0
1
1
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
|
| 20 |
#define LEMON_CAPACITY_SCALING_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Capacity scaling algorithm for finding a minimum cost flow. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <lemon/bin_heap.h> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \addtogroup min_cost_flow |
|
| 33 |
/// @{
|
|
| 34 |
|
|
| 35 |
/// \brief Implementation of the capacity scaling algorithm for |
|
| 36 |
/// finding a minimum cost flow. |
|
| 37 |
/// |
|
| 38 |
/// \ref CapacityScaling implements the capacity scaling version |
|
| 39 |
/// of the successive shortest path algorithm for finding a minimum |
|
| 40 |
/// cost flow. |
|
| 41 |
/// |
|
| 42 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 43 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 44 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 45 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 46 |
/// \tparam SupplyMap The type of the supply map. |
|
| 47 |
/// |
|
| 48 |
/// \warning |
|
| 49 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 50 |
/// - Supply values should be \e signed \e integers. |
|
| 51 |
/// - The value types of the maps should be convertible to each other. |
|
| 52 |
/// - \c CostMap::Value must be signed type. |
|
| 53 |
/// |
|
| 54 |
/// \author Peter Kovacs |
|
| 55 |
template < typename Digraph, |
|
| 56 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 57 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 58 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 59 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 60 |
class CapacityScaling |
|
| 61 |
{
|
|
| 62 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 63 |
|
|
| 64 |
typedef typename CapacityMap::Value Capacity; |
|
| 65 |
typedef typename CostMap::Value Cost; |
|
| 66 |
typedef typename SupplyMap::Value Supply; |
|
| 67 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
| 68 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
| 69 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
|
| 70 |
|
|
| 71 |
public: |
|
| 72 |
|
|
| 73 |
/// The type of the flow map. |
|
| 74 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 75 |
/// The type of the potential map. |
|
| 76 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
| 77 |
|
|
| 78 |
private: |
|
| 79 |
|
|
| 80 |
/// \brief Special implementation of the \ref Dijkstra algorithm |
|
| 81 |
/// for finding shortest paths in the residual network. |
|
| 82 |
/// |
|
| 83 |
/// \ref ResidualDijkstra is a special implementation of the |
|
| 84 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
|
| 85 |
/// residual network of the digraph with respect to the reduced arc |
|
| 86 |
/// costs and modifying the node potentials according to the |
|
| 87 |
/// distance of the nodes. |
|
| 88 |
class ResidualDijkstra |
|
| 89 |
{
|
|
| 90 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
| 91 |
typedef BinHeap<Cost, HeapCrossRef> Heap; |
|
| 92 |
|
|
| 93 |
private: |
|
| 94 |
|
|
| 95 |
// The digraph the algorithm runs on |
|
| 96 |
const Digraph &_graph; |
|
| 97 |
|
|
| 98 |
// The main maps |
