... | ... |
@@ -917,531 +917,531 @@ |
917 | 917 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
918 | 918 |
_edge_maps[i]->copy(_from, edgeRefMap); |
919 | 919 |
} |
920 | 920 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
921 | 921 |
_arc_maps[i]->copy(_from, arcRefMap); |
922 | 922 |
} |
923 | 923 |
} |
924 | 924 |
|
925 | 925 |
private: |
926 | 926 |
|
927 | 927 |
const From& _from; |
928 | 928 |
To& _to; |
929 | 929 |
|
930 | 930 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
931 | 931 |
_node_maps; |
932 | 932 |
|
933 | 933 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
934 | 934 |
_arc_maps; |
935 | 935 |
|
936 | 936 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
937 | 937 |
_edge_maps; |
938 | 938 |
|
939 | 939 |
}; |
940 | 940 |
|
941 | 941 |
/// \brief Copy a graph to another graph. |
942 | 942 |
/// |
943 | 943 |
/// This function copies a graph to another graph. |
944 | 944 |
/// The complete usage of it is detailed in the GraphCopy class, |
945 | 945 |
/// but a short example shows a basic work: |
946 | 946 |
///\code |
947 | 947 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
948 | 948 |
///\endcode |
949 | 949 |
/// |
950 | 950 |
/// After the copy the \c nr map will contain the mapping from the |
951 | 951 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
952 | 952 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
953 | 953 |
/// to the edges of the \c from graph. |
954 | 954 |
/// |
955 | 955 |
/// \see GraphCopy |
956 | 956 |
template <typename From, typename To> |
957 | 957 |
GraphCopy<From, To> |
958 | 958 |
graphCopy(const From& from, To& to) { |
959 | 959 |
return GraphCopy<From, To>(from, to); |
960 | 960 |
} |
961 | 961 |
|
962 | 962 |
namespace _core_bits { |
963 | 963 |
|
964 | 964 |
template <typename Graph, typename Enable = void> |
965 | 965 |
struct FindArcSelector { |
966 | 966 |
typedef typename Graph::Node Node; |
967 | 967 |
typedef typename Graph::Arc Arc; |
968 | 968 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
969 | 969 |
if (e == INVALID) { |
970 | 970 |
g.firstOut(e, u); |
971 | 971 |
} else { |
972 | 972 |
g.nextOut(e); |
973 | 973 |
} |
974 | 974 |
while (e != INVALID && g.target(e) != v) { |
975 | 975 |
g.nextOut(e); |
976 | 976 |
} |
977 | 977 |
return e; |
978 | 978 |
} |
979 | 979 |
}; |
980 | 980 |
|
981 | 981 |
template <typename Graph> |
982 | 982 |
struct FindArcSelector< |
983 | 983 |
Graph, |
984 | 984 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
985 | 985 |
{ |
986 | 986 |
typedef typename Graph::Node Node; |
987 | 987 |
typedef typename Graph::Arc Arc; |
988 | 988 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
989 | 989 |
return g.findArc(u, v, prev); |
990 | 990 |
} |
991 | 991 |
}; |
992 | 992 |
} |
993 | 993 |
|
994 | 994 |
/// \brief Find an arc between two nodes of a digraph. |
995 | 995 |
/// |
996 | 996 |
/// This function finds an arc from node \c u to node \c v in the |
997 | 997 |
/// digraph \c g. |
998 | 998 |
/// |
999 | 999 |
/// If \c prev is \ref INVALID (this is the default value), then |
1000 | 1000 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
1001 | 1001 |
/// the next arc from \c u to \c v after \c prev. |
1002 | 1002 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
1003 | 1003 |
/// |
