1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CORE_H |
20 | 20 |
#define LEMON_CORE_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/enable_if.h> |
26 | 26 |
#include <lemon/bits/traits.h> |
27 | 27 |
#include <lemon/assert.h> |
28 | 28 |
|
29 | 29 |
///\file |
30 | 30 |
///\brief LEMON core utilities. |
31 | 31 |
/// |
32 | 32 |
///This header file contains core utilities for LEMON. |
33 | 33 |
///It is automatically included by all graph types, therefore it usually |
34 | 34 |
///do not have to be included directly. |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \brief Dummy type to make it easier to create invalid iterators. |
39 | 39 |
/// |
40 | 40 |
/// Dummy type to make it easier to create invalid iterators. |
41 | 41 |
/// See \ref INVALID for the usage. |
42 | 42 |
struct Invalid { |
43 | 43 |
public: |
44 | 44 |
bool operator==(Invalid) { return true; } |
45 | 45 |
bool operator!=(Invalid) { return false; } |
46 | 46 |
bool operator< (Invalid) { return false; } |
47 | 47 |
}; |
48 | 48 |
|
49 | 49 |
/// \brief Invalid iterators. |
50 | 50 |
/// |
51 | 51 |
/// \ref Invalid is a global type that converts to each iterator |
52 | 52 |
/// in such a way that the value of the target iterator will be invalid. |
53 | 53 |
#ifdef LEMON_ONLY_TEMPLATES |
54 | 54 |
const Invalid INVALID = Invalid(); |
55 | 55 |
#else |
56 | 56 |
extern const Invalid INVALID; |
57 | 57 |
#endif |
58 | 58 |
|
59 | 59 |
/// \addtogroup gutils |
60 | 60 |
/// @{ |
61 | 61 |
|
62 | 62 |
///Create convenience typedefs for the digraph types and iterators |
63 | 63 |
|
64 | 64 |
///This \c \#define creates convenient type definitions for the following |
65 | 65 |
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
66 | 66 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
67 | 67 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
68 | 68 |
/// |
69 | 69 |
///\note If the graph type is a dependent type, ie. the graph type depend |
70 | 70 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
71 | 71 |
///macro. |
72 | 72 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
73 | 73 |
typedef Digraph::Node Node; \ |
74 | 74 |
typedef Digraph::NodeIt NodeIt; \ |
75 | 75 |
typedef Digraph::Arc Arc; \ |
76 | 76 |
typedef Digraph::ArcIt ArcIt; \ |
77 | 77 |
typedef Digraph::InArcIt InArcIt; \ |
78 | 78 |
typedef Digraph::OutArcIt OutArcIt; \ |
79 | 79 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
80 | 80 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
81 | 81 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
82 | 82 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
83 | 83 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
84 | 84 |
typedef Digraph::ArcMap<double> DoubleArcMap |
85 | 85 |
|
86 | 86 |
///Create convenience typedefs for the digraph types and iterators |
87 | 87 |
|
88 | 88 |
///\see DIGRAPH_TYPEDEFS |
89 | 89 |
/// |
90 | 90 |
///\note Use this macro, if the graph type is a dependent type, |
91 | 91 |
///ie. the graph type depend on a template parameter. |
92 | 92 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
93 | 93 |
typedef typename Digraph::Node Node; \ |
94 | 94 |
typedef typename Digraph::NodeIt NodeIt; \ |
95 | 95 |
typedef typename Digraph::Arc Arc; \ |
96 | 96 |
typedef typename Digraph::ArcIt ArcIt; \ |
97 | 97 |
typedef typename Digraph::InArcIt InArcIt; \ |
98 | 98 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
99 | 99 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
100 | 100 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
101 | 101 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
102 | 102 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
103 | 103 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
104 | 104 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
105 | 105 |
|
106 | 106 |
///Create convenience typedefs for the graph types and iterators |
107 | 107 |
|
108 | 108 |
///This \c \#define creates the same convenient type definitions as defined |
109 | 109 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
110 | 110 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
111 | 111 |
///\c DoubleEdgeMap. |
112 | 112 |
/// |
113 | 113 |
///\note If the graph type is a dependent type, ie. the graph type depend |
114 | 114 |
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
115 | 115 |
///macro. |
116 | 116 |
#define GRAPH_TYPEDEFS(Graph) \ |
117 | 117 |
DIGRAPH_TYPEDEFS(Graph); \ |
118 | 118 |
typedef Graph::Edge Edge; \ |
119 | 119 |
typedef Graph::EdgeIt EdgeIt; \ |
120 | 120 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
121 | 121 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
122 | 122 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
123 | 123 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
124 | 124 |
|
125 | 125 |
///Create convenience typedefs for the graph types and iterators |
126 | 126 |
|
127 | 127 |
///\see GRAPH_TYPEDEFS |
128 | 128 |
/// |
129 | 129 |
///\note Use this macro, if the graph type is a dependent type, |
130 | 130 |
///ie. the graph type depend on a template parameter. |
131 | 131 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
132 | 132 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
133 | 133 |
typedef typename Graph::Edge Edge; \ |
134 | 134 |
typedef typename Graph::EdgeIt EdgeIt; \ |
135 | 135 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
136 | 136 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
137 | 137 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
138 | 138 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
139 | 139 |
|
140 | 140 |
/// \brief Function to count the items in a graph. |
141 | 141 |
/// |
142 | 142 |
/// This function counts the items (nodes, arcs etc.) in a graph. |
143 | 143 |
/// The complexity of the function is linear because |
144 | 144 |
/// it iterates on all of the items. |
145 | 145 |
template <typename Graph, typename Item> |
146 | 146 |
inline int countItems(const Graph& g) { |
147 | 147 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
148 | 148 |
int num = 0; |
149 | 149 |
for (ItemIt it(g); it != INVALID; ++it) { |
150 | 150 |
++num; |
151 | 151 |
} |
152 | 152 |
return num; |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
// Node counting: |
156 | 156 |
|
157 | 157 |
namespace _core_bits { |
158 | 158 |
|
159 | 159 |
template <typename Graph, typename Enable = void> |
160 | 160 |
struct CountNodesSelector { |
161 | 161 |
static int count(const Graph &g) { |
162 | 162 |
return countItems<Graph, typename Graph::Node>(g); |
163 | 163 |
} |
164 | 164 |
}; |
165 | 165 |
|
166 | 166 |
template <typename Graph> |
167 | 167 |
struct CountNodesSelector< |
168 | 168 |
Graph, typename |
169 | 169 |
enable_if<typename Graph::NodeNumTag, void>::type> |
170 | 170 |
{ |
171 | 171 |
static int count(const Graph &g) { |
172 | 172 |
return g.nodeNum(); |
173 | 173 |
} |
174 | 174 |
}; |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
/// \brief Function to count the nodes in the graph. |
178 | 178 |
/// |
179 | 179 |
/// This function counts the nodes in the graph. |
180 | 180 |
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
181 | 181 |
/// graph structures it is specialized to run in <em>O</em>(1). |
182 | 182 |
/// |
183 | 183 |
/// \note If the graph contains a \c nodeNum() member function and a |
184 | 184 |
/// \c NodeNumTag tag then this function calls directly the member |
185 | 185 |
/// function to query the cardinality of the node set. |
186 | 186 |
template <typename Graph> |
187 | 187 |
inline int countNodes(const Graph& g) { |
188 | 188 |
return _core_bits::CountNodesSelector<Graph>::count(g); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
// Arc counting: |
192 | 192 |
|
193 | 193 |
namespace _core_bits { |
194 | 194 |
|
195 | 195 |
template <typename Graph, typename Enable = void> |
196 | 196 |
struct CountArcsSelector { |
197 | 197 |
static int count(const Graph &g) { |
198 | 198 |
return countItems<Graph, typename Graph::Arc>(g); |
199 | 199 |
} |
200 | 200 |
}; |
201 | 201 |
|
202 | 202 |
template <typename Graph> |
203 | 203 |
struct CountArcsSelector< |
204 | 204 |
Graph, |
205 | 205 |
typename enable_if<typename Graph::ArcNumTag, void>::type> |
206 | 206 |
{ |
207 | 207 |
static int count(const Graph &g) { |
208 | 208 |
return g.arcNum(); |
209 | 209 |
} |
210 | 210 |
}; |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
/// \brief Function to count the arcs in the graph. |
214 | 214 |
/// |
215 | 215 |
/// This function counts the arcs in the graph. |
216 | 216 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
217 | 217 |
/// graph structures it is specialized to run in <em>O</em>(1). |
218 | 218 |
/// |
219 | 219 |
/// \note If the graph contains a \c arcNum() member function and a |
220 | 220 |
/// \c ArcNumTag tag then this function calls directly the member |
221 | 221 |
/// function to query the cardinality of the arc set. |
222 | 222 |
template <typename Graph> |
223 | 223 |
inline int countArcs(const Graph& g) { |
224 | 224 |
return _core_bits::CountArcsSelector<Graph>::count(g); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
// Edge counting: |
228 | 228 |
|
229 | 229 |
namespace _core_bits { |
230 | 230 |
|
231 | 231 |
template <typename Graph, typename Enable = void> |
232 | 232 |
struct CountEdgesSelector { |
233 | 233 |
static int count(const Graph &g) { |