|
| 99 |
const FlowMap &_flow; |
|
| 100 |
const CapacityArcMap &_res_cap; |
|
| 101 |
const CostMap &_cost; |
|
| 102 |
const SupplyNodeMap &_excess; |
|
| 103 |
PotentialMap &_potential; |
|
| 104 |
|
|
| 105 |
// The distance map |
|
| 106 |
PotentialMap _dist; |
|
| 107 |
// The pred arc map |
|
| 108 |
PredMap &_pred; |
|
| 109 |
// The processed (i.e. permanently labeled) nodes |
|
| 110 |
std::vector<Node> _proc_nodes; |
|
| 111 |
|
|
| 112 |
public: |
|
| 113 |
|
|
| 114 |
/// Constructor. |
|
| 115 |
ResidualDijkstra( const Digraph &digraph, |
|
| 116 |
const FlowMap &flow, |
|
| 117 |
const CapacityArcMap &res_cap, |
|
| 118 |
const CostMap &cost, |
|
| 119 |
const SupplyMap &excess, |
|
| 120 |
PotentialMap &potential, |
|
| 121 |
PredMap &pred ) : |
|
| 122 |
_graph(digraph), _flow(flow), _res_cap(res_cap), _cost(cost), |
|
| 123 |
_excess(excess), _potential(potential), _dist(digraph), |
|
| 124 |
_pred(pred) |
|
| 125 |
{}
|
|
| 126 |
|
|
| 127 |
/// Run the algorithm from the given source node. |
|
| 128 |
Node run(Node s, Capacity delta = 1) {
|
|
| 129 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
|
| 130 |
Heap heap(heap_cross_ref); |
|
| 131 |
heap.push(s, 0); |
|
| 132 |
_pred[s] = INVALID; |
|
| 133 |
_proc_nodes.clear(); |
|
| 134 |
|
|
| 135 |
// Processing nodes |
|
| 136 |
while (!heap.empty() && _excess[heap.top()] > -delta) {
|
|
| 137 |
Node u = heap.top(), v; |
|
| 138 |
Cost d = heap.prio() + _potential[u], nd; |
|
| 139 |
_dist[u] = heap.prio(); |
|
| 140 |
heap.pop(); |
|
| 141 |
_proc_nodes.push_back(u); |
|
| 142 |
|
|
| 143 |
// Traversing outgoing arcs |
|
| 144 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
|
| 145 |
if (_res_cap[e] >= delta) {
|
|
| 146 |
v = _graph.target(e); |
|
| 147 |
switch(heap.state(v)) {
|
|
| 148 |
case Heap::PRE_HEAP: |
|
| 149 |
heap.push(v, d + _cost[e] - _potential[v]); |
|
| 150 |
_pred[v] = e; |
|
| 151 |
break; |
|
| 152 |
case Heap::IN_HEAP: |
|
| 153 |
nd = d + _cost[e] - _potential[v]; |
|
| 154 |
if (nd < heap[v]) {
|
|
| 155 |
heap.decrease(v, nd); |
|
| 156 |
_pred[v] = e; |
|
| 157 |
} |
|
| 158 |
break; |
|
| 159 |
case Heap::POST_HEAP: |
|
| 160 |
break; |
|
| 161 |
} |
|
| 162 |
} |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
// Traversing incoming arcs |
|
| 166 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
|
| 167 |
if (_flow[e] >= delta) {
|
|
| 168 |
v = _graph.source(e); |
|
| 169 |
switch(heap.state(v)) {
|
|
| 170 |
case Heap::PRE_HEAP: |
|
| 171 |
heap.push(v, d - _cost[e] - _potential[v]); |
|
| 172 |
_pred[v] = e; |
|
| 173 |
break; |
|
| 174 |
case Heap::IN_HEAP: |
|
| 175 |
nd = d - _cost[e] - _potential[v]; |
|
| 176 |
if (nd < heap[v]) {
|
|
| 177 |
heap.decrease(v, nd); |
|
| 178 |
_pred[v] = e; |
|
| 179 |
} |
|
| 180 |
break; |
|
| 181 |
case Heap::POST_HEAP: |
|
| 182 |
break; |
|
| 183 |
} |
|
| 184 |
} |
|
| 185 |
} |
|
| 186 |
} |
|
| 187 |
if (heap.empty()) return INVALID; |
|
| 188 |
|
|
| 189 |
// Updating potentials of processed nodes |
|
| 190 |
Node t = heap.top(); |
|
| 191 |
Cost t_dist = heap.prio(); |
|
| 192 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