1004 | 1004 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
1005 | 1005 |
///\code |
1006 | 1006 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
1007 | 1007 |
/// ... |
1008 | 1008 |
/// } |
1009 | 1009 |
///\endcode |
1010 | 1010 |
/// |
1011 | 1011 |
/// \note \ref ConArcIt provides iterator interface for the same |
1012 | 1012 |
/// functionality. |
1013 | 1013 |
/// |
1014 | 1014 |
///\sa ConArcIt |
1015 | 1015 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1016 | 1016 |
template <typename Graph> |
1017 | 1017 |
inline typename Graph::Arc |
1018 | 1018 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1019 | 1019 |
typename Graph::Arc prev = INVALID) { |
1020 | 1020 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
1021 | 1021 |
} |
1022 | 1022 |
|
1023 | 1023 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
1024 | 1024 |
/// |
1025 | 1025 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
1026 | 1026 |
/// a higher level interface for the \ref findArc() function. You can |
1027 | 1027 |
/// use it the following way: |
1028 | 1028 |
///\code |
1029 | 1029 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
1030 | 1030 |
/// ... |
1031 | 1031 |
/// } |
1032 | 1032 |
///\endcode |
1033 | 1033 |
/// |
1034 | 1034 |
///\sa findArc() |
1035 | 1035 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1036 | 1036 |
template <typename _Graph> |
1037 | 1037 |
class ConArcIt : public _Graph::Arc { |
1038 | 1038 |
public: |
1039 | 1039 |
|
1040 | 1040 |
typedef _Graph Graph; |
1041 | 1041 |
typedef typename Graph::Arc Parent; |
1042 | 1042 |
|
1043 | 1043 |
typedef typename Graph::Arc Arc; |
1044 | 1044 |
typedef typename Graph::Node Node; |
1045 | 1045 |
|
1046 | 1046 |
/// \brief Constructor. |
1047 | 1047 |
/// |
1048 | 1048 |
/// Construct a new ConArcIt iterating on the arcs that |
1049 | 1049 |
/// connects nodes \c u and \c v. |
1050 | 1050 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
1051 | 1051 |
Parent::operator=(findArc(_graph, u, v)); |
1052 | 1052 |
} |
1053 | 1053 |
|
1054 | 1054 |
/// \brief Constructor. |
1055 | 1055 |
/// |
1056 | 1056 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1057 | 1057 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
1058 | 1058 |
|
1059 | 1059 |
/// \brief Increment operator. |
1060 | 1060 |
/// |
1061 | 1061 |
/// It increments the iterator and gives back the next arc. |
1062 | 1062 |
ConArcIt& operator++() { |
1063 | 1063 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1064 | 1064 |
_graph.target(*this), *this)); |
1065 | 1065 |
return *this; |
1066 | 1066 |
} |
1067 | 1067 |
private: |
1068 | 1068 |
const Graph& _graph; |
1069 | 1069 |
}; |
1070 | 1070 |
|
1071 | 1071 |
namespace _core_bits { |
1072 | 1072 |
|
1073 | 1073 |
template <typename Graph, typename Enable = void> |
1074 | 1074 |
struct FindEdgeSelector { |
1075 | 1075 |
typedef typename Graph::Node Node; |
1076 | 1076 |
typedef typename Graph::Edge Edge; |
1077 | 1077 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1078 | 1078 |
bool b; |
1079 | 1079 |
if (u != v) { |
1080 | 1080 |
if (e == INVALID) { |
1081 | 1081 |
g.firstInc(e, b, u); |
1082 | 1082 |
} else { |
1083 | 1083 |
b = g.u(e) == u; |
1084 | 1084 |
g.nextInc(e, b); |
1085 | 1085 |
} |
1086 | 1086 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1087 | 1087 |
g.nextInc(e, b); |