234 | 234 |
return countItems<Graph, typename Graph::Edge>(g); |
235 | 235 |
} |
236 | 236 |
}; |
237 | 237 |
|
238 | 238 |
template <typename Graph> |
239 | 239 |
struct CountEdgesSelector< |
240 | 240 |
Graph, |
241 | 241 |
typename enable_if<typename Graph::EdgeNumTag, void>::type> |
242 | 242 |
{ |
243 | 243 |
static int count(const Graph &g) { |
244 | 244 |
return g.edgeNum(); |
245 | 245 |
} |
246 | 246 |
}; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \brief Function to count the edges in the graph. |
250 | 250 |
/// |
251 | 251 |
/// This function counts the edges in the graph. |
252 | 252 |
/// The complexity of the function is <em>O</em>(<em>m</em>), but for some |
253 | 253 |
/// graph structures it is specialized to run in <em>O</em>(1). |
254 | 254 |
/// |
255 | 255 |
/// \note If the graph contains a \c edgeNum() member function and a |
256 | 256 |
/// \c EdgeNumTag tag then this function calls directly the member |
257 | 257 |
/// function to query the cardinality of the edge set. |
258 | 258 |
template <typename Graph> |
259 | 259 |
inline int countEdges(const Graph& g) { |
260 | 260 |
return _core_bits::CountEdgesSelector<Graph>::count(g); |
261 | 261 |
|
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
|
265 | 265 |
template <typename Graph, typename DegIt> |
266 | 266 |
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
267 | 267 |
int num = 0; |
268 | 268 |
for (DegIt it(_g, _n); it != INVALID; ++it) { |
269 | 269 |
++num; |
270 | 270 |
} |
271 | 271 |
return num; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Function to count the number of the out-arcs from node \c n. |
275 | 275 |
/// |
276 | 276 |
/// This function counts the number of the out-arcs from node \c n |
277 | 277 |
/// in the graph \c g. |
278 | 278 |
template <typename Graph> |
279 | 279 |
inline int countOutArcs(const Graph& g, const typename Graph::Node& n) { |
280 | 280 |
return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n); |
281 | 281 |
} |
282 | 282 |
|
283 | 283 |
/// \brief Function to count the number of the in-arcs to node \c n. |
284 | 284 |
/// |
285 | 285 |
/// This function counts the number of the in-arcs to node \c n |
286 | 286 |
/// in the graph \c g. |
287 | 287 |
template <typename Graph> |
288 | 288 |
inline int countInArcs(const Graph& g, const typename Graph::Node& n) { |
289 | 289 |
return countNodeDegree<Graph, typename Graph::InArcIt>(g, n); |
290 | 290 |
} |
291 | 291 |
|
292 | 292 |
/// \brief Function to count the number of the inc-edges to node \c n. |
293 | 293 |
/// |
294 | 294 |
/// This function counts the number of the inc-edges to node \c n |
295 | 295 |
/// in the undirected graph \c g. |
296 | 296 |
template <typename Graph> |
297 | 297 |
inline int countIncEdges(const Graph& g, const typename Graph::Node& n) { |
298 | 298 |
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n); |
299 | 299 |
} |
300 | 300 |
|
301 | 301 |
namespace _core_bits { |
302 | 302 |
|
303 | 303 |
template <typename Digraph, typename Item, typename RefMap> |
304 | 304 |
class MapCopyBase { |
305 | 305 |
public: |
306 | 306 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
307 | 307 |
|
308 | 308 |
virtual ~MapCopyBase() {} |
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
template <typename Digraph, typename Item, typename RefMap, |
312 | 312 |
typename FromMap, typename ToMap> |
313 | 313 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
314 | 314 |
public: |
315 | 315 |
|
316 | 316 |
MapCopy(const FromMap& map, ToMap& tmap) |
317 | 317 |
: _map(map), _tmap(tmap) {} |
318 | 318 |
|
319 | 319 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
320 | 320 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
321 | 321 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
322 | 322 |
_tmap.set(refMap[it], _map[it]); |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
private: |
327 | 327 |
const FromMap& _map; |
328 | 328 |
ToMap& _tmap; |
329 | 329 |
}; |
330 | 330 |
|
331 | 331 |
template <typename Digraph, typename Item, typename RefMap, typename It> |
332 | 332 |
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> { |
333 | 333 |
public: |
334 | 334 |
|
335 | 335 |
ItemCopy(const Item& item, It& it) : _item(item), _it(it) {} |
336 | 336 |
|
337 | 337 |
virtual void copy(const Digraph&, const RefMap& refMap) { |
338 | 338 |
_it = refMap[_item]; |
339 | 339 |
} |
340 | 340 |
|
341 | 341 |
private: |
342 | 342 |
Item _item; |
343 | 343 |
It& _it; |
344 | 344 |
}; |
345 | 345 |
|
346 | 346 |
template <typename Digraph, typename Item, typename RefMap, typename Ref> |
347 | 347 |
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
348 | 348 |
public: |
349 | 349 |
|
350 | 350 |
RefCopy(Ref& map) : _map(map) {} |
351 | 351 |
|
352 | 352 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
353 | 353 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
354 | 354 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
355 | 355 |
_map.set(it, refMap[it]); |
356 | 356 |
} |
357 | 357 |
} |
358 | 358 |
|
359 | 359 |
private: |
360 | 360 |
Ref& _map; |
361 | 361 |
}; |
362 | 362 |
|
363 | 363 |
template <typename Digraph, typename Item, typename RefMap, |
364 | 364 |
typename CrossRef> |
365 | 365 |
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> { |
366 | 366 |
public: |
367 | 367 |
|
368 | 368 |
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
369 | 369 |
|
370 | 370 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
371 | 371 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
372 | 372 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
373 | 373 |
_cmap.set(refMap[it], it); |
374 | 374 |
} |
375 | 375 |
} |
376 | 376 |
|
377 | 377 |
private: |
378 | 378 |
CrossRef& _cmap; |
379 | 379 |
}; |
380 | 380 |
|
381 | 381 |
template <typename Digraph, typename Enable = void> |
382 | 382 |
struct DigraphCopySelector { |
383 | 383 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
384 | 384 |
static void copy(const From& from, Digraph &to, |
385 | 385 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
386 | 386 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
387 | 387 |
nodeRefMap[it] = to.addNode(); |
388 | 388 |
} |
389 | 389 |
for (typename From::ArcIt it(from); it != INVALID; ++it) { |
390 | 390 |
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], |
391 | 391 |
nodeRefMap[from.target(it)]); |
392 | 392 |
} |
393 | 393 |
} |
394 | 394 |
}; |
395 | 395 |
|
396 | 396 |
template <typename Digraph> |
397 | 397 |
struct DigraphCopySelector< |
398 | 398 |
Digraph, |
399 | 399 |
typename enable_if<typename Digraph::BuildTag, void>::type> |
400 | 400 |
{ |
401 | 401 |
template <typename From, typename NodeRefMap, typename ArcRefMap> |
402 | 402 |
static void copy(const From& from, Digraph &to, |
403 | 403 |
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { |
404 | 404 |
to.build(from, nodeRefMap, arcRefMap); |
405 | 405 |
} |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
template <typename Graph, typename Enable = void> |
409 | 409 |
struct GraphCopySelector { |
410 | 410 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
411 | 411 |
static void copy(const From& from, Graph &to, |
412 | 412 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
413 | 413 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
414 | 414 |
nodeRefMap[it] = to.addNode(); |
415 | 415 |
} |
416 | 416 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
417 | 417 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
418 | 418 |
nodeRefMap[from.v(it)]); |
419 | 419 |
} |
420 | 420 |
} |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
template <typename Graph> |
424 | 424 |
struct GraphCopySelector< |
425 | 425 |
Graph, |
426 | 426 |
typename enable_if<typename Graph::BuildTag, void>::type> |
427 | 427 |
{ |
428 | 428 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
429 | 429 |
static void copy(const From& from, Graph &to, |
430 | 430 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
431 | 431 |
to.build(from, nodeRefMap, edgeRefMap); |
432 | 432 |
} |
433 | 433 |
}; |
434 | 434 |
|
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
/// \brief Class to copy a digraph. |
438 | 438 |
/// |
439 | 439 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
440 | 440 |
/// simplest way of using it is through the \c digraphCopy() function. |
441 | 441 |
/// |
442 | 442 |
/// This class not only make a copy of a digraph, but it can create |
443 | 443 |
/// references and cross references between the nodes and arcs of |
444 | 444 |
/// the two digraphs, and it can copy maps to use with the newly created |
445 | 445 |
/// digraph. |
446 | 446 |
/// |
447 | 447 |
/// To make a copy from a digraph, first an instance of DigraphCopy |
448 | 448 |
/// should be created, then the data belongs to the digraph should |
449 | 449 |
/// assigned to copy. In the end, the \c run() member should be |
450 | 450 |
/// called. |
451 | 451 |
/// |
452 | 452 |
/// The next code copies a digraph with several data: |
453 | 453 |
///\code |
454 | 454 |
/// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
455 | 455 |
/// // Create references for the nodes |
456 | 456 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
457 | 457 |
/// cg.nodeRef(nr); |
458 | 458 |
/// // Create cross references (inverse) for the arcs |
459 | 459 |
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph); |
