gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 3 2
merge default
0 files changed with 1033 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_HAO_ORLIN_H
20
#define LEMON_HAO_ORLIN_H
21

	
22
#include <vector>
23
#include <list>
24
#include <limits>
25

	
26
#include <lemon/maps.h>
27
#include <lemon/core.h>
28
#include <lemon/tolerance.h>
29

	
30
/// \file
31
/// \ingroup min_cut
32
/// \brief Implementation of the Hao-Orlin algorithm.
33
///
34
/// Implementation of the Hao-Orlin algorithm class for testing network
35
/// reliability.
36

	
37
namespace lemon {
38

	
39
  /// \ingroup min_cut
40
  ///
41
  /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
42
  ///
43
  /// Hao-Orlin calculates a minimum cut in a directed graph
44
  /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
45
  /// consists of two phases: in the first phase it determines a
46
  /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
47
  /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
48
  /// out-degree) and in the second phase it determines a minimum cut
49
  /// with \f$ source \f$ on the sink-side (i.e. a set
50
  /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
51
  /// out-degree). Obviously, the smaller of these two cuts will be a
52
  /// minimum cut of \f$ D \f$. The algorithm is a modified
53
  /// push-relabel preflow algorithm and our implementation calculates
54
  /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
55
  /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
56
  /// purpose of such algorithm is testing network reliability. For an
57
  /// undirected graph you can run just the first phase of the
58
  /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
59
  /// which solves the undirected problem in
60
  /// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the
61
  /// NagamochiIbaraki algorithm class.
62
  ///
63
  /// \param _Digraph is the graph type of the algorithm.
64
  /// \param _CapacityMap is an edge map of capacities which should
65
  /// be any numreric type. The default type is _Digraph::ArcMap<int>.
66
  /// \param _Tolerance is the handler of the inexact computation. The
67
  /// default type for this is Tolerance<CapacityMap::Value>.
68
#ifdef DOXYGEN
69
  template <typename _Digraph, typename _CapacityMap, typename _Tolerance>
70
#else
71
  template <typename _Digraph,
72
            typename _CapacityMap = typename _Digraph::template ArcMap<int>,
73
            typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
74
#endif
75
  class HaoOrlin {
76
  private:
77

	
78
    typedef _Digraph Digraph;
79
    typedef _CapacityMap CapacityMap;
80
    typedef _Tolerance Tolerance;
81

	
82
    typedef typename CapacityMap::Value Value;
83

	
84
    TEMPLATE_GRAPH_TYPEDEFS(Digraph);
85

	
86
    const Digraph& _graph;
87
    const CapacityMap* _capacity;
88

	
89
    typedef typename Digraph::template ArcMap<Value> FlowMap;
90
    FlowMap* _flow;
91

	
92
    Node _source;
93

	
94
    int _node_num;
95

	
96
    // Bucketing structure
97
    std::vector<Node> _first, _last;
98
    typename Digraph::template NodeMap<Node>* _next;
99
    typename Digraph::template NodeMap<Node>* _prev;
100
    typename Digraph::template NodeMap<bool>* _active;
101
    typename Digraph::template NodeMap<int>* _bucket;
102

	
103
    std::vector<bool> _dormant;
104

	
105
    std::list<std::list<int> > _sets;
106
    std::list<int>::iterator _highest;
107

	
108
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
109
    ExcessMap* _excess;
110

	
111
    typedef typename Digraph::template NodeMap<bool> SourceSetMap;
112
    SourceSetMap* _source_set;
113

	
114
    Value _min_cut;
115

	
116
    typedef typename Digraph::template NodeMap<bool> MinCutMap;
117
    MinCutMap* _min_cut_map;
118

	
119
    Tolerance _tolerance;
120

	
121
  public:
122

	
123
    /// \brief Constructor
124
    ///
125
    /// Constructor of the algorithm class.
126
    HaoOrlin(const Digraph& graph, const CapacityMap& capacity,
127
             const Tolerance& tolerance = Tolerance()) :
128
      _graph(graph), _capacity(&capacity), _flow(0), _source(),
129
      _node_num(), _first(), _last(), _next(0), _prev(0),
130
      _active(0), _bucket(0), _dormant(), _sets(), _highest(),
131
      _excess(0), _source_set(0), _min_cut(), _min_cut_map(0),
132
      _tolerance(tolerance) {}
133

