gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge bugfix #195
0 1 0
merge 1.0
0 files changed with 4 insertions and 4 deletions:
↑ Collapse diff ↑
Show white space 256 line context
... ...
@@ -1045,275 +1045,275 @@
1045 1045

	
1046 1046
    /// \brief Constructor.
1047 1047
    ///
1048 1048
    /// Construct a new ConArcIt iterating on the arcs that
1049 1049
    /// connects nodes \c u and \c v.
1050 1050
    ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
1051 1051
      Parent::operator=(findArc(_graph, u, v));
1052 1052
    }
1053 1053

	
1054 1054
    /// \brief Constructor.
1055 1055
    ///
1056 1056
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
1057 1057
    ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
1058 1058

	
1059 1059
    /// \brief Increment operator.
1060 1060
    ///
1061 1061
    /// It increments the iterator and gives back the next arc.
1062 1062
    ConArcIt& operator++() {
1063 1063
      Parent::operator=(findArc(_graph, _graph.source(*this),
1064 1064
                                _graph.target(*this), *this));
1065 1065
      return *this;
1066 1066
    }
1067 1067
  private:
1068 1068
    const Graph& _graph;
1069 1069
  };
1070 1070

	
1071 1071
  namespace _core_bits {
1072 1072

	
1073 1073
    template <typename Graph, typename Enable = void>
1074 1074
    struct FindEdgeSelector {
1075 1075
      typedef typename Graph::Node Node;
1076 1076
      typedef typename Graph::Edge Edge;
1077 1077
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
1078 1078
        bool b;
1079 1079
        if (u != v) {
1080 1080
          if (e == INVALID) {
1081 1081
            g.firstInc(e, b, u);
1082 1082
          } else {
1083 1083
            b = g.u(e) == u;
1084 1084
            g.nextInc(e, b);
1085 1085
          }
1086 1086
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1087 1087
            g.nextInc(e, b);
1088 1088
          }
1089 1089
        } else {
1090 1090
          if (e == INVALID) {
1091 1091
            g.firstInc(e, b, u);
1092 1092
          } else {
1093 1093
            b = true;
1094 1094
            g.nextInc(e, b);
1095 1095
          }
1096 1096
          while (e != INVALID && (!b || g.v(e) != v)) {
1097 1097
            g.nextInc(e, b);
1098 1098
          }
1099 1099
        }
1100 1100
        return e;
1101 1101
      }
1102 1102
    };
1103 1103

	
1104 1104
    template <typename Graph>
1105 1105
    struct FindEdgeSelector<
1106 1106
      Graph,
1107 1107
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
1108 1108
    {
1109 1109
      typedef typename Graph::Node Node;
1110 1110
      typedef typename Graph::Edge Edge;
1111 1111
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1112 1112
        return g.findEdge(u, v, prev);
1113 1113
      }
1114 1114
    };
1115 1115
  }
1116 1116

	
1117 1117
  /// \brief Find an edge between two nodes of a graph.
1118 1118
  ///
1119 1119
  /// This function finds an edge from node \c u to node \c v in graph \c g.
1120 1120
  /// If node \c u and node \c v is equal then each loop edge
1121 1121
  /// will be enumerated once.
1122 1122
  ///
1123 1123
  /// If \c prev is \ref INVALID (this is the default value), then
1124 1124
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
1125 1125
  /// the next edge from \c u to \c v after \c prev.
1126 1126
  /// \return The found edge or \ref INVALID if there is no such an edge.
1127 1127
  ///
1128 1128
  /// Thus you can iterate through each edge between \c u and \c v
1129 1129
  /// as it follows.
1130 1130
  ///\code
1131 1131
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1132 1132
  ///   ...
1133 1133
  /// }
1134 1134
  ///\endcode
1135 1135
  ///
1136 1136
  /// \note \ref ConEdgeIt provides iterator interface for the same
1137 1137
  /// functionality.
1138 1138
  ///
1139 1139
  ///\sa ConEdgeIt
1140 1140
  template <typename Graph>
1141 1141
  inline typename Graph::Edge
1142 1142
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1143 1143
            typename Graph::Edge p = INVALID) {
1144 1144
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1145 1145
  }
1146 1146

	
1147 1147
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1148 1148
  ///
1149 1149
  /// Iterator for iterating on parallel edges connecting the same nodes.
1150 1150
  /// It is a higher level interface for the findEdge() function. You can
1151 1151
  /// use it the following way:
1152 1152
  ///\code
1153 1153
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1154 1154
  ///   ...
1155 1155
  /// }
1156 1156
  ///\endcode
1157 1157
  ///
1158 1158
  ///\sa findEdge()
1159 1159
  template <typename _Graph>
1160 1160
  class ConEdgeIt : public _Graph::Edge {
1161 1161
  public:
1162 1162

	
1163 1163
    typedef _Graph Graph;
1164 1164
    typedef typename Graph::Edge Parent;
1165 1165

	
1166 1166
    typedef typename Graph::Edge Edge;
1167 1167
    typedef typename Graph::Node Node;
1168 1168

	
1169 1169
    /// \brief Constructor.
1170 1170
    ///
1171 1171
    /// Construct a new ConEdgeIt iterating on the edges that
1172 1172
    /// connects nodes \c u and \c v.
1173
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
1174
      Parent::operator=(findEdge(_graph, u, v));
1173
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1174
      Parent::operator=(findEdge(_graph, _u, _v));
1175 1175
    }
1176 1176

	
1177 1177
    /// \brief Constructor.
1178 1178
    ///
1179 1179
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1180 1180
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1181 1181

