0
2
0
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
| 20 | 20 |
#define LEMON_BELLMAN_FORD_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 |
#include <lemon/tolerance.h> |
|
| 32 | 31 |
#include <lemon/path.h> |
| 33 | 32 |
|
| 34 | 33 |
#include <limits> |
| 35 | 34 |
|
| 36 | 35 |
namespace lemon {
|
| 37 | 36 |
|
| 38 |
/// \brief Default |
|
| 37 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 39 | 38 |
/// |
| 40 | 39 |
/// This operation traits class defines all computational operations |
| 41 | 40 |
/// and constants that are used in the Bellman-Ford algorithm. |
| 42 | 41 |
/// The default implementation is based on the \c numeric_limits class. |
| 43 | 42 |
/// If the numeric type does not have infinity value, then the maximum |
| 44 | 43 |
/// value is used as extremal infinity value. |
| 45 |
/// |
|
| 46 |
/// \see BellmanFordToleranceOperationTraits |
|
| 47 | 44 |
template < |
| 48 | 45 |
typename V, |
| 49 | 46 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
| 50 | 47 |
struct BellmanFordDefaultOperationTraits {
|
| 51 |
/// \ |
|
| 48 |
/// \e |
|
| 52 | 49 |
typedef V Value; |
| 53 | 50 |
/// \brief Gives back the zero value of the type. |
| 54 | 51 |
static Value zero() {
|
| 55 | 52 |
return static_cast<Value>(0); |
| 56 | 53 |
} |
| 57 | 54 |
/// \brief Gives back the positive infinity value of the type. |
| 58 | 55 |
static Value infinity() {
|
| 59 | 56 |
return std::numeric_limits<Value>::infinity(); |
| 60 | 57 |
} |
| 61 | 58 |
/// \brief Gives back the sum of the given two elements. |
| 62 | 59 |
static Value plus(const Value& left, const Value& right) {
|
| 63 | 60 |
return left + right; |
| 64 | 61 |
} |
| 65 | 62 |
/// \brief Gives back \c true only if the first value is less than |
| 66 | 63 |
/// the second. |
| 67 | 64 |
static bool less(const Value& left, const Value& right) {
|
| 68 | 65 |
return left < right; |
| 69 | 66 |
} |
| 70 | 67 |
}; |
| 71 | 68 |
|
| 72 | 69 |
template <typename V> |
| 73 | 70 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
| 74 | 71 |
typedef V Value; |
| 75 | 72 |
static Value zero() {
|
| 76 | 73 |
return static_cast<Value>(0); |
| 77 | 74 |
} |
| 78 | 75 |
static Value infinity() {
|
| 79 | 76 |
return std::numeric_limits<Value>::max(); |
| 80 | 77 |
} |
| 81 | 78 |
static Value plus(const Value& left, const Value& right) {
|
| 82 | 79 |
if (left == infinity() || right == infinity()) return infinity(); |
| 83 | 80 |
return left + right; |
| 84 | 81 |
} |
| 85 | 82 |
static bool less(const Value& left, const Value& right) {
|
| 86 | 83 |
return left < right; |
| 87 | 84 |
} |
| 88 | 85 |
}; |
| 89 | 86 |
|
| 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
|
| 91 |
/// using tolerance. |
|
| 92 |
/// |
|
| 93 |
/// This operation traits class defines all computational operations |
|
| 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 95 |
/// The only difference between this implementation and |
|
| 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
|
| 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
|
| 98 |
/// function. |
|
| 99 |
/// |
|
| 100 |
/// \tparam V The value type. |
|
| 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
|
| 102 |
/// By default, it is the epsilon value used by \ref Tolerance |
|
| 103 |
/// "Tolerance<V>". |
|
| 104 |
/// |
|
| 105 |
/// \see BellmanFordDefaultOperationTraits |
|
| 106 |
#ifdef DOXYGEN |
|
| 107 |
template <typename V, V eps> |
|
| 108 |
#else |
|
| 109 |
template < |
|
| 110 |
typename V, |
|
| 111 |
V eps = Tolerance<V>::def_epsilon> |
|
| 112 |
#endif |
|
| 113 |
struct BellmanFordToleranceOperationTraits {
|
|
| 114 |
/// \brief Value type for the algorithm. |
|
| 115 |
typedef V Value; |
|
| 116 |
/// \brief Gives back the zero value of the type. |
|
| 117 |
static Value zero() {
|
|
| 118 |
return static_cast<Value>(0); |
|
| 119 |
} |
|
| 120 |
/// \brief Gives back the positive infinity value of the type. |
|
| 121 |
static Value infinity() {
|
|
| 122 |
return std::numeric_limits<Value>::infinity(); |
|
| 123 |
} |
|
| 124 |
/// \brief Gives back the sum of the given two elements. |
|
| 125 |
static Value plus(const Value& left, const Value& right) {
|
|
| 126 |
return left + right; |
|
| 127 |
} |
|
| 128 |
/// \brief Gives back \c true only if the first value is less than |
|
| 129 |
/// the second. |
|
| 130 |
static bool less(const Value& left, const Value& right) {
|
|
| 131 |
return left + eps < right; |
|
| 132 |
} |
|
| 133 |
}; |
|
| 134 |
|
|
| 135 | 87 |
/// \brief Default traits class of BellmanFord class. |
| 136 | 88 |
/// |
| 137 | 89 |
/// Default traits class of BellmanFord class. |
| 138 | 90 |
/// \param GR The type of the digraph. |
| 139 | 91 |
/// \param LEN The type of the length map. |
| 140 | 92 |
template<typename GR, typename LEN> |
| 141 | 93 |
struct BellmanFordDefaultTraits {
|
| 142 | 94 |
/// The type of the digraph the algorithm runs on. |
| 143 | 95 |
typedef GR Digraph; |
| 144 | 96 |
|
| 145 | 97 |
/// \brief The type of the map that stores the arc lengths. |
| 146 | 98 |
/// |
| 147 | 99 |
/// The type of the map that stores the arc lengths. |
| 148 | 100 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 149 | 101 |
typedef LEN LengthMap; |
| 150 | 102 |
|
| 151 | 103 |
/// The type of the arc lengths. |
| 152 | 104 |
typedef typename LEN::Value Value; |
| 153 | 105 |
|