| 193 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
|
| 194 |
|
|
| 195 |
return t; |
|
| 196 |
} |
|
| 197 |
|
|
| 198 |
}; //class ResidualDijkstra |
|
| 199 |
|
|
| 200 |
private: |
|
| 201 |
|
|
| 202 |
// The digraph the algorithm runs on |
|
| 203 |
const Digraph &_graph; |
|
| 204 |
// The original lower bound map |
|
| 205 |
const LowerMap *_lower; |
|
| 206 |
// The modified capacity map |
|
| 207 |
CapacityArcMap _capacity; |
|
| 208 |
// The original cost map |
|
| 209 |
const CostMap &_cost; |
|
| 210 |
// The modified supply map |
|
| 211 |
SupplyNodeMap _supply; |
|
| 212 |
bool _valid_supply; |
|
| 213 |
|
|
| 214 |
// Arc map of the current flow |
|
| 215 |
FlowMap *_flow; |
|
| 216 |
bool _local_flow; |
|
| 217 |
// Node map of the current potentials |
|
| 218 |
PotentialMap *_potential; |
|
| 219 |
bool _local_potential; |
|
| 220 |
|
|
| 221 |
// The residual capacity map |
|
| 222 |
CapacityArcMap _res_cap; |
|
| 223 |
// The excess map |
|
| 224 |
SupplyNodeMap _excess; |
|
| 225 |
// The excess nodes (i.e. nodes with positive excess) |
|
| 226 |
std::vector<Node> _excess_nodes; |
|
| 227 |
// The deficit nodes (i.e. nodes with negative excess) |
|
| 228 |
std::vector<Node> _deficit_nodes; |
|
| 229 |
|
|
| 230 |
// The delta parameter used for capacity scaling |
|
| 231 |
Capacity _delta; |
|
| 232 |
// The maximum number of phases |
|
| 233 |
int _phase_num; |
|
| 234 |
|
|
| 235 |
// The pred arc map |
|
| 236 |
PredMap _pred; |
|
| 237 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
| 238 |
// shortest paths in the residual network |
|
| 239 |
ResidualDijkstra *_dijkstra; |
|
| 240 |
|
|
| 241 |
public: |
|
| 242 |
|
|
| 243 |
/// \brief General constructor (with lower bounds). |
|
| 244 |
/// |
|
| 245 |
/// General constructor (with lower bounds). |
|
| 246 |
/// |
|
| 247 |
/// \param digraph The digraph the algorithm runs on. |
|
| 248 |
/// \param lower The lower bounds of the arcs. |
|
| 249 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 250 |
/// \param cost The cost (length) values of the arcs. |
|
| 251 |
/// \param supply The supply values of the nodes (signed). |
|
| 252 |
CapacityScaling( const Digraph &digraph, |
|
| 253 |
const LowerMap &lower, |
|
| 254 |
const CapacityMap &capacity, |
|
| 255 |
const CostMap &cost, |
|
| 256 |
const SupplyMap &supply ) : |
|
| 257 |
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), |
|
| 258 |
_supply(digraph), _flow(NULL), _local_flow(false), |
|
| 259 |
_potential(NULL), _local_potential(false), |
|
| 260 |
_res_cap(digraph), _excess(digraph), _pred(digraph), _dijkstra(NULL) |
|
| 261 |
{
|
|
| 262 |
Supply sum = 0; |
|
| 263 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 264 |
_supply[n] = supply[n]; |
|
| 265 |
_excess[n] = supply[n]; |
|
| 266 |
sum += supply[n]; |
|
| 267 |
} |
|
| 268 |
_valid_supply = sum == 0; |
|
| 269 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 270 |
_capacity[a] = capacity[a]; |
|
| 271 |
_res_cap[a] = capacity[a]; |
|
| 272 |
} |
|
| 273 |
|
|
| 274 |
// Remove non-zero lower bounds |
|
| 275 |
typename LowerMap::Value lcap; |
|
