gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge bugfix #195
0 1 0
merge 1.0
0 files changed with 4 insertions and 4 deletions:
↑ Collapse diff ↑
Show white space 512 line context
... ...
@@ -917,531 +917,531 @@
917 917
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
918 918
        _edge_maps[i]->copy(_from, edgeRefMap);
919 919
      }
920 920
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
921 921
        _arc_maps[i]->copy(_from, arcRefMap);
922 922
      }
923 923
    }
924 924

	
925 925
  private:
926 926

	
927 927
    const From& _from;
928 928
    To& _to;
929 929

	
930 930
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
931 931
      _node_maps;
932 932

	
933 933
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
934 934
      _arc_maps;
935 935

	
936 936
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
937 937
      _edge_maps;
938 938

	
939 939
  };
940 940

	
941 941
  /// \brief Copy a graph to another graph.
942 942
  ///
943 943
  /// This function copies a graph to another graph.
944 944
  /// The complete usage of it is detailed in the GraphCopy class,
945 945
  /// but a short example shows a basic work:
946 946
  ///\code
947 947
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
948 948
  ///\endcode
949 949
  ///
950 950
  /// After the copy the \c nr map will contain the mapping from the
951 951
  /// nodes of the \c from graph to the nodes of the \c to graph and
952 952
  /// \c ecr will contain the mapping from the edges of the \c to graph
953 953
  /// to the edges of the \c from graph.
954 954
  ///
955 955
  /// \see GraphCopy
956 956
  template <typename From, typename To>
957 957
  GraphCopy<From, To>
958 958
  graphCopy(const From& from, To& to) {
959 959
    return GraphCopy<From, To>(from, to);
960 960
  }
961 961

	
962 962
  namespace _core_bits {
963 963

	
964 964
    template <typename Graph, typename Enable = void>
965 965
    struct FindArcSelector {
966 966
      typedef typename Graph::Node Node;
967 967
      typedef typename Graph::Arc Arc;
968 968
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
969 969
        if (e == INVALID) {
970 970
          g.firstOut(e, u);
971 971
        } else {
972 972
          g.nextOut(e);
973 973
        }
974 974
        while (e != INVALID && g.target(e) != v) {
975 975
          g.nextOut(e);
976 976
        }
977 977
        return e;
978 978
      }
979 979
    };
980 980

	
981 981
    template <typename Graph>
982 982
    struct FindArcSelector<
983 983
      Graph,
984 984
      typename enable_if<typename Graph::FindArcTag, void>::type>
985 985
    {
986 986
      typedef typename Graph::Node Node;
987 987
      typedef typename Graph::Arc Arc;
988 988
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
989 989
        return g.findArc(u, v, prev);
990 990
      }
991 991
    };
992 992
  }
993 993

	
994 994
  /// \brief Find an arc between two nodes of a digraph.
995 995
  ///
996 996
  /// This function finds an arc from node \c u to node \c v in the
997 997
  /// digraph \c g.
998 998
  ///
999 999
  /// If \c prev is \ref INVALID (this is the default value), then
1000 1000
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
1001 1001
  /// the next arc from \c u to \c v after \c prev.
1002 1002
  /// \return The found arc or \ref INVALID if there is no such an arc.
1003 1003
  ///
1004 1004
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
1005 1005
  ///\code
1006 1006
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1007 1007
  ///   ...
1008 1008
  /// }
1009 1009
  ///\endcode
1010 1010
  ///
1011 1011
  /// \note \ref ConArcIt provides iterator interface for the same
1012 1012
  /// functionality.
1013 1013
  ///
1014 1014
  ///\sa ConArcIt
1015 1015
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1016 1016
  template <typename Graph>
1017 1017
  inline typename Graph::Arc
1018 1018
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1019 1019
          typename Graph::Arc prev = INVALID) {
1020 1020
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1021 1021
  }
1022 1022

	
1023 1023
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1024 1024
  ///
1025 1025
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1026 1026
  /// a higher level interface for the \ref findArc() function. You can
1027 1027
  /// use it the following way:
1028 1028
  ///\code
1029 1029
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1030 1030
  ///   ...
1031 1031
  /// }
1032 1032
  ///\endcode
1033 1033
  ///
1034 1034
  ///\sa findArc()
1035 1035
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1036 1036
  template <typename _Graph>
1037 1037
  class ConArcIt : public _Graph::Arc {
1038 1038
  public:
1039 1039