	
134
    ~HaoOrlin() {
135
      if (_min_cut_map) {
136
        delete _min_cut_map;
137
      }
138
      if (_source_set) {
139
        delete _source_set;
140
      }
141
      if (_excess) {
142
        delete _excess;
143
      }
144
      if (_next) {
145
        delete _next;
146
      }
147
      if (_prev) {
148
        delete _prev;
149
      }
150
      if (_active) {
151
        delete _active;
152
      }
153
      if (_bucket) {
154
        delete _bucket;
155
      }
156
      if (_flow) {
157
        delete _flow;
158
      }
159
    }
160

	
161
  private:
162

	
163
    void activate(const Node& i) {
164
      _active->set(i, true);
165

	
166
      int bucket = (*_bucket)[i];
167

	
168
      if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
169
      //unlace
170
      _next->set((*_prev)[i], (*_next)[i]);
171
      if ((*_next)[i] != INVALID) {
172
        _prev->set((*_next)[i], (*_prev)[i]);
173
      } else {
174
        _last[bucket] = (*_prev)[i];
175
      }
176
      //lace
177
      _next->set(i, _first[bucket]);
178
      _prev->set(_first[bucket], i);
179
      _prev->set(i, INVALID);
180
      _first[bucket] = i;
181
    }
182

	
183
    void deactivate(const Node& i) {
184
      _active->set(i, false);
185
      int bucket = (*_bucket)[i];
186

	
187
      if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
188

	
189
      //unlace
190
      _prev->set((*_next)[i], (*_prev)[i]);
191
      if ((*_prev)[i] != INVALID) {
192
        _next->set((*_prev)[i], (*_next)[i]);
193
      } else {
194
        _first[bucket] = (*_next)[i];
195
      }
196
      //lace
197
      _prev->set(i, _last[bucket]);
198
      _next->set(_last[bucket], i);
199
      _next->set(i, INVALID);
200
      _last[bucket] = i;
201
    }
202

	
203
    void addItem(const Node& i, int bucket) {
204
      (*_bucket)[i] = bucket;
205
      if (_last[bucket] != INVALID) {
206
        _prev->set(i, _last[bucket]);
207
        _next->set(_last[bucket], i);
208
        _next->set(i, INVALID);
209
        _last[bucket] = i;
210
      } else {
211
        _prev->set(i, INVALID);
212
        _first[bucket] = i;
213
        _next->set(i, INVALID);
214
        _last[bucket] = i;
215
      }
216
    }
217

	
218
    void findMinCutOut() {
219

	
220
      for (NodeIt n(_graph); n != INVALID; ++n) {
221
        _excess->set(n, 0);
222
      }
223

	
224
      for (ArcIt a(_graph); a != INVALID; ++a) {
225
        _flow->set(a, 0);
226
      }
227

	
228
      int bucket_num = 0;
229
      std::vector<Node> queue(_node_num);
230
      int qfirst = 0, qlast = 0, qsep = 0;
231

	
232
      {
233
        typename Digraph::template NodeMap<bool> reached(_graph, false);
234

	
235
        reached.set(_source, true);
236
        bool first_set = true;
237

	
238
        for (NodeIt t(_graph); t != INVALID; ++t) {
239
          if (reached[t]) continue;
240
          _sets.push_front(std::list<int>());
241
          
242
          queue[qlast++] = t;
243
          reached.set(t, true);
244

	
245
          while (qfirst != qlast) {
246
            if (qsep == qfirst) {
247
              ++bucket_num;
248
              _sets.front().push_front(bucket_num);
249
              _dormant[bucket_num] = !first_set;
250
              _first[bucket_num] = _last[bucket_num] = INVALID;
251
              qsep = qlast;
252
            }
253

	
254
            Node n = queue[qfirst++];
255
            addItem(n, bucket_num);
256

	
257
            for (InArcIt a(_graph, n); a != INVALID; ++a) {
258
              Node u = _graph.source(a);
259
              if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
260
                reached.set(u, true);
261
                queue[qlast++] = u;
262
              }
263
            }
264
          }
265
          first_set = false;
266
        }
267

	
268
        ++bucket_num;
269
        _bucket->set(_source, 0);
270
        _dormant[0] = true;
271
      }
272
      _source_set->set(_source, true);
273