| 276 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 277 |
if ((lcap = lower[e]) != 0) {
|
|
| 278 |
_capacity[e] -= lcap; |
|
| 279 |
_res_cap[e] -= lcap; |
|
| 280 |
_supply[_graph.source(e)] -= lcap; |
|
| 281 |
_supply[_graph.target(e)] += lcap; |
|
| 282 |
_excess[_graph.source(e)] -= lcap; |
|
| 283 |
_excess[_graph.target(e)] += lcap; |
|
| 284 |
} |
|
| 285 |
} |
|
| 286 |
} |
|
| 287 |
/* |
|
| 288 |
/// \brief General constructor (without lower bounds). |
|
| 289 |
/// |
|
| 290 |
/// General constructor (without lower bounds). |
|
| 291 |
/// |
|
| 292 |
/// \param digraph The digraph the algorithm runs on. |
|
| 293 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 294 |
/// \param cost The cost (length) values of the arcs. |
|
| 295 |
/// \param supply The supply values of the nodes (signed). |
|
| 296 |
CapacityScaling( const Digraph &digraph, |
|
| 297 |
const CapacityMap &capacity, |
|
| 298 |
const CostMap &cost, |
|
| 299 |
const SupplyMap &supply ) : |
|
| 300 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
| 301 |
_supply(supply), _flow(NULL), _local_flow(false), |
|
| 302 |
_potential(NULL), _local_potential(false), |
|
| 303 |
_res_cap(capacity), _excess(supply), _pred(digraph), _dijkstra(NULL) |
|
| 304 |
{
|
|
| 305 |
// Check the sum of supply values |
|
| 306 |
Supply sum = 0; |
|
| 307 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 308 |
_valid_supply = sum == 0; |
|
| 309 |
} |
|
| 310 |
|
|
| 311 |
/// \brief Simple constructor (with lower bounds). |
|
| 312 |
/// |
|
| 313 |
/// Simple constructor (with lower bounds). |
|
| 314 |
/// |
|
| 315 |
/// \param digraph The digraph the algorithm runs on. |
|
| 316 |
/// \param lower The lower bounds of the arcs. |
|
| 317 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 318 |
/// \param cost The cost (length) values of the arcs. |
|
| 319 |
/// \param s The source node. |
|
| 320 |
/// \param t The target node. |
|
| 321 |
/// \param flow_value The required amount of flow from node \c s |
|
| 322 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 323 |
CapacityScaling( const Digraph &digraph, |
|
| 324 |
const LowerMap &lower, |
|
| 325 |
const CapacityMap &capacity, |
|
| 326 |
const CostMap &cost, |
|
| 327 |
Node s, Node t, |
|
| 328 |
Supply flow_value ) : |
|
| 329 |
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
| 330 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 331 |
_potential(NULL), _local_potential(false), |
|
| 332 |
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL) |
|
| 333 |
{
|
|
| 334 |
// Remove non-zero lower bounds |
|
| 335 |
_supply[s] = _excess[s] = flow_value; |
|
| 336 |
_supply[t] = _excess[t] = -flow_value; |
|
| 337 |
typename LowerMap::Value lcap; |
|
| 338 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 339 |
if ((lcap = lower[e]) != 0) {
|
|
| 340 |
_capacity[e] -= lcap; |
|
| 341 |
_res_cap[e] -= lcap; |
|
| 342 |
_supply[_graph.source(e)] -= lcap; |
|
| 343 |
_supply[_graph.target(e)] += lcap; |
|
| 344 |
_excess[_graph.source(e)] -= lcap; |
|
| 345 |
_excess[_graph.target(e)] += lcap; |
|
| 346 |
} |
|
| 347 |
} |
|
| 348 |
_valid_supply = true; |
|
| 349 |
} |
|