| 154 | 106 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 155 | 107 |
/// |
| 156 | 108 |
/// It defines the used operations and the infinity value for the |
| 157 | 109 |
/// given \c Value type. |
| 158 |
/// \see BellmanFordDefaultOperationTraits, |
|
| 159 |
/// BellmanFordToleranceOperationTraits |
|
| 110 |
/// \see BellmanFordDefaultOperationTraits |
|
| 160 | 111 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 161 | 112 |
|
| 162 | 113 |
/// \brief The type of the map that stores the last arcs of the |
| 163 | 114 |
/// shortest paths. |
| 164 | 115 |
/// |
| 165 | 116 |
/// The type of the map that stores the last |
| 166 | 117 |
/// arcs of the shortest paths. |
| 167 | 118 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 168 | 119 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 169 | 120 |
|
| 170 | 121 |
/// \brief Instantiates a \c PredMap. |
| 171 | 122 |
/// |
| 172 | 123 |
/// This function instantiates a \ref PredMap. |
| 173 | 124 |
/// \param g is the digraph to which we would like to define the |
| 174 | 125 |
/// \ref PredMap. |
| 175 | 126 |
static PredMap *createPredMap(const GR& g) {
|
| 176 | 127 |
return new PredMap(g); |
| 177 | 128 |
} |
| 178 | 129 |
|
| 179 | 130 |
/// \brief The type of the map that stores the distances of the nodes. |
| 180 | 131 |
/// |
| 181 | 132 |
/// The type of the map that stores the distances of the nodes. |
| 182 | 133 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 183 | 134 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
| 184 | 135 |
|
| 185 | 136 |
/// \brief Instantiates a \c DistMap. |
| 186 | 137 |
/// |
| 187 | 138 |
/// This function instantiates a \ref DistMap. |
| 188 | 139 |
/// \param g is the digraph to which we would like to define the |
| 189 | 140 |
/// \ref DistMap. |
| 190 | 141 |
static DistMap *createDistMap(const GR& g) {
|
| 191 | 142 |
return new DistMap(g); |
| 192 | 143 |
} |
| 193 | 144 |
|
| 194 | 145 |
}; |
| 195 | 146 |
|
| 196 | 147 |
/// \brief %BellmanFord algorithm class. |
| 197 | 148 |
/// |
| 198 | 149 |
/// \ingroup shortest_path |
| 199 | 150 |
/// This class provides an efficient implementation of the Bellman-Ford |
| 200 | 151 |
/// algorithm. The maximum time complexity of the algorithm is |
| 201 | 152 |
/// <tt>O(ne)</tt>. |
| 202 | 153 |
/// |
| 203 | 154 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
| 204 | 155 |
/// problem when the arcs can have negative lengths, but the digraph |
| 205 | 156 |
/// should not contain directed cycles with negative total length. |
| 206 | 157 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
| 207 | 158 |
/// algorithm instead, since it is more efficient. |
| 208 | 159 |
/// |
| 209 | 160 |
/// The arc lengths are passed to the algorithm using a |
| 210 | 161 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| 211 | 162 |
/// kind of length. The type of the length values is determined by the |
| 212 | 163 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
| 213 | 164 |
/// |
| 214 | 165 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
| 215 | 166 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
| 216 | 167 |
/// it can be used easier. |
| 217 | 168 |
/// |
| 218 | 169 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 219 | 170 |
/// The default type is \ref ListDigraph. |
| 220 | 171 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 221 | 172 |
/// the lengths of the arcs. The default map type is |
| 222 | 173 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 223 | 174 |
/// \tparam TR The traits class that defines various types used by the |
| 224 | 175 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
| 225 | 176 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
| 226 | 177 |
/// In most cases, this parameter should not be set directly, |
| 227 | 178 |
/// consider to use the named template parameters instead. |
| 228 | 179 |
#ifdef DOXYGEN |
| 229 | 180 |
template <typename GR, typename LEN, typename TR> |
| 230 | 181 |
#else |
| 231 | 182 |
template <typename GR=ListDigraph, |
| 232 | 183 |
typename LEN=typename GR::template ArcMap<int>, |
| 233 | 184 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
| 234 | 185 |
#endif |
| 235 | 186 |
class BellmanFord {
|
| 236 | 187 |
public: |
| 237 | 188 |
|
| 238 | 189 |
///The type of the underlying digraph. |
| 239 | 190 |
typedef typename TR::Digraph Digraph; |
| 240 | 191 |
|
| 241 | 192 |
/// \brief The type of the arc lengths. |
| 242 | 193 |
typedef typename TR::LengthMap::Value Value; |
| 243 | 194 |
/// \brief The type of the map that stores the arc lengths. |
| 244 | 195 |
typedef typename TR::LengthMap LengthMap; |
| 245 | 196 |
/// \brief The type of the map that stores the last |
| 246 | 197 |
/// arcs of the shortest paths. |
| 247 | 198 |
typedef typename TR::PredMap PredMap; |
| 248 | 199 |
/// \brief The type of the map that stores the distances of the nodes. |
| 249 | 200 |
typedef typename TR::DistMap DistMap; |
| 250 | 201 |
/// The type of the paths. |
| 251 | 202 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 252 | 203 |
///\brief The \ref BellmanFordDefaultOperationTraits |
| 253 | 204 |
/// "operation traits class" of the algorithm. |
| 254 | 205 |
typedef typename TR::OperationTraits OperationTraits; |
| 255 | 206 |
|
| 256 | 207 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
| 257 | 208 |