460 | 460 |
/// cg.arcCrossRef(acr); |
461 | 461 |
/// // Copy an arc map |
462 | 462 |
/// OrigGraph::ArcMap<double> oamap(orig_graph); |
463 | 463 |
/// NewGraph::ArcMap<double> namap(new_graph); |
464 | 464 |
/// cg.arcMap(oamap, namap); |
465 | 465 |
/// // Copy a node |
466 | 466 |
/// OrigGraph::Node on; |
467 | 467 |
/// NewGraph::Node nn; |
468 | 468 |
/// cg.node(on, nn); |
469 | 469 |
/// // Execute copying |
470 | 470 |
/// cg.run(); |
471 | 471 |
///\endcode |
472 | 472 |
template <typename From, typename To> |
473 | 473 |
class DigraphCopy { |
474 | 474 |
private: |
475 | 475 |
|
476 | 476 |
typedef typename From::Node Node; |
477 | 477 |
typedef typename From::NodeIt NodeIt; |
478 | 478 |
typedef typename From::Arc Arc; |
479 | 479 |
typedef typename From::ArcIt ArcIt; |
480 | 480 |
|
481 | 481 |
typedef typename To::Node TNode; |
482 | 482 |
typedef typename To::Arc TArc; |
483 | 483 |
|
484 | 484 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
485 | 485 |
typedef typename From::template ArcMap<TArc> ArcRefMap; |
486 | 486 |
|
487 | 487 |
public: |
488 | 488 |
|
489 | 489 |
/// \brief Constructor of DigraphCopy. |
490 | 490 |
/// |
491 | 491 |
/// Constructor of DigraphCopy for copying the content of the |
492 | 492 |
/// \c from digraph into the \c to digraph. |
493 | 493 |
DigraphCopy(const From& from, To& to) |
494 | 494 |
: _from(from), _to(to) {} |
495 | 495 |
|
496 | 496 |
/// \brief Destructor of DigraphCopy |
497 | 497 |
/// |
498 | 498 |
/// Destructor of DigraphCopy. |
499 | 499 |
~DigraphCopy() { |
500 | 500 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
501 | 501 |
delete _node_maps[i]; |
502 | 502 |
} |
503 | 503 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
504 | 504 |
delete _arc_maps[i]; |
505 | 505 |
} |
506 | 506 |
|
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
/// \brief Copy the node references into the given map. |
510 | 510 |
/// |
511 | 511 |
/// This function copies the node references into the given map. |
512 | 512 |
/// The parameter should be a map, whose key type is the Node type of |
513 | 513 |
/// the source digraph, while the value type is the Node type of the |
514 | 514 |
/// destination digraph. |
515 | 515 |
template <typename NodeRef> |
516 | 516 |
DigraphCopy& nodeRef(NodeRef& map) { |
517 | 517 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
518 | 518 |
NodeRefMap, NodeRef>(map)); |
519 | 519 |
return *this; |
520 | 520 |
} |
521 | 521 |
|
522 | 522 |
/// \brief Copy the node cross references into the given map. |
523 | 523 |
/// |
524 | 524 |
/// This function copies the node cross references (reverse references) |
525 | 525 |
/// into the given map. The parameter should be a map, whose key type |
526 | 526 |
/// is the Node type of the destination digraph, while the value type is |
527 | 527 |
/// the Node type of the source digraph. |
528 | 528 |
template <typename NodeCrossRef> |
529 | 529 |
DigraphCopy& nodeCrossRef(NodeCrossRef& map) { |
530 | 530 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
531 | 531 |
NodeRefMap, NodeCrossRef>(map)); |
532 | 532 |
return *this; |
533 | 533 |
} |
534 | 534 |
|
535 | 535 |
/// \brief Make a copy of the given node map. |
536 | 536 |
/// |
537 | 537 |
/// This function makes a copy of the given node map for the newly |
538 | 538 |
/// created digraph. |
539 | 539 |
/// The key type of the new map \c tmap should be the Node type of the |
540 | 540 |
/// destination digraph, and the key type of the original map \c map |
541 | 541 |
/// should be the Node type of the source digraph. |
542 | 542 |
template <typename FromMap, typename ToMap> |
543 | 543 |
DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
544 | 544 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
545 | 545 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
546 | 546 |
return *this; |
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
/// \brief Make a copy of the given node. |
550 | 550 |
/// |
551 | 551 |
/// This function makes a copy of the given node. |
552 | 552 |
DigraphCopy& node(const Node& node, TNode& tnode) { |
553 | 553 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
554 | 554 |
NodeRefMap, TNode>(node, tnode)); |
555 | 555 |
return *this; |
556 | 556 |
} |
557 | 557 |
|
558 | 558 |
/// \brief Copy the arc references into the given map. |
559 | 559 |
/// |
560 | 560 |
/// This function copies the arc references into the given map. |
561 | 561 |
/// The parameter should be a map, whose key type is the Arc type of |
562 | 562 |
/// the source digraph, while the value type is the Arc type of the |
563 | 563 |
/// destination digraph. |
564 | 564 |
template <typename ArcRef> |
565 | 565 |
DigraphCopy& arcRef(ArcRef& map) { |
566 | 566 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
567 | 567 |
ArcRefMap, ArcRef>(map)); |
568 | 568 |
return *this; |
569 | 569 |
} |
570 | 570 |
|
571 | 571 |
/// \brief Copy the arc cross references into the given map. |
572 | 572 |
/// |
573 | 573 |
/// This function copies the arc cross references (reverse references) |
574 | 574 |
/// into the given map. The parameter should be a map, whose key type |
575 | 575 |
/// is the Arc type of the destination digraph, while the value type is |
576 | 576 |
/// the Arc type of the source digraph. |
577 | 577 |
template <typename ArcCrossRef> |
578 | 578 |
DigraphCopy& arcCrossRef(ArcCrossRef& map) { |
579 | 579 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
580 | 580 |
ArcRefMap, ArcCrossRef>(map)); |
581 | 581 |
return *this; |
582 | 582 |
} |
583 | 583 |
|
584 | 584 |
/// \brief Make a copy of the given arc map. |
585 | 585 |
/// |
586 | 586 |
/// This function makes a copy of the given arc map for the newly |
587 | 587 |
/// created digraph. |
588 | 588 |
/// The key type of the new map \c tmap should be the Arc type of the |
589 | 589 |
/// destination digraph, and the key type of the original map \c map |
590 | 590 |
/// should be the Arc type of the source digraph. |
591 | 591 |
template <typename FromMap, typename ToMap> |
592 | 592 |
DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
593 | 593 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
594 | 594 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
595 | 595 |
return *this; |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
/// \brief Make a copy of the given arc. |
599 | 599 |
/// |
600 | 600 |
/// This function makes a copy of the given arc. |
601 | 601 |
DigraphCopy& arc(const Arc& arc, TArc& tarc) { |
602 | 602 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
603 | 603 |
ArcRefMap, TArc>(arc, tarc)); |
604 | 604 |
return *this; |
605 | 605 |
} |
606 | 606 |
|
607 | 607 |
/// \brief Execute copying. |
608 | 608 |
/// |
609 | 609 |
/// This function executes the copying of the digraph along with the |
610 | 610 |
/// copying of the assigned data. |
611 | 611 |
void run() { |
612 | 612 |
NodeRefMap nodeRefMap(_from); |
613 | 613 |
ArcRefMap arcRefMap(_from); |
614 | 614 |
_core_bits::DigraphCopySelector<To>:: |
615 | 615 |
copy(_from, _to, nodeRefMap, arcRefMap); |
616 | 616 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
617 | 617 |
_node_maps[i]->copy(_from, nodeRefMap); |
618 | 618 |
} |
619 | 619 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
620 | 620 |
_arc_maps[i]->copy(_from, arcRefMap); |
621 | 621 |
} |
622 | 622 |
} |
623 | 623 |
|
624 | 624 |
protected: |
625 | 625 |
|
626 | 626 |
const From& _from; |
627 | 627 |
To& _to; |
628 | 628 |
|
629 | 629 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
630 | 630 |
_node_maps; |
631 | 631 |
|
632 | 632 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
633 | 633 |
_arc_maps; |
634 | 634 |
|
635 | 635 |
}; |
636 | 636 |
|
637 | 637 |
/// \brief Copy a digraph to another digraph. |
638 | 638 |
/// |
639 | 639 |
/// This function copies a digraph to another digraph. |
640 | 640 |
/// The complete usage of it is detailed in the DigraphCopy class, but |
641 | 641 |
/// a short example shows a basic work: |
642 | 642 |
///\code |
643 | 643 |
/// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run(); |
644 | 644 |
///\endcode |
645 | 645 |
/// |
646 | 646 |
/// After the copy the \c nr map will contain the mapping from the |
647 | 647 |
/// nodes of the \c from digraph to the nodes of the \c to digraph and |
648 | 648 |
/// \c acr will contain the mapping from the arcs of the \c to digraph |
649 | 649 |
/// to the arcs of the \c from digraph. |
650 | 650 |
/// |
651 | 651 |
/// \see DigraphCopy |
652 | 652 |
template <typename From, typename To> |
653 | 653 |
DigraphCopy<From, To> digraphCopy(const From& from, To& to) { |
654 | 654 |
return DigraphCopy<From, To>(from, to); |
655 | 655 |
} |
656 | 656 |
|
657 | 657 |
/// \brief Class to copy a graph. |
658 | 658 |
/// |
659 | 659 |
/// Class to copy a graph to another graph (duplicate a graph). The |
660 | 660 |
/// simplest way of using it is through the \c graphCopy() function. |
661 | 661 |
/// |
662 | 662 |
/// This class not only make a copy of a graph, but it can create |
663 | 663 |
/// references and cross references between the nodes, edges and arcs of |
664 | 664 |
/// the two graphs, and it can copy maps for using with the newly created |
665 | 665 |
/// graph. |
666 | 666 |
/// |
667 | 667 |
/// To make a copy from a graph, first an instance of GraphCopy |
668 | 668 |