	
1182 1182
    /// \brief Increment operator.
1183 1183
    ///
1184 1184
    /// It increments the iterator and gives back the next edge.
1185 1185
    ConEdgeIt& operator++() {
1186
      Parent::operator=(findEdge(_graph, _graph.u(*this),
1187
                                 _graph.v(*this), *this));
1186
      Parent::operator=(findEdge(_graph, _u, _v, *this));
1188 1187
      return *this;
1189 1188
    }
1190 1189
  private:
1191 1190
    const Graph& _graph;
1191
    Node _u, _v;
1192 1192
  };
1193 1193

	
1194 1194

	
1195 1195
  ///Dynamic arc look-up between given endpoints.
1196 1196

	
1197 1197
  ///Using this class, you can find an arc in a digraph from a given
1198 1198
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1199 1199
  ///where <em>d</em> is the out-degree of the source node.
1200 1200
  ///
1201 1201
  ///It is possible to find \e all parallel arcs between two nodes with
1202 1202
  ///the \c operator() member.
1203 1203
  ///
1204 1204
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1205 1205
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
1206 1206
  ///
1207 1207
  ///This class uses a self-adjusting binary search tree, the Splay tree
1208 1208
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
1209 1209
  ///time bound for arc look-ups. This class also guarantees the
1210 1210
  ///optimal time bound in a constant factor for any distribution of
1211 1211
  ///queries.
1212 1212
  ///
1213 1213
  ///\tparam G The type of the underlying digraph.
1214 1214
  ///
1215 1215
  ///\sa ArcLookUp
1216 1216
  ///\sa AllArcLookUp
1217 1217
  template<class G>
1218 1218
  class DynArcLookUp
1219 1219
    : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
1220 1220
  {
1221 1221
  public:
1222 1222
    typedef typename ItemSetTraits<G, typename G::Arc>
1223 1223
    ::ItemNotifier::ObserverBase Parent;
1224 1224

	
1225 1225
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1226 1226
    typedef G Digraph;
1227 1227

	
1228 1228
  protected:
1229 1229

	
1230 1230
    class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
1231 1231
    public:
1232 1232

	
1233 1233
      typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
1234 1234

	
1235 1235
      AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
1236 1236

	
1237 1237
      virtual void add(const Node& node) {
1238 1238
        Parent::add(node);
1239 1239
        Parent::set(node, INVALID);
1240 1240
      }
1241 1241

	
1242 1242
      virtual void add(const std::vector<Node>& nodes) {
1243 1243
        Parent::add(nodes);
1244 1244
        for (int i = 0; i < int(nodes.size()); ++i) {
1245 1245
          Parent::set(nodes[i], INVALID);
1246 1246
        }
1247 1247
      }
1248 1248

	
1249 1249
      virtual void build() {
1250 1250
        Parent::build();
1251 1251
        Node it;
1252 1252
        typename Parent::Notifier* nf = Parent::notifier();
1253 1253
        for (nf->first(it); it != INVALID; nf->next(it)) {
1254 1254
          Parent::set(it, INVALID);
1255 1255
        }
1256 1256
      }
1257 1257
    };
1258 1258

	
1259 1259
    const Digraph &_g;
1260 1260
    AutoNodeMap _head;
1261 1261
    typename Digraph::template ArcMap<Arc> _parent;
1262 1262
    typename Digraph::template ArcMap<Arc> _left;
1263 1263
    typename Digraph::template ArcMap<Arc> _right;
1264 1264

	
1265 1265
    class ArcLess {
1266 1266
      const Digraph &g;
1267 1267
    public:
1268 1268
      ArcLess(const Digraph &_g) : g(_g) {}
1269 1269
      bool operator()(Arc a,Arc b) const
1270 1270
      {
1271 1271
        return g.target(a)<g.target(b);
1272 1272
      }
1273 1273
    };
1274 1274

	
1275 1275
  public:
1276 1276

	
1277 1277
    ///Constructor
1278 1278

	
1279 1279
    ///Constructor.
1280 1280
    ///
1281 1281
    ///It builds up the search database.
1282 1282
    DynArcLookUp(const Digraph &g)
1283 1283
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
1284 1284
    {
1285 1285
      Parent::attach(_g.notifier(typename Digraph::Arc()));
1286 1286
      refresh();
1287 1287
    }
1288 1288

	
1289 1289
  protected:
1290 1290

	
1291 1291
    virtual void add(const Arc& arc) {
1292 1292
      insert(arc);
1293 1293
    }
1294 1294

	
1295 1295
    virtual void add(const std::vector<Arc>& arcs) {
1296 1296
      for (int i = 0; i < int(arcs.size()); ++i) {
1297 1297
        insert(arcs[i]);
1298 1298
      }
1299 1299
    }
1300 1300

	
1301 1301
    virtual void erase(const Arc& arc) {
1302 1302
      remove(arc);
1303 1303
    }
1304 1304

	
1305 1305
    virtual void erase(const std::vector<Arc>& arcs) {
1306 1306
      for (int i = 0; i < int(arcs.size()); ++i) {
1307 1307
        remove(arcs[i]);
1308 1308
      }
1309 1309
    }
1310 1310

	
1311 1311
    virtual void build() {
1312 1312
      refresh();
1313 1313
    }
1314 1314

	
1315 1315
    virtual void clear() {
1316 1316
      for(NodeIt n(_g);n!=INVALID;++n) {
1317 1317
        _head.set(n, INVALID);
1318 1318
      }
1319 1319
    }
0 comments (0 inline)