typedef TR Traits; |
| 258 | 209 |
|
| 259 | 210 |
private: |
| 260 | 211 |
|
| 261 | 212 |
typedef typename Digraph::Node Node; |
| 262 | 213 |
typedef typename Digraph::NodeIt NodeIt; |
| 263 | 214 |
typedef typename Digraph::Arc Arc; |
| 264 | 215 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 265 | 216 |
|
| 266 | 217 |
// Pointer to the underlying digraph. |
| 267 | 218 |
const Digraph *_gr; |
| 268 | 219 |
// Pointer to the length map |
| 269 | 220 |
const LengthMap *_length; |
| 270 | 221 |
// Pointer to the map of predecessors arcs. |
| 271 | 222 |
PredMap *_pred; |
| 272 | 223 |
// Indicates if _pred is locally allocated (true) or not. |
| 273 | 224 |
bool _local_pred; |
| 274 | 225 |
// Pointer to the map of distances. |
| 275 | 226 |
DistMap *_dist; |
| 276 | 227 |
// Indicates if _dist is locally allocated (true) or not. |
| 277 | 228 |
bool _local_dist; |
| 278 | 229 |
|
| 279 | 230 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 280 | 231 |
MaskMap *_mask; |
| 281 | 232 |
|
| 282 | 233 |
std::vector<Node> _process; |
| 283 | 234 |
|
| 284 | 235 |
// Creates the maps if necessary. |
| 285 | 236 |
void create_maps() {
|
| 286 | 237 |
if(!_pred) {
|
| 287 | 238 |
_local_pred = true; |
| 288 | 239 |
_pred = Traits::createPredMap(*_gr); |
| 289 | 240 |
} |
| 290 | 241 |
if(!_dist) {
|
| 291 | 242 |
_local_dist = true; |
| 292 | 243 |
_dist = Traits::createDistMap(*_gr); |
| 293 | 244 |
} |
| 294 | 245 |
if(!_mask) {
|
| 295 | 246 |
_mask = new MaskMap(*_gr); |
| 296 | 247 |
} |
| 297 | 248 |
} |
| 298 | 249 |
|
| 299 | 250 |
public : |
| 300 | 251 |
|
| 301 | 252 |
typedef BellmanFord Create; |
| 302 | 253 |
|
| 303 | 254 |
/// \name Named Template Parameters |
| 304 | 255 |
|
| 305 | 256 |
///@{
|
| 306 | 257 |
|
| 307 | 258 |
template <class T> |
| 308 | 259 |
struct SetPredMapTraits : public Traits {
|
| 309 | 260 |
typedef T PredMap; |
| 310 | 261 |
static PredMap *createPredMap(const Digraph&) {
|
| 311 | 262 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 312 | 263 |
return 0; // ignore warnings |
| 313 | 264 |
} |
| 314 | 265 |
}; |
| 315 | 266 |
|
| 316 | 267 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 317 | 268 |
/// \c PredMap type. |
| 318 | 269 |
/// |
| 319 | 270 |
/// \ref named-templ-param "Named parameter" for setting |
| 320 | 271 |
/// \c PredMap type. |
| 321 | 272 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 322 | 273 |
template <class T> |
| 323 | 274 |
struct SetPredMap |
| 324 | 275 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 325 | 276 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 326 | 277 |
}; |
| 327 | 278 |
|
| 328 | 279 |
template <class T> |
| 329 | 280 |
struct SetDistMapTraits : public Traits {
|
| 330 | 281 |
typedef T DistMap; |
| 331 | 282 |
static DistMap *createDistMap(const Digraph&) {
|
| 332 | 283 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 333 | 284 |
return 0; // ignore warnings |
| 334 | 285 |
} |
| 335 | 286 |
}; |
| 336 | 287 |
|
| 337 | 288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 338 | 289 |
/// \c DistMap type. |
| 339 | 290 |
/// |
| 340 | 291 |
/// \ref named-templ-param "Named parameter" for setting |
| 341 | 292 |
/// \c DistMap type. |
| 342 | 293 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 343 | 294 |
template <class T> |
| 344 | 295 |
struct SetDistMap |
| 345 | 296 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 346 | 297 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 347 | 298 |
}; |
| 348 | 299 |
|
| 349 | 300 |
template <class T> |
| 350 | 301 |
struct SetOperationTraitsTraits : public Traits {
|
| 351 | 302 |
typedef T OperationTraits; |
| ... | ... |
@@ -697,386 +648,385 @@ |
| 697 | 648 |
/// \brief Constructor. |
| 698 | 649 |
/// |
| 699 | 650 |
/// Constructor for getting the active nodes of the given BellmanFord |
| 700 | 651 |
/// instance. |
| 701 | 652 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 702 | 653 |
{
|
| 703 | 654 |
_index = _algorithm->_process.size() - 1; |
| 704 | 655 |
} |
| 705 | 656 |
|
| 706 | 657 |
/// \brief Invalid constructor. |
| 707 | 658 |
/// |
| 708 | 659 |
/// Invalid constructor. |
| 709 | 660 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
| 710 | 661 |
|
| 711 | 662 |
/// \brief Conversion to \c Node. |
| 712 | 663 |
/// |
| 713 | 664 |
/// Conversion to \c Node. |
| 714 | 665 |
operator Node() const {
|
| 715 | 666 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 716 | 667 |
} |
| 717 | 668 |
|
| 718 | 669 |
/// \brief Increment operator. |
| 719 | 670 |
/// |
| 720 | 671 |
/// Increment operator. |
| 721 | 672 |
ActiveIt& operator++() {
|
| 722 | 673 |
--_index; |
| 723 | 674 |
return *this; |
| 724 | 675 |
} |
| 725 | 676 |
|
| 726 | 677 |
bool operator==(const ActiveIt& it) const {
|
| 727 | 678 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
| 728 | 679 |
} |
| 729 | 680 |
bool operator!=(const ActiveIt& it) const {
|
| 730 | 681 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
| 731 | 682 |
} |
| 732 | 683 |
bool operator<(const ActiveIt& it) const {
|
| 733 | 684 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
| 734 | 685 |
} |
| 735 | 686 |
|
| 736 | 687 |
private: |
| 737 | 688 |
const BellmanFord* _algorithm; |
| 738 | 689 |
int _index; |
| 739 | 690 |
}; |
| 740 | 691 |
|
| 741 | 692 |
/// \name Query Functions |