/// should be created, then the data belongs to the graph should |
669 | 669 |
/// assigned to copy. In the end, the \c run() member should be |
670 | 670 |
/// called. |
671 | 671 |
/// |
672 | 672 |
/// The next code copies a graph with several data: |
673 | 673 |
///\code |
674 | 674 |
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
675 | 675 |
/// // Create references for the nodes |
676 | 676 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
677 | 677 |
/// cg.nodeRef(nr); |
678 | 678 |
/// // Create cross references (inverse) for the edges |
679 | 679 |
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph); |
680 | 680 |
/// cg.edgeCrossRef(ecr); |
681 | 681 |
/// // Copy an edge map |
682 | 682 |
/// OrigGraph::EdgeMap<double> oemap(orig_graph); |
683 | 683 |
/// NewGraph::EdgeMap<double> nemap(new_graph); |
684 | 684 |
/// cg.edgeMap(oemap, nemap); |
685 | 685 |
/// // Copy a node |
686 | 686 |
/// OrigGraph::Node on; |
687 | 687 |
/// NewGraph::Node nn; |
688 | 688 |
/// cg.node(on, nn); |
689 | 689 |
/// // Execute copying |
690 | 690 |
/// cg.run(); |
691 | 691 |
///\endcode |
692 | 692 |
template <typename From, typename To> |
693 | 693 |
class GraphCopy { |
694 | 694 |
private: |
695 | 695 |
|
696 | 696 |
typedef typename From::Node Node; |
697 | 697 |
typedef typename From::NodeIt NodeIt; |
698 | 698 |
typedef typename From::Arc Arc; |
699 | 699 |
typedef typename From::ArcIt ArcIt; |
700 | 700 |
typedef typename From::Edge Edge; |
701 | 701 |
typedef typename From::EdgeIt EdgeIt; |
702 | 702 |
|
703 | 703 |
typedef typename To::Node TNode; |
704 | 704 |
typedef typename To::Arc TArc; |
705 | 705 |
typedef typename To::Edge TEdge; |
706 | 706 |
|
707 | 707 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
708 | 708 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
709 | 709 |
|
710 | 710 |
struct ArcRefMap { |
711 | 711 |
ArcRefMap(const From& from, const To& to, |
712 | 712 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
713 | 713 |
: _from(from), _to(to), |
714 | 714 |
_edge_ref(edge_ref), _node_ref(node_ref) {} |
715 | 715 |
|
716 | 716 |
typedef typename From::Arc Key; |
717 | 717 |
typedef typename To::Arc Value; |
718 | 718 |
|
719 | 719 |
Value operator[](const Key& key) const { |
720 | 720 |
bool forward = _from.u(key) != _from.v(key) ? |
721 | 721 |
_node_ref[_from.source(key)] == |
722 | 722 |
_to.source(_to.direct(_edge_ref[key], true)) : |
723 | 723 |
_from.direction(key); |
724 | 724 |
return _to.direct(_edge_ref[key], forward); |
725 | 725 |
} |
726 | 726 |
|
727 | 727 |
const From& _from; |
728 | 728 |
const To& _to; |
729 | 729 |
const EdgeRefMap& _edge_ref; |
730 | 730 |
const NodeRefMap& _node_ref; |
731 | 731 |
}; |
732 | 732 |
|
733 | 733 |
public: |
734 | 734 |
|
735 | 735 |
/// \brief Constructor of GraphCopy. |
736 | 736 |
/// |
737 | 737 |
/// Constructor of GraphCopy for copying the content of the |
738 | 738 |
/// \c from graph into the \c to graph. |
739 | 739 |
GraphCopy(const From& from, To& to) |
740 | 740 |
: _from(from), _to(to) {} |
741 | 741 |
|
742 | 742 |
/// \brief Destructor of GraphCopy |
743 | 743 |
/// |
744 | 744 |
/// Destructor of GraphCopy. |
745 | 745 |
~GraphCopy() { |
746 | 746 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
747 | 747 |
delete _node_maps[i]; |
748 | 748 |
} |
749 | 749 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
750 | 750 |
delete _arc_maps[i]; |
751 | 751 |
} |
752 | 752 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
753 | 753 |
delete _edge_maps[i]; |
754 | 754 |
} |
755 | 755 |
} |
756 | 756 |
|
757 | 757 |
/// \brief Copy the node references into the given map. |
758 | 758 |
/// |
759 | 759 |
/// This function copies the node references into the given map. |
760 | 760 |
/// The parameter should be a map, whose key type is the Node type of |
761 | 761 |
/// the source graph, while the value type is the Node type of the |
762 | 762 |
/// destination graph. |
763 | 763 |
template <typename NodeRef> |
764 | 764 |
GraphCopy& nodeRef(NodeRef& map) { |
765 | 765 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
766 | 766 |
NodeRefMap, NodeRef>(map)); |
767 | 767 |
return *this; |
768 | 768 |
} |
769 | 769 |
|
770 | 770 |
/// \brief Copy the node cross references into the given map. |
771 | 771 |
/// |
772 | 772 |
/// This function copies the node cross references (reverse references) |
773 | 773 |
/// into the given map. The parameter should be a map, whose key type |
774 | 774 |
/// is the Node type of the destination graph, while the value type is |
775 | 775 |
/// the Node type of the source graph. |
776 | 776 |
template <typename NodeCrossRef> |
777 | 777 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
778 | 778 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
779 | 779 |
NodeRefMap, NodeCrossRef>(map)); |
780 | 780 |
return *this; |
781 | 781 |
} |
782 | 782 |
|
783 | 783 |
/// \brief Make a copy of the given node map. |
784 | 784 |
/// |
785 | 785 |
/// This function makes a copy of the given node map for the newly |
786 | 786 |
/// created graph. |
787 | 787 |
/// The key type of the new map \c tmap should be the Node type of the |
788 | 788 |
/// destination graph, and the key type of the original map \c map |
789 | 789 |
/// should be the Node type of the source graph. |
790 | 790 |
template <typename FromMap, typename ToMap> |
791 | 791 |
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
792 | 792 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
793 | 793 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
794 | 794 |
return *this; |
795 | 795 |
} |
796 | 796 |
|
797 | 797 |
/// \brief Make a copy of the given node. |
798 | 798 |
/// |
799 | 799 |
/// This function makes a copy of the given node. |
800 | 800 |
GraphCopy& node(const Node& node, TNode& tnode) { |
801 | 801 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
802 | 802 |
NodeRefMap, TNode>(node, tnode)); |
803 | 803 |
return *this; |
804 | 804 |
} |
805 | 805 |
|
806 | 806 |
/// \brief Copy the arc references into the given map. |
807 | 807 |
/// |
808 | 808 |
/// This function copies the arc references into the given map. |
809 | 809 |
/// The parameter should be a map, whose key type is the Arc type of |
810 | 810 |
/// the source graph, while the value type is the Arc type of the |
811 | 811 |
/// destination graph. |
812 | 812 |
template <typename ArcRef> |
813 | 813 |
GraphCopy& arcRef(ArcRef& map) { |
814 | 814 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
815 | 815 |
ArcRefMap, ArcRef>(map)); |
816 | 816 |
return *this; |
817 | 817 |
} |
818 | 818 |
|
819 | 819 |
/// \brief Copy the arc cross references into the given map. |
820 | 820 |
/// |
821 | 821 |
/// This function copies the arc cross references (reverse references) |
822 | 822 |
/// into the given map. The parameter should be a map, whose key type |
823 | 823 |
/// is the Arc type of the destination graph, while the value type is |
824 | 824 |
/// the Arc type of the source graph. |
825 | 825 |
template <typename ArcCrossRef> |
826 | 826 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
827 | 827 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
828 | 828 |
ArcRefMap, ArcCrossRef>(map)); |
829 | 829 |
return *this; |
830 | 830 |
} |
831 | 831 |
|
832 | 832 |
/// \brief Make a copy of the given arc map. |
833 | 833 |
/// |
834 | 834 |
/// This function makes a copy of the given arc map for the newly |
835 | 835 |
/// created graph. |
836 | 836 |
/// The key type of the new map \c tmap should be the Arc type of the |
837 | 837 |
/// destination graph, and the key type of the original map \c map |
838 | 838 |
/// should be the Arc type of the source graph. |
839 | 839 |
template <typename FromMap, typename ToMap> |
840 | 840 |
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
841 | 841 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
842 | 842 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
843 | 843 |
return *this; |
844 | 844 |
} |
845 | 845 |
|
846 | 846 |
/// \brief Make a copy of the given arc. |
847 | 847 |
/// |
848 | 848 |
/// This function makes a copy of the given arc. |
849 | 849 |
GraphCopy& arc(const Arc& arc, TArc& tarc) { |
850 | 850 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
851 | 851 |
ArcRefMap, TArc>(arc, tarc)); |
852 | 852 |
return *this; |
853 | 853 |
} |
854 | 854 |
|
855 | 855 |
/// \brief Copy the edge references into the given map. |
856 | 856 |
/// |
857 | 857 |
/// This function copies the edge references into the given map. |
858 | 858 |
/// The parameter should be a map, whose key type is the Edge type of |
859 | 859 |
/// the source graph, while the value type is the Edge type of the |
860 | 860 |
/// destination graph. |
861 | 861 |
template <typename EdgeRef> |
862 | 862 |
GraphCopy& edgeRef(EdgeRef& map) { |
863 | 863 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
864 | 864 |
EdgeRefMap, EdgeRef>(map)); |
865 | 865 |
return *this; |
866 | 866 |
} |
867 | 867 |
|
868 | 868 |
/// \brief Copy the edge cross references into the given map. |
869 | 869 |
/// |
870 | 870 |
/// This function copies the edge cross references (reverse references) |
871 | 871 |
/// into the given map. The parameter should be a map, whose key type |
872 | 872 |
/// is the Edge type of the destination graph, while the value type is |
873 | 873 |
/// the Edge type of the source graph. |
874 | 874 |