1088 | 1088 |
} |
1089 | 1089 |
} else { |
1090 | 1090 |
if (e == INVALID) { |
1091 | 1091 |
g.firstInc(e, b, u); |
1092 | 1092 |
} else { |
1093 | 1093 |
b = true; |
1094 | 1094 |
g.nextInc(e, b); |
1095 | 1095 |
} |
1096 | 1096 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1097 | 1097 |
g.nextInc(e, b); |
1098 | 1098 |
} |
1099 | 1099 |
} |
1100 | 1100 |
return e; |
1101 | 1101 |
} |
1102 | 1102 |
}; |
1103 | 1103 |
|
1104 | 1104 |
template <typename Graph> |
1105 | 1105 |
struct FindEdgeSelector< |
1106 | 1106 |
Graph, |
1107 | 1107 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1108 | 1108 |
{ |
1109 | 1109 |
typedef typename Graph::Node Node; |
1110 | 1110 |
typedef typename Graph::Edge Edge; |
1111 | 1111 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1112 | 1112 |
return g.findEdge(u, v, prev); |
1113 | 1113 |
} |
1114 | 1114 |
}; |
1115 | 1115 |
} |
1116 | 1116 |
|
1117 | 1117 |
/// \brief Find an edge between two nodes of a graph. |
1118 | 1118 |
/// |
1119 | 1119 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1120 | 1120 |
/// If node \c u and node \c v is equal then each loop edge |
1121 | 1121 |
/// will be enumerated once. |
1122 | 1122 |
/// |
1123 | 1123 |
/// If \c prev is \ref INVALID (this is the default value), then |
1124 | 1124 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1125 | 1125 |
/// the next edge from \c u to \c v after \c prev. |
1126 | 1126 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1127 | 1127 |
/// |
1128 | 1128 |
/// Thus you can iterate through each edge between \c u and \c v |
1129 | 1129 |
/// as it follows. |
1130 | 1130 |
///\code |
1131 | 1131 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1132 | 1132 |
/// ... |
1133 | 1133 |
/// } |
1134 | 1134 |
///\endcode |
1135 | 1135 |
/// |
1136 | 1136 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1137 | 1137 |
/// functionality. |
1138 | 1138 |
/// |
1139 | 1139 |
///\sa ConEdgeIt |
1140 | 1140 |
template <typename Graph> |
1141 | 1141 |
inline typename Graph::Edge |
1142 | 1142 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1143 | 1143 |
typename Graph::Edge p = INVALID) { |
1144 | 1144 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1145 | 1145 |
} |
1146 | 1146 |
|
1147 | 1147 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1148 | 1148 |
/// |
1149 | 1149 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1150 | 1150 |
/// It is a higher level interface for the findEdge() function. You can |
1151 | 1151 |
/// use it the following way: |
1152 | 1152 |
///\code |
1153 | 1153 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1154 | 1154 |
/// ... |
1155 | 1155 |
/// } |
1156 | 1156 |
///\endcode |
1157 | 1157 |
/// |
1158 | 1158 |
///\sa findEdge() |
1159 | 1159 |
template <typename _Graph> |
1160 | 1160 |
class ConEdgeIt : public _Graph::Edge { |
1161 | 1161 |
public: |
1162 | 1162 |
|
1163 | 1163 |
typedef _Graph Graph; |
1164 | 1164 |
typedef typename Graph::Edge Parent; |
1165 | 1165 |
|
1166 | 1166 |
typedef typename Graph::Edge Edge; |
1167 | 1167 |
typedef typename Graph::Node Node; |
1168 | 1168 |
|
1169 | 1169 |
/// \brief Constructor. |
1170 | 1170 |
/// |
1171 | 1171 |
/// Construct a new ConEdgeIt iterating on the edges that |
1172 | 1172 |
/// connects nodes \c u and \c v. |