	
274
      Node target = _last[_sets.back().back()];
275
      {
276
        for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
277
          if (_tolerance.positive((*_capacity)[a])) {
278
            Node u = _graph.target(a);
279
            _flow->set(a, (*_capacity)[a]);
280
            _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
281
            if (!(*_active)[u] && u != _source) {
282
              activate(u);
283
            }
284
          }
285
        }
286

	
287
        if ((*_active)[target]) {
288
          deactivate(target);
289
        }
290

	
291
        _highest = _sets.back().begin();
292
        while (_highest != _sets.back().end() &&
293
               !(*_active)[_first[*_highest]]) {
294
          ++_highest;
295
        }
296
      }
297

	
298
      while (true) {
299
        while (_highest != _sets.back().end()) {
300
          Node n = _first[*_highest];
301
          Value excess = (*_excess)[n];
302
          int next_bucket = _node_num;
303

	
304
          int under_bucket;
305
          if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
306
            under_bucket = -1;
307
          } else {
308
            under_bucket = *(++std::list<int>::iterator(_highest));
309
          }
310

	
311
          for (OutArcIt a(_graph, n); a != INVALID; ++a) {
312
            Node v = _graph.target(a);
313
            if (_dormant[(*_bucket)[v]]) continue;
314
            Value rem = (*_capacity)[a] - (*_flow)[a];
315
            if (!_tolerance.positive(rem)) continue;
316
            if ((*_bucket)[v] == under_bucket) {
317
              if (!(*_active)[v] && v != target) {
318
                activate(v);
319
              }
320
              if (!_tolerance.less(rem, excess)) {
321
                _flow->set(a, (*_flow)[a] + excess);
322
                _excess->set(v, (*_excess)[v] + excess);
323
                excess = 0;
324
                goto no_more_push;
325
              } else {
326
                excess -= rem;
327
                _excess->set(v, (*_excess)[v] + rem);
328
                _flow->set(a, (*_capacity)[a]);
329
              }
330
            } else if (next_bucket > (*_bucket)[v]) {
331
              next_bucket = (*_bucket)[v];
332
            }
333
          }
334

	
335
          for (InArcIt a(_graph, n); a != INVALID; ++a) {
336
            Node v = _graph.source(a);
337
            if (_dormant[(*_bucket)[v]]) continue;
338
            Value rem = (*_flow)[a];
339
            if (!_tolerance.positive(rem)) continue;
340
            if ((*_bucket)[v] == under_bucket) {
341
              if (!(*_active)[v] && v != target) {
342
                activate(v);
343
              }
344
              if (!_tolerance.less(rem, excess)) {
345
                _flow->set(a, (*_flow)[a] - excess);
346
                _excess->set(v, (*_excess)[v] + excess);
347
                excess = 0;
348
                goto no_more_push;
349
              } else {
350
                excess -= rem;
351
                _excess->set(v, (*_excess)[v] + rem);
352
                _flow->set(a, 0);
353
              }
354
            } else if (next_bucket > (*_bucket)[v]) {
355
              next_bucket = (*_bucket)[v];
356
            }
357
          }
358

	
359
        no_more_push:
360

	
361
          _excess->set(n, excess);
362

	
363
          if (excess != 0) {
364
            if ((*_next)[n] == INVALID) {
365
              typename std::list<std::list<int> >::iterator new_set =
366
                _sets.insert(--_sets.end(), std::list<int>());
367
              new_set->splice(new_set->end(), _sets.back(),
368
                              _sets.back().begin(), ++_highest);
369
              for (std::list<int>::iterator it = new_set->begin();
370
                   it != new_set->end(); ++it) {
371
                _dormant[*it] = true;
372
              }
373
              while (_highest != _sets.back().end() &&
374
                     !(*_active)[_first[*_highest]]) {
375
                ++_highest;
376
              }
377
            } else if (next_bucket == _node_num) {
378
              _first[(*_bucket)[n]] = (*_next)[n];
379
              _prev->set((*_next)[n], INVALID);
380

	
381
              std::list<std::list<int> >::iterator new_set =
382
                _sets.insert(--_sets.end(), std::list<int>());
383

	
384
              new_set->push_front(bucket_num);
385
              _bucket->set(n, bucket_num);
386
              _first[bucket_num] = _last[bucket_num] = n;
387
              _next->set(n, INVALID);
388
              _prev->set(n, INVALID);
389
              _dormant[bucket_num] = true;
390
              ++bucket_num;
391