	
1040 1040
    typedef _Graph Graph;
1041 1041
    typedef typename Graph::Arc Parent;
1042 1042

	
1043 1043
    typedef typename Graph::Arc Arc;
1044 1044
    typedef typename Graph::Node Node;
1045 1045

	
1046 1046
    /// \brief Constructor.
1047 1047
    ///
1048 1048
    /// Construct a new ConArcIt iterating on the arcs that
1049 1049
    /// connects nodes \c u and \c v.
1050 1050
    ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
1051 1051
      Parent::operator=(findArc(_graph, u, v));
1052 1052
    }
1053 1053

	
1054 1054
    /// \brief Constructor.
1055 1055
    ///
1056 1056
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
1057 1057
    ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
1058 1058

	
1059 1059
    /// \brief Increment operator.
1060 1060
    ///
1061 1061
    /// It increments the iterator and gives back the next arc.
1062 1062
    ConArcIt& operator++() {
1063 1063
      Parent::operator=(findArc(_graph, _graph.source(*this),
1064 1064
                                _graph.target(*this), *this));
1065 1065
      return *this;
1066 1066
    }
1067 1067
  private:
1068 1068
    const Graph& _graph;
1069 1069
  };
1070 1070

	
1071 1071
  namespace _core_bits {
1072 1072

	
1073 1073
    template <typename Graph, typename Enable = void>
1074 1074
    struct FindEdgeSelector {
1075 1075
      typedef typename Graph::Node Node;
1076 1076
      typedef typename Graph::Edge Edge;
1077 1077
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
1078 1078
        bool b;
1079 1079
        if (u != v) {
1080 1080
          if (e == INVALID) {
1081 1081
            g.firstInc(e, b, u);
1082 1082
          } else {
1083 1083
            b = g.u(e) == u;
1084 1084
            g.nextInc(e, b);
1085 1085
          }
1086 1086
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1087 1087
            g.nextInc(e, b);
1088 1088
          }
1089 1089
        } else {
1090 1090
          if (e == INVALID) {
1091 1091
            g.firstInc(e, b, u);
1092 1092
          } else {
1093 1093
            b = true;
1094 1094
            g.nextInc(e, b);
1095 1095
          }
1096 1096
          while (e != INVALID && (!b || g.v(e) != v)) {
1097 1097
            g.nextInc(e, b);
1098 1098
          }
1099 1099
        }
1100 1100
        return e;
1101 1101
      }
1102 1102
    };
1103 1103

	
1104 1104
    template <typename Graph>
1105 1105
    struct FindEdgeSelector<
1106 1106
      Graph,
1107 1107
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
1108 1108
    {
1109 1109
      typedef typename Graph::Node Node;
1110 1110
      typedef typename Graph::Edge Edge;
1111 1111
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1112 1112
        return g.findEdge(u, v, prev);
1113 1113
      }
1114 1114
    };
1115 1115
  }
1116 1116

	
1117 1117
  /// \brief Find an edge between two nodes of a graph.
1118 1118
  ///
1119 1119
  /// This function finds an edge from node \c u to node \c v in graph \c g.
1120 1120
  /// If node \c u and node \c v is equal then each loop edge
1121 1121
  /// will be enumerated once.
1122 1122
  ///
1123 1123
  /// If \c prev is \ref INVALID (this is the default value), then
1124 1124
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
1125 1125
  /// the next edge from \c u to \c v after \c prev.
1126 1126
  /// \return The found edge or \ref INVALID if there is no such an edge.
1127 1127
  ///
1128 1128
  /// Thus you can iterate through each edge between \c u and \c v
1129 1129
  /// as it follows.
1130 1130
  ///\code
1131 1131
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1132 1132
  ///   ...
1133 1133
  /// }
1134 1134
  ///\endcode
1135 1135
  ///
1136 1136
  /// \note \ref ConEdgeIt provides iterator interface for the same
1137 1137
  /// functionality.
1138 1138
  ///
1139 1139
  ///\sa ConEdgeIt
1140 1140
  template <typename Graph>
1141 1141
  inline typename Graph::Edge
1142 1142
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1143 1143
            typename Graph::Edge p = INVALID) {
1144 1144
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1145 1145
  }
1146 1146