1173 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { |
|
1174 |
Parent::operator=(findEdge(_graph, u, v)); |
|
1173 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
|
1174 |
Parent::operator=(findEdge(_graph, _u, _v)); |
|
1175 | 1175 |
} |
1176 | 1176 |
|
1177 | 1177 |
/// \brief Constructor. |
1178 | 1178 |
/// |
1179 | 1179 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1180 | 1180 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
1181 | 1181 |
|
1182 | 1182 |
/// \brief Increment operator. |
1183 | 1183 |
/// |
1184 | 1184 |
/// It increments the iterator and gives back the next edge. |
1185 | 1185 |
ConEdgeIt& operator++() { |
1186 |
Parent::operator=(findEdge(_graph, _graph.u(*this), |
|
1187 |
_graph.v(*this), *this)); |
|
1186 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
|
1188 | 1187 |
return *this; |
1189 | 1188 |
} |
1190 | 1189 |
private: |
1191 | 1190 |
const Graph& _graph; |
1191 |
Node _u, _v; |
|
1192 | 1192 |
}; |
1193 | 1193 |
|
1194 | 1194 |
|
1195 | 1195 |
///Dynamic arc look-up between given endpoints. |
1196 | 1196 |
|
1197 | 1197 |
///Using this class, you can find an arc in a digraph from a given |
1198 | 1198 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1199 | 1199 |
///where <em>d</em> is the out-degree of the source node. |
1200 | 1200 |
/// |
1201 | 1201 |
///It is possible to find \e all parallel arcs between two nodes with |
1202 | 1202 |
///the \c operator() member. |
1203 | 1203 |
/// |
1204 | 1204 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1205 | 1205 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1206 | 1206 |
/// |
1207 | 1207 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1208 | 1208 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1209 | 1209 |
///time bound for arc look-ups. This class also guarantees the |
1210 | 1210 |
///optimal time bound in a constant factor for any distribution of |
1211 | 1211 |
///queries. |
1212 | 1212 |
/// |
1213 | 1213 |
///\tparam G The type of the underlying digraph. |
1214 | 1214 |
/// |
1215 | 1215 |
///\sa ArcLookUp |
1216 | 1216 |
///\sa AllArcLookUp |
1217 | 1217 |
template<class G> |
1218 | 1218 |
class DynArcLookUp |
1219 | 1219 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
1220 | 1220 |
{ |
1221 | 1221 |
public: |
1222 | 1222 |
typedef typename ItemSetTraits<G, typename G::Arc> |
1223 | 1223 |
::ItemNotifier::ObserverBase Parent; |
1224 | 1224 |
|
1225 | 1225 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1226 | 1226 |
typedef G Digraph; |
1227 | 1227 |
|
1228 | 1228 |
protected: |
1229 | 1229 |
|
1230 | 1230 |
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type { |
1231 | 1231 |
public: |
1232 | 1232 |
|
1233 | 1233 |
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent; |
1234 | 1234 |
|
1235 | 1235 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
1236 | 1236 |
|
1237 | 1237 |
virtual void add(const Node& node) { |
1238 | 1238 |
Parent::add(node); |
1239 | 1239 |
Parent::set(node, INVALID); |
1240 | 1240 |
} |
1241 | 1241 |
|
1242 | 1242 |
virtual void add(const std::vector<Node>& nodes) { |
1243 | 1243 |
Parent::add(nodes); |
1244 | 1244 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1245 | 1245 |
Parent::set(nodes[i], INVALID); |
1246 | 1246 |
} |
1247 | 1247 |
} |
1248 | 1248 |
|
1249 | 1249 |
virtual void build() { |
