gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Digraph and Graph concept should be conform to the IDable... concepts
0 2 0
default
2 files changed with 81 insertions and 1 deletions:
↑ Collapse diff ↑
Show white space 192 line context
... ...
@@ -255,199 +255,232 @@
255 255
      /// of a digraph.
256 256
      /// Its usage is quite simple, for example you can count the number
257 257
      /// of outgoing arcs of a node \c n
258 258
      /// in digraph \c g of type \c Digraph as follows.
259 259
      ///\code
260 260
      /// int count=0;
261 261
      /// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
262 262
      ///\endcode
263 263

	
264 264
      class InArcIt : public Arc {
265 265
      public:
266 266
        /// Default constructor
267 267

	
268 268
        /// @warning The default constructor sets the iterator
269 269
        /// to an undefined value.
270 270
        InArcIt() { }
271 271
        /// Copy constructor.
272 272

	
273 273
        /// Copy constructor.
274 274
        ///
275 275
        InArcIt(const InArcIt& e) : Arc(e) { }
276 276
        /// Initialize the iterator to be invalid.
277 277

	
278 278
        /// Initialize the iterator to be invalid.
279 279
        ///
280 280
        InArcIt(Invalid) { }
281 281
        /// This constructor sets the iterator to first incoming arc.
282 282
    
283 283
        /// This constructor set the iterator to the first incoming arc of
284 284
        /// the node.
285 285
        InArcIt(const Digraph&, const Node&) { }
286 286
        /// Arc -> InArcIt conversion
287 287

	
288 288
        /// Sets the iterator to the value of the trivial iterator \c e.
289 289
        /// This feature necessitates that each time we 
290 290
        /// iterate the arc-set, the iteration order is the same.
291 291
        InArcIt(const Digraph&, const Arc&) { }
292 292
        /// Next incoming arc
293 293

	
294 294
        /// Assign the iterator to the next inarc of the corresponding node.
295 295
        ///
296 296
        InArcIt& operator++() { return *this; }
297 297
      };
298 298
      /// This iterator goes through each arc.
299 299

	
300 300
      /// This iterator goes through each arc of a digraph.
301 301
      /// Its usage is quite simple, for example you can count the number
302 302
      /// of arcs in a digraph \c g of type \c Digraph as follows:
303 303
      ///\code
304 304
      /// int count=0;
305 305
      /// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count;
306 306
      ///\endcode
307 307
      class ArcIt : public Arc {
308 308
      public:
309 309
        /// Default constructor
310 310

	
311 311
        /// @warning The default constructor sets the iterator
312 312
        /// to an undefined value.
313 313
        ArcIt() { }
314 314
        /// Copy constructor.
315 315

	
316 316
        /// Copy constructor.
317 317
        ///
318 318
        ArcIt(const ArcIt& e) : Arc(e) { }
319 319
        /// Initialize the iterator to be invalid.
320 320

	
321 321
        /// Initialize the iterator to be invalid.
322 322
        ///
323 323
        ArcIt(Invalid) { }
324 324
        /// This constructor sets the iterator to the first arc.
325 325
    
326 326
        /// This constructor sets the iterator to the first arc of \c g.
327 327
        ///@param g the digraph
328 328
        ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
329 329
        /// Arc -> ArcIt conversion
330 330

	
331 331
        /// Sets the iterator to the value of the trivial iterator \c e.
332 332
        /// This feature necessitates that each time we 
333 333
        /// iterate the arc-set, the iteration order is the same.
334 334
        ArcIt(const Digraph&, const Arc&) { } 
335 335
        ///Next arc
336 336
        
337 337
        /// Assign the iterator to the next arc.
338 338
        ArcIt& operator++() { return *this; }
339 339
      };
340 340
      ///Gives back the target node of an arc.
341 341

	
342 342
      ///Gives back the target node of an arc.
343 343
      ///
344 344
      Node target(Arc) const { return INVALID; }
345 345
      ///Gives back the source node of an arc.
346 346

	
347 347
      ///Gives back the source node of an arc.
348 348
      ///
349 349
      Node source(Arc) const { return INVALID; }
350 350

	
351
      /// \brief Returns the ID of the node.
352
      int id(Node) const { return -1; } 
353

	
354
      /// \brief Returns the ID of the arc.
355
      int id(Arc) const { return -1; } 
356

	
357
      /// \brief Returns the node with the given ID.
358
      ///
359
      /// \pre The argument should be a valid node ID in the graph.
360
      Node nodeFromId(int) const { return INVALID; } 
361