	
1147 1147
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1148 1148
  ///
1149 1149
  /// Iterator for iterating on parallel edges connecting the same nodes.
1150 1150
  /// It is a higher level interface for the findEdge() function. You can
1151 1151
  /// use it the following way:
1152 1152
  ///\code
1153 1153
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1154 1154
  ///   ...
1155 1155
  /// }
1156 1156
  ///\endcode
1157 1157
  ///
1158 1158
  ///\sa findEdge()
1159 1159
  template <typename _Graph>
1160 1160
  class ConEdgeIt : public _Graph::Edge {
1161 1161
  public:
1162 1162

	
1163 1163
    typedef _Graph Graph;
1164 1164
    typedef typename Graph::Edge Parent;
1165 1165

	
1166 1166
    typedef typename Graph::Edge Edge;
1167 1167
    typedef typename Graph::Node Node;
1168 1168

	
1169 1169
    /// \brief Constructor.
1170 1170
    ///
1171 1171
    /// Construct a new ConEdgeIt iterating on the edges that
1172 1172
    /// connects nodes \c u and \c v.
1173
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
1174
      Parent::operator=(findEdge(_graph, u, v));
1173
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1174
      Parent::operator=(findEdge(_graph, _u, _v));
1175 1175
    }
1176 1176

	
1177 1177
    /// \brief Constructor.
1178 1178
    ///
1179 1179
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1180 1180
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1181 1181

	
1182 1182
    /// \brief Increment operator.
1183 1183
    ///
1184 1184
    /// It increments the iterator and gives back the next edge.
1185 1185
    ConEdgeIt& operator++() {
1186
      Parent::operator=(findEdge(_graph, _graph.u(*this),
1187
                                 _graph.v(*this), *this));
1186
      Parent::operator=(findEdge(_graph, _u, _v, *this));
1188 1187
      return *this;
1189 1188
    }
1190 1189
  private:
1191 1190
    const Graph& _graph;
1191
    Node _u, _v;
1192 1192
  };
1193 1193

	
1194 1194

	
1195 1195
  ///Dynamic arc look-up between given endpoints.
1196 1196

	
1197 1197
  ///Using this class, you can find an arc in a digraph from a given
1198 1198
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1199 1199
  ///where <em>d</em> is the out-degree of the source node.
1200 1200
  ///
1201 1201
  ///It is possible to find \e all parallel arcs between two nodes with
1202 1202
  ///the \c operator() member.
1203 1203
  ///
1204 1204
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1205 1205
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
1206 1206
  ///
1207 1207
  ///This class uses a self-adjusting binary search tree, the Splay tree
1208 1208
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
1209 1209
  ///time bound for arc look-ups. This class also guarantees the
1210 1210
  ///optimal time bound in a constant factor for any distribution of
1211 1211
  ///queries.
1212 1212
  ///
1213 1213
  ///\tparam G The type of the underlying digraph.
1214 1214
  ///
1215 1215
  ///\sa ArcLookUp
1216 1216
  ///\sa AllArcLookUp
1217 1217
  template<class G>
1218 1218
  class DynArcLookUp
1219 1219
    : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
1220 1220
  {
1221 1221
  public:
1222 1222
    typedef typename ItemSetTraits<G, typename G::Arc>
1223 1223
    ::ItemNotifier::ObserverBase Parent;
1224 1224

	
1225 1225
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1226 1226
    typedef G Digraph;
1227 1227

	
1228 1228
  protected:
1229 1229

	
1230 1230
    class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
1231 1231
    public:
1232 1232

	
1233 1233
      typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
1234 1234

	
1235 1235
      AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
1236 1236

	
1237 1237
      virtual void add(const Node& node) {
1238 1238
        Parent::add(node);
1239 1239
        Parent::set(node, INVALID);
1240 1240
      }
1241 1241