template <typename EdgeCrossRef> |
875 | 875 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
876 | 876 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
877 | 877 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
878 | 878 |
return *this; |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
/// \brief Make a copy of the given edge map. |
882 | 882 |
/// |
883 | 883 |
/// This function makes a copy of the given edge map for the newly |
884 | 884 |
/// created graph. |
885 | 885 |
/// The key type of the new map \c tmap should be the Edge type of the |
886 | 886 |
/// destination graph, and the key type of the original map \c map |
887 | 887 |
/// should be the Edge type of the source graph. |
888 | 888 |
template <typename FromMap, typename ToMap> |
889 | 889 |
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
890 | 890 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
891 | 891 |
EdgeRefMap, FromMap, ToMap>(map, tmap)); |
892 | 892 |
return *this; |
893 | 893 |
} |
894 | 894 |
|
895 | 895 |
/// \brief Make a copy of the given edge. |
896 | 896 |
/// |
897 | 897 |
/// This function makes a copy of the given edge. |
898 | 898 |
GraphCopy& edge(const Edge& edge, TEdge& tedge) { |
899 | 899 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
900 | 900 |
EdgeRefMap, TEdge>(edge, tedge)); |
901 | 901 |
return *this; |
902 | 902 |
} |
903 | 903 |
|
904 | 904 |
/// \brief Execute copying. |
905 | 905 |
/// |
906 | 906 |
/// This function executes the copying of the graph along with the |
907 | 907 |
/// copying of the assigned data. |
908 | 908 |
void run() { |
909 | 909 |
NodeRefMap nodeRefMap(_from); |
910 | 910 |
EdgeRefMap edgeRefMap(_from); |
911 | 911 |
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
912 | 912 |
_core_bits::GraphCopySelector<To>:: |
913 | 913 |
copy(_from, _to, nodeRefMap, edgeRefMap); |
914 | 914 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
915 | 915 |
_node_maps[i]->copy(_from, nodeRefMap); |
916 | 916 |
} |
917 | 917 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
918 | 918 |
_edge_maps[i]->copy(_from, edgeRefMap); |
919 | 919 |
} |
920 | 920 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
921 | 921 |
_arc_maps[i]->copy(_from, arcRefMap); |
922 | 922 |
} |
923 | 923 |
} |
924 | 924 |
|
925 | 925 |
private: |
926 | 926 |
|
927 | 927 |
const From& _from; |
928 | 928 |
To& _to; |
929 | 929 |
|
930 | 930 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
931 | 931 |
_node_maps; |
932 | 932 |
|
933 | 933 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
934 | 934 |
_arc_maps; |
935 | 935 |
|
936 | 936 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
937 | 937 |
_edge_maps; |
938 | 938 |
|
939 | 939 |
}; |
940 | 940 |
|
941 | 941 |
/// \brief Copy a graph to another graph. |
942 | 942 |
/// |
943 | 943 |
/// This function copies a graph to another graph. |
944 | 944 |
/// The complete usage of it is detailed in the GraphCopy class, |
945 | 945 |
/// but a short example shows a basic work: |
946 | 946 |
///\code |
947 | 947 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
948 | 948 |
///\endcode |
949 | 949 |
/// |
950 | 950 |
/// After the copy the \c nr map will contain the mapping from the |
951 | 951 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
952 | 952 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
953 | 953 |
/// to the edges of the \c from graph. |
954 | 954 |
/// |
955 | 955 |
/// \see GraphCopy |
956 | 956 |
template <typename From, typename To> |
957 | 957 |
GraphCopy<From, To> |
958 | 958 |
graphCopy(const From& from, To& to) { |
959 | 959 |
return GraphCopy<From, To>(from, to); |
960 | 960 |
} |
961 | 961 |
|
962 | 962 |
namespace _core_bits { |
963 | 963 |
|
964 | 964 |
template <typename Graph, typename Enable = void> |
965 | 965 |
struct FindArcSelector { |
966 | 966 |
typedef typename Graph::Node Node; |
967 | 967 |
typedef typename Graph::Arc Arc; |
968 | 968 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
969 | 969 |
if (e == INVALID) { |
970 | 970 |
g.firstOut(e, u); |
971 | 971 |
} else { |
972 | 972 |
g.nextOut(e); |
973 | 973 |
} |
974 | 974 |
while (e != INVALID && g.target(e) != v) { |
975 | 975 |
g.nextOut(e); |
976 | 976 |
} |
977 | 977 |
return e; |
978 | 978 |
} |
979 | 979 |
}; |
980 | 980 |
|
981 | 981 |
template <typename Graph> |
982 | 982 |
struct FindArcSelector< |
983 | 983 |
Graph, |
984 | 984 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
985 | 985 |
{ |
986 | 986 |
typedef typename Graph::Node Node; |
987 | 987 |
typedef typename Graph::Arc Arc; |
988 | 988 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
989 | 989 |
return g.findArc(u, v, prev); |
990 | 990 |
} |
991 | 991 |
}; |
992 | 992 |
} |
993 | 993 |
|
994 | 994 |
/// \brief Find an arc between two nodes of a digraph. |
995 | 995 |
/// |
996 | 996 |
/// This function finds an arc from node \c u to node \c v in the |
997 | 997 |
/// digraph \c g. |
998 | 998 |
/// |
999 | 999 |
/// If \c prev is \ref INVALID (this is the default value), then |
1000 | 1000 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
1001 | 1001 |
/// the next arc from \c u to \c v after \c prev. |
1002 | 1002 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
1003 | 1003 |
/// |
1004 | 1004 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
1005 | 1005 |
///\code |
1006 | 1006 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
1007 | 1007 |
/// ... |
1008 | 1008 |
/// } |
1009 | 1009 |
///\endcode |
1010 | 1010 |
/// |
1011 | 1011 |
/// \note \ref ConArcIt provides iterator interface for the same |
1012 | 1012 |
/// functionality. |
1013 | 1013 |
/// |
1014 | 1014 |
///\sa ConArcIt |
1015 | 1015 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1016 | 1016 |
template <typename Graph> |
1017 | 1017 |
inline typename Graph::Arc |
1018 | 1018 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1019 | 1019 |
typename Graph::Arc prev = INVALID) { |
1020 | 1020 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
1021 | 1021 |
} |
1022 | 1022 |
|
1023 | 1023 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
1024 | 1024 |
/// |
1025 | 1025 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
1026 | 1026 |
/// a higher level interface for the \ref findArc() function. You can |
1027 | 1027 |
/// use it the following way: |
1028 | 1028 |
///\code |
1029 | 1029 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
1030 | 1030 |
/// ... |
1031 | 1031 |
/// } |
1032 | 1032 |
///\endcode |
1033 | 1033 |
/// |
1034 | 1034 |
///\sa findArc() |
1035 | 1035 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1036 | 1036 |
template <typename _Graph> |
1037 | 1037 |
class ConArcIt : public _Graph::Arc { |
1038 | 1038 |
public: |
1039 | 1039 |
|
1040 | 1040 |
typedef _Graph Graph; |
1041 | 1041 |
typedef typename Graph::Arc Parent; |
1042 | 1042 |
|
1043 | 1043 |
typedef typename Graph::Arc Arc; |
1044 | 1044 |
typedef typename Graph::Node Node; |
1045 | 1045 |
|
1046 | 1046 |
/// \brief Constructor. |
1047 | 1047 |
/// |
1048 | 1048 |
/// Construct a new ConArcIt iterating on the arcs that |
1049 | 1049 |
/// connects nodes \c u and \c v. |
1050 | 1050 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
1051 | 1051 |
Parent::operator=(findArc(_graph, u, v)); |
1052 | 1052 |
} |
1053 | 1053 |
|
1054 | 1054 |
/// \brief Constructor. |
1055 | 1055 |
/// |
1056 | 1056 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1057 | 1057 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
1058 | 1058 |
|
1059 | 1059 |
/// \brief Increment operator. |
1060 | 1060 |
/// |
1061 | 1061 |
/// It increments the iterator and gives back the next arc. |
1062 | 1062 |
ConArcIt& operator++() { |
1063 | 1063 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1064 | 1064 |
_graph.target(*this), *this)); |
1065 | 1065 |
return *this; |
1066 | 1066 |
} |
1067 | 1067 |
private: |
1068 | 1068 |
const Graph& _graph; |
1069 | 1069 |
}; |
1070 | 1070 |
|
1071 | 1071 |
namespace _core_bits { |
1072 | 1072 |
|
1073 | 1073 |
template <typename Graph, typename Enable = void> |
1074 | 1074 |
struct FindEdgeSelector { |
1075 | 1075 |
typedef typename Graph::Node Node; |
1076 | 1076 |
typedef typename Graph::Edge Edge; |
1077 | 1077 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1078 | 1078 |
bool b; |
1079 | 1079 |
if (u != v) { |
1080 | 1080 |
if (e == INVALID) { |
1081 | 1081 |
g.firstInc(e, b, u); |
1082 | 1082 |
} else { |
1083 | 1083 |
b = g.u(e) == u; |
1084 | 1084 |
g.nextInc(e, b); |
1085 | 1085 |
} |
1086 | 1086 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1087 | 1087 |
g.nextInc(e, b); |
1088 | 1088 |
} |
1089 | 1089 |
} else { |
1090 | 1090 |
if (e == INVALID) { |
1091 | 1091 |
g.firstInc(e, b, u); |
1092 | 1092 |
} else { |
1093 | 1093 |
b = true; |
1094 | 1094 |
g.nextInc(e, b); |
1095 | 1095 |
} |
1096 | 1096 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1097 | 1097 |
g.nextInc(e, b); |
1098 | 1098 |
} |
1099 | 1099 |
} |
1100 | 1100 |
return e; |
1101 | 1101 |
} |
1102 | 1102 |
}; |
1103 | 1103 |
|
1104 | 1104 |
template <typename Graph> |
1105 | 1105 |
struct FindEdgeSelector< |
1106 | 1106 |
Graph, |
1107 | 1107 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1108 | 1108 |
{ |
1109 | 1109 |
typedef typename Graph::Node Node; |
1110 | 1110 |
typedef typename Graph::Edge Edge; |
1111 | 1111 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1112 | 1112 |