| 742 | 693 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
| 743 | 694 |
/// functions.\n |
| 744 | 695 |
/// Either \ref run() or \ref init() should be called before using them. |
| 745 | 696 |
|
| 746 | 697 |
///@{
|
| 747 | 698 |
|
| 748 | 699 |
/// \brief The shortest path to the given node. |
| 749 | 700 |
/// |
| 750 | 701 |
/// Gives back the shortest path to the given node from the root(s). |
| 751 | 702 |
/// |
| 752 | 703 |
/// \warning \c t should be reached from the root(s). |
| 753 | 704 |
/// |
| 754 | 705 |
/// \pre Either \ref run() or \ref init() must be called before |
| 755 | 706 |
/// using this function. |
| 756 | 707 |
Path path(Node t) const |
| 757 | 708 |
{
|
| 758 | 709 |
return Path(*_gr, *_pred, t); |
| 759 | 710 |
} |
| 760 | 711 |
|
| 761 | 712 |
/// \brief The distance of the given node from the root(s). |
| 762 | 713 |
/// |
| 763 | 714 |
/// Returns the distance of the given node from the root(s). |
| 764 | 715 |
/// |
| 765 | 716 |
/// \warning If node \c v is not reached from the root(s), then |
| 766 | 717 |
/// the return value of this function is undefined. |
| 767 | 718 |
/// |
| 768 | 719 |
/// \pre Either \ref run() or \ref init() must be called before |
| 769 | 720 |
/// using this function. |
| 770 | 721 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 771 | 722 |
|
| 772 | 723 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
| 773 | 724 |
/// the given node. |
| 774 | 725 |
/// |
| 775 | 726 |
/// This function returns the 'previous arc' of the shortest path |
| 776 | 727 |
/// tree for node \c v, i.e. it returns the last arc of a |
| 777 | 728 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
| 778 | 729 |
/// is not reached from the root(s) or if \c v is a root. |
| 779 | 730 |
/// |
| 780 | 731 |
/// The shortest path tree used here is equal to the shortest path |
| 781 | 732 |
/// tree used in \ref predNode() and \ref predMap(). |
| 782 | 733 |
/// |
| 783 | 734 |
/// \pre Either \ref run() or \ref init() must be called before |
| 784 | 735 |
/// using this function. |
| 785 | 736 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 786 | 737 |
|
| 787 | 738 |
/// \brief Returns the 'previous node' of the shortest path tree for |
| 788 | 739 |
/// the given node. |
| 789 | 740 |
/// |
| 790 | 741 |
/// This function returns the 'previous node' of the shortest path |
| 791 | 742 |
/// tree for node \c v, i.e. it returns the last but one node of |
| 792 | 743 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
| 793 | 744 |
/// is not reached from the root(s) or if \c v is a root. |
| 794 | 745 |
/// |
| 795 | 746 |
/// The shortest path tree used here is equal to the shortest path |
| 796 | 747 |
/// tree used in \ref predArc() and \ref predMap(). |
| 797 | 748 |
/// |
| 798 | 749 |
/// \pre Either \ref run() or \ref init() must be called before |
| 799 | 750 |
/// using this function. |
| 800 | 751 |
Node predNode(Node v) const {
|
| 801 | 752 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
| 802 | 753 |
} |
| 803 | 754 |
|
| 804 | 755 |
/// \brief Returns a const reference to the node map that stores the |
| 805 | 756 |
/// distances of the nodes. |
| 806 | 757 |
/// |
| 807 | 758 |
/// Returns a const reference to the node map that stores the distances |
| 808 | 759 |
/// of the nodes calculated by the algorithm. |
| 809 | 760 |
/// |
| 810 | 761 |
/// \pre Either \ref run() or \ref init() must be called before |
| 811 | 762 |
/// using this function. |
| 812 | 763 |
const DistMap &distMap() const { return *_dist;}
|
| 813 | 764 |
|
| 814 | 765 |
/// \brief Returns a const reference to the node map that stores the |
| 815 | 766 |
/// predecessor arcs. |
| 816 | 767 |
/// |
| 817 | 768 |
/// Returns a const reference to the node map that stores the predecessor |
| 818 | 769 |
/// arcs, which form the shortest path tree (forest). |
| 819 | 770 |
/// |
| 820 | 771 |
/// \pre Either \ref run() or \ref init() must be called before |
| 821 | 772 |
/// using this function. |
| 822 | 773 |
const PredMap &predMap() const { return *_pred; }
|
| 823 | 774 |
|
| 824 | 775 |
/// \brief Checks if a node is reached from the root(s). |
| 825 | 776 |
/// |
| 826 | 777 |
/// Returns \c true if \c v is reached from the root(s). |
| 827 | 778 |
/// |
| 828 | 779 |
/// \pre Either \ref run() or \ref init() must be called before |
| 829 | 780 |
/// using this function. |
| 830 | 781 |
bool reached(Node v) const {
|
| 831 | 782 |
return (*_dist)[v] != OperationTraits::infinity(); |
| 832 | 783 |
} |
| 833 | 784 |
|
| 834 | 785 |
/// \brief Gives back a negative cycle. |
| 835 | 786 |
/// |
| 836 | 787 |
/// This function gives back a directed cycle with negative total |
| 837 | 788 |
/// length if the algorithm has already found one. |
| 838 | 789 |
/// Otherwise it gives back an empty path. |
| 839 | 790 |
lemon::Path<Digraph> negativeCycle() const {
|
| 840 | 791 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
| 841 | 792 |
lemon::Path<Digraph> cycle; |
| 842 | 793 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 843 | 794 |
if (state[_process[i]] != -1) continue; |
| 844 | 795 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
| 845 | 796 |
v = _gr->source((*_pred)[v])) {
|
| 846 | 797 |
if (state[v] == i) {
|
| 847 | 798 |
cycle.addFront((*_pred)[v]); |
| 848 | 799 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
| 849 | 800 |