	
1242 1242
      virtual void add(const std::vector<Node>& nodes) {
1243 1243
        Parent::add(nodes);
1244 1244
        for (int i = 0; i < int(nodes.size()); ++i) {
1245 1245
          Parent::set(nodes[i], INVALID);
1246 1246
        }
1247 1247
      }
1248 1248

	
1249 1249
      virtual void build() {
1250 1250
        Parent::build();
1251 1251
        Node it;
1252 1252
        typename Parent::Notifier* nf = Parent::notifier();
1253 1253
        for (nf->first(it); it != INVALID; nf->next(it)) {
1254 1254
          Parent::set(it, INVALID);
1255 1255
        }
1256 1256
      }
1257 1257
    };
1258 1258

	
1259 1259
    const Digraph &_g;
1260 1260
    AutoNodeMap _head;
1261 1261
    typename Digraph::template ArcMap<Arc> _parent;
1262 1262
    typename Digraph::template ArcMap<Arc> _left;
1263 1263
    typename Digraph::template ArcMap<Arc> _right;
1264 1264

	
1265 1265
    class ArcLess {
1266 1266
      const Digraph &g;
1267 1267
    public:
1268 1268
      ArcLess(const Digraph &_g) : g(_g) {}
1269 1269
      bool operator()(Arc a,Arc b) const
1270 1270
      {
1271 1271
        return g.target(a)<g.target(b);
1272 1272
      }
1273 1273
    };
1274 1274

	
1275 1275
  public:
1276 1276

	
1277 1277
    ///Constructor
1278 1278

	
1279 1279
    ///Constructor.
1280 1280
    ///
1281 1281
    ///It builds up the search database.
1282 1282
    DynArcLookUp(const Digraph &g)
1283 1283
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
1284 1284
    {
1285 1285
      Parent::attach(_g.notifier(typename Digraph::Arc()));
1286 1286
      refresh();
1287 1287
    }
1288 1288

	
1289 1289
  protected:
1290 1290

	
1291 1291
    virtual void add(const Arc& arc) {
1292 1292
      insert(arc);
1293 1293
    }
1294 1294

	
1295 1295
    virtual void add(const std::vector<Arc>& arcs) {
1296 1296
      for (int i = 0; i < int(arcs.size()); ++i) {
1297 1297
        insert(arcs[i]);
1298 1298
      }
1299 1299
    }
1300 1300

	
1301 1301
    virtual void erase(const Arc& arc) {
1302 1302
      remove(arc);
1303 1303
    }
1304 1304

	
1305 1305
    virtual void erase(const std::vector<Arc>& arcs) {
1306 1306
      for (int i = 0; i < int(arcs.size()); ++i) {
1307 1307
        remove(arcs[i]);
1308 1308
      }
1309 1309
    }
1310 1310

	
1311 1311
    virtual void build() {
1312 1312
      refresh();
1313 1313
    }
1314 1314

	
1315 1315
    virtual void clear() {
1316 1316
      for(NodeIt n(_g);n!=INVALID;++n) {
1317 1317
        _head.set(n, INVALID);
1318 1318
      }
1319 1319
    }
1320 1320

	
1321 1321
    void insert(Arc arc) {
1322 1322
      Node s = _g.source(arc);
1323 1323
      Node t = _g.target(arc);
1324 1324
      _left.set(arc, INVALID);
1325 1325
      _right.set(arc, INVALID);
1326 1326

	
1327 1327
      Arc e = _head[s];
1328 1328
      if (e == INVALID) {
1329 1329
        _head.set(s, arc);
1330 1330
        _parent.set(arc, INVALID);
1331 1331
        return;
1332 1332
      }
1333 1333
      while (true) {
1334 1334
        if (t < _g.target(e)) {
1335 1335
          if (_left[e] == INVALID) {
1336 1336
            _left.set(e, arc);
1337 1337
            _parent.set(arc, e);
1338 1338
            splay(arc);
1339 1339
            return;
1340 1340
          } else {
1341 1341
            e = _left[e];
1342 1342
          }
1343 1343
        } else {
1344 1344
          if (_right[e] == INVALID) {
1345 1345
            _right.set(e, arc);
1346 1346
            _parent.set(arc, e);
1347 1347
            splay(arc);
1348 1348
            return;
1349 1349
          } else {
1350 1350
            e = _right[e];
1351 1351
          }
1352 1352
        }
1353 1353
      }
1354 1354
    }
1355 1355