| 350 |
|
|
| 351 |
/// \brief Simple constructor (without lower bounds). |
|
| 352 |
/// |
|
| 353 |
/// Simple constructor (without lower bounds). |
|
| 354 |
/// |
|
| 355 |
/// \param digraph The digraph the algorithm runs on. |
|
| 356 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 357 |
/// \param cost The cost (length) values of the arcs. |
|
| 358 |
/// \param s The source node. |
|
| 359 |
/// \param t The target node. |
|
| 360 |
/// \param flow_value The required amount of flow from node \c s |
|
| 361 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 362 |
CapacityScaling( const Digraph &digraph, |
|
| 363 |
const CapacityMap &capacity, |
|
| 364 |
const CostMap &cost, |
|
| 365 |
Node s, Node t, |
|
| 366 |
Supply flow_value ) : |
|
| 367 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
| 368 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 369 |
_potential(NULL), _local_potential(false), |
|
| 370 |
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL) |
|
| 371 |
{
|
|
| 372 |
_supply[s] = _excess[s] = flow_value; |
|
| 373 |
_supply[t] = _excess[t] = -flow_value; |
|
| 374 |
_valid_supply = true; |
|
| 375 |
} |
|
| 376 |
*/ |
|
| 377 |
/// Destructor. |
|
| 378 |
~CapacityScaling() {
|
|
| 379 |
if (_local_flow) delete _flow; |
|
| 380 |
if (_local_potential) delete _potential; |
|
| 381 |
delete _dijkstra; |
|
| 382 |
} |
|
| 383 |
|
|
| 384 |
/// \brief Set the flow map. |
|
| 385 |
/// |
|
| 386 |
/// Set the flow map. |
|
| 387 |
/// |
|
| 388 |
/// \return \c (*this) |
|
| 389 |
CapacityScaling& flowMap(FlowMap &map) {
|
|
| 390 |
if (_local_flow) {
|
|
| 391 |
delete _flow; |
|
| 392 |
_local_flow = false; |
|
| 393 |
} |
|
| 394 |
_flow = ↦ |
|
| 395 |
return *this; |
|
| 396 |
} |
|
| 397 |
|
|
| 398 |
/// \brief Set the potential map. |
|
| 399 |
/// |
|
| 400 |
/// Set the potential map. |
|
| 401 |
/// |
|
| 402 |
/// \return \c (*this) |
|
| 403 |
CapacityScaling& potentialMap(PotentialMap &map) {
|
|
| 404 |
if (_local_potential) {
|
|
| 405 |
delete _potential; |
|
| 406 |
_local_potential = false; |
|
| 407 |
} |
|
| 408 |
_potential = ↦ |
|
| 409 |
return *this; |
|
| 410 |
} |
|
| 411 |
|
|
| 412 |
/// \name Execution control |
|
| 413 |
|
|
| 414 |
/// @{
|
|
| 415 |
|
|
| 416 |
/// \brief Run the algorithm. |
|
| 417 |
/// |
|
| 418 |
/// This function runs the algorithm. |
|
| 419 |
/// |
|
| 420 |
/// \param scaling Enable or disable capacity scaling. |
|
| 421 |
/// If the maximum arc capacity and/or the amount of total supply |
|
| 422 |
/// is rather small, the algorithm could be slightly faster without |
|
| 423 |
/// scaling. |
|
| 424 |
/// |
|
| 425 |
/// \return \c true if a feasible flow can be found. |
|
| 426 |
bool run(bool scaling = true) {
|
|
| 427 |
return init(scaling) && start(); |
|
| 428 |
} |
|
| 429 |
|
|
| 430 |
/// @} |
|
| 431 |
|
|
| 432 |
/// \name Query Functions |
|
| 433 |
/// The results of the algorithm can be obtained using these |
|
| 434 |
/// functions.\n |
|
| 435 |
/// \ref lemon::CapacityScaling::run() "run()" must be called before |
|
| 436 |
/// using them. |
|
| 437 |
|
|
| 438 |
/// @{
|
|
| 439 |
|
|