	
392
              while (_highest != _sets.back().end() &&
393
                     !(*_active)[_first[*_highest]]) {
394
                ++_highest;
395
              }
396
            } else {
397
              _first[*_highest] = (*_next)[n];
398
              _prev->set((*_next)[n], INVALID);
399

	
400
              while (next_bucket != *_highest) {
401
                --_highest;
402
              }
403

	
404
              if (_highest == _sets.back().begin()) {
405
                _sets.back().push_front(bucket_num);
406
                _dormant[bucket_num] = false;
407
                _first[bucket_num] = _last[bucket_num] = INVALID;
408
                ++bucket_num;
409
              }
410
              --_highest;
411

	
412
              _bucket->set(n, *_highest);
413
              _next->set(n, _first[*_highest]);
414
              if (_first[*_highest] != INVALID) {
415
                _prev->set(_first[*_highest], n);
416
              } else {
417
                _last[*_highest] = n;
418
              }
419
              _first[*_highest] = n;
420
            }
421
          } else {
422

	
423
            deactivate(n);
424
            if (!(*_active)[_first[*_highest]]) {
425
              ++_highest;
426
              if (_highest != _sets.back().end() &&
427
                  !(*_active)[_first[*_highest]]) {
428
                _highest = _sets.back().end();
429
              }
430
            }
431
          }
432
        }
433

	
434
        if ((*_excess)[target] < _min_cut) {
435
          _min_cut = (*_excess)[target];
436
          for (NodeIt i(_graph); i != INVALID; ++i) {
437
            _min_cut_map->set(i, true);
438
          }
439
          for (std::list<int>::iterator it = _sets.back().begin();
440
               it != _sets.back().end(); ++it) {
441
            Node n = _first[*it];
442
            while (n != INVALID) {
443
              _min_cut_map->set(n, false);
444
              n = (*_next)[n];
445
            }
446
          }
447
        }
448

	
449
        {
450
          Node new_target;
451
          if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
452
            if ((*_next)[target] == INVALID) {
453
              _last[(*_bucket)[target]] = (*_prev)[target];
454
              new_target = (*_prev)[target];
455
            } else {
456
              _prev->set((*_next)[target], (*_prev)[target]);
457
              new_target = (*_next)[target];
458
            }
459
            if ((*_prev)[target] == INVALID) {
460
              _first[(*_bucket)[target]] = (*_next)[target];
461
            } else {
462
              _next->set((*_prev)[target], (*_next)[target]);
463
            }
464
          } else {
465
            _sets.back().pop_back();
466
            if (_sets.back().empty()) {
467
              _sets.pop_back();
468
              if (_sets.empty())
469
                break;
470
              for (std::list<int>::iterator it = _sets.back().begin();
471
                   it != _sets.back().end(); ++it) {
472
                _dormant[*it] = false;
473
              }
474
            }
475
            new_target = _last[_sets.back().back()];
476
          }
477

	
478
          _bucket->set(target, 0);
479

	
480
          _source_set->set(target, true);
481
          for (OutArcIt a(_graph, target); a != INVALID; ++a) {
482
            Value rem = (*_capacity)[a] - (*_flow)[a];
483
            if (!_tolerance.positive(rem)) continue;
484
            Node v = _graph.target(a);
485
            if (!(*_active)[v] && !(*_source_set)[v]) {
486
              activate(v);
487
            }
488
            _excess->set(v, (*_excess)[v] + rem);
489
            _flow->set(a, (*_capacity)[a]);
490
          }
491

	
492
          for (InArcIt a(_graph, target); a != INVALID; ++a) {
493
            Value rem = (*_flow)[a];
494
            if (!_tolerance.positive(rem)) continue;
495
            Node v = _graph.source(a);
496
            if (!(*_active)[v] && !(*_source_set)[v]) {
497
              activate(v);
498
            }
499
            _excess->set(v, (*_excess)[v] + rem);
500
            _flow->set(a, 0);
501
          }
502

	
503
          target = new_target;
504
          if ((*_active)[target]) {
505
            deactivate(target);
506
          }
507

	
508
          _highest = _sets.back().begin();
509
          while (_highest != _sets.back().end() &&
510
                 !(*_active)[_first[*_highest]]) {
511
            ++_highest;
512
          }
513
        }
514
      }
515
    }
516

	
517
    void findMinCutIn() {
518

	
519
      for (NodeIt n(_graph); n != INVALID; ++n) {
520
        _excess->set(n, 0);
521
      }
522