	
1356 1356
    void remove(Arc arc) {
1357 1357
      if (_left[arc] == INVALID) {
1358 1358
        if (_right[arc] != INVALID) {
1359 1359
          _parent.set(_right[arc], _parent[arc]);
1360 1360
        }
1361 1361
        if (_parent[arc] != INVALID) {
1362 1362
          if (_left[_parent[arc]] == arc) {
1363 1363
            _left.set(_parent[arc], _right[arc]);
1364 1364
          } else {
1365 1365
            _right.set(_parent[arc], _right[arc]);
1366 1366
          }
1367 1367
        } else {
1368 1368
          _head.set(_g.source(arc), _right[arc]);
1369 1369
        }
1370 1370
      } else if (_right[arc] == INVALID) {
1371 1371
        _parent.set(_left[arc], _parent[arc]);
1372 1372
        if (_parent[arc] != INVALID) {
1373 1373
          if (_left[_parent[arc]] == arc) {
1374 1374
            _left.set(_parent[arc], _left[arc]);
1375 1375
          } else {
1376 1376
            _right.set(_parent[arc], _left[arc]);
1377 1377
          }
1378 1378
        } else {
1379 1379
          _head.set(_g.source(arc), _left[arc]);
1380 1380
        }
1381 1381
      } else {
1382 1382
        Arc e = _left[arc];
1383 1383
        if (_right[e] != INVALID) {
1384 1384
          e = _right[e];
1385 1385
          while (_right[e] != INVALID) {
1386 1386
            e = _right[e];
1387 1387
          }
1388 1388
          Arc s = _parent[e];
1389 1389
          _right.set(_parent[e], _left[e]);
1390 1390
          if (_left[e] != INVALID) {
1391 1391
            _parent.set(_left[e], _parent[e]);
1392 1392
          }
1393 1393

	
1394 1394
          _left.set(e, _left[arc]);
1395 1395
          _parent.set(_left[arc], e);
1396 1396
          _right.set(e, _right[arc]);
1397 1397
          _parent.set(_right[arc], e);
1398 1398

	
1399 1399
          _parent.set(e, _parent[arc]);
1400 1400
          if (_parent[arc] != INVALID) {
1401 1401
            if (_left[_parent[arc]] == arc) {
1402 1402
              _left.set(_parent[arc], e);
1403 1403
            } else {
1404 1404
              _right.set(_parent[arc], e);
1405 1405
            }
1406 1406
          }
1407 1407
          splay(s);
1408 1408
        } else {
1409 1409
          _right.set(e, _right[arc]);
1410 1410
          _parent.set(_right[arc], e);
1411 1411
          _parent.set(e, _parent[arc]);
1412 1412

	
1413 1413
          if (_parent[arc] != INVALID) {
1414 1414
            if (_left[_parent[arc]] == arc) {
1415 1415
              _left.set(_parent[arc], e);
1416 1416
            } else {
1417 1417
              _right.set(_parent[arc], e);
1418 1418
            }
1419 1419
          } else {
1420 1420
            _head.set(_g.source(arc), e);
1421 1421
          }
1422 1422
        }
1423 1423
      }
1424 1424
    }
1425 1425

	
1426 1426
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1427 1427
    {
1428 1428
      int m=(a+b)/2;
1429 1429
      Arc me=v[m];
1430 1430
      if (a < m) {
1431 1431
        Arc left = refreshRec(v,a,m-1);
1432 1432
        _left.set(me, left);
1433 1433
        _parent.set(left, me);
1434 1434
      } else {
1435 1435
        _left.set(me, INVALID);
1436 1436
      }
1437 1437
      if (m < b) {
1438 1438
        Arc right = refreshRec(v,m+1,b);
1439 1439
        _right.set(me, right);
1440 1440
        _parent.set(right, me);
1441 1441
      } else {
1442 1442
        _right.set(me, INVALID);
1443 1443
      }
1444 1444
      return me;
1445 1445
    }
1446 1446

	
1447 1447
    void refresh() {
0 comments (0 inline)