| 440 |
/// \brief Return a const reference to the arc map storing the |
|
| 441 |
/// found flow. |
|
| 442 |
/// |
|
| 443 |
/// Return a const reference to the arc map storing the found flow. |
|
| 444 |
/// |
|
| 445 |
/// \pre \ref run() must be called before using this function. |
|
| 446 |
const FlowMap& flowMap() const {
|
|
| 447 |
return *_flow; |
|
| 448 |
} |
|
| 449 |
|
|
| 450 |
/// \brief Return a const reference to the node map storing the |
|
| 451 |
/// found potentials (the dual solution). |
|
| 452 |
/// |
|
| 453 |
/// Return a const reference to the node map storing the found |
|
| 454 |
/// potentials (the dual solution). |
|
| 455 |
/// |
|
| 456 |
/// \pre \ref run() must be called before using this function. |
|
| 457 |
const PotentialMap& potentialMap() const {
|
|
| 458 |
return *_potential; |
|
| 459 |
} |
|
| 460 |
|
|
| 461 |
/// \brief Return the flow on the given arc. |
|
| 462 |
/// |
|
| 463 |
/// Return the flow on the given arc. |
|
| 464 |
/// |
|
| 465 |
/// \pre \ref run() must be called before using this function. |
|
| 466 |
Capacity flow(const Arc& arc) const {
|
|
| 467 |
return (*_flow)[arc]; |
|
| 468 |
} |
|
| 469 |
|
|
| 470 |
/// \brief Return the potential of the given node. |
|
| 471 |
/// |
|
| 472 |
/// Return the potential of the given node. |
|
| 473 |
/// |
|
| 474 |
/// \pre \ref run() must be called before using this function. |
|
| 475 |
Cost potential(const Node& node) const {
|
|
| 476 |
return (*_potential)[node]; |
|
| 477 |
} |
|
| 478 |
|
|
| 479 |
/// \brief Return the total cost of the found flow. |
|
| 480 |
/// |
|
| 481 |
/// Return the total cost of the found flow. The complexity of the |
|
| 482 |
/// function is \f$ O(e) \f$. |
|
| 483 |
/// |
|
| 484 |
/// \pre \ref run() must be called before using this function. |
|
| 485 |
Cost totalCost() const {
|
|
| 486 |
Cost c = 0; |
|
| 487 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 488 |
c += (*_flow)[e] * _cost[e]; |
|
| 489 |
return c; |
|
| 490 |
} |
|
| 491 |
|
|
| 492 |
/// @} |
|
| 493 |
|
|
| 494 |
private: |
|
| 495 |
|
|
| 496 |
/// Initialize the algorithm. |
|
| 497 |
bool init(bool scaling) {
|
|
| 498 |
if (!_valid_supply) return false; |
|
| 499 |
|
|
| 500 |
// Initializing maps |
|
| 501 |
if (!_flow) {
|
|
| 502 |
_flow = new FlowMap(_graph); |
|
| 503 |
_local_flow = true; |
|
| 504 |
} |
|
| 505 |
if (!_potential) {
|
|
| 506 |
_potential = new PotentialMap(_graph); |
|
| 507 |
_local_potential = true; |
|
| 508 |
} |
|
| 509 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
|
| 510 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
|
| 511 |
|
|
| 512 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost, |
|
| 513 |
_excess, *_potential, _pred ); |
|
| 514 |
|
|
| 515 |
// Initializing delta value |
|
| 516 |
if (scaling) {
|
|
| 517 |
// With scaling |
|
| 518 |
Supply max_sup = 0, max_dem = 0; |
|
| 519 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 520 |
if ( _supply[n] > max_sup) max_sup = _supply[n]; |
|
| 521 |
if (-_supply[n] > max_dem) max_dem = -_supply[n]; |
|
| 522 |
} |
|
| 523 |
Capacity max_cap = 0; |
|