u = _gr->source((*_pred)[u])) {
|
| 850 | 801 |
cycle.addFront((*_pred)[u]); |
| 851 | 802 |
} |
| 852 | 803 |
return cycle; |
| 853 | 804 |
} |
| 854 | 805 |
else if (state[v] >= 0) {
|
| 855 | 806 |
break; |
| 856 | 807 |
} |
| 857 | 808 |
state[v] = i; |
| 858 | 809 |
} |
| 859 | 810 |
} |
| 860 | 811 |
return cycle; |
| 861 | 812 |
} |
| 862 | 813 |
|
| 863 | 814 |
///@} |
| 864 | 815 |
}; |
| 865 | 816 |
|
| 866 | 817 |
/// \brief Default traits class of bellmanFord() function. |
| 867 | 818 |
/// |
| 868 | 819 |
/// Default traits class of bellmanFord() function. |
| 869 | 820 |
/// \tparam GR The type of the digraph. |
| 870 | 821 |
/// \tparam LEN The type of the length map. |
| 871 | 822 |
template <typename GR, typename LEN> |
| 872 | 823 |
struct BellmanFordWizardDefaultTraits {
|
| 873 | 824 |
/// The type of the digraph the algorithm runs on. |
| 874 | 825 |
typedef GR Digraph; |
| 875 | 826 |
|
| 876 | 827 |
/// \brief The type of the map that stores the arc lengths. |
| 877 | 828 |
/// |
| 878 | 829 |
/// The type of the map that stores the arc lengths. |
| 879 | 830 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 880 | 831 |
typedef LEN LengthMap; |
| 881 | 832 |
|
| 882 | 833 |
/// The type of the arc lengths. |
| 883 | 834 |
typedef typename LEN::Value Value; |
| 884 | 835 |
|
| 885 | 836 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 886 | 837 |
/// |
| 887 | 838 |
/// It defines the used operations and the infinity value for the |
| 888 | 839 |
/// given \c Value type. |
| 889 |
/// \see BellmanFordDefaultOperationTraits, |
|
| 890 |
/// BellmanFordToleranceOperationTraits |
|
| 840 |
/// \see BellmanFordDefaultOperationTraits |
|
| 891 | 841 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 892 | 842 |
|
| 893 | 843 |
/// \brief The type of the map that stores the last |
| 894 | 844 |
/// arcs of the shortest paths. |
| 895 | 845 |
/// |
| 896 | 846 |
/// The type of the map that stores the last arcs of the shortest paths. |
| 897 | 847 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 898 | 848 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 899 | 849 |
|
| 900 | 850 |
/// \brief Instantiates a \c PredMap. |
| 901 | 851 |
/// |
| 902 | 852 |
/// This function instantiates a \ref PredMap. |
| 903 | 853 |
/// \param g is the digraph to which we would like to define the |
| 904 | 854 |
/// \ref PredMap. |
| 905 | 855 |
static PredMap *createPredMap(const GR &g) {
|
| 906 | 856 |
return new PredMap(g); |
| 907 | 857 |
} |
| 908 | 858 |
|
| 909 | 859 |
/// \brief The type of the map that stores the distances of the nodes. |
| 910 | 860 |
/// |
| 911 | 861 |
/// The type of the map that stores the distances of the nodes. |
| 912 | 862 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 913 | 863 |
typedef typename GR::template NodeMap<Value> DistMap; |
| 914 | 864 |
|
| 915 | 865 |
/// \brief Instantiates a \c DistMap. |
| 916 | 866 |
/// |
| 917 | 867 |
/// This function instantiates a \ref DistMap. |
| 918 | 868 |
/// \param g is the digraph to which we would like to define the |
| 919 | 869 |
/// \ref DistMap. |
| 920 | 870 |
static DistMap *createDistMap(const GR &g) {
|
| 921 | 871 |
return new DistMap(g); |
| 922 | 872 |
} |
| 923 | 873 |
|
| 924 | 874 |
///The type of the shortest paths. |
| 925 | 875 |
|
| 926 | 876 |
///The type of the shortest paths. |
| 927 | 877 |
///It must meet the \ref concepts::Path "Path" concept. |
| 928 | 878 |
typedef lemon::Path<Digraph> Path; |
| 929 | 879 |
}; |
| 930 | 880 |
|
| 931 | 881 |
/// \brief Default traits class used by BellmanFordWizard. |
| 932 | 882 |
/// |
| 933 | 883 |
/// Default traits class used by BellmanFordWizard. |
| 934 | 884 |
/// \tparam GR The type of the digraph. |
| 935 | 885 |
/// \tparam LEN The type of the length map. |
| 936 | 886 |
template <typename GR, typename LEN> |
| 937 | 887 |
class BellmanFordWizardBase |
| 938 | 888 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
| 939 | 889 |
|
| 940 | 890 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
| 941 | 891 |
protected: |
| 942 | 892 |
// Type of the nodes in the digraph. |
| 943 | 893 |
typedef typename Base::Digraph::Node Node; |
| 944 | 894 |
|
| 945 | 895 |
// Pointer to the underlying digraph. |
| 946 | 896 |
void *_graph; |
| 947 | 897 |
// Pointer to the length map |
| 948 | 898 |
void *_length; |
| 949 | 899 |
// Pointer to the map of predecessors arcs. |
| 950 | 900 |
void *_pred; |
| 951 | 901 |
// Pointer to the map of distances. |
| 952 | 902 |
void *_dist; |
| 953 | 903 |
//Pointer to the shortest path to the target node. |
| 954 | 904 |
void *_path; |
| 955 | 905 |
//Pointer to the distance of the target node. |
| 956 | 906 |
void *_di; |
| 957 | 907 |
|
| 958 | 908 |
public: |
| 959 | 909 |
/// Constructor. |
| 960 | 910 |
|
| 961 | 911 |
/// This constructor does not require parameters, it initiates |
| 962 | 912 |
/// all of the attributes to default values \c 0. |
| 963 | 913 |
BellmanFordWizardBase() : |
| 964 | 914 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 965 | 915 |
|
| 966 | 916 |
/// Constructor. |
| 967 | 917 |
|
| 968 | 918 |
/// This constructor requires two parameters, |
| 969 | 919 |
/// others are initiated to \c 0. |
| 970 | 920 |
/// \param gr The digraph the algorithm runs on. |
| 971 | 921 |
/// \param len The length map. |
| 972 | 922 |
BellmanFordWizardBase(const GR& gr, |
