
run(); |
148 | 148 |
} |
149 | 149 |
catch (FormatError& error) |
150 | 150 |
{ |
151 | 151 |
ok = true; |
152 | 152 |
} |
153 | 153 |
check(ok,"FormatError exception should have occured"); |
154 | 154 |
} |
155 | 155 |
{ |
156 | 156 |
ListGraph g; |
157 | 157 |
std::istringstream input(test_lgf_bad2); |
158 | 158 |
bool ok=false; |
159 | 159 |
try { |
160 | 160 |
graphReader(g, input). |
161 | 161 |
run(); |
162 | 162 |
} |
163 | 163 |
catch (FormatError& error) |
164 | 164 |
{ |
165 | 165 |
ok = true; |
166 | 166 |
} |
167 | 167 |
check(ok,"FormatError exception should have occured"); |
168 | 168 |
} |
169 | 169 |
} |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)