| 524 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 525 |
if (_capacity[e] > max_cap) max_cap = _capacity[e]; |
|
| 526 |
} |
|
| 527 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
|
| 528 |
_phase_num = 0; |
|
| 529 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) |
|
| 530 |
++_phase_num; |
|
| 531 |
} else {
|
|
| 532 |
// Without scaling |
|
| 533 |
_delta = 1; |
|
| 534 |
} |
|
| 535 |
|
|
| 536 |
return true; |
|
| 537 |
} |
|
| 538 |
|
|
| 539 |
bool start() {
|
|
| 540 |
if (_delta > 1) |
|
| 541 |
return startWithScaling(); |
|
| 542 |
else |
|
| 543 |
return startWithoutScaling(); |
|
| 544 |
} |
|
| 545 |
|
|
| 546 |
/// Execute the capacity scaling algorithm. |
|
| 547 |
bool startWithScaling() {
|
|
| 548 |
// Processing capacity scaling phases |
|
| 549 |
Node s, t; |
|
| 550 |
int phase_cnt = 0; |
|
| 551 |
int factor = 4; |
|
| 552 |
while (true) {
|
|
| 553 |
// Saturating all arcs not satisfying the optimality condition |
|
| 554 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 555 |
Node u = _graph.source(e), v = _graph.target(e); |
|
| 556 |
Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v]; |
|
| 557 |
if (c < 0 && _res_cap[e] >= _delta) {
|
|
| 558 |
_excess[u] -= _res_cap[e]; |
|
| 559 |
_excess[v] += _res_cap[e]; |
|
| 560 |
(*_flow)[e] = _capacity[e]; |
|
| 561 |
_res_cap[e] = 0; |
|
| 562 |
} |
|
| 563 |
else if (c > 0 && (*_flow)[e] >= _delta) {
|
|
| 564 |
_excess[u] += (*_flow)[e]; |
|
| 565 |
_excess[v] -= (*_flow)[e]; |
|
| 566 |
(*_flow)[e] = 0; |
|
| 567 |
_res_cap[e] = _capacity[e]; |
|
| 568 |
} |
|
| 569 |
} |
|
| 570 |
|
|
| 571 |
// Finding excess nodes and deficit nodes |
|
| 572 |
_excess_nodes.clear(); |
|
| 573 |
_deficit_nodes.clear(); |
|
| 574 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 575 |
if (_excess[n] >= _delta) _excess_nodes.push_back(n); |
|
| 576 |
if (_excess[n] <= -_delta) _deficit_nodes.push_back(n); |
|
| 577 |
} |
|
| 578 |
int next_node = 0, next_def_node = 0; |
|
| 579 |
|
|
| 580 |
// Finding augmenting shortest paths |
|
| 581 |
while (next_node < int(_excess_nodes.size())) {
|
|
| 582 |
// Checking deficit nodes |
|
| 583 |
if (_delta > 1) {
|
|
| 584 |
bool delta_deficit = false; |
|
| 585 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
|
| 586 |
++next_def_node ) {
|
|
| 587 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
|
|
| 588 |
delta_deficit = true; |
|
| 589 |
break; |
|
| 590 |
} |
|
| 591 |
} |
|
| 592 |
if (!delta_deficit) break; |
|
| 593 |
} |
|
| 594 |
|
|
| 595 |
// Running Dijkstra |
|
| 596 |
s = _excess_nodes[next_node]; |
|
| 597 |
if ((t = _dijkstra->run(s, _delta)) == INVALID) {
|
|
| 598 |
if (_delta > 1) {
|
|
| 599 |
++next_node; |
|
| 600 |
continue; |
|
| 601 |
} |
|
| 602 |
return false; |
|
| 603 |
} |
|
| 604 |
|
|
| 605 |
// Augmenting along a shortest path from s to t. |
|
| 606 |
Capacity d = std::min(_excess[s], -_excess[t]); |
|
| 607 |
Node u = t; |
|
| 608 |
Arc e; |
|
| 609 |
if (d > _delta) {
|
|
| 610 |
while ((e = _pred[u]) != INVALID) {
|
|
| 611 |
Capacity rc; |
|
| 612 |
if (u == _graph.target(e)) {
|
|
| 613 |
rc = _res_cap[e]; |
|
| 614 |
u = _graph.source(e); |
|