| 973 | 923 |
const LEN& len) : |
| 974 | 924 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
| 975 | 925 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
| 976 | 926 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
| 977 | 927 |
|
| 978 | 928 |
}; |
| 979 | 929 |
|
| 980 | 930 |
/// \brief Auxiliary class for the function-type interface of the |
| 981 | 931 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 982 | 932 |
/// |
| 983 | 933 |
/// This auxiliary class is created to implement the |
| 984 | 934 |
/// \ref bellmanFord() "function-type interface" of the |
| 985 | 935 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 986 | 936 |
/// It does not have own \ref run() method, it uses the |
| 987 | 937 |
/// functions and features of the plain \ref BellmanFord. |
| 988 | 938 |
/// |
| 989 | 939 |
/// This class should only be used through the \ref bellmanFord() |
| 990 | 940 |
/// function, which makes it easier to use the algorithm. |
| 991 | 941 |
/// |
| 992 | 942 |
/// \tparam TR The traits class that defines various types used by the |
| 993 | 943 |
/// algorithm. |
| 994 | 944 |
template<class TR> |
| 995 | 945 |
class BellmanFordWizard : public TR {
|
| 996 | 946 |
typedef TR Base; |
| 997 | 947 |
|
| 998 | 948 |
typedef typename TR::Digraph Digraph; |
| 999 | 949 |
|
| 1000 | 950 |
typedef typename Digraph::Node Node; |
| 1001 | 951 |
typedef typename Digraph::NodeIt NodeIt; |
| 1002 | 952 |
typedef typename Digraph::Arc Arc; |
| 1003 | 953 |
typedef typename Digraph::OutArcIt ArcIt; |
| 1004 | 954 |
|
| 1005 | 955 |
typedef typename TR::LengthMap LengthMap; |
| 1006 | 956 |
typedef typename LengthMap::Value Value; |
| 1007 | 957 |
typedef typename TR::PredMap PredMap; |
| 1008 | 958 |
typedef typename TR::DistMap DistMap; |
| 1009 | 959 |
typedef typename TR::Path Path; |
| 1010 | 960 |
|
| 1011 | 961 |
public: |
| 1012 | 962 |
/// Constructor. |
| 1013 | 963 |
BellmanFordWizard() : TR() {}
|
| 1014 | 964 |
|
| 1015 | 965 |
/// \brief Constructor that requires parameters. |
| 1016 | 966 |
/// |
| 1017 | 967 |
/// Constructor that requires parameters. |
| 1018 | 968 |
/// These parameters will be the default values for the traits class. |
| 1019 | 969 |
/// \param gr The digraph the algorithm runs on. |
| 1020 | 970 |
/// \param len The length map. |
| 1021 | 971 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
| 1022 | 972 |
: TR(gr, len) {}
|
| 1023 | 973 |
|
| 1024 | 974 |
/// \brief Copy constructor |
| 1025 | 975 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
| 1026 | 976 |
|
| 1027 | 977 |
~BellmanFordWizard() {}
|
| 1028 | 978 |
|
| 1029 | 979 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
| 1030 | 980 |
/// |
| 1031 | 981 |
/// This method runs the Bellman-Ford algorithm from the given source |
| 1032 | 982 |
/// node in order to compute the shortest path to each node. |
| 1033 | 983 |
void run(Node s) {
|
| 1034 | 984 |
BellmanFord<Digraph,LengthMap,TR> |
| 1035 | 985 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 1036 | 986 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1037 | 987 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1038 | 988 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1039 | 989 |
bf.run(s); |
| 1040 | 990 |
} |
| 1041 | 991 |
|
| 1042 | 992 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
| 1043 | 993 |
/// between \c s and \c t. |
| 1044 | 994 |
/// |
| 1045 | 995 |
/// This method runs the Bellman-Ford algorithm from node \c s |
| 1046 | 996 |
/// in order to compute the shortest path to node \c t. |
| 1047 | 997 |
/// Actually, it computes the shortest path to each node, but using |
| 1048 | 998 |
/// this function you can retrieve the distance and the shortest path |
| 1049 | 999 |
/// for a single target node easier. |
| 1050 | 1000 |
/// |
| 1051 | 1001 |
/// \return \c true if \c t is reachable form \c s. |
| 1052 | 1002 |
bool run(Node s, Node t) {
|
| 1053 | 1003 |
BellmanFord<Digraph,LengthMap,TR> |
| 1054 | 1004 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 1055 | 1005 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1056 | 1006 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1057 | 1007 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1058 | 1008 |
bf.run(s); |
| 1059 | 1009 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
| 1060 | 1010 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
| 1061 | 1011 |
return bf.reached(t); |
| 1062 | 1012 |
} |
| 1063 | 1013 |
|
| 1064 | 1014 |
template<class T> |
| 1065 | 1015 |
struct SetPredMapBase : public Base {
|
| 1066 | 1016 |
typedef T PredMap; |
| 1067 | 1017 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1018 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1019 |
}; |
| 1070 | 1020 |
|
| 1071 | 1021 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1072 | 1022 |
/// the predecessor map. |
| 1073 | 1023 |
/// |
| 1074 | 1024 |
/// \ref named-templ-param "Named parameter" for setting |
| 1075 | 1025 |
/// the map that stores the predecessor arcs of the nodes. |
| 1076 | 1026 |
template<class T> |
| 1077 | 1027 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
| 1078 | 1028 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1029 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1030 |
} |
| 1081 | 1031 |
|
| 1082 | 1032 |
template<class T> |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/smart_graph.h> |