	
523
      for (ArcIt a(_graph); a != INVALID; ++a) {
524
        _flow->set(a, 0);
525
      }
526

	
527
      int bucket_num = 0;
528
      std::vector<Node> queue(_node_num);
529
      int qfirst = 0, qlast = 0, qsep = 0;
530

	
531
      {
532
        typename Digraph::template NodeMap<bool> reached(_graph, false);
533

	
534
        reached.set(_source, true);
535

	
536
        bool first_set = true;
537

	
538
        for (NodeIt t(_graph); t != INVALID; ++t) {
539
          if (reached[t]) continue;
540
          _sets.push_front(std::list<int>());
541
          
542
          queue[qlast++] = t;
543
          reached.set(t, true);
544

	
545
          while (qfirst != qlast) {
546
            if (qsep == qfirst) {
547
              ++bucket_num;
548
              _sets.front().push_front(bucket_num);
549
              _dormant[bucket_num] = !first_set;
550
              _first[bucket_num] = _last[bucket_num] = INVALID;
551
              qsep = qlast;
552
            }
553

	
554
            Node n = queue[qfirst++];
555
            addItem(n, bucket_num);
556

	
557
            for (OutArcIt a(_graph, n); a != INVALID; ++a) {
558
              Node u = _graph.target(a);
559
              if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
560
                reached.set(u, true);
561
                queue[qlast++] = u;
562
              }
563
            }
564
          }
565
          first_set = false;
566
        }
567

	
568
        ++bucket_num;
569
        _bucket->set(_source, 0);
570
        _dormant[0] = true;
571
      }
572
      _source_set->set(_source, true);
573

	
574
      Node target = _last[_sets.back().back()];
575
      {
576
        for (InArcIt a(_graph, _source); a != INVALID; ++a) {
577
          if (_tolerance.positive((*_capacity)[a])) {
578
            Node u = _graph.source(a);
579
            _flow->set(a, (*_capacity)[a]);
580
            _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
581
            if (!(*_active)[u] && u != _source) {
582
              activate(u);
583
            }
584
          }
585
        }
586
        if ((*_active)[target]) {
587
          deactivate(target);
588
        }
589

	
590
        _highest = _sets.back().begin();
591
        while (_highest != _sets.back().end() &&
592
               !(*_active)[_first[*_highest]]) {
593
          ++_highest;
594
        }
595
      }
596

	
597

	
598
      while (true) {
599
        while (_highest != _sets.back().end()) {
600
          Node n = _first[*_highest];
601
          Value excess = (*_excess)[n];
602
          int next_bucket = _node_num;
603

	
604
          int under_bucket;
605
          if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
606
            under_bucket = -1;
607
          } else {
608
            under_bucket = *(++std::list<int>::iterator(_highest));
609
          }
610

	
611
          for (InArcIt a(_graph, n); a != INVALID; ++a) {
612
            Node v = _graph.source(a);
613
            if (_dormant[(*_bucket)[v]]) continue;
614
            Value rem = (*_capacity)[a] - (*_flow)[a];
615
            if (!_tolerance.positive(rem)) continue;
616
            if ((*_bucket)[v] == under_bucket) {
617
              if (!(*_active)[v] && v != target) {
618
                activate(v);
619
              }
620
              if (!_tolerance.less(rem, excess)) {
621
                _flow->set(a, (*_flow)[a] + excess);
622
                _excess->set(v, (*_excess)[v] + excess);
623
                excess = 0;
624
                goto no_more_push;
625
              } else {
626
                excess -= rem;
627
                _excess->set(v, (*_excess)[v] + rem);
628
                _flow->set(a, (*_capacity)[a]);
629
              }
630
            } else if (next_bucket > (*_bucket)[v]) {
631
              next_bucket = (*_bucket)[v];
632
            }
633
          }
634

	
635
          for (OutArcIt a(_graph, n); a != INVALID; ++a) {
636
            Node v = _graph.target(a);
637
            if (_dormant[(*_bucket)[v]]) continue;
638
            Value rem = (*_flow)[a];
639
            if (!_tolerance.positive(rem)) continue;
640
            if ((*_bucket)[v] == under_bucket) {
641
              if (!(*_active)[v] && v != target) {
642
                activate(v);
643
              }
644
              if (!_tolerance.less(rem, excess)) {
645
                _flow->set(a, (*_flow)[a] - excess);
646
                _excess->set(v, (*_excess)[v] + excess);
647
                excess = 0;
648
                goto no_more_push;
649
              } else {
650
                excess -= rem;
651
                _excess->set(v, (*_excess)[v] + rem);
652
                _flow->set(a, 0);
653
              }
654
            } else if (next_bucket > (*_bucket)[v]) {
655
              next_bucket = (*_bucket)[v];
656
            }
657
          }
658