	
362
      /// \brief Returns the arc with the given ID.
363
      ///
364
      /// \pre The argument should be a valid arc ID in the graph.
365
      Arc arcFromId(int) const { return INVALID; } 
366

	
367
      /// \brief Returns an upper bound on the node IDs.
368
      int maxNodeId() const { return -1; } 
369

	
370
      /// \brief Returns an upper bound on the arc IDs.
371
      int maxArcId() const { return -1; } 
372

	
351 373
      void first(Node&) const {}
352 374
      void next(Node&) const {}
353 375

	
354 376
      void first(Arc&) const {}
355 377
      void next(Arc&) const {}
356 378

	
357 379

	
358 380
      void firstIn(Arc&, const Node&) const {}
359 381
      void nextIn(Arc&) const {}
360 382

	
361 383
      void firstOut(Arc&, const Node&) const {}
362 384
      void nextOut(Arc&) const {}
363 385

	
386
      // The second parameter is dummy.
387
      Node fromId(int, Node) const { return INVALID; }
388
      // The second parameter is dummy.
389
      Arc fromId(int, Arc) const { return INVALID; }
390

	
391
      // Dummy parameter.
392
      int maxId(Node) const { return -1; } 
393
      // Dummy parameter.
394
      int maxId(Arc) const { return -1; } 
395

	
364 396
      /// \brief The base node of the iterator.
365 397
      ///
366 398
      /// Gives back the base node of the iterator.
367 399
      /// It is always the target of the pointed arc.
368 400
      Node baseNode(const InArcIt&) const { return INVALID; }
369 401

	
370 402
      /// \brief The running node of the iterator.
371 403
      ///
372 404
      /// Gives back the running node of the iterator.
373 405
      /// It is always the source of the pointed arc.
374 406
      Node runningNode(const InArcIt&) const { return INVALID; }
375 407

	
376 408
      /// \brief The base node of the iterator.
377 409
      ///
378 410
      /// Gives back the base node of the iterator.
379 411
      /// It is always the source of the pointed arc.
380 412
      Node baseNode(const OutArcIt&) const { return INVALID; }
381 413

	
382 414
      /// \brief The running node of the iterator.
383 415
      ///
384 416
      /// Gives back the running node of the iterator.
385 417
      /// It is always the target of the pointed arc.
386 418
      Node runningNode(const OutArcIt&) const { return INVALID; }
387 419

	
388 420
      /// \brief The opposite node on the given arc.
389 421
      ///
390 422
      /// Gives back the opposite node on the given arc.
391 423
      Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
392 424

	
393 425
      /// \brief Read write map of the nodes to type \c T.
394 426
      /// 
395 427
      /// ReadWrite map of the nodes to type \c T.
396 428
      /// \sa Reference
397 429
      template<class T> 
398 430
      class NodeMap : public ReadWriteMap< Node, T > {
399 431
      public:
400 432

	
401 433
        ///\e
402 434
        NodeMap(const Digraph&) { }
403 435
        ///\e
404 436
        NodeMap(const Digraph&, T) { }
405 437

	
406 438
        ///Copy constructor
407 439
        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
408 440
        ///Assignment operator
409 441
        template <typename CMap>
410 442
        NodeMap& operator=(const CMap&) { 
411 443
          checkConcept<ReadMap<Node, T>, CMap>();
412 444
          return *this; 
413 445
        }
414 446
      };
415 447

	
416 448
      /// \brief Read write map of the arcs to type \c T.
417 449
      ///
418 450
      /// Reference map of the arcs to type \c T.
419 451
      /// \sa Reference
420 452
      template<class T> 
421 453
      class ArcMap : public ReadWriteMap<Arc,T> {
422 454
      public:
423 455

	
424 456
        ///\e
425 457
        ArcMap(const Digraph&) { }
426 458
        ///\e
427 459
        ArcMap(const Digraph&, T) { }
428 460
        ///Copy constructor
429 461
        ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
430 462
        ///Assignment operator
431 463
        template <typename CMap>
432 464
        ArcMap& operator=(const CMap&) { 
433 465
          checkConcept<ReadMap<Arc, T>, CMap>();
434 466
          return *this; 
435 467
        }
436 468
      };
437 469