return g.findEdge(u, v, prev); |
1113 | 1113 |
} |
1114 | 1114 |
}; |
1115 | 1115 |
} |
1116 | 1116 |
|
1117 | 1117 |
/// \brief Find an edge between two nodes of a graph. |
1118 | 1118 |
/// |
1119 | 1119 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1120 | 1120 |
/// If node \c u and node \c v is equal then each loop edge |
1121 | 1121 |
/// will be enumerated once. |
1122 | 1122 |
/// |
1123 | 1123 |
/// If \c prev is \ref INVALID (this is the default value), then |
1124 | 1124 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1125 | 1125 |
/// the next edge from \c u to \c v after \c prev. |
1126 | 1126 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1127 | 1127 |
/// |
1128 | 1128 |
/// Thus you can iterate through each edge between \c u and \c v |
1129 | 1129 |
/// as it follows. |
1130 | 1130 |
///\code |
1131 | 1131 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1132 | 1132 |
/// ... |
1133 | 1133 |
/// } |
1134 | 1134 |
///\endcode |
1135 | 1135 |
/// |
1136 | 1136 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1137 | 1137 |
/// functionality. |
1138 | 1138 |
/// |
1139 | 1139 |
///\sa ConEdgeIt |
1140 | 1140 |
template <typename Graph> |
1141 | 1141 |
inline typename Graph::Edge |
1142 | 1142 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1143 | 1143 |
typename Graph::Edge p = INVALID) { |
1144 | 1144 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1145 | 1145 |
} |
1146 | 1146 |
|
1147 | 1147 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1148 | 1148 |
/// |
1149 | 1149 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1150 | 1150 |
/// It is a higher level interface for the findEdge() function. You can |
1151 | 1151 |
/// use it the following way: |
1152 | 1152 |
///\code |
1153 | 1153 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1154 | 1154 |
/// ... |
1155 | 1155 |
/// } |
1156 | 1156 |
///\endcode |
1157 | 1157 |
/// |
1158 | 1158 |
///\sa findEdge() |
1159 | 1159 |
template <typename _Graph> |
1160 | 1160 |
class ConEdgeIt : public _Graph::Edge { |
1161 | 1161 |
public: |
1162 | 1162 |
|
1163 | 1163 |
typedef _Graph Graph; |
1164 | 1164 |
typedef typename Graph::Edge Parent; |
1165 | 1165 |
|
1166 | 1166 |
typedef typename Graph::Edge Edge; |
1167 | 1167 |
typedef typename Graph::Node Node; |
1168 | 1168 |
|
1169 | 1169 |
/// \brief Constructor. |
1170 | 1170 |
/// |
1171 | 1171 |
/// Construct a new ConEdgeIt iterating on the edges that |
1172 | 1172 |
/// connects nodes \c u and \c v. |
1173 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { |
|
1174 |
Parent::operator=(findEdge(_graph, u, v)); |
|
1173 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
|
1174 |
Parent::operator=(findEdge(_graph, _u, _v)); |
|
1175 | 1175 |
} |
1176 | 1176 |
|
1177 | 1177 |
/// \brief Constructor. |
1178 | 1178 |
/// |
1179 | 1179 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1180 | 1180 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
1181 | 1181 |
|
1182 | 1182 |
/// \brief Increment operator. |
1183 | 1183 |
/// |
1184 | 1184 |
/// It increments the iterator and gives back the next edge. |
1185 | 1185 |
ConEdgeIt& operator++() { |
1186 |
Parent::operator=(findEdge(_graph, _graph.u(*this), |
|
1187 |
_graph.v(*this), *this)); |
|
1186 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
|
1188 | 1187 |
return *this; |
1189 | 1188 |
} |
1190 | 1189 |
private: |
1191 | 1190 |
const Graph& _graph; |
1191 |
Node _u, _v; |
|
1192 | 1192 |
}; |
1193 | 1193 |
|
1194 | 1194 |
|
1195 | 1195 |
///Dynamic arc look-up between given endpoints. |
1196 | 1196 |
|
1197 | 1197 |
///Using this class, you can find an arc in a digraph from a given |
1198 | 1198 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1199 | 1199 |
///where <em>d</em> is the out-degree of the source node. |
1200 | 1200 |
/// |
1201 | 1201 |
///It is possible to find \e all parallel arcs between two nodes with |
1202 | 1202 |
///the \c operator() member. |
1203 | 1203 |
/// |
1204 | 1204 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1205 | 1205 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1206 | 1206 |
/// |
1207 | 1207 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1208 | 1208 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1209 | 1209 |
///time bound for arc look-ups. This class also guarantees the |
1210 | 1210 |
///optimal time bound in a constant factor for any distribution of |
1211 | 1211 |
///queries. |
1212 | 1212 |
/// |
1213 | 1213 |
///\tparam G The type of the underlying digraph. |
1214 | 1214 |
/// |
1215 | 1215 |
///\sa ArcLookUp |
1216 | 1216 |
///\sa AllArcLookUp |
1217 | 1217 |
template<class G> |
1218 | 1218 |
class DynArcLookUp |
1219 | 1219 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
1220 | 1220 |
{ |
1221 | 1221 |
public: |
1222 | 1222 |
typedef typename ItemSetTraits<G, typename G::Arc> |
1223 | 1223 |
::ItemNotifier::ObserverBase Parent; |
1224 | 1224 |
|
1225 | 1225 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1226 | 1226 |
typedef G Digraph; |
1227 | 1227 |
|
1228 | 1228 |
protected: |
1229 | 1229 |
|
1230 | 1230 |
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type { |
1231 | 1231 |
public: |
1232 | 1232 |
|
1233 | 1233 |
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent; |
1234 | 1234 |
|
1235 | 1235 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
1236 | 1236 |
|
1237 | 1237 |
virtual void add(const Node& node) { |
1238 | 1238 |
Parent::add(node); |
1239 | 1239 |
Parent::set(node, INVALID); |
1240 | 1240 |
} |
1241 | 1241 |
|
1242 | 1242 |
virtual void add(const std::vector<Node>& nodes) { |
1243 | 1243 |
Parent::add(nodes); |
1244 | 1244 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1245 | 1245 |
Parent::set(nodes[i], INVALID); |
1246 | 1246 |
} |
1247 | 1247 |
} |
1248 | 1248 |
|
1249 | 1249 |
virtual void build() { |
1250 | 1250 |
Parent::build(); |
1251 | 1251 |
Node it; |
1252 | 1252 |
typename Parent::Notifier* nf = Parent::notifier(); |
1253 | 1253 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1254 | 1254 |
Parent::set(it, INVALID); |
1255 | 1255 |
} |
1256 | 1256 |
} |
1257 | 1257 |
}; |
1258 | 1258 |
|
1259 | 1259 |
const Digraph &_g; |
1260 | 1260 |
AutoNodeMap _head; |
1261 | 1261 |
typename Digraph::template ArcMap<Arc> _parent; |
1262 | 1262 |
typename Digraph::template ArcMap<Arc> _left; |
1263 | 1263 |
typename Digraph::template ArcMap<Arc> _right; |
1264 | 1264 |
|
1265 | 1265 |
class ArcLess { |
1266 | 1266 |
const Digraph &g; |
1267 | 1267 |
public: |
1268 | 1268 |
ArcLess(const Digraph &_g) : g(_g) {} |
1269 | 1269 |
bool operator()(Arc a,Arc b) const |
1270 | 1270 |
{ |
1271 | 1271 |
return g.target(a)<g.target(b); |
1272 | 1272 |
} |
1273 | 1273 |
}; |
1274 | 1274 |
|
1275 | 1275 |
public: |
1276 | 1276 |
|
1277 | 1277 |
///Constructor |
1278 | 1278 |
|
1279 | 1279 |
///Constructor. |
1280 | 1280 |
/// |
1281 | 1281 |
///It builds up the search database. |
1282 | 1282 |
DynArcLookUp(const Digraph &g) |
1283 | 1283 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1284 | 1284 |
{ |
1285 | 1285 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1286 | 1286 |
refresh(); |
1287 | 1287 |
} |
1288 | 1288 |
|
1289 | 1289 |
protected: |
1290 | 1290 |
|
1291 | 1291 |
virtual void add(const Arc& arc) { |
1292 | 1292 |
insert(arc); |
1293 | 1293 |
} |
1294 | 1294 |
|
1295 | 1295 |
virtual void add(const std::vector<Arc>& arcs) { |
1296 | 1296 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1297 | 1297 |
insert(arcs[i]); |
1298 | 1298 |
} |
1299 | 1299 |
} |
1300 | 1300 |
|
1301 | 1301 |
virtual void erase(const Arc& arc) { |
1302 | 1302 |
remove(arc); |
1303 | 1303 |
} |
1304 | 1304 |
|
1305 | 1305 |
virtual void erase(const std::vector<Arc>& arcs) { |
1306 | 1306 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1307 | 1307 |
remove(arcs[i]); |
1308 | 1308 |
} |
1309 | 1309 |
} |
1310 | 1310 |
|
1311 | 1311 |
virtual void build() { |
1312 | 1312 |
refresh(); |
1313 | 1313 |
} |
1314 | 1314 |
|
1315 | 1315 |
virtual void clear() { |
1316 | 1316 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1317 | 1317 |
_head.set(n, INVALID); |
1318 | 1318 |
} |
1319 | 1319 |
} |
1320 | 1320 |
|
1321 | 1321 |
void insert(Arc arc) { |
1322 | 1322 |
Node s = _g.source(arc); |
1323 | 1323 |
Node t = _g.target(arc); |
1324 | 1324 |
_left.set(arc, INVALID); |
1325 | 1325 |
_right.set(arc, INVALID); |
1326 | 1326 |
|
1327 | 1327 |
Arc e = _head[s]; |
1328 | 1328 |
if (e == INVALID) { |
1329 | 1329 |
_head.set(s, arc); |
1330 | 1330 |
_parent.set(arc, INVALID); |
1331 | 1331 |
return; |
1332 | 1332 |
} |
1333 | 1333 |
while (true) { |
1334 | 1334 |
if (t < _g.target(e)) { |
1335 | 1335 |
if (_left[e] == INVALID) { |
1336 | 1336 |
_left.set(e, arc); |
1337 | 1337 |
_parent.set(arc, e); |
1338 | 1338 |
splay(arc); |
1339 | 1339 |
return; |
1340 | 1340 |
} else { |
1341 | 1341 |
e = _left[e]; |
1342 | 1342 |
} |
1343 | 1343 |
} else { |
1344 | 1344 |
if (_right[e] == INVALID) { |
1345 | 1345 |
_right.set(e, arc); |
1346 | 1346 |
_parent.set(arc, e); |
1347 | 1347 |
splay(arc); |
1348 | 1348 |
return; |
1349 | 1349 |
} else { |
1350 | 1350 |
e = _right[e]; |
1351 | 1351 |
} |
1352 | 1352 |
} |
1353 | 1353 |
} |
1354 | 1354 |
} |
1355 | 1355 |
|
1356 | 1356 |
void remove(Arc arc) { |
1357 | 1357 |
if (_left[arc] == INVALID) { |
1358 | 1358 |
if (_right[arc] != INVALID) { |