	
659
        no_more_push:
660

	
661
          _excess->set(n, excess);
662

	
663
          if (excess != 0) {
664
            if ((*_next)[n] == INVALID) {
665
              typename std::list<std::list<int> >::iterator new_set =
666
                _sets.insert(--_sets.end(), std::list<int>());
667
              new_set->splice(new_set->end(), _sets.back(),
668
                              _sets.back().begin(), ++_highest);
669
              for (std::list<int>::iterator it = new_set->begin();
670
                   it != new_set->end(); ++it) {
671
                _dormant[*it] = true;
672
              }
673
              while (_highest != _sets.back().end() &&
674
                     !(*_active)[_first[*_highest]]) {
675
                ++_highest;
676
              }
677
            } else if (next_bucket == _node_num) {
678
              _first[(*_bucket)[n]] = (*_next)[n];
679
              _prev->set((*_next)[n], INVALID);
680

	
681
              std::list<std::list<int> >::iterator new_set =
682
                _sets.insert(--_sets.end(), std::list<int>());
683

	
684
              new_set->push_front(bucket_num);
685
              _bucket->set(n, bucket_num);
686
              _first[bucket_num] = _last[bucket_num] = n;
687
              _next->set(n, INVALID);
688
              _prev->set(n, INVALID);
689
              _dormant[bucket_num] = true;
690
              ++bucket_num;
691

	
692
              while (_highest != _sets.back().end() &&
693
                     !(*_active)[_first[*_highest]]) {
694
                ++_highest;
695
              }
696
            } else {
697
              _first[*_highest] = (*_next)[n];
698
              _prev->set((*_next)[n], INVALID);
699

	
700
              while (next_bucket != *_highest) {
701
                --_highest;
702
              }
703
              if (_highest == _sets.back().begin()) {
704
                _sets.back().push_front(bucket_num);
705
                _dormant[bucket_num] = false;
706
                _first[bucket_num] = _last[bucket_num] = INVALID;
707
                ++bucket_num;
708
              }
709
              --_highest;
710

	
711
              _bucket->set(n, *_highest);
712
              _next->set(n, _first[*_highest]);
713
              if (_first[*_highest] != INVALID) {
714
                _prev->set(_first[*_highest], n);
715
              } else {
716
                _last[*_highest] = n;
717
              }
718
              _first[*_highest] = n;
719
            }
720
          } else {
721

	
722
            deactivate(n);
723
            if (!(*_active)[_first[*_highest]]) {
724
              ++_highest;
725
              if (_highest != _sets.back().end() &&
726
                  !(*_active)[_first[*_highest]]) {
727
                _highest = _sets.back().end();
728
              }
729
            }
730
          }
731
        }
732

	
733
        if ((*_excess)[target] < _min_cut) {
734
          _min_cut = (*_excess)[target];
735
          for (NodeIt i(_graph); i != INVALID; ++i) {
736
            _min_cut_map->set(i, false);
737
          }
738
          for (std::list<int>::iterator it = _sets.back().begin();
739
               it != _sets.back().end(); ++it) {
740
            Node n = _first[*it];
741
            while (n != INVALID) {
742
              _min_cut_map->set(n, true);
743
              n = (*_next)[n];
744
            }
745
          }
746
        }
747

	
748
        {
749
          Node new_target;
750
          if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
751
            if ((*_next)[target] == INVALID) {
752
              _last[(*_bucket)[target]] = (*_prev)[target];
753
              new_target = (*_prev)[target];
754
            } else {
755
              _prev->set((*_next)[target], (*_prev)[target]);
756
              new_target = (*_next)[target];
757
            }
758
            if ((*_prev)[target] == INVALID) {
759
              _first[(*_bucket)[target]] = (*_next)[target];
760
            } else {
761
              _next->set((*_prev)[target], (*_next)[target]);
762
            }
763
          } else {
764
            _sets.back().pop_back();
765
            if (_sets.back().empty()) {
766
              _sets.pop_back();
767
              if (_sets.empty())
768
                break;
769
              for (std::list<int>::iterator it = _sets.back().begin();
770
                   it != _sets.back().end(); ++it) {
771
                _dormant[*it] = false;
772
              }
773
            }
774
            new_target = _last[_sets.back().back()];
775
          }
776