| 615 |
} else {
|
|
| 616 |
rc = (*_flow)[e]; |
|
| 617 |
u = _graph.target(e); |
|
| 618 |
} |
|
| 619 |
if (rc < d) d = rc; |
|
| 620 |
} |
|
| 621 |
} |
|
| 622 |
u = t; |
|
| 623 |
while ((e = _pred[u]) != INVALID) {
|
|
| 624 |
if (u == _graph.target(e)) {
|
|
| 625 |
(*_flow)[e] += d; |
|
| 626 |
_res_cap[e] -= d; |
|
| 627 |
u = _graph.source(e); |
|
| 628 |
} else {
|
|
| 629 |
(*_flow)[e] -= d; |
|
| 630 |
_res_cap[e] += d; |
|
| 631 |
u = _graph.target(e); |
|
| 632 |
} |
|
| 633 |
} |
|
| 634 |
_excess[s] -= d; |
|
| 635 |
_excess[t] += d; |
|
| 636 |
|
|
| 637 |
if (_excess[s] < _delta) ++next_node; |
|
| 638 |
} |
|
| 639 |
|
|
| 640 |
if (_delta == 1) break; |
|
| 641 |
if (++phase_cnt > _phase_num / 4) factor = 2; |
|
| 642 |
_delta = _delta <= factor ? 1 : _delta / factor; |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
// Handling non-zero lower bounds |
|
| 646 |
if (_lower) {
|
|
| 647 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 648 |
(*_flow)[e] += (*_lower)[e]; |
|
| 649 |
} |
|
| 650 |
return true; |
|
| 651 |
} |
|
| 652 |
|
|
| 653 |
/// Execute the successive shortest path algorithm. |
|
| 654 |
bool startWithoutScaling() {
|
|
| 655 |
// Finding excess nodes |
|
| 656 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 657 |
if (_excess[n] > 0) _excess_nodes.push_back(n); |
|
| 658 |
if (_excess_nodes.size() == 0) return true; |
|
| 659 |
int next_node = 0; |
|
| 660 |
|
|
| 661 |
// Finding shortest paths |
|
| 662 |
Node s, t; |
|
| 663 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
|
| 664 |
++next_node < int(_excess_nodes.size()) ) |
|
| 665 |
{
|
|
| 666 |
// Running Dijkstra |
|
| 667 |
s = _excess_nodes[next_node]; |
|
| 668 |
if ((t = _dijkstra->run(s)) == INVALID) return false; |
|
| 669 |
|
|
| 670 |
// Augmenting along a shortest path from s to t |
|
| 671 |
Capacity d = std::min(_excess[s], -_excess[t]); |
|
| 672 |
Node u = t; |
|
| 673 |
Arc e; |
|
| 674 |
if (d > 1) {
|
|
| 675 |
while ((e = _pred[u]) != INVALID) {
|
|
| 676 |
Capacity rc; |
|
| 677 |
if (u == _graph.target(e)) {
|
|
| 678 |
rc = _res_cap[e]; |
|
| 679 |
u = _graph.source(e); |
|
| 680 |
} else {
|
|
| 681 |
rc = (*_flow)[e]; |
|
| 682 |
u = _graph.target(e); |
|
| 683 |
} |
|
| 684 |
if (rc < d) d = rc; |
|
| 685 |
} |
|
| 686 |
} |
|
| 687 |
u = t; |
|
| 688 |
while ((e = _pred[u]) != INVALID) {
|
|
| 689 |
if (u == _graph.target(e)) {
|
|
| 690 |
(*_flow)[e] += d; |
|
| 691 |
_res_cap[e] -= d; |
|
| 692 |
u = _graph.source(e); |
|
| 693 |
} else {
|
|
| 694 |
(*_flow)[e] -= d; |
|
| 695 |
_res_cap[e] += d; |
|
| 696 |
u = _graph.target(e); |
|
| 697 |
} |
|
| 698 |
} |
|
| 699 |
_excess[s] -= d; |
|
| 700 |
_excess[t] += d; |
|
| 701 |
} |
|
| 702 |
|
|
| 703 |
// Handling non-zero lower bounds |
|
| 704 |
if (_lower) {
|
|
| 705 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 706 |
(*_flow)[e] += (*_lower)[e]; |
|
| 707 |
} |
|
| 708 |
return true; |
|
| 709 |
} |
|
| 710 |
|
|
| 711 |
}; //class CapacityScaling |
|
| 712 |
|
|
| 713 |
///@} |
|
| 714 |
|
|
| 715 |
} //namespace lemon |
|
| 716 |
|
|
| 717 |
#endif //LEMON_CAPACITY_SCALING_H |
0 comments (0 inline)