1359 | 1359 |
_parent.set(_right[arc], _parent[arc]); |
1360 | 1360 |
} |
1361 | 1361 |
if (_parent[arc] != INVALID) { |
1362 | 1362 |
if (_left[_parent[arc]] == arc) { |
1363 | 1363 |
_left.set(_parent[arc], _right[arc]); |
1364 | 1364 |
} else { |
1365 | 1365 |
_right.set(_parent[arc], _right[arc]); |
1366 | 1366 |
} |
1367 | 1367 |
} else { |
1368 | 1368 |
_head.set(_g.source(arc), _right[arc]); |
1369 | 1369 |
} |
1370 | 1370 |
} else if (_right[arc] == INVALID) { |
1371 | 1371 |
_parent.set(_left[arc], _parent[arc]); |
1372 | 1372 |
if (_parent[arc] != INVALID) { |
1373 | 1373 |
if (_left[_parent[arc]] == arc) { |
1374 | 1374 |
_left.set(_parent[arc], _left[arc]); |
1375 | 1375 |
} else { |
1376 | 1376 |
_right.set(_parent[arc], _left[arc]); |
1377 | 1377 |
} |
1378 | 1378 |
} else { |
1379 | 1379 |
_head.set(_g.source(arc), _left[arc]); |
1380 | 1380 |
} |
1381 | 1381 |
} else { |
1382 | 1382 |
Arc e = _left[arc]; |
1383 | 1383 |
if (_right[e] != INVALID) { |
1384 | 1384 |
e = _right[e]; |
1385 | 1385 |
while (_right[e] != INVALID) { |
1386 | 1386 |
e = _right[e]; |
1387 | 1387 |
} |
1388 | 1388 |
Arc s = _parent[e]; |
1389 | 1389 |
_right.set(_parent[e], _left[e]); |
1390 | 1390 |
if (_left[e] != INVALID) { |
1391 | 1391 |
_parent.set(_left[e], _parent[e]); |
1392 | 1392 |
} |
1393 | 1393 |
|
1394 | 1394 |
_left.set(e, _left[arc]); |
1395 | 1395 |
_parent.set(_left[arc], e); |
1396 | 1396 |
_right.set(e, _right[arc]); |
1397 | 1397 |
_parent.set(_right[arc], e); |
1398 | 1398 |
|
1399 | 1399 |
_parent.set(e, _parent[arc]); |
1400 | 1400 |
if (_parent[arc] != INVALID) { |
1401 | 1401 |
if (_left[_parent[arc]] == arc) { |
1402 | 1402 |
_left.set(_parent[arc], e); |
1403 | 1403 |
} else { |
1404 | 1404 |
_right.set(_parent[arc], e); |
1405 | 1405 |
} |
1406 | 1406 |
} |
1407 | 1407 |
splay(s); |
1408 | 1408 |
} else { |
1409 | 1409 |
_right.set(e, _right[arc]); |
1410 | 1410 |
_parent.set(_right[arc], e); |
1411 | 1411 |
_parent.set(e, _parent[arc]); |
1412 | 1412 |
|
1413 | 1413 |
if (_parent[arc] != INVALID) { |
1414 | 1414 |
if (_left[_parent[arc]] == arc) { |
1415 | 1415 |
_left.set(_parent[arc], e); |
1416 | 1416 |
} else { |
1417 | 1417 |
_right.set(_parent[arc], e); |
1418 | 1418 |
} |
1419 | 1419 |
} else { |
1420 | 1420 |
_head.set(_g.source(arc), e); |
1421 | 1421 |
} |
1422 | 1422 |
} |
1423 | 1423 |
} |
1424 | 1424 |
} |
1425 | 1425 |
|
1426 | 1426 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1427 | 1427 |
{ |
1428 | 1428 |
int m=(a+b)/2; |
1429 | 1429 |
Arc me=v[m]; |
1430 | 1430 |
if (a < m) { |
1431 | 1431 |
Arc left = refreshRec(v,a,m-1); |
1432 | 1432 |
_left.set(me, left); |
1433 | 1433 |
_parent.set(left, me); |
1434 | 1434 |
} else { |
1435 | 1435 |
_left.set(me, INVALID); |
1436 | 1436 |
} |
1437 | 1437 |
if (m < b) { |
1438 | 1438 |
Arc right = refreshRec(v,m+1,b); |
1439 | 1439 |
_right.set(me, right); |
1440 | 1440 |
_parent.set(right, me); |
1441 | 1441 |
} else { |
1442 | 1442 |
_right.set(me, INVALID); |
1443 | 1443 |
} |
1444 | 1444 |
return me; |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
void refresh() { |
1448 | 1448 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1449 | 1449 |
std::vector<Arc> v; |
1450 | 1450 |
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
1451 | 1451 |
if (!v.empty()) { |
1452 | 1452 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1453 | 1453 |
Arc head = refreshRec(v,0,v.size()-1); |
1454 | 1454 |
_head.set(n, head); |
1455 | 1455 |
_parent.set(head, INVALID); |
1456 | 1456 |
} |
1457 | 1457 |
else _head.set(n, INVALID); |
1458 | 1458 |
} |
1459 | 1459 |
} |
1460 | 1460 |
|
1461 | 1461 |
void zig(Arc v) { |
1462 | 1462 |
Arc w = _parent[v]; |
1463 | 1463 |
_parent.set(v, _parent[w]); |
1464 | 1464 |
_parent.set(w, v); |
1465 | 1465 |
_left.set(w, _right[v]); |
1466 | 1466 |
_right.set(v, w); |
1467 | 1467 |
if (_parent[v] != INVALID) { |
1468 | 1468 |
if (_right[_parent[v]] == w) { |
1469 | 1469 |
_right.set(_parent[v], v); |
1470 | 1470 |
} else { |
1471 | 1471 |
_left.set(_parent[v], v); |
1472 | 1472 |
} |
1473 | 1473 |
} |
1474 | 1474 |
if (_left[w] != INVALID){ |
1475 | 1475 |
_parent.set(_left[w], w); |
1476 | 1476 |
} |
1477 | 1477 |
} |
1478 | 1478 |
|
1479 | 1479 |
void zag(Arc v) { |
1480 | 1480 |
Arc w = _parent[v]; |
1481 | 1481 |
_parent.set(v, _parent[w]); |
1482 | 1482 |
_parent.set(w, v); |
1483 | 1483 |
_right.set(w, _left[v]); |
1484 | 1484 |
_left.set(v, w); |
1485 | 1485 |
if (_parent[v] != INVALID){ |
1486 | 1486 |
if (_left[_parent[v]] == w) { |
1487 | 1487 |
_left.set(_parent[v], v); |
1488 | 1488 |
} else { |
1489 | 1489 |
_right.set(_parent[v], v); |
1490 | 1490 |
} |
1491 | 1491 |
} |
1492 | 1492 |
if (_right[w] != INVALID){ |
1493 | 1493 |
_parent.set(_right[w], w); |
1494 | 1494 |
} |
1495 | 1495 |
} |
1496 | 1496 |
|
1497 | 1497 |
void splay(Arc v) { |
1498 | 1498 |
while (_parent[v] != INVALID) { |
1499 | 1499 |
if (v == _left[_parent[v]]) { |
1500 | 1500 |
if (_parent[_parent[v]] == INVALID) { |
1501 | 1501 |
zig(v); |
1502 | 1502 |
} else { |
1503 | 1503 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1504 | 1504 |
zig(_parent[v]); |
1505 | 1505 |
zig(v); |
1506 | 1506 |
} else { |
1507 | 1507 |
zig(v); |
1508 | 1508 |
zag(v); |
1509 | 1509 |
} |
1510 | 1510 |
} |
1511 | 1511 |
} else { |
1512 | 1512 |
if (_parent[_parent[v]] == INVALID) { |
1513 | 1513 |
zag(v); |
1514 | 1514 |
} else { |
1515 | 1515 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1516 | 1516 |
zag(v); |
1517 | 1517 |
zig(v); |
1518 | 1518 |
} else { |
1519 | 1519 |
zag(_parent[v]); |
1520 | 1520 |
zag(v); |
1521 | 1521 |
} |
1522 | 1522 |
} |
1523 | 1523 |
} |
1524 | 1524 |
} |
1525 | 1525 |
_head[_g.source(v)] = v; |
1526 | 1526 |
} |
1527 | 1527 |
|
1528 | 1528 |
|
1529 | 1529 |
public: |
1530 | 1530 |
|
1531 | 1531 |
///Find an arc between two nodes. |
1532 | 1532 |
|
1533 | 1533 |
///Find an arc between two nodes. |
1534 | 1534 |
///\param s The source node. |
1535 | 1535 |
///\param t The target node. |
1536 | 1536 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
1537 | 1537 |
///not given, the operator finds the first appropriate arc. |
1538 | 1538 |
///\return An arc from \c s to \c t after \c p or |
1539 | 1539 |
///\ref INVALID if there is no more. |
1540 | 1540 |
/// |
1541 | 1541 |
///For example, you can count the number of arcs from \c u to \c v in the |
1542 | 1542 |
///following way. |
1543 | 1543 |
///\code |
1544 | 1544 |
///DynArcLookUp<ListDigraph> ae(g); |
1545 | 1545 |
///... |
1546 | 1546 |
///int n = 0; |
1547 | 1547 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
1548 | 1548 |
///\endcode |
1549 | 1549 |
/// |
1550 | 1550 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
1551 | 1551 |
///amortized time, specifically, the time complexity of the lookups |
1552 | 1552 |
///is equal to the optimal search tree implementation for the |
1553 | 1553 |
///current query distribution in a constant factor. |
1554 | 1554 |
/// |
1555 | 1555 |
///\note This is a dynamic data structure, therefore the data |
1556 | 1556 |
///structure is updated after each graph alteration. Thus although |
1557 | 1557 |
///this data structure is theoretically faster than \ref ArcLookUp |
1558 | 1558 |
///and \ref AllArcLookUp, it often provides worse performance than |
1559 | 1559 |
///them. |
1560 | 1560 |
Arc operator()(Node s, Node t, Arc p = INVALID) const { |
1561 | 1561 |
if (p == INVALID) { |
1562 | 1562 |
Arc a = _head[s]; |
1563 | 1563 |
if (a == INVALID) return INVALID; |
1564 | 1564 |
Arc r = INVALID; |
1565 | 1565 |
while (true) { |
1566 | 1566 |
if (_g.target(a) < t) { |
1567 | 1567 |
if (_right[a] == INVALID) { |
1568 | 1568 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1569 | 1569 |
return r; |
1570 | 1570 |
} else { |
1571 | 1571 |
a = _right[a]; |
1572 | 1572 |
} |
1573 | 1573 |
} else { |
1574 | 1574 |
if (_g.target(a) == t) { |
1575 | 1575 |
r = a; |
1576 | 1576 |
} |
1577 | 1577 |
if (_left[a] == INVALID) { |
1578 | 1578 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1579 | 1579 |
return r; |
1580 | 1580 |
} else { |
1581 | 1581 |
a = _left[a]; |
1582 | 1582 |
} |
1583 | 1583 |
} |
1584 | 1584 |
} |
1585 | 1585 |
} else { |
1586 | 1586 |
Arc a = p; |
1587 | 1587 |
if (_right[a] != INVALID) { |
1588 | 1588 |
a = _right[a]; |
1589 | 1589 |
while (_left[a] != INVALID) { |
1590 | 1590 |
a = _left[a]; |
1591 | 1591 |
} |
1592 | 1592 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1593 | 1593 |
} else { |
1594 | 1594 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
1595 | 1595 |
a = _parent[a]; |
1596 | 1596 |
} |
1597 | 1597 |
if (_parent[a] == INVALID) { |
1598 | 1598 |
return INVALID; |
1599 | 1599 |
} else { |
1600 | 1600 |
a = _parent[a]; |
1601 | 1601 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1602 | 1602 |
} |
1603 | 1603 |
} |
1604 | 1604 |
if (_g.target(a) == t) return a; |
1605 | 1605 |
else return INVALID; |
1606 | 1606 |
} |
1607 | 1607 |
} |
1608 | 1608 |
|
1609 | 1609 |
}; |
1610 | 1610 |
|
1611 | 1611 |
///Fast arc look-up between given endpoints. |
1612 | 1612 |
|
1613 | 1613 |
///Using this class, you can find an arc in a digraph from a given |
1614 | 1614 |
///source to a given target in time <em>O</em>(log<em>d</em>), |
1615 | 1615 |
///where <em>d</em> is the out-degree of the source node. |
1616 | 1616 |
/// |
1617 | 1617 |