	
438 470
      template <typename RDigraph>
439 471
      struct Constraints {
440 472
        void constraints() {
441 473
          checkConcept<IterableDigraphComponent<>, Digraph>();
474
	  checkConcept<IDableDigraphComponent<>, Digraph>();
442 475
          checkConcept<MappableDigraphComponent<>, Digraph>();
443 476
        }
444 477
      };
445 478

	
446 479
    };
447 480
    
448 481
  } //namespace concepts  
449 482
} //namespace lemon
450 483

	
451 484

	
452 485

	
453 486
#endif // LEMON_CONCEPT_DIGRAPH_H
Show white space 192 line context
... ...
@@ -531,172 +531,219 @@
531 531
      {
532 532
      public:
533 533

	
534 534
        ///\e
535 535
        ArcMap(const Graph&) { }
536 536
        ///\e
537 537
        ArcMap(const Graph&, T) { }
538 538
        ///Copy constructor
539 539
        ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
540 540
        ///Assignment operator
541 541
        template <typename CMap>
542 542
        ArcMap& operator=(const CMap&) { 
543 543
          checkConcept<ReadMap<Arc, T>, CMap>();
544 544
          return *this; 
545 545
        }
546 546
      };
547 547

	
548 548
      /// Read write map of the edges to type \c T.
549 549

	
550 550
      /// Reference map of the arcs to type \c T.
551 551
      /// \sa Reference
552 552
      template<class T> 
553 553
      class EdgeMap : public ReadWriteMap<Edge,T>
554 554
      {
555 555
      public:
556 556

	
557 557
        ///\e
558 558
        EdgeMap(const Graph&) { }
559 559
        ///\e
560 560
        EdgeMap(const Graph&, T) { }
561 561
        ///Copy constructor
562 562
        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
563 563
        ///Assignment operator
564 564
        template <typename CMap>
565 565
        EdgeMap& operator=(const CMap&) { 
566 566
          checkConcept<ReadMap<Edge, T>, CMap>();
567 567
          return *this; 
568 568
        }
569 569
      };
570 570

	
571 571
      /// \brief Direct the given edge.
572 572
      ///
573 573
      /// Direct the given edge. The returned arc source
574 574
      /// will be the given node.
575 575
      Arc direct(const Edge&, const Node&) const {
576 576
	return INVALID;
577 577
      }
578 578

	
579 579
      /// \brief Direct the given edge.
580 580
      ///
581 581
      /// Direct the given edge. The returned arc
582 582
      /// represents the given edge and the direction comes
583 583
      /// from the bool parameter. The source of the edge and
584 584
      /// the directed arc is the same when the given bool is true.
585 585
      Arc direct(const Edge&, bool) const {
586 586
	return INVALID;
587 587
      }
588 588

	
589 589
      /// \brief Returns true if the arc has default orientation.
590 590
      ///
591 591
      /// Returns whether the given directed arc is same orientation as
592 592
      /// the corresponding edge's default orientation.
593 593
      bool direction(Arc) const { return true; }
594 594

	
595 595
      /// \brief Returns the opposite directed arc.
596 596
      ///
597 597
      /// Returns the opposite directed arc.
598 598
      Arc oppositeArc(Arc) const { return INVALID; }
599 599

	
600 600
      /// \brief Opposite node on an arc
601 601
      ///
602 602
      /// \return the opposite of the given Node on the given Edge
603 603
      Node oppositeNode(Node, Edge) const { return INVALID; }
604 604

	
605 605
      /// \brief First node of the edge.
606 606
      ///
607 607
      /// \return the first node of the given Edge.
608 608
      ///
609 609
      /// Naturally edges don't have direction and thus
610 610
      /// don't have source and target node. But we use these two methods
611 611
      /// to query the two nodes of the arc. The direction of the arc
612 612
      /// which arises this way is called the inherent direction of the
613 613
      /// edge, and is used to define the "default" direction
614 614
      /// of the directed versions of the arcs.
615 615
      /// \sa direction
616 616
      Node u(Edge) const { return INVALID; }
617 617

	
618 618
      /// \brief Second node of the edge.
619 619
      Node v(Edge) const { return INVALID; }
620 620

	
621 621
      /// \brief Source node of the directed arc.
622 622
      Node source(Arc) const { return INVALID; }
623 623

	
624 624
      /// \brief Target node of the directed arc.
625 625
      Node target(Arc) const { return INVALID; }
626 626

	
627
      /// \brief Returns the id of the node.
628
      int id(Node) const { return -1; } 
629