1250 | 1250 |
Parent::build(); |
1251 | 1251 |
Node it; |
1252 | 1252 |
typename Parent::Notifier* nf = Parent::notifier(); |
1253 | 1253 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1254 | 1254 |
Parent::set(it, INVALID); |
1255 | 1255 |
} |
1256 | 1256 |
} |
1257 | 1257 |
}; |
1258 | 1258 |
|
1259 | 1259 |
const Digraph &_g; |
1260 | 1260 |
AutoNodeMap _head; |
1261 | 1261 |
typename Digraph::template ArcMap<Arc> _parent; |
1262 | 1262 |
typename Digraph::template ArcMap<Arc> _left; |
1263 | 1263 |
typename Digraph::template ArcMap<Arc> _right; |
1264 | 1264 |
|
1265 | 1265 |
class ArcLess { |
1266 | 1266 |
const Digraph &g; |
1267 | 1267 |
public: |
1268 | 1268 |
ArcLess(const Digraph &_g) : g(_g) {} |
1269 | 1269 |
bool operator()(Arc a,Arc b) const |
1270 | 1270 |
{ |
1271 | 1271 |
return g.target(a)<g.target(b); |
1272 | 1272 |
} |
1273 | 1273 |
}; |
1274 | 1274 |
|
1275 | 1275 |
public: |
1276 | 1276 |
|
1277 | 1277 |
///Constructor |
1278 | 1278 |
|
1279 | 1279 |
///Constructor. |
1280 | 1280 |
/// |
1281 | 1281 |
///It builds up the search database. |
1282 | 1282 |
DynArcLookUp(const Digraph &g) |
1283 | 1283 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1284 | 1284 |
{ |
1285 | 1285 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1286 | 1286 |
refresh(); |
1287 | 1287 |
} |
1288 | 1288 |
|
1289 | 1289 |
protected: |
1290 | 1290 |
|
1291 | 1291 |
virtual void add(const Arc& arc) { |
1292 | 1292 |
insert(arc); |
1293 | 1293 |
} |
1294 | 1294 |
|
1295 | 1295 |
virtual void add(const std::vector<Arc>& arcs) { |
1296 | 1296 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1297 | 1297 |
insert(arcs[i]); |
1298 | 1298 |
} |
1299 | 1299 |
} |
1300 | 1300 |
|
1301 | 1301 |
virtual void erase(const Arc& arc) { |
1302 | 1302 |
remove(arc); |
1303 | 1303 |
} |
1304 | 1304 |
|
1305 | 1305 |
virtual void erase(const std::vector<Arc>& arcs) { |
1306 | 1306 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1307 | 1307 |
remove(arcs[i]); |
1308 | 1308 |
} |
1309 | 1309 |
} |
1310 | 1310 |
|
1311 | 1311 |
virtual void build() { |
1312 | 1312 |
refresh(); |
1313 | 1313 |
} |
1314 | 1314 |
|
1315 | 1315 |
virtual void clear() { |
1316 | 1316 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1317 | 1317 |
_head.set(n, INVALID); |
1318 | 1318 |
} |
1319 | 1319 |
} |
1320 | 1320 |
|
1321 | 1321 |
void insert(Arc arc) { |
1322 | 1322 |
Node s = _g.source(arc); |
1323 | 1323 |
Node t = _g.target(arc); |
1324 | 1324 |
_left.set(arc, INVALID); |
1325 | 1325 |
_right.set(arc, INVALID); |
1326 | 1326 |
|
1327 | 1327 |
Arc e = _head[s]; |
1328 | 1328 |
if (e == INVALID) { |
1329 | 1329 |
_head.set(s, arc); |
1330 | 1330 |
_parent.set(arc, INVALID); |
1331 | 1331 |
return; |
1332 | 1332 |
} |
1333 | 1333 |
while (true) { |
1334 | 1334 |
if (t < _g.target(e)) { |
1335 | 1335 |
if (_left[e] == INVALID) { |
1336 | 1336 |
_left.set(e, arc); |
1337 | 1337 |
_parent.set(arc, e); |
1338 | 1338 |
splay(arc); |
1339 | 1339 |
return; |
1340 | 1340 |
} else { |
1341 | 1341 |
e = _left[e]; |
1342 | 1342 |
} |
1343 | 1343 |
} else { |
1344 | 1344 |
if (_right[e] == INVALID) { |
1345 | 1345 |
_right.set(e, arc); |
1346 | 1346 |
_parent.set(arc, e); |
1347 | 1347 |
splay(arc); |
1348 | 1348 |
return; |
1349 | 1349 |
} else { |
1350 | 1350 |
e = _right[e]; |
1351 | 1351 |
} |