///It is not possible to find \e all parallel arcs between two nodes. |
1618 | 1618 |
///Use \ref AllArcLookUp for this purpose. |
1619 | 1619 |
/// |
1620 | 1620 |
///\warning This class is static, so you should call refresh() (or at |
1621 | 1621 |
///least refresh(Node)) to refresh this data structure whenever the |
1622 | 1622 |
///digraph changes. This is a time consuming (superlinearly proportional |
1623 | 1623 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1624 | 1624 |
/// |
1625 | 1625 |
///\tparam G The type of the underlying digraph. |
1626 | 1626 |
/// |
1627 | 1627 |
///\sa DynArcLookUp |
1628 | 1628 |
///\sa AllArcLookUp |
1629 | 1629 |
template<class G> |
1630 | 1630 |
class ArcLookUp |
1631 | 1631 |
{ |
1632 | 1632 |
public: |
1633 | 1633 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1634 | 1634 |
typedef G Digraph; |
1635 | 1635 |
|
1636 | 1636 |
protected: |
1637 | 1637 |
const Digraph &_g; |
1638 | 1638 |
typename Digraph::template NodeMap<Arc> _head; |
1639 | 1639 |
typename Digraph::template ArcMap<Arc> _left; |
1640 | 1640 |
typename Digraph::template ArcMap<Arc> _right; |
1641 | 1641 |
|
1642 | 1642 |
class ArcLess { |
1643 | 1643 |
const Digraph &g; |
1644 | 1644 |
public: |
1645 | 1645 |
ArcLess(const Digraph &_g) : g(_g) {} |
1646 | 1646 |
bool operator()(Arc a,Arc b) const |
1647 | 1647 |
{ |
1648 | 1648 |
return g.target(a)<g.target(b); |
1649 | 1649 |
} |
1650 | 1650 |
}; |
1651 | 1651 |
|
1652 | 1652 |
public: |
1653 | 1653 |
|
1654 | 1654 |
///Constructor |
1655 | 1655 |
|
1656 | 1656 |
///Constructor. |
1657 | 1657 |
/// |
1658 | 1658 |
///It builds up the search database, which remains valid until the digraph |
1659 | 1659 |
///changes. |
1660 | 1660 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
1661 | 1661 |
|
1662 | 1662 |
private: |
1663 | 1663 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1664 | 1664 |
{ |
1665 | 1665 |
int m=(a+b)/2; |
1666 | 1666 |
Arc me=v[m]; |
1667 | 1667 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
1668 | 1668 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
1669 | 1669 |
return me; |
1670 | 1670 |
} |
1671 | 1671 |
public: |
1672 | 1672 |
///Refresh the search data structure at a node. |
1673 | 1673 |
|
1674 | 1674 |
///Build up the search database of node \c n. |
1675 | 1675 |
/// |
1676 | 1676 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
1677 | 1677 |
///is the number of the outgoing arcs of \c n. |
1678 | 1678 |
void refresh(Node n) |
1679 | 1679 |
{ |
1680 | 1680 |
std::vector<Arc> v; |
1681 | 1681 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
1682 | 1682 |
if(v.size()) { |
1683 | 1683 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1684 | 1684 |
_head[n]=refreshRec(v,0,v.size()-1); |
1685 | 1685 |
} |
1686 | 1686 |
else _head[n]=INVALID; |
1687 | 1687 |
} |
1688 | 1688 |
///Refresh the full data structure. |
1689 | 1689 |
|
1690 | 1690 |
///Build up the full search database. In fact, it simply calls |
1691 | 1691 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1692 | 1692 |
/// |
1693 | 1693 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1694 | 1694 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1695 | 1695 |
///out-degree of the digraph. |
1696 | 1696 |
void refresh() |
1697 | 1697 |
{ |
1698 | 1698 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
1699 | 1699 |
} |
1700 | 1700 |
|
1701 | 1701 |
///Find an arc between two nodes. |
1702 | 1702 |
|
1703 | 1703 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
1704 | 1704 |
///where <em>d</em> is the number of outgoing arcs of \c s. |
1705 | 1705 |
///\param s The source node. |
1706 | 1706 |
///\param t The target node. |
1707 | 1707 |
///\return An arc from \c s to \c t if there exists, |
1708 | 1708 |
///\ref INVALID otherwise. |
1709 | 1709 |
/// |
1710 | 1710 |
///\warning If you change the digraph, refresh() must be called before using |
1711 | 1711 |
///this operator. If you change the outgoing arcs of |
1712 | 1712 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1713 | 1713 |
Arc operator()(Node s, Node t) const |
1714 | 1714 |
{ |
1715 | 1715 |
Arc e; |
1716 | 1716 |
for(e=_head[s]; |
1717 | 1717 |
e!=INVALID&&_g.target(e)!=t; |
1718 | 1718 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
1719 | 1719 |
return e; |
1720 | 1720 |
} |
1721 | 1721 |
|
1722 | 1722 |
}; |
1723 | 1723 |
|
1724 | 1724 |
///Fast look-up of all arcs between given endpoints. |
1725 | 1725 |
|
1726 | 1726 |
///This class is the same as \ref ArcLookUp, with the addition |
1727 | 1727 |
///that it makes it possible to find all parallel arcs between given |
1728 | 1728 |
///endpoints. |
1729 | 1729 |
/// |
1730 | 1730 |
///\warning This class is static, so you should call refresh() (or at |
1731 | 1731 |
///least refresh(Node)) to refresh this data structure whenever the |
1732 | 1732 |
///digraph changes. This is a time consuming (superlinearly proportional |
1733 | 1733 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1734 | 1734 |
/// |
1735 | 1735 |
///\tparam G The type of the underlying digraph. |
1736 | 1736 |
/// |
1737 | 1737 |
///\sa DynArcLookUp |
1738 | 1738 |
///\sa ArcLookUp |
1739 | 1739 |
template<class G> |
1740 | 1740 |
class AllArcLookUp : public ArcLookUp<G> |
1741 | 1741 |
{ |
1742 | 1742 |
using ArcLookUp<G>::_g; |
1743 | 1743 |
using ArcLookUp<G>::_right; |
1744 | 1744 |
using ArcLookUp<G>::_left; |
1745 | 1745 |
using ArcLookUp<G>::_head; |
1746 | 1746 |
|
1747 | 1747 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1748 | 1748 |
typedef G Digraph; |
1749 | 1749 |
|
1750 | 1750 |
typename Digraph::template ArcMap<Arc> _next; |
1751 | 1751 |
|
1752 | 1752 |
Arc refreshNext(Arc head,Arc next=INVALID) |
1753 | 1753 |
{ |
1754 | 1754 |
if(head==INVALID) return next; |
1755 | 1755 |
else { |
1756 | 1756 |
next=refreshNext(_right[head],next); |
1757 | 1757 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
1758 | 1758 |
? next : INVALID; |
1759 | 1759 |
return refreshNext(_left[head],head); |
1760 | 1760 |
} |
1761 | 1761 |
} |
1762 | 1762 |
|
1763 | 1763 |
void refreshNext() |
1764 | 1764 |
{ |
1765 | 1765 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
1766 | 1766 |
} |
1767 | 1767 |
|
1768 | 1768 |
public: |
1769 | 1769 |
///Constructor |
1770 | 1770 |
|
1771 | 1771 |
///Constructor. |
1772 | 1772 |
/// |
1773 | 1773 |
///It builds up the search database, which remains valid until the digraph |
1774 | 1774 |
///changes. |
1775 | 1775 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
1776 | 1776 |
|
1777 | 1777 |
///Refresh the data structure at a node. |
1778 | 1778 |
|
1779 | 1779 |
///Build up the search database of node \c n. |
1780 | 1780 |
/// |
1781 | 1781 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
1782 | 1782 |
///the number of the outgoing arcs of \c n. |
1783 | 1783 |
void refresh(Node n) |
1784 | 1784 |
{ |
1785 | 1785 |
ArcLookUp<G>::refresh(n); |
1786 | 1786 |
refreshNext(_head[n]); |
1787 | 1787 |
} |
1788 | 1788 |
|
1789 | 1789 |
///Refresh the full data structure. |
1790 | 1790 |
|
1791 | 1791 |
///Build up the full search database. In fact, it simply calls |
1792 | 1792 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1793 | 1793 |
/// |
1794 | 1794 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1795 | 1795 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1796 | 1796 |
///out-degree of the digraph. |
1797 | 1797 |
void refresh() |
1798 | 1798 |
{ |
1799 | 1799 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
1800 | 1800 |
} |
1801 | 1801 |
|
1802 | 1802 |
///Find an arc between two nodes. |
1803 | 1803 |
|
1804 | 1804 |
///Find an arc between two nodes. |
1805 | 1805 |
///\param s The source node. |
1806 | 1806 |
///\param t The target node. |
1807 | 1807 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
1808 | 1808 |
///not given, the operator finds the first appropriate arc. |
1809 | 1809 |
///\return An arc from \c s to \c t after \c prev or |
1810 | 1810 |
///\ref INVALID if there is no more. |
1811 | 1811 |
/// |
1812 | 1812 |
///For example, you can count the number of arcs from \c u to \c v in the |
1813 | 1813 |
///following way. |
1814 | 1814 |
///\code |
1815 | 1815 |
///AllArcLookUp<ListDigraph> ae(g); |
1816 | 1816 |
///... |
1817 | 1817 |
///int n = 0; |
1818 | 1818 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
1819 | 1819 |
///\endcode |
1820 | 1820 |
/// |
1821 | 1821 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
1822 | 1822 |
///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
1823 | 1823 |
///consecutive arcs are found in constant time. |
1824 | 1824 |
/// |
1825 | 1825 |
///\warning If you change the digraph, refresh() must be called before using |
1826 | 1826 |
///this operator. If you change the outgoing arcs of |
1827 | 1827 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1828 | 1828 |
/// |
1829 | 1829 |
#ifdef DOXYGEN |
1830 | 1830 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
1831 | 1831 |
#else |
1832 | 1832 |
using ArcLookUp<G>::operator() ; |
1833 | 1833 |
Arc operator()(Node s, Node t, Arc prev) const |
1834 | 1834 |
{ |
1835 | 1835 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
1836 | 1836 |
} |
1837 | 1837 |
#endif |
1838 | 1838 |
|
1839 | 1839 |
}; |
1840 | 1840 |
|
1841 | 1841 |
/// @} |
1842 | 1842 |
|
1843 | 1843 |
} //namespace lemon |
1844 | 1844 |
|
1845 | 1845 |
#endif |
0 comments (0 inline)