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/bellman_ford.h> |
| 24 | 24 |
#include <lemon/path.h> |
| 25 | 25 |
|
| 26 | 26 |
#include "graph_test.h" |
| 27 | 27 |
#include "test_tools.h" |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
char test_lgf[] = |
| 32 | 32 |
"@nodes\n" |
| 33 | 33 |
"label\n" |
| 34 | 34 |
"0\n" |
| 35 | 35 |
"1\n" |
| 36 | 36 |
"2\n" |
| 37 | 37 |
"3\n" |
| 38 | 38 |
"4\n" |
| 39 | 39 |
"@arcs\n" |
| 40 | 40 |
" length\n" |
| 41 | 41 |
"0 1 3\n" |
| 42 | 42 |
"1 2 -3\n" |
| 43 | 43 |
"1 2 -5\n" |
| 44 | 44 |
"1 3 -2\n" |
| 45 | 45 |
"0 2 -1\n" |
| 46 | 46 |
"1 2 -4\n" |
| 47 | 47 |
"0 3 2\n" |
| 48 | 48 |
"4 2 -5\n" |
| 49 | 49 |
"2 3 1\n" |
| 50 | 50 |
"@attributes\n" |
| 51 | 51 |
"source 0\n" |
| 52 | 52 |
"target 3\n"; |
| 53 | 53 |
|
| 54 | 54 |
|
| 55 | 55 |
void checkBellmanFordCompile() |
| 56 | 56 |
{
|
| 57 | 57 |
typedef int Value; |
| 58 | 58 |
typedef concepts::Digraph Digraph; |
| 59 | 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
| 60 | 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
| 61 | 61 |
typedef Digraph::Node Node; |
| 62 | 62 |
typedef Digraph::Arc Arc; |
| 63 | 63 |
|
| 64 | 64 |
Digraph gr; |
| 65 | 65 |
Node s, t, n; |
| 66 | 66 |
Arc e; |
| 67 | 67 |
Value l; |
| 68 | 68 |
int k=3; |
| 69 | 69 |
bool b; |
| 70 | 70 |
BF::DistMap d(gr); |
| 71 | 71 |
BF::PredMap p(gr); |
| 72 | 72 |
LengthMap length; |
| 73 | 73 |
concepts::Path<Digraph> pp; |
| 74 | 74 |
|
| 75 | 75 |
{
|
| 76 | 76 |
BF bf_test(gr,length); |
| 77 | 77 |
const BF& const_bf_test = bf_test; |
| 78 | 78 |
|
| 79 | 79 |
bf_test.run(s); |
| 80 | 80 |
bf_test.run(s,k); |
| 81 | 81 |
|
| 82 | 82 |
bf_test.init(); |
| 83 | 83 |
bf_test.addSource(s); |
| 84 | 84 |
bf_test.addSource(s, 1); |
| 85 | 85 |
b = bf_test.processNextRound(); |
| 86 | 86 |
b = bf_test.processNextWeakRound(); |
| 87 | 87 |
|
| 88 | 88 |
bf_test.start(); |
| 89 | 89 |
bf_test.checkedStart(); |
| 90 | 90 |
bf_test.limitedStart(k); |
| 91 | 91 |
|
| 92 | 92 |
l = const_bf_test.dist(t); |
| 93 | 93 |
e = const_bf_test.predArc(t); |
| 94 | 94 |
s = const_bf_test.predNode(t); |
| 95 | 95 |
b = const_bf_test.reached(t); |
| 96 | 96 |
d = const_bf_test.distMap(); |
| 97 | 97 |
p = const_bf_test.predMap(); |
| 98 | 98 |
pp = const_bf_test.path(t); |
| 99 | 99 |
pp = const_bf_test.negativeCycle(); |
| 100 | 100 |
|
| 101 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
|
| 102 | 102 |
} |
| 103 | 103 |
{
|
| 104 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
| 105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
| 106 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
| 107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
|
| 108 | 107 |
::Create bf_test(gr,length); |
| 109 | 108 |
|
| 110 | 109 |
LengthMap length_map; |
| 111 | 110 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
| 112 | 111 |
concepts::ReadWriteMap<Node,Value> dist_map; |
| 113 | 112 |
|
| 114 | 113 |
bf_test |
| 115 | 114 |
.lengthMap(length_map) |
| 116 | 115 |
.predMap(pred_map) |
| 117 | 116 |
.distMap(dist_map); |
| 118 | 117 |
|
| 119 | 118 |
bf_test.run(s); |
| 120 | 119 |
bf_test.run(s,k); |
| 121 | 120 |
|
| 122 | 121 |
bf_test.init(); |
| 123 | 122 |
bf_test.addSource(s); |
| 124 | 123 |
bf_test.addSource(s, 1); |
| 125 | 124 |
b = bf_test.processNextRound(); |
| 126 | 125 |
b = bf_test.processNextWeakRound(); |
| 127 | 126 |
|
| 128 | 127 |
bf_test.start(); |
| 129 | 128 |
bf_test.checkedStart(); |
| 130 | 129 |
bf_test.limitedStart(k); |
| 131 | 130 |
|
| 132 | 131 |
l = bf_test.dist(t); |
| 133 | 132 |
e = bf_test.predArc(t); |
| 134 | 133 |
s = bf_test.predNode(t); |
| 135 | 134 |
b = bf_test.reached(t); |
| 136 | 135 |
pp = bf_test.path(t); |
| 137 | 136 |
pp = bf_test.negativeCycle(); |
| 138 | 137 |
} |
| 139 | 138 |
} |
| 140 | 139 |
|
| 141 | 140 |
void checkBellmanFordFunctionCompile() |
| 142 | 141 |
{
|
| 143 | 142 |
typedef int Value; |
| 144 | 143 |
typedef concepts::Digraph Digraph; |
| 145 | 144 |
typedef Digraph::Arc Arc; |
| 146 | 145 |
typedef Digraph::Node Node; |
| 147 | 146 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
| 148 | 147 |
|
| 149 | 148 |
Digraph g; |
| 150 | 149 |
bool b; |
| 151 | 150 |
bellmanFord(g,LengthMap()).run(Node()); |
| 152 | 151 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
| 153 | 152 |
bellmanFord(g,LengthMap()) |
| 154 | 153 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 155 | 154 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
| 156 | 155 |
.run(Node()); |
| 157 | 156 |
b=bellmanFord(g,LengthMap()) |
| 158 | 157 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 159 | 158 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
| 160 | 159 |
.path(concepts::Path<Digraph>()) |
| 161 | 160 |
.dist(Value()) |
| 162 | 161 |
.run(Node(),Node()); |
| 163 | 162 |
} |
| 164 | 163 |
|
| 165 | 164 |
|
| 166 | 165 |
template <typename Digraph, typename Value> |
| 167 | 166 |
void checkBellmanFord() {
|
| 168 | 167 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 169 | 168 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
| 170 | 169 |
|
| 171 | 170 |
Digraph gr; |
| 172 | 171 |
Node s, t; |
| 173 | 172 |
LengthMap length(gr); |
| 174 | 173 |
|
| 175 | 174 |
std::istringstream input(test_lgf); |
| 176 | 175 |
digraphReader(gr, input). |
| 177 | 176 |
arcMap("length", length).