1352 | 1352 |
} |
1353 | 1353 |
} |
1354 | 1354 |
} |
1355 | 1355 |
|
1356 | 1356 |
void remove(Arc arc) { |
1357 | 1357 |
if (_left[arc] == INVALID) { |
1358 | 1358 |
if (_right[arc] != INVALID) { |
1359 | 1359 |
_parent.set(_right[arc], _parent[arc]); |
1360 | 1360 |
} |
1361 | 1361 |
if (_parent[arc] != INVALID) { |
1362 | 1362 |
if (_left[_parent[arc]] == arc) { |
1363 | 1363 |
_left.set(_parent[arc], _right[arc]); |
1364 | 1364 |
} else { |
1365 | 1365 |
_right.set(_parent[arc], _right[arc]); |
1366 | 1366 |
} |
1367 | 1367 |
} else { |
1368 | 1368 |
_head.set(_g.source(arc), _right[arc]); |
1369 | 1369 |
} |
1370 | 1370 |
} else if (_right[arc] == INVALID) { |
1371 | 1371 |
_parent.set(_left[arc], _parent[arc]); |
1372 | 1372 |
if (_parent[arc] != INVALID) { |
1373 | 1373 |
if (_left[_parent[arc]] == arc) { |
1374 | 1374 |
_left.set(_parent[arc], _left[arc]); |
1375 | 1375 |
} else { |
1376 | 1376 |
_right.set(_parent[arc], _left[arc]); |
1377 | 1377 |
} |
1378 | 1378 |
} else { |
1379 | 1379 |
_head.set(_g.source(arc), _left[arc]); |
1380 | 1380 |
} |
1381 | 1381 |
} else { |
1382 | 1382 |
Arc e = _left[arc]; |
1383 | 1383 |
if (_right[e] != INVALID) { |
1384 | 1384 |
e = _right[e]; |
1385 | 1385 |
while (_right[e] != INVALID) { |
1386 | 1386 |
e = _right[e]; |
1387 | 1387 |
} |
1388 | 1388 |
Arc s = _parent[e]; |
1389 | 1389 |
_right.set(_parent[e], _left[e]); |
1390 | 1390 |
if (_left[e] != INVALID) { |
1391 | 1391 |
_parent.set(_left[e], _parent[e]); |
1392 | 1392 |
} |
1393 | 1393 |
|
1394 | 1394 |
_left.set(e, _left[arc]); |
1395 | 1395 |
_parent.set(_left[arc], e); |
1396 | 1396 |
_right.set(e, _right[arc]); |
1397 | 1397 |
_parent.set(_right[arc], e); |
1398 | 1398 |
|
1399 | 1399 |
_parent.set(e, _parent[arc]); |
1400 | 1400 |
if (_parent[arc] != INVALID) { |
1401 | 1401 |
if (_left[_parent[arc]] == arc) { |
1402 | 1402 |
_left.set(_parent[arc], e); |
1403 | 1403 |
} else { |
1404 | 1404 |
_right.set(_parent[arc], e); |
1405 | 1405 |
} |
1406 | 1406 |
} |
1407 | 1407 |
splay(s); |
1408 | 1408 |
} else { |
1409 | 1409 |
_right.set(e, _right[arc]); |
1410 | 1410 |
_parent.set(_right[arc], e); |
1411 | 1411 |
_parent.set(e, _parent[arc]); |
1412 | 1412 |
|
1413 | 1413 |
if (_parent[arc] != INVALID) { |
1414 | 1414 |
if (_left[_parent[arc]] == arc) { |
1415 | 1415 |
_left.set(_parent[arc], e); |
1416 | 1416 |
} else { |
1417 | 1417 |
_right.set(_parent[arc], e); |
1418 | 1418 |
} |
1419 | 1419 |
} else { |
1420 | 1420 |
_head.set(_g.source(arc), e); |
1421 | 1421 |
} |
1422 | 1422 |
} |
1423 | 1423 |
} |
1424 | 1424 |
} |
1425 | 1425 |
|
1426 | 1426 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1427 | 1427 |
{ |
1428 | 1428 |
int m=(a+b)/2; |
1429 | 1429 |
Arc me=v[m]; |
1430 | 1430 |
if (a < m) { |
1431 | 1431 |
Arc left = refreshRec(v,a,m-1); |
1432 | 1432 |
_left.set(me, left); |
1433 | 1433 |
_parent.set(left, me); |
1434 | 1434 |
} else { |
1435 | 1435 |
_left.set(me, INVALID); |
1436 | 1436 |
} |
1437 | 1437 |
if (m < b) { |
1438 | 1438 |
Arc right = refreshRec(v,m+1,b); |
1439 | 1439 |
_right.set(me, right); |
1440 | 1440 |
_parent.set(right, me); |
1441 | 1441 |
} else { |
1442 | 1442 |
_right.set(me, INVALID); |
1443 | 1443 |
} |
1444 | 1444 |
return me; |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
void refresh() { |
0 comments (0 inline)