	
630
      /// \brief Returns the id of the edge.
631
      int id(Edge) const { return -1; } 
632

	
633
      /// \brief Returns the id of the arc.
634
      int id(Arc) const { return -1; } 
635

	
636
      /// \brief Returns the node with the given id.
637
      ///
638
      /// \pre The argument should be a valid node id in the graph.
639
      Node nodeFromId(int) const { return INVALID; } 
640

	
641
      /// \brief Returns the edge with the given id.
642
      ///
643
      /// \pre The argument should be a valid edge id in the graph.
644
      Edge edgeFromId(int) const { return INVALID; } 
645

	
646
      /// \brief Returns the arc with the given id.
647
      ///
648
      /// \pre The argument should be a valid arc id in the graph.
649
      Arc arcFromId(int) const { return INVALID; } 
650

	
651
      /// \brief Returns an upper bound on the node IDs.
652
      int maxNodeId() const { return -1; } 
653

	
654
      /// \brief Returns an upper bound on the edge IDs.
655
      int maxEdgeId() const { return -1; } 
656

	
657
      /// \brief Returns an upper bound on the arc IDs.
658
      int maxArcId() const { return -1; } 
659

	
627 660
      void first(Node&) const {}
628 661
      void next(Node&) const {}
629 662

	
630 663
      void first(Edge&) const {}
631 664
      void next(Edge&) const {}
632 665

	
633 666
      void first(Arc&) const {}
634 667
      void next(Arc&) const {}
635 668

	
636 669
      void firstOut(Arc&, Node) const {}
637 670
      void nextOut(Arc&) const {}
638 671

	
639 672
      void firstIn(Arc&, Node) const {}
640 673
      void nextIn(Arc&) const {}
641 674

	
642

	
643 675
      void firstInc(Edge &, bool &, const Node &) const {}
644 676
      void nextInc(Edge &, bool &) const {}
645 677

	
678
      // The second parameter is dummy.
679
      Node fromId(int, Node) const { return INVALID; }
680
      // The second parameter is dummy.
681
      Edge fromId(int, Edge) const { return INVALID; }
682
      // The second parameter is dummy.
683
      Arc fromId(int, Arc) const { return INVALID; }
684

	
685
      // Dummy parameter.
686
      int maxId(Node) const { return -1; } 
687
      // Dummy parameter.
688
      int maxId(Edge) const { return -1; } 
689
      // Dummy parameter.
690
      int maxId(Arc) const { return -1; } 
691

	
646 692
      /// \brief Base node of the iterator
647 693
      ///
648 694
      /// Returns the base node (the source in this case) of the iterator
649 695
      Node baseNode(OutArcIt e) const {
650 696
	return source(e);
651 697
      }
652 698
      /// \brief Running node of the iterator
653 699
      ///
654 700
      /// Returns the running node (the target in this case) of the
655 701
      /// iterator
656 702
      Node runningNode(OutArcIt e) const {
657 703
	return target(e);
658 704
      }
659 705

	
660 706
      /// \brief Base node of the iterator
661 707
      ///
662 708
      /// Returns the base node (the target in this case) of the iterator
663 709
      Node baseNode(InArcIt e) const {
664 710
	return target(e);
665 711
      }
666 712
      /// \brief Running node of the iterator
667 713
      ///
668 714
      /// Returns the running node (the source in this case) of the
669 715
      /// iterator
670 716
      Node runningNode(InArcIt e) const {
671 717
	return source(e);
672 718
      }
673 719

	
674 720
      /// \brief Base node of the iterator
675 721
      ///
676 722
      /// Returns the base node of the iterator
677 723
      Node baseNode(IncArcIt) const {
678 724
	return INVALID;
679 725
      }
680 726
      
681 727
      /// \brief Running node of the iterator
682 728
      ///
683 729
      /// Returns the running node of the iterator
684 730
      Node runningNode(IncArcIt) const {
685 731
	return INVALID;
686 732
      }
687 733

	
688 734
      template <typename Graph>
689 735
      struct Constraints {
690 736
	void constraints() {
691 737
	  checkConcept<IterableGraphComponent<>, Graph>();
738
	  checkConcept<IDableGraphComponent<>, Graph>();
692 739
	  checkConcept<MappableGraphComponent<>, Graph>();
693 740
	}
694 741
      };
695 742

	
696 743
    };
697 744

	
698 745
  }
699 746

	
700 747
}
701 748

	
702 749
#endif
0 comments (0 inline)