|
| 178 | 177 |
node("source", s).
|
| 179 | 178 |
node("target", t).
|
| 180 | 179 |
run(); |
| 181 | 180 |
|
| 182 | 181 |
BellmanFord<Digraph, LengthMap> |
| 183 | 182 |
bf(gr, length); |
| 184 | 183 |
bf.run(s); |
| 185 | 184 |
Path<Digraph> p = bf.path(t); |
| 186 | 185 |
|
| 187 | 186 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
| 188 | 187 |
check(p.length() == 3, "path() found a wrong path."); |
| 189 | 188 |
check(checkPath(gr, p), "path() found a wrong path."); |
| 190 | 189 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
| 191 | 190 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
| 192 | 191 |
|
| 193 | 192 |
ListPath<Digraph> path; |
| 194 | 193 |
Value dist; |
| 195 | 194 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
| 196 | 195 |
|
| 197 | 196 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
| 198 | 197 |
check(path.length() == 3, "path() found a wrong path."); |
| 199 | 198 |
check(checkPath(gr, path), "path() found a wrong path."); |
| 200 | 199 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
| 201 | 200 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
| 202 | 201 |
|
| 203 | 202 |
for(ArcIt e(gr); e!=INVALID; ++e) {
|
| 204 | 203 |
Node u=gr.source(e); |
| 205 | 204 |
Node v=gr.target(e); |
| 206 | 205 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
| 207 | 206 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
| 208 | 207 |
bf.dist(v) - bf.dist(u) - length[e]); |
| 209 | 208 |
} |
| 210 | 209 |
|
| 211 | 210 |
for(NodeIt v(gr); v!=INVALID; ++v) {
|
| 212 | 211 |
if (bf.reached(v)) {
|
| 213 | 212 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
| 214 | 213 |
if (bf.predArc(v)!=INVALID ) {
|
| 215 | 214 |
Arc e=bf.predArc(v); |
| 216 | 215 |
Node u=gr.source(e); |
| 217 | 216 |
check(u==bf.predNode(v),"Wrong tree."); |
| 218 | 217 |
check(bf.dist(v) - bf.dist(u) == length[e], |
| 219 | 218 |
"Wrong distance! Difference: " << |
| 220 | 219 |
bf.dist(v) - bf.dist(u) - length[e]); |
| 221 | 220 |
} |
| 222 | 221 |
} |
| 223 | 222 |
} |
| 224 | 223 |
} |
| 225 | 224 |
|
| 226 | 225 |
void checkBellmanFordNegativeCycle() {
|
| 227 | 226 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
| 228 | 227 |
|
| 229 | 228 |
SmartDigraph gr; |
| 230 | 229 |
IntArcMap length(gr); |
| 231 | 230 |
|
| 232 | 231 |
Node n1 = gr.addNode(); |
| 233 | 232 |
Node n2 = gr.addNode(); |
| 234 | 233 |
Node n3 = gr.addNode(); |
| 235 | 234 |
Node n4 = gr.addNode(); |
| 236 | 235 |
|
| 237 | 236 |
Arc a1 = gr.addArc(n1, n2); |
| 238 | 237 |
Arc a2 = gr.addArc(n2, n2); |
| 239 | 238 |
|
| 240 | 239 |
length[a1] = 2; |
| 241 | 240 |
length[a2] = -1; |
| 242 | 241 |
|
| 243 | 242 |
{
|
| 244 | 243 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
| 245 | 244 |
bf.run(n1); |
| 246 | 245 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
| 247 | 246 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
| 248 | 247 |
"Wrong negative cycle."); |
| 249 | 248 |
} |
| 250 | 249 |
|
| 251 | 250 |
length[a2] = 0; |
| 252 | 251 |
|
| 253 | 252 |
{
|
| 254 | 253 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
| 255 | 254 |
bf.run(n1); |
| 256 | 255 |
check(bf.negativeCycle().empty(), |
| 257 | 256 |
"Negative cycle should not be found."); |
| 258 | 257 |
} |
| 259 | 258 |
|
| 260 | 259 |
length[gr.addArc(n1, n3)] = 5; |
| 261 | 260 |
length[gr.addArc(n4, n3)] = 1; |
| 262 | 261 |
length[gr.addArc(n2, n4)] = 2; |
| 263 | 262 |
length[gr.addArc(n3, n2)] = -4; |
| 264 | 263 |
|
| 265 | 264 |
{
|
| 266 | 265 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
| 267 | 266 |
bf.init(); |
| 268 | 267 |
bf.addSource(n1); |
| 269 | 268 |
for (int i = 0; i < 4; ++i) {
|
| 270 | 269 |
check(bf.negativeCycle().empty(), |
| 271 | 270 |
"Negative cycle should not be found."); |
| 272 | 271 |
bf.processNextRound(); |
| 273 | 272 |
} |
| 274 | 273 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
| 275 | 274 |
check(p.length() == 3, "Wrong negative cycle."); |
| 276 | 275 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
| 277 | 276 |
"Wrong negative cycle."); |
| 278 | 277 |
} |
| 279 | 278 |
} |
| 280 | 279 |
|
| 281 | 280 |
int main() {
|
| 282 | 281 |
checkBellmanFord<ListDigraph, int>(); |
| 283 | 282 |
checkBellmanFord<SmartDigraph, double>(); |
| 284 | 283 |
checkBellmanFordNegativeCycle(); |
| 285 | 284 |
return 0; |
| 286 | 285 |
} |
0 comments (0 inline)