	
777
          _bucket->set(target, 0);
778

	
779
          _source_set->set(target, true);
780
          for (InArcIt a(_graph, target); a != INVALID; ++a) {
781
            Value rem = (*_capacity)[a] - (*_flow)[a];
782
            if (!_tolerance.positive(rem)) continue;
783
            Node v = _graph.source(a);
784
            if (!(*_active)[v] && !(*_source_set)[v]) {
785
              activate(v);
786
            }
787
            _excess->set(v, (*_excess)[v] + rem);
788
            _flow->set(a, (*_capacity)[a]);
789
          }
790

	
791
          for (OutArcIt a(_graph, target); a != INVALID; ++a) {
792
            Value rem = (*_flow)[a];
793
            if (!_tolerance.positive(rem)) continue;
794
            Node v = _graph.target(a);
795
            if (!(*_active)[v] && !(*_source_set)[v]) {
796
              activate(v);
797
            }
798
            _excess->set(v, (*_excess)[v] + rem);
799
            _flow->set(a, 0);
800
          }
801

	
802
          target = new_target;
803
          if ((*_active)[target]) {
804
            deactivate(target);
805
          }
806

	
807
          _highest = _sets.back().begin();
808
          while (_highest != _sets.back().end() &&
809
                 !(*_active)[_first[*_highest]]) {
810
            ++_highest;
811
          }
812
        }
813
      }
814
    }
815

	
816
  public:
817

	
818
    /// \name Execution control
819
    /// The simplest way to execute the algorithm is to use
820
    /// one of the member functions called \c run(...).
821
    /// \n
822
    /// If you need more control on the execution,
823
    /// first you must call \ref init(), then the \ref calculateIn() or
824
    /// \ref calculateOut() functions.
825

	
826
    /// @{
827

	
828
    /// \brief Initializes the internal data structures.
829
    ///
830
    /// Initializes the internal data structures. It creates
831
    /// the maps, residual graph adaptors and some bucket structures
832
    /// for the algorithm.
833
    void init() {
834
      init(NodeIt(_graph));
835
    }
836

	
837
    /// \brief Initializes the internal data structures.
838
    ///
839
    /// Initializes the internal data structures. It creates
840
    /// the maps, residual graph adaptor and some bucket structures
841
    /// for the algorithm. Node \c source  is used as the push-relabel
842
    /// algorithm's source.
843
    void init(const Node& source) {
844
      _source = source;
845

	
846
      _node_num = countNodes(_graph);
847

	
848
      _first.resize(_node_num);
849
      _last.resize(_node_num);
850

	
851
      _dormant.resize(_node_num);
852

	
853
      if (!_flow) {
854
        _flow = new FlowMap(_graph);
855
      }
856
      if (!_next) {
857
        _next = new typename Digraph::template NodeMap<Node>(_graph);
858
      }
859
      if (!_prev) {
860
        _prev = new typename Digraph::template NodeMap<Node>(_graph);
861
      }
862
      if (!_active) {
863
        _active = new typename Digraph::template NodeMap<bool>(_graph);
864
      }
865
      if (!_bucket) {
866
        _bucket = new typename Digraph::template NodeMap<int>(_graph);
867
      }
868
      if (!_excess) {
869
        _excess = new ExcessMap(_graph);
870
      }
871
      if (!_source_set) {
872
        _source_set = new SourceSetMap(_graph);
873
      }
874
      if (!_min_cut_map) {
875
        _min_cut_map = new MinCutMap(_graph);
876
      }
877

	
878
      _min_cut = std::numeric_limits<Value>::max();
879
    }
880

	
881

	
882
    /// \brief Calculates a minimum cut with \f$ source \f$ on the
883
    /// source-side.
884
    ///
885
    /// Calculates a minimum cut with \f$ source \f$ on the
886
    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with
887
    /// \f$ source \in X \f$ and minimal out-degree).
888
    void calculateOut() {
889
      findMinCutOut();
890
    }
891

	
892
    /// \brief Calculates a minimum cut with \f$ source \f$ on the
893
    /// target-side.
894
    ///
895
    /// Calculates a minimum cut with \f$ source \f$ on the
896
    /// target-side (i.e. a set \f$ X\subsetneq V \f$ with
897
    /// \f$ source \in X \f$ and minimal out-degree).
898
    void calculateIn() {
899
      findMinCutIn();
900
    }
901

	
902

	
903
    /// \brief Runs the algorithm.
904
    ///
905
    /// Runs the algorithm. It finds nodes \c source and \c target
906
    /// arbitrarily and then calls \ref init(), \ref calculateOut()
907
    /// and \ref calculateIn().
908
    void run() {
909
      init();
910
      calculateOut();
911
      calculateIn();
912
    }
913

	
914
    /// \brief Runs the algorithm.
915
    ///
916
    /// Runs the algorithm. It uses the given \c source node, finds a
917
    /// proper \c target and then calls the \ref init(), \ref
918
    /// calculateOut() and \ref calculateIn().
919
    void run(const Node& s) {
920
      init(s);
921
      calculateOut();
922
      calculateIn();
923
    }
924

	
925
    /// @}
926

	
927
    /// \name Query Functions
928
    /// The result of the %HaoOrlin algorithm
929
    /// can be obtained using these functions.
930
    /// \n
931
    /// Before using these functions, either \ref run(), \ref
932
    /// calculateOut() or \ref calculateIn() must be called.
933

	
934
    /// @{
935

	
936
    /// \brief Returns the value of the minimum value cut.
937
    ///
938
    /// Returns the value of the minimum value cut.
939
    Value minCutValue() const {
940
      return _min_cut;
941
    }
942

	
943

	
944
    /// \brief Returns a minimum cut.
945
    ///
946
    /// Sets \c nodeMap to the characteristic vector of a minimum
947
    /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
948
    /// with minimal out-degree (i.e. \c nodeMap will be true exactly
949
    /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
950
    /// bool-valued node-map.
951
    template <typename NodeMap>
952
    Value minCutMap(NodeMap& nodeMap) const {
953
      for (NodeIt it(_graph); it != INVALID; ++it) {
954
        nodeMap.set(it, (*_min_cut_map)[it]);
955
      }
956
      return _min_cut;
957
    }
958

	
959
    /// @}
960

	
961
  }; //class HaoOrlin
962

	
963

	
964
} //namespace lemon
965

	
966
#endif //LEMON_HAO_ORLIN_H
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <sstream>
20

	
21
#include <lemon/smart_graph.h>
22
#include <lemon/hao_orlin.h>
23

	
24
#include <lemon/lgf_reader.h>
25
#include "test_tools.h"
26

	
27
using namespace lemon;
28
using namespace std;
29

	
30
const std::string lgf =
31
  "@nodes\n"
32
  "label\n"
33
  "0\n"
34
  "1\n"
35
  "2\n"
36
  "3\n"
37
  "4\n"
38
  "5\n"
39
  "@edges\n"
40
  "     label  capacity\n"
41
  "0 1  0      2\n"
42
  "1 2  1      2\n"
43
  "2 0  2      2\n"
44
  "3 4  3      2\n"
45
  "4 5  4      2\n"
46
  "5 3  5      2\n"
47
  "2 3  6      3\n";
48

	
49
int main() {
50
  SmartGraph graph;
51
  SmartGraph::EdgeMap<int> capacity(graph);
52

	
53
  istringstream lgfs(lgf);
54
  graphReader(graph, lgfs).
55
    edgeMap("capacity", capacity).run();
56

	
57
  HaoOrlin<SmartGraph, SmartGraph::EdgeMap<int> > ho(graph, capacity);
58
  ho.run();
59

	
60
  check(ho.minCutValue() == 3, "Wrong cut value");
61

	
62
  return 0;
63
}
Ignore white space 6 line context
... ...
@@ -38,2 +38,3 @@
38 38
	lemon/kruskal.h \
39
	lemon/hao_orlin.h \
39 40
	lemon/lgf_reader.h \
Ignore white space 6 line context
... ...
@@ -15,2 +15,3 @@
15 15
  graph_utils_test
16
  hao_orlin_test
16 17
  heap_test
Show white space 6 line context
... ...
@@ -23,2 +23,3 @@
23 23
	test/kruskal_test \
24
	test/hao_orlin_test \
24 25
        test/maps_test \
... ...
@@ -50,2 +51,3 @@
50 51
test_kruskal_test_SOURCES = test/kruskal_test.cc
52
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc
51 53
test_maps_test_SOURCES = test/maps_test.cc
0 comments (0 inline)